Science.gov

Sample records for abnormal mitochondrial dynamics

  1. Abnormal Mitochondrial Dynamics in the Pathogenesis of Alzheimer's Disease

    PubMed Central

    Zhu, Xiongwei; Perry, George; Smith, Mark A.; Wang, Xinglong

    2014-01-01

    Mitochondrial dysfunction is one of the most early and prominent features in vulnerable neurons in the brain of Alzheimer's disease (AD) patients. Recent studies suggest that mitochondria are highly dynamic organelles characterized by a delicate balance of fission and fusion, a concept that has revolutionized our basic understanding of the regulation of mitochondrial structure and function which has far-reaching significance in studies of health and disease. Tremendous progress has been made in studying changes in mitochondrial dynamics in AD brain and models and the potential underlying mechanisms. This review highlights the recent work demonstrating abnormal mitochondrial dynamics and distribution in AD models and discusses how these abnormalities may contribute to various aspects of mitochondrial dysfunction and the pathogenesis of AD. PMID:22531428

  2. Mitochondrial Dynamics and Mitochondrial Dysfunction in Diabetes.

    PubMed

    Wada, Jun; Nakatsuka, Atsuko

    2016-06-01

    The mitochondria are involved in active and dynamic processes, such as mitochondrial biogenesis, fission, fusion and mitophagy to maintain mitochondrial and cellular functions. In obesity and type 2 diabetes, impaired oxidation, reduced mitochondrial contents, lowered rates of oxidative phosphorylation and excessive reactive oxygen species (ROS) production have been reported. Mitochondrial biogenesis is regulated by various transcription factors such as peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), peroxisome proliferator-activated receptors (PPARs), estrogen-related receptors (ERRs), and nuclear respiratory factors (NRFs). Mitochondrial fusion is promoted by mitofusin 1 (MFN1), mitofusin 2 (MFN2) and optic atrophy 1 (OPA1), while fission is governed by the recruitment of dynamin-related protein 1 (DRP1) by adaptor proteins such as mitochondrial fission factor (MFF), mitochondrial dynamics proteins of 49 and 51 kDa (MiD49 and MiD51), and fission 1 (FIS1). Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARKIN promote DRP1-dependent mitochondrial fission, and the outer mitochondrial adaptor MiD51 is required in DRP1 recruitment and PARKIN-dependent mitophagy. This review describes the molecular mechanism of mitochondrial dynamics, its abnormality in diabetes and obesity, and pharmaceuticals targeting mitochondrial biogenesis, fission, fusion and mitophagy. PMID:27339203

  3. How mitochondrial dynamism orchestrates mitophagy

    PubMed Central

    Shirihai, Orian; Song, Moshi; Dorn, Gerald W

    2015-01-01

    Mitochondria are highly dynamic, except in adult cardiomyocytes. Yet, the fission and fusion-promoting proteins that mediate mitochondrial dynamism are highly expressed in, and essential to the normal functioning of, hearts. Here, we review accumulating evidence supporting important roles for mitochondrial fission and fusion in cardiac mitochondrial quality control, focusing on the PINK1-Parkin mitophagy pathway.Based in part on recent findings from in vivo mouse models in which mitofusin-mediated mitochondrial fusion or Drp1-mediated mitochondrial fission were conditionally interrupted in cardiac myocytes, we propose several new concepts that may provide insight into the cardiac mitochondrial dynamism-mitophagy interactome. PMID:25999423

  4. Mitochondrial abnormalities in dermatomyositis: characteristic pattern of neuropathology.

    PubMed

    Alhatou, Mohammed I; Sladky, John T; Bagasra, Omar; Glass, Jonathan D

    2004-08-01

    The objective of the work described in this paper was to evaluate mitochondrial abnormalities in perifascicular atrophic fibers in muscle biopsies from patients with dermatomyositis (DM). We localized cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) histochemically in muscle biopsies of 12 patients with DM, and 12 control patients with neurogenic atrophy. These two histochemical techniques were also combined on single tissue sections in order to accentuate any COX-negative fibers. Eleven out of 12 patients (91.6%) with DM showed histochemical evidence of mitochondrial dysfunction in perifascicular distribution. Similar abnormalities in histochemical staining were not seen in comparably sized myofibers that were atrophic due to denervation. It is concluded that abnormal SDH and COX histochemical activities in atrophic perifascicular fibers are characteristic of dermatomyositis. These abnormal staining characteristics could not be accounted for solely by myofiber atrophy, or by generalized abnormalities in histochemical staining.

  5. Metabolic regulation of mitochondrial dynamics

    PubMed Central

    Mishra, Prashant

    2016-01-01

    Mitochondria are renowned for their central bioenergetic role in eukaryotic cells, where they act as powerhouses to generate adenosine triphosphate from oxidation of nutrients. At the same time, these organelles are highly dynamic and undergo fusion, fission, transport, and degradation. Each of these dynamic processes is critical for maintaining a healthy mitochondrial population. Given the central metabolic function of mitochondria, it is not surprising that mitochondrial dynamics and bioenergetics reciprocally influence each other. We review the dynamic properties of mitochondria, with an emphasis on how these processes respond to cellular signaling events and how they affect metabolism. PMID:26858267

  6. Redox metabolism abnormalities in autistic children associated with mitochondrial disease.

    PubMed

    Frye, R E; Delatorre, R; Taylor, H; Slattery, J; Melnyk, S; Chowdhury, N; James, S J

    2013-06-18

    Research studies have uncovered several metabolic abnormalities associated with autism spectrum disorder (ASD), including mitochondrial disease (MD) and abnormal redox metabolism. Despite the close connection between mitochondrial dysfunction and oxidative stress, the relation between MD and oxidative stress in children with ASD has not been studied. Plasma markers of oxidative stress and measures of cognitive and language development and ASD behavior were obtained from 18 children diagnosed with ASD who met criteria for probable or definite MD per the Morava et al. criteria (ASD/MD) and 18 age and gender-matched ASD children without any biological markers or symptoms of MD (ASD/NoMD). Plasma measures of redox metabolism included reduced free glutathione (fGSH), oxidized glutathione (GSSG), the fGSH/GSSG ratio and 3-nitrotyrosine (3NT). In addition, a plasma measure of chronic immune activation, 3-chlorotyrosine (3CT), was also measured. Language was measured using the preschool language scale or the expressive one-word vocabulary test (depending on the age), adaptive behaviour was measured using the Vineland Adaptive Behavior Scale (VABS) and core autism symptoms were measured using the Autism Symptoms Questionnaire and the Social Responsiveness Scale. Children with ASD/MD were found to have lower scores on the communication and daily living skill subscales of the VABS despite having similar language and ASD symptoms. Children with ASD/MD demonstrated significantly higher levels of fGSH/GSSG and lower levels of GSSG as compared with children with ASD/NoMD, suggesting an overall more favourable glutathione redox status in the ASD/MD group. However, compare with controls, both ASD groups demonstrated lower fGSH and fGSH/GSSG, demonstrating that both groups suffer from redox abnormalities. Younger ASD/MD children had higher levels of 3CT than younger ASD/NoMD children because of an age-related effect in the ASD/MD group. Both ASD groups demonstrated significantly

  7. Diet impact on mitochondrial bioenergetics and dynamics

    PubMed Central

    Putti, Rosalba; Sica, Raffaella; Migliaccio, Vincenzo; Lionetti, Lillà

    2015-01-01

    Diet induced obesity is associated with impaired mitochondrial function and dynamic behavior. Mitochondria are highly dynamic organelles and the balance in fusion/fission is strictly associated with their bioenergetics. Fusion processes are associated with the optimization of mitochondrial function, whereas fission processes are associated with the removal of damaged mitochondria. In diet-induced obesity, impaired mitochondrial function and increased fission processes were found in liver and skeletal muscle. Diverse dietary fat sources differently affect mitochondrial dynamics and bioenergetics. In contrast to saturated fatty acids, omega 3 polyunsaturated fatty acids induce fusion processes and improve mitochondrial function. Moreover, the pro-longevity effect of caloric restriction has been correlated with changes in mitochondrial dynamics leading to decreased cell oxidative injury. Noteworthy, emerging findings revealed an important role for mitochondrial dynamics within neuronal populations involved in central regulation of body energy balance. In conclusion, mitochondrial dynamic processes with their strict interconnection with mitochondrial bioenergetics are involved in energy balance and diet impact on metabolic tissues. PMID:25904870

  8. Defective insulin signaling and mitochondrial dynamics in diabetic cardiomyopathy

    PubMed Central

    Westermeier, Francisco; Navarro-Marquez, Mario; López-Crisosto, Camila; Bravo-Sagua, Roberto; Quiroga, Clara; Bustamante, Mario; Verdejo, Hugo E.; Zalaquett, Ricardo; Ibacache, Mauricio; Parra, Valentina; Castro, Pablo F.; Rothermel, Beverly A.; Hill, Joseph A.; Lavandero, Sergio

    2015-01-01

    Diabetic cardiomyopathy (DCM) is a common consequence of longstanding type 2 diabetes mellitus (T2DM) and encompasses structural, morphological, functional, and metabolic abnormalities in the heart. Myocardial energy metabolism depends on mitochondria, which must generate sufficient ATP to meet the high energy demands of the myocardium. Dysfunctional mitochondria are involved in the pathophysiology of diabetic heart disease. A large body of evidence implicates myocardial insulin resistance in the pathogenesis of DCM. Recent studies show that insulin signaling influences myocardial energy metabolism by impacting cardiomyocyte mitochondrial dynamics and function under physiological conditions. However, comprehensive understanding of molecular mechanisms linking insulin signaling and changes in the architecture of the mitochondrial network in diabetic cardiomyopathy is lacking. This review summarizes our current understanding of how defective insulin signaling impacts cardiac function in diabetic cardiomyopathy and discusses the potential role of mitochondrial dynamics. PMID:25686534

  9. Mitochondrial dynamics in mammalian health and disease.

    PubMed

    Liesa, Marc; Palacín, Manuel; Zorzano, Antonio

    2009-07-01

    The meaning of the word mitochondrion (from the Greek mitos, meaning thread, and chondros, grain) illustrates that the heterogeneity of mitochondrial morphology has been known since the first descriptions of this organelle. Such a heterogeneous morphology is explained by the dynamic nature of mitochondria. Mitochondrial dynamics is a concept that includes the movement of mitochondria along the cytoskeleton, the regulation of mitochondrial architecture (morphology and distribution), and connectivity mediated by tethering and fusion/fission events. The relevance of these events in mitochondrial and cell physiology has been partially unraveled after the identification of the genes responsible for mitochondrial fusion and fission. Furthermore, during the last decade, it has been identified that mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause prevalent neurodegenerative diseases (Charcot-Marie Tooth type 2A and Kjer disease/autosomal dominant optic atrophy). In addition, other diseases such as type 2 diabetes or vascular proliferative disorders show impaired MFN2 expression. Altogether, these findings have established mitochondrial dynamics as a consolidated area in cellular physiology. Here we review the most significant findings in the field of mitochondrial dynamics in mammalian cells and their implication in human pathologies.

  10. Abnormal dynamics of language in schizophrenia.

    PubMed

    Stephane, Massoud; Kuskowski, Michael; Gundel, Jeanette

    2014-05-30

    Language could be conceptualized as a dynamic system that includes multiple interactive levels (sub-lexical, lexical, sentence, and discourse) and components (phonology, semantics, and syntax). In schizophrenia, abnormalities are observed at all language elements (levels and components) but the dynamic between these elements remains unclear. We hypothesize that the dynamics between language elements in schizophrenia is abnormal and explore how this dynamic is altered. We, first, investigated language elements with comparable procedures in patients and healthy controls. Second, using measures of reaction time, we performed multiple linear regression analyses to evaluate the inter-relationships among language elements and the effect of group on these relationships. Patients significantly differed from controls with respect to sub-lexical/lexical, lexical/sentence, and sentence/discourse regression coefficients. The intercepts of the regression slopes increased in the same order above (from lower to higher levels) in patients but not in controls. Regression coefficients between syntax and both sentence level and discourse level semantics did not differentiate patients from controls. This study indicates that the dynamics between language elements is abnormal in schizophrenia. In patients, top-down flow of linguistic information might be reduced, and the relationship between phonology and semantics but not between syntax and semantics appears to be altered.

  11. Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome

    PubMed Central

    Hodurova, Zuzana; Mandel, Merle; Zeb, Akbar; Choubey, Vinay; Safiulina, Dzhamilja; Vasar, Eero; Veksler, Vladimir; Kaasik, Allen

    2016-01-01

    Deficiency of the protein Wolfram syndrome 1 (WFS1) is associated with multiple neurological and psychiatric abnormalities similar to those observed in pathologies showing alterations in mitochondrial dynamics. The aim of this study was to examine the hypothesis that WFS1 deficiency affects neuronal function via mitochondrial abnormalities. We show that down-regulation of WFS1 in neurons leads to dramatic changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy), delaying neuronal development. WFS1 deficiency induces endoplasmic reticulum (ER) stress, leading to inositol 1,4,5-trisphosphate receptor (IP3R) dysfunction and disturbed cytosolic Ca2+ homeostasis, which, in turn, alters mitochondrial dynamics. Importantly, ER stress, impaired Ca2+ homeostasis, altered mitochondrial dynamics, and delayed neuronal development are causatively related events because interventions at all these levels improved the downstream processes. Our data shed light on the mechanisms of neuronal abnormalities in Wolfram syndrome and point out potential therapeutic targets. This work may have broader implications for understanding the role of mitochondrial dynamics in neuropsychiatric diseases. PMID:27434582

  12. Role of Mitochondrial Dynamics in Neuronal Development: Mechanism for Wolfram Syndrome.

    PubMed

    Cagalinec, Michal; Liiv, Mailis; Hodurova, Zuzana; Hickey, Miriam Ann; Vaarmann, Annika; Mandel, Merle; Zeb, Akbar; Choubey, Vinay; Kuum, Malle; Safiulina, Dzhamilja; Vasar, Eero; Veksler, Vladimir; Kaasik, Allen

    2016-07-01

    Deficiency of the protein Wolfram syndrome 1 (WFS1) is associated with multiple neurological and psychiatric abnormalities similar to those observed in pathologies showing alterations in mitochondrial dynamics. The aim of this study was to examine the hypothesis that WFS1 deficiency affects neuronal function via mitochondrial abnormalities. We show that down-regulation of WFS1 in neurons leads to dramatic changes in mitochondrial dynamics (inhibited mitochondrial fusion, altered mitochondrial trafficking, and augmented mitophagy), delaying neuronal development. WFS1 deficiency induces endoplasmic reticulum (ER) stress, leading to inositol 1,4,5-trisphosphate receptor (IP3R) dysfunction and disturbed cytosolic Ca2+ homeostasis, which, in turn, alters mitochondrial dynamics. Importantly, ER stress, impaired Ca2+ homeostasis, altered mitochondrial dynamics, and delayed neuronal development are causatively related events because interventions at all these levels improved the downstream processes. Our data shed light on the mechanisms of neuronal abnormalities in Wolfram syndrome and point out potential therapeutic targets. This work may have broader implications for understanding the role of mitochondrial dynamics in neuropsychiatric diseases. PMID:27434582

  13. Mitochondrial dynamics and cell death in heart failure.

    PubMed

    Marín-García, José; Akhmedov, Alexander T

    2016-03-01

    The highly regulated processes of mitochondrial fusion (joining), fission (division) and trafficking, collectively called mitochondrial dynamics, determine cell-type specific morphology, intracellular distribution and activity of these critical organelles. Mitochondria are critical for cardiac function, while their structural and functional abnormalities contribute to several common cardiovascular diseases, including heart failure (HF). The tightly balanced mitochondrial fusion and fission determine number, morphology and activity of these multifunctional organelles. Although the intracellular architecture of mature cardiomyocytes greatly restricts mitochondrial dynamics, this process occurs in the adult human heart. Fusion and fission modulate multiple mitochondrial functions, ranging from energy and reactive oxygen species production to Ca(2+) homeostasis and cell death, allowing the heart to respond properly to body demands. Tightly controlled balance between fusion and fission is of utmost importance in the high energy-demanding cardiomyocytes. A shift toward fission leads to mitochondrial fragmentation, while a shift toward fusion results in the formation of enlarged mitochondria and in the fusion of damaged mitochondria with healthy organelles. Mfn1, Mfn2 and OPA1 constitute the core machinery promoting mitochondrial fusion, whereas Drp1, Fis1, Mff and MiD49/51 are the core components of fission machinery. Growing evidence suggests that fusion/fission factors in adult cardiomyocytes play essential noncanonical roles in cardiac development, Ca(2+) signaling, mitochondrial quality control and cell death. Impairment of this complex circuit causes cardiomyocyte dysfunction and death contributing to heart injury culminating in HF. Pharmacological targeting of components of this intricate network may be a novel therapeutic modality for HF treatment. PMID:26872674

  14. Dynamic Abnormal Grain Growth in Refractory Metals

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2015-11-01

    High-temperature plastic deformation of the body-centered cubic (BCC) refractory metals Mo and Ta can initiate and propagate abnormal grains at significantly lower temperatures and faster rates than is possible by static annealing alone. This discovery reveals a new and potentially important aspect of abnormal grain growth (AGG) phenomena. The process of AGG during plastic deformation at elevated temperatures, termed dynamic abnormal grain growth (DAGG), was observed at homologous temperatures between 0.52 and 0.72 in both Mo and Ta sheet materials; these temperatures are much lower than those for previous observations of AGG in these materials during static annealing. DAGG was used to repeatedly grow single crystals several centimeters in length. Investigations to date have produced a basic understanding of the conditions that lead to DAGG and how DAGG is affected by microstructure in BCC refractory metals. The current state of understanding for DAGG is reviewed in this paper. Attention is given to the roles of temperature, plastic strain, boundary mobility and preexisting microstructure. DAGG is considered for its potential useful applications in solid-state crystal growth and its possibly detrimental role in creating undesired abnormal grains during thermomechanical processing.

  15. Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock in mice

    PubMed Central

    Yue, M.; Hinkle, K.; Davies, P.; Trushina, E.; Fiesel, F.; Christenson, T.; Schroeder, A.; Zhang, L.; Bowles, E.; Behrouz, B.; Lincoln, S.; Beevers, J.; Milnerwood, A.; Kurti, A.; McLean, P. J.; Fryer, J. D.; Springer, W.; Dickson, D.; Farrer, M.; Melrose, H.

    2015-01-01

    Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson’s disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore the role of physiological levels of mutant LRRK2, we created knock in mice harboring the most common LRRK2 mutation G2019S in their own genome. We have performed comprehensive dopaminergic, behavioral and neuropathological analyses in this model up to 24 months of age. We find elevated kinase activity in the brain of both heterozygous and homozygous mice. Although normal at 6 months, by 12 months of age, basal and pharmacologically induced extracellular release of dopamine is impaired in both heterozygous and homozygous mice, corroborating previous findings in transgenic models over-expressing mutant LRRK2. Via in vivo microdialysis measurement of basal and drug- evoked extracellular release of dopamine and its metabolites, our findings indicate that exocytotic release from the vesicular pool is impaired. Furthermore, profound mitochondrial abnormalities are evident in the striatum of older homozygous G2019S mice, which are consistent with mitochondrial fission arrest. We anticipate the G2019S will be a useful pre-clinical model for further evaluation of early mechanistic events in LRRK2 pathogenesis and for second-hit approaches to model disease progression. PMID:25836420

  16. New insights into the role of mitochondria in aging: mitochondrial dynamics and more

    PubMed Central

    Seo, Arnold Y.; Joseph, Anna-Maria; Dutta, Debapriya; Hwang, Judy C. Y.; Aris, John P.; Leeuwenburgh, Christiaan

    2010-01-01

    A decline in mitochondrial function plays a key role in the aging process and increases the incidence of age-related disorders. A deeper understanding of the intricate nature of mitochondrial dynamics, which is described as the balance between mitochondrial fusion and fission, has revealed that functional and structural alterations in mitochondrial morphology are important factors in several key pathologies associated with aging. Indeed, a recent wave of studies has demonstrated the pleiotropic role of fusion and fission proteins in numerous cellular processes, including mitochondrial metabolism, redox signaling, the maintenance of mitochondrial DNA and cell death. Additionally, mitochondrial fusion and fission, together with autophagy, have been proposed to form a quality-maintenance mechanism that facilitates the removal of damaged mitochondria from the cell, a process that is particularly important to forestall aging. Thus, dysfunctional regulation of mitochondrial dynamics might be one of the intrinsic causes of mitochondrial dysfunction, which contributes to oxidative stress and cell death during the aging process. In this Commentary, we discuss recent studies that have converged at a consensus regarding the involvement of mitochondrial dynamics in key cellular processes, and introduce a possible link between abnormal mitochondrial dynamics and aging. PMID:20940129

  17. Mutations in the SPTLC1 protein cause mitochondrial structural abnormalities and endoplasmic reticulum stress in lymphoblasts.

    PubMed

    Myers, Simon J; Malladi, Chandra S; Hyland, Ryan A; Bautista, Tara; Boadle, Ross; Robinson, Phillip J; Nicholson, Garth A

    2014-07-01

    Mutations in serine palmitoyltransferase long chain subunit 1 (SPTLC1) cause the typical length-dependent axonal degeneration hereditary sensory neuropathy type 1 (HSN1). Transmission electron microscopy studies on SPTLC1 mutant lymphoblasts derived from patients revealed specific structural abnormalities of mitochondria. Swollen mitochondria with abnormal cristae were clustered around the nucleus, with some mitochondria being wrapped in rough endoplasmic reticulum (ER) membranes. Total mitochondrial counts revealed a significant change in mitochondrial numbers between healthy and diseased lymphocytes but did not reveal any change in length to width ratios nor were there any changes to cellular function. However, there was a notable change in ER homeostasis, as assessed using key ER stress markers, BiP and ERO1-Lα, displaying reduced protein expression. The observations suggest that SPTLC1 mutations cause mitochondrial abnormalities and ER stress in HSN1 cells. PMID:24673574

  18. Nitric oxide regulates vascular adaptive mitochondrial dynamics.

    PubMed

    Miller, Matthew W; Knaub, Leslie A; Olivera-Fragoso, Luis F; Keller, Amy C; Balasubramaniam, Vivek; Watson, Peter A; Reusch, Jane E B

    2013-06-15

    Cardiovascular disease risk factors, such as diabetes, hypertension, dyslipidemia, obesity, and physical inactivity, are all correlated with impaired endothelial nitric oxide synthase (eNOS) function and decreased nitric oxide (NO) production. NO-mediated regulation of mitochondrial biogenesis has been established in many tissues, yet the role of eNOS in vascular mitochondrial biogenesis and dynamics is unclear. We hypothesized that genetic eNOS deletion and 3-day nitric oxide synthase (NOS) inhibition in rodents would result in impaired mitochondrial biogenesis and defunct fission/fusion and autophagy profiles within the aorta. We observed a significant, eNOS expression-dependent decrease in mitochondrial electron transport chain (ETC) protein subunits from complexes I, II, III, and V in eNOS heterozygotes and eNOS null mice compared with age-matched controls. In response to NOS inhibition with NG-nitro-L-arginine methyl ester (L-NAME) treatment in Sprague Dawley rats, significant decreases were observed in ETC protein subunits from complexes I, III, and IV as well as voltage-dependent anion channel 1. Decreased protein content of upstream regulators of mitochondrial biogenesis, cAMP response element-binding protein and peroxisome proliferator-activated receptor-γ coactivator-1α, were observed in response to 3-day L-NAME treatment. Both genetic eNOS deletion and NOS inhibition resulted in decreased manganese superoxide dismutase protein. L-NAME treatment resulted in significant changes to mitochondrial dynamic protein profiles with decreased fusion, increased fission, and minimally perturbed autophagy. In addition, L-NAME treatment blocked mitochondrial adaptation to an exercise intervention in the aorta. These results suggest that eNOS/NO play a role in basal and adaptive mitochondrial biogenesis in the vasculature and regulation of mitochondrial turnover. PMID:23585138

  19. Dynamic Abnormal Grain Growth in Molybdenum

    NASA Astrophysics Data System (ADS)

    Worthington, Daniel L.; Pedrazas, Nicholas A.; Noell, Philip J.; Taleff, Eric M.

    2013-11-01

    A new abnormal grain growth phenomenon that occurs only during continuous plastic straining, termed dynamic abnormal grain growth (DAGG), was observed in molybdenum (Mo) at elevated temperature. DAGG was produced in two commercial-purity molybdenum sheets and in a commercial-purity molybdenum wire. Single crystals, centimeters in length, were created in these materials through the DAGG process. DAGG was observed only at temperatures of 1713 K (1440 °C) and above and occurred across the range of strain rates investigated, ~10-5 to 10-4 s-1. DAGG initiates only after a critical plastic strain, which decreases with increasing temperature but is insensitive to strain rate. Following initiation of an abnormal grain, the rate of boundary migration during DAGG is on the order of 10 mm/min. This rapid growth provides a convenient means of producing large single crystals in the solid state. When significant normal grain growth occurs prior to DAGG, island grains result. DAGG was observed in sheet materials with two very different primary recrystallization textures. DAGG grains in Mo favor boundary growth along the tensile axis in a <110> direction, preferentially producing single crystals with orientations from an approximately <110> fiber family of orientations. A mechanism of boundary unpinning is proposed to explain the dependence of boundary migration on plastic straining during DAGG.

  20. Dynamics of Mitochondrial Transport in Axons

    PubMed Central

    Niescier, Robert F.; Kwak, Sang Kyu; Joo, Se Hun; Chang, Karen T.; Min, Kyung-Tai

    2016-01-01

    The polarized structure and long neurites of neurons pose a unique challenge for proper mitochondrial distribution. It is widely accepted that mitochondria move from the cell body to axon ends and vice versa; however, we have found that mitochondria originating from the axon ends moving in the retrograde direction never reach to the cell body, and only a limited number of mitochondria moving in the anterograde direction from the cell body arrive at the axon ends of mouse hippocampal neurons. Furthermore, we have derived a mathematical formula using the Fokker-Planck equation to characterize features of mitochondrial transport, and the equation could determine altered mitochondrial transport in axons overexpressing parkin. Our analysis will provide new insights into the dynamics of mitochondrial transport in axons of normal and unhealthy neurons. PMID:27242435

  1. Sweet Mitochondrial Dynamics in VMH Neurons.

    PubMed

    Steculorum, Sophie M; Brüning, Jens C

    2016-04-12

    The ventromedial nucleus of the hypothalamus (VMH) is a central region known to maintain glucose homeostasis. Toda et al. (2016) unravel a new mechanism underlying VMH-dependent regulation of systemic glucose homeostasis via uncoupling protein 2 (UCP2)-mediated control of mitochondrial dynamics and activation of glucose-excited neurons. PMID:27076074

  2. Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes.

    PubMed

    Joseph, Leroy C; Barca, Emanuele; Subramanyam, Prakash; Komrowski, Michael; Pajvani, Utpal; Colecraft, Henry M; Hirano, Michio; Morrow, John P

    2016-01-01

    Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity. PMID:26756466

  3. Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes

    PubMed Central

    Joseph, Leroy C.; Barca, Emanuele; Subramanyam, Prakash; Komrowski, Michael; Pajvani, Utpal; Colecraft, Henry M.; Hirano, Michio; Morrow, John P.

    2016-01-01

    Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity. PMID:26756466

  4. Dynamic tubulation of mitochondria drives mitochondrial network formation

    PubMed Central

    Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li

    2015-01-01

    Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms. PMID:26206315

  5. Dynamic tubulation of mitochondria drives mitochondrial network formation.

    PubMed

    Wang, Chong; Du, Wanqing; Su, Qian Peter; Zhu, Mingli; Feng, Peiyuan; Li, Ying; Zhou, Yichen; Mi, Na; Zhu, Yueyao; Jiang, Dong; Zhang, Senyan; Zhang, Zerui; Sun, Yujie; Yu, Li

    2015-10-01

    Mitochondria form networks. Formation of mitochondrial networks is important for maintaining mitochondrial DNA integrity and interchanging mitochondrial material, whereas disruption of the mitochondrial network affects mitochondrial functions. According to the current view, mitochondrial networks are formed by fusion of individual mitochondria. Here, we report a new mechanism for formation of mitochondrial networks through KIF5B-mediated dynamic tubulation of mitochondria. We found that KIF5B pulls thin, highly dynamic tubules out of mitochondria. Fusion of these dynamic tubules, which is mediated by mitofusins, gives rise to the mitochondrial network. We further demonstrated that dynamic tubulation and fusion is sufficient for mitochondrial network formation, by reconstituting mitochondrial networks in vitro using purified fusion-competent mitochondria, recombinant KIF5B, and polymerized microtubules. Interestingly, KIF5B only controls network formation in the peripheral zone of the cell, indicating that the mitochondrial network is divided into subzones, which may be constructed by different mechanisms. Our data not only uncover an essential mechanism for mitochondrial network formation, but also reveal that different parts of the mitochondrial network are formed by different mechanisms.

  6. Spatial and temporal dynamics of the cardiac mitochondrial proteome

    PubMed Central

    Lau, Edward; Huang, Derrick; Cao, Quan; Dincer, T. Umut; Black, Caitie M.; Lin, Amanda J.; Lee, Jessica M.; Wang, Ding; Liem, David A.; Lam, Maggie P.Y.; Ping, Peipei

    2015-01-01

    Summary Mitochondrial proteins alter in their composition and quantity drastically through time and space in correspondence to changing energy demands and cellular signaling events. The integrity and permutations of this dynamism are increasingly recognized to impact the functions of the cardiac proteome in health and disease. This article provides an overview on recent advances in defining the spatial and temporal dynamics of mitochondrial proteins in the heart. Proteomics techniques to characterize dynamics on a proteome scale are reviewed and the physiological consequences of altered mitochondrial protein dynamics are discussed. Lastly, we offer our perspectives on the unmet challenges in translating mitochondrial dynamics markers to the clinic. PMID:25752359

  7. DISC1-dependent Regulation of Mitochondrial Dynamics Controls the Morphogenesis of Complex Neuronal Dendrites*

    PubMed Central

    Norkett, Rosalind; Modi, Souvik; Birsa, Nicol; Atkin, Talia A.; Ivankovic, Davor; Pathania, Manav; Trossbach, Svenja V.; Korth, Carsten; Hirst, Warren D.; Kittler, Josef T.

    2016-01-01

    The DISC1 protein is implicated in major mental illnesses including schizophrenia, depression, bipolar disorder, and autism. Aberrant mitochondrial dynamics are also associated with major mental illness. DISC1 plays a role in mitochondrial transport in neuronal axons, but its effects in dendrites have yet to be studied. Further, the mechanisms of this regulation and its role in neuronal development and brain function are poorly understood. Here we have demonstrated that DISC1 couples to the mitochondrial transport and fusion machinery via interaction with the outer mitochondrial membrane GTPase proteins Miro1 and Miro2, the TRAK1 and TRAK2 mitochondrial trafficking adaptors, and the mitochondrial fusion proteins (mitofusins). Using live cell imaging, we show that disruption of the DISC1-Miro-TRAK complex inhibits mitochondrial transport in neurons. We also show that the fusion protein generated from the originally described DISC1 translocation (DISC1-Boymaw) localizes to the mitochondria, where it similarly disrupts mitochondrial dynamics. We also show by super resolution microscopy that DISC1 is localized to endoplasmic reticulum contact sites and that the DISC1-Boymaw fusion protein decreases the endoplasmic reticulum-mitochondria contact area. Moreover, disruption of mitochondrial dynamics by targeting the DISC1-Miro-TRAK complex or upon expression of the DISC1-Boymaw fusion protein impairs the correct development of neuronal dendrites. Thus, DISC1 acts as an important regulator of mitochondrial dynamics in both axons and dendrites to mediate the transport, fusion, and cross-talk of these organelles, and pathological DISC1 isoforms disrupt this critical function leading to abnormal neuronal development. PMID:26553875

  8. Mitochondrial dynamics and viral infections: A close nexus.

    PubMed

    Khan, Mohsin; Syed, Gulam Hussain; Kim, Seong-Jun; Siddiqui, Aleem

    2015-10-01

    Viruses manipulate cellular machinery and functions to subvert intracellular environment conducive for viral proliferation. They strategically alter functions of the multitasking mitochondria to influence energy production, metabolism, survival, and immune signaling. Mitochondria either occur as heterogeneous population of individual organelles or large interconnected tubular network. The mitochondrial network is highly susceptible to physiological and environmental insults, including viral infections, and is dynamically maintained by mitochondrial fission and fusion. Mitochondrial dynamics in tandem with mitochondria-selective autophagy 'mitophagy' coordinates mitochondrial quality control and homeostasis. Mitochondrial dynamics impacts cellular homeostasis, metabolism, and innate-immune signaling, and thus can be major determinant of the outcome of viral infections. Herein, we review how mitochondrial dynamics is affected during viral infections and how this complex interplay benefits the viral infectious process and associated diseases.

  9. Mitochondrial uncouplers with an extraordinary dynamic range

    PubMed Central

    Lou, Phing-How; Hansen, Birgit S.; Olsen, Preben H.; Tullin, Søren; Murphy, Michael P.; Brand, Martin D.

    2007-01-01

    We have discovered that some weak uncouplers (typified by butylated hydroxytoluene) have a dynamic range of more than 106 in vitro: the concentration giving measurable uncoupling is less than one millionth of the concentration causing full uncoupling. They achieve this through a high-affinity interaction with the mitochondrial adenine nucleotide translocase that causes significant but limited uncoupling at extremely low uncoupler concentrations, together with more conventional uncoupling at much higher concentrations. Uncoupling at the translocase is not by a conventional weak acid/anion cycling mechanism since it is also caused by substituted triphenylphosphonium molecules, which are not anionic and cannot protonate. Covalent attachment of the uncoupler to a mitochondrially targeted hydrophobic cation sensitizes it to membrane potential, giving a small additional effect. The wide dynamic range of these uncouplers in isolated mitochondria and intact cells reveals a novel allosteric activation of proton transport through the adenine nucleotide translocase and provides a promising starting point for designing safer uncouplers for obesity therapy. PMID:17608618

  10. [Dysfunction of mitochondrial dynamic and distribution in Amyotrophic Lateral Sclerosis].

    PubMed

    Walczak, Jarosław; Szczepanowska, Joanna

    2015-01-01

    Amyotrophic lateral sclerosis (ALS) is a complex disease leading to degradation of motor neurons. One of the early symptoms of many neurodegenerative disorders are mitochondrial dysfunctions. Since few decades mitochondrial morphology changes have been observed in tissues of patients with ALS. Mitochondria are highly dynamic organelles which constantly undergo continuous process of fusion and fission and are actively transported within the cell. Proper functioning of mitochondrial dynamics and distribution is crucial for cell survival, especially neuronal cells that have long axons. This article summarizes the current knowledge about the role of mitochondrial dynamics and distribution in pathophysiology of familial and sporadic form of ALS. PMID:26689011

  11. Implications of mitochondrial dynamics on neurodegeneration and on hypothalamic dysfunction

    PubMed Central

    Zorzano, Antonio; Claret, Marc

    2015-01-01

    Mitochondrial dynamics is a term that encompasses the movement of mitochondria along the cytoskeleton, regulation of their architecture, and connectivity mediated by tethering and fusion/fission. The importance of these events in cell physiology and pathology has been partially unraveled with the identification of the genes responsible for the catalysis of mitochondrial fusion and fission. Mutations in two mitochondrial fusion genes (MFN2 and OPA1) cause neurodegenerative diseases, namely Charcot-Marie Tooth type 2A and autosomal dominant optic atrophy (ADOA). Alterations in mitochondrial dynamics may be involved in the pathophysiology of prevalent neurodegenerative conditions. Moreover, impairment of the activity of mitochondrial fusion proteins dysregulates the function of hypothalamic neurons, leading to alterations in food intake and in energy homeostasis. Here we review selected findings in the field of mitochondrial dynamics and their relevance for neurodegeneration and hypothalamic dysfunction. PMID:26113818

  12. The complex interplay between mitochondrial dynamics and cardiac metabolism

    PubMed Central

    Parra, Valentina; Verdejo, Hugo; del Campo, Andrea; Pennanen, Christian; Kuzmicic, Jovan; Iglewski, Myriam; Hill, Joseph A.; Rothermel, Beverly A.

    2012-01-01

    Mitochondria are highly dynamic organelles, capable of undergoing constant fission and fusion events, forming networks. These dynamic events allow the transmission of chemical and physical messengers and the exchange of metabolites within the cell. In this article we review the signaling mechanisms controlling mitochondrial fission and fusion, and its relationship with cell bioenergetics, especially in the heart. Furthermore we also discuss how defects in mitochondrial dynamics might be involved in the pathogenesis of metabolic cardiac diseases. PMID:21258852

  13. Dynamic actin cycling through mitochondrial subpopulations locally regulates the fission–fusion balance within mitochondrial networks

    PubMed Central

    Moore, Andrew S.; Wong, Yvette C.; Simpson, Cory L.; Holzbaur, Erika L. F.

    2016-01-01

    Mitochondria form interconnected networks that dynamically remodel in response to cellular needs. Using live-cell imaging, we investigate the role of the actin cytoskeleton in regulating mitochondrial fission and fusion. We identify cycling of actin filaments onto and off of subsets of cellular mitochondria. The association of actin filaments with mitochondrial subpopulations is transient; actin quickly disassembles, then reassembles around a distinct subpopulation, efficiently cycling through all cellular mitochondria within 14 min. The focal assembly of actin induces local, Drp1-dependent fragmentation of the mitochondrial network. On actin disassembly, fragmented mitochondria undergo rapid fusion, leading to regional recovery of the tubular mitochondrial network. Cycling requires dynamic actin polymerization and is blocked by inhibitors of both Arp2/3 and formins. We propose that cyclic assembly of actin onto mitochondria modulates the fission/fusion balance, promotes network remodelling and content mixing, and thus may serve as an essential mechanism regulating mitochondrial network homeostasis. PMID:27686185

  14. Novel super-resolution capable mitochondrial probe, MitoRed AIE, enables assessment of real-time molecular mitochondrial dynamics

    PubMed Central

    Lo, Camden Yeung-Wah; Chen, Sijie; Creed, Sarah Jayne; Kang, Miaomiao; Zhao, Na; Tang, Ben Zhong; Elgass, Kirstin Diana

    2016-01-01

    Mitochondria and mitochondrial dynamics play vital roles in health and disease. With the intricate nanometer-scale structure and rapid dynamics of mitochondria, super-resolution microscopy techniques possess great un-tapped potential to significantly contribute to understanding mitochondrial biology and kinetics. Here we present a novel mitochondrial probe (MitoRed AIE) suitable for live mitochondrial dynamics imaging and single particle tracking (SPT), together with a multi-dimensional data analysis approach to assess local mitochondrial (membrane) fluidity. The MitoRed AIE probe localizes primarily to mitochondrial membranes, with 95 ms fluorophore on-time delivering 106 photons/ms, characteristics which we exploit to demonstrate live cell 100 fps 3D time-lapse tracking of mitochondria. Combining our experimental and analytical approaches, we uncover mitochondrial dynamics at unprecedented time scales. This approach opens up a new regime into high spatio-temporal resolution dynamics in many areas of mitochondrial biology. PMID:27492961

  15. Crosstalk between circadian rhythmicity, mitochondrial dynamics and macrophage bactericidal activity

    PubMed Central

    Oliva-Ramírez, Jacqueline; Moreno-Altamirano, María Maximina B; Pineda-Olvera, Benjamín; Cauich-Sánchez, Patricia; Sánchez-García, F Javier

    2014-01-01

    Biological functions show rhythmic fluctuations with 24-hr periodicity regulated by circadian proteins encoded by the so-called ‘clock’ genes. The absence or deregulation of circadian proteins in mice leads to metabolic disorders and in vitro models have shown that the synthesis of pro-inflammatory cytokines by macrophages follows a circadian rhythm so showing a link between circadian rhythmicity, metabolism and immunity. Recent evidence reveals that mitochondrial shape, position and size, collectively referred to as mitochondrial dynamics, are related to both cell metabolism and immune function. However, studies addressing the simultaneous crosstalk between circadian rhythm, mitochondrial dynamics and cell immune function are scarce. Here, by using an in vitro model of synchronized murine peritoneal macrophages, we present evidence that the mitochondrial dynamics and the mitochondrial membrane potential (Δψm) follow a circadian rhythmic pattern. In addition, it is shown that the fusion of mitochondria along with high Δψm, indicative of high mitochondrial activity, precede the highest phagocytic and bactericidal activity of macrophages on Salmonella typhimurium. Taken together, our results suggest a timely coordination between circadian rhythmicity, mitochondrial dynamics, and the bactericidal capacity of macrophages. PMID:24903615

  16. Mitochondria-Targeted Antioxidant SS31 Prevents Amyloid Beta-Induced Mitochondrial Abnormalities and Synaptic Degeneration in Alzheimer's Disease.

    PubMed

    Calkins, Marcus J; Manczak, Maria; Reddy, P Hemachandra

    2012-01-01

    In neuronal systems, the health and activity of mitochondria and synapses are tightly coupled. For this reason, it has been postulated that mitochondrial abnormalities may, at least in part, drive neurodegeneration in conditions such as Alzheimer's disease (AD). Mounting evidence from multiple Alzheimer's disease cell and mouse models and postmortem brains suggest that loss of mitochondrial integrity may be a key factor that mediates synaptic loss. Therefore, the prevention or rescue of mitochondrial dysfunction may help delay or altogether prevent AD-associated neurodegeneration. Since mitochondrial health is heavily dependent on antioxidant defenses, researchers have begun to explore the use of mitochondria-targeted antioxidants as therapeutic tools to prevent neurodegenerative diseases. This review will highlight advances made using a model mitochondria-targeted antioxidant peptide, SS31, as a potential treatment for AD. PMID:23226091

  17. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy.

    PubMed

    Abeliovich, Hagai; Zarei, Mostafa; Rigbolt, Kristoffer T G; Youle, Richard J; Dengjel, Joern

    2013-01-01

    Mitophagy, the autophagic degradation of mitochondria, is an important housekeeping function in eukaryotic cells, and defects in mitophagy correlate with ageing phenomena and with several neurodegenerative disorders. A central mechanistic question regarding mitophagy is whether mitochondria are consumed en masse, or whether an active process segregates defective molecules from functional ones within the mitochondrial network, thus allowing a more efficient culling mechanism. Here we combine a proteomic study with a molecular genetics and cell biology approach to determine whether such a segregation process occurs in yeast mitochondria. We find that different mitochondrial matrix proteins undergo mitophagic degradation at distinctly different rates, supporting the active segregation hypothesis. These differential degradation rates depend on mitochondrial dynamics, suggesting a mechanism coupling weak physical segregation with mitochondrial dynamics to achieve a distillation-like effect. In agreement, the rates of mitophagic degradation strongly correlate with the degree of physical segregation of specific matrix proteins. PMID:24240771

  18. Involvement of mitochondrial dynamics in the segregation of mitochondrial matrix proteins during stationary phase mitophagy

    NASA Astrophysics Data System (ADS)

    Abeliovich, Hagai; Zarei, Mostafa; Rigbolt, Kristoffer T. G.; Youle, Richard J.; Dengjel, Joern

    2013-11-01

    Mitophagy, the autophagic degradation of mitochondria, is an important housekeeping function in eukaryotic cells, and defects in mitophagy correlate with ageing phenomena and with several neurodegenerative disorders. A central mechanistic question regarding mitophagy is whether mitochondria are consumed en masse, or whether an active process segregates defective molecules from functional ones within the mitochondrial network, thus allowing a more efficient culling mechanism. Here we combine a proteomic study with a molecular genetics and cell biology approach to determine whether such a segregation process occurs in yeast mitochondria. We find that different mitochondrial matrix proteins undergo mitophagic degradation at distinctly different rates, supporting the active segregation hypothesis. These differential degradation rates depend on mitochondrial dynamics, suggesting a mechanism coupling weak physical segregation with mitochondrial dynamics to achieve a distillation-like effect. In agreement, the rates of mitophagic degradation strongly correlate with the degree of physical segregation of specific matrix proteins.

  19. Altered Mitochondrial Dynamics and TBI Pathophysiology.

    PubMed

    Fischer, Tara D; Hylin, Michael J; Zhao, Jing; Moore, Anthony N; Waxham, M Neal; Dash, Pramod K

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  20. Altered Mitochondrial Dynamics and TBI Pathophysiology

    PubMed Central

    Fischer, Tara D.; Hylin, Michael J.; Zhao, Jing; Moore, Anthony N.; Waxham, M. Neal; Dash, Pramod K.

    2016-01-01

    Mitochondrial function is intimately linked to cellular survival, growth, and death. Mitochondria not only generate ATP from oxidative phosphorylation, but also mediate intracellular calcium buffering, generation of reactive oxygen species (ROS), and apoptosis. Electron leakage from the electron transport chain, especially from damaged or depolarized mitochondria, can generate excess free radicals that damage cellular proteins, DNA, and lipids. Furthermore, mitochondrial damage releases pro-apoptotic factors to initiate cell death. Previous studies have reported that traumatic brain injury (TBI) reduces mitochondrial respiration, enhances production of ROS, and triggers apoptotic cell death, suggesting a prominent role of mitochondria in TBI pathophysiology. Mitochondria maintain cellular energy homeostasis and health via balanced processes of fusion and fission, continuously dividing and fusing to form an interconnected network throughout the cell. An imbalance of these processes, particularly an excess of fission, can be detrimental to mitochondrial function, causing decreased respiration, ROS production, and apoptosis. Mitochondrial fission is regulated by the cytosolic GTPase, dynamin-related protein 1 (Drp1), which translocates to the mitochondrial outer membrane (MOM) to initiate fission. Aberrant Drp1 activity has been linked to excessive mitochondrial fission and neurodegeneration. Measurement of Drp1 levels in purified hippocampal mitochondria showed an increase in TBI animals as compared to sham controls. Analysis of cryo-electron micrographs of these mitochondria also showed that TBI caused an initial increase in the length of hippocampal mitochondria at 24 h post-injury, followed by a significant decrease in length at 72 h. Post-TBI administration of Mitochondrial division inhibitor-1 (Mdivi-1), a pharmacological inhibitor of Drp1, prevented this decrease in mitochondria length. Mdivi-1 treatment also reduced the loss of newborn neurons in the

  1. Mitochondrial Dynamics Protein Drp1 Is Overexpressed in Oncocytic Thyroid Tumors and Regulates Cancer Cell Migration

    PubMed Central

    Ferreira-da-Silva, André; Valacca, Cristina; Rios, Elisabete; Pópulo, Helena; Soares, Paula; Sobrinho-Simões, Manuel; Scorrano, Luca; Máximo, Valdemar; Campello, Silvia

    2015-01-01

    Oncocytic cell tumors are characterized by the accumulation of morphologically abnormal mitochondria in their cells, suggesting a role for abnormal mitochondrial biogenesis in oncocytic cell transformation. Little is known about the reason for the dysmorphology of accumulated mitochondria. The proteins regulating the morphology of mitochondria, the "mitochondria-shaping" proteins, can modulate their size and number; however, nothing is known hitherto about a possible involvement of mitochondrial dynamics in oncocytic cell transformation in tumors. Our aim was to assess the status of the mitochondria morphology and its role in oncocytic cell transformation. We therefore evaluated the expression pattern of the main mitochondrial fusion and fission proteins in a series of thyroid cell tumor samples, as well as in thyroid tumor cell lines, with and without oncocytic cell features. The expression of mitochondrial fusion (Opa1, Mfn1 and Mfn2) and fission (Drp1 and Fis1) proteins were evaluated by immunohistochemistry (IHC) in a series of 88 human thyroid tumors. In vitro studies, for comparative purposes and to deepen the study, were performed using TPC1 - a papillary thyroid carcinoma derived cell line—and XTC.UC1, an oncocytic follicular thyroid carcinoma-derived cell line. Both IHC and in vitro protein analyses showed an overall increase in the levels of "mitochondrial-shaping" proteins in oncocytic thyroid tumors. Furthermore, overexpression of the pro-fission protein Drp1 was found to be associated with malignant oncocytic thyroid tumors. Interestingly, genetic and pharmacological blockage of Drp1 activity was able to influence thyroid cancer cells’ migration/invasion ability, a feature of tumor malignancy. In this study we show that unbalanced mitochondrial dynamics characterize the malignant features of thyroid oncocytic cell tumors, and participate in the acquisition of the migrating phenotype. PMID:25822260

  2. Mitochondrial dynamics protein Drp1 is overexpressed in oncocytic thyroid tumors and regulates cancer cell migration.

    PubMed

    Ferreira-da-Silva, André; Valacca, Cristina; Rios, Elisabete; Pópulo, Helena; Soares, Paula; Sobrinho-Simões, Manuel; Scorrano, Luca; Máximo, Valdemar; Campello, Silvia

    2015-01-01

    Oncocytic cell tumors are characterized by the accumulation of morphologically abnormal mitochondria in their cells, suggesting a role for abnormal mitochondrial biogenesis in oncocytic cell transformation. Little is known about the reason for the dysmorphology of accumulated mitochondria. The proteins regulating the morphology of mitochondria, the "mitochondria-shaping" proteins, can modulate their size and number; however, nothing is known hitherto about a possible involvement of mitochondrial dynamics in oncocytic cell transformation in tumors. Our aim was to assess the status of the mitochondria morphology and its role in oncocytic cell transformation. We therefore evaluated the expression pattern of the main mitochondrial fusion and fission proteins in a series of thyroid cell tumor samples, as well as in thyroid tumor cell lines, with and without oncocytic cell features. The expression of mitochondrial fusion (Opa1, Mfn1 and Mfn2) and fission (Drp1 and Fis1) proteins were evaluated by immunohistochemistry (IHC) in a series of 88 human thyroid tumors. In vitro studies, for comparative purposes and to deepen the study, were performed using TPC1--a papillary thyroid carcinoma derived cell line--and XTC.UC1, an oncocytic follicular thyroid carcinoma-derived cell line. Both IHC and in vitro protein analyses showed an overall increase in the levels of "mitochondrial-shaping" proteins in oncocytic thyroid tumors. Furthermore, overexpression of the pro-fission protein Drp1 was found to be associated with malignant oncocytic thyroid tumors. Interestingly, genetic and pharmacological blockage of Drp1 activity was able to influence thyroid cancer cells' migration/invasion ability, a feature of tumor malignancy. In this study we show that unbalanced mitochondrial dynamics characterize the malignant features of thyroid oncocytic cell tumors, and participate in the acquisition of the migrating phenotype.

  3. Analysis of mitochondrial dynamics and functions using imaging approaches

    PubMed Central

    Mitra, Kasturi; Lippincott-Schwartz, Jennifer

    2010-01-01

    Mitochondria are organelles that have been primarily known as the ‘power house of the cell’. However, recent advances in the field have revealed that mitochondria are also involved in many other cellular activities like lipid modifications, redox balance, calcium balance and even control cell death. These multifunctional organelles are motile and highly dynamic in shapes and forms; the dynamism is brought about by the mitochondria's ability to undergo fission and fusion with each other. Therefore it is very important to be able to image mitochondrial shape changes to relate to the variety of cellular functions these organelles have to accomplish. The protocols mentioned here will enable researchers to perform steady state and time lapse imaging of mitochondria in live cells by using confocal microscopy. High resolution 3D imaging of mitochondria will not only be helpful in understanding mitochondrial structure in detail but also could be used to analyze their structural relationships with other organelles in the cell. FRAP (fluorescence recovery after photobleaching) studies can be performed to understand mitochondrial dynamics or dynamics of any mitochondrial molecule within the organelle. Microirradiation assay can be performed to study functional continuity between mitochondria. Protocol for measuring mitochondrial potential has also been included in this chapter. In conclusion, the protocols described here will aid the understanding of mitochondrial structure-function relationship. PMID:20235105

  4. [Mitochondrial dynamics: a potential new therapeutic target for heart failure].

    PubMed

    Kuzmicic, Jovan; Del Campo, Andrea; López-Crisosto, Camila; Morales, Pablo E; Pennanen, Christian; Bravo-Sagua, Roberto; Hechenleitner, Jonathan; Zepeda, Ramiro; Castro, Pablo F; Verdejo, Hugo E; Parra, Valentina; Chiong, Mario; Lavandero, Sergio

    2011-10-01

    Mitochondria are dynamic organelles able to vary their morphology between elongated interconnected mitochondrial networks and fragmented disconnected arrays, through events of mitochondrial fusion and fission, respectively. These events allow the transmission of signaling messengers and exchange of metabolites within the cell. They have also been implicated in a variety of biological processes including embryonic development, metabolism, apoptosis, and autophagy. Although the majority of these studies have been confined to noncardiac cells, emerging evidence suggests that changes in mitochondrial morphology could participate in cardiac development, the response to ischemia-reperfusion injury, heart failure, and diabetes mellitus. In this article, we review how the mitochondrial dynamics are altered in different cardiac pathologies, with special emphasis on heart failure, and how this knowledge may provide new therapeutic targets for treating cardiovascular diseases. PMID:21820793

  5. Dynamic evolution of mitochondrial ribosomal proteins in Holozoa.

    PubMed

    Scheel, Bettina M; Hausdorf, Bernhard

    2014-07-01

    We studied the highly dynamic evolution of mitochondrial ribosomal proteins (MRPs) in Holozoa. Most major clades within Holozoa are characterized by gains and/or losses of MRPs. The usefulness of gains of MRPs as rare genomic changes in phylogenetics is undermined by the high frequency of secondary losses. However, phylogenetic analyses of the MRP sequences provide evidence for the Acrosomata hypothesis, a sister group relationship between Ctenophora and Bilateria. An extensive restructuring of the mitochondrial genome and, as a consequence, of the mitochondrial ribosomes occurred in the ancestor of metazoans. The last MRP genes encoded in the mitochondrial genome were either moved to the nuclear genome or were lost. The strong decrease in size of the mitochondrial genome was probably caused by selection for rapid replication of mitochondrial DNA during oogenesis in the metazoan ancestor. A phylogenetic analysis of MRPL56 sequences provided evidence for a horizontal gene transfer of the corresponding MRP gene between metazoans and Dictyostelidae (Amoebozoa). The hypothesis that the requisition of additional MRPs compensated for a loss of rRNA segments in the mitochondrial ribosomes is corroborated by a significant negative correlation between the number of MRPs and length of the rRNA. Newly acquired MRPs evolved faster than bacterial MRPs and positions in eukaryote-specific MRPs were more strongly affected by coevolution than positions in prokaryotic MRPs in accordance with the necessity to fit these proteins into the pre-existing structure of the mitoribosome. PMID:24631858

  6. Dynamic evolution of mitochondrial ribosomal proteins in Holozoa.

    PubMed

    Scheel, Bettina M; Hausdorf, Bernhard

    2014-07-01

    We studied the highly dynamic evolution of mitochondrial ribosomal proteins (MRPs) in Holozoa. Most major clades within Holozoa are characterized by gains and/or losses of MRPs. The usefulness of gains of MRPs as rare genomic changes in phylogenetics is undermined by the high frequency of secondary losses. However, phylogenetic analyses of the MRP sequences provide evidence for the Acrosomata hypothesis, a sister group relationship between Ctenophora and Bilateria. An extensive restructuring of the mitochondrial genome and, as a consequence, of the mitochondrial ribosomes occurred in the ancestor of metazoans. The last MRP genes encoded in the mitochondrial genome were either moved to the nuclear genome or were lost. The strong decrease in size of the mitochondrial genome was probably caused by selection for rapid replication of mitochondrial DNA during oogenesis in the metazoan ancestor. A phylogenetic analysis of MRPL56 sequences provided evidence for a horizontal gene transfer of the corresponding MRP gene between metazoans and Dictyostelidae (Amoebozoa). The hypothesis that the requisition of additional MRPs compensated for a loss of rRNA segments in the mitochondrial ribosomes is corroborated by a significant negative correlation between the number of MRPs and length of the rRNA. Newly acquired MRPs evolved faster than bacterial MRPs and positions in eukaryote-specific MRPs were more strongly affected by coevolution than positions in prokaryotic MRPs in accordance with the necessity to fit these proteins into the pre-existing structure of the mitoribosome.

  7. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    SciTech Connect

    Liu, Tong; Yu, Rong; Jin, Shao-Bo; Han, Liwei; Lendahl, Urban; Zhao, Jian; Nistér, Monica

    2013-11-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  8. Mitochondrial Dynamics and the ER: The Plant Perspective

    PubMed Central

    Mueller, Stefanie J.; Reski, Ralf

    2015-01-01

    Whereas contact sites between mitochondria and the ER have been in the focus of animal and fungal research for several years, the importance of this organellar interface and the molecular effectors are largely unknown for plants. This work gives an introduction into known evolutionary differences of molecular effectors of mitochondrial dynamics and interactions between animals, fungi, and plants. Using the model plant Physcomitrella patens, we provide microscopic evidence for the existence of mitochondria-ER interactions in plants and their correlation with mitochondrial constriction and fission. We further investigate a previously identified protein of unknown function (MELL1), and show that it modulates the amount of mitochondrial association to the ER, as well as mitochondrial shape and number. PMID:26779478

  9. Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics*

    PubMed Central

    Wei, An-Chi; Liu, Ting; O'Rourke, Brian

    2015-01-01

    The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca2+ uptake, these include activation of countertransporters (Na+/Ca2+ exchanger and Na+/H+ exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca2+ binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca2+ uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca2+ dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca2+ and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca2+ flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca2+ uptake proceeded slowly in the absence of Pi but matrix free Ca2+ ([Ca2+]mito) still rose to ∼50 μm. Pi (0.001–1 mm) accelerated Ca2+ uptake but decreased [Ca2+]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca2+ were blocked by inhibiting the phosphate carrier. Mitochondrial Ca2+ uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca2+ buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca2+ uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca2+ uptake and modifies the [Ca2+]mito response in a complex manner. PMID:25963147

  10. Dual Effect of Phosphate Transport on Mitochondrial Ca2+ Dynamics.

    PubMed

    Wei, An-Chi; Liu, Ting; O'Rourke, Brian

    2015-06-26

    The large inner membrane electrochemical driving force and restricted volume of the matrix confer unique constraints on mitochondrial ion transport. Cation uptake along with anion and water movement induces swelling if not compensated by other processes. For mitochondrial Ca(2+) uptake, these include activation of countertransporters (Na(+)/Ca(2+) exchanger and Na(+)/H(+) exchanger) coupled to the proton gradient, ultimately maintained by the proton pumps of the respiratory chain, and Ca(2+) binding to matrix buffers. Inorganic phosphate (Pi) is known to affect both the Ca(2+) uptake rate and the buffering reaction, but the role of anion transport in determining mitochondrial Ca(2+) dynamics is poorly understood. Here we simultaneously monitor extra- and intra-mitochondrial Ca(2+) and mitochondrial membrane potential (ΔΨm) to examine the effects of anion transport on mitochondrial Ca(2+) flux and buffering in Pi-depleted guinea pig cardiac mitochondria. Mitochondrial Ca(2+) uptake proceeded slowly in the absence of Pi but matrix free Ca(2+) ([Ca(2+)]mito) still rose to ~50 μm. Pi (0.001-1 mm) accelerated Ca(2+) uptake but decreased [Ca(2+)]mito by almost 50% while restoring ΔΨm. Pi-dependent effects on Ca(2+) were blocked by inhibiting the phosphate carrier. Mitochondrial Ca(2+) uptake rate was also increased by vanadate (Vi), acetate, ATP, or a non-hydrolyzable ATP analog (AMP-PNP), with differential effects on matrix Ca(2+) buffering and ΔΨm recovery. Interestingly, ATP or AMP-PNP prevented the effects of Pi on Ca(2+) uptake. The results show that anion transport imposes an upper limit on mitochondrial Ca(2+) uptake and modifies the [Ca(2+)]mito response in a complex manner. PMID:25963147

  11. Abnormal Mitochondrial L-Arginine Transport Contributes to the Pathogenesis of Heart Failure and Rexoygenation Injury

    PubMed Central

    Byrne, Melissa; Joshi, Mandar; Horlock, Duncan; Lam, Nicholas T.; Gregorevic, Paul; McGee, Sean L.; Kaye, David M.

    2014-01-01

    Background Impaired mitochondrial function is fundamental feature of heart failure (HF) and myocardial ischemia. In addition to the effects of heightened oxidative stress, altered nitric oxide (NO) metabolism, generated by a mitochondrial NO synthase, has also been proposed to impact upon mitochondrial function. However, the mechanism responsible for arginine transport into mitochondria and the effect of HF on such a process is unknown. We therefore aimed to characterize mitochondrial L-arginine transport and to investigate the hypothesis that impaired mitochondrial L-arginine transport plays a key role in the pathogenesis of heart failure and myocardial injury. Methods and Results In mitochondria isolated from failing hearts (sheep rapid pacing model and mouse Mst1 transgenic model) we demonstrated a marked reduction in L-arginine uptake (p<0.05 and p<0.01 respectively) and expression of the principal L-arginine transporter, CAT-1 (p<0.001, p<0.01) compared to controls. This was accompanied by significantly lower NO production and higher 3-nitrotyrosine levels (both p<0.05). The role of mitochondrial L-arginine transport in modulating cardiac stress responses was examined in cardiomyocytes with mitochondrial specific overexpression of CAT-1 (mtCAT1) exposed to hypoxia-reoxygenation stress. mtCAT1 cardiomyocytes had significantly improved mitochondrial membrane potential, respiration and ATP turnover together with significantly decreased reactive oxygen species production and cell death following mitochondrial stress. Conclusion These data provide new insights into the role of L-arginine transport in mitochondrial biology and cardiovascular disease. Augmentation of mitochondrial L-arginine availability may be a novel therapeutic strategy for myocardial disorders involving mitochondrial stress such as heart failure and reperfusion injury. PMID:25111602

  12. Miro sculpts mitochondrial dynamics in neuronal health and disease.

    PubMed

    Devine, Michael J; Birsa, Nicol; Kittler, Josef T

    2016-06-01

    Neurons are highly polarised cells with an elaborate and diverse cytoarchitecture. But this complex architecture presents a major problem: how to appropriately distribute metabolic resources where they are most needed within the cell. The solution comes in the form of mitochondria: highly dynamic organelles subject to a repertoire of trafficking, fission/fusion and quality control systems which work in concert to orchestrate a precisely distributed and healthy mitochondrial network. Mitochondria are critical for maintaining local energy supply and buffering Ca(2+) flux within neurons, and are increasingly recognised as being essential for healthy neuronal function. Mitochondrial movements are facilitated by their coupling to microtubule-based transport via kinesin and dynein motors. Adaptor proteins are required for this coupling and the mitochondrial Rho GTPases Miro1 and Miro2 are core components of this machinery. Both Miros have Ca(2+)-sensing and GTPase domains, and are therefore ideally suited to coordinating mitochondrial dynamics with intracellular signalling pathways and local energy turnover. In this review, we focus on Miro's role in mediating mitochondrial transport in neurons, and the relevance of these mechanisms to neuronal health and disease. PMID:26707701

  13. Calorie restriction limits the generation but not the progression of mitochondrial abnormalities in aging skeletal muscle.

    PubMed

    Bua, Entela; McKiernan, Susan H; Aiken, Judd M

    2004-03-01

    The effect of early-onset calorie restriction and aging on the accumulation of electron transport system (ETS) abnormalities was studied in rat skeletal muscle. Rectus femoris and vastus lateralis muscle fibers were analyzed for cytochrome c oxidase (COX) and succinate dehydrogenase (SDH) enzyme activities. Fibers displaying COX negative and SDH hyper reactive (COX-/SDH++) phenotype were followed through 1000-2000 micrometers to determine the frequency and length of these abnormalities as well as the physiological impact on fiber structure. Calorie restricted rats had fewer ETS abnormal muscle fibers. The mean length of ETS abnormal regions in ad libitum rat muscle fibers was similar to calorie restricted rat muscles. ETS abnormal fibers from both diet groups exhibited intra-fiber atrophy. A negative correlation between ETS abnormality length and fiber cross-sectional area (CSA) ratio was observed in both ad libitum and calorie- restricted rats. Although calorie restriction reduced the number of ETS abnormalities, it did not affect the length or associated fiber atrophy of ETS abnormal regions once the abnormality was established. Thus, calorie restriction affects the onset but not the progression of electron transport system abnormalities, thereby, limiting a process that ultimately results in fiber breakage and fiber loss.

  14. Acquired Mitochondrial Abnormalities, Including Epigenetic Inhibition of Superoxide Dismutase 2, in Pulmonary Hypertension and Cancer: Therapeutic Implications.

