Science.gov

Sample records for abnormal mitochondrial function

  1. Abnormalities of mitochondrial functioning can partly explain the metabolic disorders encountered in sarcopenic gastrocnemius.

    PubMed

    Martin, Caroline; Dubouchaud, Hervé; Mosoni, Laurent; Chardigny, Jean-Michel; Oudot, Alexandra; Fontaine, Eric; Vergely, Catherine; Keriel, Christiane; Rochette, Luc; Leverve, Xavier; Demaison, Luc

    2007-04-01

    Aging triggers several abnormalities in muscle glycolytic fibers including increased proteolysis, reactive oxygen species (ROS) production and apoptosis. Since the mitochondria are the main site of substrate oxidation, ROS production and programmed cell death, we tried to know whether the cellular disorders encountered in sarcopenia are due to abnormal mitochondrial functioning. Gastrocnemius mitochondria were extracted from adult (6 months) and aged (21 months) male Wistar rats. Respiration parameters, opening of the permeability transition pore and ROS production, with either glutamate (amino acid metabolism) or pyruvate (glucose metabolism) as a respiration substrate, were evaluated at different matrix calcium concentrations. Pyruvate dehydrogenase and respiratory complex activities as well as their contents measured by Western blotting analysis were determined. Furthermore, the fatty acid profile of mitochondrial phospholipids was also measured. At physiological calcium concentration, state III respiration rate was lowered by aging in pyruvate conditions (-22%), but not with glutamate. The reduction of pyruvate oxidation resulted from a calcium-dependent inactivation of the pyruvate dehydrogenase system and could provide for the well-known proteolysis encountered during sarcopenia. Matrix calcium loading and aging increased ROS production. They also reduced the oxidative phosphorylation. This was associated with lower calcium retention capacities, suggesting that sarcopenic fibers are more prone to programmed cell death. Aging was also associated with a reduced mitochondrial superoxide dismutase activity, which does not intervene in toxic ROS overproduction but could explain the lower calcium retention capacities. Despite a lower content, cytochrome c oxidase displayed an increased activity associated with an increased n-6/n-3 polyunsaturated fatty acid ratio of mitochondrial phospholipids. In conclusion, we propose that mitochondria obtained from aged muscle

  2. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  3. Abnormal Mitochondrial Dynamics in the Pathogenesis of Alzheimer's Disease

    PubMed Central

    Zhu, Xiongwei; Perry, George; Smith, Mark A.; Wang, Xinglong

    2014-01-01

    Mitochondrial dysfunction is one of the most early and prominent features in vulnerable neurons in the brain of Alzheimer's disease (AD) patients. Recent studies suggest that mitochondria are highly dynamic organelles characterized by a delicate balance of fission and fusion, a concept that has revolutionized our basic understanding of the regulation of mitochondrial structure and function which has far-reaching significance in studies of health and disease. Tremendous progress has been made in studying changes in mitochondrial dynamics in AD brain and models and the potential underlying mechanisms. This review highlights the recent work demonstrating abnormal mitochondrial dynamics and distribution in AD models and discusses how these abnormalities may contribute to various aspects of mitochondrial dysfunction and the pathogenesis of AD. PMID:22531428

  4. Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats.

    PubMed

    Escobales, Nelson; Nuñez, Rebeca E; Jang, Sehwan; Parodi-Rullan, Rebecca; Ayala-Peña, Sylvette; Sacher, Joshua R; Skoda, Erin M; Wipf, Peter; Frontera, Walter; Javadov, Sabzali

    2014-12-01

    Mitochondria-generated reactive oxygen species (ROS) play a crucial role in the pathogenesis of aging and age-associated diseases. In this study, we evaluated the effects of XJB-5-131 (XJB), a mitochondria-targeted ROS and electron scavenger, on cardiac resistance to ischemia-reperfusion (IR)-induced oxidative stress in aged rats. Male adult (5-month old, n=17) and aged (29-month old, n=19) Fischer Brown Norway (F344/BN) rats were randomly assigned to the following groups: adult (A), adult+XJB (AX), aged (O), and aged+XJB (OX). XJB was administered 3 times per week (3mg/kg body weight, IP) for four weeks. At the end of the treatment period, cardiac function was continuously monitored in excised hearts using the Langendorff technique for 30 min, followed by 20 min of global ischemia, and 60-min reperfusion. XJB improved post-ischemic recovery of aged hearts, as evidenced by greater left ventricular developed-pressures and rate-pressure products than the untreated, aged-matched group. The state 3 respiration rates at complexes I, II and IV of mitochondria isolated from XJB-treated aged hearts were 57% (P<0.05), 25% (P<0.05) and 28% (P<0.05), respectively, higher than controls. Ca(2+)-induced swelling, an indicator of permeability transition pore opening, was reduced in the mitochondria of XJB-treated aged rats. In addition, XJB significantly attenuated the H2O2-induced depolarization of the mitochondrial inner membrane as well as the total and mitochondrial ROS levels in cultured cardiomyocytes. This study underlines the importance of mitochondrial ROS in aging-induced cardiac dysfunction and suggests that targeting mitochondrial ROS may be an effective therapeutic approach to protect the aged heart against IR injury.