    PubMed

    Archer, Stephen L

    2016-01-01

    There is no cure for non-small-cell lung cancer (NSCLC) or pulmonary arterial hypertension (PAH). Therapies lack efficacy and/or are toxic, reflecting a failure to target disease abnormalities that are distinct from processes vital to normal cells. NSCLC and PAH share reversible mitochondrial-metabolic abnormalities which may offer selective therapeutic targets. The following mutually reinforcing, mitochondrial abnormalities favor proliferation, impair apoptosis, and are relatively restricted to PAH and cancer cells: (1) Epigenetic silencing of superoxide dismutase-2 (SOD2) by methylation of CpG islands creates a pseudohypoxic redox environment that causes normoxic activation of hypoxia inducible factor (HIF-1α). (2) HIF-1α increases expression of pyruvate dehydrogenase kinase (PDK), which impairs oxidative metabolism and promotes a glycolytic metabolic state. (3) Mitochondrial fragmentation, partially due to mitofusin-2 downregulation, promotes proliferation. This review focuses on the recent discovery that decreased expression of SOD2, a putative tumor-suppressor gene and the major source of H2O2, results from hypermethylation of CpG islands. In cancer and PAH hypermethylation of a site in the enhancer region of intron 2 inhibits SOD2 transcription. In normal PASMC, SOD2 siRNA decreases H2O2 and activates HIF-1α. In PAH, reduced SOD2 expression decreases H2O2, reduces the cytosol and thereby activates HIF-1α. This causes a glycolytic shift in metabolism and increases the proliferation/apoptosis ratio by downregulating Kv1.5 channels, increasing cytosolic calcium, and inhibiting caspases. The DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, which restores SOD2 expression, corrects the proliferation/apoptosis imbalance in PAH and cancer cells. The specificity of PAH for lung vessels may relate to the selective upregulation of DNA methyltransferases that mediate CpG methylation in PASMC (DNA MT-1A and -3B). SOD2 augmentation inactivates HIF-1α in PAH

  15. Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle

    PubMed Central

    Hnia, Karim; Tronchère, Helene; Tomczak, Kinga K.; Amoasii, Leonela; Schultz, Patrick; Beggs, Alan H.; Payrastre, Bernard; Mandel, Jean Louis; Laporte, Jocelyn

    2010-01-01

    Muscle contraction relies on a highly organized intracellular network of membrane organelles and cytoskeleton proteins. Among the latter are the intermediate filaments (IFs), a large family of proteins mutated in more than 30 human diseases. For example, mutations in the DES gene, which encodes the IF desmin, lead to desmin-related myopathy and cardiomyopathy. Here, we demonstrate that myotubularin (MTM1), which is mutated in individuals with X-linked centronuclear myopathy (XLCNM; also known as myotubular myopathy), is a desmin-binding protein and provide evidence for direct regulation of desmin by MTM1 in vitro and in vivo. XLCNM-causing mutations in MTM1 disrupted the MTM1-desmin complex, resulting in abnormal IF assembly and architecture in muscle cells and both mouse and human skeletal muscles. Adeno-associated virus–mediated ectopic expression of WT MTM1 in Mtm1-KO muscle reestablished normal desmin expression and localization. In addition, decreased MTM1 expression and XLCNM-causing mutations induced abnormal mitochondrial positioning, shape, dynamics, and function. We therefore conclude that MTM1 is a major regulator of both the desmin cytoskeleton and mitochondria homeostasis, specifically in skeletal muscle. Defects in IF stabilization and mitochondrial dynamics appear as common physiopathological features of centronuclear myopathies and desmin-related myopathies. PMID:21135508

  16. Hydroxytyrosol prevents diet-induced metabolic syndrome and attenuates mitochondrial abnormalities in obese mice.

    PubMed

    Cao, Ke; Xu, Jie; Zou, Xuan; Li, Yuan; Chen, Cong; Zheng, Adi; Li, Hao; Li, Hua; Szeto, Ignatius Man-Yau; Shi, Yujie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui

    2014-02-01

    A Mediterranean diet rich in olive oil has profound influence on health outcomes including metabolic syndrome. However, the active compound and detailed mechanisms still remain unclear. Hydroxytyrosol (HT), a major polyphenolic compound in virgin olive oil, has received increased attention for its antioxidative activity and regulation of mitochondrial function. Here, we investigated whether HT is the active compound in olive oil exerting a protective effect against metabolic syndrome. In this study, we show that HT could prevent high-fat-diet (HFD)-induced obesity, hyperglycemia, hyperlipidemia, and insulin resistance in C57BL/6J mice after 17 weeks supplementation. Within liver and skeletal muscle tissues, HT could decrease HFD-induced lipid deposits through inhibition of the SREBP-1c/FAS pathway, ameliorate HFD-induced oxidative stress by enhancing antioxidant enzyme activities, normalize expression of mitochondrial complex subunits and mitochondrial fission marker Drp1, and eventually inhibit apoptosis activation. Moreover, in muscle tissue, the levels of mitochondrial carbonyl protein were decreased and mitochondrial complex activities were significantly improved by HT supplementation. In db/db mice, HT significantly decreased fasting glucose, similar to metformin. Notably, HT decreased serum lipid, at which metformin failed. Also, HT was more effective at decreasing the oxidation levels of lipids and proteins in both liver and muscle tissue. Similar to the results in the HFD model, HT decreased muscle mitochondrial carbonyl protein levels and improved mitochondrial complex activities in db/db mice. Our study links the olive oil component HT to diabetes and metabolic disease through changes that are not limited to decreases in oxidative stress, suggesting a potential pharmaceutical or clinical use of HT in metabolic syndrome treatment.

  17. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics

    PubMed Central

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude “miniflashes” emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  18. Regulation of Mitoflash Biogenesis and Signaling by Mitochondrial Dynamics.

    PubMed

    Li, Wenwen; Sun, Tao; Liu, Beibei; Wu, Di; Qi, Wenfeng; Wang, Xianhua; Ma, Qi; Cheng, Heping

    2016-01-01

    Mitochondria are highly dynamic organelles undergoing constant network reorganization and exhibiting stochastic signaling events in the form of mitochondrial flashes (mitoflashes). Here we investigate whether and how mitochondrial network dynamics regulate mitoflash biogenesis and signaling. We found that mitoflash frequency was largely invariant when network fragmentized or redistributed in the absence of mitofusin (Mfn) 1, Mfn2, or Kif5b. However, Opa1 deficiency decreased spontaneous mitoflash frequency due to superimposing changes in respiratory function, whereas mitoflash response to non-metabolic stimulation was unchanged despite network fragmentation. In Drp1- or Mff-deficient cells whose mitochondria hyperfused into a single whole-cell reticulum, the frequency of mitoflashes of regular amplitude and duration was again unaltered, although brief and low-amplitude "miniflashes" emerged because of improved detection ability. As the network reorganized, however, the signal mass of mitoflash signaling was dynamically regulated in accordance with the degree of network connectivity. These findings demonstrate a novel functional role of mitochondrial network dynamics and uncover a magnitude- rather than frequency-modulatory mechanism in the regulation of mitoflash signaling. In addition, our data support a stochastic trigger model for the ignition of mitoflashes. PMID:27623243

  19. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts.

    PubMed

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I; Opal, Puneet; Goldman, Robert D

    2016-02-15

    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320

  20. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts.

    PubMed

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I; Opal, Puneet; Goldman, Robert D

    2016-02-15

    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility.

  1. Tools for assessing mitochondrial dynamics in mouse tissues and neurodegenerative models

    NASA Astrophysics Data System (ADS)

    Pham, Anh H.

    Mitochondria are dynamic organelles that undergo membrane fusion and fission and transport. The dynamic properties of mitochondria are important for regulating mitochondrial function. Defects in mitochondrial dynamics are linked neurodegenerative diseases and affect the development of many tissues. To investigate the role of mitochondrial dynamics in diseases, versatile tools are needed to explore the physiology of these dynamic organelles in multiple tissues. Current tools for monitoring mitochondrial dynamics have been limited to studies in cell culture, which may be inadequate model systems for exploring the network of tissues. Here, we have generated mouse models for monitoring mitochondrial dynamics in a broad spectrum of tissues and cell types. The Photo-Activatable Mitochondrial (PhAM floxed) line enables Cre-inducible expression of a mitochondrial targeted photoconvertible protein, Dendra2 (mito-Dendra2). In the PhAMexcised line, mito-Dendra2 is ubiquitously expressed to facilitate broad analysis of mitochondria at various developmental processes. We have utilized these models to study mitochondrial dynamics in the nigrostriatal circuit of Parkinson's disease (PD) and in the development of skeletal muscles. Increasing evidences implicate aberrant regulation of mitochondrial fusion and fission in models of PD. To assess the function of mitochondrial dynamics in the nigrostriatal circuit, we utilized transgenic techniques to abrogate mitochondrial fusion. We show that deletion of the Mfn2 leads to the degeneration of dopaminergic neurons and Parkinson's-like features in mice. To elucidate the dynamic properties of mitochondria during muscle development, we established a platform for examining mitochondrial compartmentalization in skeletal muscles. This model system may yield clues to the role of mitochondrial dynamics in mitochondrial myopathies.

  2. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants.

    PubMed Central

    Johns, C; Lu, M; Lyznik, A; Mackenzie, S

    1992-01-01

    Cytoplasmic male sterility (CMS) in common bean is associated with the presence of a 3-kb unique mitochondrial sequence designated pvs. The pvs sequence encodes at least two open reading frames (297 and 720 bp in length) with portions derived from the chloroplast genome. Fertility restoration by the nuclear restorer gene Fr results in the loss of this transcriptionally active unique region. We examined the effect of CMS (pvs present) and fertility restoration by Fr (pvs absent) on the pattern of pollen development in bean. In the CMS line, pollen aborted in the tetrad stage late in microgametogenesis. Microspores maintained cytoplasmic connections throughout pollen development, indicating aberrant or incomplete cytokinesis. Pollen-specific events associated with pollen abortion and fertility restoration imply that a gametophytic factor or event may be involved in CMS. In situ hybridization experiments suggested that significant reduction or complete loss of the mitochondrial sterility-associated sequence occurred in fertile pollen of F2 populations segregating for fertility. These observations support a model of fertility restoration by the loss of a mitochondrial DNA sequence prior to or during microsporogenesis/gametogenesis. PMID:1498602

  3. Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming.

    PubMed

    Buck, Michael D; O'Sullivan, David; Klein Geltink, Ramon I; Curtis, Jonathan D; Chang, Chih-Hao; Sanin, David E; Qiu, Jing; Kretz, Oliver; Braas, Daniel; van der Windt, Gerritje J W; Chen, Qiongyu; Huang, Stanley Ching-Cheng; O'Neill, Christina M; Edelson, Brian T; Pearce, Edward J; Sesaki, Hiromi; Huber, Tobias B; Rambold, Angelika S; Pearce, Erika L

    2016-06-30

    Activated effector T (TE) cells augment anabolic pathways of metabolism, such as aerobic glycolysis, while memory T (TM) cells engage catabolic pathways, like fatty acid oxidation (FAO). However, signals that drive these differences remain unclear. Mitochondria are metabolic organelles that actively transform their ultrastructure. Therefore, we questioned whether mitochondrial dynamics controls T cell metabolism. We show that TE cells have punctate mitochondria, while TM cells maintain fused networks. The fusion protein Opa1 is required for TM, but not TE cells after infection, and enforcing fusion in TE cells imposes TM cell characteristics and enhances antitumor function. Our data suggest that, by altering cristae morphology, fusion in TM cells configures electron transport chain (ETC) complex associations favoring oxidative phosphorylation (OXPHOS) and FAO, while fission in TE cells leads to cristae expansion, reducing ETC efficiency and promoting aerobic glycolysis. Thus, mitochondrial remodeling is a signaling mechanism that instructs T cell metabolic programming.

  4. Mitochondrial Dynamics Controls T Cell Fate through Metabolic Programming.

    PubMed

    Buck, Michael D; O'Sullivan, David; Klein Geltink, Ramon I; Curtis, Jonathan D; Chang, Chih-Hao; Sanin, David E; Qiu, Jing; Kretz, Oliver; Braas, Daniel; van der Windt, Gerritje J W; Chen, Qiongyu; Huang, Stanley Ching-Cheng; O'Neill, Christina M; Edelson, Brian T; Pearce, Edward J; Sesaki, Hiromi; Huber, Tobias B; Rambold, Angelika S; Pearce, Erika L

    2016-06-30

    Activated effector T (TE) cells augment anabolic pathways of metabolism, such as aerobic glycolysis, while memory T (TM) cells engage catabolic pathways, like fatty acid oxidation (FAO). However, signals that drive these differences remain unclear. Mitochondria are metabolic organelles that actively transform their ultrastructure. Therefore, we questioned whether mitochondrial dynamics controls T cell metabolism. We show that TE cells have punctate mitochondria, while TM cells maintain fused networks. The fusion protein Opa1 is required for TM, but not TE cells after infection, and enforcing fusion in TE cells imposes TM cell characteristics and enhances antitumor function. Our data suggest that, by altering cristae morphology, fusion in TM cells configures electron transport chain (ETC) complex associations favoring oxidative phosphorylation (OXPHOS) and FAO, while fission in TE cells leads to cristae expansion, reducing ETC efficiency and promoting aerobic glycolysis. Thus, mitochondrial remodeling is a signaling mechanism that instructs T cell metabolic programming. PMID:27293185

  5. Complex patterns of mitochondrial dynamics in human pancreatic cells revealed by fluorescent confocal imaging.

    PubMed

    Kuznetsov, Andrey V; Hermann, Martin; Troppmair, Jakob; Margreiter, Raimund; Hengster, Paul

    2010-01-01

    Mitochondrial morphology and intracellular organization are tightly controlled by the processes of mitochondrial fission-fusion. Moreover, mitochondrial movement and redistribution provide a local ATP supply at cellular sites of particular demands. Here we analysed mitochondrial dynamics in isolated primary human pancreatic cells. Using real time confocal microscopy and mitochondria-specific fluorescent probes tetramethylrhodamine methyl ester and MitoTracker Green we documented complex and novel patterns of spatial and temporal organization of mitochondria, mitochondrial morphology and motility. The most commonly observed types of mitochondrial dynamics were (i) fast fission and fusion; (ii) small oscillating movements of the mitochondrial network; (iii) larger movements, including filament extension, retraction, fast (0.1-0.3 mum/sec.) and frequent oscillating (back and forth) branching in the mitochondrial network; (iv) as well as combinations of these actions and (v) long-distance intracellular translocation of single spherical mitochondria or separated mitochondrial filaments with velocity up to 0.5 mum/sec. Moreover, we show here for the first time, a formation of unusual mitochondrial shapes like rings, loops, and astonishingly even knots created from one or more mitochondrial filaments. These data demonstrate the presence of extensive heterogeneity in mitochondrial morphology and dynamics in living cells under primary culture conditions. In summary, this study reports new patterns of morphological changes and dynamic motion of mitochondria in human pancreatic cells, suggesting an important role of integrations of mitochondria with other intracellular structures and systems. PMID:19382913

  6. Effects of abnormal excitation on the dynamics of spiral waves

    NASA Astrophysics Data System (ADS)

    Min-Yi, Deng; Xue-Liang, Zhang; Jing-Yu, Dai

    2016-01-01

    The effect of physiological and pathological abnormal excitation of a myocyte on the spiral waves is investigated based on the cellular automaton model. When the excitability of the medium is high enough, the physiological abnormal excitation causes the spiral wave to meander irregularly and slowly. When the excitability of the medium is low enough, the physiological abnormal excitation leads to a new stable spiral wave. On the other hand, the pathological abnormal excitation destroys the spiral wave and results in the spatiotemporal chaos, which agrees with the clinical conclusion that the early after depolarization is the pro-arrhythmic mechanism of some anti-arrhythmic drugs. The mechanisms underlying these phenomena are analyzed. Project supported by the National Natural Science Foundation of China (Grant Nos. 11365003 and 11165004).

  7. Altered mitochondrial dynamics and response to insulin in cybrid cells harboring a diabetes-susceptible mitochondrial DNA haplogroup.

    PubMed

    Kuo, Hsiao-Mei; Weng, Shao-Wen; Chang, Alice Y W; Huang, Hung-Tu; Lin, Hung-Yu; Chuang, Jiin-Haur; Lin, Tsu-Kung; Liou, Chia-Wei; Tai, Ming-Hong; Lin, Ching-Yi; Wang, Pei-Wen

    2016-07-01

    The advantage of using a cytoplasmic hybrid (cybrid) model to study the genetic effects of mitochondria is that the cells have the same nuclear genomic background. We previously demonstrated the independent role of mitochondria in the pathogenesis of insulin resistance (IR) and pro-inflammation in type 2 diabetes. In this study, we compared mitochondrial dynamics and related physiological functions between cybrid cells harboring diabetes-susceptible (B4) and diabetes-protective (D4) mitochondrial haplogroups, especially the responses before and after insulin stimulation. Cybrid B4 showed a more fragmented mitochondrial network, impaired mitochondrial biogenesis and bioenergetics, increased apoptosis and ineffective mitophagy and a low expression of fusion-related molecules. Upon insulin stimulation, increases in network formation, mitochondrial DNA (mtDNA) content, and ATP production were observed only in cybrid D4. Insulin promoted a pro-fusion dynamic status in both cybrids, but the trend was greater in cybrid D4. In cybrid B4, the imbalance of mitochondrial dynamics and impaired biogenesis and bioenergetics, and increased apoptosis were significantly improved in response to antioxidant treatment. We concluded that diabetes-susceptible mtDNA variants are themselves resistant to insulin. PMID:27107769

  8. The Armc10/SVH gene: genome context, regulation of mitochondrial dynamics and protection against Aβ-induced mitochondrial fragmentation.

    PubMed

    Serrat, R; Mirra, S; Figueiro-Silva, J; Navas-Pérez, E; Quevedo, M; López-Doménech, G; Podlesniy, P; Ulloa, F; Garcia-Fernàndez, J; Trullas, R; Soriano, E

    2014-04-10

    Mitochondrial function and dynamics are essential for neurotransmission, neural function and neuronal viability. Recently, we showed that the eutherian-specific Armcx gene cluster (Armcx1-6 genes), located in the X chromosome, encodes for a new family of proteins that localise to mitochondria, regulating mitochondrial trafficking. The Armcx gene cluster evolved by retrotransposition of the Armc10 gene mRNA, which is present in all vertebrates and is considered to be the ancestor gene. Here we investigate the genomic organisation, mitochondrial functions and putative neuroprotective role of the Armc10 ancestor gene. The genomic context of the Armc10 locus shows considerable syntenic conservation among vertebrates, and sequence comparisons and CHIP-data suggest the presence of at least three conserved enhancers. We also show that the Armc10 protein localises to mitochondria and that it is highly expressed in the brain. Furthermore, we show that Armc10 levels regulate mitochondrial trafficking in neurons, but not mitochondrial aggregation, by controlling the number of moving mitochondria. We further demonstrate that the Armc10 protein interacts with the KIF5/Miro1-2/Trak2 trafficking complex. Finally, we show that overexpression of Armc10 in neurons prevents Aβ-induced mitochondrial fission and neuronal death. Our data suggest both conserved and differential roles of the Armc10/Armcx gene family in regulating mitochondrial dynamics in neurons, and underscore a protective effect of the Armc10 gene against Aβ-induced toxicity. Overall, our findings support a further degree of regulation of mitochondrial dynamics in the brain of more evolved mammals.

  9. Aerobic Interval Training Attenuates Mitochondrial Dysfunction in Rats Post-Myocardial Infarction: Roles of Mitochondrial Network Dynamics

    PubMed Central

    Jiang, Hong-Ke; Wang, You-Hua; Sun, Lei; He, Xi; Zhao, Mei; Feng, Zhi-Hui; Yu, Xiao-Jiang; Zang, Wei-Jin

    2014-01-01

    Aerobic interval training (AIT) can favorably affect cardiovascular diseases. However, the effects of AIT on post-myocardial infarction (MI)—associated mitochondrial dysfunctions remain unclear. In this study, we investigated the protective effects of AIT on myocardial mitochondria in post-MI rats by focusing on mitochondrial dynamics (fusion and fission). Mitochondrial respiratory functions (as measured by the respiratory control ratio (RCR) and the ratio of ADP to oxygen consumption (P/O)); complex activities; dynamic proteins (mitofusin (mfn) 1/2, type 1 optic atrophy (OPA1) and dynamin-related protein1 (DRP1)); nuclear peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α); and the oxidative signaling of extracellular signal-regulated kinase (ERK) 1/2, c-Jun NH2-terminal protein kinase (JNK) and P53 were observed. Post-MI rats exhibited mitochondrial dysfunction and adverse mitochondrial network dynamics (reduced fusion and increased fission), which was associated with activated ERK1/2-JNK-P53 signaling and decreased nuclear PGC-1α. After AIT, MI-associated mitochondrial dysfunction was improved (elevated RCR and P/O and enhanced complex I, III and IV activities); in addition, increased fusion (mfn2 and OPA1), decreased fission (DRP1), elevated nuclear PGC-1α and inactivation of the ERK1/2-JNK-P53 signaling were observed. These data demonstrate that AIT may restore the post-MI mitochondrial function by inhibiting dynamics pathological remodeling, which may be associated with inactivation of ERK1/2-JNK-P53 signaling and increase in nuclear PGC-1α expression. PMID:24675698

  10. Dynamic mitochondrial localization of nuclear transcription factor HMGA1

    SciTech Connect

    Dement, Gregory A.; Treff, Nathan R.; Magnuson, Nancy S.; Franceschi, Vincent; Reeves, Raymond . E-mail: reevesr@mail.wsu.edu

    2005-07-15

    It has been well established that high mobility group A1 (HMGA1) proteins act within the nucleus of mammalian cells as architectural transcription factors that regulate the expression of numerous genes. Here, however, we report on the unexpected cytoplasmic/mitochondrial localization of the HMGA1 proteins within multiple cell types. Indirect immunofluorescence, electron microscopic immunolocalization, and Western blot studies revealed that, in addition to the nucleus, HMGA1 proteins could also be found in both the cytoplasm and mitochondria of randomly dividing populations of wild-type murine NIH3T3 cells and transgenic human MCF-7 breast cancer epithelial cells expressing a hemagglutinin tagged-HMGA1a fusion protein. While the molecular mechanisms underlying these novel subcellular localization patterns have not yet been determined, initial synchronization studies revealed a dynamic, cell cycle-dependent translocation of HMGA1 proteins from the nucleus into the cytoplasm and mitochondria of NIH3T3 cells. Furthermore, preliminary functionality studies utilizing a modified 'chromatin' immunoprecipitation protocol revealed that HMGA1 retains its DNA binding capabilities within the mitochondria and associates with the regulatory D-loop region in vivo. We discuss potential new biological roles for the classically nuclear HMGA1 proteins with regard to the observed nucleocytoplasmic translocation, mitochondrial internalization, and regulatory D-loop DNA binding.

  11. Mitochondrial dynamics and inheritance during cell division, development and disease

    PubMed Central

    Mishra, Prashant; Chan, David C.

    2014-01-01

    Preface During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with other organelles, particularly in their interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features – including their own genome and a maternal mode of germline transmission – that place additional demands on this process. We discuss the mechanisms regulating mitochondrial segregation during cell division, oogenesis, fertilization and tissue development. The mechanisms that ensure the integrity of these organelles and their DNA include fusion-fission dynamics, organelle transport, mitophagy, and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies. PMID:25237825

  12. Mitochondrial dynamics and inheritance during cell division, development and disease.

    PubMed

    Mishra, Prashant; Chan, David C

    2014-10-01

    During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with that of other organelles, particularly in the use of interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features - including their own genome and a maternal mode of germline transmission - that place additional demands on this process. Consequently, mechanisms have evolved to regulate mitochondrial segregation during cell division, oogenesis, fertilization and tissue development, as well as to ensure the integrity of these organelles and their DNA, including fusion-fission dynamics, organelle transport, mitophagy and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies. PMID:25237825

  13. Mitochondrial dynamics and inheritance during cell division, development and disease.

    PubMed

    Mishra, Prashant; Chan, David C

    2014-10-01

    During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with that of other organelles, particularly in the use of interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features - including their own genome and a maternal mode of germline transmission - that place additional demands on this process. Consequently, mechanisms have evolved to regulate mitochondrial segregation during cell division, oogenesis, fertilization and tissue development, as well as to ensure the integrity of these organelles and their DNA, including fusion-fission dynamics, organelle transport, mitophagy and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies.

  14. Acetyl-L-carnitine and lipoic acid improve mitochondrial abnormalities and serum levels of liver enzymes in a mouse model of nonalcoholic fatty liver disease.

    PubMed

    Kathirvel, Elango; Morgan, Kengathevy; French, Samuel W; Morgan, Timothy R

    2013-11-01

    Mitochondrial abnormalities are suggested to be associated with the development of nonalcoholic fatty liver. Liver mitochondrial content and function have been shown to improve in oral feeding of acetyl-L-carnitine (ALC) to rodents. Carnitine is involved in the transport of acyl-coenzyme A across the mitochondrial membrane to be used in mitochondrial β-oxidation. We hypothesized that oral administration ALC with the antioxidant lipoic acid (ALC + LA) would benefit nonalcoholic fatty liver. To test our hypothesis, we fed Balb/C mice a standard diet (SF) or SF with ALC + LA or high-fat diet (HF) or HF with ALC + LA for 6 months. Acetyl-L-carnitine and LA were dissolved at 0.2:0.1% (wt/vol) in drinking water, and mice were allowed free access to food and water. Along with physical parameters, insulin resistance (blood glucose, insulin, glucose tolerance), liver function (alanine transaminase [ALT], aspartate transaminase [AST]), liver histology (hematoxylin and eosin), oxidative stress (malondialdehyde), and mitochondrial abnormalities (carbamoyl phosphate synthase 1 and electron microscopy) were done. Compared with SF, HF had higher body, liver, liver-to-body weight ratio, white adipose tissue, ALT, AST, liver fat, oxidative stress, and insulin resistance. Coadministration of ALC + LA to HF animals significantly improved the mitochondrial marker carbamoyl phosphate synthase 1 and the size of the mitochondria in liver. Alanine transaminase and AST levels were decreased. In a nonalcoholic fatty liver mice model, ALC + LA combination improved liver mitochondrial content, size, serum ALT, and AST without significant changes in oxidative stress, insulin resistance, and liver fat accumulation. PMID:24176233

  15. Mitochondrial dynamics and their intracellular traffic in porcine oocytes.

    PubMed

    Yamochi, T; Hashimoto, S; Amo, A; Goto, H; Yamanaka, M; Inoue, M; Nakaoka, Y; Morimoto, Y

    2016-08-01

    Meiotic maturation of oocytes requires a variety of ATP-dependent reactions, such as germinal vesicle breakdown, spindle formation, and rearrangement of plasma membrane structure, which is required for fertilization. Mitochondria are accordingly expected be localized to subcellular sites of energy utilization. Although microtubule-dependent cellular traffic for mitochondria has been studied extensively in cultured neuronal (and some other somatic) cells, the molecular mechanism of their dynamics in mammalian oocytes at different stages of maturation remains obscure. The present work describes dynamic aspects of mitochondria in porcine oocytes at the germinal vesicle stage. After incubation of oocytes with MitoTracker Orange followed by centrifugation, mitochondria-enriched ooplasm was obtained using a glass needle and transferred into a recipient oocyte. The intracellular distribution of the fluorescent mitochondria was then observed over time using a laser scanning confocal microscopy equipped with an incubator. Kinetic analysis revealed that fluorescent mitochondria moved from central to subcortical areas of oocytes and were dispersed along plasma membranes. Such movement of mitochondria was inhibited by either cytochalasin B or cytochalasin D but not by colcemid, suggesting the involvement of microfilaments. This method of visualizing mitochondrial dynamics in live cells permits study of the pathophysiology of cytoskeleton-dependent intracellular traffic of mitochondria and associated energy metabolism during meiotic maturation of oocytes.

  16. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries.

    PubMed

    Jia, Longfei; Li, Juan; He, Bin; Jia, Yimin; Niu, Yingjie; Wang, Chenfei; Zhao, Ruqian

    2016-01-01

    Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated from healthy and polycystic gilt ovaries was evaluated in vitro in association with one-carbon metabolism, mitochondrial DNA (mtDNA) methylation, and mitochondrial function. PCO oocytes demonstrated impaired polar body extrusion, and significantly decreased cleavage and blastocyst rates. The mitochondrial distribution was disrupted in PCO oocytes, together with decreased mitochondrial membrane potential and deformed mitochondrial structure. The mtDNA copy number and the expression of mtDNA-encoded genes were significantly lower in PCO oocytes. Homocysteine concentration in follicular fluid was significantly higher in PCO group, which was associated with significantly up-regulated one-carbon metabolic enzymes betaine homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT) and the DNA methyltransferase DNMT1. Moreover, mtDNA sequences coding for 12S, 16S rRNA and ND4, as well as the D-loop region were significantly hypermethylated in PCO oocytes. These results indicate that an abnormal activation of one-carbon metabolism and hypermethylation of mtDNA may contribute, largely, to the mitochondrial malfunction and decreased quality of PCO-derived oocytes in gilts. PMID:26758245

  17. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries

    PubMed Central

    Jia, Longfei; Li, Juan; He, Bin; Jia, Yimin; Niu, Yingjie; Wang, Chenfei; Zhao, Ruqian

    2016-01-01

    Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated from healthy and polycystic gilt ovaries was evaluated in vitro in association with one-carbon metabolism, mitochondrial DNA (mtDNA) methylation, and mitochondrial function. PCO oocytes demonstrated impaired polar body extrusion, and significantly decreased cleavage and blastocyst rates. The mitochondrial distribution was disrupted in PCO oocytes, together with decreased mitochondrial membrane potential and deformed mitochondrial structure. The mtDNA copy number and the expression of mtDNA-encoded genes were significantly lower in PCO oocytes. Homocysteine concentration in follicular fluid was significantly higher in PCO group, which was associated with significantly up-regulated one-carbon metabolic enzymes betaine homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT) and the DNA methyltransferase DNMT1. Moreover, mtDNA sequences coding for 12S, 16S rRNA and ND4, as well as the D-loop region were significantly hypermethylated in PCO oocytes. These results indicate that an abnormal activation of one-carbon metabolism and hypermethylation of mtDNA may contribute, largely, to the mitochondrial malfunction and decreased quality of PCO-derived oocytes in gilts. PMID:26758245

  18. Cell signaling and mitochondrial dynamics: Implications for neuronal function and neurodegenerative disease.

    PubMed

    Wilson, Theodore J; Slupe, Andrew M; Strack, Stefan

    2013-03-01

    Nascent evidence indicates that mitochondrial fission, fusion, and transport are subject to intricate regulatory mechanisms that intersect with both well-characterized and emerging signaling pathways. While it is well established that mutations in components of the mitochondrial fission/fusion machinery can cause neurological disorders, relatively little is known about upstream regulators of mitochondrial dynamics and their role in neurodegeneration. Here, we review posttranslational regulation of mitochondrial fission/fusion enzymes, with particular emphasis on dynamin-related protein 1 (Drp1), as well as outer mitochondrial signaling complexes involving protein kinases and phosphatases. We also review recent evidence that mitochondrial dynamics has profound consequences for neuronal development and synaptic transmission and discuss implications for clinical translation.

  19. ABT737 enhances cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics

    SciTech Connect

    Fan, Zhongqi; Yu, Huimei; Cui, Ni; Kong, Xianggui; Liu, Xiaomin; Chang, Yulei; Wu, Yao; Sun, Liankun; Wang, Guangyi

    2015-07-01

    Cholangiocarcinoma responses weakly to cisplatin. Mitochondrial dynamics participate in the response to various stresses, and mainly involve mitophagy and mitochondrial fusion and fission. Bcl-2 family proteins play critical roles in orchestrating mitochondrial dynamics, and are involved in the resistance to cisplatin. Here we reported that ABT737, combined with cisplatin, can promote cholangiocarcinoma cells to undergo apoptosis. We found that the combined treatment decreased the Mcl-1 pro-survival form and increased Bak. Cells undergoing cisplatin treatment showed hyperfused mitochondria, whereas fragmentation was dominant in the mitochondria of cells exposed to the combined treatment, with higher Fis1 levels, decreased Mfn2 and OPA1 levels, increased ratio of Drp1 60 kD to 80 kD form, and more Drp1 located on mitochondria. More p62 aggregates were observed in cells with fragmented mitochondria, and they gradually translocated to mitochondria. Mitophagy was induced by the combined treatment. Knockdown p62 decreased the Drp1 ratio, increased Tom20, and increased cell viability. Our data indicated that mitochondrial dynamics play an important role in the response of cholangiocarcinoma to cisplatin. ABT737 might enhance cholangiocarcinoma sensitivity to cisplatin through regulation of mitochondrial dynamics and the balance within Bcl-2 family proteins. Furthermore, p62 seems to be critical in the regulation of mitochondrial dynamics. - Highlights: • Cholangiocarcinoma may adapt to cisplatin through mitochondrial fusion. • ABT737 sensitizes cholangiocarcinoma to cisplatin by promoting fission and mitophagy. • p62 might participate in the regulation of mitochondrial fission and mitophagy.

  20. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  1. Live imaging of mitochondrial dynamics in CNS dopaminergic neurons in vivo demonstrates early reversal of mitochondrial transport following MPP(+) exposure.

    PubMed

    Dukes, April A; Bai, Qing; Van Laar, Victor S; Zhou, Yangzhong; Ilin, Vladimir; David, Christopher N; Agim, Zeynep S; Bonkowsky, Joshua L; Cannon, Jason R; Watkins, Simon C; Croix, Claudette M St; Burton, Edward A; Berman, Sarah B

    2016-11-01

    Extensive convergent evidence collectively suggests that mitochondrial dysfunction is central to the pathogenesis of Parkinson's disease (PD). Recently, changes in the dynamic properties of mitochondria have been increasingly implicated as a key proximate mechanism underlying neurodegeneration. However, studies have been limited by the lack of a model in which mitochondria can be imaged directly and dynamically in dopaminergic neurons of the intact vertebrate CNS. We generated transgenic zebrafish in which mitochondria of dopaminergic neurons are labeled with a fluorescent reporter, and optimized methods allowing direct intravital imaging of CNS dopaminergic axons and measurement of mitochondrial transport in vivo. The proportion of mitochondria undergoing axonal transport in dopaminergic neurons decreased overall during development between 2days post-fertilization (dpf) and 5dpf, at which point the major period of growth and synaptogenesis of the relevant axonal projections is complete. Exposure to 0.5-1.0mM MPP(+) between 4 and 5dpf did not compromise zebrafish viability or cause detectable changes in the number or morphology of dopaminergic neurons, motor function or monoaminergic neurochemistry. However, 0.5mM MPP(+) caused a 300% increase in retrograde mitochondrial transport and a 30% decrease in anterograde transport. In contrast, exposure to higher concentrations of MPP(+) caused an overall reduction in mitochondrial transport. This is the first time mitochondrial transport has been observed directly in CNS dopaminergic neurons of a living vertebrate and quantified in a PD model in vivo. Our findings are compatible with a model in which damage at presynaptic dopaminergic terminals causes an early compensatory increase in retrograde transport of compromised mitochondria for degradation in the cell body. These data are important because manipulation of early pathogenic mechanisms might be a valid therapeutic approach to PD. The novel transgenic lines and

  2. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    NASA Astrophysics Data System (ADS)

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-02-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells.

  3. Mitochondrial Dynamics Tracking with Two-Photon Phosphorescent Terpyridyl Iridium(III) Complexes

    PubMed Central

    Huang, Huaiyi; Zhang, Pingyu; Qiu, Kangqiang; Huang, Juanjuan; Chen, Yu; Ji, Liangnian; Chao, Hui

    2016-01-01

    Mitochondrial dynamics, including fission and fusion, control the morphology and function of mitochondria, and disruption of mitochondrial dynamics leads to Parkinson’s disease, Alzheimer’s disease, metabolic diseases, and cancers. Currently, many types of commercial mitochondria probes are available, but high excitation energy and low photo-stability render them unsuitable for tracking mitochondrial dynamics in living cells. Therefore, mitochondrial targeting agents that exhibit superior anti-photo-bleaching ability, deep tissue penetration and intrinsically high three-dimensional resolutions are urgently needed. Two-photon-excited compounds that use low-energy near-infrared excitation lasers have emerged as non-invasive tools for cell imaging. In this work, terpyridyl cyclometalated Ir(III) complexes (Ir1-Ir3) are demonstrated as one- and two-photon phosphorescent probes for real-time imaging and tracking of mitochondrial morphology changes in living cells. PMID:26864567

  4. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2016-10-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the < 110rangle approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  5. The Effects of Grain Size and Texture on Dynamic Abnormal Grain Growth in Mo

    NASA Astrophysics Data System (ADS)

    Noell, Philip J.; Taleff, Eric M.

    2016-07-01

    This is the first report of abnormal grain morphologies specific to a Mo sheet material produced from a commercial-purity arc-melted ingot. Abnormal grains initiated and grew during plastic deformation of this material at temperatures of 1793 K and 1813 K (1520 °C and 1540 °C). This abnormal grain growth during high-temperature plastic deformation is termed dynamic abnormal grain growth, DAGG. DAGG in this material readily consumes nearly all grains near the sheet center while leaving many grains near the sheet surface unconsumed. Crystallographic texture, grain size, and other microstructural features are characterized. After recrystallization, a significant through-thickness variation in crystallographic texture exists in this material but does not appear to directly influence DAGG propagation. Instead, dynamic normal grain growth, which may be influenced by texture, preferentially occurs near the sheet surface prior to DAGG. The large grains thus produced near the sheet surface inhibit the subsequent growth of the abnormal grains produced by DAGG, which preferentially consume the finer grains near the sheet center. This produces abnormal grains that span the sheet center but leave unconsumed polycrystalline microstructure near the sheet surface. Abnormal grains are preferentially oriented with the < 110rangle approximately along the tensile axis. These results provide additional new evidence that boundary curvature is the primary driving force for DAGG in Mo.

  6. Abnormal Behavior in Cascading Dynamics with Node Weight.

    PubMed

    Wang, Jianwei; Cai, Lin; Xu, Bo; Wu, Yuedan

    2015-01-01

    Considering a preferential selection mechanism of load destination, we introduce a new method to quantify initial load distribution and subsequently construct a simple cascading model. By attacking the node with the highest load, we investigate the cascading dynamics in some synthetic networks. Surprisingly, we observe that for several networks of different structural patterns, a counterintuitive phenomenon emerges if the highest load attack is applied to the system, i.e., investing more resources to protect every node in a network inversely makes the whole network more vulnerable. We explain this ability paradox by analyzing the micro-structural components of the underlying network and therefore reveals how specific structural patterns may influence the cascading dynamics. We discover that the robustness of the network oscillates as the capacity of each node increases. The conclusion of the paper may shed lights on future investigations to avoid the demonstrated ability paradox and subsequent cascading failures in real-world networks. PMID:26451594

  7. Non-Invasive Evaluation of Corneal Abnormalities Using Static and Dynamic Light Scattering

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Misra, Anup K.; Leung, Alfred B.; King, James F.; Datiles, Manuel B., III

    2002-01-01

    A preliminary study of corneal abnormalities in intact bovine eyes is presented. Twenty-one eyes were treated with chemicals, cotton swabs, and radial and photo-refractive surgeries. Dynamic and static light scattering was performed as a function of the penetration depth into the corneal tissue. Topographical maps of corneal refractive power from untreated and treated corneas were also obtained using videokeratoscopy and results compared. The ultimate aim is to develop the technique of dynamic light scattering (DLS) for clinical applications in early evaluation of corneal complications after laser-assisted in situ keratomileusis (LASIK) surgeries and other corneal abnormalities.

  8. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    SciTech Connect

    Miyamoto, Yuki; Eguchi, Takahiro; Kawahara, Kazuko; Hasegawa, Nanami; Nakamura, Kazuaki; Funakoshi-Tago, Megumi; Tanoue, Akito; Tamura, Hiroomi; Yamauchi, Junji

    2015-07-03

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationships between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related diseases may

  9. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries.

    PubMed

    Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V; Busija, David W

    2015-11-01

    Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats. We examined the role of nitric oxide (NO) on mitochondrial respiration under basal conditions, using N(ω)-nitro-l-arginine methyl ester, and following pharmacological challenge using diazoxide (DZ), and also determined levels of mitochondrial and nonmitochondrial proteins using Western blot, and vascular diameter responses to DZ. The components of mitochondrial respiration including basal respiration, ATP production, proton leak, maximal respiration, and spare respiratory capacity were elevated in females compared with males, but increased in both male and female arteries in the presence of the NOS inhibitor. Although acute DZ treatment had little effect on mitochondrial respiration of male arteries, it decreased the respiration in female arteries. Levels of mitochondrial proteins in Complexes I-V and the voltage-dependent anion channel protein were elevated in female compared with male cerebral arteries. The DZ-induced vasodilation was greater in females than in males. Our findings show that substantial sex differences in mitochondrial respiratory dynamics exist in large cerebral arteries and may provide the mechanistic basis for observations that the female cerebral vasculature is more adaptable after injury.

  10. Mitochondrial ‘kiss-and-run': interplay between mitochondrial motility and fusion–fission dynamics

    PubMed Central

    Liu, Xingguo; Weaver, David; Shirihai, Orian; Hajnóczky, György

    2009-01-01

    Visualizing mitochondrial fusion in real time, we identified two classes of fusion events in mammalian cells. In addition to complete fusion, we observed transient fusion events, wherein two mitochondria came into close apposition, exchanged soluble inter-membrane space and matrix proteins, and re-separated, preserving the original morphology. Transient fusion exhibited rapid kinetics of the sequential and separable mergers of the outer and inner membranes, but allowed only partial exchange of integral membrane proteins. When the inner membrane fusion protein Opa1 level was lowered or was greatly elevated, transient fusions could occur, whereas complete fusions disappeared. Furthermore, transient fusions began from oblique or lateral interactions of mitochondria associated with separate microtubules, whereas complete fusions resulted from longitudinal merging of organelles travelling along a single microtubule. In contrast to complete fusion, transient fusions both required and promoted mitochondrial motility. Transient fusions were also necessary and sufficient to support mitochondrial metabolism. Thus, Opa1 expression and cytoskeletal anchorage govern a novel form of fusion that has a distinct function in mitochondrial maintenance. PMID:19745815

  11. Carboxylic Acid Fullerene (C60) Derivatives Attenuated Neuroinflammatory Responses by Modulating Mitochondrial Dynamics

    NASA Astrophysics Data System (ADS)

    Ye, Shefang; Zhou, Tong; Cheng, Keman; Chen, Mingliang; Wang, Yange; Jiang, Yuanqin; Yang, Peiyan

    2015-05-01

    Fullerene (C60) derivatives, a unique class of compounds with potent antioxidant properties, have been reported to exert a wide variety of biological activities including neuroprotective properties. Mitochondrial dynamics are an important constituent of cellular quality control and function, and an imbalance of the dynamics eventually leads to mitochondria disruption and cell dysfunctions. This study aimed to assess the effects of carboxylic acid C60 derivatives (C60-COOH) on mitochondrial dynamics and elucidate its associated mechanisms in lipopolysaccharide (LPS)-stimulated BV-2 microglial cell model. Using a cell-based functional screening system labeled with DsRed2-mito in BV-2 cells, we showed that LPS stimulation led to excessive mitochondrial fission, increased mitochondrial localization of dynamin-related protein 1 (Drp1), both of which were markedly suppressed by C60-COOH pretreatment. LPS-induced mitochondria reactive oxygen species (ROS) generation and collapse of mitochondrial membrane potential (Δ Ψm) were also significantly inhibited by C60-COOH. Moreover, we also found that C60-COOH pretreatment resulted in the attenuation of LPS-mediated activation of nuclear factor (NF)-κB and mitogen-activated protein kinase (MAPK) signaling, as well as the production of pro-inflammatory mediators. Taken together, these findings demonstrated that carboxylic acid C60 derivatives may exert neuroprotective effects through regulating mitochondrial dynamics and functions in microglial cells, thus providing novel insights into the mechanisms of the neuroprotective properties of carboxylic acid C60 derivatives.

  12. A mitochondrial location for haemoglobins--dynamic distribution in ageing and Parkinson's disease.

    PubMed

    Shephard, Freya; Greville-Heygate, Oliver; Marsh, Oliver; Anderson, Susan; Chakrabarti, Lisa

    2014-01-01

    Haemoglobins are iron-containing proteins that transport oxygen in the blood of most vertebrates. The mitochondrion is the cellular organelle which consumes oxygen in order to synthesise ATP. Mitochondrial dysfunction is implicated in neurodegeneration and ageing. We find that α and β haemoglobin (Hba and Hbb) proteins are altered in their distribution in mitochondrial fractions from degenerating brain. We demonstrate that both Hba and Hbb are co-localised with the mitochondrion in mammalian brain. The precise localisation of the Hbs is within the inner membrane space and associated with inner mitochondrial membrane. Relative mitochondrial to cytoplasmic ratios of Hba and Hbb show changing distributions of these proteins during the process of neurodegeneration in the pcd(5j) mouse brain. A significant difference in mitochondrial Hba and Hbb content in the mitochondrial fraction is seen at 31 days after birth, this corresponds to a stage when dynamic neuronal loss is measured to be greatest in the Purkinje Cell Degeneration mouse. We also report changes in mitochondrial Hba and Hbb levels in ageing brain and muscle. Significant differences in mitochondrial Hba and Hbb can be seen when comparing aged brain to muscle, suggesting tissue specific functions of these proteins in the mitochondrion. In muscle there are significant differences between Hba levels in old and young mitochondria. To understand whether the changes detected in mitochondrial Hbs are of clinical significance, we examined Parkinson's disease brain, immunohistochemistry studies suggest that cell bodies in the substantia nigra accumulate mitochondrial Hb. However, western blotting of mitochondrial fractions from PD and control brains indicates significantly less Hb in PD brain mitochondria. One explanation could be a specific loss of cells containing mitochondria loaded with Hb proteins. Our study opens the door to an examination of the role of Hb function, within the context of the mitochondrion

  13. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism.

  14. Nestin regulates proliferation and invasion of gastrointestinal stromal tumor cells by altering mitochondrial dynamics.

    PubMed

    Wang, J; Cai, J; Huang, Y; Ke, Q; Wu, B; Wang, S; Han, X; Wang, T; Wang, Y; Li, W; Lao, C; Song, W; Xiang, A P

    2016-06-16

    Nestin is widely expressed in numerous tumors and has become a diagnostic and prognostic indicator. However, the exact mechanism by which nestin contributes to tumor malignancy remains poorly understood. Here, we found marked upregulation of nestin expression in highly proliferative and invasive gastrointestinal stromal tumor (GIST) specimens. Nestin knockdown in GIST cells reduced the proliferative and invasive activity owing to a decrease of mitochondrial intracellular reactive oxygen species (ROS) generation. Furthermore, nestin was co-localized with mitochondria, and knockdown of nestin increased mitochondrial elongation and influenced the mitochondrial function, including oxygen consumption rates, ATP generation and mitochondrial membrane potential and so on. In exploring the underlying mechanism, we demonstrated nestin knockdown inhibited the mitochondrial recruitment of Dynamin-related protein1 and induced the change of mitochondrial dynamics. Thus, nestin may have an important role in GIST malignancy by regulating mitochondrial dynamics and altering intracellular ROS levels. The findings provide new clues to reveal mechanisms by which nestin mediates the proliferation and invasion of GISTs.

  15. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. PMID:26807480

  16. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  17. Alterations in mitochondrial dynamics induced by tebufenpyrad and pyridaben in a dopaminergic neuronal cell culture model.

    PubMed

    Charli, Adhithiya; Jin, Huajun; Anantharam, Vellareddy; Kanthasamy, Arthi; Kanthasamy, Anumantha G

    2016-03-01

    Tebufenpyrad and pyridaben are two agro-chemically important acaricides that function like the known mitochondrial toxicant rotenone. Although these two compounds have been commonly used to kill populations of mites and ticks in commercial greenhouses, their neurotoxic profiles remain largely unknown. Therefore, we investigated the effects of these two pesticides on mitochondrial structure and function in an in vitro cell culture model using the Seahorse bioanalyzer and confocal fluorescence imaging. The effects were compared with rotenone. Exposing rat dopaminergic neuronal cells (N27 cells) to tebufenpyrad and pyridaben for 3h induced dose-dependent cell death with an EC50 of 3.98μM and 3.77μM, respectively. Also, tebufenpyrad and pyridaben (3μM) exposure induced reactive oxygen species (ROS) generation and m-aconitase damage, suggesting that the pesticide toxicity is associated with oxidative damage. Morphometric image analysis with the MitoTracker red fluorescent probe indicated that tebufenpyrad and pyridaben, as well as rotenone, caused abnormalities in mitochondrial morphology, including reduced mitochondrial length and circularity. Functional bioenergetic experiments using the Seahorse XF96 analyzer revealed that tebufenpyrad and pyridaben very rapidly suppressed the basal mitochondrial oxygen consumption rate similar to that of rotenone. Further analysis of bioenergetic curves also revealed dose-dependent decreases in ATP-linked respiration and respiratory capacity. The luminescence-based ATP measurement further confirmed that pesticide-induced mitochondrial inhibition of respiration is accompanied by the loss of cellular ATP. Collectively, our results suggest that exposure to the pesticides tebufenpyrad and pyridaben induces neurotoxicity by rapidly initiating mitochondrial dysfunction and oxidative damage in dopaminergic neuronal cells. Our findings also reveal that monitoring the kinetics of mitochondrial respiration with Seahorse could be used as an

  18. Dysfunction of mitochondrial dynamics in the brains of scrapie-infected mice

    SciTech Connect

    Choi, Hong-Seok; Choi, Yeong-Gon; Shin, Hae-Young; Oh, Jae-Min; Park, Jeong-Ho; Kim, Jae-Il; Carp, Richard I.; Choi, Eun-Kyoung; Kim, Yong-Sun

    2014-05-30

    Highlights: • Mfn1 and Fis1 are significantly increased in the hippocampal region of the ME7 prion-infected brain, whereas Dlp1 is significantly decreased in the infected brain. • Dlp1 is significantly decreased in the cytosolic fraction of the hippocampus in the infected brain. • Neuronal mitochondria in the prion-infected brains are enlarged and swollen compared to those of control brains. • There are significantly fewer mitochondria in the ME7-infected brain compared to the number in control brain. - Abstract: Mitochondrial dysfunction is a common and prominent feature of many neurodegenerative diseases, including prion diseases; it is induced by oxidative stress in scrapie-infected animal models. In previous studies, we found swelling and dysfunction of mitochondria in the brains of scrapie-infected mice compared to brains of controls, but the mechanisms underlying mitochondrial dysfunction remain unclear. To examine whether the dysregulation of mitochondrial proteins is related to the mitochondrial dysfunction associated with prion disease, we investigated the expression patterns of mitochondrial fusion and fission proteins in the brains of ME7 prion-infected mice. Immunoblot analysis revealed that Mfn1 was up-regulated in both whole brain and specific brain regions, including the cerebral cortex and hippocampus, of ME7-infected mice compared to controls. Additionally, expression levels of Fis1 and Mfn2 were elevated in the hippocampus and the striatum, respectively, of the ME7-infected brain. In contrast, Dlp1 expression was significantly reduced in the hippocampus in the ME7-infected brain, particularly in the cytosolic fraction. Finally, we observed abnormal mitochondrial enlargement and histopathological change in the hippocampus of the ME7-infected brain. These observations suggest that the mitochondrial dysfunction, which is presumably caused by the dysregulation of mitochondrial fusion and fission proteins, may contribute to the

  19. Mitochondrial Dynamics Decrease Prior to Axon Degeneration Induced by Vincristine and are Partially Rescued by Overexpressed cytNmnat1.

    PubMed

    Berbusse, Gregory W; Woods, Laken C; Vohra, Bhupinder P S; Naylor, Kari

    2016-01-01

    Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson's and Alzheimer's, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured dorsal root ganglia (DRG) neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics. PMID:27486387

  20. Mitochondrial Dynamics Decrease Prior to Axon Degeneration Induced by Vincristine and are Partially Rescued by Overexpressed cytNmnat1

    PubMed Central

    Berbusse, Gregory W.; Woods, Laken C.; Vohra, Bhupinder P. S.; Naylor, Kari

    2016-01-01

    Axon degeneration is a prominent feature of various neurodegenerative diseases, such as Parkinson’s and Alzheimer’s, and is often characterized by aberrant mitochondrial dynamics. Mitochondrial fission, fusion, and motility have been shown to be particularly important in progressive neurodegeneration. Thus we investigated these imperative dynamics, as well as mitochondrial fragmentation in vincristine induced axon degradation in cultured dorsal root ganglia (DRG) neurons. CytNmnat1 inhibits axon degeneration in various paradigms including vincristine toxicity. The mechanism of its protection is not yet fully understood; therefore, we also investigated the effect of cytNmnat1 on mitochondrial dynamics in vincristine treated neurons. We observed that vincristine treatment decreases the rate of mitochondrial fission, fusion and motility and induces mitochondrial fragmentation. These mitochondrial events precede visible axon degeneration. Overexpression of cytNmnat1 inhibits axon degeneration and preserves the normal mitochondrial dynamics and motility in vincristine treated neurons. We suggest the alterations in mitochondrial structure and dynamics are early events which lead to axon degeneration and cytNmnat1 blocks axon degeneration by halting the vincristine induced changes to mitochondrial structure and dynamics. PMID:27486387

  1. A review of research trends in physiological abnormalities in autism spectrum disorders: immune dysregulation, inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures

    PubMed Central

    Rossignol, D A; Frye, R E

    2012-01-01

    Recent studies have implicated physiological and metabolic abnormalities in autism spectrum disorders (ASD) and other psychiatric disorders, particularly immune dysregulation or inflammation, oxidative stress, mitochondrial dysfunction and environmental toxicant exposures (‘four major areas'). The aim of this study was to determine trends in the literature on these topics with respect to ASD. A comprehensive literature search from 1971 to 2010 was performed in these four major areas in ASD with three objectives. First, publications were divided by several criteria, including whether or not they implicated an association between the physiological abnormality and ASD. A large percentage of publications implicated an association between ASD and immune dysregulation/inflammation (416 out of 437 publications, 95%), oxidative stress (all 115), mitochondrial dysfunction (145 of 153, 95%) and toxicant exposures (170 of 190, 89%). Second, the strength of evidence for publications in each area was computed using a validated scale. The strongest evidence was for immune dysregulation/inflammation and oxidative stress, followed by toxicant exposures and mitochondrial dysfunction. In all areas, at least 45% of the publications were rated as providing strong evidence for an association between the physiological abnormalities and ASD. Third, the time trends in the four major areas were compared with trends in neuroimaging, neuropathology, theory of mind and genetics (‘four comparison areas'). The number of publications per 5-year block in all eight areas was calculated in order to identify significant changes in trends. Prior to 1986, only 12 publications were identified in the four major areas and 51 in the four comparison areas (42 for genetics). For each 5-year period, the total number of publications in the eight combined areas increased progressively. Most publications (552 of 895, 62%) in the four major areas were published in the last 5 years (2006–2010). Evaluation

  2. Mitochondrial translocation of EGFR regulates mitochondria dynamics and promotes metastasis in NSCLC.

    PubMed

    Che, Ting-Fang; Lin, Ching-Wen; Wu, Yi-Ying; Chen, Yu-Ju; Han, Chia-Li; Chang, Yih-leong; Wu, Chen-Tu; Hsiao, Tzu-Hung; Hong, Tse-Ming; Yang, Pan-Chyr

    2015-11-10

    Dysfunction of the mitochondria is well-known for being associated with cancer progression. In the present study, we analyzed the mitochondria proteomics of lung cancer cell lines with different invasion abilities and found that EGFR is highly expressed in the mitochondria of highly invasive non-small-cell lung cancer (NSCLC) cells. EGF induces the mitochondrial translocation of EGFR; further, it leads to mitochondrial fission and redistribution in the lamellipodia, upregulates cellular ATP production, and enhances motility in vitro and in vivo. Moreover, EGFR can regulate mitochondrial dynamics by interacting with Mfn1 and disturbing Mfn1 polymerization. Overexpression of Mfn1 reverses the phenotypes resulting from EGFR mitochondrial translocation. We show that the mitochondrial EGFR expressions are higher in paired samples of the metastatic lymph node as compared with primary lung tumor and are inversely correlated with the overall survival in NSCLC patients. Therefore, our results demonstrate that besides the canonical role of EGFR as a receptor tyrosine, the mitochondrial translocation of EGFR may enhance cancer invasion and metastasis through regulating mitochondria dynamics.

  3. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus.

    PubMed

    Ko, Ah-Reum; Hyun, Hye-Won; Min, Su-Ji; Kim, Ji-Eun

    2016-01-01

    The response and susceptibility to astroglial degenerations are relevant to the distinctive properties of astrocytes in a hemodynamic-independent manner following status epilepticus (SE). Since impaired mitochondrial fission plays an important role in mitosis, apoptosis and programmed necrosis, we investigated whether the unique pattern of mitochondrial dynamics is involved in the characteristics of astroglial death induced by SE. In the present study, SE induced astroglial apoptosis in the molecular layer of the dentate gyrus, accompanied by decreased mitochondrial length. In contrast, clasmatodendritic (autophagic) astrocytes in the CA1 region showed mitochondrial elongation induced by SE. Mdivi-1 (an inhibitor of mitochondrial fission) effectively attenuated astroglial apoptosis, but WY14643 (an enhancer of mitochondrial fission) aggravated it. In addition, Mdivi-1 accelerated clasmatodendritic changes in astrocytes. These regional specific mitochondrial dynamics in astrocytes were closely correlated with dynamin-related protein 1 (DRP1; a mitochondrial fission protein) phosphorylation, not optic atrophy 1 (OPA1; a mitochondrial fusion protein) expression. To the best of our knowledge, the present data demonstrate for the first time the novel role of DRP1-mediated mitochondrial fission in astroglial loss. Thus, the present findings suggest that the differential astroglial mitochondrial dynamics may participate in the distinct characteristics of astroglial death induced by SE.

  4. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus

    PubMed Central

    Ko, Ah-Reum; Hyun, Hye-Won; Min, Su-Ji; Kim, Ji-Eun

    2016-01-01

    The response and susceptibility to astroglial degenerations are relevant to the distinctive properties of astrocytes in a hemodynamic-independent manner following status epilepticus (SE). Since impaired mitochondrial fission plays an important role in mitosis, apoptosis and programmed necrosis, we investigated whether the unique pattern of mitochondrial dynamics is involved in the characteristics of astroglial death induced by SE. In the present study, SE induced astroglial apoptosis in the molecular layer of the dentate gyrus, accompanied by decreased mitochondrial length. In contrast, clasmatodendritic (autophagic) astrocytes in the CA1 region showed mitochondrial elongation induced by SE. Mdivi-1 (an inhibitor of mitochondrial fission) effectively attenuated astroglial apoptosis, but WY14643 (an enhancer of mitochondrial fission) aggravated it. In addition, Mdivi-1 accelerated clasmatodendritic changes in astrocytes. These regional specific mitochondrial dynamics in astrocytes were closely correlated with dynamin-related protein 1 (DRP1; a mitochondrial fission protein) phosphorylation, not optic atrophy 1 (OPA1; a mitochondrial fusion protein) expression. To the best of our knowledge, the present data demonstrate for the first time the novel role of DRP1-mediated mitochondrial fission in astroglial loss. Thus, the present findings suggest that the differential astroglial mitochondrial dynamics may participate in the distinct characteristics of astroglial death induced by SE. PMID:27242436

  5. Drp1 levels constitutively regulate mitochondrial dynamics and cell survival in cortical neurons

    PubMed Central

    Uo, Takuma; Dworzak, Jenny; Kinoshita, Chizuru; Inman, Denise M.; Kinoshita, Yoshito; Horner, Philip J.; Morrison, Richard S.

    2009-01-01

    Mitochondria exist as dynamic networks that are constantly remodeled through the opposing actions of fusion and fission proteins. Changes in the expression of these proteins alter mitochondrial shape and size, and may promote or inhibit the propagation of apoptotic signals. Using mitochondrially targeted EGFP or DsRed2 to identify mitochondria, we observed a short, distinctly tubular mitochondrial morphology in postnatal cortical neurons in culture and in retinal ganglion cells in vivo, whereas longer, highly interconnected mitochondrial networks were detected in cortical astrocytes in vitro and non-neuronal cells in the retina in vivo. Differential expression patterns of fusion and fission proteins, in part, appear to determine these morphological differences as neurons expressed markedly high levels of Drp1 and OPA1 proteins compared to non-neuronal cells. This finding was corroborated using optic tissue samples. Moreover, cortical neurons expressed several splice variants of Drp1 including a neuron-specific isoform which incorporates exon 3. Knockdown or dominant negative interference of endogenous Drp1 significantly increased mitochondrial length in both neurons and non-neuronal cells, but caused cell death only in cortical neurons. Conversely, depletion of the fusion protein, Mfn2, but not Mfn1, caused extensive mitochondrial fission and cell death. Thus, Drp1 and Mfn2 in normal cortical neurons not only regulate mitochondrial morphology, but are also required for cell survival. The present findings point to unique patterns of Drp1 expression and selective vulnerability to reduced levels of Drp1 expression/activity in neurons, and demonstrate that the regulation of mitochondrial dynamics must be tightly regulated in neurons. PMID:19445933

  6. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults.

    PubMed

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson's and Alzheimer's, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  7. Alterations of mitochondrial dynamics allow retrograde propagation of locally initiated axonal insults

    PubMed Central

    Lassus, Benjamin; Magifico, Sebastien; Pignon, Sandra; Belenguer, Pascale; Miquel, Marie-Christine; Peyrin, Jean-Michel

    2016-01-01

    In chronic neurodegenerative syndromes, neurons progressively die through a generalized retraction pattern triggering retrograde axonal degeneration toward the cell bodies, which molecular mechanisms remain elusive. Recent observations suggest that direct activation of pro-apoptotic signaling in axons triggers local degenerative events associated with early alteration of axonal mitochondrial dynamics. This raises the question of the role of mitochondrial dynamics on both axonal vulnerability stress and their implication in the spreading of damages toward unchallenged parts of the neuron. Here, using microfluidic chambers, we assessed the consequences of interfering with OPA1 and DRP1 proteins on axonal degeneration induced by local application of rotenone. We found that pharmacological inhibition of mitochondrial fission prevented axonal damage induced by rotenone, in low glucose conditions. While alteration of mitochondrial dynamics per se did not lead to spontaneous axonal degeneration, it dramatically enhanced axonal vulnerability to rotenone, which had no effect in normal glucose conditions, and promoted retrograde spreading of axonal degeneration toward the cell body. Altogether, our results suggest a mitochondrial priming effect in axons as a key process of axonal degeneration. In the context of neurodegenerative diseases, like Parkinson’s and Alzheimer’s, mitochondria fragmentation could hasten neuronal death and initiate spatial dispersion of locally induced degenerative events. PMID:27604820

  8. Mitochondrial fission factor Drp1 maintains oocyte quality via dynamic rearrangement of multiple organelles.

    PubMed

    Udagawa, Osamu; Ishihara, Takaya; Maeda, Maki; Matsunaga, Yui; Tsukamoto, Satoshi; Kawano, Natsuko; Miyado, Kenji; Shitara, Hiroshi; Yokota, Sadaki; Nomura, Masatoshi; Mihara, Katsuyoshi; Mizushima, Noboru; Ishihara, Naotada

    2014-10-20

    Mitochondria are dynamic organelles that change their morphology by active fusion and fission in response to cellular signaling and differentiation. The in vivo role of mitochondrial fission in mammals has been examined by using tissue-specific knockout (KO) mice of the mitochondria fission-regulating GTPase Drp1, as well as analyzing a human patient harboring a point mutation in Drp1, showing that Drp1 is essential for embryonic and neonatal development and neuronal function. During oocyte maturation and aging, structures of various membrane organelles including mitochondria and the endoplasmic reticulum (ER) are changed dynamically, and their organelle aggregation is related to germ cell formation and epigenetic regulation. However, the underlying molecular mechanisms of organelle dynamics during the development and aging of oocytes have not been well understood. Here, we analyzed oocyte-specific mitochondrial fission factor Drp1-deficient mice and found that mitochondrial fission is essential for follicular maturation and ovulation in an age-dependent manner. Mitochondria were highly aggregated with other organelles, such as the ER and secretory vesicles, in KO oocyte, which resulted in impaired Ca(2+) signaling, intercellular communication via secretion, and meiotic resumption. We further found that oocytes from aged mice displayed reduced Drp1-dependent mitochondrial fission and defective organelle morphogenesis, similar to Drp1 KO oocytes. On the basis of these findings, it appears that mitochondrial fission maintains the competency of oocytes via multiorganelle rearrangement. PMID:25264261

  9. Mitochondrial DNA disturbances and deregulated expression of oxidative phosphorylation and mitochondrial fusion proteins in sporadic inclusion body myositis.

    PubMed

    Catalán-García, Marc; Garrabou, Glòria; Morén, Constanza; Guitart-Mampel, Mariona; Hernando, Adriana; Díaz-Ramos, Àngels; González-Casacuberta, Ingrid; Juárez, Diana-Luz; Bañó, Maria; Enrich-Bengoa, Jennifer; Emperador, Sonia; Milisenda, José César; Moreno, Pedro; Tobías, Ester; Zorzano, Antonio; Montoya, Julio; Cardellach, Francesc; Grau, Josep Maria

    2016-10-01

    Sporadic inclusion body myositis (sIBM) is one of the most common myopathies in elderly people. Mitochondrial abnormalities at the histological level are present in these patients. We hypothesize that mitochondrial dysfunction may play a role in disease aetiology. We took the following measurements of muscle and peripheral blood mononuclear cells (PBMCs) from 30 sIBM patients and 38 age- and gender-paired controls: mitochondrial DNA (mtDNA) deletions, amount of mtDNA and mtRNA, mitochondrial protein synthesis, mitochondrial respiratory chain (MRC) complex I and IV enzymatic activity, mitochondrial mass, oxidative stress and mitochondrial dynamics (mitofusin 2 and optic atrophy 1 levels). Depletion of mtDNA was present in muscle from sIBM patients and PBMCs showed deregulated expression of mitochondrial proteins in oxidative phosphorylation. MRC complex IV/citrate synthase activity was significantly decreased in both tissues and mitochondrial dynamics were affected in muscle. Depletion of mtDNA was significantly more severe in patients with mtDNA deletions, which also presented deregulation of mitochondrial fusion proteins. Imbalance in mitochondrial dynamics in muscle was associated with increased mitochondrial genetic disturbances (both depletion and deletions), demonstrating that proper mitochondrial turnover is essential for mitochondrial homoeostasis and muscle function in these patients.

  10. Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo

    PubMed Central

    Nagaoka, Akira; Takehara, Hiroaki; Hayashi-Takagi, Akiko; Noguchi, Jun; Ishii, Kazuhiko; Shirai, Fukutoshi; Yagishita, Sho; Akagi, Takanori; Ichiki, Takanori; Kasai, Haruo

    2016-01-01

    Dendritic spine generation and elimination play an important role in learning and memory, the dynamics of which have been examined within the neocortex in vivo. Spine turnover has also been detected in the absence of specific learning tasks, and is frequently exaggerated in animal models of autistic spectrum disorder (ASD). The present study aimed to examine whether the baseline rate of spine turnover was activity-dependent. This was achieved using a microfluidic brain interface and open-dura surgery, with the goal of abolishing neuronal Ca2+ signaling in the visual cortex of wild-type mice and rodent models of fragile X syndrome (Fmr1 knockout [KO]). In wild-type and Fmr1 KO mice, the majority of baseline turnover was found to be activity-independent. Accordingly, the application of matrix metalloproteinase-9 inhibitors selectively restored the abnormal spine dynamics observed in Fmr1 KO mice, without affecting the intrinsic dynamics of spine turnover in wild-type mice. Such findings indicate that the baseline turnover of dendritic spines is mediated by activity-independent intrinsic dynamics. Furthermore, these results suggest that the targeting of abnormal intrinsic dynamics might pose a novel therapy for ASD. PMID:27221801

  11. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats.

    PubMed

    Escobales, Nelson; Nuñez, Rebeca E; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R; Skoda, Erin M; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-12-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20 min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca(2+)-induced swelling, an indicator of permeability transition pore opening, was reduced in the mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as the total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury.

  12. A new vicious cycle involving glutamate excitotoxicity, oxidative stress and mitochondrial dynamics.

    PubMed

    Nguyen, D; Alavi, M V; Kim, K-Y; Kang, T; Scott, R T; Noh, Y H; Lindsey, J D; Wissinger, B; Ellisman, M H; Weinreb, R N; Perkins, G A; Ju, W-K

    2011-01-01

    Glutamate excitotoxicity leads to fragmented mitochondria in neurodegenerative diseases, mediated by nitric oxide and S-nitrosylation of dynamin-related protein 1, a mitochondrial outer membrane fission protein. Optic atrophy gene 1 (OPA1) is an inner membrane protein important for mitochondrial fusion. Autosomal dominant optic atrophy (ADOA), caused by mutations in OPA1, is a neurodegenerative disease affecting mainly retinal ganglion cells (RGCs). Here, we showed that OPA1 deficiency in an ADOA model influences N-methyl-D-aspartate (NMDA) receptor expression, which is involved in glutamate excitotoxicity and oxidative stress. Opa1(enu/+) mice show a slow progressive loss of RGCs, activation of astroglia and microglia, and pronounced mitochondrial fission in optic nerve heads as found by electron tomography. Expression of NMDA receptors (NR1, 2A, and 2B) in the retina of Opa1(enu/+) mice was significantly increased as determined by western blot and immunohistochemistry. Superoxide dismutase 2 (SOD2) expression was significantly decreased, the apoptotic pathway was activated as Bax was increased, and phosphorylated Bad and BcL-xL were decreased. Our results conclusively demonstrate that not only glutamate excitotoxicity and/or oxidative stress alters mitochondrial fission/fusion, but that an imbalance in mitochondrial fission/fusion in turn leads to NMDA receptor upregulation and oxidative stress. Therefore, we propose a new vicious cycle involved in neurodegeneration that includes glutamate excitotoxicity, oxidative stress, and mitochondrial dynamics. PMID:22158479

  13. Quality matters: how does mitochondrial network dynamics and quality control impact on mtDNA integrity?

    PubMed

    Busch, Karin B; Kowald, Axel; Spelbrink, Johannes N

    2014-07-01

    Mammalian mtDNA encodes for 13 core proteins of oxidative phosphorylation. Mitochondrial DNA mutations and deletions cause severe myopathies and neuromuscular diseases. Thus, the integrity of mtDNA is pivotal for cell survival and health of the organism. We here discuss the possible impact of mitochondrial fusion and fission on mtDNA maintenance as well as positive and negative selection processes. Our focus is centred on the important question of how the quality of mtDNA nucleoids can be assured when selection and mitochondrial quality control works on functional and physiological phenotypes constituted by oxidative phosphorylation proteins. The organelle control theory suggests a link between phenotype and nucleoid genotype. This is discussed in the light of new results presented here showing that mitochondrial transcription factor A/nucleoids are restricted in their intramitochondrial mobility and probably have a limited sphere of influence. Together with recent published work on mitochondrial and mtDNA heteroplasmy dynamics, these data suggest first, that single mitochondria might well be internally heterogeneous and second, that nucleoid genotypes might be linked to local phenotypes (although the link might often be leaky). We discuss how random or site-specific mitochondrial fission can isolate dysfunctional parts and enable their elimination by mitophagy, stressing the importance of fission in the process of mtDNA quality control. The role of fusion is more multifaceted and less understood in this context, but the mixing and equilibration of matrix content might be one of its important functions.

  14. Mitome: dynamic and interactive database for comparative mitochondrial genomics in metazoan animals.

    PubMed

    Lee, Yong Seok; Oh, Jeongsu; Kim, Young Uk; Kim, Namchul; Yang, Sungjin; Hwang, Ui Wook

    2008-01-01

    Mitome is a specialized mitochondrial genome database designed for easy comparative analysis of various features of metazoan mitochondrial genomes such as base frequency, A+T skew, codon usage and gene arrangement pattern. A particular function of the database is the automatic reconstruction of phylogenetic relationships among metazoans selected by a user from a taxonomic tree menu based on nucleotide sequences, amino acid sequences or gene arrangement patterns. Mitome also enables us (i) to easily find the taxonomic positions of organisms of which complete mitochondrial genome sequences are publicly available; (ii) to acquire various metazoan mitochondrial genome characteristics through a graphical genome browser; (iii) to search for homology patterns in mitochondrial gene arrangements; (iv) to download nucleotide or amino acid sequences not only of an entire mitochondrial genome but also of each component; and (v) to find interesting references easily through links with PubMed. In order to provide users with a dynamic, responsive, interactive and faster web database, Mitome is constructed using two recently highlighted techniques, Ajax (Asynchronous JavaScript and XML) and Web Services. Mitome has the potential to become very useful in the fields of molecular phylogenetics and evolution and comparative organelle genomics. The database is available at: http://www.mitome.info.

  15. Monte Carlo Potts Investigation of the Role of Sparse Recrystallization in Dynamic Abnormal Grain Growth

    NASA Astrophysics Data System (ADS)

    Williamson, Alan Scott

    Dynamic Abnormal Grain Growth (DAGG) is a type of abnormal grain growth discovered in Molybdenum that occurs during dynamic straining at medium homologous temperatures. Specifics about DAGG initiation and propagation are dependent on the processing conditions experienced by the material. The mechanism responsible for DAGG has yet to be identified. Proposed is a theory is for explaining DAGG, through the nucleation and growth of a sparse number of recrystallized grains DAGG is achieved. These recrystallized grains could grow abnormally using their strain energy driving force advantage. This theory is investigated numerically by modeling dynamic recrystallization using the Monte Carlo Potts method. Dynamic recrystallization is modeled using a combination of dynamic straining, nucleation of recrystallized grains and grain growth. Dynamic recrystallization is studied to answer whether sparse recrystallization is possible, if sparse recrystallization can cause abnormal grain growth and under what conditions sparse recrystallization is accomplished. Viable sparse recrystallization can be achieved and will cause DAGG-like behavior through the nucleation and rapid growth of a single recrystallized grain. The conditions to achieve sparse recrystallization are examined using the relationship recrystallization has with strain energy and microstructure parameters. Results show that a critical strain energy is needed to allow viable nucleation of recrystallized grains. The value of the critical strain energy is the equivalent of 6 grain boundary segments of non-dimensional (n.d.) energy. The inclusion of external solid-vapor surfaces can reduce the critical strain energy to 5 n.d. Strain energy also directly influences the rate of nucleation. By minimizing strain energy, while keeping it is above the critical value, nucleation can be suppressed enough to allow sparse recrystallization. The microstructure will also influence recrystallization. The grain size of the

  16. Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics

    PubMed Central

    Jaipargas, Erica-Ashley; Barton, Kiah A.; Mathur, Neeta; Mathur, Jaideep

    2015-01-01

    Mitochondria are pleomorphic, double membrane-bound organelles involved in cellular energetics in all eukaryotes. Mitochondria in animal and yeast cells are typically tubular-reticulate structures and several micro-meters long but in green plants they are predominantly observed as 0.2–1.5 μm punctae. While fission and fusion, through the coordinated activity of several conserved proteins, shapes mitochondria, the endoplasmic reticulum (ER) has recently been identified as an additional player in this process in yeast and mammalian cells. The mitochondria-ER relationship in plant cells remains largely uncharacterized. Here, through live-imaging of the entire range of mitochondria pleomorphy we uncover the underlying basis for the predominantly punctate mitochondrial form in plants. We demonstrate that mitochondrial morphology changes in response to light and cytosolic sugar levels in an ER mediated manner. Whereas, large ER polygons and low dynamics under dark conditions favor mitochondrial fusion and elongation, small ER polygons result in increased fission and predominantly small mitochondria. Hypoxia also reduces ER dynamics and increases mitochondrial fusion to produce giant mitochondria. By observing elongated mitochondria in normal plants and fission-impaired Arabidopsis nmt1-2 and drp3a mutants we also establish that thin extensions called matrixules and a beads-on-a-string mitochondrial phenotype are direct consequences of mitochondria-ER interactions. PMID:26442089

  17. Thermally Driven and Cytoskeletal-Assisted Dynamics of the Mitochondrial Reticulum

    NASA Astrophysics Data System (ADS)

    Knowles, Michelle K.; Marcus, Andrew H.

    2003-05-01

    We report Fourier imaging correlation spectroscopy (FICS) and digital video fluorescence microscopy (DVFM) measurements of the dynamics of the mitochondrial reticulum in living osteosarcoma cells. Mitochondrial dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins, which lead to complex multi-exponential relaxations that occur over a wide range of spatial and temporal scales. The cytoskeleton consists of an interconnected polymer network whose primary components are microfilaments (actin) and microtubules (tubulin). These filaments work with motor proteins to translate organelles through the cell. We studied the dynamics of osteosarcoma cells labeled with red fluorescent protein in the mitochondrial matrix space using DVFM and FICS. Cells were then treated with cytoskeletal destabilizing drugs. Analysis of microscopy data allows for us to determine whether dynamic processes are diffusive or driven (by the cytoskeleton or collective dynamics). In FICS experiments, the control cells exhibit a unique pattern of dynamics that are then simplified when the cytoskeleton is depolymerized. Upon depolymerization, the dynamics of the organelle appear primarily diffusive.

  18. Interaction of human mitochondrial transcription factor A in mitochondria: its involvement in the dynamics of mitochondrial DNA nucleoids.

    PubMed

    Kasashima, Katsumi; Endo, Hitoshi

    2015-12-01

    Mitochondrial transcription factor A (TFAM) is a key regulator of mitochondrial DNA (mtDNA). TFAM interacts with itself and forms dimers; however, the precise interaction domain in vivo has not yet been determined. We herein showed that human TFAM formed oligomers in mitochondria by in situ chemical cross-linking. We used the separated fluorescent protein, monomeric Kusabira-Green, as a reporter to monitor their self-association in mitochondria. This reporter successfully detected the TFAM-TFAM interaction in cells as fluorescent signals on mitochondria. We also found that the N-terminal high-mobility group box domain was sufficient for this interaction. The expression of the dimer-defective mutant induced enlarged mtDNA nucleoids, suggesting the importance of dimerization in the distribution of mtDNA. The reporter system also supported the association and mixture between independent nucleoids through TFAM by a cell fusion assay using hemagglutinating virus of Japan. We here, for the first time, visualized the interaction of TFAM molecules in mitochondria and proposed its implications for the dynamics of mtDNA nucleoids.

  19. Comparative mitochondrial genomics of snakes: extraordinary substitution rate dynamics and functionality of the duplicate control region

    PubMed Central

    Jiang, Zhi J; Castoe, Todd A; Austin, Christopher C; Burbrink, Frank T; Herron, Matthew D; McGuire, Jimmy A; Parkinson, Christopher L; Pollock, David D

    2007-01-01

    Background The mitochondrial genomes of snakes are characterized by an overall evolutionary rate that appears to be one of the most accelerated among vertebrates. They also possess other unusual features, including short tRNAs and other genes, and a duplicated control region that has been stably maintained since it originated more than 70 million years ago. Here, we provide a detailed analysis of evolutionary dynamics in snake mitochondrial genomes to better understand the basis of these extreme characteristics, and to explore the relationship between mitochondrial genome molecular evolution, genome architecture, and molecular function. We sequenced complete mitochondrial genomes from Slowinski's corn snake (Pantherophis slowinskii) and two cottonmouths (Agkistrodon piscivorus) to complement previously existing mitochondrial genomes, and to provide an improved comparative view of how genome architecture affects molecular evolution at contrasting levels of divergence. Results We present a Bayesian genetic approach that suggests that the duplicated control region can function as an additional origin of heavy strand replication. The two control regions also appear to have different intra-specific versus inter-specific evolutionary dynamics that may be associated with complex modes of concerted evolution. We find that different genomic regions have experienced substantial accelerated evolution along early branches in snakes, with different genes having experienced dramatic accelerations along specific branches. Some of these accelerations appear to coincide with, or subsequent to, the shortening of various mitochondrial genes and the duplication of the control region and flanking tRNAs. Conclusion Fluctuations in the strength and pattern of selection during snake evolution have had widely varying gene-specific effects on substitution rates, and these rate accelerations may have been functionally related to unusual changes in genomic architecture. The among-lineage and

  20. Placenta Peptide Can Protect Mitochondrial Dysfunction through Inhibiting ROS and TNF-α Generation, by Maintaining Mitochondrial Dynamic Network and by Increasing IL-6 Level during Chronic Fatigue

    PubMed Central

    Muluye, Rekik A.; Bian, Yuhong; Wang, Li; Alemu, Paulos N.; Cui, Huantian; Peng, Xiaofei; Li, Shanshan

    2016-01-01

    Background: Level of fatigue is related to the metabolic energy available to tissues and cells, mainly through mitochondrial respiration, as well fatigue is the most common symptom of poorly functioning mitochondria. Hence, dysfunction of these organelles may be the cause of the fatigue seen in Chronic fatigue (CF). Placenta has been used for treatment of fatigue and various disease, moreover peptides has known protect mitochondrial viability, and alleviate fatigue. These properties of placenta and peptides may link with its effect on mitochondria; therefore, it is highly important to investigate the effectiveness of placenta peptide on fatigue and mitochondrial dysfunction. Methods: After administration of sheep placenta peptide (SPP) for 1 month, mice’s were forced to swim till exhaustion for 90 min to induce chronic fatigue. Electron microscopic examination of skeletal muscle mitochondrial structure, tissue Malondialdehyde (MDA), mitochondrial SOD and serum inflammatory cytokines level were investigated in order to determine the potential effect of SPP on mitochondria during CF. Rat skeletal muscle (L6 cell) were also treated with different concentration of SPP to determine the effect of SPP on cell viability using Thiazoyl blue tetrazolium assay. Results: Our finding revealed that forced swimming induced fatigue model can cause mitochondrial damage through Reactive oxygen species (ROS) mediated lipid peroxidation and Tumor Necrosis factor alpha (TNF-α) elevation. Whereas SPP protected fatigue induced mitochondrial dysfunction through preventing ROS and TNF-α generation, by maintaining mitochondrial dynamic network and by increasing serum IL-6 level. Conclusion: SPP can protect damage in mitochondrial components which will allow proper functioning of mitochondria that will in turn inhibit progression of chronic fatigue. Therefore, SPP may represent a novel therapeutic advantage for preventing mitochondrial dysfunction in patients with chronic fatigue. PMID

  1. Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics

    PubMed Central

    Hahn, Wendy S.; Kuzmicic, Jovan; Burrill, Joel S.; Donoghue, Margaret A.; Foncea, Rocio; Jensen, Michael D.; Lavandero, Sergio; Arriaga, Edgar A.

    2014-01-01

    Proinflammatory cytokines differentially regulate adipocyte mitochondrial metabolism, oxidative stress, and dynamics. Macrophage infiltration of adipose tissue and the chronic low-grade production of inflammatory cytokines have been mechanistically linked to the development of insulin resistance, the forerunner of type 2 diabetes mellitus. In this study, we evaluated the chronic effects of TNFα, IL-6, and IL-1β on adipocyte mitochondrial metabolism and morphology using the 3T3-L1 model cell system. TNFα treatment of cultured adipocytes led to significant changes in mitochondrial bioenergetics, including increased proton leak, decreased ΔΨm, increased basal respiration, and decreased ATP turnover. In contrast, although IL-6 and IL-1β decreased maximal respiratory capacity, they had no effect on ΔΨm and varied effects on ATP turnover, proton leak, or basal respiration. Only TNFα treatment of 3T3-L1 cells led to an increase in oxidative stress (as measured by superoxide anion production and protein carbonylation) and C16 ceramide synthesis. Treatment of 3T3-L1 adipocytes with cytokines led to decreased mRNA expression of key transcription factors and control proteins implicated in mitochondrial biogenesis, including PGC-1α and eNOS as well as deceased expression of COX IV and Cyt C. Whereas each cytokine led to effects on expression of mitochondrial markers, TNFα exclusively led to mitochondrial fragmentation and decreased the total level of OPA1 while increasing OPA1 cleavage, without expression of levels of mitofusin 2, DRP-1, or mitofilin being affected. In summary, these results indicate that inflammatory cytokines have unique and specialized effects on adipocyte metabolism, but each leads to decreased mitochondrial function and a reprogramming of fat cell biology. PMID:24595304

  2. Mitoguardin-1 and -2 promote maturation and the developmental potential of mouse oocytes by maintaining mitochondrial dynamics and functions.

    PubMed

    Liu, Xiao-Man; Zhang, Yong-Ping; Ji, Shu-Yan; Li, Bo-Tai; Tian, Xuejun; Li, Dali; Tong, Chao; Fan, Heng-Yu

    2016-01-12

    Mitochondrial dynamics change mitochondrial morphological features and numbers as a part of adaptive cellular metabolism, which is vital for most eukaryotic cells and organisms. A disease or even death of an animal can occur if these dynamics are disrupted. Using large-scale genetic screening in fruit flies, we previously found the gene mitoguardin (Miga), which encodes a mitochondrial outer-membrane protein and promotes mitochondrial fusion. Knockout mouse strains were generated for the mammalian Miga homologs Miga1 and Miga2. Miga1/2-/- females show greatly reduced quality of oocytes and early embryos and are subfertile. Mitochondria became clustered in the cytoplasm of oocytes from the germinal-vesicle stage to meiosis II; production of reactive oxygen species increased in mitochondria and caused damage to mitochondrial ultrastructures. Additionally, reduced ATP production, a decreased mitochondrial-DNA copy number, and lower mitochondrial membrane potential were detected in Miga1/2-/- oocytes during meiotic maturation. These changes resulted in low rates of polar-body extrusion during oocyte maturation, reduced developmental potential of the resulting early embryos, and consequently female subfertility. We provide direct evidence that MIGA1/2-regulated mitochondrial dynamics is crucial for mitochondrial functions, ensure oocyte maturation, and maintain the developmental potential. PMID:26716412

  3. Mitoguardin-1 and -2 promote maturation and the developmental potential of mouse oocytes by maintaining mitochondrial dynamics and functions

    PubMed Central

    Liu, Xiao-Man; Zhang, Yong-Ping; Ji, Shu-Yan; Li, Bo-Tai; Tian, Xuejun; Li, Dali; Tong, Chao; Fan, Heng-Yu

    2016-01-01

    Mitochondrial dynamics change mitochondrial morphological features and numbers as a part of adaptive cellular metabolism, which is vital for most eukaryotic cells and organisms. A disease or even death of an animal can occur if these dynamics are disrupted. Using large-scale genetic screening in fruit flies, we previously found the gene mitoguardin (Miga), which encodes a mitochondrial outer-membrane protein and promotes mitochondrial fusion. Knockout mouse strains were generated for the mammalian Miga homologs Miga1 and Miga2. Miga1/2−/− females show greatly reduced quality of oocytes and early embryos and are subfertile. Mitochondria became clustered in the cytoplasm of oocytes from the germinal-vesicle stage to meiosis II; production of reactive oxygen species increased in mitochondria and caused damage to mitochondrial ultrastructures. Additionally, reduced ATP production, a decreased mitochondrial-DNA copy number, and lower mitochondrial membrane potential were detected in Miga1/2−/− oocytes during meiotic maturation. These changes resulted in low rates of polar-body extrusion during oocyte maturation, reduced developmental potential of the resulting early embryos, and consequently female subfertility. We provide direct evidence that MIGA1/2-regulated mitochondrial dynamics is crucial for mitochondrial functions, ensure oocyte maturation, and maintain the developmental potential. PMID:26716412

  4. Coupling calcium dynamics and mitochondrial bioenergetic: an in silico study to simulate cardiomyocyte dysfunction.

    PubMed

    Das, Phonindra Nath; Pedruzzi, Gabriele; Bairagi, Nandadulal; Chatterjee, Samrat

    2016-03-01

    The coupling of intracellular Ca(2+) dynamics with mitochondrial bioenergetic is crucial for the functioning of cardiomyocytes both in healthy and disease conditions. The pathophysiological signature of the Cardiomyocyte Dysfunction (CD) is commonly related to decreased ATP production due to mitochondrial functional impairment and to an increased mitochondrial calcium content ([Ca(2+)]m). These features advanced the therapeutic approaches which aim to reduce [Ca(2+)]m. But whether [Ca(2+)]m overload is the pathological trigger for CD or a physiological consequence, remained controversial. We addressed this issue in silico and showed that [Ca(2+)]m might not directly cause CD. Through model parameter recalibration, we demonstrated how mitochondria cope up with functionally impaired processes and consequently accumulate calcium. A strong coupling of the [Ca(2+)]m oscillations with the ATP synthesis rate ensures robust calcium cycling and avoids CD. We suggested a cardioprotective role of the mitochondrial calcium uniporter and predicted that a mitochondrial sodium calcium exchanger could be a potential therapeutic target to restore the normal functioning of the cardiomyocyte.

  5. The influence of chronic fluorosis on mitochondrial dynamics morphology and distribution in cortical neurons of the rat brain.

    PubMed

    Lou, Di-Dong; Guan, Zhi-Zhong; Liu, Yan-Jie; Liu, Yan-Fei; Zhang, Kai-Lin; Pan, Ji-Gang; Pei, Jin-Jing

    2013-03-01

    The present study was designed to evaluate the effects of chronic fluorosis on the dynamics (including fusion and fission proteins), fragmentation, and distribution of mitochondria in the cortical neurons of the rat brain in an attempt to elucidate molecular mechanisms underlying the brain damage associated with excess accumulation of fluoride. Sixty Sprague-Dawley rats were divided randomly into three groups of 20 each, that is, the untreated control group (drinking water naturally containing <0.5 mg fluoride/l, NaF), the low-fluoride group (whose drinking water was supplemented with 10 mg fluoride/l) and the high-fluoride group (50 mg fluoride/l). After 6 months of exposure, the expression of mitofusin-1 (Mfn1), fission-1 (Fis1), and dynamin-related protein-1 (Drp1) at both the protein and mRNA levels were detected by Western blotting, immunohistochemistry, and real-time PCR, respectively. Moreover, mitochondrial morphology and distribution in neurons were observed by transmission electron or fluorescence microscopy. In the cortices of the brains of rats with chronic fluorosis, the level of Mfn1 protein was clearly reduced, whereas the levels of Fis1 and Drp1 were elevated. The alternations of expression of the mRNAs encoding all three of these proteins were almost the same as the corresponding changes at the protein levels. The mitochondria were fragmented and the redistributed away from the axons of the cortical neurons. These findings indicate that chronic fluorosis induces abnormal mitochondrial dynamics, which might in turn result in a high level of oxidative stress.

  6. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    PubMed

    Luz, Anthony L; Rooney, John P; Kubik, Laura L; Gonzalez, Claudia P; Song, Dong Hoon; Meyer, Joel N

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes. PMID:26106885

  7. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes.

    PubMed

    Luz, Anthony L; Rooney, John P; Kubik, Laura L; Gonzalez, Claudia P; Song, Dong Hoon; Meyer, Joel N

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes.

  8. Mitochondrial Morphology and Fundamental Parameters of the Mitochondrial Respiratory Chain Are Altered in Caenorhabditis elegans Strains Deficient in Mitochondrial Dynamics and Homeostasis Processes

    PubMed Central

    Luz, Anthony L.; Rooney, John P.; Kubik, Laura L.; Gonzalez, Claudia P.; Song, Dong Hoon; Meyer, Joel N.

    2015-01-01

    Mitochondrial dysfunction has been linked to myriad human diseases and toxicant exposures, highlighting the need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide and oligomycin (ATP-synthase inhibitors), carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we measured the fundamental parameters of mitochondrial respiratory chain function: basal oxygen consumption, ATP-linked respiration, maximal respiratory capacity, spare respiratory capacity and proton leak in the model organism Caenhorhabditis elegans. Since mutations in mitochondrial homeostasis genes cause mitochondrial dysfunction and have been linked to human disease, we measured mitochondrial respiratory function in mitochondrial fission (drp-1)-, fusion (fzo-1)-, mitophagy (pdr-1, pink-1)-, and electron transport chain complex III (isp-1)-deficient C. elegans. All showed altered function, but the nature of the alterations varied between the tested strains. We report increased basal oxygen consumption in drp-1; reduced maximal respiration in drp-1, fzo-1, and isp-1; reduced spare respiratory capacity in drp-1 and fzo-1; reduced proton leak in fzo-1 and isp-1; and increased proton leak in pink-1 nematodes. As mitochondrial morphology can play a role in mitochondrial energetics, we also quantified the mitochondrial aspect ratio for each mutant strain using a novel method, and for the first time report increased aspect ratios in pdr-1- and pink-1-deficient nematodes. PMID:26106885

  9. Dynamic Mitochondrial Localisation of STAT3 in the Cellular Adipogenesis Model 3T3-L1.

    PubMed

    Kramer, Adam H; Edkins, Adrienne L; Hoppe, Heinrich C; Prinsloo, Earl

    2015-07-01

    A mechanistic relationship exists between protein localisation, activity and cellular differentiation. Understanding the contribution of these molecular mechanisms is required for elucidation of conditions that drive development. Literature suggests non-canonical translocation of the Signal Transducer and Activator of Transcription 3 (STAT3) to the mitochondria contributes to the regulation of the electron transport chain, cellular respiration and reactive oxygen species production. Based on this we investigated the role of mitochondrial STAT3, specifically the serine 727 phosphorylated form, in cellular differentiation using the well-defined mouse adipogenic model 3T3-L1. Relative levels of reactive oxygen species (ROS) and the levels and dynamic localization of pSTAT3S727 were investigated during the initiation of adipogenesis. As a signalling entity, ROS is known to regulate the activation of C/EBPβ to stimulate a critical cascade of events prior to differentiation of 3T3-L1. Results indicate that upon induction of the differentiation programme, relative levels of mitochondrial pSTAT3S727 dramatically decrease in the mitochondria; in contrast the total cellular pSTAT3S727 levels increase. A positive correlation between increasing levels of ROS and dynamic changes in C/EBPβ indicate that mitochondrial STAT3 plays a potential critical role as an initiator of the process. Based on these findings we propose a model for mitochondrial STAT3 as a regulator of ROS in adipogenesis.

  10. The dynamics of the mitochondrial organelle as a potential therapeutic target

    PubMed Central

    Anne Stetler, R; Leak, Rehana K; Gao, Yanqin; Chen, Jun

    2013-01-01

    Mitochondria play a central role in cell fate after stressors such as ischemic brain injury. The convergence of intracellular signaling pathways on mitochondria and their release of critical factors are now recognized as a default conduit to cell death or survival. Besides the individual processes that converge on or emanate from mitochondria, a mitochondrial organellar response to changes in the cellular environment has recently been described. Whereas mitochondria have previously been perceived as a major center for cellular signaling, one can postulate that the organelle's dynamics themselves affect cell survival. This brief perspective review puts forward the concept that disruptions in mitochondrial dynamics—biogenesis, clearance, and fission/fusion events—may underlie neural diseases and thus could be targeted as neuroprotective strategies in the context of ischemic injury. To do so, we present a general overview of the current understanding of mitochondrial dynamics and regulation. We then review emerging studies that correlate mitochondrial biogenesis, mitophagy, and fission/fusion events with neurologic disease and recovery. An overview of the system as it is currently understood is presented, and current assessment strategies and their limitations are discussed. PMID:23093069

  11. Molecular mechanisms mediating mitochondrial dynamics and mitophagy and their functional roles in the cardiovascular system.

    PubMed

    Ikeda, Yoshiyuki; Shirakabe, Akihiro; Brady, Christopher; Zablocki, Daniela; Ohishi, Mitsuru; Sadoshima, Junichi

    2015-01-01

    Mitochondria are essential organelles that produce the cellular energy source, ATP. Dysfunctional mitochondria are involved in the pathophysiology of heart disease, which is associated with reduced levels of ATP and excessive production of reactive oxygen species. Mitochondria are dynamic organelles that change their morphology through fission and fusion in order to maintain their function. Fusion connects neighboring depolarized mitochondria and mixes their contents to maintain membrane potential. In contrast, fission segregates damaged mitochondria from intact ones, where the damaged part of mitochondria is subjected to mitophagy whereas the intact part to fusion. It is generally believed that mitochondrial fusion is beneficial for the heart, especially under stress conditions, because it consolidates the mitochondria's ability to supply energy. However, both excessive fusion and insufficient fission disrupt the mitochondrial quality control mechanism and potentiate cell death. In this review, we discuss the role of mitochondrial dynamics and mitophagy in the heart and the cardiomyocytes therein, with a focus on their roles in cardiovascular disease. This article is part of a Special Issue entitled "Mitochondria: From Basic Mitochondrial Biology to Cardiovascular Disease".

  12. Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes.

    PubMed

    Natarajan, Vaishaali; Wilson, Christina L; Hayward, Stephen L; Kidambi, Srivatsan

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function. PMID:26247363

  13. Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes.

    PubMed

    Natarajan, Vaishaali; Wilson, Christina L; Hayward, Stephen L; Kidambi, Srivatsan

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.

  14. Energy Flux, Lactate Shuttling, Mitochondrial Dynamics, and Hypoxia.

    PubMed

    Brooks, George A

    2016-01-01

    Our understanding of what happens in working muscle and at the whole-body level at sea level and at high altitude is different from that a few years ago. If dietary CHO and nutrition are adequate, at sea level metabolism shifts from a mix of lipid and CHO-derived fuels toward carbohydrate (glycogen, glucose, and lactate) oxidation at moderate and greater exercise intensities. As given by the Crossover Concept, a percentage to total energy expenditure, lipid oxidation is greatest at exercise power outputs eliciting 45-50 % of VO2max with greater intensities requiring relatively more CHO and lesser lipid oxidation. At altitude, a given exercise power output is achieved at a greater relative intensity expressed as % VO2max. Hence, exercise under conditions of hypoxia requires greater glycolytic flux, and lactate production than does the same effort at sea level, normoxic conditions. Glycolytic flux is further augmented at altitude by the effect of hypoxemia on sympathetic nervous system activity. Hence, augmented lactate production during exercise is adaptive. Over the short term, accelerated lactate flux provides ATP supporting muscle contraction and balances cytosolic redox. As well, lactate provides and energy substrate and gluconeogenic precursor. Over a longer term, via redox and ROS-generating mechanisms, lactate may affect adaptations in mitochondrial biogenesis and solute (glucose and lactate) transport. While important, the energy substrate, gluconeogenic, and signaling qualities of lactate production and disposal at altitude need to be considered within the context of overall dietary energy intake and expenditure during exercise at sea level and high altitude. PMID:27343113

  15. Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis

    PubMed Central

    Banerjee, Rebecca; Starkov, Anatoly A.; Beal, M. Flint; Thomas, Bobby

    2010-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with unknown etiology. It is marked by widespread neurodegeneration in the brain with profound loss of A9 midbrain dopaminergic neurons in substantia nigra pars compacta. Several theories of biochemical abnormalities have been linked to pathogenesis of PD of which mitochondrial dysfunction due to an impairment of mitochondrial complex I and subsequent oxidative stress seems to take the center stage in experimental models of PD and in postmortem tissues of sporadic forms of illness. Recent identification of specific gene mutations and their influence on mitochondrial functions has further reinforced the relevance of mitochondrial abnormalities in disease pathogenesis. In both sporadic and familial forms of PD abnormal mitochondrial paradigms associated with disease include impaired functioning of the mitochondrial electron transport chain, aging associated damage to mitochondrial DNA, impaired calcium buffering, and anomalies in mitochondrial morphology and dynamics. Here we provide an overview of specific mitochondrial functions affected in sporadic and familial PD that play a role in disease pathogenesis. We propose to utilize these gained insights to further streamline and focus the research to better understand mitochondria's role in disease development and exploit potential mitochondrial targets for therapeutic interventions in PD pathogenesis. PMID:19059336

  16. To unite or divide: mitochondrial dynamics in the murine outer retina that preceded age related photoreceptor loss

    PubMed Central

    Kam, Jaimie Hoh; Jeffery, Glen

    2015-01-01

    Mitochondrial function declines with age and is associated with age-related disorders and cell death. In the retina this is critical as photoreceptor energy demands are the greatest in the body and aged cell loss large (~30%). But mitochondria can fuse or divide to accommodate changing demands. We explore ageing mitochondrial dynamics in young (1 month) and old (12 months) mouse retina, investigating changes in mitochondrial fission (Fis1) and fusion (Opa1) proteins, cytochrome C oxidase (COX III), which reflects mitochondrial metabolic status, and heat shock protein 60 (Hsp60) that is a mitochondrial chaperon for protein folding. Western blots showed each protein declined with age. However, within this, immunostaining revealed increases of around 50% in Fis1 and Opa1 in photoreceptor inner segments (IS). Electron microscope analysis revealed mitochondrial fragmentation with age and marked changes in morphology in IS, consistent with elevated dynamics. COX III declined by approximately 30% in IS, but Hsp60 reductions were around 80% in the outer plexiform layer. Our results are consistent with declining mitochondrial metabolism. But also with increased photoreceptor mitochondrial dynamics that differ from other retinal regions, perhaps reflecting attempts to maintain function. These changes are the platform for age related photoreceptor loss initiated after 12 months. PMID:26393878

  17. Defects in Mitochondrial Dynamics and Metabolomic Signatures of Evolving Energetic Stress in Mouse Models of Familial Alzheimer's Disease

    PubMed Central

    Trushina, Eugenia; Nemutlu, Emirhan; Zhang, Song; Christensen, Trace; Camp, Jon; Mesa, Janny; Siddiqui, Ammar; Tamura, Yasushi; Sesaki, Hiromi; Wengenack, Thomas M.; Dzeja, Petras P.; Poduslo, Joseph F.

    2012-01-01

    Background The identification of early mechanisms underlying Alzheimer's Disease (AD) and associated biomarkers could advance development of new therapies and improve monitoring and predicting of AD progression. Mitochondrial dysfunction has been suggested to underlie AD pathophysiology, however, no comprehensive study exists that evaluates the effect of different familial AD (FAD) mutations on mitochondrial function, dynamics, and brain energetics. Methods and Findings We characterized early mitochondrial dysfunction and metabolomic signatures of energetic stress in three commonly used transgenic mouse models of FAD. Assessment of mitochondrial motility, distribution, dynamics, morphology, and metabolomic profiling revealed the specific effect of each FAD mutation on the development of mitochondrial stress and dysfunction. Inhibition of mitochondrial trafficking was characteristic for embryonic neurons from mice expressing mutant human presenilin 1, PS1(M146L) and the double mutation of human amyloid precursor protein APP(Tg2576) and PS1(M146L) contributing to the increased susceptibility of neurons to excitotoxic cell death. Significant changes in mitochondrial morphology were detected in APP and APP/PS1 mice. All three FAD models demonstrated a loss of the integrity of synaptic mitochondria and energy production. Metabolomic profiling revealed mutation-specific changes in the levels of metabolites reflecting altered energy metabolism and mitochondrial dysfunction in brains of FAD mice. Metabolic biomarkers adequately reflected gender differences similar to that reported for AD patients and correlated well with the biomarkers currently used for diagnosis in humans. Conclusions Mutation-specific alterations in mitochondrial dynamics, morphology and function in FAD mice occurred prior to the onset of memory and neurological phenotype and before the formation of amyloid deposits. Metabolomic signatures of mitochondrial stress and altered energy metabolism indicated

  18. Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function

    PubMed Central

    Kembro, Jackelyn M.; Cortassa, Sonia; Aon, Miguel A.

    2014-01-01

    The time-keeping properties bestowed by oscillatory behavior on functional rhythms represent an evolutionarily conserved trait in living systems. Mitochondrial networks function as timekeepers maximizing energetic output while tuning reactive oxygen species (ROS) within physiological levels compatible with signaling. In this work, we explore the potential for timekeeping functions dependent on mitochondrial dynamics with the validated two-compartment mitochondrial energetic-redox (ME-R) computational model, that takes into account (a) four main redox couples [NADH, NADPH, GSH, Trx(SH)2], (b) scavenging systems (glutathione, thioredoxin, SOD, catalase) distributed in matrix and extra-matrix compartments, and (c) transport of ROS species between them. Herein, we describe that the ME-R model can exhibit highly complex oscillatory dynamics in energetic/redox variables and ROS species, consisting of at least five frequencies with modulated amplitudes and period according to power spectral analysis. By stability analysis we describe that the extent of steady state—as against complex oscillatory behavior—was dependent upon the abundance of Mn and Cu, Zn SODs, and their interplay with ROS production in the respiratory chain. Large parametric regions corresponding to oscillatory dynamics of increasingly complex waveforms were obtained at low Cu, Zn SOD concentration as a function of Mn SOD. This oscillatory domain was greatly reduced at higher levels of Cu, Zn SOD. Interestingly, the realm of complex oscillations was located at the edge between normal and pathological mitochondrial energetic behavior, and was characterized by oxidative stress. We conclude that complex oscillatory dynamics could represent a frequency- and amplitude-modulated H2O2 signaling mechanism that arises under intense oxidative stress. By modulating SOD, cells could have evolved an adaptive compromise between relative constancy and the flexibility required under stressful redox

  19. Mitochondrial dynamics and mitophagy in Parkinson's disease: A fly point of view.

    PubMed

    Von Stockum, Sophia; Nardin, Alice; Schrepfer, Emilie; Ziviani, Elena

    2016-06-01

    Mitochondria are double membrane-bounded organelles residing in the cytoplasm of almost all eukaryotic cells, which convert energy from the disposal of organic substrates into an electrochemical gradient that is in turn converted into ATP. However, the ion gradient that is generated through the oxidation of nutrients, may lead to the production of reactive oxygen species (ROS), which can generate free radicals, damaging cells and contributing to disease. Originally described as static structures, to date they are considered extremely plastic and dynamic organelles. In this respect, mitochondrial dynamics is crucial to prevent potential damage that is generated by ROS. For instance, mitochondria elongate to dilute oxidized proteins into the mitochondrial network, and they fragment to allow selective elimination of dysfunctional mitochondria via mitophagy. Accordingly, mitochondrial dynamics perturbation may compromise the selective elimination of damaged proteins and dysfunctional organelles and lead to the development of different diseases including neurodegenerative diseases. In recent years the fruit fly Drosophila melanogaster has proved to be a valuable model system to evaluate the consequences of mitochondria quality control dysfunction in vivo, particularly with respect to PINK1/Parkin dependent dysregulation of mitophagy in the onset of Parkinson's Disease (PD). The current challenge is to be able to use fly based genetic strategies to gain further insights into molecular mechanisms underlying disease in order to develop new therapeutic strategies. This article is part of a Special Issue entitled: Role of mitochondria in physiological and pathophysiological functions in the central nervous system. PMID:26550693

  20. Leptin Modulates Mitochondrial Function, Dynamics and Biogenesis in MCF-7 Cells.

    PubMed

    Blanquer-Rosselló, M Mar; Santandreu, Francisca M; Oliver, Jordi; Roca, Pilar; Valle, Adamo

    2015-09-01

    The adipokine leptin, known for its key role in the control of energy metabolism, has been shown to be involved in both normal and tumoral mammary growth. One of the hallmarks of cancer is an alteration of tumor metabolism since cancerous cells must rewire metabolism to satisfy the demands of growth and proliferation. Considering the sensibility of breast cancer cells to leptin, the objective of this study was to explore the effects of this adipokine on their metabolism. To this aim, we treated the MCF-7 breast cancer cell line with 50 ng/mL leptin and analyzed several features related to cellular and mitochondrial metabolism. As a result, leptin increased cell proliferation, shifted ATP production from glycolysis to mitochondria and decreased the levels of the glycolytic end-product lactate. We observed an improvement in ADP-dependent oxygen consumption and an amelioration of oxidative stress without changes in total mitochondrial mass or specific oxidative phosphorylation (OXPHOS) complexes. Furthermore, RT-PCR and western blot showed an up-regulation for genes and proteins related to biogenesis and mitochondrial dynamics. This expression signature, together with an increased mitophagy observed by confocal microscopy suggests that leptin may improve mitochondrial quality and function. Taken together, our results propose that leptin may improve bioenergetic efficiency by avoiding the production of reactive oxygen species (ROS) and conferring benefits for growth and survival of MCF-7 breast cancer cells. PMID:25752935

  1. Mitochondrial structure and dynamics as critical factors in honey bee (Apis mellifera L.) caste development.

    PubMed

    Santos, Douglas Elias; Alberici, Luciane Carla; Hartfelder, Klaus

    2016-06-01

    The relationship between nutrition and phenotype is an especially challenging question in cases of facultative polyphenism, like the castes of social insects. In the honey bee, Apis mellifera, unexpected modifications in conserved signaling pathways revealed the hypoxia response as a possible mechanism underlying the regulation of body size and organ growth. Hence, the current study was designed to investigate possible causes of why the three hypoxia core genes are overexpressed in worker larvae. Parting from the hypothesis that this has an endogenous cause and is not due to differences in external oxygen levels we investigated mitochondrial numbers and distribution, as well as mitochondrial oxygen consumption rates in fat body cells of queen and worker larvae during the caste fate-critical larval stages. By immunofluorescence and electron microscopy we found higher densities of mitochondria in queen larval fat body, a finding further confirmed by a citrate synthase assay quantifying mitochondrial functional units. Oxygen consumption measurements by high-resolution respirometry revealed that queen larvae have higher maximum capacities of ATP production at lower physiological demand. Finally, the expression analysis of mitogenesis-related factors showed that the honey bee TFB1 and TFB2 homologs, and a nutritional regulator, ERR, are overexpressed in queen larvae. These results are strong evidence that the differential nutrition of queen and worker larvae by nurse bees affects mitochondrial dynamics and functionality in the fat body of these larvae, hence explaining their differential hypoxia response. PMID:27058771

  2. Leptin Modulates Mitochondrial Function, Dynamics and Biogenesis in MCF-7 Cells.

    PubMed

    Blanquer-Rosselló, M Mar; Santandreu, Francisca M; Oliver, Jordi; Roca, Pilar; Valle, Adamo

    2015-09-01

    The adipokine leptin, known for its key role in the control of energy metabolism, has been shown to be involved in both normal and tumoral mammary growth. One of the hallmarks of cancer is an alteration of tumor metabolism since cancerous cells must rewire metabolism to satisfy the demands of growth and proliferation. Considering the sensibility of breast cancer cells to leptin, the objective of this study was to explore the effects of this adipokine on their metabolism. To this aim, we treated the MCF-7 breast cancer cell line with 50 ng/mL leptin and analyzed several features related to cellular and mitochondrial metabolism. As a result, leptin increased cell proliferation, shifted ATP production from glycolysis to mitochondria and decreased the levels of the glycolytic end-product lactate. We observed an improvement in ADP-dependent oxygen consumption and an amelioration of oxidative stress without changes in total mitochondrial mass or specific oxidative phosphorylation (OXPHOS) complexes. Furthermore, RT-PCR and western blot showed an up-regulation for genes and proteins related to biogenesis and mitochondrial dynamics. This expression signature, together with an increased mitophagy observed by confocal microscopy suggests that leptin may improve mitochondrial quality and function. Taken together, our results propose that leptin may improve bioenergetic efficiency by avoiding the production of reactive oxygen species (ROS) and conferring benefits for growth and survival of MCF-7 breast cancer cells.

  3. Mitochondrial Division and Fusion in Metabolism

    PubMed Central

    Roy, Madhuparna; Reddy, P. Hemachandra; Iijima, Miho; Sesaki, Hiromi

    2015-01-01

    Mitochondria govern many metabolic processes. In addition, mitochondria sense the status of metabolism and change their functions to regulate energy production, cell death, and thermogenesis. Recent studies have revealed that mitochondrial structural remodeling through division and fusion is critical to the organelle’s function. It has also become clear that abnormalities in mitochondrial division and fusion are linked to the pathophysiology of metabolic diseases such as diabetes and obesity. Here, we discuss the current understanding of the mechanisms of mitochondrial dynamics and their role in cellular and organismal metabolism. PMID:25703628

  4. Physical exercise improves brain cortex and cerebellum mitochondrial bioenergetics and alters apoptotic, dynamic and auto(mito)phagy markers.

    PubMed

    Marques-Aleixo, I; Santos-Alves, E; Balça, M M; Rizo-Roca, D; Moreira, P I; Oliveira, P J; Magalhães, J; Ascensão, A

    2015-08-20

    We here investigate the effects of two exercise modalities (endurance treadmill training-TM and voluntary free-wheel activity-FW) on the brain cortex and cerebellum mitochondrial bioenergetics, permeability transition pore (mPTP), oxidative stress, as well as on proteins involved in mitochondrial biogenesis, apoptosis, and quality control. Eighteen male rats were assigned to sedentary-SED, TM and FW groups. Behavioral alterations and ex vivo brain mitochondrial function endpoints were assessed. Proteins involved in oxidative phosphorylation (OXPHOS, including the adenine nucleotide translocator), oxidative stress markers and regulatory proteins (SIRT3, p66shc, UCP2, carbonyls, MDA, -SH, aconitase, Mn-SOD), as well as proteins involved in mitochondrial biogenesis (PGC1α, TFAM) were evaluated. Apoptotic signaling was measured through quantifying caspase 3, 8 and 9-like activities, Bax, Bcl2, CypD, and cofilin expression. Mitochondrial dynamics (Mfn1/2, OPA1 and DRP1) and auto(mito)phagy (LC3II, Beclin1, Pink1, Parkin, p62)-related proteins were also measured by Western blotting. Only the TM exercise group showed increased spontaneous alternation and exploratory activity. Both exercise regimens improved mitochondrial respiratory activity, increased OXPHOS complexes I, III and V subunits in both brain subareas and decreased oxidative stress markers. Increased resistance to mPTP and decreased apoptotic signaling were observed in the brain cortex from TM and in the cerebellum from TM and FW groups. Also, exercise increased the expression of proteins involved in mitochondrial biogenesis, autophagy and fusion, simultaneous with decreased expression of mitochondrial fission-related protein DRP1. In conclusion, physical exercise improves brain cortex and cerebellum mitochondrial function, decreasing oxidative stress and apoptotic related markers. It is also possible that favorable alterations in mitochondrial biogenesis, dynamics and autophagy signaling induced by exercise

  5. Enhanced Neuroplasticity by the Metabolic Enhancer Piracetam Associated with Improved Mitochondrial Dynamics and Altered Permeability Transition Pore Function

    PubMed Central

    Stockburger, Carola; Miano, Davide; Pallas, Thea; Müller, Walter E.

    2016-01-01

    The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function. PMID:27747106

  6. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction

    PubMed Central

    Bavli, Danny; Prill, Sebastian; Ezra, Elishai; Levy, Gahl; Cohen, Merav; Vinken, Mathieu; Vanfleteren, Jan; Jaeger, Magnus; Nahmias, Yaakov

    2016-01-01

    Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology. PMID:27044092

  7. Real-time monitoring of metabolic function in liver-on-chip microdevices tracks the dynamics of mitochondrial dysfunction.

    PubMed

    Bavli, Danny; Prill, Sebastian; Ezra, Elishai; Levy, Gahl; Cohen, Merav; Vinken, Mathieu; Vanfleteren, Jan; Jaeger, Magnus; Nahmias, Yaakov

    2016-04-19

    Microfluidic organ-on-a-chip technology aims to replace animal toxicity testing, but thus far has demonstrated few advantages over traditional methods. Mitochondrial dysfunction plays a critical role in the development of chemical and pharmaceutical toxicity, as well as pluripotency and disease processes. However, current methods to evaluate mitochondrial activity still rely on end-point assays, resulting in limited kinetic and prognostic information. Here, we present a liver-on-chip device capable of maintaining human tissue for over a month in vitro under physiological conditions. Mitochondrial respiration was monitored in real time using two-frequency phase modulation of tissue-embedded phosphorescent microprobes. A computer-controlled microfluidic switchboard allowed contiguous electrochemical measurements of glucose and lactate, providing real-time analysis of minute shifts from oxidative phosphorylation to anaerobic glycolysis, an early indication of mitochondrial stress. We quantify the dynamics of cellular adaptation to mitochondrial damage and the resulting redistribution of ATP production during rotenone-induced mitochondrial dysfunction and troglitazone (Rezulin)-induced mitochondrial stress. We show troglitazone shifts metabolic fluxes at concentrations previously regarded as safe, suggesting a mechanism for its observed idiosyncratic effect. Our microfluidic platform reveals the dynamics and strategies of cellular adaptation to mitochondrial damage, a unique advantage of organ-on-chip technology. PMID:27044092

  8. Impaired Mitochondrial Dynamics and Nrf2 Signaling Contribute to Compromised Responses to Oxidative Stress in Striatal Cells Expressing Full-Length Mutant Huntingtin

    PubMed Central

    Jin, Youngnam N.; Yu, Yanxun V.; Gundemir, Soner; Jo, Chulman; Cui, Mei; Tieu, Kim; Johnson, Gail V. W.

    2013-01-01

    Huntington disease (HD) is an inherited neurodegenerative disease resulting from an abnormal expansion of polyglutamine in huntingtin (Htt). Compromised oxidative stress defense systems have emerged as a contributing factor to the pathogenesis of HD. Indeed activation of the Nrf2 pathway, which plays a prominent role in mediating antioxidant responses, has been considered as a therapeutic strategy for the treatment of HD. Given the fact that there is an interrelationship between impairments in mitochondrial dynamics and increased oxidative stress, in this present study we examined the effect of mutant Htt (mHtt) on these two parameters. STHdhQ111/Q111 cells, striatal cells expressing mHtt, display more fragmented mitochondria compared to STHdhQ7/Q7 cells, striatal cells expressing wild type Htt, concurrent with alterations in the expression levels of Drp1 and Opa1, key regulators of mitochondrial fission and fusion, respectively. Studies of mitochondrial dynamics using cell fusion and mitochondrial targeted photo-switchable Dendra revealed that mitochondrial fusion is significantly decreased in STHdhQ111/Q111 cells. Oxidative stress leads to dramatic increases in the number of STHdhQ111/Q111 cells containing swollen mitochondria, while STHdhQ7/Q7 cells just show increases in the number of fragmented mitochondria. mHtt expression results in reduced activity of Nrf2, and activation of the Nrf2 pathway by the oxidant tBHQ is significantly impaired in STHdhQ111/Q111 cells. Nrf2 expression does not differ between the two cell types, but STHdhQ111/Q111 cells show reduced expression of Keap1 and p62, key modulators of Nrf2 signaling. In addition, STHdhQ111/Q111 cells exhibit increases in autophagy, whereas the basal level of autophagy activation is low in STHdhQ7/Q7 cells. These results suggest that mHtt disrupts Nrf2 signaling which contributes to impaired mitochondrial dynamics and may enhance susceptibility to oxidative stress in STHdhQ111/Q111 cells. PMID:23469253

  9. Homeostatic Responses Regulate Selfish Mitochondrial Genome Dynamics in C. elegans.

    PubMed

    Gitschlag, Bryan L; Kirby, Cait S; Samuels, David C; Gangula, Rama D; Mallal, Simon A; Patel, Maulik R

    2016-07-12

    Mutant mitochondrial genomes (mtDNA) can be viewed as selfish genetic elements that persist in a state of heteroplasmy despite having potentially deleterious metabolic consequences. We sought to study regulation of selfish mtDNA dynamics. We establish that the large 3.1-kb deletion-bearing mtDNA variant uaDf5 is a selfish genome in Caenorhabditis elegans. Next, we show that uaDf5 mutant mtDNA replicates in addition to, not at the expense of, wild-type mtDNA. These data suggest the existence of a homeostatic copy-number control that is exploited by uaDf5 to "hitchhike" to high frequency. We also observe activation of the mitochondrial unfolded protein response (UPR(mt)) in uaDf5 animals. Loss of UPR(mt) causes a decrease in uaDf5 frequency, whereas its constitutive activation increases uaDf5 levels. UPR(mt) activation protects uaDf5 from mitophagy. Taken together, we propose that mtDNA copy-number control and UPR(mt) represent two homeostatic response mechanisms that play important roles in regulating selfish mitochondrial genome dynamics. PMID:27411011

  10. Homocysteine-Mediated Modulation of Mitochondrial Dynamics in Retinal Ganglion Cells

    PubMed Central

    Ganapathy, Preethi S.; Perry, Richard L.; Tawfik, Amany; Smith, Robert M.; Perry, Elizabeth; Roon, Penny; Bozard, B. Renee; Ha, Yonju

    2011-01-01

    Purpose. To evaluate the effect of excess homocysteine on the regulation of retinal ganglion cell mitochondrial dynamics. Methods. Mice deficient in cystathionine-β-synthase (cbs) were used as a model of hyperhomocysteinemia. Gene and protein expression analyses of Opa1 and Fis1 were performed on cbs+/−neural retinas. Mitochondria within retinal ganglion cell axons underwent systematic ultrastructural analysis to measure area, length, width, and the distance between the mitochondria and the axon wall. Primary mouse ganglion cells were cultured, treated with homocysteine, and assessed for levels of Opa1 and Fis1 protein, the number of mitochondria per length of neurite, and levels of cleaved caspase-3. Results. Opa1 and Fis1 protein levels in cbs+/− neural retinas were elevated to 191.00% ± 26.40% and 226.20% ± 4.57%, respectively, compared with wild-type. Mitochondria of cbs+/− retinas were smaller in all parameters studied, including area (0.32 ± 0.01μm2 vs. 0.42 ± 0.02 μm2), compared with wild-type. Primary ganglion cells treated with homocysteine had elevations in Opa1 and Fis1 proteins, a significantly higher number of mitochondria per length of neurite (0.1781 ± 0.017 vs. 0.1156 ± 0.012), and significantly higher levels of cleaved caspase-3 compared with control. Conclusions. This study provides the first evidence that homocysteine-induced ganglion cell loss involves the dysregulation of mitochondrial dynamics, both in vivo and in vitro. The present data suggest increased mitochondrial fission as a novel mechanism of homocysteine toxicity to neurons. Of particular relevance are glaucoma and Alzheimer's disease, neurodegenerative diseases that are associated with hyperhomocysteinemia and, more recently, have implicated increased mitochondrial fission in their pathogeneses. PMID:21642619

  11. Cytoskeletal-assisted dynamics of the mitochondrial reticulum in living cells

    PubMed Central

    Knowles, Michelle K.; Guenza, Marina G.; Capaldi, Roderick A.; Marcus, Andrew H.

    2002-01-01

    Subcellular organelle dynamics are strongly influenced by interactions with cytoskeletal filaments and their associated motor proteins, and lead to complex multiexponential relaxations that occur over a wide range of spatial and temporal scales. Here we report spatio-temporal measurements of the fluctuations of the mitochondrial reticulum in osteosarcoma cells by using Fourier imaging correlation spectroscopy, over time and distance scales of 10−2 to 103 s and 0.5–2.5 μm. We show that the method allows a more complete description of mitochondrial dynamics, through the time- and length-scale-dependent collective diffusion coefficient D(k,τ), than available by other means. Addition of either nocodazole to disrupt microtubules or cytochalasin D to disassemble microfilaments simplifies the intermediate scattering function. When both drugs are used, the reticulum morphology of mitochondria is retained even though the cytoskeletal elements have been de-polymerized. The dynamics of the organelle are then primarily diffusive and can be modeled as a collection of friction points interconnected by elastic springs. This study quantitatively characterizes organelle dynamics in terms of collective cytoskeletal interactions in living cells. PMID:12417764

  12. Orexin system is expressed in avian muscle cells and regulates mitochondrial dynamics.

    PubMed

    Lassiter, Kentu; Greene, Elizabeth; Piekarski, Alissa; Faulkner, Olivia B; Hargis, Billy M; Bottje, Walter; Dridi, Sami

    2015-02-01

    Orexin A and B, orexigenic peptides produced primarily by the lateral hypothalamus that signal through two G protein-coupled receptors, orexin receptors 1/2, have been implicated in the regulation of several physiological processes in mammals. In avian (nonmammalian vertebrates) species; however, the physiological roles of orexin are not well defined. Here, we provide novel evidence that not only is orexin and its related receptors 1/2 (ORXR1/2) expressed in chicken muscle tissue and quail muscle (QM7) cell line, orexin appears to be a secretory protein in QM7 cells. In vitro administration of recombinant orexin A and B (rORX-A and B) differentially regulated prepro-orexin expression in a dose-dependent manner with up-regulation for rORX-A (P < 0.05) and downregulation for rORX-B (P < 0.05) in QM7 cells. While both peptides upregulated ORXR1 expression, only a high dose of rORX-B decreased the expression of ORXR2 (P < 0.05). The presence of orexin and its related receptors and the regulation of its own system in avian muscle cells indicate that orexin may have autocrine, paracrine, and/or endocrine roles. rORXs differentially regulated mitochondrial dynamics network. While rORX-A significantly induced the expression of mitochondrial fission-related genes (DNM1, MTFP1, MTFR1), rORX-B increased the expression of mitofusin 2, OPA1, and OMA1 genes that are involved in mitochondrial fusion. Concomitant with these changes, rORXs differentially regulated the expression of several mitochondrial metabolic genes (av-UCP, av-ANT, Ski, and NRF-1) and their related transcriptional regulators (PPARγ, PPARα, PGC-1α, PGC-1β, and FoxO-1) without affecting ATP synthesis. Taken together, our data represent the first evidence of the presence and secretion of orexin system in the muscle of nonmammalian species and its role in mitochondrial fusion and fission, probably through mitochondrial-related genes and their related transcription factors.

  13. The EF-Hand Ca2+ Binding Protein MICU Choreographs Mitochondrial Ca2+ Dynamics in Arabidopsis[OPEN

    PubMed Central

    Carraretto, Luca; Teardo, Enrico; Cendron, Laura; Füßl, Magdalena; Doccula, Fabrizio G.; Szabò, Ildikò

    2015-01-01

    Plant organelle function must constantly adjust to environmental conditions, which requires dynamic coordination. Ca2+ signaling may play a central role in this process. Free Ca2+ dynamics are tightly regulated and differ markedly between the cytosol, plastid stroma, and mitochondrial matrix. The mechanistic basis of compartment-specific Ca2+ dynamics is poorly understood. Here, we studied the function of At-MICU, an EF-hand protein of Arabidopsis thaliana with homology to constituents of the mitochondrial Ca2+ uniporter machinery in mammals. MICU binds Ca2+ and localizes to the mitochondria in Arabidopsis. In vivo imaging of roots expressing a genetically encoded Ca2+ sensor in the mitochondrial matrix revealed that lack of MICU increased resting concentrations of free Ca2+ in the matrix. Furthermore, Ca2+ elevations triggered by auxin and extracellular ATP occurred more rapidly and reached higher maximal concentrations in the mitochondria of micu mutants, whereas cytosolic Ca2+ signatures remained unchanged. These findings support the idea that a conserved uniporter system, with composition and regulation distinct from the mammalian machinery, mediates mitochondrial Ca2+ uptake in plants under in vivo conditions. They further suggest that MICU acts as a throttle that controls Ca2+ uptake by moderating influx, thereby shaping Ca2+ signatures in the matrix and preserving mitochondrial homeostasis. Our results open the door to genetic dissection of mitochondrial Ca2+ signaling in plants. PMID:26530087

  14. Dynamics of mitochondrial Ca2+ uptake in MICU1-knockdown cells.

    PubMed

    de la Fuente, Sergio; Matesanz-Isabel, Jessica; Fonteriz, Rosalba I; Montero, Mayte; Alvarez, Javier

    2014-02-15

    MICU1 (Ca2+ uptake protein 1, mitochondrial) is an important regulator of the MCU (Ca2+ uniporter protein, mitochondrial) that has been shown recently to act as a gatekeeper of the MCU at low [Ca2+]c (cytosolic [Ca2+]). In the present study we have investigated in detail the dynamics of MCU activity after shRNA-knockdown of MICU1 and we have found several new interesting properties. In MICU1-knockdown cells, the rate of mitochondrial Ca2+ uptake was largely increased at a low [Ca2+]c (<2 μM), but it was decreased at a high [Ca2+]c (>4 μM). In the 2-4 μM range a mixed behaviour was observed, where mitochondrial Ca2+ uptake started earlier in the MICU1-silenced cells, but at a lower rate than in the controls. The sensitivity of Ca2+ uptake to Ruthenium Red and Ru360 was similar at both high and low [Ca2+]c, indicating that the same Ca2+ pathway was operating in both cases. The increased Ca2+-uptake rate observed at a [Ca2+]c below 2 μM was transient and became inhibited during Ca2+ entry. Development of this inhibition was slow, requiring 5 min for completion, and was hardly reversible. Therefore MICU1 acts both as a MCU gatekeeper at low [Ca2+]c and as a cofactor necessary to reach the maximum Ca2+-uptake rate at high [Ca2+]c. Moreover, in the absence of MICU1, the MCU becomes sensitive to a slow-developing inhibition that requires prolonged increases in [Ca2+]c in the low micromolar range.

  15. Alterations in Mitochondrial Quality Control in Alzheimer’s Disease

    PubMed Central

    Cai, Qian; Tammineni, Prasad

    2016-01-01

    Mitochondrial dysfunction is one of the earliest and most prominent features in the brains of Alzheimer’s disease (AD) patients. Recent studies suggest that mitochondrial dysfunction plays a pivotal role in the pathogenesis of AD. Neurons are metabolically active cells, causing them to be particularly dependent on mitochondrial function for survival and maintenance. As highly dynamic organelles, mitochondria are characterized by a balance of fusion and fission, transport, and mitophagy, all of which are essential for maintaining mitochondrial integrity and function. Mitochondrial dynamics and mitophagy can therefore be identified as key pathways in mitochondrial quality control. Tremendous progress has been made in studying changes in these key aspects of mitochondrial biology in the vulnerable neurons of AD brains and mouse models, and the potential underlying mechanisms of such changes. This review highlights recent findings on alterations in the mitochondrial dynamics and mitophagy in AD and discusses how these abnormalities impact mitochondrial quality control and thus contribute to mitochondrial dysfunction in AD. PMID:26903809

  16. FUNDC1 regulates mitochondrial dynamics at the ER-mitochondrial contact site under hypoxic conditions.

    PubMed

    Wu, Wenxian; Lin, Chunxia; Wu, Keng; Jiang, Lei; Wang, Xiaojing; Li, Wen; Zhuang, Haixia; Zhang, Xingliang; Chen, Hao; Li, Shupeng; Yang, Yue; Lu, Yue; Wang, Jingjing; Zhu, Runzhi; Zhang, Liangqing; Sui, Senfang; Tan, Ning; Zhao, Bin; Zhang, Jingjing; Li, Longxuan; Feng, Du

    2016-07-01

    In hypoxic cells, dysfunctional mitochondria are selectively removed by a specialized autophagic process called mitophagy. The ER-mitochondrial contact site (MAM) is essential for fission of mitochondria prior to engulfment, and the outer mitochondrial membrane protein FUNDC1 interacts with LC3 to recruit autophagosomes, but the mechanisms integrating these processes are poorly understood. Here, we describe a new pathway mediating mitochondrial fission and subsequent mitophagy under hypoxic conditions. FUNDC1 accumulates at the MAM by associating with the ER membrane protein calnexin. As mitophagy proceeds, FUNDC1/calnexin association attenuates and the exposed cytosolic loop of FUNDC1 interacts with DRP1 instead. DRP1 is thereby recruited to the MAM, and mitochondrial fission then occurs. Knockdown of FUNDC1, DRP1, or calnexin prevents fission and mitophagy under hypoxic conditions. Thus, FUNDC1 integrates mitochondrial fission and mitophagy at the interface of the MAM by working in concert with DRP1 and calnexin under hypoxic conditions in mammalian cells. PMID:27145933

  17. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome.

    PubMed

    Ogihara, Yasunari; Yamazaki, Yukiko; Murai, Koji; Kanno, Akira; Terachi, Toru; Shiina, Takashi; Miyashita, Naohiko; Nasuda, Shuhei; Nakamura, Chiharu; Mori, Naoki; Takumi, Shigeo; Murata, Minoru; Futo, Satoshi; Tsunewaki, Koichiro

    2005-01-01

    The application of a new gene-based strategy for sequencing the wheat mitochondrial genome shows its structure to be a 452 528 bp circular molecule, and provides nucleotide-level evidence of intra-molecular recombination. Single, reciprocal and double recombinant products, and the nucleotide sequences of the repeats that mediate their formation have been identified. The genome has 55 genes with exons, including 35 protein-coding, 3 rRNA and 17 tRNA genes. Nucleotide sequences of seven wheat genes have been determined here for the first time. Nine genes have an exon-intron structure. Gene amplification responsible for the production of multicopy mitochondrial genes, in general, is species-specific, suggesting the recent origin of these genes. About 16, 17, 15, 3.0 and 0.2% of wheat mitochondrial DNA (mtDNA) may be of genic (including introns), open reading frame, repetitive sequence, chloroplast and retro-element origin, respectively. The gene order of the wheat mitochondrial gene map shows little synteny to the rice and maize maps, indicative that thorough gene shuffling occurred during speciation. Almost all unique mtDNA sequences of wheat, as compared with rice and maize mtDNAs, are redundant DNA. Features of the gene-based strategy are discussed, and a mechanistic model of mitochondrial gene amplification is proposed. PMID:16260473

  18. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome

    PubMed Central

    Ogihara, Yasunari; Yamazaki, Yukiko; Murai, Koji; Kanno, Akira; Terachi, Toru; Shiina, Takashi; Miyashita, Naohiko; Nasuda, Shuhei; Nakamura, Chiharu; Mori, Naoki; Takumi, Shigeo; Murata, Minoru; Futo, Satoshi; Tsunewaki, Koichiro

    2005-01-01

    The application of a new gene-based strategy for sequencing the wheat mitochondrial genome shows its structure to be a 452 528 bp circular molecule, and provides nucleotide-level evidence of intra-molecular recombination. Single, reciprocal and double recombinant products, and the nucleotide sequences of the repeats that mediate their formation have been identified. The genome has 55 genes with exons, including 35 protein-coding, 3 rRNA and 17 tRNA genes. Nucleotide sequences of seven wheat genes have been determined here for the first time. Nine genes have an exon–intron structure. Gene amplification responsible for the production of multicopy mitochondrial genes, in general, is species-specific, suggesting the recent origin of these genes. About 16, 17, 15, 3.0 and 0.2% of wheat mitochondrial DNA (mtDNA) may be of genic (including introns), open reading frame, repetitive sequence, chloroplast and retro-element origin, respectively. The gene order of the wheat mitochondrial gene map shows little synteny to the rice and maize maps, indicative that thorough gene shuffling occurred during speciation. Almost all unique mtDNA sequences of wheat, as compared with rice and maize mtDNAs, are redundant DNA. Features of the gene-based strategy are discussed, and a mechanistic model of mitochondrial gene amplification is proposed. PMID:16260473

  19. Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store.

    PubMed

    Li, Hailong; Wang, Xiaowan; Zhang, Nannan; Gottipati, Manoj K; Parpura, Vladimir; Ding, Shinghua

    2014-12-01

    Mitochondrial Ca(2+) plays a critical physiological role in cellular energy metabolism and signaling, and its overload contributes to various pathological conditions including neuronal apoptotic death in neurological diseases. Live cell mitochondrial Ca(2+) imaging is an important approach to understand mitochondrial Ca(2+) dynamics. Recently developed GCaMP genetically-encoded Ca(2+) indicators provide unique opportunity for high sensitivity/resolution and cell type-specific mitochondrial Ca(2+) imaging. In the current study, we implemented cell-specific mitochondrial targeting of GCaMP5G/6s (mito-GCaMP5G/6s) and used two-photon microscopy to image astrocytic and neuronal mitochondrial Ca(2+) dynamics in culture, revealing Ca(2+) uptake mechanism by these organelles in response to cell stimulation. Using these mitochondrial Ca(2+) indicators, our results show that mitochondrial Ca(2+) uptake in individual mitochondria in cultured astrocytes and neurons can be seen after stimulations by ATP and glutamate, respectively. We further studied the dependence of mitochondrial Ca(2+) dynamics on cytosolic Ca(2+) changes following ATP stimulation in cultured astrocytes by simultaneously imaging mitochondrial and cytosolic Ca(2+) increase using mito-GCaMP5G and a synthetic organic Ca(2+) indicator, x-Rhod-1, respectively. Combined with molecular intervention in Ca(2+) signaling pathway, our results demonstrated that the mitochondrial Ca(2+) uptake is tightly coupled with inositol 1,4,5-trisphosphate receptor-mediated Ca(2+) release from the endoplasmic reticulum and the activation of G protein-coupled receptors. The current study provides a novel approach to image mitochondrial Ca(2+) dynamics as well as Ca(2+) interplay between the endoplasmic reticulum and mitochondria, which is relevant for neuronal and astrocytic functions in health and disease.

  20. Mitochondrial dynamics controlled by mitofusins regulate Agrp neuronal activity and diet-induced obesity

    PubMed Central

    Dietrich, Marcelo O.; Liu, Zhong-Wu; Horvath, Tamas L.

    2014-01-01

    Summary Mitochondria are key organelles in the maintenance of cellular energy metabolism and integrity. Here we show that mitochondria number decrease but their size increase in orexigenic Agrp neurons during the transition from fasted to fed to over-fed state. These fusion-like dynamic changes were cell-type specific, as they occurred in the opposite direction in anorexigenic POMC neurons. Interfering with mitochondrial fusion mechanisms in Agrp neurons by cell-selectively knocking down mitofusin-1 (Mfn1) or mitofusin-2 (Mfn2) resulted in altered mitochondria size and density in these cells. Deficiency in mitofusins impaired the electric activity of Agrp neurons during high-fat diet, an event reversed by cell-selective administration of ATP. Agrp-specific Mfn1 or Mfn2 knockout mice gained less weight when fed a high-fat diet due to decreased fat mass. Overall, our data unmask an important role for mitochondrial dynamics governed by Mfn1 and Mfn2 in Agrp neurons in central regulation of whole body energy metabolism. PMID:24074868

  1. The AAA+ ATPase ATAD3A Controls Mitochondrial Dynamics at the Interface of the Inner and Outer Membranes ▿

    PubMed Central

    Gilquin, Benoît; Taillebourg, Emmanuel; Cherradi, Nadia; Hubstenberger, Arnaud; Gay, Olivia; Merle, Nicolas; Assard, Nicole; Fauvarque, Marie-Odile; Tomohiro, Shiho; Kuge, Osamu; Baudier, Jacques

    2010-01-01

    Dynamic interactions between components of the outer (OM) and inner (IM) membranes control a number of critical mitochondrial functions such as channeling of metabolites and coordinated fission and fusion. We identify here the mitochondrial AAA+ ATPase protein ATAD3A specific to multicellular eukaryotes as a participant in these interactions. The N-terminal domain interacts with the OM. A central transmembrane segment (TMS) anchors the protein in the IM and positions the C-terminal AAA+ ATPase domain in the matrix. Invalidation studies in Drosophila and in a human steroidogenic cell line showed that ATAD3A is required for normal cell growth and cholesterol channeling at contact sites. Using dominant-negative mutants, including a defective ATP-binding mutant and a truncated 50-amino-acid N-terminus mutant, we showed that ATAD3A regulates dynamic interactions between the mitochondrial OM and IM sensed by the cell fission machinery. The capacity of ATAD3A to impact essential mitochondrial functions and organization suggests that it possesses unique properties in regulating mitochondrial dynamics and cellular functions in multicellular organisms. PMID:20154147

  2. Dynamic Changes of Striatal and Extrastriatal Abnormalities in Glutaric Aciduria Type I

    ERIC Educational Resources Information Center

    Harting, Inga; Neumaier-Probst, Eva; Seitz, Angelika; Maier, Esther M.; Assmann, Birgit; Baric, Ivo; Troncoso, Monica; Muhlhausen, Chris; Zschocke, Johannes; Boy, Nikolas P. S.; Hoffmann, Georg F.; Garbade, Sven F.; Kolker, Stefan

    2009-01-01

    In glutaric aciduria type I, an autosomal recessive disease of mitochondrial lysine, hydroxylysine and tryptophan catabolism, striatal lesions are characteristically induced by acute encephalopathic crises during a finite period of brain development (age 3-36 months). The frequency of striatal injury is significantly less in patients diagnosed as…

  3. Transient assembly of F-actin on the outer mitochondrial membrane contributes to mitochondrial fission

    PubMed Central

    Li, Sunan; Xu, Shan; Roelofs, Brian A.; Boyman, Liron; Lederer, W. Jonathan; Sesaki, Hiromi

    2015-01-01

    In addition to established membrane remodeling roles in various cellular locations, actin has recently emerged as a participant in mitochondrial fission. However, the underlying mechanisms of its participation remain largely unknown. We report that transient de novo F-actin assembly on the mitochondria occurs upon induction of mitochondrial fission and F-actin accumulates on the mitochondria without forming detectable submitochondrial foci. Impairing mitochondrial division through Drp1 knockout or inhibition prolonged the time of mitochondrial accumulation of F-actin and also led to abnormal mitochondrial accumulation of the actin regulatory factors cortactin, cofilin, and Arp2/3 complexes, suggesting that disassembly of mitochondrial F-actin depends on Drp1 activity. Furthermore, down-regulation of actin regulatory proteins led to elongation of mitochondria, associated with mitochondrial accumulation of Drp1. In addition, depletion of cortactin inhibited Mfn2 down-regulation– or FCCP-induced mitochondrial fragmentation. These data indicate that the dynamic assembly and disassembly of F-actin on the mitochondria participates in Drp1-mediated mitochondrial fission. PMID:25547155

  4. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy.

    PubMed

    Vincent, Amy E; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M; McFarland, Robert; Gorman, Grainne S; Taylor, Robert W; Turnbull, Doug M; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  5. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy

    PubMed Central

    Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  6. The Pleiotropic Effect of Physical Exercise on Mitochondrial Dynamics in Aging Skeletal Muscle

    PubMed Central

    Barbieri, Elena; Agostini, Deborah; Polidori, Emanuela; Potenza, Lucia; Guescini, Michele; Lucertini, Francesco; Annibalini, Giosuè; Stocchi, Laura; De Santi, Mauro; Stocchi, Vilberto

    2015-01-01

    Decline in human muscle mass and strength (sarcopenia) is one of the principal hallmarks of the aging process. Regular physical exercise and training programs are certain powerful stimuli to attenuate the physiological skeletal muscle alterations occurring during aging and contribute to promote health and well-being. Although the series of events that led to these muscle adaptations are poorly understood, the mechanisms that regulate these processes involve the “quality” of skeletal muscle mitochondria. Aerobic/endurance exercise helps to maintain and improve cardiovascular fitness and respiratory function, whereas strength/resistance-exercise programs increase muscle strength, power development, and function. Due to the different effect of both exercises in improving mitochondrial content and quality, in terms of biogenesis, dynamics, turnover, and genotype, combined physical activity programs should be individually prescribed to maximize the antiaging effects of exercise. PMID:25945152

  7. HIF-1-alpha links mitochondrial perturbation to the dynamic acquisition of breast cancer tumorigenicity

    PubMed Central

    Kuo, Ching-Ying; Cheng, Chun-Ting; Hou, Peifeng; Lin, Yi-Pei; Ma, Huimin; Chung, Yiyin; Chi, Kevin; Chen, Yuan; Li, Wei; Kung, Hsing-Jien; Ann, David K.

    2016-01-01

    Up-regulation of hypoxia-inducible factor-1α (HIF-1α), even in normoxia, is a common feature of solid malignancies. However, the mechanisms of increased HIF-1α abundance, and its role in regulating breast cancer plasticity are not fully understood. We have previously demonstrated that dimethyl-2-ketoglutarate (DKG), a widely used cell membrane-permeable α-ketoglutarate (α-KG) analogue, transiently stabilizes HIF-1α by inhibiting prolyl hydroxylase 2. Here, we report that breast cancer tumorigenicity can be acquired through prolonged treatment with DKG. Our results indicate that, in response to prolonged DKG treatment, mitochondrial respiration becomes uncoupled, leading to the accumulation of succinate and fumarate in breast cancer cells. Further, we found that an early increase in the oxygen flux rate was accompanied by a delayed enhancement of glycolysis. Together, our results indicate that these events trigger a dynamic enrichment for cells with pluripotent/stem-like cell markers and tumorsphere-forming capacity. Moreover, DKG-mediated metabolic reprogramming results in HIF-1α induction and reductive carboxylation pathway activation. Both HIF-1α accumulation and the tumor-promoting metabolic state are required for DKG-promoted tumor repopulation capacity in vivo. Our data suggest that mitochondrial adaptation to DKG elevates the ratio of succinate or fumarate to α-KG, which in turn stabilizes HIF-1α and reprograms breast cancer cells into a stem-like state. Therefore, our results demonstrate that metabolic regulation, with succinate and/or fumarate accumulation, governs the dynamic transition of breast cancer tumorigenic states and we suggest that HIF-1α is indispensable for breast cancer tumorigenicity. PMID:27058900

  8. Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast.

    PubMed

    Boldogh, I R; Yang, H C; Nowakowski, W D; Karmon, S L; Hays, L G; Yates, J R; Pon, L A

    2001-03-13

    The Arp2/3 complex is implicated in actin polymerization-driven movement of Listeria monocytogenes. Here, we find that Arp2p and Arc15p, two subunits of this complex, show tight, actin-independent association with isolated yeast mitochondria. Arp2p colocalizes with mitochondria. Consistent with this result, we detect Arp2p-dependent formation of actin clouds around mitochondria in intact yeast. Cells bearing mutations in ARP2 or ARC15 genes show decreased velocities of mitochondrial movement, loss of all directed movement and defects in mitochondrial morphology. Finally, we observe a decrease in the velocity and extent of mitochondrial movement in yeast in which actin dynamics are reduced but actin cytoskeletal structure is intact. These results support the idea that the movement of mitochondria in yeast is actin polymerization driven and that this movement requires Arp2/3 complex.

  9. Troglitazone-induced hepatic mitochondrial proteome expression dynamics in heterozygous Sod2{sup +/-} mice: Two-stage oxidative injury

    SciTech Connect

    Lee, Y.H. |; Chung, Maxey C.M. | Lin Qingsong; Boelsterli, Urs A. ||

    2008-08-15

    The determinants of susceptibility to troglitazone-induced idiosyncratic liver injury have not yet been determined; however, troglitazone has been shown to target mitochondria and induce mitochondria-mediated hepatocellular injury in vitro. The aim of this study was to use a systems approach to analyze the dynamics of mitochondrial changes at the proteome level and more clearly define the mechanisms and time course of troglitazone hepatotoxicity by using a previously characterized mouse model that is highly sensitized to troglitazone hepatotoxicity. Mice heterozygous in mitochondrial superoxide dismutase-2 (Sod2{sup +/-}) were injected intraperitoneally with troglitazone (30 mg/kg/day) or vehicle daily for 2 or 4 weeks. Hepatic mitochondria were isolated, purified, and subjected to two-dimensional difference gel electrophoresis (2D-DIGE). We found that among the {approx} 1500 resolved hepatic mitochondrial proteins, 70 exhibited significantly altered abundance after troglitazone treatment. MALDI-TOF/TOF MS/MS analysis revealed that early changes (2 weeks) included increased levels of heat shock protein family members (mortalin, HSP7C), Lon protease, and catalase, indicating induction of a mitochondrial stress response. In contrast, after 4 weeks, a number of critical proteins including ATP synthase {beta}-subunit, aconitase-2, and catalase exhibited decreased abundance, and total protein carbonyls were significantly increased, suggesting uncompensated oxidative damage. Aconitase-2 (ACO2) was decreased at both time points, making this protein a potential sensitive and early biomarker for mitochondrial oxidant stress. These results show that, in this murine model of underlying clinically silent mitochondrial stress, superimposed troglitazone induces a two-stage response: an initial adaptive response, followed by a toxic response involving oxidant injury to mitochondrial proteins.

  10. Early replication dynamics of sex-linked mitochondrial DNAs in the doubly uniparental inheritance species Ruditapes philippinarum (Bivalvia Veneridae).

    PubMed

    Guerra, D; Ghiselli, F; Milani, L; Breton, S; Passamonti, M

    2016-03-01

    Mitochondrial homoplasmy, which is maintained by strictly maternal inheritance and a series of bottlenecks, is thought to be an adaptive condition for metazoans. Doubly uniparental inheritance (DUI) is a unique mode of mitochondrial transmission found in bivalve species, in which two distinct mitochondrial genome (mtDNA) lines are present, one inherited through eggs (F) and one through sperm (M). During development, the two lines segregate in a sex- and tissue-specific manner: females lose M during embryogenesis, whereas males actively segregate it in the germ line. These two pivotal events are still poorly characterized. Here we investigated mtDNA replication dynamics during embryogenesis and pre-adulthood of the venerid Ruditapes philippinarum using real-time quantitative PCR. We found that both mtDNAs do not detectably replicate during early embryogenesis, and that the M line might be lost from females around 24 h of age. A rise in mtDNA copy number was observed before the first reproductive season in both sexes, with the M mitochondrial genome replicating more than the F in males, and we associate these boosts to the early phase of gonad production. As evidence indicates that DUI relies on the same molecular machine of mitochondrial maternal inheritance that is common in most animals, our data are relevant not only to DUI but also to shed light on how differential segregations of mtDNA variants, in the same nuclear background, may be controlled during development. PMID:26626575

  11. Early replication dynamics of sex-linked mitochondrial DNAs in the doubly uniparental inheritance species Ruditapes philippinarum (Bivalvia Veneridae).

    PubMed

    Guerra, D; Ghiselli, F; Milani, L; Breton, S; Passamonti, M

    2016-03-01

    Mitochondrial homoplasmy, which is maintained by strictly maternal inheritance and a series of bottlenecks, is thought to be an adaptive condition for metazoans. Doubly uniparental inheritance (DUI) is a unique mode of mitochondrial transmission found in bivalve species, in which two distinct mitochondrial genome (mtDNA) lines are present, one inherited through eggs (F) and one through sperm (M). During development, the two lines segregate in a sex- and tissue-specific manner: females lose M during embryogenesis, whereas males actively segregate it in the germ line. These two pivotal events are still poorly characterized. Here we investigated mtDNA replication dynamics during embryogenesis and pre-adulthood of the venerid Ruditapes philippinarum using real-time quantitative PCR. We found that both mtDNAs do not detectably replicate during early embryogenesis, and that the M line might be lost from females around 24 h of age. A rise in mtDNA copy number was observed before the first reproductive season in both sexes, with the M mitochondrial genome replicating more than the F in males, and we associate these boosts to the early phase of gonad production. As evidence indicates that DUI relies on the same molecular machine of mitochondrial maternal inheritance that is common in most animals, our data are relevant not only to DUI but also to shed light on how differential segregations of mtDNA variants, in the same nuclear background, may be controlled during development.

  12. Dynamic microtubule organization and mitochondrial transport are regulated by distinct Kinesin-1 pathways

    PubMed Central

    Melkov, Anna; Simchoni, Yasmin; Alcalay, Yehonatan; Abdu, Uri

    2015-01-01

    ABSTRACT The microtubule (MT) plus-end motor kinesin heavy chain (Khc) is well known for its role in long distance cargo transport. Recent evidence showed that Khc is also required for the organization of the cellular MT network by mediating MT sliding. We found that mutations in Khc and the gene of its adaptor protein, kinesin light chain (Klc) resulted in identical bristle morphology defects, with the upper part of the bristle being thinner and flatter than normal and failing to taper towards the bristle tip. We demonstrate that bristle mitochondria transport requires Khc but not Klc as a competing force to dynein heavy chain (Dhc). Surprisingly, we demonstrate for the first time that Dhc is the primary motor for both anterograde and retrograde fast mitochondria transport. We found that the upper part of Khc and Klc mutant bristles lacked stable MTs. When following dynamic MT polymerization via the use of GFP-tagged end-binding protein 1 (EB1), it was noted that at Khc and Klc mutant bristle tips, dynamic MTs significantly deviated from the bristle parallel growth axis, relative to wild-type bristles. We also observed that GFP-EB1 failed to concentrate as a focus at the tip of Khc and Klc mutant bristles. We propose that the failure of bristle tapering is due to defects in directing dynamic MTs at the growing tip. Thus, we reveal a new function for Khc and Klc in directing dynamic MTs during polarized cell growth. Moreover, we also demonstrate a novel mode of coordination in mitochondrial transport between Khc and Dhc. PMID:26581590

  13. Detecting Abnormal Vehicular Dynamics at Intersections Based on an Unsupervised Learning Approach and a Stochastic Model

    PubMed Central

    Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa

    2010-01-01

    This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems. PMID:22163616

  14. Detecting abnormal vehicular dynamics at intersections based on an unsupervised learning approach and a stochastic model.

    PubMed

    Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa

    2010-01-01

    This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems. PMID:22163616

  15. Detecting abnormal vehicular dynamics at intersections based on an unsupervised learning approach and a stochastic model.

    PubMed

    Jiménez-Hernández, Hugo; González-Barbosa, Jose-Joel; Garcia-Ramírez, Teresa

    2010-01-01

    This investigation demonstrates an unsupervised approach for modeling traffic flow and detecting abnormal vehicle behaviors at intersections. In the first stage, the approach reveals and records the different states of the system. These states are the result of coding and grouping the historical motion of vehicles as long binary strings. In the second stage, using sequences of the recorded states, a stochastic graph model based on a Markovian approach is built. A behavior is labeled abnormal when current motion pattern cannot be recognized as any state of the system or a particular sequence of states cannot be parsed with the stochastic model. The approach is tested with several sequences of images acquired from a vehicular intersection where the traffic flow and duration used in connection with the traffic lights are continuously changed throughout the day. Finally, the low complexity and the flexibility of the approach make it reliable for use in real time systems.

  16. Mitochondrial DNA variants help monitor the dynamics of Wolbachia invasion into host populations.

    PubMed

    Yeap, H L; Rašić, G; Endersby-Harshman, N M; Lee, S F; Arguni, E; Le Nguyen, H; Hoffmann, A A

    2016-03-01

    Wolbachia is the most widespread endosymbiotic bacterium of insects and other arthropods that can rapidly invade host populations. Deliberate releases of Wolbachia into natural populations of the dengue fever mosquito, Aedes aegypti, are used as a novel biocontrol strategy for dengue suppression. Invasion of Wolbachia through the host population relies on factors such as high fidelity of the endosymbiont transmission and limited immigration of uninfected individuals, but these factors can be difficult to measure. One way of acquiring relevant information is to consider mitochondrial DNA (mtDNA) variation alongside Wolbachia in field-caught mosquitoes. Here we used diagnostic mtDNA markers to differentiate infection-associated mtDNA haplotypes from those of the uninfected mosquitoes at release sites. Unique haplotypes associated with Wolbachia were found at locations outside Australia. We also performed mathematical and qualitative analyses including modelling the expected dynamics of the Wolbachia and mtDNA variants during and after a release. Our analyses identified key features in haplotype frequency patterns to infer the presence of imperfect maternal transmission of Wolbachia, presence of immigration and possibly incomplete cytoplasmic incompatibility. We demonstrate that ongoing screening of the mtDNA variants should provide information on maternal leakage and immigration, particularly in releases outside Australia. As we demonstrate in a case study, our models to track the Wolbachia dynamics can be successfully applied to temporal studies in natural populations or Wolbachia release programs, as long as there is co-occurring mtDNA variation that differentiates infected and uninfected populations.

  17. Mitochondrial DNA heteroplasmy dynamics in a kindred harboring a novel pathogenic mutation in the mitochondrial tRNA glutamate gene

    SciTech Connect

    Moraes, C.T.; Hao, H.; Bonilla, E.; DiMauro, S.

    1994-09-01

    We have identified a novel mitochondrial DNA (mtDNA) mutation in a 32-year-old male with a myopathy (without progressive external ophthalmoplegia) and mild pyramidal involvement. This A{yields}G transition at mtDNA position 14709 alters an evolutionary conserved nucleotide in a region coding for the anticodon loop of the mitcohondrial tRNA{sup Glu}. The 14709 mtDNA mutation was heteroplasmic but present at very high levels in the patient`s muscle (95%), white blood cells (81%) and hair follicles (90%). The same mutant mtDNA population was observed in white blood cells and hair follicles of all maternal relatives, but a lesser percentage (25-80%). The patient`s muscle showed many ragged-red fibers and a severe focal defect in cytochrome c oxidase activity, accompanied by the absence of cross-reacting material for mitochondrially synthesized polypeptides (ND 1 and COX II). The percentage of mutant mtDNA was not preferentially increased over two generations. Rather, the percentage of mutant mtDNA observed in siblings seemed to follow a normal distribution around the percentage observed in their mothers. Single hair PCR/RFLP analysis showed that the intercellular fluctuation in the percentage of mutant mtDNA differs among family members. Younger generations tend to have a more homogeneous distribution of mutant mtDNA in different hair follicles. The highest degree of variability between individual hair follicles was observed in the patient`s grandmother. These results suggest that the intercellular distribution of the mutant and wild-type mtDNA populations may drift towards homogeneity in subsequent generations.

  18. Dynamin-related Protein 1 Inhibition Mitigates Bisphenol A-mediated Alterations in Mitochondrial Dynamics and Neural Stem Cell Proliferation and Differentiation.

    PubMed

    Agarwal, Swati; Yadav, Anuradha; Tiwari, Shashi Kant; Seth, Brashket; Chauhan, Lalit Kumar Singh; Khare, Puneet; Ray, Ratan Singh; Chaturvedi, Rajnish Kumar

    2016-07-29

    The regulatory dynamics of mitochondria comprises well orchestrated distribution and mitochondrial turnover to maintain the mitochondrial circuitry and homeostasis inside the cells. Several pieces of evidence suggested impaired mitochondrial dynamics and its association with the pathogenesis of neurodegenerative disorders. We found that chronic exposure of synthetic xenoestrogen bisphenol A (BPA), a component of consumer plastic products, impaired autophagy-mediated mitochondrial turnover, leading to increased oxidative stress, mitochondrial fragmentation, and apoptosis in hippocampal neural stem cells (NSCs). It also inhibited hippocampal derived NSC proliferation and differentiation, as evident by the decreased number of BrdU- and β-III tubulin-positive cells. All these effects were reversed by the inhibition of oxidative stress using N-acetyl cysteine. BPA up-regulated the levels of Drp-1 (dynamin-related protein 1) and enhanced its mitochondrial translocation, with no effect on Fis-1, Mfn-1, Mfn-2, and Opa-1 in vitro and in the hippocampus. Moreover, transmission electron microscopy studies suggested increased mitochondrial fission and accumulation of fragmented mitochondria and decreased elongated mitochondria in the hippocampus of the rat brain. Impaired mitochondrial dynamics by BPA resulted in increased reactive oxygen species and malondialdehyde levels, disruption of mitochondrial membrane potential, and ATP decline. Pharmacological (Mdivi-1) and genetic (Drp-1siRNA) inhibition of Drp-1 reversed BPA-induced mitochondrial dysfunctions, fragmentation, and apoptosis. Interestingly, BPA-mediated inhibitory effects on NSC proliferation and neuronal differentiations were also mitigated by Drp-1 inhibition. On the other hand, Drp-1 inhibition blocked BPA-mediated Drp-1 translocation, leading to decreased apoptosis of NSC. Overall, our studies implicate Drp-1 as a potential therapeutic target against BPA-mediated impaired mitochondrial dynamics and

  19. The Mitochondrial Genomes of the Early Land Plants Treubia lacunosa and Anomodon rugelii: Dynamic and Conservative Evolution

    PubMed Central

    Liu, Yang; Xue, Jia-Yu; Wang, Bin; Li, Libo; Qiu, Yin-Long

    2011-01-01

    Early land plant mitochondrial genomes captured important changes of mitochondrial genome evolution when plants colonized land. The chondromes of seed plants show several derived characteristics, e.g., large genome size variation, rapid intra-genomic rearrangement, abundant introns, and highly variable levels of RNA editing. On the other hand, the chondromes of charophytic algae are still largely ancestral in these aspects, resembling those of early eukaryotes. When the transition happened has been a long-standing question in studies of mitochondrial genome evolution. Here we report complete mitochondrial genome sequences from an early-diverging liverwort, Treubia lacunosa, and a late-evolving moss, Anomodon rugelii. The two genomes, 151,983 and 104,239 base pairs in size respectively, contain standard sets of protein coding genes for respiration and protein synthesis, as well as nearly full sets of rRNA and tRNA genes found in the chondromes of the liverworts Marchantia polymorpha and Pleurozia purpurea and the moss Physcomitrella patens. The gene orders of these two chondromes are identical to those of the other liverworts and moss. Their intron contents, with all cis-spliced group I or group II introns, are also similar to those in the previously sequenced liverwort and moss chondromes. These five chondromes plus the two from the hornworts Phaeoceros laevis and Megaceros aenigmaticus for the first time allowed comprehensive comparative analyses of structure and organization of mitochondrial genomes both within and across the three major lineages of bryophytes. These analyses led to the conclusion that the mitochondrial genome experienced dynamic evolution in genome size, gene content, intron acquisition, gene order, and RNA editing during the origins of land plants and their major clades. However, evolution of this organellar genome has remained rather conservative since the origin and initial radiation of early land plants, except within vascular plants. PMID

  20. The mitochondrial genomes of the early land plants Treubia lacunosa and Anomodon rugelii: dynamic and conservative evolution.

    PubMed

    Liu, Yang; Xue, Jia-Yu; Wang, Bin; Li, Libo; Qiu, Yin-Long

    2011-01-01

    Early land plant mitochondrial genomes captured important changes of mitochondrial genome evolution when plants colonized land. The chondromes of seed plants show several derived characteristics, e.g., large genome size variation, rapid intra-genomic rearrangement, abundant introns, and highly variable levels of RNA editing. On the other hand, the chondromes of charophytic algae are still largely ancestral in these aspects, resembling those of early eukaryotes. When the transition happened has been a long-standing question in studies of mitochondrial genome evolution. Here we report complete mitochondrial genome sequences from an early-diverging liverwort, Treubia lacunosa, and a late-evolving moss, Anomodon rugelii. The two genomes, 151,983 and 104,239 base pairs in size respectively, contain standard sets of protein coding genes for respiration and protein synthesis, as well as nearly full sets of rRNA and tRNA genes found in the chondromes of the liverworts Marchantia polymorpha and Pleurozia purpurea and the moss Physcomitrella patens. The gene orders of these two chondromes are identical to those of the other liverworts and moss. Their intron contents, with all cis-spliced group I or group II introns, are also similar to those in the previously sequenced liverwort and moss chondromes. These five chondromes plus the two from the hornworts Phaeoceros laevis and Megaceros aenigmaticus for the first time allowed comprehensive comparative analyses of structure and organization of mitochondrial genomes both within and across the three major lineages of bryophytes. These analyses led to the conclusion that the mitochondrial genome experienced dynamic evolution in genome size, gene content, intron acquisition, gene order, and RNA editing during the origins of land plants and their major clades. However, evolution of this organellar genome has remained rather conservative since the origin and initial radiation of early land plants, except within vascular plants.

  1. BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo.

    PubMed

    Bultman, Scott J; Holley, Darcy Wood; G de Ridder, Gustaaf; Pizzo, Salvatore V; Sidorova, Tatiana N; Murray, Katherine T; Jensen, Brian C; Wang, Zhongjing; Bevilacqua, Ariana; Chen, Xin; Quintana, Megan T; Tannu, Manasi; Rosson, Gary B; Pandya, Kumar; Willis, Monte S

    2016-01-01

    There has been an increasing recognition that mitochondrial perturbations play a central role in human heart failure. Mitochondrial networks, whose function is to maintain the regulation of mitochondrial biogenesis, autophagy ('mitophagy') and mitochondrial fusion/fission, are new potential therapeutic targets. Yet our understanding of the molecular underpinning of these processes is just emerging. We recently identified a role of the SWI/SNF ATP-dependent chromatin remodeling complexes in the metabolic homeostasis of the adult cardiomyocyte using cardiomyocyte-specific and inducible deletion of the SWI/SNF ATPases BRG1 and BRM in adult mice (Brg1/Brm double mutant mice). To build upon these observations in early altered metabolism, the present study looks at the subsequent alterations in mitochondrial quality control mechanisms in the impaired adult cardiomyocyte. We identified that Brg1/Brm double-mutant mice exhibited increased mitochondrial biogenesis, increases in 'mitophagy', and alterations in mitochondrial fission and fusion that led to small, fragmented mitochondria. Mechanistically, increases in the autophagy and mitophagy-regulated proteins Beclin1 and Bnip3 were identified, paralleling changes seen in human heart failure. Evidence for perturbed cardiac mitochondrial dynamics included decreased mitochondria size, reduced numbers of mitochondria, and an altered expression of genes regulating fusion (Mfn1, Opa1) and fission (Drp1). We also identified cardiac protein amyloid accumulation (aggregated fibrils) during disease progression along with an increase in pre-amyloid oligomers and an upregulated unfolded protein response including increased GRP78, CHOP, and IRE-1 signaling. Together, these findings described a role for BRG1 and BRM in mitochondrial quality control, by regulating mitochondrial number, mitophagy, and mitochondrial dynamics not previously recognized in the adult cardiomyocyte. As critical to the pathogenesis of heart failure, epigenetic

  2. A Splicing Mutation in the Novel Mitochondrial Protein DNAJC11 Causes Motor Neuron Pathology Associated with Cristae Disorganization, and Lymphoid Abnormalities in Mice

    PubMed Central

    Ioakeimidis, Fotis; Ott, Christine; Kozjak-Pavlovic, Vera; Violitzi, Foteini; Rinotas, Vagelis; Makrinou, Eleni; Eliopoulos, Elias; Fasseas, Costas; Kollias, George; Douni, Eleni

    2014-01-01

    Mitochondrial structure and function is emerging as a major contributor to neuromuscular disease, highlighting the need for the complete elucidation of the underlying molecular and pathophysiological mechanisms. Following a forward genetics approach with N-ethyl-N-nitrosourea (ENU)-mediated random mutagenesis, we identified a novel mouse model of autosomal recessive neuromuscular disease caused by a splice-site hypomorphic mutation in a novel gene of unknown function, DnaJC11. Recent findings have demonstrated that DNAJC11 protein co-immunoprecipitates with proteins of the mitochondrial contact site (MICOS) complex involved in the formation of mitochondrial cristae and cristae junctions. Homozygous mutant mice developed locomotion defects, muscle weakness, spasticity, limb tremor, leucopenia, thymic and splenic hypoplasia, general wasting and early lethality. Neuropathological analysis showed severe vacuolation of the motor neurons in the spinal cord, originating from dilatations of the endoplasmic reticulum and notably from mitochondria that had lost their proper inner membrane organization. The causal role of the identified mutation in DnaJC11 was verified in rescue experiments by overexpressing the human ortholog. The full length 63 kDa isoform of human DNAJC11 was shown to localize in the periphery of the mitochondrial outer membrane whereas putative additional isoforms displayed differential submitochondrial localization. Moreover, we showed that DNAJC11 is assembled in a high molecular weight complex, similarly to mitofilin and that downregulation of mitofilin or SAM50 affected the levels of DNAJC11 in HeLa cells. Our findings provide the first mouse mutant for a putative MICOS protein and establish a link between DNAJC11 and neuromuscular diseases. PMID:25111180

  3. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases.

    PubMed

    Giachin, Gabriele; Bouverot, Romain; Acajjaoui, Samira; Pantalone, Serena; Soler-López, Montserrat

    2016-01-01

    Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases. PMID:27597947

  4. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases

    PubMed Central

    Giachin, Gabriele; Bouverot, Romain; Acajjaoui, Samira; Pantalone, Serena; Soler-López, Montserrat

    2016-01-01

    Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases.

  5. Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases

    PubMed Central

    Giachin, Gabriele; Bouverot, Romain; Acajjaoui, Samira; Pantalone, Serena; Soler-López, Montserrat

    2016-01-01

    Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases. PMID:27597947

  6. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.

    PubMed

    Ryan, Zachary C; Craig, Theodore A; Folmes, Clifford D; Wang, Xuewei; Lanza, Ian R; Schaible, Niccole S; Salisbury, Jeffrey L; Nair, K Sreekumaran; Terzic, Andre; Sieck, Gary C; Kumar, Rajiv

    2016-01-15

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength. PMID:26601949

  7. 1α,25-Dihydroxyvitamin D3 Regulates Mitochondrial Oxygen Consumption and Dynamics in Human Skeletal Muscle Cells.

    PubMed

    Ryan, Zachary C; Craig, Theodore A; Folmes, Clifford D; Wang, Xuewei; Lanza, Ian R; Schaible, Niccole S; Salisbury, Jeffrey L; Nair, K Sreekumaran; Terzic, Andre; Sieck, Gary C; Kumar, Rajiv

    2016-01-15

    Muscle weakness and myopathy are observed in vitamin D deficiency and chronic renal failure, where concentrations of the active vitamin D3 metabolite, 1α,25-dihydroxyvitamin D3 (1α,25(OH)2D3), are low. To evaluate the mechanism of action of 1α,25(OH)2D3 in skeletal muscle, we examined mitochondrial oxygen consumption, dynamics, and biogenesis and changes in expression of nuclear genes encoding mitochondrial proteins in human skeletal muscle cells following treatment with 1α,25(OH)2D3. The mitochondrial oxygen consumption rate (OCR) increased in 1α,25(OH)2D3-treated cells. Vitamin D3 metabolites lacking a 1α-hydroxyl group (vitamin D3, 25-hydroxyvitamin D3, and 24R,25-dihydroxyvitamin D3) decreased or failed to increase OCR. 1α-Hydroxyvitamin D3 did not increase OCR. In 1α,25(OH)2D3-treated cells, mitochondrial volume and branching and expression of the pro-fusion protein OPA1 (optic atrophy 1) increased, whereas expression of the pro-fission proteins Fis1 (fission 1) and Drp1 (dynamin 1-like) decreased. Phosphorylated pyruvate dehydrogenase (PDH) (Ser-293) and PDH kinase 4 (PDK4) decreased in 1α,25(OH)2D3-treated cells. There was a trend to increased PDH activity in 1α,25(OH)2D3-treated cells (p = 0.09). 83 nuclear mRNAs encoding mitochondrial proteins were changed following 1α,25(OH)2D3 treatment; notably, PDK4 mRNA decreased, and PDP2 mRNA increased. MYC, MAPK13, and EPAS1 mRNAs, which encode proteins that regulate mitochondrial biogenesis, were increased following 1α,25(OH)2D3 treatment. Vitamin D receptor-dependent changes in the expression of 1947 mRNAs encoding proteins involved in muscle contraction, focal adhesion, integrin, JAK/STAT, MAPK, growth factor, and p53 signaling pathways were observed following 1α,25(OH)2D3 treatment. Five micro-RNAs were induced or repressed by 1α,25(OH)2D3. 1α,25(OH)2D3 regulates mitochondrial function, dynamics, and enzyme function, which are likely to influence muscle strength.

  8. Evolutionary dynamics of cytoplasmic segregation and fusion: Mitochondrial mixing facilitated the evolution of sex at the origin of eukaryotes.

    PubMed

    Radzvilavicius, Arunas L

    2016-09-01

    Sexual reproduction is a trait shared by all complex life, but the complete account of its origin is missing. Virtually all theoretical work on the evolution of sex has been centered around the benefits of reciprocal recombination among nuclear genes, paying little attention to the evolutionary dynamics of multi-copy mitochondrial genomes. Here I develop a mathematical model to study the evolution of nuclear alleles inducing cell fusion in an ancestral population of clonal proto-eukaryotes. Segregational drift maintains high mitochondrial variance between clonally reproducing hosts, but the effect of segregation is opposed by cytoplasmic mixing which tends to reduce variation between cells in favor of higher heterogeneity within the cell. Despite the reduced long-term population fitness, alleles responsible for sexual cell fusion can spread to fixation. The evolution of sex requires negative epistatic interactions between mitochondrial mutations under strong purifying selection, low mutation load and weak mitochondrial-nuclear associations. I argue that similar conditions could have been maintained during the late stages of eukaryogenesis, facilitating the evolution of sexual cell fusion and meiotic recombination without compromising the stability of the emerging complex cell.

  9. Abnormal dynamics of activation of object use information in apraxia: evidence from eyetracking

    PubMed Central

    Lee, Chia-lin; Mirman, Daniel; Buxbaum, Laurel J.

    2014-01-01

    Action representations associated with object use may be incidentally activated during visual object processing, and the time course of such activations may be influenced by lexical-semantic context (e.g., Lee, Middleton, Mirman, Kalénine, & Buxbaum, 2012). In this study we used the “visual world” eye-tracking paradigm to examine whether a deficit in producing skilled object-use actions (apraxia) is associated with abnormalities in incidental activation of action information, and assessed the neuroanatomical substrates of any such deficits. Twenty left hemisphere stroke patients, ten of whom were apraxic, performed a task requiring identification of a named object in a visual display containing manipulation-related and unrelated distractor objects. Manipulation relationships among objects were not relevant to the identification task. Objects were cued with neutral (“S/he saw the….”), or action-relevant (“S/he used the….”) sentences. Non-apraxic participants looked at use-related non-target objects significantly more than at unrelated non-target objects when cued both by neutral and action-relevant sentences, indicating that action information is incidentally activated. In contrast, apraxic participants showed delayed activation of manipulation-based action information during object identification when cued by neutral sentences. The magnitude of delayed activation in the neutral sentence condition was reliably predicted by lower scores on a test of gesture production to viewed objects, as well as by lesion loci in the inferior parietal and posterior temporal lobes. However, when cued by a sentence containing an action verb, apraxic participants showed fixation patterns that were statistically indistinguishable from non-apraxic controls. In support of grounded theories of cognition, these results suggest that apraxia and temporal-parietal lesions may be associated with abnormalities in incidental activation of action information from objects. Further

  10. Inhibiting Na+/K+ ATPase can impair mitochondrial energetics and induce abnormal Ca2+ cycling and automaticity in guinea pig cardiomyocytes.

    PubMed

    Li, Qince; Pogwizd, Steven M; Prabhu, Sumanth D; Zhou, Lufang

    2014-01-01

    Cardiac glycosides have been used for the treatment of heart failure because of their capabilities of inhibiting Na+/K+ ATPase (NKA), which raises [Na+]i and attenuates Ca2+ extrusion via the Na+/Ca2+ exchanger (NCX), causing [Ca2+]i elevation. The resulting [Ca2+]i accumulation further enhances Ca2+-induced Ca2+ release, generating the positive inotropic effect. However, cardiac glycosides have some toxic and side effects such as arrhythmogenesis, confining their extensive clinical applications. The mechanisms underlying the proarrhythmic effect of glycosides are not fully understood. Here we investigated the mechanisms by which glycosides could cause cardiac arrhythmias via impairing mitochondrial energetics using an integrative computational cardiomyocyte model. In the simulations, the effect of glycosides was mimicked by blocking NKA activity. Results showed that inhibiting NKA not only impaired mitochondrial Ca2+ retention (thus suppressed reactive oxygen species (ROS) scavenging) but also enhanced oxidative phosphorylation (thus increased ROS production) during the transition of increasing workload, causing oxidative stress. Moreover, concurrent blocking of mitochondrial Na+/Ca2+ exchanger, but not enhancing of Ca2+ uniporter, alleviated the adverse effects of NKA inhibition. Intriguingly, NKA inhibition elicited Ca2+ transient and action potential alternans under more stressed conditions such as severe ATP depletion, augmenting its proarrhythmic effect. This computational study provides new insights into the mechanisms underlying cardiac glycoside-induced arrhythmogenesis. The findings suggest that targeting both ion handling and mitochondria could be a very promising strategy to develop new glycoside-based therapies in the treatment of heart failure. PMID:24722410

  11. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1

    PubMed Central

    Hatanaka, Yusuke; Watase, Kei; Wada, Keiji; Nagai, Yoshitaka

    2015-01-01

    Late-onset neurodegenerative diseases are characterized by neurological symptoms and progressive neuronal death. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, causes the symptoms of neurodegenerative diseases. However, the mechanisms underlying the dysfunction that occurs prior to cell death remain unclear. To investigate the synaptic basis of this dysfunction, we employed in vivo two-photon imaging to analyse excitatory postsynaptic dendritic protrusions. We used Sca1154Q/2Q mice, an established knock-in mouse model of the polyglutamine disease spinocerebellar ataxia type 1 (SCA1), which replicates human SCA1 features including ataxia, cognitive impairment, and neuronal death. We found that Sca1154Q/2Q mice exhibited greater synaptic instability than controls, without synaptic loss, in the cerebral cortex, where obvious neuronal death is not observed, even before the onset of distinct symptoms. Interestingly, this abnormal synaptic instability was evident in Sca1154Q/2Q mice from the synaptic developmental stage, and persisted into adulthood. Expression of synaptic scaffolding proteins was also lower in Sca1154Q/2Q mice than controls before synaptic maturation. As symptoms progressed, synaptic loss became evident. These results indicate that aberrant synaptic instability, accompanied by decreased expression of scaffolding proteins during synaptic development, is a very early pathology that precedes distinct neurological symptoms and neuronal cell death in SCA1. PMID:26531852

  12. Abnormalities in synaptic dynamics during development in a mouse model of spinocerebellar ataxia type 1.

    PubMed

    Hatanaka, Yusuke; Watase, Kei; Wada, Keiji; Nagai, Yoshitaka

    2015-11-04

    Late-onset neurodegenerative diseases are characterized by neurological symptoms and progressive neuronal death. Accumulating evidence suggests that neuronal dysfunction, rather than neuronal death, causes the symptoms of neurodegenerative diseases. However, the mechanisms underlying the dysfunction that occurs prior to cell death remain unclear. To investigate the synaptic basis of this dysfunction, we employed in vivo two-photon imaging to analyse excitatory postsynaptic dendritic protrusions. We used Sca1(154Q/2Q) mice, an established knock-in mouse model of the polyglutamine disease spinocerebellar ataxia type 1 (SCA1), which replicates human SCA1 features including ataxia, cognitive impairment, and neuronal death. We found that Sca1(154Q/2Q) mice exhibited greater synaptic instability than controls, without synaptic loss, in the cerebral cortex, where obvious neuronal death is not observed, even before the onset of distinct symptoms. Interestingly, this abnormal synaptic instability was evident in Sca1(154Q/2Q) mice from the synaptic developmental stage, and persisted into adulthood. Expression of synaptic scaffolding proteins was also lower in Sca1(154Q/2Q) mice than controls before synaptic maturation. As symptoms progressed, synaptic loss became evident. These results indicate that aberrant synaptic instability, accompanied by decreased expression of scaffolding proteins during synaptic development, is a very early pathology that precedes distinct neurological symptoms and neuronal cell death in SCA1.

  13. Alzheimer's disease: diverse aspects of mitochondrial malfunctioning

    PubMed Central

    Santos, Renato X; Correia, Sónia C; Wang, Xinglong; Perry, George; Smith, Mark A; Moreira, Paula I; Zhu, Xiongwei

    2010-01-01

    Alzheimer's disease is a progressive neurodegenerative disorder, either assuming a sporadic, age-associated, late-onset form, or a familial form, with early onset, in a smaller fraction of the cases. Whereas in the familial cases several mutations have been identified in genes encoding proteins related with the pathogenesis of the disease, for the sporadic form several causes have been proposed and are currently under debate. Mitochondrial dysfunction has surfaced as one of the most discussed hypotheses acting as a trigger for the pathogenesis of Alzheimer's disease. Mitochondria assume central functions in the cell, including ATP production, calcium homeostasis, reactive oxygen species generation, and apoptotic signaling. Although their role as the cause of the disease may be controversial, there is no doubt that mitochondrial dysfunction, abnormal mitochondrial dynamics and degradation by mitophagy occur during the disease process, contributing to its onset and progression. PMID:20661404

  14. Manganese suppresses ATP-dependent intercellular calcium waves in astrocyte networks through alteration of mitochondrial and endoplasmic reticulum calcium dynamics.

    PubMed

    Tjalkens, Ronald B; Zoran, Mark J; Mohl, Brianne; Barhoumi, Roula

    2006-10-01

    The neurotoxicity of manganese [Mn] is due in part to glutamate excitotoxicity. Release of ATP by astrocytes is a critical modulator of glutamatergic neurotransmission, which is regulated by calcium (Ca(2+)) waves that propagate through astrocytic networks in response to synaptic activity. It was postulated that Mn alters ATP-dependent intracellular Ca(2+) dynamics in astrocytes, thereby suppressing Ca(2+) wave activity. Confluent primary cultures of cortical astrocytes were loaded with the Ca(2+)-sensitive dye fluo-4 and examined by fluorescence microscopy for Ca(2+) wave activity following micropipet mechanical stimulation of a single cell. Mitochondrial Ca(2+) was evaluated by fluorescence microscopy following addition of ATP using the mitochondrial-specific Ca(2+) dye rhod-2-AM. Imaging studies revealed that pretreatment of astrocytes with 1-10 microM Mn significantly reduced the rate, area, and amplitude of mechanically induced Ca(2+) waves. This attenuation was not a result of inhibited mitochondrial calcium uptake because robust calcium waves were still observed following pretreatment of astrocytes with Ru360, an inhibitor of mitochondrial Ca(2+) uptake, either in coupling or uncoupling conditions. However, determination of endoplasmic reticulum (ER) Ca(2+) levels in cells using the sarco/endoplasmic reticulum Ca(2+)-ATPase inhibitor thapsigargin indicated that Mn reduced the available pool of releasable ER Ca(2+) at concentrations as low as 1 muM. Examination of ATP-stimulated changes in mitochondrial Ca(2+) indicated that, in cells pretreated with Mn, mitochondria retained high levels of Ca(2+). It is concluded that exposure of astrocytes to low concentrations of Mn(2+) results in sequestration of Ca(2+) within the mitochondria that reduces the available pool of releasable Ca(2+) within the ER, thereby inhibiting calcium wave activity. PMID:16934782

  15. Inherited peripheral neuropathies due to mitochondrial disorders.

    PubMed

    Cassereau, J; Codron, P; Funalot, B

    2014-05-01

    Mitochondrial disorders (MIDs) are frequently responsible for neuropathies with variable severity. Mitochondrial diseases causing peripheral neuropathies (PNP) may be due to mutations of mitochondrial DNA (mtDNA), as is the case in MERRF and MELAS syndromes, or to mutations of nuclear genes. Secondary abnormalities of mtDNA (such as multiple deletions of muscle mtDNA) may result from mitochondrial disorders due to mutations in nuclear genes involved in mtDNA maintenance. This is the case in several syndromes caused by impaired mtDNA maintenance, such as Sensory Ataxic Neuropathy, Dysarthria and Ophthalmoplegia (SANDO) due to recessive mutations in the POLG gene, which encodes the catalytic subunit of mtDNA polymerase (DNA polymerase gamma), or Mitochondrial Neuro-Gastro-Intestinal Encephalomyopathy (MNGIE), due to recessive mutations in the TYMP gene, which encodes thymidine phosphorylase. The last years have seen a growing list of evidence demonstrating that mitochondrial bioenergetics and dynamics might be dysfunctional in axonal Charcot-Marie-Tooth disease (CMT2), and these mechanisms might present a common link between dissimilar CMT2-causing genes.

  16. Bcl-xL-mediated antioxidant function abrogates the disruption of mitochondrial dynamics induced by LRRK2 inhibition.

    PubMed

    Saez-Atienzar, Sara; Bonet-Ponce, Luis; da Casa, Carmen; Perez-Dolz, Laura; Blesa, Jose R; Nava, Eduardo; Galindo, Maria F; Jordan, Joaquín

    2016-01-01

    We have used the human neuroblastoma cell line SH-SY5Y overexpressing Bcl-xL (SH-SY5Y/Bcl-xL) to clarify the effects of this mitochondrial protein on the control of mitochondrial dynamics and the autophagic processes which occur after the inhibition of leucine-rich repeat kinase 2 (LRRK2) with GSK2578215A. In wild type (SH-SY5Y/Neo) cells, GSK2578215A (1nM) caused a disruption of mitochondrial morphology and an imbalance in intracellular reactive oxygen species (ROS) as indicated by an increase in dichlorofluorescein fluorescence and 4-hydroxynonenal. However, SH-SY5Y/Bcl-xL cells under GSK2578215A treatment, unlike the wild type, preserved a high mitochondrial membrane potential and did not exhibit apoptotical chromatins. In contrast to wild type cells, in SH-SY5Y/Bcl-xL cells, GSK2578215A did not induce mitochondrial translocation of neither dynamin related protein-1 nor the proapoptotic protein, Bax. In SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, mitochondrial fragmentation elicited by GSK2578215A precedes an autophagic response. Furthermore, the overexpression of Bcl-xL protein restores the autophagic flux pathway disrupted by this inhibitor. SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, responded to LRRK2 inhibition by an increase in the levels of acetylated tubulin, indicating that this was abrogated by Bcl-xL overexpression. This hyperacetylation of tubulin took place earlier than any of the above-mentioned events suggesting that it is involved in the autophagic flux interruption. Pre-treatment with tempol prevented the GSK2578215A-induced mitochondrial fragmentation, autophagy and the rise in acetylated tubulin in SH-SY5Y/Neo cells. Thus, these data support the notion that ROS act as a second messenger connexion between LRRK2 inhibition and these deleterious responses, which are markedly alleviated by the Bcl-xL-mediated ROS generation blockade.

  17. Bcl-xL-mediated antioxidant function abrogates the disruption of mitochondrial dynamics induced by LRRK2 inhibition.

    PubMed

    Saez-Atienzar, Sara; Bonet-Ponce, Luis; da Casa, Carmen; Perez-Dolz, Laura; Blesa, Jose R; Nava, Eduardo; Galindo, Maria F; Jordan, Joaquín

    2016-01-01

    We have used the human neuroblastoma cell line SH-SY5Y overexpressing Bcl-xL (SH-SY5Y/Bcl-xL) to clarify the effects of this mitochondrial protein on the control of mitochondrial dynamics and the autophagic processes which occur after the inhibition of leucine-rich repeat kinase 2 (LRRK2) with GSK2578215A. In wild type (SH-SY5Y/Neo) cells, GSK2578215A (1nM) caused a disruption of mitochondrial morphology and an imbalance in intracellular reactive oxygen species (ROS) as indicated by an increase in dichlorofluorescein fluorescence and 4-hydroxynonenal. However, SH-SY5Y/Bcl-xL cells under GSK2578215A treatment, unlike the wild type, preserved a high mitochondrial membrane potential and did not exhibit apoptotical chromatins. In contrast to wild type cells, in SH-SY5Y/Bcl-xL cells, GSK2578215A did not induce mitochondrial translocation of neither dynamin related protein-1 nor the proapoptotic protein, Bax. In SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, mitochondrial fragmentation elicited by GSK2578215A precedes an autophagic response. Furthermore, the overexpression of Bcl-xL protein restores the autophagic flux pathway disrupted by this inhibitor. SH-SY5Y/Neo, but not SH-SY5Y/Bcl-xL cells, responded to LRRK2 inhibition by an increase in the levels of acetylated tubulin, indicating that this was abrogated by Bcl-xL overexpression. This hyperacetylation of tubulin took place earlier than any of the above-mentioned events suggesting that it is involved in the autophagic flux interruption. Pre-treatment with tempol prevented the GSK2578215A-induced mitochondrial fragmentation, autophagy and the rise in acetylated tubulin in SH-SY5Y/Neo cells. Thus, these data support the notion that ROS act as a second messenger connexion between LRRK2 inhibition and these deleterious responses, which are markedly alleviated by the Bcl-xL-mediated ROS generation blockade. PMID:26435084

  18. A MYC-Driven Change in Mitochondrial Dynamics Limits YAP/TAZ Function in Mammary Epithelial Cells and Breast Cancer.

    PubMed

    von Eyss, Björn; Jaenicke, Laura A; Kortlever, Roderik M; Royla, Nadine; Wiese, Katrin E; Letschert, Sebastian; McDuffus, Leigh-Anne; Sauer, Markus; Rosenwald, Andreas; Evan, Gerard I; Kempa, Stefan; Eilers, Martin

    2015-12-14

    In several developmental lineages, an increase in MYC expression drives the transition from quiescent stem cells to transit-amplifying cells. We show that MYC activates a stereotypic transcriptional program of genes involved in cell growth in mammary epithelial cells. This change in gene expression indirectly inhibits the YAP/TAZ co-activators, which maintain the clonogenic potential of these cells. We identify a phospholipase of the mitochondrial outer membrane, PLD6, as the mediator of MYC activity. MYC-dependent growth strains cellular energy resources and stimulates AMP-activated kinase (AMPK). PLD6 alters mitochondrial fusion and fission dynamics downstream of MYC. This change activates AMPK, which in turn inhibits YAP/TAZ. Mouse models and human pathological data show that MYC enhances AMPK and suppresses YAP/TAZ activity in mammary tumors. PMID:26678338

  19. Abnormal thalamocortical dynamics may be altered by deep brain stimulation: using magnetoencephalography to study phantom limb pain.

    PubMed

    Ray, N J; Jenkinson, N; Kringelbach, M L; Hansen, P C; Pereira, E A; Brittain, J S; Holland, P; Holliday, I E; Owen, S; Stein, J; Aziz, T

    2009-01-01

    Deep brain stimulation (DBS) is used to alleviate chronic pain. Using magnetoencephalography (MEG) to study the mechanisms of DBS for pain is difficult because of the artefact caused by the stimulator. We were able to record activity over the occipital lobe of a patient using DBS for phantom limb pain during presentation of a visual stimulus. This demonstrates that MEG can be used to study patients undergoing DBS provided control stimuli are used to check the reliability of the data. We then asked the patient to rate his pain during and off DBS. Correlations were found between these ratings and power in theta (6-9) and beta bands (12-30). Further, there was a tendency for frequencies under 25 Hz to correlate with each other after a period off stimulation compared with immediately after DBS. The results are interpreted as reflecting abnormal thalamocortical dynamics, previously implicated in painful syndromes.

  20. A New 4D Trajectory-Based Approach Unveils Abnormal LV Revolution Dynamics in Hypertrophic Cardiomyopathy

    PubMed Central

    Madeo, Andrea; Piras, Paolo; Re, Federica; Gabriele, Stefano; Nardinocchi, Paola; Teresi, Luciano; Torromeo, Concetta; Chialastri, Claudia; Schiariti, Michele; Giura, Geltrude; Evangelista, Antonietta; Dominici, Tania; Varano, Valerio; Zachara, Elisabetta; Puddu, Paolo Emilio

    2015-01-01

    . Left ventricle deformation in patients affected by hypertrophic cardiomyopathy compared to healthy subjects may be assessed by modern shape analysis better than by traditional 3D Speckle Tracking Echocardiography global parameters. Hypertrophic cardiomyopathy pathophysiology was unveiled in a new manner whereby also diastolic phase abnormalities are evident which is more difficult to investigate by traditional ecocardiographic techniques. PMID:25875818

  1. A new 4D trajectory-based approach unveils abnormal LV revolution dynamics in hypertrophic cardiomyopathy.

    PubMed

    Madeo, Andrea; Piras, Paolo; Re, Federica; Gabriele, Stefano; Nardinocchi, Paola; Teresi, Luciano; Torromeo, Concetta; Chialastri, Claudia; Schiariti, Michele; Giura, Geltrude; Evangelista, Antonietta; Dominici, Tania; Varano, Valerio; Zachara, Elisabetta; Puddu, Paolo Emilio

    2015-01-01

    ventricle deformation in patients affected by hypertrophic cardiomyopathy compared to healthy subjects may be assessed by modern shape analysis better than by traditional 3D Speckle Tracking Echocardiography global parameters. Hypertrophic cardiomyopathy pathophysiology was unveiled in a new manner whereby also diastolic phase abnormalities are evident which is more difficult to investigate by traditional ecocardiographic techniques. PMID:25875818

  2. Dynamic testing of hypothalamic-pituitary function in abnormalities of ovulation.

    PubMed

    Jones, G E; Wentz, A C; Rosenwaks, Z; Shoemaker, J

    1977-12-01

    A review of 26 unusual patients indicates that a combined luteinizing hormone-releasing hormone (LRH)-clomiphene test in conjunction with an estrogen provocation test not only was helpful in identifying underlying pathophysiology of anovulation but also proved useful in the clinical management of the patients. Dynamic testing per se does not establish a diagnosis but, in conjunction with history and other laboratory findings, it does make possible further subdivisions of groups of patients who otherwise appear similar, both clinically and from routine laboratory evaluations. It, therefore, tends to pinpoint a lesion and establish the area in which further tests should be made. It is concluded that the value of such investigations will be more evident as gynecologic endocrinology moves into investigation of the supratentorial control of hypothalamic function and as hypothalamic LRH becomes available as a therapeutic agent.

  3. The ageing neuromuscular system and sarcopenia: a mitochondrial perspective

    PubMed Central

    Picard, Martin; Turnbull, Doug M.

    2016-01-01

    Abstract Skeletal muscles undergo structural and functional decline with ageing, culminating in sarcopenia. The underlying neuromuscular mechanisms have been the subject of intense investigation, revealing mitochondrial abnormalities as potential culprits within both nerve and muscle cells. Implicated mechanisms involve impaired mitochondrial dynamics, reduced organelle biogenesis and quality control via mitophagy, accumulation of mitochondrial DNA (mtDNA) damage and respiratory chain defect, metabolic disturbance, pro‐apoptotic signalling, and oxidative stress. This article provides an overview of the cellular mechanisms whereby mitochondria may promote maladaptive changes within motor neurons, the neuromuscular junction (NMJ) and muscle fibres. Lifelong physical activity, which promotes mitochondrial health across tissues, is emerging as an effective countermeasure for sarcopenia. PMID:26921061

  4. Abnormal Brain Dynamics Underlie Speech Production in Children with Autism Spectrum Disorder

    PubMed Central

    Valica, Tatiana; MacDonald, Matt J.; Taylor, Margot J.; Brian, Jessica; Lerch, Jason P.; Anagnostou, Evdokia

    2015-01-01

    A large proportion of children with autism spectrum disorder (ASD) have speech and/or language difficulties. While a number of structural and functional neuroimaging methods have been used to explore the brain differences in ASD with regards to speech and language comprehension and production, the neurobiology of basic speech function in ASD has not been examined. Magnetoencephalography (MEG) is a neuroimaging modality with high spatial and temporal resolution that can be applied to the examination of brain dynamics underlying speech as it can capture the fast responses fundamental to this function. We acquired MEG from 21 children with high‐functioning autism (mean age: 11.43 years) and 21 age‐ and sex‐matched controls as they performed a simple oromotor task, a phoneme production task and a phonemic sequencing task. Results showed significant differences in activation magnitude and peak latencies in primary motor cortex (Brodmann Area 4), motor planning areas (BA 6), temporal sequencing and sensorimotor integration areas (BA 22/13) and executive control areas (BA 9). Our findings of significant functional brain differences between these two groups on these simple oromotor and phonemic tasks suggest that these deficits may be foundational and could underlie the language deficits seen in ASD. Autism Res 2016, 9: 249–261. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. PMID:26363154

  5. Structural, energetic, and dynamic insights into the abnormal xylene separation behavior of hierarchical porous crystal

    PubMed Central

    Lin, Jiao-Min; He, Chun-Ting; Liao, Pei-Qin; Lin, Rui-Biao; Zhang, Jie-Peng

    2015-01-01

    Separation of highly similar molecules and understanding the underlying mechanism are of paramount theoretical and practical importance, but visualization of the host-guest structure, energy, or dynamism is very difficult and many details have been overlooked. Here, we report a new porous coordination polymer featuring hierarchical porosity and delicate flexibility, in which the three structural isomers of xylene (also similar disubstituted benzene derivatives) can be efficiently separated with an elution sequence inversed with those for conventional mechanisms. More importantly, the separation mechanism is comprehensively and quantitatively visualized by single-crystal X-ray crystallography coupled with multiple computational simulation methods, in which the small apertures not only fit best the smallest para-isomer like molecular sieves, but also show seemingly trivial yet crucial structural alterations to distinguish the meta- and ortho-isomers via a gating mechanism, while the large channels allow fast guest diffusion and enable the structural/energetic effects to be accumulated in the macroscopic level. PMID:26113287

  6. Raft endocytosis of AMF regulates mitochondrial dynamics through Rac1 signaling and the Gp78 ubiquitin ligase.

    PubMed

    Shankar, Jay; Kojic, Liliana D; St-Pierre, Pascal; Wang, Peter T C; Fu, Min; Joshi, Bharat; Nabi, Ivan R

    2013-08-01

    Gp78 is a cell surface receptor that also functions as an E3 ubiquitin ligase in the endoplasmic reticulum (ER)-associated degradation (ERAD) pathway. The Gp78 ligand, the glycolytic enzyme phosphoglucose isomerase (PGI; also called autocrine motility factor, AMF), functions as a cytokine upon secretion by tumor cells. AMF is internalized through a PI3K- and dynamin-dependent raft endocytic pathway to the smooth ER; however, the relationship between AMF and Gp78 ubiquitin ligase activity remains unclear. AMF uptake to the smooth ER is inhibited by the dynamin inhibitor, dynasore, is reduced in Gp78 knockdown cells and induces the dynamin-dependent downregulation of its cell surface receptor. AMF uptake is Rac1-dependent and is inhibited by expression of dominant-negative Rac1 and the Rac1 inhibitor NSC23766, and is therefore distinct from Cdc42- and RhoA-dependent raft endocytic pathways. AMF stimulates Rac1 activation, but this is reduced by dynasore treatment and is absent in Gp78-knockdown cells; therefore, AMF activities require Gp78-mediated endocytosis. AMF also prevents Gp78-induced degradation of the mitochondrial fusion proteins, mitofusin 1 and 2 in a dynamin-, Rac1- and phosphoinositide 3-kinase (PI3K)-dependent manner. Gp78 induces mitochondrial clustering and fission in a manner dependent on GP78 ubiquitin ligase activity, and this is also reversed by uptake of AMF. The raft-dependent endocytosis of AMF, therefore, promotes Rac1-PI3K signaling that feeds back to promote AMF endocytosis and also inhibits the ability of Gp78 to target the mitofusins for degradation, thereby preventing Gp78-dependent mitochondrial fission. Through regulation of an ER-localized ubiquitin ligase, the raft-dependent endocytosis of AMF represents an extracellular regulator of mitochondrial fusion and dynamics.

  7. Effects of Astragalus Polysaccharides on Dysfunction of Mitochondrial Dynamics Induced by Oxidative Stress

    PubMed Central

    Huang, Yan-Feng; Lu, Lu; Zhu, Da-Jian; Wang, Ming; Yin, Yi; Chen, De-Xiu; Wei, Lian-Bo

    2016-01-01

    This paper studied the chronic fatigue induced by excessive exercise and the restoration effects of Astragalus polysaccharides (APS) on mitochondria. In vivo, we found that excessive exercise could cause oxidative stress statue which led to morphological and functional changes of mitochondria. The changes, including imbalance between mitochondria fusion-fission processes, activation of mitophagy, and decrease of PGC-1α expression, could be restored by APS. We further confirmed in vitro, and what is more, we found that APS may ameliorate mitochondrial dysfunction through Sirt1 pathway. Based on the results, we may figure out part of the molecular mechanism of mitochondrial amelioration by APS. PMID:26881048

  8. Dynamics of Plant Mitochondrial Genome: Model of a Three-Level Selection Process

    PubMed Central

    Albert, B.; Godelle, B.; Atlan, A.; De-Paepe, R.; Gouyon, P. H.

    1996-01-01

    The plant mitochondrial genome is composed of a set of molecules of various sizes that generate each other through recombination between repeated sequences. Molecular observations indicate that these different molecules are present in an equilibrium state. Different compositions of molecules have been observed within species. Recombination could produce deleted molecules with a high replication rate but bearing little useful information for the cell (such as ``petite'' mutants in yeast). In this paper, we use a multilevel model to examine selection among rapidly replicating incomplete molecules and relatively slowly replicating complete molecules. Our model simulates the evolution of mitochondrial information through a three-level selection process including intermolecular, intermitochondrial, and intercellular selection. the model demonstrates that maintenance of the mitochondrial genome can result from multilevel selection, but maintenance is difficult to explain without the existence of selection at the intermitochondrial level. This study shows that compartmentation into mitochondria is useful for maintenance of the mitochondrial information. Our examination of evolutionary equilibria shows that different equilibria (with different combinations of molecules) can be obtained when recombination rates are lower than a threshold value. This may be interpreted as a drift-mutation balance. PMID:8878700

  9. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB

    PubMed Central

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B.

    2014-01-01

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro–Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo. PMID:24862573

  10. The Drosophila effector caspase Dcp-1 regulates mitochondrial dynamics and autophagic flux via SesB.

    PubMed

    DeVorkin, Lindsay; Go, Nancy Erro; Hou, Ying-Chen Claire; Moradian, Annie; Morin, Gregg B; Gorski, Sharon M

    2014-05-26

    Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro-Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo.

  11. Dynamics of mitochondrial inheritance in the evolution of binary mating types and two sexes.

    PubMed

    Hadjivasiliou, Zena; Lane, Nick; Seymour, Robert M; Pomiankowski, Andrew

    2013-10-22

    The uniparental inheritance (UPI) of mitochondria is thought to explain the evolution of two mating types or even true sexes with anisogametes. However, the exact role of UPI is not clearly understood. Here, we develop a new model, which considers the spread of UPI mutants within a biparental inheritance (BPI) population. Our model explicitly considers mitochondrial mutation and selection in parallel with the spread of UPI mutants and self-incompatible mating types. In line with earlier work, we find that UPI improves fitness under mitochondrial mutation accumulation, selfish conflict and mitonuclear coadaptation. However, we find that as UPI increases in the population its relative fitness advantage diminishes in a frequency-dependent manner. The fitness benefits of UPI 'leak' into the biparentally reproducing part of the population through successive matings, limiting the spread of UPI. Critically, while this process favours some degree of UPI, it neither leads to the establishment of linked mating types nor the collapse of multiple mating types to two. Only when two mating types exist beforehand can associated UPI mutants spread to fixation under the pressure of high mitochondrial mutation rate, large mitochondrial population size and selfish mutants. Variation in these parameters could account for the range of UPI actually observed in nature, from strict UPI in some Chlamydomonas species to BPI in yeast. We conclude that UPI of mitochondria alone is unlikely to have driven the evolution of two mating types in unicellular eukaryotes.

  12. Dynamic buffering of mitochondrial Ca2+ during Ca2+ uptake and Na+-induced Ca2+ release

    PubMed Central

    Blomeyer, Christoph A.; Bazil, Jason N.; Stowe, David F.; Pradhan, Ranjan K.; Dash, Ranjan K.; Camara, Amadou K. S.

    2014-01-01

    In cardiac mitochondria, matrix free Ca2+ ([Ca2+]m) is primarily regulated by Ca2+ uptake and release via the Ca2+ uniporter (CU) and Na+/Ca2+ exchanger (NCE) as well as by Ca2+ buffering. Although experimental and computational studies on the CU and NCE dynamics exist, it is not well understood how matrix Ca2+ buffering affects these dynamics under various Ca2+ uptake and release conditions, and whether this influences the stoichiometry of the NCE. To elucidate the role of matrix Ca2+ buffering on the uptake and release of Ca2+, we monitored Ca2+ dynamics in isolated mitochondria by measuring both the extra-matrix free [Ca2+] ([Ca2+]e) and [Ca2+]m. A detailed protocol was developed and freshly isolated mitochondria from guinea pig hearts were exposed to five different [CaCl2] followed by ruthenium red and six different [NaCl]. By using the fluorescent probe indo-1, [Ca2+] and [Ca2+e]m were spectrofluorometrically quantified, and the stoichiometry of the NCE was determined. In addition, we measured NADH, membrane potential, matrix volume and matrix pH to monitor Ca2+-induced changes in mitochondrial bioenergetics. Our [Ca2+]e and [Ca2+]m measurements demonstrate that Ca2+ uptake and release do not show reciprocal Ca2+ dynamics in the extra-matrix and matrix compartments. This salient finding is likely caused by a dynamic Ca2+ buffering system in the matrix compartment. The Na+ - induced Ca2+ release demonstrates an electrogenic exchange via the NCE by excluding an electroneutral exchange. Mitochondrial bioenergetics were only transiently affected by Ca2+ uptake in the presence of large amounts of CaCl2, but not by Na+- induced Ca2+ release. PMID:23225099

  13. Reciprocal Regulation of Mitochondrial Dynamics and Calcium Signaling in Astrocyte Processes

    PubMed Central

    Jackson, Joshua G.

    2015-01-01

    We recently showed that inhibition of neuronal activity, glutamate uptake, or reversed-Na+/Ca2+-exchange with TTX, TFB-TBOA, or YM-244769, respectively, increases mitochondrial mobility in astrocytic processes. In the present study, we examined the interrelationships between mitochondrial mobility and Ca2+ signaling in astrocyte processes in organotypic cultures of rat hippocampus. All of the treatments that increase mitochondrial mobility decreased basal Ca2+. As recently reported, we observed spontaneous Ca2+ spikes with half-lives of ∼1 s that spread ∼6 μm and are almost abolished by a TRPA1 channel antagonist. Virtually all of these Ca2+ spikes overlap mitochondria (98%), and 62% of mitochondria are overlapped by these spikes. Although tetrodotoxin, TFB-TBOA, or YM-244769 increased Ca2+ signaling, the specific effects on peak, decay time, and/or frequency were different. To more specifically manipulate mitochondrial mobility, we explored the effects of Miro motor adaptor proteins. We show that Miro1 and Miro2 are both expressed in astrocytes and that exogenous expression of Ca2+-insensitive Miro mutants (KK) nearly doubles the percentage of mobile mitochondria. Expression of Miro1KK had a modest effect on the frequency of these Ca2+ spikes but nearly doubled the decay half-life. The mitochondrial proton ionophore, FCCP, caused a large, prolonged increase in cytosolic Ca2+ followed by an increase in the decay time and the spread of the spontaneous Ca2+ spikes. Photo-ablation of mitochondria in individual astrocyte processes has similar effects on Ca2+. Together, these studies show that Ca2+ regulates mitochondrial mobility, and mitochondria in turn regulate Ca2+ signals in astrocyte processes. SIGNIFICANCE STATEMENT In neurons, the movement and positioning of mitochondria at sites of elevated activity are important for matching local energy and Ca2+ buffering capacity. Previously, we demonstrated that mitochondria are immobilized in astrocytes in response

  14. Adult-onset mitochondrial myopathy.

    PubMed Central

    Fernandez-Sola, J.; Casademont, J.; Grau, J. M.; Graus, F.; Cardellach, F.; Pedrol, E.; Urbano-Marquez, A.

    1992-01-01

    Mitochondrial diseases are polymorphic entities which may affect many organs and systems. Skeletal muscle involvement is frequent in the context of systemic mitochondrial disease, but adult-onset pure mitochondrial myopathy appears to be rare. We report 3 patients with progressive skeletal mitochondrial myopathy starting in adult age. In all cases, the proximal myopathy was the only clinical feature. Mitochondrial pathology was confirmed by evidence of ragged-red fibres in muscle histochemistry, an abnormal mitochondrial morphology in electron microscopy and by exclusion of other underlying diseases. No deletions of mitochondrial DNA were found. We emphasize the need to look for a mitochondrial disorder in some non-specific myopathies starting in adult life. Images Figure 1 Figure 2 PMID:1589382

  15. In utero exposure to prepregnancy maternal obesity and postweaning high-fat diet impair regulators of mitochondrial dynamics in rat placenta and offspring

    PubMed Central

    Borengasser, Sarah J.; Faske, Jennifer; Kang, Ping; Blackburn, Michael L.; Badger, Thomas M.

    2014-01-01

    The proportion of pregnant women who are obese at conception continues to rise. Compelling evidence suggests the intrauterine environment is an important determinant of offspring health. Maternal obesity and unhealthy diets are shown to promote metabolic programming in the offspring. Mitochondria are maternally inherited, and we have previously shown impaired mitochondrial function in rat offspring exposed to maternal obesity in utero. Mitochondrial health is maintained by mitochondrial dynamics, or the processes of fusion and fission, which serve to repair damaged mitochondria, remove irreparable mitochondria, and maintain mitochondrial morphology. An imbalance between fusion and fission has been associated with obesity, insulin resistance, and reproduction complications. In the present study, we examined the influence of maternal obesity and postweaning high-fat diet (HFD) on key regulators of mitochondrial fusion and fission in rat offspring at important developmental milestones which included postnatal day (PND)35 (2 wk HFD) and PND130 (∼16 wk HFD). Our results indicate HFD-fed offspring had reduced mRNA expression of presenilin-associated rhomboid-like (PARL), optic atrophy (OPA)1, mitofusin (Mfn)1, Mfn2, fission (Fis)1, and nuclear respiratory factor (Nrf)1 at PND35, while OPA1 and Mfn2 remained decreased at PND130. Putative transcriptional regulators of mitochondrial dynamics were reduced in rat placenta and offspring liver and skeletal muscle [peroxisome proliferator-activated receptor gamma coactivator (PGC1)α, PGC1β, and estrogen-related receptor (ERR)α], consistent with indirect calorimetry findings revealing reduced energy expenditure and impaired fat utilization. Overall, maternal obesity detrimentally alters mitochondrial targets that may contribute to impaired mitochondrial health and increased obesity susceptibility in later life. PMID:25336449

  16. Absolute Quantification of Matrix Metabolites Reveals the Dynamics of Mitochondrial Metabolism.

    PubMed

    Chen, Walter W; Freinkman, Elizaveta; Wang, Tim; Birsoy, Kıvanç; Sabatini, David M

    2016-08-25

    Mitochondria house metabolic pathways that impact most aspects of cellular physiology. While metabolite profiling by mass spectrometry is widely applied at the whole-cell level, it is not routinely possible to measure the concentrations of small molecules in mammalian organelles. We describe a method for the rapid and specific isolation of mitochondria and use it in tandem with a database of predicted mitochondrial metabolites ("MITObolome") to measure the matrix concentrations of more than 100 metabolites across various states of respiratory chain (RC) function. Disruption of the RC reveals extensive compartmentalization of mitochondrial metabolism and signatures unique to the inhibition of each RC complex. Pyruvate enables the proliferation of RC-deficient cells but has surprisingly limited effects on matrix contents. Interestingly, despite failing to restore matrix NADH/NAD balance, pyruvate does increase aspartate, likely through the exchange of matrix glutamate for cytosolic aspartate. We demonstrate the value of mitochondrial metabolite profiling and describe a strategy applicable to other organelles. PMID:27565352

  17. Actin dynamics affect mitochondrial quality control and aging in budding yeast.

    PubMed

    Higuchi, Ryo; Vevea, Jason D; Swayne, Theresa C; Chojnowski, Robert; Hill, Vanessa; Boldogh, Istvan R; Pon, Liza A

    2013-12-01

    Actin cables of budding yeast are bundles of F-actin that extend from the bud tip or neck to the mother cell tip, serve as tracks for bidirectional cargo transport, and undergo continuous movement from buds toward mother cells [1]. This movement, retrograde actin cable flow (RACF), is similar to retrograde actin flow in lamellipodia, growth cones, immunological synapses, dendritic spines, and filopodia [2-5]. In all cases, actin flow is driven by the push of actin polymerization and assembly at the cell cortex, and myosin-driven pulling forces deeper within the cell [6-10]. Therefore, for movement and inheritance from mothers to buds, mitochondria must "swim upstream" against the opposing force of RACF [11]. We find that increasing RACF rates results in increased fitness of mitochondria inherited by buds and that the increase in mitochondrial fitness leads to extended replicative lifespan and increased cellular healthspan. The sirtuin SIR2 is required for normal RACF and mitochondrial fitness, and increasing RACF rates in sir2Δ cells increases mitochondrial fitness and cellular healthspan but does not affect replicative lifespan. These studies support the model that RACF serves as a filter for segregation of fit from less-fit mitochondria during inheritance, which controls cellular lifespan and healthspan. They also support a role for Sir2p in these processes.

  18. Mitofusin 2 regulates the oocytes development and quality by modulating meiosis and mitochondrial function.

    PubMed

    Liu, Qun; Kang, Lina; Wang, Lingjuan; Zhang, Ling; Xiang, Wenpei

    2016-07-29

    Mitofusin-2 (Mfn2), one of the mitochondrial dynamic proteins plays a key role in maintaining the integrity of mitochondrial morphology and function. However, it is unknown if Mfn2 influences the quality of oocytes in the process of development by modulating mitochondrial function in vitro. In this study, immature oocytes were transfected with Mfn2-siRNA for 16 h. We found that the expression level of the Mfn2 gene was significantly lower than those of the control group. The rates of maturation and fertility were also found to have declined. Moreover, mitochondrial structure and function, especially the morphogenesis of spindles, were observed as abnormal during meiosis. Thus, the above findings indicate that down-regulation of Mfn2 may have an impact on the maturation and fertilization of immature oocytes in vitro by modulating meiosis and mitochondrial function.

  19. Mitofusin 2 regulates the oocytes development and quality by modulating meiosis and mitochondrial function

    PubMed Central

    Liu, Qun; Kang, Lina; Wang, Lingjuan; Zhang, Ling; Xiang, Wenpei

    2016-01-01

    Mitofusin-2 (Mfn2), one of the mitochondrial dynamic proteins plays a key role in maintaining the integrity of mitochondrial morphology and function. However, it is unknown if Mfn2 influences the quality of oocytes in the process of development by modulating mitochondrial function in vitro. In this study, immature oocytes were transfected with Mfn2-siRNA for 16 h. We found that the expression level of the Mfn2 gene was significantly lower than those of the control group. The rates of maturation and fertility were also found to have declined. Moreover, mitochondrial structure and function, especially the morphogenesis of spindles, were observed as abnormal during meiosis. Thus, the above findings indicate that down-regulation of Mfn2 may have an impact on the maturation and fertilization of immature oocytes in vitro by modulating meiosis and mitochondrial function. PMID:27469431

  20. Restriction enzyme analysis of the mitochondrial genome in mitochondrial myopathy.

    PubMed Central

    Poulton, J; Turnbull, D M; Mehta, A B; Wilson, J; Gardiner, R M

    1988-01-01

    The mitochondrial myopathies are a heterogeneous group of disorders some of which may be caused by mutations in the mitochondrial genome. Mitochondrial DNA from 10 patients with mitochondrial myopathy and their mothers was analysed using five restriction enzymes and 11 mitochondrial probes in bacteriophage M13. No abnormalities were found in seven out of the 10 patients. Polymorphisms which have not previously been reported were detected in three patients and two of their mothers. These results exclude the presence of deletions or insertions of greater than 60 bp in the region of the mitochondrial genome examined. Any causative mitochondrial DNA mutations in these disorders are therefore likely to be point mutations or small structural rearrangements. Images PMID:2903249

  1. A simulation of three-dimensional systolic flow dynamics in a spherical ventricle: effects of abnormal wall motion.

    PubMed

    Gonzalez, E; Schoephoerster, R T

    1996-01-01

    Alterations in left ventricle (LV) wall motion induced by ischemia will affect flow dynamics, and these altered flow fields can be used to evaluate LV pumping efficiency. LV chamber flow fields were obtained in this study by solving the discretized three-dimensional Navier-Stokes equations for viscous, incompressible unsteady flow by using the finite analytic method. Several cases of abnormal wall motion (AWM) were simulated by a manipulation of the boundary conditions to produce regions of hypokinesis, akinesis, and dyskinesis. These solutions were used to determine the central ejection region (CER), defined as the region of flow domain in which the obtained velocity field vectors are aligned +/- 3 degrees from the LV long axis. A CER coefficient was computed from information on the location and orientation of the CER within the LV cavity. Contraction of the spherical ventricle produced a vector field that was symmetric with respect to the long axis. For the simulations of AWM, an asymmetrical flow pattern developed, became more pronounced with increasing severity of AWM, and resulted in a shorter CER that shifted toward the ischemic region. The CER coefficients decreased monotonically with increased severity in AWM from 0.948 in the normal case to a low of 0.164 for the most severe case of AWM. The CER coefficient quantitatively displayed the sensitivity of the flow patterns to even moderate degrees of hypokinesis. In addition, visualization of the three-dimensional flow field reinforced the necessity of three-dimensional simulations to capture aspects of the flow that existing methods of two-dimensional flow imaging that use ultrasound may miss. PMID:8669717

  2. MYC and Mitochondrial Biogenesis

    PubMed Central

    Morrish, Fionnuala; Hockenbery, David

    2014-01-01

    Mitochondria, the powerhouses of the cell, face two imperatives concerning biogenesis. The first is the requirement for dividing cells to replicate their mitochondrial content by growth of existing mitochondria. The second is the dynamic regulation of mitochondrial content in response to organismal and cellular cues (e.g., exercise, caloric restriction, energy status, temperature). MYC provides the clearest example of a programmed expansion of mitochondrial content linked to the cell cycle. As an oncogene, MYC also presents intriguing questions about the role of its mitochondrial targets in cancer-related phenotypes, such as the Warburg effect and MYC-dependent apoptosis. PMID:24789872

  3. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  4. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5a/Ca2+ in mitochondrial dynamics

    PubMed Central

    Silva-Alvarez, Carmen; Arrázola, Macarena S.; Godoy, Juan A.; Ordenes, Daniela; Inestrosa, Nibaldo C.

    2013-01-01

    Alzheimer's disease (AD) is the most common type of age-related dementia. The disease is characterized by a progressive loss of cognitive abilities, severe neurodegeneration, synaptic loss and mitochondrial dysfunction. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulate the function of the adult nervous system. We report here, that indirect activation of canonical Wnt/β-catenin signaling using Bromoindirubin-30-Oxime (6-BIO), an inhibitor of glycogen synthase kinase-3β, protects hippocampal neurons from amyloid-β (Aβ) oligomers with the concomitant blockade of neuronal apoptosis. More importantly, activation with Wnt-5a, a non-canonical Wnt ligand, results in the modulation of mitochondrial dynamics, preventing the changes induced by Aβ oligomers (Aβo) in mitochondrial fission-fusion dynamics and modulates Bcl-2 increases induced by oligomers. The canonical Wnt-3a ligand neither the secreted Frizzled-Related Protein (sFRP), a Wnt scavenger, did not prevent these effects. In contrast, some of the Aβ oligomer effects were blocked by Ryanodine. We conclude that canonical Wnt/β-catenin signaling controls neuronal survival, and that non-canonical Wnt/Ca2+signaling modulates mitochondrial dysfunction. Since mitochondrial dysfunction is present in neurodegenerative diseases, the therapeutic possibilities of the activation of Wnt signaling are evident. PMID:23805073

  5. Unraveling the complexity of mitochondrial complex I assembly: A dynamic process.

    PubMed

    Sánchez-Caballero, Laura; Guerrero-Castillo, Sergio; Nijtmans, Leo

    2016-07-01

    Mammalian complex I is composed of 44 different subunits and its assembly requires at least 13 specific assembly factors. Proper function of the mitochondrial respiratory chain enzyme is of crucial importance for cell survival due to its major participation in energy production and cell signaling. Complex I assembly depends on the coordination of several crucial processes that need to be tightly interconnected and orchestrated by a number of assembly factors. The understanding of complex I assembly evolved from simple sequential concept to the more sophisticated modular assembly model describing a convoluted process. According to this model, the different modules assemble independently and associate afterwards with each other to form the final enzyme. In this review, we aim to unravel the complexity of complex I assembly and provide the latest insights in this fundamental and fascinating process. This article is part of a Special Issue entitled Respiratory complex I, edited by Volker Zickermann and Ulrich Brandt.

  6. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  7. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  8. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  9. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... Just like the skin, the fingernails tell a lot about your health: ... the fingernail. These lines can occur after illness, injury to ...

  10. Mitochondrial Quality Control in Cardiac Diseases

    PubMed Central

    Campos, Juliane C.; Bozi, Luiz H. M.; Bechara, Luiz R. G.; Lima, Vanessa M.; Ferreira, Julio C. B.

    2016-01-01

    Disruption of mitochondrial homeostasis is a hallmark of cardiac diseases. Therefore, maintenance of mitochondrial integrity through different surveillance mechanisms is critical for cardiomyocyte survival. In this review, we discuss the most recent findings on the central role of mitochondrial quality control processes including regulation of mitochondrial redox balance, aldehyde metabolism, proteostasis, dynamics, and clearance in cardiac diseases, highlighting their potential as therapeutic targets.

  11. The hitchhiker's guide to Europe: the infection dynamics of an ongoing Wolbachia invasion and mitochondrial selective sweep in Rhagoletis cerasi.

    PubMed

    Schuler, Hannes; Köppler, Kirsten; Daxböck-Horvath, Sabine; Rasool, Bilal; Krumböck, Susanne; Schwarz, Dietmar; Hoffmeister, Thomas S; Schlick-Steiner, Birgit C; Steiner, Florian M; Telschow, Arndt; Stauffer, Christian; Arthofer, Wolfgang; Riegler, Markus

    2016-04-01

    Wolbachia is a maternally inherited and ubiquitous endosymbiont of insects. It can hijack host reproduction by manipulations such as cytoplasmic incompatibility (CI) to enhance vertical transmission. Horizontal transmission of Wolbachia can also result in the colonization of new mitochondrial lineages. In this study, we present a 15-year-long survey of Wolbachia in the cherry fruit fly Rhagoletis cerasi across Europe and the spatiotemporal distribution of two prevalent strains, wCer1 and wCer2, and associated mitochondrial haplotypes in Germany. Across most of Europe, populations consisted of either 100% singly (wCer1) infected individuals with haplotype HT1, or 100% doubly (wCer1&2) infected individuals with haplotype HT2, differentiated only by a single nucleotide polymorphism. In central Germany, singly infected populations were surrounded by transitional populations, consisting of both singly and doubly infected individuals, sandwiched between populations fixed for wCer1&2. Populations with fixed infection status showed perfect association of infection and mitochondria, suggesting a recent CI-driven selective sweep of wCer2 linked with HT2. Spatial analysis revealed a range expansion for wCer2 and a large transition zone in which wCer2 splashes appeared to coalesce into doubly infected populations. Unexpectedly, the transition zone contained a large proportion (22%) of wCer1&2 individuals with HT1, suggesting frequent intraspecific horizontal transmission. However, this horizontal transmission did not break the strict association between infection types and haplotypes in populations outside the transition zone, suggesting that this horizontally acquired Wolbachia infection may be transient. Our study provides new insights into the rarely studied Wolbachia invasion dynamics in field populations. PMID:26846713

  12. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-associated neurocognitive disorders.

    PubMed

    Fields, Jerel Adam; Serger, Elisabeth; Campos, Sofia; Divakaruni, Ajit S; Kim, Changyoun; Smith, Kendall; Trejo, Margarita; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; Murphy, Anne N; Ellis, Ronald J; Letendre, Scott; Grant, Igor; Masliah, Eliezer

    2016-02-01

    HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration.

  13. HIV alters neuronal mitochondrial fission/fusion in the brain during HIV-Associated Neurocognitive Disorders

    PubMed Central

    Fields, Jerel Adam; Serger, Elisabeth; Campos, Sofia; Divakaruni, Ajit S.; Kim, Changyoun; Smith, Kendall; Trejo, Margarita; Adame, Anthony; Spencer, Brian; Rockenstein, Edward; Murphy, Anne N.; Ellis, Ronald J.; Letendre, Scott; Grant, Igor; Masliah, Eliezer

    2015-01-01

    HIV-associated neurocognitive disorders (HAND) still occur in approximately 50% of HIV patients, and therapies to combat HAND progression are urgently needed. HIV proteins are released from infected cells and cause neuronal damage, possibly through mitochondrial abnormalities. Altered mitochondrial fission and fusion is implicated in several neurodegenerative disorders. Here, we hypothesized that mitochondrial fission/fusion may be dysregulated in neurons during HAND. We have identified decreased mitochondrial fission protein (dynamin 1-like; DNM1L) in frontal cortex tissues of HAND donors, along with enlarged and elongated mitochondria localized to the soma of damaged neurons. Similar pathology was observed in the brains of GFAP-gp120 tg mice. In vitro, recombinant gp120 decreased total and active DNM1L levels, reduced the level of Mitotracker staining, and increased extracellular acidification rate (ECAR) in primary neurons. DNM1L knockdown enhanced the effects of gp120 as measured by reduced Mitotracker signal in the treated cells. Interestingly, overexpression of DNM1L increased the level of Mitotracker staining in primary rat neurons and reduced neuroinflammation and neurodegeneration in the GFAP-gp120-tg mice. These data suggest that mitochondrial biogenesis dynamics are shifted towards mitochondrial fusion in brains of HAND patients and this may be due to gp120-induced reduction in DNM1L activity. Promoting mitochondrial fission during HIV infection of the CNS may restore mitochondrial biogenesis and prevent neurodegeneration. PMID:26611103

  14. Mitochondrial Therapeutics for Cardioprotection

    PubMed Central

    Carreira, Raquel S.; Lee, Pamela; Gottlieb, Roberta A.

    2013-01-01

    Mitochondria represent approximately one-third of the mass of the heart and play a critical role in maintaining cellular function—however, they are also a potent source of free radicals and pro-apoptotic factors. As such, maintaining mitochondrial homeostasis is essential to cell survival. As the dominant source of ATP, continuous quality control is mandatory to ensure their ongoing optimal function. Mitochondrial quality control is accomplished by the dynamic interplay of fusion, fission, autophagy, and mitochondrial biogenesis. This review examines these processes in the heart and considers their role in the context of ischemia-reperfusion injury. Interventions that modulate mitochondrial turnover, including pharmacologic agents, exercise, and caloric restriction are discussed as a means to improve mitochondrial quality control, ameliorate cardiovascular dysfunction, and enhance longevity. PMID:21718247

  15. Skeletal Muscle Abnormalities in Heart Failure.

    PubMed

    Kinugawa, Shintaro; Takada, Shingo; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki

    2015-01-01

    Exercise capacity is lowered in patients with heart failure, which limits their daily activities and also reduces their quality of life. Furthermore, lowered exercise capacity has been well demonstrated to be closely related to the severity and prognosis of heart failure. Skeletal muscle abnormalities including abnormal energy metabolism, transition of myofibers from type I to type II, mitochondrial dysfunction, reduction in muscular strength, and muscle atrophy have been shown to play a central role in lowered exercise capacity. The skeletal muscle abnormalities can be classified into the following main types: 1) low endurance due to mitochondrial dysfunction; and 2) low muscle mass and muscle strength due to imbalance of protein synthesis and degradation. The molecular mechanisms of these skeletal muscle abnormalities have been studied mainly using animal models. The current review including our recent study will focus upon the skeletal muscle abnormalities in heart failure. PMID:26346520

  16. Mitochondrial Diseases

    MedlinePlus

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  17. The clinical maze of mitochondrial neurology

    PubMed Central

    DiMauro, Salvatore; Schon, Eric A.; Carelli, Valerio; Hirano, Michio

    2014-01-01

    Mitochondrial diseases involve the respiratory chain, which is under the dual control of nuclear and mitochondrial DNA (mtDNA). The complexity of mitochondrial genetics provides one explanation for the clinical heterogeneity of mitochondrial diseases, but our understanding of disease pathogenesis remains limited. Classification of Mendelian mitochondrial encephalomyopathies has been laborious, but whole-exome sequencing studies have revealed unexpected molecular aetiologies for both typical and atypical mitochondrial disease phenotypes. Mendelian mitochondrial defects can affect five components of mitochondrial biology: subunits of respiratory chain complexes (direct hits); mitochondrial assembly proteins; mtDNA translation; phospholipid composition of the inner mitochondrial membrane; or mitochondrial dynamics. A sixth category—defects of mtDNA maintenance—combines features of Mendelian and mitochondrial genetics. Genetic defects in mitochondrial dynamics are especially important in neurology as they cause optic atrophy, hereditary spastic paraplegia, and Charcot–Marie–Tooth disease. Therapy is inadequate and mostly palliative, but promising new avenues are being identified. Here, we review current knowledge on the genetics and pathogenesis of the six categories of mitochondrial disorders outlined above, focusing on their salient clinical manifestations and highlighting novel clinical entities. An outline of diagnostic clues for the various forms of mitochondrial disease, as well as potential therapeutic strategies, is also discussed. PMID:23835535

  18. Comparison of mitochondrial genomes provides insights into intron dynamics and evolution in the caterpillar fungus Cordyceps militaris.

    PubMed

    Zhang, Yongjie; Zhang, Shu; Zhang, Guozhen; Liu, Xingzhong; Wang, Chengshu; Xu, Jianping

    2015-04-01

    Intra-specific comparison of mitochondrial genomes can help elucidate the evolution of a species, however it has not been performed for hypocrealean fungi that form diverse symbiotic associations with other organisms. In this study, comparative analyses of three completely sequenced mitochondrial genomes of a hypocrealean fungus, Cordyceps militaris, the type species of Cordyceps genus, revealed that the introns were the main contributors to mitochondrial genome size variations among strains. Mitochondrial genes in C. militaris have been invaded by group I introns in at least eight positions. PCR assays of various C. militaris isolates showed abundant variations of intron presence/absence among strains at seven of the eight intronic loci. Although the ancestral intron pattern was inferred to contain all eight introns, loss and/or gain events occurred for seven of the eight introns. These introns invaded the C. militaris mitochondrial genome probably by horizontal transfer from other fungi, and intron insertions into intronless genes in C. militaris were accompanied by co-conversions of upstream exon sequences especially for those introns targeting protein-coding genes. We also detected phylogenetic congruence between the intron and exon trees at each individual locus, consistent with the ancestral mitochondria of C. militaris as having all eight introns. This study helps to explain the evolution of C. militaris mitochondrial genomes and will facilitate population genetic studies of this medicinally important fungus.

  19. Comparison of mitochondrial genomes provides insights into intron dynamics and evolution in the caterpillar fungus Cordyceps militaris.

    PubMed

    Zhang, Yongjie; Zhang, Shu; Zhang, Guozhen; Liu, Xingzhong; Wang, Chengshu; Xu, Jianping

    2015-04-01

    Intra-specific comparison of mitochondrial genomes can help elucidate the evolution of a species, however it has not been performed for hypocrealean fungi that form diverse symbiotic associations with other organisms. In this study, comparative analyses of three completely sequenced mitochondrial genomes of a hypocrealean fungus, Cordyceps militaris, the type species of Cordyceps genus, revealed that the introns were the main contributors to mitochondrial genome size variations among strains. Mitochondrial genes in C. militaris have been invaded by group I introns in at least eight positions. PCR assays of various C. militaris isolates showed abundant variations of intron presence/absence among strains at seven of the eight intronic loci. Although the ancestral intron pattern was inferred to contain all eight introns, loss and/or gain events occurred for seven of the eight introns. These introns invaded the C. militaris mitochondrial genome probably by horizontal transfer from other fungi, and intron insertions into intronless genes in C. militaris were accompanied by co-conversions of upstream exon sequences especially for those introns targeting protein-coding genes. We also detected phylogenetic congruence between the intron and exon trees at each individual locus, consistent with the ancestral mitochondria of C. militaris as having all eight introns. This study helps to explain the evolution of C. militaris mitochondrial genomes and will facilitate population genetic studies of this medicinally important fungus. PMID:25896956

  20. Parkinson's disease-associated mutant VPS35 causes mitochondrial dysfunction by recycling DLP1 complexes.

    PubMed

    Wang, Wenzhang; Wang, Xinglong; Fujioka, Hisashi; Hoppel, Charles; Whone, Alan L; Caldwell, Maeve A; Cullen, Peter J; Liu, Jun; Zhu, Xiongwei

    2016-01-01

    Mitochondrial dysfunction represents a critical step during the pathogenesis of Parkinson's disease (PD), and increasing evidence suggests abnormal mitochondrial dynamics and quality control as important underlying mechanisms. The VPS35 gene, which encodes a key component of the membrane protein-recycling retromer complex, is the third autosomal-dominant gene associated with PD. However, how VPS35 mutations lead to neurodegeneration remains unclear. Here we demonstrate that PD-associated VPS35 mutations caused mitochondrial fragmentation and cell death in cultured neurons in vitro, in mouse substantia nigra neurons in vivo and in human fibroblasts from an individual with PD who has the VPS35(D620N) mutation. VPS35-induced mitochondrial deficits and neuronal dysfunction could be prevented by inhibition of mitochondrial fission. VPS35 mutants showed increased interaction with dynamin-like protein (DLP) 1, which enhanced turnover of the mitochondrial DLP1 complexes via the mitochondria-derived vesicle-dependent trafficking of the complexes to lysosomes for degradation. Notably, oxidative stress increased the VPS35-DLP1 interaction, which we also found to be increased in the brains of sporadic PD cases. These results revealed a novel cellular mechanism for the involvement of VPS35 in mitochondrial fission, dysregulation of which is probably involved in the pathogenesis of familial, and possibly sporadic, PD. PMID:26618722

  1. The Use of Neuroimaging in the Diagnosis of Mitochondrial Disease

    ERIC Educational Resources Information Center

    Friedman, Seth D.; Shaw, Dennis W. W.; Ishak, Gisele; Gropman, Andrea L.; Saneto, Russell P.

    2010-01-01

    Mutations in nuclear and mitochondrial DNA impacting mitochondrial function result in disease manifestations ranging from early death to abnormalities in all major organ systems and to symptoms that can be largely confined to muscle fatigue. The definitive diagnosis of a mitochondrial disorder can be difficult to establish. When the constellation…

  2. Mitochondrial Contagion Induced by Parkin Deficiency in Drosophila Hearts and Its Containment by Suppressing Mitofusin

    PubMed Central

    Bhandari, Poonam; Song, Moshi; Chen, Yun; Burelle, Yan; Dorn, Gerald W.

    2015-01-01

    Rationale Dysfunctional Parkin-mediated mitophagic culling of senescent or damaged mitochondria is a major pathological process underlying Parkinson disease and a potential genetic mechanism of cardiomyopathy. Despite epidemiological associations between Parkinson disease and heart failure, the role of Parkin and mitophagic quality control in maintaining normal cardiac homeostasis is poorly understood. Objective We used germline mutants and cardiac-specific RNA interference to interrogate Parkin regulation of cardiomyocyte mitochondria and examine functional crosstalk between mitophagy and mitochondrial dynamics in Drosophila heart tubes. Methods and Results Transcriptional profiling of Parkin knockout mouse hearts revealed compensatory upregulation of multiple related E3 ubiquitin ligases. Because Drosophila lack most of these redundant genes, we examined heart tubes of parkin knockout flies and observed accumulation of enlarged hollow donut mitochondria with dilated cardiomyopathy, which could be rescued by cardiomyocyte-specific Parkin expression. Identical abnormalities were induced by cardiomyocyte-specific Parkin suppression using 2 different inhibitory RNAs. Parkin-deficient cardiomyocyte mitochondria exhibited dysmorphology, depolarization, and reactive oxygen species generation without calcium cycling abnormalities, pointing to a primary mitochondrial defect. Suppressing cardiomyocyte mitochondrial fusion in Parkin-deficient fly heart tubes completely prevented the cardiomyopathy and corrected mitochondrial dysfunction without normalizing mitochondrial dysmorphology, demonstrating a central role for mitochondrial fusion in the cardiomyopathy provoked by impaired mitophagy. Conclusions Parkin deficiency and resulting mitophagic disruption produces cardiomyopathy in part by contamination of the cardiomyocyte mitochondrial pool through fusion between improperly retained dysfunctional/senescent and normal mitochondria. Limiting mitochondrial contagion by

  3. Different dynamic movements of wild-type and pathogenic VCPs and their cofactors to damaged mitochondria in a Parkin-mediated mitochondrial quality control system.

    PubMed

    Kimura, Yoko; Fukushi, Junpei; Hori, Seiji; Matsuda, Noriyuki; Okatsu, Kei; Kakiyama, Yukie; Kawawaki, Junko; Kakizuka, Akira; Tanaka, Keiji

    2013-12-01

    VCP/p97 is a hexameric ring-shaped AAA(+) ATPase that participates in various ubiquitin-associated cellular functions. Mis-sense mutations in VCP gene are associated with the pathogenesis of two inherited diseases: inclusion body myopathy associated with Paget's disease of the bone and front-temporal dementia (IBMPFD) and familial amyotrophic lateral sclerosis (ALS). These pathogenic VCPs have higher affinities for several cofactors, including Npl4, Ufd1 and p47. In Parkin-dependent mitochondrial quality control systems, VCP migrates to damaged mitochondria (e.g., those treated with uncouplers) to aid in the degradation of mitochondrial outer membrane proteins and to eliminate mitochondria. We showed that endogenous Npl4 and p47 also migrate to mitochondria after uncoupler treatment, and Npl4, Ufd1 or p47 silencing causes defective mitochondria clearance after uncoupler treatment. Moreover, pathogenic VCPs show impaired migration to mitochondria, and the exogenous pathogenic VCP expression partially inhibits Npl4 and p47 localization to mitochondria. These results suggest that the increased affinities of pathogenic VCPs for these cofactors cause the impaired movement of pathogenic VCPs. In adult flies, exogenous expression of wild-type VCP, but not pathogenic VCPs, reduces the number of abnormal mitochondria in muscles. Failure of pathogenic VCPs to function on damaged mitochondria may be related to the pathogenesis of IBMPFD and ALS.

  4. Mitochondrial Cardiomyopathies

    PubMed Central

    El-Hattab, Ayman W.; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20–40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  5. Mitochondrial Cardiomyopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  6. Mitochondrial vasculopathy

    PubMed Central

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-01-01

    Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications. PMID:27231520

  7. SLC25A46 is required for mitochondrial lipid homeostasis and cristae maintenance and is responsible for Leigh syndrome.

    PubMed

    Janer, Alexandre; Prudent, Julien; Paupe, Vincent; Fahiminiya, Somayyeh; Majewski, Jacek; Sgarioto, Nicolas; Des Rosiers, Christine; Forest, Anik; Lin, Zhen-Yuan; Gingras, Anne-Claude; Mitchell, Grant; McBride, Heidi M; Shoubridge, Eric A

    2016-01-01

    Mitochondria form a dynamic network that responds to physiological signals and metabolic stresses by altering the balance between fusion and fission. Mitochondrial fusion is orchestrated by conserved GTPases MFN1/2 and OPA1, a process coordinated in yeast by Ugo1, a mitochondrial metabolite carrier family protein. We uncovered a homozygous missense mutation in SLC25A46, the mammalian orthologue of Ugo1, in a subject with Leigh syndrome. SLC25A46 is an integral outer membrane protein that interacts with MFN2, OPA1, and the mitochondrial contact site and cristae organizing system (MICOS) complex. The subject mutation destabilizes the protein, leading to mitochondrial hyperfusion, alterations in endoplasmic reticulum (ER) morphology, impaired cellular respiration, and premature cellular senescence. The MICOS complex is disrupted in subject fibroblasts, resulting in strikingly abnormal mitochondrial architecture, with markedly shortened cristae. SLC25A46 also interacts with the ER membrane protein complex EMC, and phospholipid composition is altered in subject mitochondria. These results show that SLC25A46 plays a role in a mitochondrial/ER pathway that facilitates lipid transfer, and link altered mitochondrial dynamics to early-onset neurodegenerative disease and cell fate decisions. PMID:27390132

  8. Dynamic mosaicism manifesting as loss, gain and rearrangement of an isodicentric Y chromosome in a male child with growth retardation and abnormal external genitalia.

    PubMed

    Iourov, I Y; Vorsanova, S G; Liehr, T; Monakhov, V V; Soloviev, I V; Yurov, Y B

    2008-01-01

    Isodicentric chromosomes are considered the most common structural abnormality of the human Y chromosome. Because of their instability during cell division, loss of an isodicentric Y seems mainly to lie at the origin of mosaicism in previously reported patients with a 45,X cell line. Here, we report on a similar case, which, however, turned out to be an example of dynamic mosaicism involving isodicentric chromosome Y and isochromosome Y after FISH with a set of chromosome Y-specific probes and multicolor banding. Cytogenetic analyses (GTG-, C-, and Q-banding) have shown three different cell lines: 45,X/46, X,idic(Y)(q12)/46,X,+mar. The application of molecular cytogenetic techniques established the presence of four cell lines: 45,X (48%), 46,X,idic(Y)(q11.23) (42%), 46,X,i(Y)(p10) (6%) and 47,X,idic(Y)(q11.23),+idic(Y)(q11.23) (4%). According to the available literature, this is the first case of dynamic mosaicism with up to four different cell lines involving loss, gain, and rearrangement of an idic(Y)(q11.23). The present report indicates that cases of mosaicism involving isodicentric and isochromosome Ys can be more dynamic in terms of somatic intercellular variability that probably has an underappreciated effect on the phenotype. PMID:18758177

  9. Importing Mitochondrial Proteins: Machineries and Mechanisms

    PubMed Central

    Chacinska, Agnieszka; Koehler, Carla M.; Milenkovic, Dusanka; Lithgow, Trevor; Pfanner, Nikolaus

    2014-01-01

    Most mitochondrial proteins are synthesized on cytosolic ribosomes and must be imported across one or both mitochondrial membranes. There is an amazingly versatile set of machineries and mechanisms, and at least four different pathways, for the importing and sorting of mitochondrial precursor proteins. The translocases that catalyze these processes are highly dynamic machines driven by the membrane potential, ATP, or redox reactions, and they cooperate with molecular chaperones and assembly complexes to direct mitochondrial proteins to their correct destinations. Here, we discuss recent insights into the importing and sorting of mitochondrial proteins and their contributions to mitochondrial biogenesis. PMID:19703392

  10. Mitochondrial DNA with a large-scale deletion causes two distinct mitochondrial disease phenotypes in mice.

    PubMed

    Katada, Shun; Mito, Takayuki; Ogasawara, Emi; Hayashi, Jun-Ichi; Nakada, Kazuto

    2013-09-01

    Studies in patients have suggested that the clinical phenotypes of some mitochondrial diseases might transit from one disease to another (e.g., Pearson syndrome [PS] to Kearns-Sayre syndrome) in single individuals carrying mitochondrial (mt) DNA with a common deletion (ΔmtDNA), but there is no direct experimental evidence for this. To determine whether ΔmtDNA has the pathologic potential to induce multiple mitochondrial disease phenotypes, we used trans-mitochondrial mice with a heteroplasmic state of wild-type mtDNA and ΔmtDNA (mito-miceΔ). Late-stage embryos carrying ≥50% ΔmtDNA showed abnormal hematopoiesis and iron metabolism in livers that were partly similar to PS (PS-like phenotypes), although they did not express sideroblastic anemia that is a typical symptom of PS. More than half of the neonates with PS-like phenotypes died by 1 month after birth, whereas the rest showed a decrease of ΔmtDNA load in the affected tissues, peripheral blood and liver, and they recovered from PS-like phenotypes. The proportion of ΔmtDNA in various tissues of the surviving mito-miceΔ increased with time, and Kearns-Sayre syndrome-like phenotypes were expressed when the proportion of mtDNA in various tissues reached >70-80%. Our model mouse study clearly showed that a single ΔmtDNA was responsible for at least two distinct disease phenotypes at different ages and suggested that the level and dynamics of mtDNA load in affected tissues would be important for the onset and transition of mitochondrial disease phenotypes in mice. PMID:23853091

  11. Integrated analysis of the involvement of nitric oxide synthesis in mitochondrial proliferation, mitochondrial deficiency and apoptosis in skeletal muscle fibres

    PubMed Central

    Rodrigues, Gabriela Silva; Godinho, Rosely Oliveira; Kiyomoto, Beatriz Hitomi; Gamba, Juliana; Oliveira, Acary Souza Bulle; Schmidt, Beny; Tengan, Célia Harumi

    2016-01-01

    Nitric oxide (NO) is an important signaling messenger involved in different mitochondrial processes but only few studies explored the participation of NO in mitochondrial abnormalities found in patients with genetic mitochondrial deficiencies. In this study we verified whether NO synthase (NOS) activity was altered in different types of mitochondrial abnormalities and whether changes in mitochondrial function and NOS activity could be associated with the induction of apoptosis. We performed a quantitative and integrated analysis of NOS activity in individual muscle fibres of patients with mitochondrial diseases, considering mitochondrial function (cytochrome-c-oxidase activity), mitochondrial content, mitochondrial DNA mutation and presence of apoptotic nuclei. Our results indicated that sarcolemmal NOS activity was increased in muscle fibres with mitochondrial proliferation, supporting the relevance of neuronal NOS in the mitochondrial biogenesis process. Sarcoplasmic NOS activity was reduced in cytochrome-c-oxidase deficient fibres, probably as a consequence of the involvement of NO in the regulation of the respiratory chain. Alterations in NOS activity or mitochondrial abnormalities were not predisposing factors to apoptotic nuclei. Taken together, our results show that NO can be considered a potential molecular target for strategies to increase mitochondrial content and indicate that this approach may not be associated with increased apoptotic events. PMID:26856437

  12. [The state of the mitochondrial energy-supplying system of blood leukocytes in the dynamics of Guerin's carcinoma growth under the low-level irradiation conditions].

    PubMed

    Marchenko, M M; Voloshchuk, O N

    2014-01-01

    Mitochondrial NADH-dehydrogenase, succinate dehydrogenase and cytochrome oxidase activities of peripheral blood leukocytes of rats with the grafted Guerin's carcinoma were studied in the dynamics of oncogenesis under the conditions of the preliminary low-level irradiation. Tumor growth was accompanied by a decrease in NADH-dehydrogenase activity, an increase of succinate dehydrogenase activity. Cytochrome oxidase activity of leucocytes remained at the control level up to the terminal stages of tumor growth. Preliminary low-level irradiation of the tumor bearing animals caused a tendency to the decrease of enzymatic activities studied. This tendency was observed from the initial stages of oncogenesis. PMID:25552501

  13. The Biarzo case in northern Italy: is the temporal dynamic of swine mitochondrial DNA lineages in Europe related to domestication?

    PubMed

    Vai, Stefania; Vilaça, Sibelle Torres; Romandini, Matteo; Benazzo, Andrea; Visentini, Paola; Modolo, Marta; Bertolini, Marco; MacQueen, Peggy; Austin, Jeremy; Cooper, Alan; Caramelli, David; Lari, Martina; Bertorelle, Giorgio

    2015-01-01

    Genetically-based reconstructions of the history of pig domestication in Europe are based on two major pillars: 1) the temporal changes of mitochondrial DNA lineages are related to domestication; 2) Near Eastern haplotypes which appeared and then disappeared in some sites across Europe are genetic markers of the first Near Eastern domestic pigs. We typed a small but informative fragment of the mitochondrial DNA in 23 Sus scrofa samples from a site in north eastern Italy (Biarzo shelter) which provides a continuous record across a ≈6,000 year time frame from the Upper Palaeolithic to the Neolithic. We additionally carried out several radiocarbon dating. We found that a rapid mitochondrial DNA turnover occurred during the Mesolithic, suggesting that substantial changes in the composition of pig mitochondrial lineages can occur naturally across few millennia independently of domestication processes. Moreover, so-called Near Eastern haplotypes were present here at least two millennia before the arrival of Neolithic package in the same area. Consequently, we recommend a re-evaluation of the previous idea that Neolithic farmers introduced pigs domesticated in the Near East, and that Mesolithic communities acquired domestic pigs via cultural exchanges, to include the possibility of a more parsimonious hypothesis of local domestication in Europe.

  14. The Biarzo case in northern Italy: is the temporal dynamic of swine mitochondrial DNA lineages in Europe related to domestication?

    PubMed Central

    Vai, Stefania; Vilaça, Sibelle Torres; Romandini, Matteo; Benazzo, Andrea; Visentini, Paola; Modolo, Marta; Bertolini, Marco; MacQueen, Peggy; Austin, Jeremy; Cooper, Alan; Caramelli, David; Lari, Martina; Bertorelle, Giorgio

    2015-01-01

    Genetically-based reconstructions of the history of pig domestication in Europe are based on two major pillars: 1) the temporal changes of mitochondrial DNA lineages are related to domestication; 2) Near Eastern haplotypes which appeared and then disappeared in some sites across Europe are genetic markers of the first Near Eastern domestic pigs. We typed a small but informative fragment of the mitochondrial DNA in 23 Sus scrofa samples from a site in north eastern Italy (Biarzo shelter) which provides a continuous record across a ≈6,000 year time frame from the Upper Palaeolithic to the Neolithic. We additionally carried out several radiocarbon dating. We found that a rapid mitochondrial DNA turnover occurred during the Mesolithic, suggesting that substantial changes in the composition of pig mitochondrial lineages can occur naturally across few millennia independently of domestication processes. Moreover, so-called Near Eastern haplotypes were present here at least two millennia before the arrival of Neolithic package in the same area. Consequently, we recommend a re-evaluation of the previous idea that Neolithic farmers introduced pigs domesticated in the Near East, and that Mesolithic communities acquired domestic pigs via cultural exchanges, to include the possibility of a more parsimonious hypothesis of local domestication in Europe. PMID:26549464

  15. Mitochondrial Dysfunction in Cancer

    PubMed Central

    Boland, Michelle L.; Chourasia, Aparajita H.; Macleod, Kay F.

    2013-01-01

    A mechanistic understanding of how mitochondrial dysfunction contributes to cell growth and tumorigenesis is emerging beyond Warburg as an area of research that is under-explored in terms of its significance for clinical management of cancer. Work discussed in this review focuses less on the Warburg effect and more on mitochondria and how dysfunctional mitochondria modulate cell cycle, gene expression, metabolism, cell viability, and other established aspects of cell growth and stress responses. There is increasing evidence that key oncogenes and tumor suppressors modulate mitochondrial dynamics through important signaling pathways and that mitochondrial mass and function vary between tumors and individuals but the significance of these events for cancer are not fully appreciated. We explore the interplay between key molecules involved in mitochondrial fission and fusion and in apoptosis, as well as in mitophagy, biogenesis, and spatial dynamics of mitochondria and consider how these distinct mechanisms are coordinated in response to physiological stresses such as hypoxia and nutrient deprivation. Importantly, we examine how deregulation of these processes in cancer has knock on effects for cell proliferation and growth. We define major forms of mitochondrial dysfunction and address the extent to which the functional consequences of such dysfunction can be determined and exploited for cancer diagnosis and treatment. PMID:24350057

  16. Abnormal UP/DOWN Membrane Potential Dynamics Coupled with the Neocortical Slow Oscillation in Dentate Granule Cells during the Latent Phase of Temporal Lobe Epilepsy123

    PubMed Central

    Ouedraogo, David W.; Lenck-Santini, Pierre-Pascal; Marti, Geoffrey; Robbe, David; Crépel, Valérie

    2016-01-01

    The dentate gyrus, a major entry point to the hippocampus, gates (or filters) incoming information from the cortex. During sleep or anesthesia, the slow-wave oscillation (SWO) orchestrates hippocampus–neocortex communication, which is important for memory formation. The dentate gate is altered in temporal lobe epilepsy (TLE) early during epileptogenesis, which favors the propagation of pathological activities. Yet, whether the gating of physiological SWO by dentate granule cells (DGCs) is altered in TLE has remained unexplored. We combined intracellular recordings of membrane potential (Vm) of DGCs and local field potential recordings of the SWO in parietal cortex in anesthetized rats early during epileptogenesis [post-status epilepticus (SE) rats]. As expected, in control rats, the Vm of DGCs weakly and rarely oscillated in the SWO frequency range. In contrast, in post-SE rats, the Vm of DGCs displayed strong and long-lasting SWO. In these cells, clear UP and DOWN states, in phase with the neocortical SWO, led to a bimodal Vm distribution. In post-SE rats, the firing of DGCs was increased and more temporally modulated by the neocortical SWO. We conclude that UP/DOWN state dynamics dominate the Vm of DGCs and firing early during epileptogenesis. This abnormally strong neocortical influence on the dynamics of DGCs may profoundly modify the hippocampus–neocortex dialogue during sleep and associated cognitive functions. PMID:27257629

  17. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    of human diseases arising from defects in mitochondrial ion and ROS homeostasis, energy production and morphology [1]. Parkinson´s Disease (PD) is a very good example of this important mitochondrial component on neurodegenerative diseases. Anuradha Yadav, Swati Agrawal, Shashi Kant Tiwari, and Rajnish K. Chaturvedi (CSIR-Indian Institute of Toxicology Research / Academy of Scientific and Innovative Research, India) [6] remark in their review the role of mitochondrial dysfunction in PD with special focus on the role of oxidative stress and bioenergetic deficits. These alterations may have their origin on pathogenic gene mutations in important genes such as DJ-1, -syn, parkin, PINK1 or LRRK2. These mutations, in turn, may cause defects in mitochondrial dynamics (key events like fission/fusion, biogenesis, trafficking in retrograde and anterograde directions, and mitophagy). This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials. They highlight a dual effect of PGC-1α expression on PD prognosis. Whereas a modest expression of this transcriptional co-activator results in positive effects, a moderate to substantial overexpession may have deleterious consequences. As strategies to induce PGC-1α activation, these authors remark the possibility to activate Sirt1 with resveratrol, to use PPAR agonists such as pioglitazone, rosiglitazone, fenofibrate and bezafibrate. Other strategies include the triggering of Nrf2/antioxidant response element (ARE) pathway by triterpenoids (derivatives of oleanolic acid) or by Bacopa monniera, the enhancement of ATP production by carnitine and -lipoic acid. Mitochondrial dysfunctions are the prime source of neurodegenerative diseases and

  18. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    of human diseases arising from defects in mitochondrial ion and ROS homeostasis, energy production and morphology [1]. Parkinson´s Disease (PD) is a very good example of this important mitochondrial component on neurodegenerative diseases. Anuradha Yadav, Swati Agrawal, Shashi Kant Tiwari, and Rajnish K. Chaturvedi (CSIR-Indian Institute of Toxicology Research / Academy of Scientific and Innovative Research, India) [6] remark in their review the role of mitochondrial dysfunction in PD with special focus on the role of oxidative stress and bioenergetic deficits. These alterations may have their origin on pathogenic gene mutations in important genes such as DJ-1, -syn, parkin, PINK1 or LRRK2. These mutations, in turn, may cause defects in mitochondrial dynamics (key events like fission/fusion, biogenesis, trafficking in retrograde and anterograde directions, and mitophagy). This work reviews different strategies to enhance mitochondrial bioenergetics in order to ameliorate the neurodegenerative process, with an emphasis on clinical trials reports that indicate their potential. Among them creatine, Coenzyme Q10 and mitochondrial targeted antioxidants/peptides are reported to have the most remarkable effects in clinical trials. They highlight a dual effect of PGC-1α expression on PD prognosis. Whereas a modest expression of this transcriptional co-activator results in positive effects, a moderate to substantial overexpession may have deleterious consequences. As strategies to induce PGC-1α activation, these authors remark the possibility to activate Sirt1 with resveratrol, to use PPAR agonists such as pioglitazone, rosiglitazone, fenofibrate and bezafibrate. Other strategies include the triggering of Nrf2/antioxidant response element (ARE) pathway by triterpenoids (derivatives of oleanolic acid) or by Bacopa monniera, the enhancement of ATP production by carnitine and -lipoic acid. Mitochondrial dysfunctions are the prime source of neurodegenerative diseases and

  19. Mitochondrial cytopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-09-01

    Mitochondria are found in all nucleated human cells and perform a variety of essential functions, including the generation of cellular energy. Most of mitochondrial proteins are encoded by the nuclear DNA (nDNA) whereas a very small fraction is encoded by the mitochondrial DNA (mtDNA). Mutations in mtDNA or mitochondria-related nDNA genes can result in mitochondrial dysfunction which leads to a wide range of cellular perturbations including aberrant calcium homeostasis, excessive reactive oxygen species production, dysregulated apoptosis, and insufficient energy generation to meet the needs of various organs, particularly those with high energy demand. Impaired mitochondrial function in various tissues and organs results in the multi-organ manifestations of mitochondrial diseases including epilepsy, intellectual disability, skeletal and cardiac myopathies, hepatopathies, endocrinopathies, and nephropathies. Defects in nDNA genes can be inherited in an autosomal or X-linked manners, whereas, mtDNA is maternally inherited. Mitochondrial diseases can result from mutations of nDNA genes encoding subunits of the electron transport chain complexes or their assembly factors, proteins associated with the mitochondrial import or networking, mitochondrial translation factors, or proteins involved in mtDNA maintenance. MtDNA defects can be either point mutations or rearrangements. The diagnosis of mitochondrial disorders can be challenging in many cases and is based on clinical recognition, biochemical screening, histopathological studies, functional studies, and molecular genetic testing. Currently, there are no satisfactory therapies available for mitochondrial disorders that significantly alter the course of the disease. Therapeutic options include symptomatic treatment, cofactor supplementation, and exercise. PMID:26996063

  20. Mitochondrial fission is an acute and adaptive response in injured motor neurons

    PubMed Central

    Kiryu-Seo, Sumiko; Tamada, Hiromi; Kato, Yukina; Yasuda, Katsura; Ishihara, Naotada; Nomura, Masatoshi; Mihara, Katsuyoshi; Kiyama, Hiroshi

    2016-01-01

    Successful recovery from neuronal damage requires a huge energy supply, which is provided by mitochondria. However, the physiological relevance of mitochondrial dynamics in damaged neurons in vivo is poorly understood. To address this issue, we established unique bacterial artificial chromosome transgenic (BAC Tg) mice, which develop and function normally, but in which neuronal injury induces labelling of mitochondria with green fluorescent protein (GFP) and expression of cre recombinase. GFP-labelled mitochondria in BAC Tg mice appear shorter in regenerating motor axons soon after nerve injury compared with mitochondria in non-injured axons, suggesting the importance of increased mitochondrial fission during the early phase of nerve regeneration. Crossing the BAC Tg mice with mice carrying a floxed dynamin-related protein 1 gene (Drp1), which is necessary for mitochondrial fission, ablates mitochondrial fission specifically in injured neurons. Injury-induced Drp1-deficient motor neurons show elongated or abnormally gigantic mitochondria, which have impaired membrane potential and axonal transport velocity during the early phase after injury, and eventually promote neuronal death. Our in vivo data suggest that acute and prominent mitochondrial fission during the early stage after nerve injury is an adaptive response and is involved in the maintenance of mitochondrial and neuronal integrity to prevent neurodegeneration. PMID:27319806

  1. The Role of Mitochondrial Functional Proteins in ROS Production in Ischemic Heart Diseases

    PubMed Central

    Pei, Haifeng; Yang, Yi; Zhao, Heng; Li, Xiuchuan; Yang, Dachun; Li, De; Yang, Yongjian

    2016-01-01

    Ischemic heart diseases (IHD) have become the leading cause of death around the world, killing more than 7 million people annually. In IHD, the blockage of coronary vessels will cause irreversible cell injury and even death. As the “powerhouse” and “apoptosis center” in cardiomyocytes, mitochondria play critical roles in IHD. Ischemia insult can reduce myocardial ATP content, resulting in energy stress and overproduction of reactive oxygen species (ROS). Thus, mitochondrial abnormality has been identified as a hallmark of multiple cardiovascular disorders. To date, many studies have suggested that these mitochondrial proteins, such as electron transport chain (ETC) complexes, uncoupling proteins (UCPs), mitochondrial dynamic proteins, translocases of outer membrane (Tom) complex, and mitochondrial permeability transition pore (MPTP), can directly or indirectly influence mitochondria-originated ROS production, consequently determining the degree of mitochondrial dysfunction and myocardial impairment. Here, the focus of this review is to summarize the present understanding of the relationship between some mitochondrial functional proteins and ROS production in IHD. PMID:27119006

  2. Mutant Huntingtin and Elusive Defects in Oxidative Metabolism and Mitochondrial Calcium Handling.

    PubMed

    Brustovetsky, Nickolay

    2016-07-01

    Elongation of a polyglutamine (polyQ) stretch in huntingtin protein (Htt) is linked to Huntington's disease (HD) pathogenesis. The mutation in Htt correlates with neuronal dysfunction in the striatum and cerebral cortex and eventually leads to neuronal cell death. The exact mechanisms of the injurious effect of mutant Htt (mHtt) on neurons are not completely understood but might include aberrant gene transcription, defective autophagy, abnormal mitochondrial biogenesis, anomalous mitochondrial dynamics, and trafficking. In addition, deficiency in oxidative metabolism and defects in mitochondrial Ca(2+) handling are considered essential contributing factors to neuronal dysfunction in HD and, consequently, in HD pathogenesis. Since the discovery of the mutation in Htt, the questions whether mHtt affects oxidative metabolism and mitochondrial Ca(2+) handling and, if it does, what mechanisms could be involved were in focus of numerous investigations. However, despite significant research efforts, the detrimental effect of mHtt and the mechanisms by which mHtt might impair oxidative metabolism and mitochondrial Ca(2+) handling remain elusive. In this paper, I will briefly review studies aimed at clarifying the consequences of mHtt interaction with mitochondria and discuss experimental results supporting or arguing against the mHtt effects on oxidative metabolism and mitochondrial Ca(2+) handling.

  3. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    SciTech Connect

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C.; Wolburg, Hartwig; Ziviani, Elena; Whitworth, Alexander J.; Martins, L. Miguel; Kahle, Philipp J.; Krueger, Rejko

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  4. Visible Light-Controlled Nitric Oxide Release from Hindered Nitrobenzene Derivatives for Specific Modulation of Mitochondrial Dynamics.

    PubMed

    Kitamura, Kai; Kawaguchi, Mitsuyasu; Ieda, Naoya; Miyata, Naoki; Nakagawa, Hidehiko

    2016-05-20

    Nitric oxide (NO) is a physiological signaling molecule, whose biological production is precisely regulated at the subcellular level. Here, we describe the design, synthesis, and evaluation of novel mitochondria-targeted NO releasers, Rol-DNB-mor and Rol-DNB-pyr, that are photocontrollable not only in the UV wavelength range but also in the biologically favorable visible wavelength range (530-590 nm). These caged NO compounds consist of a hindered nitrobenzene as the NO-releasing moiety and a rhodamine chromophore. Their NO-release properties were characterized by an electron spin resonance (ESR) spin trapping method and fluorometric analysis using NO probes, and their mitochondrial localization in live cells was confirmed by costaining. Furthermore, we demonstrated visible light control of mitochondrial fragmentation via activation of dynamin-related protein 1 (Drp1) by means of precisely controlled NO delivery into mitochondria of cultured HEK293 cells, utilizing Rol-DNB-pyr. PMID:26878937

  5. Two Rare Human Mitofusin 2 Mutations Alter Mitochondrial Dynamics and Induce Retinal and Cardiac Pathology in Drosophila

    PubMed Central

    Chen, Yun; Bhandari, Poonam; Zhao, Peter; Jowdy, Casey C.; Engelhard, John T.; Dorn, Gerald W.

    2012-01-01

    Mitochondrial fusion is essential to organelle homeostasis and organ health. Inexplicably, loss of function mutations of mitofusin 2 (Mfn2) specifically affect neurological tissue, causing Charcot Marie Tooth syndrome (CMT) and atypical optic atrophy. As CMT-linked Mfn2 mutations are predominantly within the GTPase domain, we postulated that Mfn2 mutations in other functional domains might affect non-neurological tissues. Here, we defined in vitro and in vivo consequences of rare human mutations in the poorly characterized Mfn2 HR1 domain. Human exome sequencing data identified 4 rare non-synonymous Mfn2 HR1 domain mutations, two bioinformatically predicted as damaging. Recombinant expression of these (Mfn2 M393I and R400Q) in Mfn2-null murine embryonic fibroblasts (MEFs) revealed incomplete rescue of characteristic mitochondrial fragmentation, compared to wild-type human Mfn2 (hMfn2); Mfn2 400Q uniquely induced mitochondrial fragmentation in normal MEFs. To compare Mfn2 mutation effects in neurological and non-neurological tissues in vivo, hMfn2 and the two mutants were expressed in Drosophila eyes or heart tubes made deficient in endogenous fly mitofusin (dMfn) through organ-specific RNAi expression. The two mutants induced similar Drosophila eye phenotypes: small eyes and an inability to rescue the eye pathology induced by suppression of dMfn. In contrast, Mfn2 400Q induced more severe cardiomyocyte mitochondrial fragmentation and cardiac phenotypes than Mfn2 393I, including heart tube dilation, depressed fractional shortening, and progressively impaired negative geotaxis. These data reveal a central functional role for Mfn2 HR1 domains, describe organ-specific effects of two Mfn2 HR1 mutations, and strongly support prospective studies of Mfn2 400Q in heritable human heart disease of unknown genetic etiology. PMID:22957060

  6. Effects of a mitochondrial mutator mutation in yeast POS5 NADH kinase on mitochondrial nucleotides.

    PubMed

    Wheeler, Linda J; Mathews, Christopher K

    2012-09-01

    Saccharomyces cerevisiae contains three NADH/NAD(+) kinases, one of which is localized in mitochondria and phosphorylates NADH in preference to NAD(+). Strand et al. reported that a yeast mutation in POS5, which encodes the mitochondrial NADH kinase, is a mutator, specific for mitochondrial genes (Strand, M. K., Stuart, G. R., Longley, M. J., Graziewicz, M. A., Dominick, O. C., and Copeland, W. C. (2003) Eukaryot. Cell 2, 809-820). Because of the involvement of NADPH in deoxyribonucleotide biosynthesis, we asked whether mitochondria in a pos5 deletion mutant contain abnormal deoxyribonucleoside triphosphate (dNTP) pools. We found the pools of the four dNTPs to be more than doubled in mutant mitochondrial extracts relative to wild-type mitochondrial extracts. This might partly explain the mitochondrial mutator phenotype. However, the loss of antioxidant protection is also likely to be significant. To this end, we measured pyridine nucleotide pools in mutant and wild-type mitochondrial extracts and found NADPH levels to be diminished by ∼4-fold in Δpos5 mitochondrial extracts, with NADP(+) diminished to a lesser degree. Our data suggest that both dNTP abnormalities and lack of antioxidant protection contribute to elevated mitochondrial gene mutagenesis in cells lacking the mitochondrial NADH kinase. The data also confirm previous reports of the specific function of Pos5p in mitochondrial NADP(+) and NADPH biosynthesis.

  7. Pharmacological approaches to restore mitochondrial function

    PubMed Central

    Andreux, Pénélope A.; Houtkooper, Riekelt H.; Auwerx, Johan

    2014-01-01

    Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders, but is also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson’s disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models, as well as multicellular organisms, have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for a range of diseases, which has spurred active drug discovery efforts in this area. PMID:23666487

  8. Mitochondrial calcium uptake.

    PubMed

    Williams, George S B; Boyman, Liron; Chikando, Aristide C; Khairallah, Ramzi J; Lederer, W J

    2013-06-25

    Calcium (Ca(2+)) uptake into the mitochondrial matrix is critically important to cellular function. As a regulator of matrix Ca(2+) levels, this flux influences energy production and can initiate cell death. If large, this flux could potentially alter intracellular Ca(2+) ([Ca(2+)]i) signals. Despite years of study, fundamental disagreements on the extent and speed of mitochondrial Ca(2+) uptake still exist. Here, we review and quantitatively analyze mitochondrial Ca(2+) uptake fluxes from different tissues and interpret the results with respect to the recently proposed mitochondrial Ca(2+) uniporter (MCU) candidate. This quantitative analysis yields four clear results: (i) under physiological conditions, Ca(2+) influx into the mitochondria via the MCU is small relative to other cytosolic Ca(2+) extrusion pathways; (ii) single MCU conductance is ∼6-7 pS (105 mM [Ca(2+)]), and MCU flux appears to be modulated by [Ca(2+)]i, suggesting Ca(2+) regulation of MCU open probability (P(O)); (iii) in the heart, two features are clear: the number of MCU channels per mitochondrion can be calculated, and MCU probability is low under normal conditions; and (iv) in skeletal muscle and liver cells, uptake per mitochondrion varies in magnitude but total uptake per cell still appears to be modest. Based on our analysis of available quantitative data, we conclude that although Ca(2+) critically regulates mitochondrial function, the mitochondria do not act as a significant dynamic buffer of cytosolic Ca(2+) under physiological conditions. Nevertheless, with prolonged (superphysiological) elevations of [Ca(2+)]i, mitochondrial Ca(2+) uptake can increase 10- to 1,000-fold and begin to shape [Ca(2+)]i dynamics.

  9. Mitochondrial Myopathy

    MedlinePlus

    ... with ragged-red fibers, and mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes. The symptoms of ... riboflavin, coenzyme Q, and carnitine (a specialized amino acid) may provide subjective improvement in fatigue and energy ...

  10. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  11. Mitochondrial Myopathies

    MedlinePlus

    ... line and are therefore called the electron transport chain, and complex V actually churns out ATP, so ... coQ10 , is a component of the electron transport chain, which uses oxygen to manufacture ATP. Some mitochondrial ...

  12. Mitochondrial fission augments capsaicin-induced axonal degeneration.

    PubMed

    Chiang, Hao; Ohno, Nobuhiko; Hsieh, Yu-Lin; Mahad, Don J; Kikuchi, Shin; Komuro, Hitoshi; Hsieh, Sung-Tsang; Trapp, Bruce D

    2015-01-01

    Capsaicin, an agonist of transient receptor potential vanilloid receptor 1, induces axonal degeneration of peripheral sensory nerves and is commonly used to treat painful sensory neuropathies. In this study, we investigated the role of mitochondrial dynamics in capsaicin-induced axonal degeneration. In capsaicin-treated rodent sensory axons, axonal swellings, decreased mitochondrial stationary site length and reduced mitochondrial transport preceded axonal degeneration. Increased axoplasmic Ca(2+) mediated the alterations in mitochondrial length and transport. While sustaining mitochondrial transport did not reduce axonal swellings in capsaicin-treated axons, preventing mitochondrial fission by overexpression of mutant dynamin-related protein 1 increased mitochondrial length, retained mitochondrial membrane potentials and reduced axonal loss upon capsaicin treatment. These results establish that mitochondrial stationary site size significantly affects axonal integrity and suggest that inhibition of Ca(2+)-dependent mitochondrial fission facilitates mitochondrial function and axonal survival following activation of axonal cationic channels.

  13. Mitochondrial genetics

    PubMed Central

    Chinnery, Patrick Francis; Hudson, Gavin

    2013-01-01

    Introduction In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. Sources of data In this article, a review of the current mitochondrial genetics literature was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). In addition, this review makes use of a growing number of publically available databases including MITOMAP, a human mitochondrial genome database (www.mitomap.org), the Human DNA polymerase Gamma Mutation Database (http://tools.niehs.nih.gov/polg/) and PhyloTree.org (www.phylotree.org), a repository of global mtDNA variation. Areas of agreement The disruption in cellular energy, resulting from defects in mtDNA or defects in the nuclear-encoded genes responsible for mitochondrial maintenance, manifests in a growing number of human diseases. Areas of controversy The exact mechanisms which govern the inheritance of mtDNA are hotly debated. Growing points Although still in the early stages, the development of in vitro genetic manipulation could see an end to the inheritance of the most severe mtDNA disease. PMID:23704099

  14. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management.

    PubMed

    Meyers, Deborah E; Basha, Haseeb Ilias; Koenig, Mary Kay

    2013-01-01

    Mitochondrial disease is a heterogeneous group of multisystemic diseases that develop consequent to mutations in nuclear or mitochondrial DNA. The prevalence of inherited mitochondrial disease has been estimated to be greater than 1 in 5,000 births; however, the diagnosis and treatment of this disease are not taught in most adult-cardiology curricula. Because mitochondrial diseases often occur as a syndrome with resultant multiorgan dysfunction, they might not immediately appear to be specific to the cardiovascular system. Mitochondrial cardiomyopathy can be described as a myocardial condition characterized by abnormal heart-muscle structure, function, or both, secondary to genetic defects involving the mitochondrial respiratory chain, in the absence of concomitant coronary artery disease, hypertension, valvular disease, or congenital heart disease. The typical cardiac manifestations of mitochondrial disease--hypertrophic and dilated cardiomyopathy, arrhythmias, left ventricular myocardial noncompaction, and heart failure--can worsen acutely during a metabolic crisis. The optimal management of mitochondrial disease necessitates the involvement of a multidisciplinary team, careful evaluations of patients, and the anticipation of iatrogenic and noniatrogenic complications. In this review, we describe the complex pathophysiology of mitochondrial disease and its clinical features. We focus on current practice in the diagnosis and treatment of patients with mitochondrial cardiomyopathy, including optimal therapeutic management and long-term monitoring. We hope that this information will serve as a guide for practicing cardiologists who treat patients thus affected.

  15. Mitochondrial cardiomyopathy: pathophysiology, diagnosis, and management.

    PubMed

    Meyers, Deborah E; Basha, Haseeb Ilias; Koenig, Mary Kay

    2013-01-01

    Mitochondrial disease is a heterogeneous group of multisystemic diseases that develop consequent to mutations in nuclear or mitochondrial DNA. The prevalence of inherited mitochondrial disease has been estimated to be greater than 1 in 5,000 births; however, the diagnosis and treatment of this disease are not taught in most adult-cardiology curricula. Because mitochondrial diseases often occur as a syndrome with resultant multiorgan dysfunction, they might not immediately appear to be specific to the cardiovascular system. Mitochondrial cardiomyopathy can be described as a myocardial condition characterized by abnormal heart-muscle structure, function, or both, secondary to genetic defects involving the mitochondrial respiratory chain, in the absence of concomitant coronary artery disease, hypertension, valvular disease, or congenital heart disease. The typical cardiac manifestations of mitochondrial disease--hypertrophic and dilated cardiomyopathy, arrhythmias, left ventricular myocardial noncompaction, and heart failure--can worsen acutely during a metabolic crisis. The optimal management of mitochondrial disease necessitates the involvement of a multidisciplinary team, careful evaluations of patients, and the anticipation of iatrogenic and noniatrogenic complications. In this review, we describe the complex pathophysiology of mitochondrial disease and its clinical features. We focus on current practice in the diagnosis and treatment of patients with mitochondrial cardiomyopathy, including optimal therapeutic management and long-term monitoring. We hope that this information will serve as a guide for practicing cardiologists who treat patients thus affected. PMID:24082366

  16. Self-clearance mechanism of mitochondrial E3 ligase MARCH5 contributes to mitochondria quality control.

    PubMed

    Kim, Song-Hee; Park, Yong-Yea; Yoo, Young-Suk; Cho, Hyeseong

    2016-01-01

    MARCH5, a mitochondrial E3 ubiquitin ligase, controls mitochondrial dynamics proteins and misfolded proteins, and has been proposed to play a role in mitochondria quality control. However, it remains unclear how mutant MARCH5 found in cancer tissues is removed from cells. Here, we show that mutation in the MARCH5 ligase domain increased its half-life fourfold, resulting in a drastic increase in its protein level. Abnormal accumulation of the E3 ligase-defective MARCH5 mutants MARCH5(H43W) and MARCH5(C65/68S) was diminished by overexpression of active MARCH5(WT) ; the mutant proteins were degraded through the ubiquitin-proteasome pathway. Coimmunoprecipitation revealed that MARCH5 forms homodimers, and that substitution of Gly to Leu at the first putative GxxxG dimerization motif, but not the second, resulted in a loss of dimeric interaction. Moreover, overexpression of the dimerization-defective mutant MARCH5(4GL) could not decrease the level of accumulated MARCH5(H43W) , suggesting that dimerization of MARCH5 is necessary for self-clearance. Abnormal accumulation of MARCH5(H43W) and mitochondrial hyperfusion led to NF-ĸB activation, which was suppressed by overexpression of MARCH5(WT) . Together, the data reveal a self-protective mechanism involving MARCH5, which can target its own dysfunctional mutant for degradation in order to maintain mitochondrial homeostasis.

  17. Effects of Lon protease down-regulation on the mitochondrial function and proteome.

    PubMed

    Hamon, Marie-Paule; Bayot, Aurélien; Gareil, Monique; Chavatte, Laurent; Lombès, Anne; Friguet, Bertrand; Bulteau, Anne-Laure

    2014-10-01

    The Lon protease is an ATP-dependent protease of the mitochondrial matrix that contributes to the degradation of abnormal and oxidized proteins in this compartment. It is also involved in the stability and regulation of the mitochondrial genome. The effects of a depletion of this protease on the mitochondrial function and the identification of oxidized target proteins of Lon have been performed using as cellular model HeLa cells in which Lon level expression can be down-regulated. The expression level of proteins playing a role in the stress response was first determined. The amount of ClpP, another protease in charge of protein degradation of the mitochondrial matrix, and the amount of several chaperones have been evaluated. The expression level of respiratory chain subunits was also measured with or without Lon depletion. The mitochondrial compartment morphology was monitored in different stress conditions, and measured using a parameter devoted to the evaluation of the mitochondrial dynamics. None of these investigations showed a significant phenotype resulting from Lon down-regulation A possible impact of Lon depletion on oxidized mitochondrial proteins level was then sought. 1D gel electrophoresis after the derivatization of protein carbonyl groups with 2,4-dinitrophenyl hydrazine (DNPH) revealed an increase in carbonylated proteins more important in mitochondrial extracts than in total cellular extracts. 2D difference gel electrophoresis (DIGE) experiments provide results consistent with these observations with some enlightenments. Performed with fluorescent dyes labelling either proteins or their carbonyl groups, these experiments indicated proteome modifications in cells with Lon down-regulation both at the level of protein expression and at the level of protein oxidation. These variations are noted in proteins acting in different cellular activities, i.e. metabolism, protein quality control and cytoskeleton organization.

  18. Bioenergetic roles of mitochondrial fusion.

    PubMed

    Silva Ramos, Eduardo; Larsson, Nils-Göran; Mourier, Arnaud

    2016-08-01

    Mitochondria are bioenergetic hotspots, producing the bulk of ATP by the oxidative phosphorylation process. Mitochondria are also structurally dynamic and undergo coordinated fusion and fission to maintain their function. Recent studies of the mitochondrial fusion machinery have provided new evidence in detailing their role in mitochondrial metabolism. Remarkably, mitofusin 2, in addition to its role in fusion, is important for maintaining coenzyme Q levels and may be an integral player in the mevalonate synthesis pathway. Here, we review the bioenergetic roles of mitochondrial dynamics and emphasize the importance of the in vitro growth conditions when evaluating mitochondrial respiration. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016,' edited by Prof. Paolo Bernardi. PMID:27060252

  19. Redox regulation of mitochondrial fission, protein misfolding, synaptic damage, and neuronal cell death: potential implications for Alzheimer’s and Parkinson’s diseases

    PubMed Central

    Nakamura, Tomohiro

    2010-01-01

    Normal mitochondrial dynamics consist of fission and fusion events giving rise to new mitochondria, a process termed mitochondrial biogenesis. However, several neurodegenerative disorders manifest aberrant mitochondrial dynamics, resulting in morphological abnormalities often associated with deficits in mitochondrial mobility and cell bioenergetics. Rarely, dysfunctional mitochondrial occur in a familial pattern due to genetic mutations, but much more commonly patients manifest sporadic forms of mitochondrial disability presumably related to a complex set of interactions of multiple genes (or their products) with environmental factors (G × E). Recent studies have shown that generation of excessive nitric oxide (NO), in part due to generation of oligomers of amyloid-β (Aβ) protein or overactivity of the NMDA-subtype of glutamate receptor, can augment mitochondrial fission, leading to frank fragmentation of the mitochondria. S-Nitrosylation, a covalent redox reaction of NO with specific protein thiol groups, represents one mechanism contributing to NO-induced mitochondrial fragmentation, bioenergetic failure, synaptic damage, and eventually neuronal apoptosis. Here, we summarize our evidence in Alzheimer’s disease (AD) patients and animal models showing that NO contributes to mitochondrial fragmentation via S-nitrosylation of dynamin-related protein 1 (Drp1), a protein involved in mitochondrial fission. These findings may provide a new target for drug development in AD. Additionally, we review emerging evidence that redox reactions triggered by excessive levels of NO can contribute to protein misfolding, the hallmark of a number of neurodegenerative disorders, including AD and Parkinson’s disease. For example, S-nitrosylation of parkin disrupts its E3 ubiquitin ligase activity, and thereby affects Lewy body formation and neuronal cell death. PMID:20177970

  20. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  1. Bioluminescence imaging of mitochondrial Ca2+ dynamics in soma and neurites of individual adult mouse sympathetic neurons

    PubMed Central

    Núñez, Lucía; Senovilla, Laura; Sanz-Blasco, Sara; Chamero, Pablo; Alonso, María T; Villalobos, Carlos; García-Sancho, Javier

    2007-01-01

    Changes in the cytosolic Ca2+ concentration ([Ca2+]c) are essential for triggering neurotransmitter release from presynaptic nerve terminals. Calcium-induced Ca2+ release (CICR) from the endoplasmic reticulum (ER) may amplify the [Ca2+]c signals and facilitate neurotransmitter release in sympathetic neurons. In adrenal chromaffin cells, functional triads are formed by voltage-operated Ca2+ channels (VOCCs), CICR sites and mitochondria. In fact, mitochondria take up most of the Ca2+ load entering the cells and are essential for shaping [Ca2+]c signals and exocytosis. Here we have investigated the existence of such functional triads in sympathetic neurons. The mitochondrial Ca2+ concentration ([Ca2+]m) in soma and neurites of individual mouse superior cervical ganglion (SCG) neurons was monitored by bioluminescence imaging of targeted aequorins. In soma, Ca2+ entry through VOCCs evoked rapid, near millimolar [Ca2+]m increases in a subpopulation of mitochondria containing about 40% of the aequorin. Caffeine evoked a similar [Ca2+]m increase in a mitochondrial pool containing about 30% of the aequorin and overlapping with the VOCC-sensitive pool. These observations suggest the existence of functional triads similar to the ones described in chromaffin cells. In neurites, mitochondria were able to buffer [Ca2+]c increases resulting from activation of VOCCs but not those mediated by caffeine-induced Ca2+ release from the ER. The weaker Ca2+ buffering by mitochondria in neurites could contribute to facilitate Ca2+-induced exocytosis at the presynaptic sites. PMID:17234693

  2. Further evidence for mitochondrial dysfunction in progressive supranuclear palsy.

    PubMed

    Albers, D S; Swerdlow, R H; Manfredi, G; Gajewski, C; Yang, L; Parker, W D; Beal, M F

    2001-03-01

    Recent data from our laboratory have identified a role for mitochondrial dysfunction in the pathogenesis of progressive supranuclear palsy (PSP). To extend this finding, we measured key parameters of mitochondrial function in platelet-derived cytoplasmic hybrid (cybrid) cell lines expressing mitochondrial genes from patients with PSP. We observed significant decreases in aconitase activity, cellular ATP levels, and oxygen consumption in PSP cybrids as compared to control cybrids, further suggesting a contributory role of impaired mitochondrial energy metabolism in PSP, possibly due to genetic abnormalities of mitochondrial DNA. PMID:11170735

  3. Mitochondrial Evolution

    PubMed Central

    Gray, Michael W.

    2012-01-01

    Viewed through the lens of the genome it contains, the mitochondrion is of unquestioned bacterial ancestry, originating from within the bacterial phylum α-Proteobacteria (Alphaproteobacteria). Accordingly, the endosymbiont hypothesis—the idea that the mitochondrion evolved from a bacterial progenitor via symbiosis within an essentially eukaryotic host cell—has assumed the status of a theory. Yet mitochondrial genome evolution has taken radically different pathways in diverse eukaryotic lineages, and the organelle itself is increasingly viewed as a genetic and functional mosaic, with the bulk of the mitochondrial proteome having an evolutionary origin outside Alphaproteobacteria. New data continue to reshape our views regarding mitochondrial evolution, particularly raising the question of whether the mitochondrion originated after the eukaryotic cell arose, as assumed in the classical endosymbiont hypothesis, or whether this organelle had its beginning at the same time as the cell containing it. PMID:22952398

  4. Maximal oxidative capacity during exercise is associated with skeletal muscle fuel selection and dynamic changes in mitochondrial protein acetylation

    PubMed Central

    Overmyer, Katherine A.; Evans, Charles R.; Qi, Nathan R.; Minogue, Catherine E.; Carson, Joshua J.; Chermside-Scabbo, Christopher J.; Koch, Lauren G.; Britton, Steven L.; Pagliarini, David J.; Coon, Joshua J.; Burant, Charles F.

    2015-01-01

    Summary Maximal exercise-associated oxidative capacity is strongly correlated with health and longevity in humans. Rats selectively bred for high running capacity (HCR) have improved metabolic health and are longer-lived than their low capacity counterparts (LCR). Using metabolomic and proteomic profiling, we show that HCR efficiently oxidize fatty acids (FA) and branched-chain amino acid (BCAA), sparing glycogen and reducing accumulation of short- and medium-chain acylcarnitines. HCR mitochondria have reduced acetylation of mitochondrial proteins within oxidative pathways at rest, and there is rapid protein deacetylation with exercise, which is greater in HCR than LCR. Fluxomic analysis of valine degradation with exercise demonstrates a functional role of differential protein acetylation in HCR and LCR. Our data suggest efficient FA and BCAA utilization contribute to high intrinsic exercise capacity and the health and longevity benefits associated with enhanced fitness. PMID:25738461

  5. Proteasome Impairment Induces Recovery of Mitochondrial Membrane Potential and an Alternative Pathway of Mitochondrial Fusion

    PubMed Central

    Shirozu, Ryohei; Yashiroda, Hideki

    2015-01-01

    Mitochondria are vital and highly dynamic organelles that continuously fuse and divide to maintain mitochondrial quality. Mitochondrial dysfunction impairs cellular integrity and is known to be associated with various human diseases. However, the mechanism by which the quality of mitochondria is maintained remains largely unexplored. Here we show that impaired proteasome function recovers the growth of yeast cells lacking Fzo1, a pivotal protein for mitochondrial fusion. Decreased proteasome activity increased the mitochondrial oxidoreductase protein Mia40 and the ratio of the short isoform of mitochondrial intermembrane protein Mgm1 (s-Mgm1) to the long isoform (l-Mgm1). The increase in Mia40 restored mitochondrial membrane potential, while the increase in the s-Mgm1/l-Mgm1 ratio promoted mitochondrial fusion in an Fzo1-independent manner. Our findings demonstrate a new pathway for mitochondrial quality control that is induced by proteasome impairment. PMID:26552703

  6. Mitochondrial Bioenergetics of Metastatic Breast Cancer Cells in Response to Dynamic Changes in Oxygen Tension: Effects of HIF-1α

    PubMed Central

    Oliva, Claudia R.; Griguer, Corinne E.; Darley-Usmar, Victor; Hurst, Douglas R.; Welch, Danny R.; Landar, Aimee

    2013-01-01

    Solid tumors are characterized by regions of low oxygen tension (OT), which play a central role in tumor progression and resistance to therapy. Low OT affects mitochondrial function and for the cells to survive, mitochondria must functionally adapt to low OT to maintain the cellular bioenergetics. In this study, a novel experimental approach was developed to examine the real-time bioenergetic changes in breast cancer cells (BCCs) during adaptation to OT (from 20% to <1% oxygen) using sensitive extracellular flux technology. Oxygen was gradually removed from the medium, and the bioenergetics of metastatic BCCs (MDA-MB-231 and MCF10CA clones) was compared with non-tumorigenic (MCF10A) cells. BCCs, but not MCF10A, rapidly responded to low OT by stabilizing HIF-1α and increasing HIF-1α responsive gene expression and glucose uptake. BCCs also increased extracellular acidification rate (ECAR), which was markedly lower in MCF10A. Interestingly, BCCs exhibited a biphasic response in basal respiration as the OT was reduced from 20% to <1%. The initial stimulation of oxygen consumption is found to be due to increased mitochondrial respiration. This effect was HIF-1α-dependent, as silencing HIF-1α abolished the biphasic response. During hypoxia and reoxygenation, BCCs also maintained oxygen consumption rates at specific OT; however, HIF-1α silenced BCC were less responsive to changes in OT. Our results suggest that HIF-1α provides a high degree of bioenergetic flexibility under different OT which may confer an adaptive advantage for BCC survival in the tumor microenvironment and during invasion and metastasis. This study thus provides direct evidence for the cross-talk between HIF-1α and mitochondria during adaptation to low OT by BCCs and may be useful in identifying novel therapeutic agents that target the bioenergetics of BCCs in response to low OT. PMID:23840849

  7. Glucocorticoid Modulation of Mitochondrial Function in Hepatoma Cells Requires the Mitochondrial Fission Protein Drp1

    PubMed Central

    Hernández-Alvarez, María Isabel; Paz, José C.; Sebastián, David; Muñoz, Juan Pablo; Liesa, Marc; Segalés, Jessica; Palacín, Manuel

    2013-01-01

    Abstract Aims: Glucocorticoids, such as dexamethasone, enhance hepatic energy metabolism and gluconeogenesis partly through changes in mitochondrial function. Mitochondrial function is influenced by the balance between mitochondrial fusion and fission events. However, whether glucocorticoids modulate mitochondrial function through the regulation of mitochondrial dynamics is currently unknown. Results: Here, we report that the effects of dexamethasone on mitochondrial function and gluconeogenesis in hepatoma cells are dependent on the mitochondrial fission protein dynamin-related protein 1 (Drp1). Dexamethasone increased routine oxygen consumption, maximal respiratory capacity, superoxide anion, proton leak, and gluconeogenesis in hepatoma cells. Under these conditions, dexamethasone altered mitochondrial morphology, which was paralleled by a large increase in Drp1 expression, and reduced mitofusin 1 (Mfn1) and Mfn2. In vivo dexamethasone treatment also enhanced Drp1 expression in mouse liver. On the basis of these observations, we analyzed the dependence on the Drp1 function of dexamethasone effects on mitochondrial respiration and gluconeogenesis. We show that the increase in mitochondrial respiration and gluconeogenesis induced by dexamethasone are hampered by the inhibition of Drp1 function. Innovation: Our findings provide the first evidence that the effects of glucocorticoids on hepatic metabolism require the mitochondrial fission protein Drp1. Conclusion: In summary, we demonstrate that the mitochondrial effects of dexamethasone both on mitochondrial respiration and on the gluconeogenic pathway depend on Drp1. Antioxid. Redox Signal. 19, 366–378. PMID:22703557

  8. Modeling mitochondrial function.

    PubMed

    Balaban, Robert S

    2006-12-01

    The mitochondrion represents a unique opportunity to apply mathematical modeling to a complex biological system. Understanding mitochondrial function and control is important since this organelle is critical in energy metabolism as well as playing key roles in biochemical synthesis, redox control/signaling, and apoptosis. A mathematical model, or hypothesis, provides several useful insights including a rigorous test of the consensus view of the operation of a biological process as well as providing methods of testing and creating new hypotheses. The advantages of the mitochondrial system for applying a mathematical model include the relative simplicity and understanding of the matrix reactions, the ability to study the mitochondria as a independent contained organelle, and, most importantly, one can dynamically measure many of the internal reaction intermediates, on line. The developing ability to internally monitor events within the metabolic network, rather than just the inflow and outflow, is extremely useful in creating critical bounds on complex mathematical models using the individual reaction mechanisms available. However, many serious problems remain in creating a working model of mitochondrial function including the incomplete definition of metabolic pathways, the uncertainty of using in vitro enzyme kinetics, as well as regulatory data in the intact system and the unknown chemical activities of relevant molecules in the matrix. Despite these formidable limitations, the advantages of the mitochondrial system make it one of the best defined mammalian metabolic networks that can be used as a model system for understanding the application and use of mathematical models to study biological systems.

  9. The mitochondrial nucleoid: integrating mitochondrial DNA into cellular homeostasis.

    PubMed

    Gilkerson, Robert; Bravo, Liliana; Garcia, Iraselia; Gaytan, Norma; Herrera, Alan; Maldonado, Alicia; Quintanilla, Brandi

    2013-05-01

    The packaging of mitochondrial DNA (mtDNA) into DNA-protein assemblies called nucleoids provides an efficient segregating unit of mtDNA, coordinating mtDNA's involvement in cellular metabolism. From the early discovery of mtDNA as "extranuclear" genetic material, its organization into nucleoids and integration into both the mitochondrial organellar network and the cell at large via a variety of signal transduction pathways, mtDNA is a crucial component of the cell's homeostatic network. The mitochondrial nucleoid is composed of a set of DNA-binding core proteins involved in mtDNA maintenance and transcription, and a range of peripheral factors, which are components of signaling pathways controlling mitochondrial biogenesis, metabolism, apoptosis, and retrograde mitochondria-to-nucleus signaling. The molecular interactions of nucleoid components with the organellar network and cellular signaling pathways provide exciting clues to the dynamic integration of mtDNA into cellular metabolic homeostasis.

  10. Attenuation of Aβ toxicity by promotion of mitochondrial fusion in neuroblastoma cells by liquiritigenin.

    PubMed

    Jo, Doo Sin; Shin, Dong Woon; Park, So Jung; Bae, Ji-Eun; Kim, Joon Bum; Park, Na Yeon; Kim, Jae-Sung; Oh, Jeong Su; Shin, Jung-Won; Cho, Dong-Hyung

    2016-08-01

    Mitochondrial dynamics control mitochondrial morphology and function, and aberrations in these are associated with various neurodegenerative diseases including Alzheimer's disease and Parkinson's disease. To identify novel regulators of mitochondrial dynamics, we screened a phytochemical library and identified liquiritigenin as a potent inducer of mitochondrial fusion. Treatment with liquiritigenin induced an elongated mitochondrial morphology in SK-N-MC cells. In addition, liquiritigenin rescued mitochondrial fragmentation induced by knockout of mitochondrial fusion mediators such as Mfn1, Mfn2, and Opa1. Furthermore, we found that treatment with liquiritigenin notably inhibited mitochondrial fragmentation and cytotoxicity induced by Aβ in SK-N-MC cells. PMID:27515055

  11. Signal transducer and activator of transcription 2 deficiency is a novel disorder of mitochondrial fission.

    PubMed

    Shahni, Rojeen; Cale, Catherine M; Anderson, Glenn; Osellame, Laura D; Hambleton, Sophie; Jacques, Thomas S; Wedatilake, Yehani; Taanman, Jan-Willem; Chan, Emma; Qasim, Waseem; Plagnol, Vincent; Chalasani, Annapurna; Duchen, Michael R; Gilmour, Kimberly C; Rahman, Shamima

    2015-10-01

    Defects of mitochondrial dynamics are emerging causes of neurological disease. In two children presenting with severe neurological deterioration following viral infection we identified a novel homozygous STAT2 mutation, c.1836 C>A (p.Cys612Ter), using whole exome sequencing. In muscle and fibroblasts from these patients, and a third unrelated STAT2-deficient patient, we observed extremely elongated mitochondria. Western blot analysis revealed absence of the STAT2 protein and that the mitochondrial fission protein DRP1 (encoded by DNM1L) is inactive, as shown by its phosphorylation state. All three patients harboured decreased levels of DRP1 phosphorylated at serine residue 616 (P-DRP1(S616)), a post-translational modification known to activate DRP1, and increased levels of DRP1 phosphorylated at serine 637 (P-DRP1(S637)), associated with the inactive state of the DRP1 GTPase. Knockdown of STAT2 in SHSY5Y cells recapitulated the fission defect, with elongated mitochondria and decreased P-DRP1(S616) levels. Furthermore the mitochondrial fission defect in patient fibroblasts was rescued following lentiviral transduction with wild-type STAT2 in all three patients, with normalization of mitochondrial length and increased P-DRP1(S616) levels. Taken together, these findings implicate STAT2 as a novel regulator of DRP1 phosphorylation at serine 616, and thus of mitochondrial fission, and suggest that there are interactions between immunity and mitochondria. This is the first study to link the innate immune system to mitochondrial dynamics and morphology. We hypothesize that variability in JAK-STAT signalling may contribute to the phenotypic heterogeneity of mitochondrial disease, and may explain why some patients with underlying mitochondrial disease decompensate after seemingly trivial viral infections. Modulating JAK-STAT activity may represent a novel therapeutic avenue for mitochondrial diseases, which remain largely untreatable. This may also be relevant for more

  12. Detection of Structural Abnormalities Using Neural Nets

    NASA Technical Reports Server (NTRS)

    Zak, M.; Maccalla, A.; Daggumati, V.; Gulati, S.; Toomarian, N.

    1996-01-01

    This paper describes a feed-forward neural net approach for detection of abnormal system behavior based upon sensor data analyses. A new dynamical invariant representing structural parameters of the system is introduced in such a way that any structural abnormalities in the system behavior are detected from the corresponding changes to the invariant.

  13. Nuclear HMGA1 nonhistone chromatin proteins directly influence mitochondrial transcription, maintenance, and function

    SciTech Connect

    Dement, Gregory A.; Maloney, Scott C.; Reeves, Raymond . E-mail: reevesr@mail.wsu.edu

    2007-01-01

    We have previously demonstrated that HMGA1 proteins translocate from the nucleus to mitochondria and bind to mitochondrial DNA (mtDNA) at the D-loop control region [G.A. Dement, N.R. Treff, N.S. Magnuson, V. Franceschi, R. Reeves, Dynamic mitochondrial localization of nuclear transcription factor HMGA1, Exp. Cell Res. 307 (2005) 388-401.] [11]. To elucidate possible physiological roles for such binding, we employed methods to analyze mtDNA transcription, mitochondrial maintenance, and other organelle functions in transgenic human MCF-7 cells (HA7C) induced to over-express an HA-tagged HMGA1 protein and control (parental) MCF-7 cells. Quantitative real-time (RT) PCR analyses demonstrated that mtDNA levels were reduced approximately 2-fold in HMGA1 over-expressing HA7C cells and flow cytometric analyses further revealed that mitochondrial mass was significantly reduced in these cells. Cellular ATP levels were also reduced in HA7C cells and survival studies showed an increased sensitivity to killing by 2-deoxy-D-glucose, a glycolysis-specific inhibitor. Flow cytometric analyses revealed additional mitochondrial abnormalities in HA7C cells that are consistent with a cancerous phenotype: namely, increased reactive oxygen species (ROS) and increased mitochondrial membrane potential ({delta}{psi}{sub m}). Additional RT-PCR analyses demonstrated that gene transcripts from both the heavy (ND2, COXI, ATP6) and light (ND6) strands of mtDNA were up-regulated approximately 3-fold in HA7C cells. Together, these mitochondrial changes are consistent with many previous reports and reveal several possible mechanisms by which HMGA1 over-expression, a common feature of naturally occurring cancers, may affect tumor progression.

  14. The Neuro-Ophthalmology of Mitochondrial Disease

    PubMed Central

    Fraser, J. Alexander; Biousse, Valérie; Newman, Nancy J.

    2010-01-01

    Mitochondrial diseases frequently manifest neuro-ophthalmologic symptoms and signs. Because of the predilection of mitochondrial disorders to involve the optic nerves, extraocular muscles, retina, and even the retrochiasmal visual pathways, the ophthalmologist is often the first physician to be consulted. Disorders caused by mitochondrial dysfunction can result from abnormalities in either the mitochondrial DNA or in nuclear genes which encode mitochondrial proteins. Inheritance of these mutations will follow patterns specific to their somatic or mitochondrial genetics. Genotype-phenotype correlations are inconstant, and considerable overlap may occur among these syndromes. The diagnostic approach to the patient with suspected mitochondrial disease entails a detailed personal and family history, careful ophthalmic, neurologic, and systemic examination, directed investigations, and attention to potentially life-threatening sequelae. Although curative treatments for mitochondrial disorders are currently lacking, exciting research advances are being made, particularly in the area of gene therapy. Leber hereditary optic neuropathy, with its window of opportunity for timely intervention and its accessibility to directed therapy, offers a unique model to study future therapeutic interventions. Most patients and their relatives benefit from informed genetic counseling. PMID:20471050

  15. Mitochondrial Cristae: Where Beauty Meets Functionality.

    PubMed

    Cogliati, Sara; Enriquez, Jose A; Scorrano, Luca

    2016-03-01

    Mitochondrial cristae are dynamic bioenergetic compartments whose shape changes under different physiological conditions. Recent discoveries have unveiled the relation between cristae shape and oxidative phosphorylation (OXPHOS) function, suggesting that membrane morphology modulates the organization and function of the OXPHOS system, with a direct impact on cellular metabolism. As a corollary, cristae-shaping proteins have emerged as potential modulators of mitochondrial bioenergetics, a concept confirmed by genetic experiments in mouse models of respiratory chain deficiency. Here, we review our knowledge of mitochondrial ultrastructural organization and how it impacts mitochondrial metabolism.

  16. Mitochondrial Cristae: Where Beauty Meets Functionality.

    PubMed

    Cogliati, Sara; Enriquez, Jose A; Scorrano, Luca

    2016-03-01

    Mitochondrial cristae are dynamic bioenergetic compartments whose shape changes under different physiological conditions. Recent discoveries have unveiled the relation between cristae shape and oxidative phosphorylation (OXPHOS) function, suggesting that membrane morphology modulates the organization and function of the OXPHOS system, with a direct impact on cellular metabolism. As a corollary, cristae-shaping proteins have emerged as potential modulators of mitochondrial bioenergetics, a concept confirmed by genetic experiments in mouse models of respiratory chain deficiency. Here, we review our knowledge of mitochondrial ultrastructural organization and how it impacts mitochondrial metabolism. PMID:26857402

  17. Skeletal muscle mitochondrial uncoupling in a murine cancer cachexia model.

    PubMed

    Tzika, A Aria; Fontes-Oliveira, Cibely Cristine; Shestov, Alexander A; Constantinou, Caterina; Psychogios, Nikolaos; Righi, Valeria; Mintzopoulos, Dionyssios; Busquets, Silvia; Lopez-Soriano, Francisco J; Milot, Sylvain; Lepine, Francois; Mindrinos, Michael N; Rahme, Laurence G; Argiles, Josep M

    2013-09-01

    Approximately half of all cancer patients present with cachexia, a condition in which disease-associated metabolic changes lead to a severe loss of skeletal muscle mass. Working toward an integrated and mechanistic view of cancer cachexia, we investigated the hypothesis that cancer promotes mitochondrial uncoupling in skeletal muscle. We subjected mice to in vivo phosphorous-31 nuclear magnetic resonance (31P NMR) spectroscopy and subjected murine skeletal muscle samples to gas chromatography/mass spectrometry (GC/MS). The mice used in both experiments were Lewis lung carcinoma models of cancer cachexia. A novel 'fragmented mass isotopomer' approach was used in our dynamic analysis of 13C mass isotopomer data. Our 31P NMR and GC/MS results indicated that the adenosine triphosphate (ATP) synthesis rate and tricarboxylic acid (TCA) cycle flux were reduced by 49% and 22%, respectively, in the cancer-bearing mice (p<0.008; t-test vs. controls). The ratio of ATP synthesis rate to the TCA cycle flux (an index of mitochondrial coupling) was reduced by 32% in the cancer-bearing mice (p=0.036; t-test vs. controls). Genomic analysis revealed aberrant expression levels for key regulatory genes and transmission electron microscopy (TEM) revealed ultrastructural abnormalities in the muscle fiber, consistent with the presence of abnormal, giant mitochondria. Taken together, these data suggest that mitochondrial uncoupling occurs in cancer cachexia and thus point to the mitochondria as a potential pharmaceutical target for the treatment of cachexia. These findings may prove relevant to elucidating the mechanisms underlying skeletal muscle wasting observed in other chronic diseases, as well as in aging.

  18. Photoactivatable green fluorescent protein-based visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living cells.

    PubMed

    Karbowski, Mariusz; Cleland, Megan M; Roelofs, Brian A

    2014-01-01

    Technological improvements in microscopy and the development of mitochondria-specific imaging molecular tools have illuminated the dynamic rearrangements of these essential organelles. These rearrangements are mainly the result of two opposing processes: mitochondrial fusion and mitochondrial fission. Consistent with this, in addition to mitochondrial motility, these two processes are major factors determining the overall degree of continuity of the mitochondrial network, as well as the average size of mitochondria within the cell. In this chapter, we detail the use of advanced confocal microscopy and mitochondrial matrix-targeted photoactivatable green fluorescent protein (mito-PAGFP) for the investigation of mitochondrial dynamics. We focus on direct visualization and quantification of mitochondrial fusion and mitochondrial network complexity in living mammalian cells. These assays were instrumental in important recent discoveries within the field of mitochondrial biology, including the role of mitochondrial fusion in the activation of mitochondrial steps in apoptosis, participation of Bcl-2 family proteins in mitochondrial morphogenesis, and stress-induced mitochondrial hyperfusion. We present some basic directions that should be helpful in designing mito-PAGFP-based experiments. Furthermore, since analyses of mitochondrial fusion using mito-PAGFP-based assays rely on time-lapse imaging, critical parameters of time-lapse microscopy and cell preparation are also discussed.

  19. [Mitochondrial neurogastrointestinal encephalopathy disease].

    PubMed

    Benureau, A; Meyer, P; Maillet, O; Leboucq, N; Legras, S; Jeziorski, E; Fournier-Favre, S; Jeandel, C; Gaignard, P; Slama, A; Rivier, F; Roubertie, A; Carneiro, M

    2014-12-01

    Mitochondrial neurogastrointestinal encephalopathy disease (MNGIE) is a rare autosomal-recessive syndrome, resulting from mutations in the TYMP gene, located at 22q13. The mutation induces a thymidine phosphorylase (TP) deficit, which leads to a nucleotide pool imbalance and to instability of the mitochondrial DNA. The clinical picture regroups gastrointestinal dysmotility, cachexia, ptosis, ophthalmoplegia, peripheral neuropathy, and asymptomatic leukoencephalopathy. The prognosis is unfavorable. We present the case of a 14-year-old Caucasian female whose symptoms started in early childhood. The diagnosis was suspected after magnetic resonance imaging (MRI), performed given the atypical features of mental anorexia, which revealed white matter abnormalities. She presented chronic vomiting, postprandial abdominal pain, and problems gaining weight accompanied by cachexia. This diagnosis led to establishing proper care, in particular an enteral and parenteral nutrition program. There is no known specific effective treatment, but numerous studies are in progress. In this article, after reviewing the existing studies, we discuss the main diagnostic and therapeutic aspects of the disease. We argue for the necessity of performing a cerebral MRI given the atypical features of a patient with suspected mental anorexia (or when the clinical pattern of a patient with mental anorexia seems atypical), so that MNGIE can be ruled out. PMID:25282463

  20. Mitochondrial Fusion Is Essential for Steroid Biosynthesis

    PubMed Central

    Cooke, Mariana; Soria, Gastón; Cornejo Maciel, Fabiana; Gottifredi, Vanesa; Podestá, Ernesto J.

    2012-01-01

    Although the contribution of mitochondrial dynamics (a balance in fusion/fission events and changes in mitochondria subcellular distribution) to key biological process has been reported, the contribution of changes in mitochondrial fusion to achieve efficient steroid production has never been explored. The mitochondria are central during steroid synthesis and different enzymes are localized between the mitochondria and the endoplasmic reticulum to produce the final steroid hormone, thus suggesting that mitochondrial fusion might be relevant for this process. In the present study, we showed that the hormonal stimulation triggers mitochondrial fusion into tubular-shaped structures and we demonstrated that mitochondrial fusion does not only correlate-with but also is an essential step of steroid production, being both events depend on PKA activity. We also demonstrated that the hormone-stimulated relocalization of ERK1/2 in the mitochondrion, a critical step during steroidogenesis, depends on mitochondrial fusion. Additionally, we showed that the SHP2 phosphatase, which is required for full steroidogenesis, simultaneously modulates mitochondrial fusion and ERK1/2 localization in the mitochondrion. Strikingly, we found that mitofusin 2 (Mfn2) expression, a central protein for mitochondrial fusion, is upregulated immediately after hormone stimulation. Moreover, Mfn2 knockdown is sufficient to impair steroid biosynthesis. Together, our findings unveil an essential role for mitochondrial fusion during steroidogenesis. These discoveries highlight the importance of organelles’ reorganization in specialized cells, prompting the exploration of the impact that organelle dynamics has on biological processes that include, but are not limited to, steroid synthesis. PMID:23029265

  1. Mitochondrial fusion is essential for steroid biosynthesis.

    PubMed

    Duarte, Alejandra; Poderoso, Cecilia; Cooke, Mariana; Soria, Gastón; Cornejo Maciel, Fabiana; Gottifredi, Vanesa; Podestá, Ernesto J

    2012-01-01

    Although the contribution of mitochondrial dynamics (a balance in fusion/fission events and changes in mitochondria subcellular distribution) to key biological process has been reported, the contribution of changes in mitochondrial fusion to achieve efficient steroid production has never been explored. The mitochondria are central during steroid synthesis and different enzymes are localized between the mitochondria and the endoplasmic reticulum to produce the final steroid hormone, thus suggesting that mitochondrial fusion might be relevant for this process. In the present study, we showed that the hormonal stimulation triggers mitochondrial fusion into tubular-shaped structures and we demonstrated that mitochondrial fusion does not only correlate-with but also is an essential step of steroid production, being both events depend on PKA activity. We also demonstrated that the hormone-stimulated relocalization of ERK1/2 in the mitochondrion, a critical step during steroidogenesis, depends on mitochondrial fusion. Additionally, we showed that the SHP2 phosphatase, which is required for full steroidogenesis, simultaneously modulates mitochondrial fusion and ERK1/2 localization in the mitochondrion. Strikingly, we found that mitofusin 2 (Mfn2) expression, a central protein for mitochondrial fusion, is upregulated immediately after hormone stimulation. Moreover, Mfn2 knockdown is sufficient to impair steroid biosynthesis. Together, our findings unveil an essential role for mitochondrial fusion during steroidogenesis. These discoveries highlight the importance of organelles' reorganization in specialized cells, prompting the exploration of the impact that organelle dynamics has on biological processes that include, but are not limited to, steroid synthesis.

  2. Mitochondrial quality control pathways as determinants of metabolic health

    PubMed Central

    Held, Ntsiki M.

    2015-01-01

    Mitochondrial function is key for maintaining cellular health, while mitochondrial failure is associated with various pathologies, including inherited metabolic disorders and age‐related diseases. In order to maintain mitochondrial quality, several pathways of mitochondrial quality control have evolved. These systems monitor mitochondrial integrity through antioxidants, DNA repair systems, and chaperones and proteases involved in the mitochondrial unfolded protein response. Additional regulation of mitochondrial function involves dynamic exchange of components through mitochondrial fusion and fission. Sustained stress induces a selective autophagy – termed mitophagy – and ultimately leads to apoptosis. Together, these systems form a network that acts on the molecular, organellar, and cellular level. In this review, we highlight how these systems are regulated in an integrated context‐ and time‐dependent network of mitochondrial quality control that is implicated in healthy aging. PMID:26010263

  3. A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-β accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload.

    PubMed

    Sripetchwandee, Jirapas; Wongjaikam, Suwakon; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-09-22

    Iron-overload can cause cognitive impairment due to blood-brain barrier (BBB) breakdown and brain mitochondrial dysfunction. Although deferiprone (DFP) has been shown to exert neuroprotection, the head-to-head comparison among iron chelators used clinically on brain iron-overload has not been investigated. Moreover, since antioxidant has been shown to be beneficial in iron-overload condition, its combined effect with iron chelator has not been tested. Therefore, the hypothesis is that all chelators provide neuroprotection under iron-overload condition, and that a combination of an iron chelator with an antioxidant has greater efficacy than monotherapy. Male Wistar rats (n=42) were assigned to receive a normal diet (ND) or a high-iron diet (HFe) for 4months. At the 2nd month, HFe-fed rats were treated with a vehicle, deferoxamine (DFO), DFP, deferasirox (DFX), n-acetyl cysteine (NAC) or a combination of DFP with NAC, while ND-fed rats received vehicle. At the end of the experiment, rats were decapitated and brains were removed to determine brain iron level and deposition, brain mitochondrial function, BBB protein expression, brain mitochondrial dynamic, brain apoptosis, tau-hyperphosphorylation, amyloid-β (Aβ) accumulation and dendritic spine density. The results showed that iron-overload induced BBB breakdown, brain iron accumulation, brain mitochondrial dysfunction, impaired brain mitochondrial dynamics, tau-hyperphosphorylation, Aβ accumulation and dendritic spine reduction. All treatments, except DFX, attenuated these impairments. Moreover, combined therapy provided a greater efficacy than monotherapy. These findings suggested that iron-overload induced brain iron toxicity and a combination of an iron chelator with an antioxidant provided a greatest efficacy for neuroprotection than monotherapy.

  4. A combination of an iron chelator with an antioxidant effectively diminishes the dendritic loss, tau-hyperphosphorylation, amyloids-β accumulation and brain mitochondrial dynamic disruption in rats with chronic iron-overload.

    PubMed

    Sripetchwandee, Jirapas; Wongjaikam, Suwakon; Krintratun, Warunsorn; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-09-22

    Iron-overload can cause cognitive impairment due to blood-brain barrier (BBB) breakdown and brain mitochondrial dysfunction. Although deferiprone (DFP) has been shown to exert neuroprotection, the head-to-head comparison among iron chelators used clinically on brain iron-overload has not been investigated. Moreover, since antioxidant has been shown to be beneficial in iron-overload condition, its combined effect with iron chelator has not been tested. Therefore, the hypothesis is that all chelators provide neuroprotection under iron-overload condition, and that a combination of an iron chelator with an antioxidant has greater efficacy than monotherapy. Male Wistar rats (n=42) were assigned to receive a normal diet (ND) or a high-iron diet (HFe) for 4months. At the 2nd month, HFe-fed rats were treated with a vehicle, deferoxamine (DFO), DFP, deferasirox (DFX), n-acetyl cysteine (NAC) or a combination of DFP with NAC, while ND-fed rats received vehicle. At the end of the experiment, rats were decapitated and brains were removed to determine brain iron level and deposition, brain mitochondrial function, BBB protein expression, brain mitochondrial dynamic, brain apoptosis, tau-hyperphosphorylation, amyloid-β (Aβ) accumulation and dendritic spine density. The results showed that iron-overload induced BBB breakdown, brain iron accumulation, brain mitochondrial dysfunction, impaired brain mitochondrial dynamics, tau-hyperphosphorylation, Aβ accumulation and dendritic spine reduction. All treatments, except DFX, attenuated these impairments. Moreover, combined therapy provided a greater efficacy than monotherapy. These findings suggested that iron-overload induced brain iron toxicity and a combination of an iron chelator with an antioxidant provided a greatest efficacy for neuroprotection than monotherapy. PMID:27403880

  5. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  6. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age.

    PubMed

    Ferree, Andrew W; Trudeau, Kyle; Zik, Eden; Benador, Ilan Y; Twig, Gilad; Gottlieb, Roberta A; Shirihai, Orian S

    2013-11-01

    To study mitochondrial protein age dynamics, we targeted a time-sensitive fluorescent protein, MitoTimer, to the mitochondrial matrix. Mitochondrial age was revealed by the integrated portions of young (green) and old (red) MitoTimer protein. Mitochondrial protein age was dependent on turnover rates as pulsed synthesis, decreased import, or autophagic inhibition all increased the proportion of aged MitoTimer protein. Mitochondrial fusion promotes the distribution of young mitochondrial protein across the mitochondrial network as cells lacking essential fusion genes Mfn1 and Mfn2 displayed increased heterogeneity in mitochondrial protein age. Experiments in hippocampal neurons illustrate that the distribution of older and younger mitochondrial protein within the cell is determined by subcellular spatial organization and compartmentalization of mitochondria into neurites and soma. This effect was altered by overexpression of mitochondrial transport protein, RHOT1/MIRO1. Collectively our data show that distribution of young and old protein in the mitochondrial network is dependent on turnover, fusion, and transport.

  7. The Use of Cytochrome C Oxidase Enzyme Activity and Immunohistochemistry in Defining Mitochondrial Injury in Kidney Disease.

    PubMed

    Zsengellér, Zsuzsanna K; Rosen, Seymour

    2016-09-01

    The renal biopsy is a dynamic way of looking at renal disease, and tubular elements are an important part of this analysis. The mitochondria in 20 renal biopsies were examined by immunohistochemical (electron transport chain enzyme: cytochrome C oxidase IV [COX IV]) and enzyme histochemical methods (COX), both by light and electron microscopy. The distal convoluted tubules and thick ascending limbs showed the greatest intensity in the COX immunostains and enzyme activity in controls. The degree of mitochondrial COX protein and enzyme activity diminished as the tubules became atrophic. With proximal hypertrophic changes, there was great variation in both COX activity and protein expression. In contrast, in three cases of systemic lupus erythematosus, biopsied for high-grade proteinuria, the activity was consistently upregulated, whereas protein expression remained normal. These unexpected findings of heterogeneous upregulation in hypertrophy and the dyssynchrony of protein expression and activity may indicate mitochondrial dysregulation. Functional electron microscopy showed COX activity delineated by the intense mitochondrial staining in normal or hypertrophic proximal tubules. With atrophic changes, residual small mitochondria with diminished activity could be seen. With mitochondrial size abnormalities (enlargement and irregularity, adefovir toxicity), activity persisted. In the renal biopsy, mitochondrial analysis is feasible utilizing immunohistochemical and enzyme histochemical techniques. PMID:27578326

  8. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  9. Mitochondrial maintenance failure in aging and role of sexual dimorphism

    PubMed Central

    Tower, John

    2014-01-01

    Gene expression changes during aging are partly conserved across species, and suggest that oxidative stress, inflammation and proteotoxicity result from mitochondrial malfunction and abnormal mitochondrial-nuclear signaling. Mitochondrial maintenance failure may result from trade-offs between mitochondrial turnover versus growth and reproduction, sexual antagonistic pleiotropy and genetic conflicts resulting from uni-parental mitochondrial transmission, as well as mitochondrial and nuclear mutations and loss of epigenetic regulation. Aging phenotypes and interventions are often sex-specific, indicating that both male and female sexual differentiation promote mitochondrial failure and aging. Studies in mammals and invertebrates implicate autophagy, apoptosis, AKT, PARP, p53 and FOXO in mediating sex-specific differences in stress resistance and aging. The data support a model where the genes Sxl in Drosophila, sdc-2 in C. elegans, and Xist in mammals regulate mitochondrial maintenance across generations and in aging. Several interventions that increase life span cause a mitochondrial unfolded protein response (UPRmt), and UPRmt is also observed during normal aging, indicating hormesis. The UPRmt may increase life span by stimulating mitochondrial turnover through autophagy, and/or by inhibiting the production of hormones and toxic metabolites. The data suggest that metazoan life span interventions may act through a common hormesis mechanism involving liver UPRmt, mitochondrial maintenance and sexual differentiation. PMID:25447815

  10. Mitochondrial Dysfunction in Neurodegenerative Diseases

    PubMed Central

    Johri, Ashu

    2012-01-01

    Neurodegenerative diseases are a large group of disabling disorders of the nervous system, characterized by the relative selective death of neuronal subtypes. In most cases, there is overwhelming evidence of impaired mitochondrial function as a causative factor in these diseases. More recently, evidence has emerged for impaired mitochondrial dynamics (shape, size, fission-fusion, distribution, movement etc.) in neurodegenerative diseases such as Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. Here, we provide a concise overview of the major findings in recent years highlighting the importance of healthy mitochondria for a healthy neuron. PMID:22700435

  11. Development of pharmacological strategies for mitochondrial disorders.

    PubMed

    Kanabus, M; Heales, S J; Rahman, S

    2014-04-01

    Mitochondrial diseases are an unusually genetically and phenotypically heterogeneous group of disorders, which are extremely challenging to treat. Currently, apart from supportive therapy, there are no effective treatments for the vast majority of mitochondrial diseases. Huge scientific effort, however, is being put into understanding the mechanisms underlying mitochondrial disease pathology and developing potential treatments. To date, a variety of treatments have been evaluated by randomized clinical trials, but unfortunately, none of these has delivered breakthrough results. Increased understanding of mitochondrial pathways and the development of many animal models, some of which are accurate phenocopies of human diseases, are facilitating the discovery and evaluation of novel prospective treatments. Targeting reactive oxygen species has been a treatment of interest for many years; however, only in recent years has it been possible to direct antioxidant delivery specifically into the mitochondria. Increasing mitochondrial biogenesis, whether by pharmacological approaches, dietary manipulation or exercise therapy, is also currently an active area of research. Modulating mitochondrial dynamics and mitophagy and the mitochondrial membrane lipid milieu have also emerged as possible treatment strategies. Recent technological advances in gene therapy, including allotopic and transkingdom gene expression and mitochondrially targeted transcription activator-like nucleases, have led to promising results in cell and animal models of mitochondrial diseases, but most of these techniques are still far from clinical application.

  12. Mitochondrial translocation contact sites: separation of dynamic and stabilizing elements in formation of a TOM-TIM-preprotein supercomplex.

    PubMed

    Chacinska, Agnieszka; Rehling, Peter; Guiard, Bernard; Frazier, Ann E; Schulze-Specking, Agnes; Pfanner, Nikolaus; Voos, Wolfgang; Meisinger, Chris

    2003-10-15

    Preproteins with N-terminal presequences are imported into mitochondria at translocation contact sites that include the translocase of the outer membrane (TOM complex) and the presequence translocase of the inner membrane (TIM23 complex). Little is known about the functional cooperation of these translocases. We have characterized translocation contact sites by a productive TOM-TIM-preprotein supercomplex to address the role of three translocase subunits that expose domains to the intermembrane space (IMS). The IMS domain of the receptor Tom22 is required for stabilization of the translocation contact site supercomplex. Surprisingly, the N-terminal segment of the channel Tim23, which tethers the TIM23 complex to the outer membrane, is dispensable for both protein import and generation of the TOM-TIM supercomplex. Tim50, with its large IMS domain, is crucial for generation but not for stabilization of the supercomplex. Thus, Tim50 functions as a dynamic factor and the IMS domain of Tom22 represents a stabilizing element in formation of a productive translocation contact site supercomplex.

  13. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  14. Adaptive Downregulation of Mitochondrial Function in Down Syndrome

    PubMed Central

    Helguera, Pablo; Seiglie, Jaqueline; Rodriguez, Jose; Hanna, Michael; Helguera, Gustavo; Busciglio, Jorge

    2013-01-01

    SUMMARY Mitochondrial dysfunction and oxidative stress are common features of Down syndrome (DS). However, the underlying mechanisms are not known. We investigated the relationship between abnormal energy metabolism and oxidative stress with transcriptional and functional changes in DS cells. Impaired mitochondrial activity correlated with altered mitochondrial morphology. Increasing fusion capacity prevented morphological but not functional alterations in DS mitochondria. Sustained stimulation restored mitochondrial functional parameters but increased ROS production and cell damage, suggesting that reduced DS mitochondrial activity is an adaptive response to avoid injury and preserve basic cellular functions. Network analysis of genes overexpressed in DS cells demonstrated functional integration in pathways involved in energy metabolism and oxidative stress. Thus, while preventing extensive oxidative damage, mitochondrial downregulation may contribute to increased susceptibility of DS individuals to clinical conditions in which altered energy metabolism may play a role such as Alzheimer’s disease, diabetes, and some types of autistic spectrum disorders. PMID:23312288

  15. Mitochondrial dysfunctions in neurodegenerative diseases: relevance to Alzheimer's disease.

    PubMed

    Hroudová, Jana; Singh, Namrata; Fišar, Zdeněk

    2014-01-01

    Mitochondrial dysfunctions are supposed to be responsible for many neurodegenerative diseases dominating in Alzheimer's disease (AD), Parkinson's disease (PD), and Huntington's disease (HD). A growing body of evidence suggests that defects in mitochondrial metabolism and particularly of electron transport chain may play a role in pathogenesis of AD. Structurally and functionally damaged mitochondria do not produce sufficient ATP and are more prominent in producing proapoptotic factors and reactive oxygen species (ROS), and this can be an early stage of several mitochondrial disorders, including neurodegenerative diseases. Mitochondrial dysfunctions may be caused by both mutations in mitochondrial or nuclear DNA that code mitochondrial components and by environmental causes. In the following review, common aspects of mitochondrial impairment concerned about neurodegenerative diseases are summarized including ROS production, impaired mitochondrial dynamics, and apoptosis. Also, damaged function of electron transport chain complexes and interactions between pathological proteins and mitochondria are described for AD particularly and marginally for PD and HD.

  16. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  17. Loss of PLA2G6 leads to elevated mitochondrial lipid peroxidation and mitochondrial dysfunction

    PubMed Central

    Castillo-Quan, Jorge Iván; Bartolome, Fernando; Angelova, Plamena R.; Li, Li; Pope, Simon; Cochemé, Helena M.; Khan, Shabana; Asghari, Shabnam; Bhatia, Kailash P.; Hardy, John; Abramov, Andrey Y.; Partridge, Linda

    2015-01-01

    The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in a subgroup of patients with autosomal recessive early-onset dystonia-parkinsonism. Neuropathological examination revealed widespread Lewy body pathology and the accumulation of hyperphosphorylated tau, supporting a link between PLA2G6 mutations and parkinsonian disorders. Here we show that knockout of the Drosophila homologue of the PLA2G6 gene, iPLA2-VIA, results in reduced survival, locomotor deficits and organismal hypersensitivity to oxidative stress. Furthermore, we demonstrate that loss of iPLA2-VIA function leads to a number of mitochondrial abnormalities, including mitochondrial respiratory chain dysfunction, reduced ATP synthesis and abnormal mitochondrial morphology. Moreover, we show that loss of iPLA2-VIA is strongly associated with increased lipid peroxidation levels. We confirmed our findings using cultured fibroblasts taken from two patients with mutations in the PLA2G6 gene. Similar abnormalities were seen including elevated mitochondrial lipid peroxidation and mitochondrial membrane defects, as well as raised levels of cytoplasmic and mitochondrial reactive oxygen species. Finally, we demonstrated that deuterated polyunsaturated fatty acids, which inhibit lipid peroxidation, were able to partially rescue the locomotor abnormalities seen in aged flies lacking iPLA2-VIA gene function, and restore mitochondrial membrane potential in fibroblasts from patients with PLA2G6 mutations. Taken together, our findings demonstrate that loss of normal PLA2G6 gene activity leads to lipid peroxidation, mitochondrial dysfunction and subsequent mitochondrial membrane

  18. Dissociation of mitochondrial from sarcoplasmic reticular stress in Drosophila cardiomyopathy induced by molecularly distinct mitochondrial fusion defects

    PubMed Central

    Bhandari, Poonam; Song, Moshi; Dorn, Gerald W

    2015-01-01

    Mitochondrial dynamism (fusion and fission) is responsible for remodeling interconnected mitochondrial networks in some cell types. Adult cardiac myocytes lack mitochondrial networks, and their mitochondria are inherently “fragmented”. Mitochondrial fusion/fission is so infrequent in cardiomyocytes as to not be observable under normal conditions, suggesting that mitochondrial dynamism may be dispensable in this cell type. However, we previously observed that cardiomyocyte-specific genetic suppression of mitochondrial fusion factors optic atrophy 1 (Opa1) and mitofusin/MARF evokes cardiomyopathy in Drosophila hearts. We posited that fusion-mediated remodeling of mitochondria may be critical for cardiac homeostasis, although never directly observed. Alternately, we considered that inner membrane Opa1 and outer membrane mitofusin/MARF might have other as-yet poorly described roles that affect mitochondrial and cardiac function. Here we compared heart tube function in three models of mitochondrial fragmentation in Drosophila cardiomyocytes: Drp1 expression, Opa1 RNAi, and mitofusin MARF RNA1. Mitochondrial fragmentation evoked by enhanced Drp1-mediated fission did not adversely impact heart tube function. In contrast, RNAi-mediated suppression of either Opa1 or mitofusin/MARF induced cardiac dysfunction associated with mitochondrial depolarization and ROS production. Inhibiting ROS by overexpressing superoxide dismutase (SOD) or suppressing ROMO1 prevented mitochondrial and heart tube dysfunction provoked by Opa1 RNAi, but not by mitofusin/MARF RNAi. In contrast, enhancing the ability of endoplasmic/sarcoplasmic reticulum to handle stress by expressing Xbp1 rescued the cardiomyopathy of mitofusin/MARF insufficiency without improving that caused by Opa1 deficiency. We conclude that decreased mitochondrial size is not inherently detrimental to cardiomyocytes. Rather, preservation of mitochondrial function by Opa1 located on the inner mitochondrial membrane, and

  19. Abnormal uterine bleeding.

    PubMed

    Jennings, J C

    1995-11-01

    Physicians who care for female patients cannot avoid the frequent complaint of abnormal uterine bleeding. Knowledge of the disorders that cause this problem can prevent serious consequences in many patients and improve the quality of life for many others. The availability of noninvasive and minimally invasive diagnostic studies and minimally invasive surgical treatment has revolutionized management of abnormal uterine bleeding. Similar to any other disorder, the extent to which a physician manages abnormal uterine bleeding depends on his or her own level of comfort. When limitations of either diagnostic or therapeutic capability are encountered, consultation and referral should be used to the best interest of patients.

  20. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  1. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  2. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  3. Ultrastructure of mitochondrial nucleoid and its surroundings.

    PubMed

    Prachař, Jarmil

    2016-07-01

    Mitochondrial nucleoids (hereafter nucleoids) contain genetic information, mitochondrial DNA, prerequisite for mitochondrial functioning, particularly information required for mitochondrial electron transport. To understand nucleoid functioning, it is imperative to know its ultrastructure and dynamics in the context of the actual mitochondrial state. In this study, we document the internal structure, different positions of nucleoids inside the mitochondrial tube and their different morphology. The nucleoid cores appear in section as circular or slightly oval objects ranging from 50 to 100 nm in diameter. They are mainly located in the matrix between cristae inside the mitochondrial tube but they are also frequently found close to the inner mitochondrial surface. In tightly packed form, their interior exhibits sophisticated nucleoprotein regularity. The core surroundings form an electron-lucent thick layer which is probably partitioned into separate chambers. We suggest that the morphology of nucleoids mirrors the mode of energy production, glycolysis versus oxidative phosphorylation. The new high resolution transmission electron microscopy method enabled us to obtain morphological characteristics on yet unpublished level. PMID:27174900

  4. Deconstructing mitochondrial dysfunction in Alzheimer disease.

    PubMed

    García-Escudero, Vega; Martín-Maestro, Patricia; Perry, George; Avila, Jesús

    2013-01-01

    There is mounting evidence showing that mitochondrial damage plays an important role in Alzheimer disease. Increased oxygen species generation and deficient mitochondrial dynamic balance have been suggested to be the reason as well as the consequence of Alzheimer-related pathology. Mitochondrial damage has been related to amyloid-beta or tau pathology or to the presence of specific presenilin-1 mutations. The contribution of these factors to mitochondrial dysfunction is reviewed in this paper. Due to the relevance of mitochondrial alterations in Alzheimer disease, recent works have suggested the therapeutic potential of mitochondrial-targeted antioxidant. On the other hand, autophagy has been demonstrated to play a fundamental role in Alzheimer-related protein stress, and increasing data shows that this pathway is altered in the disease. Moreover, mitochondrial alterations have been related to an insufficient clearance of dysfunctional mitochondria by autophagy. Consequently, different approaches for the removal of damaged mitochondria or to decrease the related oxidative stress in Alzheimer disease have been described. To understand the role of mitochondrial function in Alzheimer disease it is necessary to generate human cellular models which involve living neurons. We have summarized the novel protocols for the generation of neurons by reprogramming or direct transdifferentiation, which offer useful tools to achieve this result.

  5. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    SciTech Connect

    Palmeira, Carlos M. Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-12-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes.

  6. Mitochondrial Biology and Neurological Diseases

    PubMed Central

    Arun, Siddharth; Liu, Lei; Donmez, Gizem

    2016-01-01

    Mitochondria are extremely active organelles that perform a variety of roles in the cell including energy production, regulation of calcium homeostasis, apoptosis, and population maintenance through fission and fusion. Mitochondrial dysfunction in the form of oxidative stress and mutations can contribute to the pathogenesis of various neurodegenerative diseases such as Parkinson’s (PD), Alzheimer’s (AD), and Huntington’s diseases (HD). Abnormalities of Complex I function in the electron transport chain have been implicated in some neurodegenerative diseases, inhibiting ATP production and generating reactive oxygen species that can cause major damage to mitochondria Mutations in both nuclear and mitochondrial DNA can contribute to neurodegenerative disease, although the pathogenesis of these conditions tends to focus on nuclear mutations. In PD, nuclear genome mutations in the PINK1 and parkin genes have been implicated in neurodegeneration [1], while mutations in APP, PSEN1 and PSEN2 have been implicated in a variety of clinical symptoms of AD [5]. Mutant htt protein is known to cause HD [2]. Much progress has been made to determine some causes of these neurodegenerative diseases, though permanent treatments have yet to be developed. In this review, we discuss the roles of mitochondrial dysfunction in the pathogenesis of these diseases. PMID:26903445

  7. Modulating mitochondrial quality in disease transmission: towards enabling mitochondrial DNA disease carriers to have healthy children.

    PubMed

    Diot, Alan; Dombi, Eszter; Lodge, Tiffany; Liao, Chunyan; Morten, Karl; Carver, Janet; Wells, Dagan; Child, Tim; Johnston, Iain G; Williams, Suzannah; Poulton, Joanna

    2016-08-15

    One in 400 people has a maternally inherited mutation in mtDNA potentially causing incurable disease. In so-called heteroplasmic disease, mutant and normal mtDNA co-exist in the cells of carrier women. Disease severity depends on the proportion of inherited abnormal mtDNA molecules. Families who have had a child die of severe, maternally inherited mtDNA disease need reliable information on the risk of recurrence in future pregnancies. However, prenatal diagnosis and even estimates of risk are fraught with uncertainty because of the complex and stochastic dynamics of heteroplasmy. These complications include an mtDNA bottleneck, whereby hard-to-predict fluctuations in the proportions of mutant and normal mtDNA may arise between generations. In 'mitochondrial replacement therapy' (MRT), damaged mitochondria are replaced with healthy ones in early human development, using nuclear transfer. We are developing non-invasive alternatives, notably activating autophagy, a cellular quality control mechanism, in which damaged cellular components are engulfed by autophagosomes. This approach could be used in combination with MRT or with the regular management, pre-implantation genetic diagnosis (PGD). Mathematical theory, supported by recent experiments, suggests that this strategy may be fruitful in controlling heteroplasmy. Using mice that are transgenic for fluorescent LC3 (the hallmark of autophagy) we quantified autophagosomes in cleavage stage embryos. We confirmed that the autophagosome count peaks in four-cell embryos and this correlates with a drop in the mtDNA content of the whole embryo. This suggests removal by mitophagy (mitochondria-specific autophagy). We suggest that modulating heteroplasmy by activating mitophagy may be a useful complement to mitochondrial replacement therapy. PMID:27528757

  8. Modulating mitochondrial quality in disease transmission: towards enabling mitochondrial DNA disease carriers to have healthy children

    PubMed Central

    Diot, Alan; Dombi, Eszter; Lodge, Tiffany; Liao, Chunyan; Morten, Karl; Carver, Janet; Wells, Dagan; Child, Tim; Johnston, Iain G.; Williams, Suzannah; Poulton, Joanna

    2016-01-01

    One in 400 people has a maternally inherited mutation in mtDNA potentially causing incurable disease. In so-called heteroplasmic disease, mutant and normal mtDNA co-exist in the cells of carrier women. Disease severity depends on the proportion of inherited abnormal mtDNA molecules. Families who have had a child die of severe, maternally inherited mtDNA disease need reliable information on the risk of recurrence in future pregnancies. However, prenatal diagnosis and even estimates of risk are fraught with uncertainty because of the complex and stochastic dynamics of heteroplasmy. These complications include an mtDNA bottleneck, whereby hard-to-predict fluctuations in the proportions of mutant and normal mtDNA may arise between generations. In ‘mitochondrial replacement therapy’ (MRT), damaged mitochondria are replaced with healthy ones in early human development, using nuclear transfer. We are developing non-invasive alternatives, notably activating autophagy, a cellular quality control mechanism, in which damaged cellular components are engulfed by autophagosomes. This approach could be used in combination with MRT or with the regular management, pre-implantation genetic diagnosis (PGD). Mathematical theory, supported by recent experiments, suggests that this strategy may be fruitful in controlling heteroplasmy. Using mice that are transgenic for fluorescent LC3 (the hallmark of autophagy) we quantified autophagosomes in cleavage stage embryos. We confirmed that the autophagosome count peaks in four-cell embryos and this correlates with a drop in the mtDNA content of the whole embryo. This suggests removal by mitophagy (mitochondria-specific autophagy). We suggest that modulating heteroplasmy by activating mitophagy may be a useful complement to mitochondrial replacement therapy. PMID:27528757

  9. LHON/MELAS overlap syndrome associated with a mitochondrial MTND1 gene mutation.

    PubMed

    Blakely, Emma L; de Silva, Rajith; King, Andrew; Schwarzer, Verena; Harrower, Tim; Dawidek, Gervase; Turnbull, Douglass M; Taylor, Robert W

    2005-05-01

    Pathogenic point mutations in the mitochondrial MTND1 gene have previously been described in association with two distinct clinical phenotypes -- Leber hereditary optic neuropathy (LHON) and mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS). Here we report the first heteroplasmic mitochondrial DNA (mtDNA) point mutation (3376G>A) in the MTND1 gene associated with an overlap syndrome comprising the clinical features of both LHON and MELAS. Muscle histochemistry revealed subtle mitochondrial abnormalities, while biochemical analysis showed an isolated complex I deficiency. Our findings serve to highlight the growing importance of mutations in mitochondrial complex I structural genes in MELAS and its associated overlap syndromes.

  10. Mitochondrial dysfunction and resuscitation in sepsis.

    PubMed

    Ruggieri, Albert J; Levy, Richard J; Deutschman, Clifford S

    2010-07-01

    Sepsis is among the most common causes of death in patients in intensive care units in North America and Europe. In the United States, it accounts for upwards of 250,000 deaths each year. Investigations into the pathobiology of sepsis have most recently focused on common cellular and subcellular processes. One possibility would be a defect in the production of energy, which translates to an abnormality in the production of adenosine triphosphate and therefore in the function of mitochondria. This article presents a clear role for mitochondrial dysfunction in the pathogenesis and pathophysiology of sepsis. What is less clear is the teleology underlying this response. Prolonged mitochondrial dysfunction and impaired biogenesis clearly are detrimental. However, early inhibition of mitochondrial function may be adaptive. PMID:20643307

  11. Metabolic Determinants of Mitochondrial Function in Oocytes.

    PubMed

    Seidler, Emily A; Moley, Kelle H

    2015-11-01

    Mitochondrial production of cellular energy is essential to oocyte function, zygote development and successful continuation of pregnancy. This review focuses on several key functions of healthy oocyte mitochondria and the effect of pathologic states such as aging, oxidative stress and apoptosis on these functions. The effect of these abnormal conditions is presented in terms of clinical presentations, specifically maternal obesity, diminished ovarian reserve and assisted reproductive technologies.

  12. Protecting the mitochondrial powerhouse.

    PubMed

    Scheibye-Knudsen, Morten; Fang, Evandro F; Croteau, Deborah L; Wilson, David M; Bohr, Vilhelm A

    2015-03-01

    Mitochondria are the oxygen-consuming power plants of cells. They provide a critical milieu for the synthesis of many essential molecules and allow for highly efficient energy production through oxidative phosphorylation. The use of oxygen is, however, a double-edged sword that on the one hand supplies ATP for cellular survival, and on the other leads to the formation of damaging reactive oxygen species (ROS). Different quality control pathways maintain mitochondria function including mitochondrial DNA (mtDNA) replication and repair, fusion-fission dynamics, free radical scavenging, and mitophagy. Further, failure of these pathways may lead to human disease. We review these pathways and propose a strategy towards a treatment for these often untreatable disorders.

  13. Mitochondrial RNA granules: Compartmentalizing mitochondrial gene expression

    PubMed Central

    Jourdain, Alexis A.; Boehm, Erik; Maundrell, Kinsey

    2016-01-01

    In mitochondria, DNA replication, gene expression, and RNA degradation machineries coexist within a common nondelimited space, raising the question of how functional compartmentalization of gene expression is achieved. Here, we discuss the recently characterized “mitochondrial RNA granules,” mitochondrial subdomains with an emerging role in the regulation of gene expression. PMID:26953349

  14. Mitochondrial traffic jams in Alzheimer's disease - pinpointing the roadblocks.

    PubMed

    Correia, Sónia C; Perry, George; Moreira, Paula I

    2016-10-01

    The vigorous axonal transport of mitochondria, which serves to distribute these organelles in a dynamic and non-uniform fashion, is crucial to fulfill neuronal energetic requirements allowing the maintenance of neurons structure and function. Particularly, axonal transport of mitochondria and their spatial distribution among the synapses are directly correlated with synaptic activity and integrity. Despite the basis of Alzheimer's disease (AD) remains enigmatic, axonal pathology and synaptic dysfunction occur prior the occurrence of amyloid-β (Aβ) deposition and tau aggregation, the two classical hallmarks of this devastating neurodegenerative disease. Importantly, the early stages of AD are marked by defects on axonal transport of mitochondria as denoted by the abnormal accumulation of mitochondria within large swellings along dystrophic and degenerating neuritis. Within this scenario, this review is devoted to identify the molecular "roadblocks" underlying the abnormal axonal transport of mitochondria and consequent synaptic "starvation" and neuronal degeneration in AD. Understanding the molecular nature of defective mitochondrial transport may provide a new avenue to counteract AD pathology. PMID:27460705

  15. Exercise-induced mitochondrial dysfunction: a myth or reality?

    PubMed

    Ostojic, Sergej M

    2016-08-01

    Beneficial effects of physical activity on mitochondrial health are well substantiated in the scientific literature, with regular exercise improving mitochondrial quality and quantity in normal healthy population, and in cardiometabolic and neurodegenerative disorders and aging. However, several recent studies questioned this paradigm, suggesting that extremely heavy or exhaustive exercise fosters mitochondrial disturbances that could permanently damage its function in health and disease. Exercise-induced mitochondrial dysfunction (EIMD) might be a key proxy for negative outcomes of exhaustive exercise, being a pathophysiological substrate of heart abnormalities, chronic fatigue syndrome (CFS) or muscle degeneration. Here, we overview possible factors that mediate negative effects of exhaustive exercise on mitochondrial function and structure, and put forward alternative solutions for the management of EIMD. PMID:27389587

  16. Miro, MCU, and calcium: bridging our understanding of mitochondrial movement in axons.

    PubMed

    Niescier, Robert F; Chang, Karen T; Min, Kyung-Tai

    2013-09-10

    Neurons are extremely polarized structures with long axons and dendrites, which require proper distribution of mitochondria and maintenance of mitochondrial dynamics for neuronal functions and survival. Indeed, recent studies show that various neurological disorders are linked to mitochondrial transport in neurons. Mitochondrial anterograde transport is believed to deliver metabolic energy to synaptic terminals where energy demands are high, while mitochondrial retrograde transport is required to repair or remove damaged mitochondria in axons. It has been suggested that Ca(2) (+) plays a key role in regulating mitochondrial transport by altering the configuration of mitochondrial protein, miro. However, molecular mechanisms that regulate mitochondrial transport in neurons still are not well characterized. In this review, we will discuss the roles of miro in mitochondrial transport and how the recently identified components of the mitochondrial calcium uniporter add to our current model of mitochondrial mobility regulation.

  17. Modeling of Mitochondrial Donut Formation

    PubMed Central

    Long, Qi; Zhao, Danyun; Fan, Weimin; Yang, Liang; Zhou, Yanshuang; Qi, Juntao; Wang, Xin; Liu, Xingguo

    2015-01-01

    Mitochondria are highly dynamic cell organelles. Continual cycles of fusion and fission play an important role in mitochondrial metabolism and cellular signaling. Previously, a novel mitochondrial morphology, the donut, was reported in cells after hypoxia-reoxygenation or osmotic pressure changes. However, the mechanism of donut formation remained elusive. Here, we obtained the distribution of donut diameters (D = 2R) and found that 95% are >0.8 μm. We also performed highly precise measurements of the mitochondrial tubule diameters using superresolution and electron microscopy. Then, we set up a model by calculating the mitochondrial bending energy and osmotic potential during donut formation. It shows that the bending energy is increased as the radius of curvature, R, gets smaller in the process of donut formation, especially for radii <0.4 μm, creating a barrier to donut formation. The calculations also show that osmotic potential energy release can balance the rising bending energy through volume expansion. Finally, we revealed the donut formation process in a Gibbs free-energy-dependent model combining calculations and measurements. PMID:26331247

  18. Computational Modeling of Mitochondrial Function

    PubMed Central

    Cortassa, Sonia; Aon, Miguel A.

    2012-01-01

    The advent of techniques with the ability to scan massive changes in cellular makeup (genomics, proteomics, etc.) has revealed the compelling need for analytical methods to interpret and make sense of those changes. Computational models built on sound physico-chemical mechanistic basis are unavoidable at the time of integrating, interpreting, and simulating high-throughput experimental data. Another powerful role of computational models is predicting new behavior provided they are adequately validated. Mitochondrial energy transduction has been traditionally studied with thermodynamic models. More recently, kinetic or thermo-kinetic models have been proposed, leading the path toward an understanding of the control and regulation of mitochondrial energy metabolism and its interaction with cytoplasmic and other compartments. In this work, we outline the methods, step-by-step, that should be followed to build a computational model of mitochondrial energetics in isolation or integrated to a network of cellular processes. Depending on the question addressed by the modeler, the methodology explained herein can be applied with different levels of detail, from the mitochondrial energy producing machinery in a network of cellular processes to the dynamics of a single enzyme during its catalytic cycle. PMID:22057575

  19. Mitochondrial function and insulin secretion.

    PubMed

    Maechler, Pierre

    2013-10-15

    In the endocrine fraction of the pancreas, the β-cell rapidly reacts to fluctuations in blood glucose concentrations by adjusting the rate of insulin secretion. Glucose-sensing coupled to insulin exocytosis depends on transduction of metabolic signals into intracellular messengers recognized by the secretory machinery. Mitochondria play a central role in this process by connecting glucose metabolism to insulin release. Mitochondrial activity is primarily regulated by metabolic fluxes, but also by dynamic morphology changes and free Ca(2+) concentrations. Recent advances of mitochondrial Ca(2+) homeostasis are discussed; in particular the roles of the newly-identified mitochondrial Ca(2+) uniporter MCU and its regulatory partner MICU1, as well as the mitochondrial Na(+)-Ca(2+) exchanger. This review describes how mitochondria function both as sensors and generators of metabolic signals; such as NADPH, long chain acyl-CoA, glutamate. The coupling factors are additive to the Ca(2+) signal and participate to the amplifying pathway of glucose-stimulated insulin secretion.

  20. [Hair shaft abnormalities].

    PubMed

    Itin, P H; Düggelin, M

    2002-05-01

    Hair shaft disorders may lead to brittleness and uncombable hair. In general the hair feels dry and lusterless. Hair shaft abnormalities may occur as localized or generalized disorders. Genetic predisposition or exogenous factors are able to produce and maintain hair shaft abnormalities. In addition to an extensive history and physical examination the most important diagnostic examination to analyze a hair shaft problem is light microscopy. Therapy of hair shaft disorders should focus to the cause. In addition, minimizing traumatic influences to hair shafts, such as dry hair with an electric dryer, permanent waves and dyes is important. A short hair style is more suitable for such patients with hair shaft disorders.

  1. Primary Mitochondrial Disease and Secondary Mitochondrial Dysfunction: Importance of Distinction for Diagnosis and Treatment.

    PubMed

    Niyazov, Dmitriy M; Kahler, Stephan G; Frye, Richard E

    2016-07-01

    Mitochondrial disease refers to a heterogeneous group of disorders resulting in defective cellular energy production due to abnormal oxidative phosphorylation (oxphos). Primary mitochondrial disease (PMD) is diagnosed clinically and ideally, but not always, confirmed by a known or indisputably pathogenic mitochondrial DNA (mtDNA) or nuclear DNA (nDNA) mutation. The PMD genes either encode oxphos proteins directly or they affect oxphos function by impacting production of the complex machinery needed to run the oxphos process. However, many disorders have the 'mitochondrial' phenotype without an identifiable mtDNA or nDNA mutation or they have a variant of unknown clinical significance. Secondary mitochondrial dysfunction (SMD) can be caused by genes encoding neither function nor production of the oxphos proteins and accompanies many hereditary non-mitochondrial diseases. SMD may also be due to nongenetic causes such as environmental factors. In our practice, we see many patients with clinical signs of mitochondrial dysfunction based on phenotype, biomarkers, imaging, muscle biopsy, or negative/equivocal mtDNA or nDNA test results. In these cases, it is often tempting to assign a patient's phenotype to 'mitochondrial disease', but SMD is often challenging to distinguish from PMD. Fortunately, rapid advances in molecular testing, made possible by next generation sequencing, have been effective at least in some cases in establishing accurate diagnoses to distinguish between PMD and SMD. This is important, since their treatments and prognoses can be quite different. However, even in the absence of the ability to distinguish between PMD and SMD, treating SMD with standard treatments for PMD can be effective. We review the latest findings regarding mitochondrial disease/dysfunction and give representative examples in which differentiation between PMD and SMD has been crucial for diagnosis and treatment. PMID:27587988

  2. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  3. Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients.

    PubMed

    Ehinger, Johannes K; Morota, Saori; Hansson, Magnus J; Paul, Gesine; Elmér, Eskil

    2015-06-01

    Mitochondrial dysfunction is implicated in amyotrophic lateral sclerosis, where the progressive degeneration of motor neurons results in muscle atrophy, paralysis and death. Abnormalities in both central nervous system and muscle mitochondria have previously been demonstrated in patient samples, indicating systemic disease. In this case-control study, venous blood samples were acquired from 24 amyotrophic lateral sclerosis patients and 21 age-matched controls. Platelets and peripheral blood mononuclear cells were isolated and mitochondrial oxygen consumption measured in intact and permeabilized cells with additions of mitochondrial substrates, inhibitors and titration of an uncoupler. Respiratory values were normalized to cell count and for two markers of cellular mitochondrial content, citrate synthase activity and mitochondrial DNA, respectively. Mitochondrial function was correlated with clinical staging of disease severity. Complex IV (cytochrome c-oxidase)-activity normalized to mitochondrial content was decreased in platelets from amyotrophic lateral sclerosis patients both when normalized to citrate synthase activity and mitochondrial DNA copy number. In mononuclear cells, complex IV-activity was decreased when normalized to citrate synthase activity. Mitochondrial content was increased in amyotrophic lateral sclerosis patient platelets. In mononuclear cells, complex I activity declined and mitochondrial content increased progressively with advancing disease stage. The findings are, however, based on small subsets of patients and need to be confirmed. We conclude that when normalized to mitochondria-specific content, complex IV-activity is reduced in blood cells from amyotrophic lateral sclerosis patients and that there is an apparent compensatory increase in cellular mitochondrial content. This supports systemic involvement in amyotrophic lateral sclerosis and suggests further study of mitochondrial function in blood cells as a future biomarker for the

  4. Abnormal calcium homeostasis in peripheral neuropathies

    PubMed Central

    Fernyhough, Paul; Calcutt, Nigel A.

    2010-01-01

    Abnormal neuronal calcium (Ca2+) homeostasis has been implicated in numerous diseases of the nervous system. The pathogenesis of two increasingly common disorders of the peripheral nervous system, namely neuropathic pain and diabetic polyneuropathy, has been associated with aberrant Ca2+ channel expression and function. Here we review the current state of knowledge regarding the role of Ca2+ dyshomeostasis and associated mitochondrial dysfunction in painful and diabetic neuropathies. The central impact of both alterations of Ca2+ signalling at the plasma membrane and also intracellular Ca2+ handling on sensory neuron function is discussed and related to abnormal endoplasmic reticulum performance. We also present new data highlighting sub-optimal axonal Ca 2+ signalling in diabetic neuropathy and discuss the putative role for this abnormality in the induction of axonal degeneration in peripheral neuropathies. The accumulating evidence implicating Ca2+ dysregulation with both painful and degenerative neuropathies, along with recent advances in understanding of regional variations in Ca2+ channel and pump structures, makes modulation of neuronal Ca2+ handling an increasingly viable approach for therapeutic interventions against the painful and degenerative aspects of many peripheral neuropathies. PMID:20034667

  5. Roles of mitochondrial fragmentation and reactive oxygen species in mitochondrial dysfunction and myocardial insulin resistance

    SciTech Connect

    Watanabe, Tomoyuki; Saotome, Masao; Nobuhara, Mamoru; Sakamoto, Atsushi; Urushida, Tsuyoshi; Katoh, Hideki; Satoh, Hiroshi; Funaki, Makoto; Hayashi, Hideharu

    2014-05-01

    Purpose: Evidence suggests an association between aberrant mitochondrial dynamics and cardiac diseases. Because myocardial metabolic deficiency caused by insulin resistance plays a crucial role in heart disease, we investigated the role of dynamin-related protein-1 (DRP1; a mitochondrial fission protein) in the pathogenesis of myocardial insulin resistance. Methods and Results: DRP1-expressing H9c2 myocytes, which had fragmented mitochondria with mitochondrial membrane potential (ΔΨ{sub m}) depolarization, exhibited attenuated insulin signaling and 2-deoxy-D-glucose (2-DG) uptake, indicating insulin resistance. Treatment of the DRP1-expressing myocytes with Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride (TMPyP) significantly improved insulin resistance and mitochondrial dysfunction. When myocytes were exposed to hydrogen peroxide (H{sub 2}O{sub 2}), they increased DRP1 expression and mitochondrial fragmentation, resulting in ΔΨ{sub m} depolarization and insulin resistance. When DRP1 was suppressed by siRNA, H{sub 2}O{sub 2}-induced mitochondrial dysfunction and insulin resistance were restored. Our results suggest that a mutual enhancement between DRP1 and reactive oxygen species could induce mitochondrial dysfunction and myocardial insulin resistance. In palmitate-induced insulin-resistant myocytes, neither DRP1-suppression nor TMPyP restored the ΔΨ{sub m} depolarization and impaired 2-DG uptake, however they improved insulin signaling. Conclusions: A mutual enhancement between DRP1 and ROS could promote mitochondrial dysfunction and inhibition of insulin signal transduction. However, other mechanisms, including lipid metabolite-induced mitochondrial dysfunction, may be involved in palmitate-induced insulin resistance. - Highlights: • DRP1 promotes mitochondrial fragmentation and insulin-resistance. • A mutual enhancement between DRP1 and ROS ipromotes insulin-resistance. • Palmitate increases DRP1 expression and induces insulin

  6. Mitochondrial Sirtuin 3 and Renal Diseases.

    PubMed

    Perico, Luca; Morigi, Marina; Benigni, Ariela

    2016-01-01

    Mitochondria are dynamic organelles whose functions are tightly regulated at multiple levels to maintain proper cellular homeostasis. Mitochondrial Sirtuin 3 (SIRT3), which belongs to an evolutionary conserved family of NAD+-dependent deacetylases, is a key regulator of the mitochondrial respiratory chain, ATP production, and fatty acid β-oxidation, and it exerts an antioxidant activity. Changes in SIRT3 expression are critical in the pathophysiology of several diseases, such as metabolic syndrome, diabetes, cancer, and aging. In experimental acute kidney injury (AKI), impairment of renal function and development of tubular injury are associated with SIRT3 reduction and mitochondrial dysfunction in proximal tubuli. SIRT3-deficient mice are more susceptible to AKI and die. Pharmacological manipulations able to increase SIRT3 preserve mitochondrial integrity, markedly limit renal injury, and accelerate functional recovery. This review highlights all the selective rescue mechanisms that point to the key role of SIRT3 as a new therapeutic target for curing renal diseases. PMID:27362524

  7. cAMP signalling meets mitochondrial compartments.

    PubMed

    Lefkimmiatis, Konstantinos

    2014-04-01

    Mitochondria are highly dynamic organelles comprising at least three distinct areas, the OMM (outer mitochondrial membrane), the IMS (intermembrane space) and the mitochondrial matrix. Physical compartmentalization allows these organelles to host different functional domains and therefore participate in a variety of important cellular actions such as ATP synthesis and programmed cell death. In a surprising homology, it is now widely accepted that the ubiquitous second messenger cAMP uses the same stratagem, compartmentalization, in order to achieve the characteristic functional pleiotropy of its pathway. Accumulating evidence suggests that all the main mitochondrial compartments contain segregated cAMP cascades; however, the regulatory properties and functional significance of such domains are not fully understood and often remain controversial issues. The present mini-review discusses our current knowledge of how the marriage between mitochondrial and cAMP compartmentalization is achieved and its effects on the biology of the cell. PMID:24646228

  8. Ionizing radiation accelerates Drp1-dependent mitochondrial fission, which involves delayed mitochondrial reactive oxygen species production in normal human fibroblast-like cells

    SciTech Connect

    Kobashigawa, Shinko; Suzuki, Keiji; Yamashita, Shunichi

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer We report first time that ionizing radiation induces mitochondrial dynamic changes. Black-Right-Pointing-Pointer Radiation-induced mitochondrial fission was caused by Drp1 localization. Black-Right-Pointing-Pointer We found that radiation causes delayed ROS from mitochondria. Black-Right-Pointing-Pointer Down regulation of Drp1 rescued mitochondrial dysfunction after radiation exposure. -- Abstract: Ionizing radiation is known to increase intracellular level of reactive oxygen species (ROS) through mitochondrial dysfunction. Although it has been as a basis of radiation-induced genetic instability, the mechanism involving mitochondrial dysfunction remains unclear. Here we studied the dynamics of mitochondrial structure in normal human fibroblast like cells exposed to ionizing radiation. Delayed mitochondrial O{sub 2}{sup {center_dot}-} production was peaked 3 days after irradiation, which was coupled with accelerated mitochondrial fission. We found that radiation exposure accumulated dynamin-related protein 1 (Drp1) to mitochondria. Knocking down of Drp1 expression prevented radiation induced acceleration of mitochondrial fission. Furthermore, knockdown of Drp1 significantly suppressed delayed production of mitochondrial O{sub 2}{sup {center_dot}-}. Since the loss of mitochondrial membrane potential, which was induced by radiation was prevented in cells knocking down of Drp1 expression, indicating that the excessive mitochondrial fission was involved in delayed mitochondrial dysfunction after irradiation.

  9. Mitochondrial dysfunction in migraine.

    PubMed

    Yorns, William R; Hardison, H Huntley

    2013-09-01

    Migraine is the most frequent type of headache in children. In the 1980s, scientists first hypothesized a connection between migraine and mitochondrial (mt) disorders. More recent studies have suggested that at least some subtypes of migraine may be related to a mt defect. Different types of evidence support a relationship between mitochondria (mt) and migraine: (1) Biochemical evidence: Abnormal mt function translates into high intracellular penetration of Ca(2+), excessive production of free radicals, and deficient oxidative phosphorylation, which ultimately causes energy failure in neurons and astrocytes, thus triggering migraine mechanisms, including spreading depression. The mt markers of these events are low activity of superoxide dismutase, activation of cytochrome-c oxidase and nitric oxide, high levels of lactate and pyruvate, and low ratios of phosphocreatine-inorganic phosphate and N-acetylaspartate-choline. (2) Morphologic evidence: mt abnormalities have been shown in migraine sufferers, the most characteristic ones being direct observation in muscle biopsy of ragged red and cytochrome-c oxidase-negative fibers, accumulation of subsarcolemmal mt, and demonstration of giant mt with paracrystalline inclusions. (3) Genetic evidence: Recent studies have identified specific mutations responsible for migraine susceptibility. However, the investigation of the mtDNA mutations found in classic mt disorders (mt encephalomyopathy with lactic acidosis and stroke-like episodes, myoclonus epilepsy with ragged red fibers, Kearns-Sayre syndrome, and Leber hereditary optic neuropathy) has not demonstrated any association. Recently, 2 common mtDNA polymorphisms (16519C→T and 3010G→A) have been associated with pediatric cyclic vomiting syndrome and migraine. Also, POLG mutations (eg, p.T851 A, p.N468D, p.Y831C, p.G517V, and p.P163S) can cause disease through impaired replication of mtDNA, including migraine. Further studies to investigate the relationship between mt

  10. OPA1 and mitochondrial solute carriers in bioenergetic metabolism

    PubMed Central

    Germain, Marc

    2015-01-01

    The mitochondrial fusion protein optic atrophy 1 (OPA1) is required to maintain cristae structure and for ATP synthase assembly. Our recent work demonstrates that OPA1 dynamically regulates these processes by sensing changes in nutrient availability through mitochondrial solute carriers and adjusting the metabolic output of mitochondria accordingly. This is a critical survival process as its inhibition leads to cell death. PMID:27308447

  11. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  12. Mitochondrial Approaches to Protect Against Cardiac Ischemia and Reperfusion Injury

    PubMed Central

    Camara, Amadou K. S.; Bienengraeber, Martin; Stowe, David F.

    2011-01-01

    The mitochondrion is a vital component in cellular energy metabolism and intracellular signaling processes. Mitochondria are involved in a myriad of complex signaling cascades regulating cell death vs. survival. Importantly, mitochondrial dysfunction and the resulting oxidative and nitrosative stress are central in the pathogenesis of numerous human maladies including cardiovascular diseases, neurodegenerative diseases, diabetes, and retinal diseases, many of which are related. This review will examine the emerging understanding of the role of mitochondria in the etiology and progression of cardiovascular diseases and will explore potential therapeutic benefits of targeting the organelle in attenuating the disease process. Indeed, recent advances in mitochondrial biology have led to selective targeting of drugs designed to modulate or manipulate mitochondrial function, to the use of light therapy directed to the mitochondrial function, and to modification of the mitochondrial genome for potential therapeutic benefit. The approach to rationally treat mitochondrial dysfunction could lead to more effective interventions in cardiovascular diseases that to date have remained elusive. The central premise of this review is that if mitochondrial abnormalities contribute to the etiology of cardiovascular diseases (e.g., ischemic heart disease), alleviating the mitochondrial dysfunction will contribute to mitigating the severity or progression of the disease. To this end, this review will provide an overview of our current understanding of mitochondria function in cardiovascular diseases as well as the potential role for targeting mitochondria with potential drugs or other interventions that lead to protection against cell injury. PMID:21559063

  13. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  14. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  15. From Isolated to Networked: A Paradigmatic Shift in Mitochondrial Physiology

    PubMed Central

    Aon, Miguel A.

    2010-01-01

    A new paradigm of mitochondrial function in networks is emerging which includes, without undermining, the glorious and still useful paradigm of the isolated mitochondrion. The mitochondrial network paradigm introduces new concepts, tools, and analytical techniques. Among them is that mitochondrial function in networks exhibits interdependence and multiplicative effects based on synchronization mechanisms, which involve communication between mitochondrial neighbors. The collective dynamics of these networks become advantageous for coordinating function spanning from the cell, to the tissue, and the organ. However, under severely stressful conditions the network behavior of mitochondria may become life threatening. PMID:21423362

  16. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  17. Deficiency in the inner mitochondrial membrane peptidase 2-like (Immp21) gene increases ischemic brain damage and impairs mitochondrial function

    PubMed Central

    Ma, Yi; Mehta, Suresh L.; Lu, Baisong; Andy Li, P.

    2011-01-01

    Mitochondrial dysfunction plays an important role in mediating ischemic brain damage. Immp2l is an inner mitochondrial membrane peptidase that processes mitochondrial proteins cytochrome c1 (Cyc1). Homozygous mutation of Immp2l (Immp2lTg(Tyr)979Ove or Immp2l−/−) elevates mitochondrial membrane potential, increases superoxide (•O2−) production in the brain and impairs fertility. The objectives of this study are to explore the effects of heterozygous mutation of lmmp2l (Immp2l+/−) on ischemic outcome and to determine the influence of Immp2l deficiency on brain mitochondria after stroke. Male Immp2l+/− and wild-type (WT) mice were subjected to 1-h focal cerebral ischemia. Their brains were harvested after 5 and 24-h of reperfusion. The results showed that infarct volume and DNA oxidative damage significantly increased in the Immp2l+/− mice. There were no obvious cerebral vasculature abnormalities between the two types of mice viewed by Indian ink perfusion. The increased damage in Immp2l+/− mice was associated with early increase in •O2− production. Mitochondrial respiratory rate, total mitochondrial respiratory capacity and mitochondrial respiratory complex activities were decreased at 5-h of recirculation in Immp2l+/− mice compared to WT mice. Our results suggest that lmmp2l deficiency increases ischemic brain damage by enhancing •O2− production and damaging mitochondrial functional performance. PMID:21824519

  18. Tissue-specific modulation of mitochondrial DNA segregation by a defect in mitochondrial division.

    PubMed

    Jokinen, Riikka; Marttinen, Paula; Stewart, James B; Neil Dear, T; Battersby, Brendan J

    2016-02-15

    Mitochondria are dynamic organelles that divide and fuse by remodeling an outer and inner membrane in response to developmental, physiological and stress stimuli. These events are coordinated by conserved dynamin-related GTPases. The dynamics of mitochondrial morphology require coordination with mitochondrial DNA (mtDNA) to ensure faithful genome transmission, however, this process remains poorly understood. Mitochondrial division is linked to the segregation of mtDNA but how it affects cases of mtDNA heteroplasmy, where two or more mtDNA variants/mutations co-exist in a cell, is unknown. Segregation of heteroplasmic human pathogenic mtDNA mutations is a critical factor in the onset and severity of human mitochondrial diseases. Here, we investigated the coupling of mitochondrial morphology to the transmission and segregation of mtDNA in mammals by taking advantage of two genetically modified mouse models: one with a dominant-negative mutation in the dynamin-related protein 1 (Drp1 or Dnm1l) that impairs mitochondrial fission and the other, heteroplasmic mice segregating two neutral mtDNA haplotypes (BALB and NZB). We show a tissue-specific response to mtDNA segregation from a defect in mitochondrial fission. Only mtDNA segregation in the hematopoietic compartment is modulated from impaired Dnm1l function. In contrast, no effect was observed in other tissues arising from the three germ layers during development and in mtDNA transmission through the female germline. Our data suggest a robust organization of a heteroplasmic mtDNA segregating unit across mammalian cell types that can overcome impaired mitochondrial division to ensure faithful transmission of the mitochondrial genome. PMID:26681804

  19. DJ-1 Null Dopaminergic Neuronal Cells Exhibit Defects in Mitochondrial Function and Structure: Involvement of Mitochondrial Complex I Assembly

    PubMed Central

    Heo, Jun Young; Park, Ji Hoon; Kim, Soung Jung; Seo, Kang Sik; Han, Jeong Su; Lee, Sang Hee; Kim, Jin Man; Park, Jong Il; Park, Seung Kiel; Lim, Kyu; Hwang, Byung Doo; Shong, Minho; Kweon, Gi Ryang

    2012-01-01

    DJ-1 is a Parkinson's disease-associated gene whose protein product has a protective role in cellular homeostasis by removing cytosolic reactive oxygen species and maintaining mitochondrial function. However, it is not clear how DJ-1 regulates mitochondrial function and why mitochondrial dysfunction is induced by DJ-1 deficiency. In a previous study we showed that DJ-1 null dopaminergic neuronal cells exhibit defective mitochondrial respiratory chain complex I activity. In the present article we investigated the role of DJ-1 in complex I formation by using blue native-polyacrylamide gel electrophoresis and 2-dimensional gel analysis to assess native complex status. On the basis of these experiments, we concluded that DJ-1 null cells have a defect in the assembly of complex I. Concomitant with abnormal complex I formation, DJ-1 null cells show defective supercomplex formation. It is known that aberrant formation of the supercomplex impairs the flow of electrons through the channels between respiratory chain complexes, resulting in mitochondrial dysfunction. We took two approaches to study these mitochondrial defects. The first approach assessed the structural defect by using both confocal microscopy with MitoTracker staining and electron microscopy. The second approach assessed the functional defect by measuring ATP production, O2 consumption, and mitochondrial membrane potential. Finally, we showed that the assembly defect as well as the structural and functional abnormalities in DJ-1 null cells could be reversed by adenovirus-mediated overexpression of DJ-1, demonstrating the specificity of DJ-1 on these mitochondrial properties. These mitochondrial defects induced by DJ-1mutation may be a pathological mechanism for the degeneration of dopaminergic neurons in Parkinson's disease. PMID:22403686

  20. Impaired Lung Mitochondrial Respiration Following Perinatal Nicotine Exposure in Rats.

    PubMed

    Cannon, Daniel T; Liu, Jie; Sakurai, Reiko; Rossiter, Harry B; Rehan, Virender K

    2016-04-01

    Perinatal smoke/nicotine exposure predisposes to chronic lung disease and morbidity. Mitochondrial abnormalities may contribute as the PPARγ pathway is involved in structural and functional airway deficits after perinatal nicotine exposure. We hypothesized perinatal nicotine exposure results in lung mitochondrial dysfunction that can be rescued by rosiglitazone (RGZ; PPARγ receptor agonist). Sprague-Dawley dams received placebo (CON), nicotine (NIC, 1 mg kg(-1)), or NIC + RGZ (3 mg kg(-1)) daily from embryonic day 6 to postnatal day 21. Parenchymal lung (~10 mg) was taken from adult male offspring for mitochondrial assessment in situ. ADP-stimulated O2 consumption was less in NIC and NIC + RGZ compared to CON (F[2,14] = 17.8; 4.5 ± 0.8 and 4.1 ± 1.4 vs. 8.8 ± 2.5 pmol s mg(-1); p < 0.05). The respiratory control ratio for ADP, an index of mitochondrial coupling, was reduced in NIC and remediated in NIC + RGZ (F[2,14] = 3.8; p < 0.05). Reduced mitochondrial oxidative capacity and abnormal coupling were evident after perinatal nicotine exposure. RGZ improved mitochondrial function through tighter coupling of oxidative phosphorylation.

  1. Impaired Lung Mitochondrial Respiration Following Perinatal Nicotine Exposure in Rats.

    PubMed

    Cannon, Daniel T; Liu, Jie; Sakurai, Reiko; Rossiter, Harry B; Rehan, Virender K

    2016-04-01

    Perinatal smoke/nicotine exposure predisposes to chronic lung disease and morbidity. Mitochondrial abnormalities may contribute as the PPARγ pathway is involved in structural and functional airway deficits after perinatal nicotine exposure. We hypothesized perinatal nicotine exposure results in lung mitochondrial dysfunction that can be rescued by rosiglitazone (RGZ; PPARγ receptor agonist). Sprague-Dawley dams received placebo (CON), nicotine (NIC, 1 mg kg(-1)), or NIC + RGZ (3 mg kg(-1)) daily from embryonic day 6 to postnatal day 21. Parenchymal lung (~10 mg) was taken from adult male offspring for mitochondrial assessment in situ. ADP-stimulated O2 consumption was less in NIC and NIC + RGZ compared to CON (F[2,14] = 17.8; 4.5 ± 0.8 and 4.1 ± 1.4 vs. 8.8 ± 2.5 pmol s mg(-1); p < 0.05). The respiratory control ratio for ADP, an index of mitochondrial coupling, was reduced in NIC and remediated in NIC + RGZ (F[2,14] = 3.8; p < 0.05). Reduced mitochondrial oxidative capacity and abnormal coupling were evident after perinatal nicotine exposure. RGZ improved mitochondrial function through tighter coupling of oxidative phosphorylation. PMID:26899624

  2. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  3. [Characteristics of molecular genetics and research progress on mitochondrial diseases].

    PubMed

    Zhang, Meng; Si, Yanmei; Zhao, Juan

    2016-10-01

    Mitochondrial diseases is a group of metabolic disorders caused by abnormal structure and dysfunction of mitochondrial DNA (mtDNA). Abnormalities of mtDNA include point mutations, deletions, and rearrangements and depletion of mtDNA. These may affect the ability of mitochondria to generate energy in cells of various tissues and organs. As many factors are involved in the regulation of mtDNA mutations, most mitochondrial diseases may manifest great genetic heterogeneity and a wide spectrum of clinical manifestations. On the other hand, for the low prevalence of single disease, these disorders may be easily missed or with delayed diagnosis. This review focuses on the pathological mutations and benign variations of mtDNA, and research progress on such disorders. PMID:27577231

  4. Mitochondrial Dysfunction Meets Senescence.

    PubMed

    Gallage, Suchira; Gil, Jesús

    2016-03-01

    Cellular senescence and mitochondrial dysfunction are hallmarks of ageing, but until now their relationship has not been clear. Recent work by Wiley et al. shows that mitochondrial defects can cause a distinct senescence phenotype termed MiDAS (mitochondrial dysfunction-associated senescence). MiDAS has a specific secretome that is able to drive some of the aging phenotypes. These findings suggest novel therapeutic opportunities for treating age-related pathologies. PMID:26874922

  5. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  6. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  7. Novel roles for actin in mitochondrial fission

    PubMed Central

    Hatch, Anna L.; Gurel, Pinar S.; Higgs, Henry N.

    2014-01-01

    ABSTRACT Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER–mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals. PMID:25217628

  8. Mitochondrial Dysfunction in Amyotrophic Lateral Sclerosis

    PubMed Central

    Shi, Ping; Gal, Jozsef; Kwinter, David M.; Liu, Xiaoyan; Zhu, Haining

    2009-01-01

    The etiology of motor neuron degeneration in amyotrophic lateral sclerosis (ALS) remains to be better understood. Based on the studies from ALS patients and transgenic animal models, it is believed that ALS is likely to be a multifactorial and multisystem disease. Many mechanisms have been postulated to be involved in the pathology of ALS, such as oxidative stress, glutamate excitotoxicity, mitochondrial damage, defective axonal transport, glia cell pathology and aberrant RNA metabolism. Mitochondria, which play crucial roles in excitotoxicity, apoptosis and cell survival, have shown to be an early target in ALS pathogenesis and contribute to the disease progression. Morphological and functional defects in mitochondria were found in both human patients and ALS mice overexpressing mutant SOD1. Mutant SOD1 was found to be preferentially associated with mitochondria and subsequently impair mitochondrial function. Recent studies suggest that axonal transport of mitochondria along microtubules and mitochondrial dynamics may also be disrupted in ALS. These results also illustrate the critical importance of maintaining proper mitochondrial function in axons and neuromuscular junctions, supporting the emerging “dying-back” axonopathy model of ALS. In this review, we will discuss how mitochondrial dysfunction has been linked to the ALS variants of SOD1 and the mechanisms by which mitochondrial damage contributes to the disease etiology. PMID:19715760

  9. Emerging aspects of treatment in mitochondrial disorders.

    PubMed

    Rahman, Shamima

    2015-07-01

    Mitochondrial diseases are clinically, biochemically and genetically heterogeneous disorders of two genomes, for which effective curative therapies are currently lacking. With the exception of a few rare vitamin/cofactor responsive conditions (including ACAD9 deficiency, disorders of coenzyme Q(10) biosynthesis, and Leigh syndrome caused by mutations in the SLC19A3 transporter), the mainstay of treatment for the vast majority of patients involves supportive measures. The search for a cure for mitochondrial disease is the subject of intensive research efforts by many investigators across the globe, but the goal remains elusive. The clinical and genetic heterogeneity, multisystemic nature of many of these disorders, unpredictable natural course, relative inaccessibility of the mitochondrion and lack of validated, clinically meaningful outcome measures, have all presented great challenges to the design of rigorous clinical trials. This review discusses barriers to developing effective therapies for mitochondrial disease, models for evaluating the efficacy of novel treatments and summarises the most promising emerging therapies in six key areas: 1) antioxidant approaches; 2) stimulating mitochondrial biogenesis; 3) targeting mitochondrial membrane lipids, dynamics and mitophagy; 4) replacement therapy; 5) cell-based therapies; and 6) gene therapy approaches for both mtDNA and nuclear-encoded defects of mitochondrial metabolism.

  10. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA.

    PubMed Central

    Nunnari, J; Marshall, W F; Straight, A; Murray, A; Sedat, J W; Walter, P

    1997-01-01

    To gain insight into the process of mitochondrial transmission in yeast, we directly labeled mitochondrial proteins and mitochondrial DNA (mtDNA) and observed their fate after the fusion of two cells. To this end, mitochondrial proteins in haploid cells of opposite mating type were labeled with different fluorescent dyes and observed by fluorescence microscopy after mating of the cells. Parental mitochondrial protein markers rapidly redistributed and colocalized throughout zygotes, indicating that during mating, parental mitochondria fuse and their protein contents intermix, consistent with results previously obtained with a single parentally derived protein marker. Analysis of the three-dimensional structure and dynamics of mitochondria in living cells with wide-field fluorescence microscopy indicated that mitochondria form a single dynamic network, whose continuity is maintained by a balanced frequency of fission and fusion events. Thus, the complete mixing of mitochondrial proteins can be explained by the formation of one continuous mitochondrial compartment after mating. In marked contrast to the mixing of parental mitochondrial proteins after fusion, mtDNA (labeled with the thymidine analogue 5-bromodeoxyuridine) remained distinctly localized to one half of the zygotic cell. This observation provides a direct explanation for the genetically observed nonrandom patterns of mtDNA transmission. We propose that anchoring of mtDNA within the organelle is linked to an active segregation mechanism that ensures accurate inheritance of mtDNA along with the organelle. Images PMID:9243504

  11. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients

    PubMed Central

    Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  12. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients.

    PubMed

    Haylett, William; Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation.

  13. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients.

    PubMed

    Haylett, William; Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  14. Evolutionary dynamics of the mS952 intron: a novel mitochondrial group II intron encoding a LAGLIDADG homing endonuclease gene.

    PubMed

    Mullineux, Sahra-Taylor; Willows, Karla; Hausner, Georg

    2011-06-01

    Examination of the mitochondrial small subunit ribosomal RNA (rns) gene of five species of the fungal genus Leptographium revealed that the gene has been invaded at least once at position 952 by a group II intron encoding a LAGLIDADG homing endonuclease gene. Phylogenetic analyses of the intron and homing endonuclease sequences indicated that each element in Leptographium species forms a single clade and is closely related to the group II intron/homing endonuclease gene composite element previously reported at position 952 of the mitochondrial rns gene of Cordyceps species and of Cryphonectria parasitica. The results of an intron survey of the mt rns gene of Leptographium species superimposed onto the phylogenetic analysis of the host organisms suggest that the composite element was transmitted vertically in Leptographium lundbergii. However, its stochastic distribution among strains of L. wingfieldii, L. terebrantis, and L. truncatum suggests that it has been horizontally transmitted by lateral gene transfer among these species, although the random presence of the intron may reflect multiple random loss events. A model is proposed describing the initial invasion of the group II intron in the rns gene of L. lundbergii by a LAGLIDADG homing endonuclease gene and subsequent evolution of this gene to recognize a novel DNA target site, which may now promote the mobility of the intron and homing endonuclease gene as a composite element. PMID:21479820

  15. Elucidation of cryptic diversity in a widespread nearctic treefrog reveals episodes of mitochondrial gene capture as frogs diversified across a dynamic landscape.

    PubMed

    Bryson, Robert W; de Oca, Adrian Nieto-Montes; Jaeger, Jef R; Riddle, Brett R

    2010-08-01

    We investigate the evolutionary history of the wide-ranging Nearctic treefrog Hyla arenicolor through the integration of extensive range-wide sampling, phylogenetic analyses of multilocus genetic data, and divergence dating. Previous phylogeographic studies of this frog documented a potential signature of introgressive hybridization from an ecologically and morphologically divergent sister species. Based on our Bayesian phylogenetic analyses of mitochondrial DNA, we inferred strong phylogeographic structure in H. arenicolor as indicated by seven well-supported clades, five of which correspond to well-defined biogeographic regions. Clades from the Balsas Basin and southwestern Central Mexican Plateau in Mexico, and the Grand Canyon of Arizona, group with the morphologically, behaviorally, and ecologically divergent mountain treefrogs in the H. eximia group, rendering H. arenicolor as paraphyletic. The phylogenetic position of at least two of these three H. arenicolor clades within the H. eximia group, however, is most likely the result of several episodes of introgressive hybridization and subsequent mitochondrial gene capture separated in time and space, as supported by evidence from the nuclear genes. Hyla arenicolor from the Balsas Basin appear to be deeply divergent from other H. arenicolor and represent a distinctly different species. Results suggests that introgressive hybridization events, both ancient and contemporary, coupled with late Neogene vicariance and Pleistocene climate-driven range shifts, have all played a role in the historical diversification of H. arenicolor. PMID:20394664

  16. Abnormal ionization in sonoluminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Juan; An, Yu

    2015-04-01

    Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%-70% as the bubble flashes, which is difficult to explain by using previous models. Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031) and the National Natural Science Foundation of China (Grant No. 11334005).

  17. Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans.

    PubMed

    Wang, Yang; Zhang, Yi; Chen, Lianwan; Liang, Qian; Yin, Xiao-Ming; Miao, Long; Kang, Byung-Ho; Xue, Ding

    2016-09-01

    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME.

  18. Mitophagy plays a central role in mitochondrial ageing.

    PubMed

    Diot, Alan; Morten, Karl; Poulton, Joanna

    2016-08-01

    The mechanisms underlying ageing have been discussed for decades, and advances in molecular and cell biology of the last three decades have accelerated research in this area. Over this period, it has become clear that mitochondrial function, which plays a major role in many cellular pathways from ATP production to nuclear gene expression and epigenetics alterations, declines with age. The emerging concepts suggest novel mechanisms, involving mtDNA quality, mitochondrial dynamics or mitochondrial quality control. In this review, we discuss the impact of mitochondria in the ageing process, the role of mitochondria in reactive oxygen species production, in nuclear gene expression, the accumulation of mtDNA damage and the importance of mitochondrial dynamics and recycling. Declining mitophagy (mitochondrial quality control) may be an important component of human ageing. PMID:27352213

  19. Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans

    PubMed Central

    Wang, Yang; Zhang, Yi; Chen, Lianwan; Liang, Qian; Yin, Xiao-Ming; Miao, Long; Kang, Byung-Ho; Xue, Ding

    2016-01-01

    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME. PMID:27581092

  20. Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans.

    PubMed

    Wang, Yang; Zhang, Yi; Chen, Lianwan; Liang, Qian; Yin, Xiao-Ming; Miao, Long; Kang, Byung-Ho; Xue, Ding

    2016-01-01

    In most eukaryotes, mitochondria are inherited maternally. The autophagy process is critical for paternal mitochondrial elimination (PME) in Caenorhabditis elegans, but how paternal mitochondria, but not maternal mitochondria, are selectively targeted for degradation is poorly understood. Here we report that mitochondrial dynamics have a profound effect on PME. A defect in fission of paternal mitochondria delays PME, whereas a defect in fusion of paternal mitochondria accelerates PME. Surprisingly, a defect in maternal mitochondrial fusion delays PME, which is reversed by a fission defect in maternal mitochondria or by increasing maternal mitochondrial membrane potential using oligomycin. Electron microscopy and tomography analyses reveal that a proportion of maternal mitochondria are compromised when they fail to fuse normally, leading to their competition for the autophagy machinery with damaged paternal mitochondria and delayed PME. Our study indicates that mitochondrial dynamics play a critical role in regulating both the kinetics and the specificity of PME. PMID:27581092

  1. Abnormal hematological indices in cirrhosis

    PubMed Central

    Qamar, Amir A; Grace, Norman D

    2009-01-01

    Abnormalities in hematological indices are frequently encountered in cirrhosis. Multiple causes contribute to the occurrence of hematological abnormalities. Recent studies suggest that the presence of hematological cytopenias is associated with a poor prognosis in cirrhosis. The present article reviews the pathogenesis, incidence, prevalence, clinical significance and treatment of abnormal hematological indices in cirrhosis. PMID:19543577

  2. Modulation of the matrix redox signaling by mitochondrial Ca(2.).

    PubMed

    Santo-Domingo, Jaime; Wiederkehr, Andreas; De Marchi, Umberto

    2015-11-26

    Mitochondria sense, shape and integrate signals, and thus function as central players in cellular signal transduction. Ca(2+) waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca(2+) transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance, the molecular nature of the proteins involved in mitochondrial Ca(2+) transport has been revealed only recently. Mitochondrial Ca(2+) promotes energy metabolism through the activation of matrix dehydrogenases and down-stream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)(+) ratio, but at the same time will increase reactive oxygen species (ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state, which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redox-sensitive sensors, real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca(2+) combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca(2+) and redox signals and their impact on cell function. In this review, we describe mitochondrial Ca(2+) handling, focusing on a number of newly identified proteins involved in mitochondrial Ca(2+) uptake and release. We further discuss our recent findings, revealing how mitochondrial Ca(2+) influences the matrix redox state. As a result, mitochondrial Ca(2+) is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease.

  3. Modulation of the matrix redox signaling by mitochondrial Ca2+

    PubMed Central

    Santo-Domingo, Jaime; Wiederkehr, Andreas; De Marchi, Umberto

    2015-01-01

    Mitochondria sense, shape and integrate signals, and thus function as central players in cellular signal transduction. Ca2+ waves and redox reactions are two such intracellular signals modulated by mitochondria. Mitochondrial Ca2+ transport is of utmost physio-pathological relevance with a strong impact on metabolism and cell fate. Despite its importance, the molecular nature of the proteins involved in mitochondrial Ca2+ transport has been revealed only recently. Mitochondrial Ca2+ promotes energy metabolism through the activation of matrix dehydrogenases and down-stream stimulation of the respiratory chain. These changes also alter the mitochondrial NAD(P)H/NAD(P)+ ratio, but at the same time will increase reactive oxygen species (ROS) production. Reducing equivalents and ROS are having opposite effects on the mitochondrial redox state, which are hard to dissect. With the recent development of genetically encoded mitochondrial-targeted redox-sensitive sensors, real-time monitoring of matrix thiol redox dynamics has become possible. The discoveries of the molecular nature of mitochondrial transporters of Ca2+ combined with the utilization of the novel redox sensors is shedding light on the complex relation between mitochondrial Ca2+ and redox signals and their impact on cell function. In this review, we describe mitochondrial Ca2+ handling, focusing on a number of newly identified proteins involved in mitochondrial Ca2+ uptake and release. We further discuss our recent findings, revealing how mitochondrial Ca2+ influences the matrix redox state. As a result, mitochondrial Ca2+ is able to modulate the many mitochondrial redox-regulated processes linked to normal physiology and disease. PMID:26629314

  4. Mitochondrial fusion/fission, transport and autophagy in Parkinson's disease: when mitochondria get nasty.

    PubMed

    Arduíno, Daniela M; Esteves, A Raquel; Cardoso, Sandra M

    2011-02-20

    Understanding the molecular basis of Parkinson's disease (PD) has proven to be a major challenge in the field of neurodegenerative diseases. Although several hypotheses have been proposed to explain the molecular mechanisms underlying the pathogenesis of PD, a growing body of evidence has highlighted the role of mitochondrial dysfunction and the disruption of the mechanisms of mitochondrial dynamics in PD and other parkinsonian disorders. In this paper, we comment on the recent advances in how changes in the mitochondrial function and mitochondrial dynamics (fusion/fission, transport, and clearance) contribute to neurodegeneration, specifically focusing on PD. We also evaluate the current controversies in those issues and discuss the role of fusion/fission dynamics in the mitochondrial lifecycle and maintenance. We propose that cellular demise and neurodegeneration in PD are due to the interplay between mitochondrial dysfunction, mitochondrial trafficking disruption, and impaired autophagic clearance.

  5. Spirometric abnormalities among welders

    SciTech Connect

    Rastogi, S.K.; Gupta, B.N.; Husain, T.; Mathur, N.; Srivastava, S. )

    1991-10-01

    A group of manual welders age group 13-60 years having a mean exposure period of 12.4 {plus minus} 1.12 years were subjected to spirometry to evaluate the prevalence of spirometric abnormalities. The welders showed a significantly higher prevalence of respiratory impairment than that observed among the unexposed controls as a result of exposure to welding gases which comprised fine particles of lead, zinc, chromium, and manganese. This occurred despite the lower concentration of the pollutants at the work place. In the expose group, the smoking welders showed a prevalence of respiratory impairment significantly higher than that observed in the nonsmoking welders. The results of the pulmonary function tests showed a predominantly restrictive type of pulmonary impairment followed by a mixed ventilatory defect among the welders. The effect of age on pulmonary impairment was not discernible. Welders exposed for over 10 years showed a prevalence of respiratory abnormalities significantly higher than those exposed for less than 10 years. Smoking also had a contributory role.

  6. Mutations in FBXL4, Encoding a Mitochondrial Protein, Cause Early-Onset Mitochondrial Encephalomyopathy

    PubMed Central

    Gai, Xiaowu; Ghezzi, Daniele; Johnson, Mark A.; Biagosch, Caroline A.; Shamseldin, Hanan E.; Haack, Tobias B.; Reyes, Aurelio; Tsukikawa, Mai; Sheldon, Claire A.; Srinivasan, Satish; Gorza, Matteo; Kremer, Laura S.; Wieland, Thomas; Strom, Tim M.; Polyak, Erzsebet; Place, Emily; Consugar, Mark; Ostrovsky, Julian; Vidoni, Sara; Robinson, Alan J.; Wong, Lee-Jun; Sondheimer, Neal; Salih, Mustafa A.; Al-Jishi, Emtethal; Raab, Christopher P.; Bean, Charles; Furlan, Francesca; Parini, Rossella; Lamperti, Costanza; Mayr, Johannes A.; Konstantopoulou, Vassiliki; Huemer, Martina; Pierce, Eric A.; Meitinger, Thomas; Freisinger, Peter; Sperl, Wolfgang; Prokisch, Holger; Alkuraya, Fowzan S.; Falk, Marni J.; Zeviani, Massimo

    2013-01-01

    Whole-exome sequencing and autozygosity mapping studies, independently performed in subjects with defective combined mitochondrial OXPHOS-enzyme deficiencies, identified a total of nine disease-segregating FBXL4 mutations in seven unrelated mitochondrial disease families, composed of six singletons and three siblings. All subjects manifested early-onset lactic acidemia, hypotonia, and developmental delay caused by severe encephalomyopathy consistently associated with progressive cerebral atrophy and variable involvement of the white matter, deep gray nuclei, and brainstem structures. A wide range of other multisystem features were variably seen, including dysmorphism, skeletal abnormalities, poor growth, gastrointestinal dysmotility, renal tubular acidosis, seizures, and episodic metabolic failure. Mitochondrial respiratory chain deficiency was present in muscle or fibroblasts of all tested individuals, together with markedly reduced oxygen consumption rate and hyperfragmentation of the mitochondrial network in cultured cells. In muscle and fibroblasts from several subjects, substantially decreased mtDNA content was observed. FBXL4 is a member of the F-box family of proteins, some of which are involved in phosphorylation-dependent ubiquitination and/or G protein receptor coupling. We also demonstrate that FBXL4 is targeted to mitochondria and localizes in the intermembrane space, where it participates in an approximately 400 kDa protein complex. These data strongly support a role for FBXL4 in controlling bioenergetic homeostasis and mtDNA maintenance. FBXL4 mutations are a recurrent cause of mitochondrial encephalomyopathy onset in early infancy. PMID:23993194

  7. Twin Mitochondrial Sequence Analysis.

    PubMed

    Bouhlal, Yosr; Martinez, Selena; Gong, Henry; Dumas, Kevin; Shieh, Joseph T C

    2013-09-01

    When applying genome-wide sequencing technologies to disease investigation, it is increasingly important to resolve sequence variation in regions of the genome that may have homologous sequences. The human mitochondrial genome challenges interpretation given the potential for heteroplasmy, somatic variation, and homologous nuclear mitochondrial sequences (numts). Identical twins share the same mitochondrial DNA (mtDNA) from early life, but whether the mitochondrial sequence remains similar is unclear. We compared an adult monozygotic twin pair using high throughput-sequencing and evaluated variants with primer extension and mitochondrial pre-enrichment. Thirty-seven variants were shared between the twin individuals, and the variants were verified on the original genomic DNA. These studies support highly identical genetic sequence in this case. Certain low-level variant calls were of high quality and homology to the mitochondrial DNA, and they were further evaluated. When we assessed calls in pre-enriched mitochondrial DNA templates, we found that these may represent numts, which can be differentiated from mtDNA variation. We conclude that twin identity extends to mitochondrial DNA, and it is critical to differentiate between numts and mtDNA in genome sequencing, particularly since significant heteroplasmy could influence genome interpretation. Further studies on mtDNA and numts will aid in understanding how variation occurs and persists. PMID:24040623

  8. Clinical mitochondrial genetics

    PubMed Central

    Chinnery, P.; Howell, N.; Andrews, R.; Turnbull, D.

    1999-01-01

    The last decade has been an age of enlightenment as far as mitochondrial pathology is concerned. Well established nuclear genetic diseases, such as Friedreich's ataxia,12 Wilson disease,3 and autosomal recessive hereditary spastic paraplegia,4 have been shown to have a mitochondrial basis, and we are just starting to unravel the complex nuclear genetic disorders which directly cause mitochondrial dysfunction (table 1). However, in addition to the 3 billion base pair nuclear genome, each human cell typically contains thousands of copies of a small, 16.5 kb circular molecule of double stranded DNA (fig 1). Mitochondrial DNA (mtDNA) accounts for only 1% of the total cellular nucleic acid content. It encodes for 13 polypeptides which are essential for aerobic metabolism and defects of the mitochondrial genome are an important cause of human disease.9293 Since the characterisation of the first pathogenic mtDNA defects in 1988,513 over 50 point mutations and well over 100 rearrangements of the mitochondrial genome have been associated with human disease9495 (http://www.gen.emory.edu/mitomap.html). These disorders form the focus of this article.


Keywords: mitochondrial DNA; mitochondrial disease; heteroplasmy; genetic counselling PMID:10874629

  9. Mitochondrial regulation of apoptosis.

    PubMed

    Mayer, Bernd; Oberbauer, Rainer

    2003-06-01

    Mitochondria play a central part in cellular survival and apoptotic death. These processes are highly regulated by pro- and antiapoptotic Bcl-2 superfamily members. A key feature within apoptosis cascades is disruption of mitochondrial transmembrane potential and apoptogenic protein release, caused by opening of the permeability transition pore (PT). New data, however, indicate that mitochondrial apoptosis may occur without PT involvement.

  10. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes.

    PubMed

    Lu, Ya-Wen; Claypool, Steven M

    2015-01-01

    The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron-sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.

  11. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes

    PubMed Central

    Lu, Ya-Wen; Claypool, Steven M.

    2015-01-01

    The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron–sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology. PMID:25691889

  12. Mitochondrial DNA analysis: polymorphisms and pathogenicity

    PubMed Central

    Chinnery, P.; Howell, N.; Andrews, R.; Turnbull, D.

    1999-01-01

    The investigation of mtDNA disease can be relatively straightforward if a person has a recognisable phenotype and if it is possible to identify a known pathogenic mtDNA mutation. The difficulties arise when no known mtDNA defect can be found, or when the clinical abnormalities are complex and not easily matched to those of the more common mitochondrial disorders. We will describe here the difficulties that can be encountered during the identification of pathogenic mtDNA mutations and the approaches that can be used to confirm, or eliminate, a likely pathogenic role, in either single gene diseases or in multifactorial disorders.


Keywords: mitochondrial DNA; phylogenetic analysis; Leber's hereditary optic neuropathy; Alzheimer's disease PMID:10424809

  13. Impaired mitochondrial function in human placenta with increased maternal adiposity

    PubMed Central

    Mele, James; Muralimanoharan, Sribalasubashini; Maloyan, Alina

    2014-01-01

    The placenta plays a key role in regulation of fetal growth and development and in mediating in utero developmental programming. Obesity, which is associated with chronic inflammation and mitochondrial dysfunction in many tissues, exerts a programming effect in pregnancy. We determined the effect of increasing maternal adiposity and of fetal sex on placental ATP generation, mitochondrial biogenesis, expression of electron transport chain subunits, and mitochondrial function in isolated trophoblasts. Placental tissue was collected from women with prepregnancy BMI ranging from 18.5 to 45 following C-section at term with no labor. Increasing maternal adiposity was associated with excessive production of reactive oxygen species and a significant reduction in placental ATP levels in placentae with male and female fetuses. To explore the potential mechanism of placental mitochondrial dysfunction, levels of transcription factors regulating the expression of genes involved in electron transport and mitochondrial biogenesis were measured. Our in vitro studies showed significant reduction in mitochondrial respiration in cultured primary trophoblasts with increasing maternal obesity along with an abnormal metabolic flexibility of these cells. This reduction in placental mitochondrial respiration in pregnancies complicated by maternal obesity could compromise placental function and potentially underlie the increased susceptibility of these pregnancies to fetal demise in late gestation and to developmental programming. PMID:25028397

  14. Isolated respiratory chain enzyme deficiency in patients with a mitochondrial (encephalo-) myopathy: Sequence analysis of the mitochondrial complex and IV genes

    SciTech Connect

    Vries, D. de; Coo, I. de; Buddiger, P.

    1994-09-01

    The mitochondrial respiratory chain consists of four enzyme complexes. Deficiencies of complex I (NADH dehydrogenase) and complex IV (cytochrome c oxidase) are frequently found in muscle biopsies from patients with a mitochondrial (encephalo-)myopathy. Mutations in the mitochondrial-encoded subunits have been observed in a number of different mitochondrial (encephalo-)myophathies. We screened eight mitochondrial (encephalo-)myopathy patients with an isolated complex I deficiency for mutations in the ND genes by direct sequencing. No abnormality was detected. We also studied 9 mitochondrial (encephalo-)myopathy patients and an isolated complex IV deficiency. In the muscle biopsy of one patient a novel heteroplasmic mutation (T {r_arrow} C) at nucleotide position 6681 was found in the mitochondrial COX I gene. This mutation led to the substitution of a conserved Tyr for His. As this mutation changed the secondary structure of the protein and was not found in the healthy mother, we consider it likely that this mutation is pathological. In the other patients no abnormality was detected. Therefore, mutations in the mitochondrially-encoded subunits are not a frequent cause of isolated respiratory chain enzyme deficiency.

  15. A Rare Stapes Abnormality

    PubMed Central

    Kanona, Hala; Virk, Jagdeep Singh; Kumar, Gaurav; Chawda, Sanjiv; Khalil, Sherif

    2015-01-01

    The aim of this study is to increase awareness of rare presentations, diagnostic difficulties alongside management of conductive hearing loss and ossicular abnormalities. We report the case of a 13-year-old female reporting progressive left-sided hearing loss and high resolution computed tomography was initially reported as normal. Exploratory tympanotomy revealed an absent stapedius tendon and lack of connection between the stapes superstructure and footplate. The footplate was fixed. Stapedotomy and stapes prosthesis insertion resulted in closure of the air-bone gap by 50 dB. A review of world literature was performed using MedLine. Middle ear ossicular discontinuity can result in significant conductive hearing loss. This can be managed effectively with surgery to help restore hearing. However, some patients may not be suitable or decline surgical intervention and can be managed safely conservatively. PMID:25628909

  16. Mutation in the Novel Nuclear-Encoded Mitochondrial Protein CHCHD10 in a Family with Autosomal Dominant Mitochondrial Myopathy

    PubMed Central

    Ajroud-Driss, Senda; Fecto, Faisal; Ajroud, Kaouther; Lalani, Irfan; Calvo, Sarah E.; Mootha, Vamsi K.; Deng, Han-Xiang; Siddique, Nailah; Tahmoush, Albert J.; Heiman-Patterson, Terry D.; Siddique, Teepu

    2016-01-01

    Mitochondrial myopathies belong to a larger group of systemic diseases caused by morphological or biochemical abnormalities of mitochondria. Mitochondrial disorders can be caused by mutations in either the mitochondrial or the nuclear genome. Only 5% of all mitochondrial disorders are autosomal dominant. We analyzed DNA from members of a previously reported Puerto Rican kindred with an autosomal dominant mitochondrial myopathy (Heimann-Patterson et al. 1997). Linkage analysis suggested a putative locus on the pericentric region of the long arm of chromosome 22 (22q11). Using the tools of integrative genomics, we established C22orf16 (later designated as CHCHD10) as the only high scoring mitochondrial candidate gene in our minimal candidate region. Sequence analysis revealed a double missense mutation (R15S; G58R) in cis in CHCHD10 which encodes a coiled-coil helix coiled-coil helix protein of unknown function. These two mutations completely co-segregated with the disease phenotype and were absent in 1481 Caucasian and 80 Hispanic (including 32 Puerto Rican) controls. Expression profiling showed that CHCHD10 is enriched in skeletal muscle. Mitochondrial localization of the CHCHD10 protein was confirmed using immunofluorescence in cells expressing either wild-type or mutant CHCHD10. We found that expression of the G58R, but not the R15S, mutation induced mitochondrial fragmentation. Our findings identify a novel gene causing mitochondrial myopathy, thereby expanding the spectrum of mitochondrial myopathies caused by nuclear genes. Our findings also suggest a role for CHCHD10 in the morphologic remodeling of the mitochondria. PMID:25193783

  17. Cutaneous Respirometry as Novel Technique to Monitor Mitochondrial Function: A Feasibility Study in Healthy Volunteers

    PubMed Central

    Stolker, Robert Jan; Mik, Egbert

    2016-01-01

    Background The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) is proposed as a potential clinical non-invasive tool to monitor mitochondrial function. This technique has been evaluated in several animal studies. Mitochondrial respirometry allows measurement in vivo of mitochondrial oxygen tension (mitoPO2) and mitochondrial oxygen consumption (mitoVO2) in skin. This study describes the first use of a clinical prototype in skin of humans. Methods The clinical prototype was tested in 30 healthy volunteers. A self-adhesive patch containing 2 mg 5-aminolevulinic acid (ALA) was applied on the skin of the anterior chest wall (sternal) for induction of mitochondrial protoporphyrin IX and was protected from light for 5 h. MitoPO2 was measured by means of oxygen-dependent delayed fluorescence of protoporphyrin IX. MitoVO2 was determined by dynamic mitoPO2 measurements on the primed skin, while locally blocking oxygen supply by applying local pressure with the measurement probe. MitoPO2 was recorded before and during a 60-s period of compression of the microcirculation, at an interval of 1 Hz. Oxygen consumption (i.e. the local oxygen disappearance rate) was calculated from the decay of the mitoPO2 slope. Results Oxygen-dependent delayed fluorescence measurements were successfully performed in the skin of 27 volunteers. The average value (± SD) of mitoPO2 was 44 ± 17 mmHg and mean mitoVO2 values were 5.8 ± 2.3 and 6.1 ± 1.6 mmHg s-1 at a skin temperature of 34°C and 40°C, respectively. No major discomfort during measurement and no long-term dermatological abnormalities were reported in a survey performed 1 month after measurements. Conclusion These results show that the clinical prototype allows measurement of mitochondrial oxygenation and oxygen consumption in humans. The development of this clinically applicable device offers opportunities for further evaluation of the technique in humans and the start of first clinical studies. PMID:27455073

  18. Analysis of Mitochondrial haemoglobin in Parkinson's disease brain.

    PubMed

    Shephard, Freya; Greville-Heygate, Oliver; Liddell, Susan; Emes, Richard; Chakrabarti, Lisa

    2016-07-01

    Mitochondrial dysfunction is an early feature of neurodegeneration. We have shown there are mitochondrial haemoglobin changes with age and neurodegeneration. We hypothesised that altered physiological processes are associated with recruitment and localisation of haemoglobin to these organelles. To confirm a dynamic localisation of haemoglobin we exposed Drosophila melanogaster to cyclical hypoxia with recovery. With a single cycle of hypoxia and recovery we found a relative accumulation of haemoglobin in the mitochondria compared with the cytosol. An additional cycle of hypoxia and recovery led to a significant increase of mitochondrial haemoglobin (p<0.05). We quantified ratios of human mitochondrial haemoglobin in 30 Parkinson's and matched control human post-mortem brains. Relative mitochondrial/cytosolic quantities of haemoglobin were obtained for the cortical region, substantia nigra and cerebellum. In age matched post-mortem brain mitochondrial haemoglobin ratios change, decreasing with disease duration in female cerebellum samples (n=7). The change is less discernible in male cerebellum (n=18). In cerebellar mitochondria, haemoglobin localisation in males with long disease duration shifts from the intermembrane space to the outer membrane of the organelle. These new data illustrate dynamic localisation of mitochondrial haemoglobin within the cell. Mitochondrial haemoglobin should be considered in the context of gender differences characterised in Parkinson's disease. It has been postulated that cerebellar circuitry may be activated to play a protective role in individuals with Parkinson's. The changing localisation of intracellular haemoglobin in response to hypoxia presents a novel pathway to delineate the role of the cerebellum in Parkinson's disease. PMID:27181046

  19. Mitochondrial effectors of cellular senescence: beyond the free radical theory of aging

    PubMed Central

    Ziegler, Dorian V; Wiley, Christopher D; Velarde, Michael C

    2015-01-01

    Cellular senescence is a process that results from a variety of stresses, leading to a state of irreversible growth arrest. Senescent cells accumulate during aging and have been implicated in promoting a variety of age-related diseases. Mitochondrial stress is an effective inducer of cellular senescence, but the mechanisms by which mitochondria regulate permanent cell growth arrest are largely unexplored. Here, we review some of the mitochondrial signaling pathways that participate in establishing cellular senescence. We discuss the role of mitochondrial reactive oxygen species (ROS), mitochondrial dynamics (fission and fusion), the electron transport chain (ETC), bioenergetic balance, redox state, metabolic signature, and calcium homeostasis in controlling cellular growth arrest. We emphasize that multiple mitochondrial signaling pathways, besides mitochondrial ROS, can induce cellular senescence. Together, these pathways provide a broader perspective for studying the contribution of mitochondrial stress to aging, linking mitochondrial dysfunction and aging through the process of cellular senescence. PMID:25399755

  20. Mitochondrial regulation of macrophage cholesterol homeostasis.

    PubMed

    Graham, Annette

    2015-12-01

    This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.

  1. Altered Cytoskeleton as a Mitochondrial Decay Signature in the Retinal Pigment Epithelium.

    PubMed

    Sripathi, Srinivas R; He, Weilue; Sylvester, O'Donnell; Neksumi, Musa; Um, Ji-Yeon; Dluya, Thagriki; Bernstein, Paul S; Jahng, Wan Jin

    2016-06-01

    Mitochondria mediate energy metabolism, apoptosis, and aging, while mitochondrial disruption leads to age-related diseases that include age-related macular degeneration. Descriptions of mitochondrial morphology have been non-systematic and qualitative, due to lack of knowledge on the molecular mechanism of mitochondrial dynamics. The current study analyzed mitochondrial size, shape, and position quantitatively in retinal pigment epithelial cells (RPE) using a systematic computational model to suggest mitochondrial trafficking under oxidative environment. Our previous proteomic study suggested that prohibitin is a mitochondrial decay biomarker in the RPE. The current study examined the prohibitin interactome map using immunoprecipitation data to determine the indirect signaling on cytoskeletal changes and transcriptional regulation by prohibitin. Immunocytochemistry and immunoprecipitation demonstrated that there is a positive correlation between mitochondrial changes and altered filaments as well as prohibitin interactions with kinesin and unknown proteins in the RPE. Specific cytoskeletal and nuclear protein-binding mechanisms may exist to regulate prohibitin-mediated reactions as key elements, including vimentin and p53, to control apoptosis in mitochondria and the nucleus. Prohibitin may regulate mitochondrial trafficking through unknown proteins that include 110 kDa protein with myosin head domain and 88 kDa protein with cadherin repeat domain. Altered cytoskeleton may represent a mitochondrial decay signature in the RPE. The current study suggests that mitochondrial dynamics and cytoskeletal changes are critical for controlling mitochondrial distribution and function. Further, imbalance of retrograde versus anterograde mitochondrial trafficking may initiate the pathogenic reaction in adult-onset neurodegenerative diseases. PMID:27029380

  2. Redox Nanodomains Are Induced by and Control Calcium Signaling at the ER-Mitochondrial Interface.

    PubMed

    Booth, David M; Enyedi, Balázs; Geiszt, Miklós; Várnai, Péter; Hajnóczky, György

    2016-07-21

    The ER-mitochondrial interface is central to calcium signaling, organellar dynamics, and lipid biosynthesis. The ER and mitochondrial membranes also host sources and targets of reactive oxygen species (ROS), but their local dynamics and relevance remained elusive since measurement and perturbation of ROS at the organellar interface has proven difficult. Employing drug-inducible synthetic ER-mitochondrial linkers, we overcame this problem and demonstrate that the ER-mitochondrial interface hosts a nanodomain of H2O2, which is induced by cytoplasmic [Ca(2+)] spikes and exerts a positive feedback on calcium oscillations. H2O2 nanodomains originate from the mitochondrial cristae, which are compressed upon calcium signal propagation to the mitochondria, likely due to Ca(2+)-induced K(+) and concomitant water influx to the matrix. Thus, ER-mitochondrial H2O2 nanodomains represent a component of inter-organelle communication, regulating calcium signaling and mitochondrial activities.

  3. Biosynthesis and Roles of Phospholipids in Mitochondrial Fusion, Division and Mitophagy

    PubMed Central

    Zhang, Qiang; Tamura, Yasushi; Roy, Madhuparna; Adachi, Yoshihiro; Iijima, Miho; Sesaki, Hiromi

    2014-01-01

    Mitochondria move, fuse and divide in cells. The dynamic behavior of mitochondria is central to the control of their structure and function. Three conserved mitochondrial dynamin-related GTPases (i.e., mitofusin, Opa1 and Drp1 in mammals and Fzo1, Mgm1 and Dnm1 in yeast) mediate mitochondrial fusion and division. In addition to dynamins, recent studies demonstrated that phospholipids in mitochondria also play key roles in mitochondrial dynamics by interacting with dynamin GTPases and by directly changing the biophysical properties of the mitochondrial membranes. Changes in phospholipid composition also promote mitophagy, which is a selective mitochondrial degradation process that is mechanistically coupled to mitochondrial division. In this review, we will discuss the biogenesis and function of mitochondrial phospholipids. PMID:24866973

  4. Simultaneous impairment of mitochondrial fission and fusion reduces mitophagy and shortens replicative lifespan

    PubMed Central

    Bernhardt, Dominik; Müller, Matthias; Reichert, Andreas S.; Osiewacz, Heinz D.

    2015-01-01

    Aging of biological systems is accompanied by degeneration of mitochondrial functions. Different pathways are active to counteract the processes which lead to mitochondrial dysfunction. Mitochondrial dynamics, the fission and fusion of mitochondria, is one of these quality control pathways. Mitophagy, the controlled degradation of mitochondria, is another one. Here we show that these pathways are linked. A double deletion mutant of Saccharomyces cerevisiae in which two essential components of the fission and fusion machinery, Dnm1 and Mgm1, are simultaneously ablated, contain wild-type like filamentous mitochondria, but are characterized by impaired respiration, an increased sensitivity to different stressors, increased mitochondrial protein carbonylation, and a decrease in mitophagy and replicative lifespan. These data show that a balanced mitochondrial dynamics and not a filamentous mitochondrial morphotype per se is the key for a long lifespan and demonstrate a cross-talk between two different mitochondrial quality control pathways. PMID:25601284

  5. Ictal Cardiac Ryhthym Abnormalities

    PubMed Central

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  6. Ictal Cardiac Ryhthym Abnormalities.

    PubMed

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  7. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).

  8. Communication and abnormal behaviour.

    PubMed

    Crown, S

    1979-01-01

    In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential). PMID:261653

  9. Abnormal uterine bleeding.

    PubMed

    Whitaker, Lucy; Critchley, Hilary O D

    2016-07-01

    Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558

  10. Abortion for fetal abnormality.

    PubMed

    Maclean, N E

    1979-07-25

    I wish to thank Dr. Pauline Bennett for her reply (NZ Med J, 13 June). She has demonstrated well that in dealing with sensitive difficult issues such as abortion for fetal abnormality, the one thing the doctor is not recommended to do is to speak the truth] I am prompted to write this letter for 2 reasons. Firstly, the excellent letter written by Dr. A. M. Rutherford (NZ Med J, 13 June) on the subject of abortion stated, "The most disturbing feature about the whole controversy is the 'blunting of our conscience'." When the doctors are not encouraged to be honest with patients then indeed our conscience has been blunted. Secondly, I watched Holocaust last night, and cannot refrain from stating that I see frightening parallels between our liberal abortion policy and the activities of the Nazis. As I watched the "mental patients" being herded into the shed for gassing by the polite, tidy, white coated medical staff, and then heard the compassionate, sensitive, letter of the hospital authorities to the relatives of the deceased, the parallel became obvious. The mental patients were weak, defenseless, burdensome, and uneconomic; the unborn are weak, defenseless, burdensome, and uneconomic. The hospital authority's letter was acceptable in many ways, acceptable except that its words bore no relation to the truth. It is said that the "first casualty of war is the truth". Whether that war involves the Jews, or the insane, or the unborn, the statement would seem correct.

  11. Impaired mitochondrial metabolism and mammary carcinogenesis

    PubMed Central

    Yadava, Nagendra; Schneider, Sallie S.; Jerry, D. Joseph; Kim, Chul

    2013-01-01

    Mitochondrial oxidative metabolism plays a key role in meeting energetic demands of cells by oxidative phosphorylation (OxPhos). Here, we have briefly discussed (i) the dynamic relationship that exists among glycolysis, the tricarboxylic acid (TCA) cycle, and OxPhos; (ii) the evidence of impaired OxPhos (i.e. mitochondrial dysfunction) in breast cancer; (iii) the mechanisms by which mitochondrial dysfunction can predispose to cancer; and (iv) the effects of host and environmental factors that can negatively affect mitochondrial function. We propose that impaired OxPhos could increase susceptibility to breast cancer via suppression of the p53 pathway, which plays a critical role in preventing tumorigenesis. OxPhos is sensitive to a large number of factors intrinsic to the host (e.g. inflammation) as well as environmental exposures (e.g. pesticides, herbicides and other compounds). Polymorphisms in over 143 genes can also influence OxPhos system. Therefore, declining mitochondrial oxidative metabolism with age due to host and environmental exposures could be a common mechanism predisposing to cancer. PMID:23269521

  12. Mitochondrial Regulation of Cell Cycle and Proliferation

    PubMed Central

    Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José

    2012-01-01

    Abstract Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis. Antioxid. Redox Signal. 16, 1150–1180. PMID:21967640

  13. Abnormal apocrine secretory cell mitochondria in a Huntington disease patient.

    PubMed

    Sidiropoulos, Christos; LeWitt, Peter; Hashimoto, Ken

    2012-12-15

    Over two decades, a 42-year old woman experienced the gradual onset of choreic involuntary movements, dystonia, and tics. Decreased caudate nucleus metabolism on 2-deoxyglucose PET scan and a heterozygous 49-CAG repeat expansion within the HTT gene established the diagnosis of HD, although no other family history was known. An axillary skin biopsy revealed a distinctive abnormality of mitochondria limited to the apocrine secretory cells on electron microscopy. All mitochondria were transformed into rounded structures with disrupted cristae and prominent myelin figures; many were enlarged up to 4 times the normal. Cytoplasm of apocrine secretory cells showed an abundance of lipid vacuoles, empty vesicles, and dense bodies. Biopsied skeletal muscle histology (light microscopy) was normal, as was a mitochondrial metabolism study. Biopsies from other HD patients have shown similar mitochondrial changes in cerebral neurons, muscle, fibroblasts, and lymphoblasts, adding to evidence for a systemic disturbance of mitochondria in HD.

  14. Increased Insulin Sensitivity and Distorted Mitochondrial Adaptations during Muscle Unloading

    PubMed Central

    Qi, Zhengtang; Zhang, Yuan; Guo, Wei; Ji, Liu; Ding, Shuzhe

    2012-01-01

    We aimed to further investigate mitochondrial adaptations to muscle disuse and the consequent metabolic disorders. Male rats were submitted to hindlimb unloading (HU) for three weeks. Interestingly, HU increased insulin sensitivity index (ISI) and decreased blood level of triglyceride and insulin. In skeletal muscle, HU decreased expression of pyruvate dehydrogenase kinase 4 (PDK4) and its protein level in mitochondria. HU decreased mtDNA content and mitochondrial biogenesis biomarkers. Dynamin-related protein (Drp1) in mitochondria and Mfn2 mRNA level were decreased significantly by HU. Our findings provide more extensive insight into mitochondrial adaptations to muscle disuse, involving the shift of fuel utilization towards glucose, the decreased mitochondrial biogenesis and the distorted mitochondrial dynamics. PMID:23443131

  15. United Mitochondrial Disease Foundation

    MedlinePlus

    ... to Mitochondrial Disease FAQ's MitoFirst Handbook More Information Mito 101 Symposium Archives Get Connected Find an Event Adult Advisory Council Team Ask The Mito Doc Grand Rounds Kids & Teens Medical Child Abuse ...

  16. Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins.

    PubMed

    Birsa, Nicol; Norkett, Rosalind; Higgs, Nathalie; Lopez-Domenech, Guillermo; Kittler, Josef T

    2013-12-01

    Correct mitochondrial dynamics are essential to neuronal function. These dynamics include mitochondrial trafficking and quality-control systems that maintain a precisely distributed and healthy mitochondrial network, so that local energy demands or Ca2+-buffering requirements within the intricate architecture of the neuron can be met. Mitochondria make use of molecular machinery that couples these organelles to microtubule-based transport via kinesin and dynein motors, facilitating the required long-range movements. These motors in turn are associated with a variety of adaptor proteins allowing additional regulation of the complex dynamics demonstrated by these organelles. Over recent years, a number of new motor and adaptor proteins have been added to a growing list of components implicated in mitochondrial trafficking and distribution. Yet, there are major questions that remain to be addressed about the regulation of mitochondrial transport complexes. One of the core components of this machinery, the mitochondrial Rho GTPases Miro1 (mitochondrial Rho 1) and Miro2 have received special attention due to their Ca2+-sensing and GTPase abilities, marking Miro an exceptional candidate for co-ordinating mitochondrial dynamics and intracellular signalling pathways. In the present paper, we discuss the wealth of literature regarding Miro-mediated mitochondrial transport in neurons and recently highlighted involvement of Miro proteins in mitochondrial turnover, emerging as a key process affected in neurodegeneration. PMID:24256248

  17. Microtubules Are Essential for Mitochondrial Dynamics–Fission, Fusion, and Motility–in Dictyostelium discoideum

    PubMed Central

    Woods, Laken C.; Berbusse, Gregory W.; Naylor, Kari

    2016-01-01

    Mitochondrial function is dependent upon mitochondrial structure which is in turn dependent upon mitochondrial dynamics, including fission, fusion, and motility. Here we examined the relationship between mitochondrial dynamics and the cytoskeleton in Dictyostelium discoideum. Using time-lapse analysis, we quantified mitochondrial fission, fusion, and motility in the presence of cytoskeleton disrupting pharmaceuticals and the absence of the potential mitochondria-cytoskeleton linker protein, CluA. Our results indicate that microtubules are essential for mitochondrial movement, as well as fission and fusion; actin plays a less significant role, perhaps selecting the mitochondria for transport. We also suggest that CluA is not a linker protein but plays an unidentified role in mitochondrial fission and fusion. The significance of our work is to gain further insight into the role the cytoskeleton plays in mitochondrial dynamics and function. By better understanding these processes we can better appreciate the underlying mitochondrial contributions to many neurological disorders characterized by altered mitochondrial dynamics, structure, and/or function. PMID:27047941

  18. Mathematical modeling of the role of mitochondrial fusion and fission in mitochondrial DNA maintenance.

    PubMed

    Tam, Zhi Yang; Gruber, Jan; Halliwell, Barry; Gunawan, Rudiyanto

    2013-01-01

    Accumulation of mitochondrial DNA (mtDNA) mutations has been implicated in a wide range of human pathologies, including neurodegenerative diseases, sarcopenia, and the aging process itself. In cells, mtDNA molecules are constantly turned over (i.e. replicated and degraded) and are also exchanged among mitochondria during the fusion and fission of these organelles. While the expansion of a mutant mtDNA population is believed to occur by random segregation of these molecules during turnover, the role of mitochondrial fusion-fission in this context is currently not well understood. In this study, an in silico modeling approach is taken to investigate the effects of mitochondrial fusion and fission dynamics on mutant mtDNA accumulation. Here we report model simulations suggesting that when mitochondrial fusion-fission rate is low, the slow mtDNA mixing can lead to an uneven distribution of mutant mtDNA among mitochondria in between two mitochondrial autophagic events leading to more stochasticity in the outcomes from a single random autophagic event. Consequently, slower mitochondrial fusion-fission results in higher variability in the mtDNA mutation burden among cells in a tissue over time, and mtDNA mutations have a higher propensity to clonally expand due to the increased stochasticity. When these mutations affect cellular energetics, nuclear retrograde signalling can upregulate mtDNA replication, which is expected to slow clonal expansion of these mutant mtDNA. However, our simulations suggest that the protective ability of retrograde signalling depends on the efficiency of fusion-fission process. Our results thus shed light on the interplay between mitochondrial fusion-fission and mtDNA turnover and may explain the mechanism underlying the experimentally observed increase in the accumulation of mtDNA mutations when either mitochondrial fusion or fission is inhibited.

  19. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    PubMed

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential. PMID:23138103

  20. Evolutionary Dynamics of the Mitochondrial Genome in the Evaniomorpha (Hymenoptera)—A Group with an Intermediate Rate of Gene Rearrangement

    PubMed Central

    Mao, Meng; Gibson, Tracey; Dowton, Mark

    2014-01-01

    We determined the complete mitochondrial (mt) genomes of three evaniomorph species, Ceraphron sp. (Ceraphronoidea), Gasteruption sp. (Evanioidea), and Orthogonalys pulchella (Trigonalyoidea) as well as the nearly complete mt genome from another evaniomorph species, Megalyra sp. (Megalyroidea). Each of them possesses dramatic gene rearrangements, including protein-coding or rRNA genes. Gene inversions were identified in all of these mt genomes; for example, the two rRNA genes have inverted and moved into the nad2-cox1 junction in the Megalyra sp. mt genome. In addition, we found two copies of a 10-bp complementary repeat at the beginning of rrnS and at the end of trnL2 in the Gasteruption sp. mt genome, consistent with recombination as the possible mechanism for gene inversion and long-range movement. Although each of the genomes contains a number of repeats of varying size, there was no consistent association of the size or number of repeats with the extent or type of gene rearrangement. The breakpoint distance analysis showed the Evaniomorpha has an intermediate rate of gene rearrangement. Sequence-based phylogenetic analyses of 13 protein-coding and 2 rRNA genes in 22 hymenopteran taxa recovered a paraphyletic Evaniomorpha with the Aculeata nested within it. Within the Evaniomorpha, our analyses confirmed the Trigonalyoidea + Megalyroidea as the sister group to the Aculeata and recovered a novel clade, Ceraphronoidea + Evanioidea. In contrast to previous hymenopteran phylogenetic studies, the internal relationships of the Evaniomorpha were highly supported and robust to the variation of alignment approach and phylogenetic inference approach. PMID:25115010

  1. Haem degradation in abnormal haemoglobins.

    PubMed Central

    Brown, S B; Docherty, J C

    1978-01-01

    The coupled oxidation of certain abnormal haemoglobins leads to different bile-pigment isomer distributions from that of normal haemoglobin. The isomer pattern may be correlated with the structure of the abnormal haemoglobin in the neighbourhood of the haem pocket. This is support for haem degradation by an intramolecular reaction. PMID:708385

  2. Systemic abnormalities in liver disease

    PubMed Central

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648

  3. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  4. Electrocardiograph abnormalities revealed during laparoscopy.

    PubMed

    Nijjer, Sukhjinder; Dubrey, Simon William

    2010-01-01

    This brief case presents a well patient in whom an electrocardiograph abnormality consistent with an accessory pathway was found during a routine procedure. We present the electrocardiographs, explain the underlying condition, and consider why the abnormality was revealed in this manner.

  5. Vimar Is a Novel Regulator of Mitochondrial Fission through Miro

    PubMed Central

    Ding, Lianggong; Han, Yanping; Li, Yuhong; Ji, Xunming; Liu, Lei

    2016-01-01

    As fundamental processes in mitochondrial dynamics, mitochondrial fusion, fission and transport are regulated by several core components, including Miro. As an atypical Rho-like small GTPase with high molecular mass, the exchange of GDP/GTP in Miro may require assistance from a guanine nucleotide exchange factor (GEF). However, the GEF for Miro has not been identified. While studying mitochondrial morphology in Drosophila, we incidentally observed that the loss of vimar, a gene encoding an atypical GEF, enhanced mitochondrial fission under normal physiological conditions. Because Vimar could co-immunoprecipitate with Miro in vitro, we speculated that Vimar might be the GEF of Miro. In support of this hypothesis, a loss-of-function (LOF) vimar mutant rescued mitochondrial enlargement induced by a gain-of-function (GOF) Miro transgene; whereas a GOF vimar transgene enhanced Miro function. In addition, vimar lost its effect under the expression of a constitutively GTP-bound or GDP-bound Miro mutant background. These results indicate a genetic dependence of vimar on Miro. Moreover, we found that mitochondrial fission played a functional role in high-calcium induced necrosis, and a LOF vimar mutant rescued the mitochondrial fission defect and cell death. This result can also be explained by vimar's function through Miro, because Miro’s effect on mitochondrial morphology is altered upon binding with calcium. In addition, a PINK1 mutant, which induced mitochondrial enlargement and had been considered as a Drosophila model of Parkinson’s disease (PD), caused fly muscle defects, and the loss of vimar could rescue these defects. Furthermore, we found that the mammalian homolog of Vimar, RAP1GDS1, played a similar role in regulating mitochondrial morphology, suggesting a functional conservation of this GEF member. The Miro/Vimar complex may be a promising drug target for diseases in which mitochondrial fission and fusion are dysfunctional. PMID:27716788

  6. Mitochondrial calcium and the regulation of metabolism in the heart.

    PubMed

    Williams, George S B; Boyman, Liron; Lederer, W Jonathan

    2015-01-01

    Consumption of adenosine triphosphate (ATP) by the heart can change dramatically as the energetic demands increase from a period of rest to strenuous activity. Mitochondrial ATP production is central to this metabolic response since the heart relies largely on oxidative phosphorylation as its source of intracellular ATP. Significant evidence has been acquired indicating that Ca(2+) plays a critical role in regulating ATP production by the mitochondria. Here the evidence that the Ca(2+) concentration in the mitochondrial matrix ([Ca(2+)]m) plays a pivotal role in regulating ATP production by the mitochondria is critically reviewed and aspects of this process that are under current active investigation are highlighted. Importantly, current quantitative information on the bidirectional Ca(2+) movement across the inner mitochondrial membrane (IMM) is examined in two parts. First, we review how Ca(2+) influx into the mitochondrial matrix depends on the mitochondrial Ca(2+) channel (i.e., the mitochondrial calcium uniporter or MCU). This discussion includes how the MCU open probability (PO) depends on the cytosolic Ca(2+) concentration ([Ca(2+)]i) and on the mitochondrial membrane potential (ΔΨm). Second, we discuss how steady-state [Ca(2+)]m is determined by the dynamic balance between this MCU-based Ca(2+) influx and mitochondrial Na(+)/Ca(2+) exchanger (NCLX) based Ca(2+) efflux. These steady-state [Ca(2+)]m levels are suggested to regulate the metabolic energy supply due to Ca(2+)-dependent regulation of mitochondrial enzymes of the tricarboxylic acid cycle (TCA), the proteins of the electron transport chain (ETC), and the F1F0 ATP synthase itself. We conclude by discussing the roles played by [Ca(2+)]m in influencing mitochondrial responses under pathological conditions. This article is part of a Special Issue entitled "Mitochondria: From BasicMitochondrial Biology to Cardiovascular Disease." PMID:25450609

  7. The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal.

    PubMed

    Gellerich, Frank Norbert; Gizatullina, Zemfira; Gainutdinov, Timur; Muth, Katharina; Seppet, Enn; Orynbayeva, Zulfiya; Vielhaber, Stefan

    2013-03-01

    This review focuses on problems of the intracellular regulation of mitochondrial function in the brain via the (i) supply of mitochondria with ADP by means of ADP shuttles and channels and (ii) the Ca(2+) control of mitochondrial substrate supply. The permeability of the mitochondrial outer membrane for adenine nucleotides is low. Therefore rate dependent concentration gradients exist between the mitochondrial intermembrane space and the cytosol. The existence of dynamic ADP gradients is an important precondition for the functioning of ADP shuttles, for example CrP-shuttle. Cr at mM concentrations instead of ADP diffuses from the cytosol through the porin pores into the intermembrane space. The CrP-shuttle isoenzymes work in different directions which requires different metabolite concentrations mainly caused by dynamic ADP compartmentation. The ADP shuttle mechanisms alone cannot explain the load dependent changes in mitochondrial energization, and a complete model of mitochondrial regulation have to account the Ca(2+) -dependent substrate supply too. According to the old paradigmatic view, Ca(2+) (cyt) taken up by the mitochondrial Ca(2+) uniporter activates dehydrogenases within the matrix. However, recently it was found that Ca(2+) (cyt) at low nM concentrations exclusively activates the state 3 respiration via aralar, the mitochondrial glutamate/aspartate carrier. At higher Ca(2+) (cyt) (> 500 nM), brain mitochondria take up Ca(2+) for activation of substrate oxidation rates. Since brain mitochondrial pyruvate oxidation is only slightly influenced by Ca(2+) (cyt) , it was proposed that the cytosolic formation of pyruvate from its precursors is tightly controlled by the Ca(2+) dependent malate/aspartate shuttle. At low (50-100 nM) Ca(2+) (cyt) the pyruvate formation is suppressed, providing a substrate limitation control in neurons. This so called "gas pedal" mechanism explains why the energy metabolism of neurons in the nucleus suprachiasmaticus could be down

  8. Human mitochondrial transcription factor A is required for the segregation of mitochondrial DNA in cultured cells.

    PubMed

    Kasashima, Katsumi; Sumitani, Megumi; Endo, Hitoshi

    2011-01-15

    The segregation and transmission of the mitochondrial genome in humans are complicated processes but are particularly important for understanding the inheritance and clinical abnormalities of mitochondrial disorders. However, the molecular mechanism of the segregation of mitochondrial DNA (mtDNA) is largely unclear. In this study, we demonstrated that human mitochondrial transcription factor A (TFAM) is required for the segregation of mtDNA in cultured cells. RNAi-mediated knockdown of TFAM in HeLa cells resulted in the enlarged mtDNA, as indicated by the assembly of fluorescent signals stained with PicoGreen. Fluorescent in situ hybridization confirmed the enlarged mtDNA and further showed the existence of increased numbers of mitochondria lacking mtDNA signals in TFAM knockdown cells. By complementation analysis, the C-terminal tail of TFAM, which enhances its affinity with DNA, was found to be required for the appropriate distribution of mtDNA. Furthermore, we found that TFAM knockdown induced asymmetric segregation of mtDNA between dividing daughter cells. These results suggest an essential role for human TFAM in symmetric segregation of mtDNA. PMID:20955698

  9. Mitochondrial disease in adults: what's old and what's new?

    PubMed

    Chinnery, Patrick F

    2015-11-26

    Ten years ago, there was an emerging view that the molecular basis for adult mitochondrial disorders was largely known and that the clinical phenotypes had been well described. Nothing could have been further from the truth. The establishment of large cohorts of patients has revealed new aspects of the clinical presentation that were not previously appreciated. Over time, this approach is starting to provide an accurate understanding of the natural history of mitochondrial disease in adults. Advances in molecular diagnostics, underpinned by next generation sequencing technology, have identified novel molecular mechanisms. Recently described mitochondrial disease phenotypes have disparate causes, and yet share common mechanistic themes. In particular, disorders of mtDNA maintenance have emerged as a major cause of mitochondrial disease in adults. Progressive mtDNA depletion and the accumulation of mtDNA mutations explain some of the clinical features, but the genetic and cellular processes responsible for the mtDNA abnormalities are not entirely clear in each instance. Unfortunately, apart from a few specific examples, treatments for adult mitochondrial disease have not been forthcoming. However, the establishment of international consortia, and the first multinational randomised controlled trial, have paved the way for major progress in the near future, underpinned by growing interest from the pharmaceutical industry. Adult mitochondrial medicine is, therefore, in its infancy, and the challenge is to harness the new understanding of its molecular and cellular basis to develop treatments of real benefit to patients.

  10. The cAMP phosphodiesterase Prune localizes to the mitochondrial matrix and promotes mtDNA replication by stabilizing TFAM

    PubMed Central

    Zhang, Fan; Qi, Yun; Zhou, Kiet; Zhang, Guofeng; Linask, Kaari; Xu, Hong

    2015-01-01

    Compartmentalized cAMP signaling regulates mitochondrial dynamics, morphology, and oxidative phosphorylation. However, regulators of the mitochondrial cAMP pathway, and its broad impact on organelle function, remain to be explored. Here, we report that Drosophila Prune is a cyclic nucleotide phosphodiesterase that localizes to the mitochondrial matrix. Knocking down prune in cultured cells reduces mitochondrial transcription factor A (TFAM) and mitochondrial DNA (mtDNA) levels. Our data suggest that Prune stabilizes TFAM and promotes mitochondrial DNA (mtDNA) replication through downregulation of mitochondrial cAMP signaling. In addition, our work demonstrates the prevalence of mitochondrial cAMP signaling in metazoan and its new role in mitochondrial biogenesis. PMID:25648146

  11. Advanced Mitochondrial Respiration Assay for Evaluation of Mitochondrial Dysfunction in Alzheimer's Disease.

    PubMed

    Grimm, Amandine; Schmitt, Karen; Eckert, Anne

    2016-01-01

    Alzheimer's disease (AD) is characterized by the presence of amyloid plaques (aggregates of amyloid-β [Aβ]) and neurofibrillary tangles (aggregates of tau) in the brain, but the underlying mechanisms of the disease are still partially unclear. A growing body of evidence supports mitochondrial dysfunction as a prominent and early, chronic oxidative stress-associated event that contributes to synaptic abnormalities, and, ultimately, selective neuronal degeneration in AD. Using a high-resolution respirometry system, we shed new light on the close interrelationship of this organelle with Aβ and tau in the pathogenic process underlying AD by showing a synergistic effect of these two hallmark proteins on the oxidative phosphorylation capacity of mitochondria isolated from the brain of transgenic AD mice. In the present chapter, we first introduce the principle of the Aβ and tau interaction on mitochondrial respiration, and secondly, we describe in detail the used respiratory protocol.

  12. MitoTimer probe reveals the impact of autophagy, fusion, and motility on subcellular distribution of young and old mitochondrial protein and on relative mitochondrial protein age

    PubMed Central

    Ferree, Andrew W; Trudeau, Kyle; Zik, Eden; Benador, Ilan Y; Twig, Gilad; Gottlieb, Roberta A; Shirihai, Orian S

    2013-01-01

    To study mitochondrial protein age dynamics, we targeted a time-sensitive fluorescent protein, MitoTimer, to the mitochondrial matrix. Mitochondrial age was revealed by the integrated portions of young (green) and old (red) MitoTimer protein. Mitochondrial protein age was dependent on turnover rates as pulsed synthesis, decreased import, or autophagic inhibition all increased the proportion of aged MitoTimer protein. Mitochondrial fusion promotes the distribution of young mitochondrial protein across the mitochondrial network as cells lacking essential fusion genes Mfn1 and Mfn2 displayed increased heterogeneity in mitochondrial protein age. Experiments in hippocampal neurons illustrate that the distribution of older and younger mitochondrial protein within the cell is determined by subcellular spatial organization and compartmentalization of mitochondria into neurites and soma. This effect was altered by overexpression of mitochondrial transport protein, RHOT1/MIRO1. Collectively our data show that distribution of young and old protein in the mitochondrial network is dependent on turnover, fusion, and transport. PMID:24149000

  13. Spatio-Temporal Distribution of Aedes aegypti (Diptera: Culicidae) Mitochondrial Lineages in Cities with Distinct Dengue Incidence Rates Suggests Complex Population Dynamics of the Dengue Vector in Colombia

    PubMed Central

    Jaimes-Dueñez, Jeiczon; Arboleda, Sair; Triana-Chávez, Omar; Gómez-Palacio, Andrés

    2015-01-01

    Background Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV. Methods/Findings Mitochondrial cytochrome oxidase C subunit 1 (COI) - NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities. Conclusions Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is

  14. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  15. Mdivi-1, mitochondrial fission inhibitor, impairs developmental competence and mitochondrial function of embryos and cells in pigs

    PubMed Central

    YEON, Ji-Yeong; MIN, Sung-Hun; PARK, Hyo-Jin; KIM, Jin-Woo; LEE, Yong-Hee; PARK, Soo-Yong; JEONG, Pil-Soo; PARK, Humdai; LEE, Dong-Seok; KIM, Sun-Uk; CHANG, Kyu-Tae; KOO, Deog-Bon

    2014-01-01

    Mitochondria are highly dynamic organelles that undergo constant fusion/fission as well as activities orchestrated by large dynamin-related GTPases. These dynamic mitochondrial processes influence mitochondrial morphology, size and function. Therefore, this study was conducted to evaluate the effects of mitochondrial fission inhibitor, mdivi-1, on developmental competence and mitochondrial function of porcine embryos and primary cells. Presumptive porcine embryos were cultured in PZM-3 medium supplemented with mdivi-1 (0, 10 and 50 μM) for 6 days. Porcine fibroblast cells were cultured in growth medium with mdivi-1 (0 and 50 μM) for 2 days. Our results showed that the rate of blastocyst production and cell growth in the mdivi-1 (50 μM) treated group was lower than that of the control group (P < 0.05). Moreover, loss of mitochondrial membrane potential in the mdivi-1 (50 μM) treated group was increased relative to the control group (P < 0.05). Subsequent evaluation revealed that the intracellular levels of reactive oxygen species (ROS) and the apoptotic index were increased by mdivi-1 (50 μM) treatment (P < 0.05). Finally, the expression of mitochondrial fission-related protein (Drp 1) was lower in the embryos and cells in the mdivi-1-treated group than the control group. Taken together, these results indicate that mdivi-1 treatment may inhibit developmental competence and mitochondrial function in porcine embryos and primary cells. PMID:25501014

  16. Unique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma

    PubMed Central

    Lennon, Frances E.; Cianci, Gianguido C.; Kanteti, Rajani; Riehm, Jacob J.; Arif, Qudsia; Poroyko, Valeriy A.; Lupovitch, Eitan; Vigneswaran, Wickii; Husain, Aliya; Chen, Phetcharat; Liao, James K.; Sattler, Martin; Kindler, Hedy L.; Salgia, Ravi

    2016-01-01

    Malignant mesothelioma (MM), is an intractable disease with limited therapeutic options and grim survival rates. Altered metabolic and mitochondrial functions are hallmarks of MM and most other cancers. Mitochondria exist as a dynamic network, playing a central role in cellular metabolism. MM cell lines display a spectrum of altered mitochondrial morphologies and function compared to control mesothelial cells. Fractal dimension and lacunarity measurements are a sensitive and objective method to quantify mitochondrial morphology and most importantly are a promising predictor of response to mitochondrial inhibition. Control cells have high fractal dimension and low lacunarity and are relatively insensitive to mitochondrial inhibition. MM cells exhibit a spectrum of sensitivities to mitochondrial inhibitors. Low mitochondrial fractal dimension and high lacunarity correlates with increased sensitivity to the mitochondrial inhibitor metformin. Lacunarity also correlates with sensitivity to Mdivi-1, a mitochondrial fission inhibitor. MM and control cells have similar sensitivities to cisplatin, a chemotherapeutic agent used in the treatment of MM. Neither oxidative phosphorylation nor glycolytic activity, correlated with sensitivity to either metformin or mdivi-1. Our results suggest that mitochondrial inhibition may be an effective and selective therapeutic strategy in mesothelioma, and identifies mitochondrial morphology as a possible predictor of response to targeted mitochondrial inhibition. PMID:27080907

  17. Unique fractal evaluation and therapeutic implications of mitochondrial morphology in malignant mesothelioma.

    PubMed

    Lennon, Frances E; Cianci, Gianguido C; Kanteti, Rajani; Riehm, Jacob J; Arif, Qudsia; Poroyko, Valeriy A; Lupovitch, Eitan; Vigneswaran, Wickii; Husain, Aliya; Chen, Phetcharat; Liao, James K; Sattler, Martin; Kindler, Hedy L; Salgia, Ravi

    2016-01-01

    Malignant mesothelioma (MM), is an intractable disease with limited therapeutic options and grim survival rates. Altered metabolic and mitochondrial functions are hallmarks of MM and most other cancers. Mitochondria exist as a dynamic network, playing a central role in cellular metabolism. MM cell lines display a spectrum of altered mitochondrial morphologies and function compared to control mesothelial cells. Fractal dimension and lacunarity measurements are a sensitive and objective method to quantify mitochondrial morphology and most importantly are a promising predictor of response to mitochondrial inhibition. Control cells have high fractal dimension and low lacunarity and are relatively insensitive to mitochondrial inhibition. MM cells exhibit a spectrum of sensitivities to mitochondrial inhibitors. Low mitochondrial fractal dimension and high lacunarity correlates with increased sensitivity to the mitochondrial inhibitor metformin. Lacunarity also correlates with sensitivity to Mdivi-1, a mitochondrial fission inhibitor. MM and control cells have similar sensitivities to cisplatin, a chemotherapeutic agent used in the treatment of MM. Neither oxidative phosphorylation nor glycolytic activity, correlated with sensitivity to either metformin or mdivi-1. Our results suggest that mitochondrial inhibition may be an effective and selective therapeutic strategy in mesothelioma, and identifies mitochondrial morphology as a possible predictor of response to targeted mitochondrial inhibition. PMID:27080907

  18. Multiorgan disorder syndrome (MODS) in an octagenarian suggests mitochondrial disorder.

    PubMed

    Finsterer, Josef; Bastovansky, Adam

    2015-09-01

    Non-syndromic, multi-organ mitochondrial disorders (MIDs) are frequently missed if treating physicians are not aware of them. We report a 85 years old Caucasian male, referred for tonic-clonic seizures, presenting with a plethora of abnormalities, including neurodermitis, atopic dermatitis, diabetes, hypertension, renal insufficiency, non-specific colitis, urine bladder lithiasis, bilateral cataracts, atrial fibrillation, diverticulosis, polyneuropathy, vitamin-D-deficiency, renal cysts, left anterior hemi-block, right bundle branch block, pulmonary artery hypertension, and heart failure. Neurological investigations revealed ptosis, quadriparesis, fasciculations, dysarthria, dysdiadochokinesia, tremor, hyperkinesia, ataxia, leukoencephalopathy, and basal ganglia calcification. Based upon this combination of abnormalities a non-syndromic mitochondrial multi-organ disorder syndrome (MIMODS, encephalo-myo-cardiomyopathy) was diagnosed. PMID:26530206

  19. α-Synuclein amino terminus regulates mitochondrial membrane permeability.

    PubMed

    Shen, Jiamei; Du, Tingting; Wang, Xue; Duan, Chunli; Gao, Ge; Zhang, Jianliang; Lu, Lingling; Yang, Hui

    2014-12-01

    Parkinson's disease (PD) is a common neurodegenerative movement disorder affecting an increasing number of elderly. Various studies have shown that mitochondrial dysfunction and abnormal protein aggregation are two major contributors to the progression of PD. The N terminus of α-synuclein (α-Syn/N), which adopts an α-helical conformation upon lipid binding, is essential for membrane interaction; yet its role in mitochondria remains poorly defined. A functional characterization of the α-Syn N-terminal domain and investigation of its effect on mitochondrial membrane permeability were undertaken in this study. α-Syn/N and α-Syn/delN (amino acids 1-65 and 61-140, respectively) constructs were overexpressed in dopaminergic MN9D cells and primary cortical neurons. A decrease in cell viability was observed in cells transfected with α-Syn/N but not α-Syn/delN. In addition, an α-Syn/N-induced increase in the level of intracellular reactive oxygen species, alteration in mitochondrial morphology, and decrease in mitochondrial membrane potential were accompanied by the activation of mitochondrial permeability transition pores (mPTP). These changes were also associated with a decline in mitochondrial cardiolipin content and interaction with the voltage-dependent anion channel and adenine nucleotide translocator in the mitochondrial membrane. The activation of mPTPs and reduction in cell viability were partially reversed by bongkrekic acid, an inhibitor of adenine nucleotide translocator (ANT), suggesting that the interaction between α-Syn and ANT promoted mPTP activation and was toxic to cells. BKA treatment reduced interaction of α-Syn/N with ANT and VDAC. These results suggest that the N terminus of α-Syn is essential for the regulation of mitochondrial membrane permeability and is a likely factor in the neurodegeneration associated with PD.

  20. I Function, Therefore I Am: Overcoming Skepticism about Mitochondrial Supercomplexes

    PubMed Central

    Barrientos, Antoni; Ugalde, Cristina

    2014-01-01

    The mitochondrial respiratory chain is believed to dynamically arrange in suprastructures known as supercomplexes or respirasomes, though their function remains elusive. A recent study in Science (Lapuente-Brun et al., 2013) now reports that dynamic supercomplex assembly determines electron flux from different substrates through the respiratory chain. PMID:23931749

  1. I function, therefore I am: overcoming skepticism about mitochondrial supercomplexes.

    PubMed

    Barrientos, Antoni; Ugalde, Cristina

    2013-08-01

    The mitochondrial respiratory chain is believed to dynamically arrange in suprastructures known as supercomplexes or respirasomes, though their function remains elusive. A recent study in Science (Lapuente-Brun et al., 2013) now reports that dynamic supercomplex assembly determines electron flux from different substrates through the respiratory chain.

  2. Mitochondrial fusion and inheritance of the mitochondrial genome.

    PubMed

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion. PMID:20196232

  3. Mitochondrial fusion and inheritance of the mitochondrial genome.

    PubMed

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion.

  4. Renal Mitochondrial Cytopathies

    PubMed Central

    Emma, Francesco; Montini, Giovanni; Salviati, Leonardo; Dionisi-Vici, Carlo

    2011-01-01

    Renal diseases in mitochondrial cytopathies are a group of rare diseases that are characterized by frequent multisystemic involvement and extreme variability of phenotype. Most frequently patients present a tubular defect that is consistent with complete De Toni-Debré-Fanconi syndrome in most severe forms. More rarely, patients present with chronic tubulointerstitial nephritis, cystic renal diseases, or primary glomerular involvement. In recent years, two clearly defined entities, namely 3243 A > G tRNALEU mutations and coenzyme Q10 biosynthesis defects, have been described. The latter group is particularly important because it represents the only treatable renal mitochondrial defect. In this paper, the physiopathologic bases of mitochondrial cytopathies, the diagnostic approaches, and main characteristics of related renal diseases are summarized. PMID:21811680

  5. Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes.

    PubMed

    Coughlan, Melinda T; Nguyen, Tuong-Vi; Penfold, Sally A; Higgins, Gavin C; Thallas-Bonke, Vicki; Tan, Sih Min; Van Bergen, Nicole J; Sourris, Karly C; Harcourt, Brooke E; Thorburn, David R; Trounce, Ian A; Cooper, Mark E; Forbes, Josephine M

    2016-05-01

    Oxidative phosphorylation (OXPHOS) drives ATP production by mitochondria, which are dynamic organelles, constantly fusing and dividing to maintain kidney homoeostasis. In diabetic kidney disease (DKD), mitochondria appear dysfunctional, but the temporal development of diabetes-induced adaptations in mitochondrial structure and bioenergetics have not been previously documented. In the present study, we map the changes in mitochondrial dynamics and function in rat kidney mitochondria at 4, 8, 16 and 32 weeks of diabetes. Our data reveal that changes in mitochondrial bioenergetics and dynamics precede the development of albuminuria and renal histological changes. Specifically, in early diabetes (4 weeks), a decrease in ATP content and mitochondrial fragmentation within proximal tubule epithelial cells (PTECs) of diabetic kidneys were clearly apparent, but no changes in urinary albumin excretion or glomerular morphology were evident at this time. By 8 weeks of diabetes, there was increased capacity for mitochondrial permeability transition (mPT) by pore opening, which persisted over time and correlated with mitochondrial hydrogen peroxide (H2O2) generation and glomerular damage. Late in diabetes, by week 16, tubular damage was evident with increased urinary kidney injury molecule-1 (KIM-1) excretion, where an increase in the Complex I-linked oxygen consumption rate (OCR), in the context of a decrease in kidney ATP, indicated mitochondrial uncoupling. Taken together, these data show that changes in mitochondrial bioenergetics and dynamics may precede the development of the renal lesion in diabetes, and this supports the hypothesis that mitochondrial dysfunction is a primary cause of DKD. PMID:26831938

  6. Mapping time-course mitochondrial adaptations in the kidney in experimental diabetes.

    PubMed

    Coughlan, Melinda T; Nguyen, Tuong-Vi; Penfold, Sally A; Higgins, Gavin C; Thallas-Bonke, Vicki; Tan, Sih Min; Van Bergen, Nicole J; Sourris, Karly C; Harcourt, Brooke E; Thorburn, David R; Trounce, Ian A; Cooper, Mark E; Forbes, Josephine M

    2016-05-01

    Oxidative phosphorylation (OXPHOS) drives ATP production by mitochondria, which are dynamic organelles, constantly fusing and dividing to maintain kidney homoeostasis. In diabetic kidney disease (DKD), mitochondria appear dysfunctional, but the temporal development of diabetes-induced adaptations in mitochondrial structure and bioenergetics have not been previously documented. In the present study, we map the changes in mitochondrial dynamics and function in rat kidney mitochondria at 4, 8, 16 and 32 weeks of diabetes. Our data reveal that changes in mitochondrial bioenergetics and dynamics precede the development of albuminuria and renal histological changes. Specifically, in early diabetes (4 weeks), a decrease in ATP content and mitochondrial fragmentation within proximal tubule epithelial cells (PTECs) of diabetic kidneys were clearly apparent, but no changes in urinary albumin excretion or glomerular morphology were evident at this time. By 8 weeks of diabetes, there was increased capacity for mitochondrial permeability transition (mPT) by pore opening, which persisted over time and correlated with mitochondrial hydrogen peroxide (H2O2) generation and glomerular damage. Late in diabetes, by week 16, tubular damage was evident with increased urinary kidney injury molecule-1 (KIM-1) excretion, where an increase in the Complex I-linked oxygen consumption rate (OCR), in the context of a decrease in kidney ATP, indicated mitochondrial uncoupling. Taken together, these data show that changes in mitochondrial bioenergetics and dynamics may precede the development of the renal lesion in diabetes, and this supports the hypothesis that mitochondrial dysfunction is a primary cause of DKD.

  7. SUMO-regulated mitochondrial function in Parkinson's disease.

    PubMed

    Guerra de Souza, Ana Cristina; Prediger, Rui Daniel; Cimarosti, Helena

    2016-06-01

    Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by cardinal motor signs such as rigidity, bradykinesia or rest tremor that arise from a significant death of dopaminergic neurons. Non-dopaminergic degeneration also occurs and it seems to induce the deficits in olfactory, emotional, and memory functions that precede the classical motor symptoms in PD. Despite the majority of PD cases being sporadic, several genes have previously been associated with the hereditary forms of the disease. The proteins encoded by some of these genes, including α-synuclein, DJ-1, and parkin, are modified by small ubiquitin-like modifier (SUMO), a post-translational modification that regulates a variety of cellular processes. Among the several pathogenic mechanisms proposed for PD is mitochondrial dysfunction. Recent studies suggest that SUMOylation can interfere with mitochondrial dynamics, which is essential for neuronal function, and may play a pivotal role in PD pathogenesis. Here, we present an overview of recent studies on mitochondrial disturbance in PD and the potential SUMO-modified proteins and pathways involved in this process. SUMOylation, a post-translational modification, interferes with mitochondrial dynamics, and may play a pivotal role in Parkinson's disease (PD). SUMOylation maintains α-synuclein (α-syn) in a soluble form and activates DJ-1, decreasing mitochondrial oxidative stress. SUMOylation may reduce the amount of parkin available for mitochondrial recruitment and decreases mitochondrial biogenesis through suppression of peroxisomal proliferator-activated receptor-γ co-activator 1 α (PGC-1α). Mitochondrial fission can be regulated by dynamin-related protein 1 SUMO-1- or SUMO-2/3-ylation. A fine balance for the SUMOylation/deSUMOylation of these proteins is required to ensure adequate mitochondrial function in PD. PMID:26932327

  8. Cancer: Mitochondrial Origins.

    PubMed

    Stefano, George B; Kream, Richard M

    2015-12-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was "sidelined" with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced mitochondrial

  9. Cancer: Mitochondrial Origins

    PubMed Central

    Stefano, George B.; Kream, Richard M.

    2015-01-01

    The primacy of glucose derived from photosynthesis as an existential source of chemical energy across plant and animal phyla is universally accepted as a core principle in the biological sciences. In mammalian cells, initial processing of glucose to triose phosphate intermediates takes place within the cytosolic glycolytic pathway and terminates with temporal transport of reducing equivalents derived from pyruvate metabolism by membrane-associated respiratory complexes in the mitochondrial matrix. The intra-mitochondrial availability of molecular oxygen as the ultimate electron acceptor drives the evolutionary fashioned chemiosmotic production of ATP as a high-efficiency biological process. The mechanistic bases of carcinogenesis have demonstrated profound alteration of normative mitochondrial function, notably dysregulated respiratory processes. Accordingly, the classic Warburg effect functionally links aerobic glycolysis, aberrant production and release of lactate, and metabolic down-regulation of mitochondrial oxidative processes with the carcinogenetic phenotype. We surmise, however, that aerobic fermentation by cancer cells may also represent a developmental re-emergence of an evolutionarily conserved early phenotype, which was “sidelined” with the emergence of mitochondrial oxidative phosphorylation as a primary mechanism for ATP production in normal cells. Regardless of state-dependent physiological status in mixed populations of cancer cells, it has been established that mitochondria are functionally linked to the initiation of cancer and its progression. Biochemical, molecular, and physiological differences in cancer cell mitochondria, notably mtDNA heteroplasmy and allele-specific expression of selected nuclear genes, may represent major focal points for novel targeting and elimination of cancer cells in metastatic disease afflicting human populations. To date, and despite considerable research efforts, the practical realization of advanced

  10. Late Mitochondrial Acquisition, Really?

    PubMed Central

    Degli Esposti, Mauro

    2016-01-01

    This article provides a timely critique of a recent Nature paper by Pittis and Gabaldón that has suggested a late origin of mitochondria in eukaryote evolution. It shows that the inferred ancestry of many mitochondrial proteins has been incorrectly assigned by Pittis and Gabaldón to bacteria other than the aerobic proteobacteria from which the ancestor of mitochondria originates, thereby questioning the validity of their suggestion that mitochondrial acquisition may be a late event in eukaryote evolution. The analysis and approach presented here may guide future studies to resolve the true ancestry of mitochondria. PMID:27289097

  11. MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.

    PubMed

    Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y

    2016-01-01

    Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders. PMID:26712328

  12. Mitochondrial catastrophe during doxorubicin-induced cardiotoxicity: a review of the protective role of melatonin.

    PubMed

    Govender, Jenelle; Loos, Ben; Marais, Erna; Engelbrecht, Anna-Mart

    2014-11-01

    Anthracyclines, such as doxorubicin, are among the most valuable treatments for various cancers, but their clinical use is limited due to detrimental side effects such as cardiotoxicity. Doxorubicin-induced cardiotoxicity is emerging as a critical issue among cancer survivors and is an area of much significance to the field of cardio-oncology. Abnormalities in mitochondrial functions such as defects in the respiratory chain, decreased adenosine triphosphate production, mitochondrial DNA damage, modulation of mitochondrial sirtuin activity and free radical formation have all been suggested as the primary causative factors in the pathogenesis of doxorubicin-induced cardiotoxicity. Melatonin is a potent antioxidant, is nontoxic, and has been shown to influence mitochondrial homeostasis and function. Although a number of studies support the mitochondrial protective role of melatonin, the exact mechanisms by which melatonin confers mitochondrial protection in the context of doxorubicin-induced cardiotoxicity remain to be elucidated. This review focuses on the role of melatonin on doxorubicin-induced bioenergetic failure, free radical generation, and cell death. A further aim is to highlight other mitochondrial parameters such as mitophagy, autophagy, mitochondrial fission and fusion, and mitochondrial sirtuin activity, which lack evidence to support the role of melatonin in the context of cardiotoxicity. PMID:25230823

  13. Effective treatment of mitochondrial myopathy by nicotinamide riboside, a vitamin B3.

    PubMed

    Khan, Nahid A; Auranen, Mari; Paetau, Ilse; Pirinen, Eija; Euro, Liliya; Forsström, Saara; Pasila, Lotta; Velagapudi, Vidya; Carroll, Christopher J; Auwerx, Johan; Suomalainen, Anu

    2014-06-01

    Nutrient availability is the major regulator of life and reproduction, and a complex cellular signaling network has evolved to adapt organisms to fasting. These sensor pathways monitor cellular energy metabolism, especially mitochondrial ATP production and NAD(+)/NADH ratio, as major signals for nutritional state. We hypothesized that these signals would be modified by mitochondrial respiratory chain disease, because of inefficient NADH utilization and ATP production. Oral administration of nicotinamide riboside (NR), a vitamin B3 and NAD(+) precursor, was previously shown to boost NAD(+) levels in mice and to induce mitochondrial biogenesis. Here, we treated mitochondrial myopathy mice with NR. This vitamin effectively delayed early- and late-stage disease progression, by robustly inducing mitochondrial biogenesis in skeletal muscle and brown adipose tissue, preventing mitochondrial ultrastructure abnormalities and mtDNA deletion formation. NR further stimulated mitochondrial unfolded protein response, suggesting its protective role in mitochondrial disease. These results indicate that NR and strategies boosting NAD(+) levels are a promising treatment strategy for mitochondrial myopathy. PMID:24711540

  14. MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.

    PubMed

    Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y

    2016-01-01

    Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.

  15. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  16. Mitochondrial dysfunction in autism spectrum disorders: a systematic review and meta-analysis

    PubMed Central

    Rossignol, D A; Frye, R E

    2012-01-01

    A comprehensive literature search was performed to collate evidence of mitochondrial dysfunction in autism spectrum disorders (ASDs) with two primary objectives. First, features of mitochondrial dysfunction in the general population of children with ASD were identified. Second, characteristics of mitochondrial dysfunction in children with ASD and concomitant mitochondrial disease (MD) were compared with published literature of two general populations: ASD children without MD, and non-ASD children with MD. The prevalence of MD in the general population of ASD was 5.0% (95% confidence interval 3.2, 6.9%), much higher than found in the general population (∼0.01%). The prevalence of abnormal biomarker values of mitochondrial dysfunction was high in ASD, much higher than the prevalence of MD. Variances and mean values of many mitochondrial biomarkers (lactate, pyruvate, carnitine and ubiquinone) were significantly different between ASD and controls. Some markers correlated with ASD severity. Neuroimaging, in vitro and post-mortem brain studies were consistent with an elevated prevalence of mitochondrial dysfunction in ASD. Taken together, these findings suggest children with ASD have a spectrum of mitochondrial dysfunction of differing severity. Eighteen publications representing a total of 112 children with ASD and MD (ASD/MD) were identified. The prevalence of developmental regression (52%), seizures (41%), motor delay (51%), gastrointestinal abnormalities (74%), female gender (39%), and elevated lactate (78%) and pyruvate (45%) was significantly higher in ASD/MD compared with the general ASD population. The prevalence of many of these abnormalities was similar to the general population of children with MD, suggesting that ASD/MD represents a distinct subgroup of children with MD. Most ASD/MD cases (79%) were not associated with genetic abnormalities, raising the possibility of secondary mitochondrial dysfunction. Treatment studies for ASD/MD were limited, although

  17. Mitochondrial Ca2+ Remodeling is a Prime Factor in Oncogenic Behavior

    PubMed Central

    Rimessi, Alessandro; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R.; Pinton, Paolo

    2015-01-01

    Cancer is sustained by defects in the mechanisms underlying cell proliferation, mitochondrial metabolism, and cell death. Mitochondrial Ca2+ ions are central to all these processes, serving as signaling molecules with specific spatial localization, magnitude, and temporal characteristics. Mutations in mtDNA, aberrant expression and/or regulation of Ca2+-handling/transport proteins and abnormal Ca2+-dependent relationships among the cytosol, endoplasmic reticulum, and mitochondria can cause the deregulation of mitochondrial Ca2+-dependent pathways that are related to these processes, thus determining oncogenic behavior. In this review, we propose that mitochondrial Ca2+ remodeling plays a pivotal role in shaping the oncogenic signaling cascade, which is a required step for cancer formation and maintenance. We will describe recent studies that highlight the importance of mitochondria in inducing pivotal “cancer hallmarks” and discuss possible tools to manipulate mitochondrial Ca2+ to modulate cancer survival. PMID:26161362

  18. Pharmacologic Effects on Mitochondrial Function

    ERIC Educational Resources Information Center

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  19. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles

    PubMed Central

    Sugiura, Ayumu; McLelland, Gian-Luca; Fon, Edward A; McBride, Heidi M

    2014-01-01

    The last decade has been marked by tremendous progress in our understanding of the cell biology of mitochondria, with the identification of molecules and mechanisms that regulate their fusion, fission, motility, and the architectural transitions within the inner membrane. More importantly, the manipulation of these machineries in tissues has provided links between mitochondrial dynamics and physiology. Indeed, just as the proteins required for fusion and fission were identified, they were quickly linked to both rare and common human diseases. This highlighted the critical importance of this emerging field to medicine, with new hopes of finding drugable targets for numerous pathologies, from neurodegenerative diseases to inflammation and cancer. In the midst of these exciting new discoveries, an unexpected new aspect of mitochondrial cell biology has been uncovered; the generation of small vesicular carriers that transport mitochondrial proteins and lipids to other intracellular organelles. These mitochondrial-derived vesicles (MDVs) were first found to transport a mitochondrial outer membrane protein MAPL to a subpopulation of peroxisomes. However, other MDVs did not target peroxisomes and instead fused with the late endosome, or multivesicular body. The Parkinson's disease-associated proteins Vps35, Parkin, and PINK1 are involved in the biogenesis of a subset of these MDVs, linking this novel trafficking pathway to human disease. In this review, we outline what has been learned about the mechanisms and functional importance of MDV transport and speculate on the greater impact of these pathways in cellular physiology. PMID:25107473

  20. Mitochondrially mediated plasticity in the pathophysiology and treatment of bipolar disorder.

    PubMed

    Quiroz, Jorge A; Gray, Neil A; Kato, Tadafumi; Manji, Husseini K

    2008-10-01

    Bipolar disorder (BPD) has traditionally been conceptualized as a neurochemical disorder, but there is mounting evidence for impairments of cellular plasticity and resilience. Here, we review and synthesize the evidence that critical aspects of mitochondrial function may play an integral role in the pathophysiology and treatment of BPD. Retrospective database searches were performed, including MEDLINE, abstract booklets, and conference proceedings. Articles were also obtained from references therein and personal communications, including original scientific work, reviews, and meta-analyses of the literature. Material regarding the potential role of mitochondrial function included genetic studies, microarray studies, studies of intracellular calcium regulation, neuroimaging studies, postmortem brain studies, and preclinical and clinical studies of cellular plasticity and resilience. We review these data and discuss their implications not only in the context of changing existing conceptualizations regarding the pathophysiology of BPD, but also for the strategic development of improved therapeutics. We have focused on specific aspects of mitochondrial dysfunction that may have major relevance for the pathophysiology and treatment of BPD. Notably, we discuss calcium dysregulation, oxidative phosphorylation abnormalities, and abnormalities in cellular resilience and synaptic plasticity. Accumulating evidence from microarray studies, biochemical studies, neuroimaging, and postmortem brain studies all support the role of mitochondrial dysfunction in the pathophysiology of BPD. We propose that although BPD is not a classic mitochondrial disease, subtle deficits in mitochondrial function likely play an important role in various facets of BPD, and that enhancing mitochondrial function may represent a critical component for the optimal long-term treatment of the disorder.

  1. Regulation of Skeletal Muscle Oxidative Capacity and Insulin Signaling by the Mitochondrial Rhomboid Protease PARL

    PubMed Central

    Civitarese, Anthony E.; MacLean, Paul S.; Carling, Stacy; Kerr-Bayles, Lyndal; McMillan, Ryan P.; Pierce, Anson; Becker, Thomas C.; Moro, Cedric; Finlayson, Jean; Lefort, Natalie; Newgard, Christopher B.; Mandarino, Lawrence; Cefalu, William; Walder, Ken; Collier, Greg R.; Hulver, Matthew W.; Smith, Steven R.; Ravussin, Eric

    2010-01-01

    SUMMARY Type 2 diabetes Mellitus (T2DM) and aging are characterized by insulin resistance, lower mitochondrial density and function and increased production of reactive oxygen species (ROS). In lower organisms continuous remodeling critically maintains the function and life cycle of mitochondria, in part by the protease pcp1 (PARL ortholog). We therefore examined whether variation in PARL protein content is associated with mitochondrial abnormalities and insulin resistance. Relative to healthy, young individuals (23±1y), PARL mRNA and mitochondrial mass were both reduced in elderly subjects (64.4±1.2 y; 51% and 44% respectively) and in subjects with T2DM (51.8±3 y; 31% and 41% respectively; all p<0.05). Muscle knock-down of PARL in mice resulted in lower mitochondrial content (−31±3%, p<0.05), lower OPA1 and PGC1α protein levels and impaired insulin signaling. Furthermore, mitochondrial cristae were malformed and resulted in elevated in vivo oxidative stress. Adenoviral suppression of PARL protein in healthy myotubes lowered mitochondrial mass (−33±8%), insulin stimulated glycogen synthesis (−33±9%) and increased ROS production (2-fold) (all p<0.05). We propose that lower PARL expression may contribute to the mitochondrial abnormalities seen in aging and T2DM. PMID:20444421

  2. The pathogenesis of systemic lupus erythematosus - From the viewpoint of oxidative stress and mitochondrial dysfunction.

    PubMed

    Lee, Hui-Ting; Wu, Tsai-Hung; Lin, Chen-Sung; Lee, Chyou-Shen; Wei, Yau-Huei; Tsai, Chang-Youh; Chang, Deh-Ming

    2016-09-01

    SLE is characterized by an increased production of detrimental autoantigens, exaggerated effects of pro-inflammatory cytokines, dysregulated functioning of immunocompetent cells including lymphocytes and leukocytes, and devastating tissue and organ damage. All of these derangements can be potentiated or attenuated by the abnormal energy expenditure and overproduction of reactive oxygen species (ROS). Mitochondrial heteroplasmy or dysfunction has been recognized to play a role in these abnormalities. Abnormal redox reaction, decreased functioning of biogenesis-related enzymes, increased NETosis, harmful cytokine effects, and aberrant lymphocyte behavior have been shown to be associated with the pathological state of mitochondria. There is accumulating data which support the importance of abnormal oxygen metabolism and mitocho