  5. Mitochondrial Ribosomal Protein L10 Associates with Cyclin B1/Cdk1 Activity and Mitochondrial Function

    PubMed Central

    Li, Hai-Bo; Wang, Ruo-Xi; Jiang, Hai-Bo; Zhang, En-dong; Tan, Jie-Qiong; Xu, Hui-Zhuo

    2016-01-01

    Mitochondrial ribosomal proteins are important for mitochondrial-encoded protein synthesis and mitochondrial function. In addition to their roles in mitoribosome assembly, several mitochondrial ribosome proteins are also implicated in cellular processes like cell cycle regulation, apoptosis, and mitochondrial homeostasis regulation. Here, we demonstrate that MRPL10 regulates cyclin B1/Cdk1 (cyclin-dependent kinase 1) activity and mitochondrial protein synthesis in mammalian cells. In Drosophila, inactivation of mRpL10 (the Drosophila ortholog of mammalian MRPL10) in eyes results in abnormal eye development. Furthermore, expression of human cyclin B1 suppresses eye phenotypes and mitochondrial abnormality of mRpL10 knockdown Drosophila. This study identified that the physiological regulatory pathway of MRPL10 and providing new insights into the role of MRPL10 in growth control and mitochondrial function. PMID:27726420

  6. Mitochondrial Function in Sepsis

    PubMed Central

    Arulkumaran, Nishkantha; Deutschman, Clifford S.; Pinsky, Michael R.; Zuckerbraun, Brian; Schumacker, Paul T.; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.

    2015-01-01

    Mitochondria are an essential part of the cellular infrastructure, being the primary site for high energy adenosine triphosphate (ATP) production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered and end organ dysfunction not only common but predictive of long term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used as both a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide. PMID:26871665

  7. Pharmacologic Effects on Mitochondrial Function

    ERIC Educational Resources Information Center

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  8. Mutations in the SPTLC1 protein cause mitochondrial structural abnormalities and endoplasmic reticulum stress in lymphoblasts.

    PubMed

    Myers, Simon J; Malladi, Chandra S; Hyland, Ryan A; Bautista, Tara; Boadle, Ross; Robinson, Phillip J; Nicholson, Garth A

    2014-07-01

    Mutations in serine palmitoyltransferase long chain subunit 1 (SPTLC1) cause the typical length-dependent axonal degeneration hereditary sensory neuropathy type 1 (HSN1). Transmission electron microscopy studies on SPTLC1 mutant lymphoblasts derived from patients revealed specific structural abnormalities of mitochondria. Swollen mitochondria with abnormal cristae were clustered around the nucleus, with some mitochondria being wrapped in rough endoplasmic reticulum (ER) membranes. Total mitochondrial counts revealed a significant change in mitochondrial numbers between healthy and diseased lymphocytes but did not reveal any change in length to width ratios nor were there any changes to cellular function. However, there was a notable change in ER homeostasis, as assessed using key ER stress markers, BiP and ERO1-Lα, displaying reduced protein expression. The observations suggest that SPTLC1 mutations cause mitochondrial abnormalities and ER stress in HSN1 cells.

  9. Methylene blue alleviates nuclear and mitochondrial abnormalities in progeria.

    PubMed

    Xiong, Zheng-Mei; Choi, Ji Young; Wang, Kun; Zhang, Haoyue; Tariq, Zeshan; Wu, Di; Ko, Eunae; LaDana, Christina; Sesaki, Hiromi; Cao, Kan

    2016-04-01

    Hutchinson-Gilford progeria syndrome (HGPS), a fatal premature aging disease, is caused by a single-nucleotide mutation in the LMNA gene. Previous reports have focused on nuclear phenotypes in HGPS cells, yet the potential contribution of the mitochondria, a key player in normal aging, remains unclear. Using high-resolution microscopy analysis, we demonstrated a significantly increased fraction of swollen and fragmented mitochondria and a marked reduction in mitochondrial mobility in HGPS fibroblast cells. Notably, the expression of PGC-1α, a central regulator of mitochondrial biogenesis, was inhibited by progerin. To rescue mitochondrial defects, we treated HGPS cells with a mitochondrial-targeting antioxidant methylene blue (MB). Our analysis indicated that MB treatment not only alleviated the mitochondrial defects but also rescued the hallmark nuclear abnormalities in HGPS cells. Additional analysis suggested that MB treatment released progerin from the nuclear membrane, rescued perinuclear heterochromatin loss and corrected misregulated gene expression in HGPS cells. Together, these results demonstrate a role of mitochondrial dysfunction in developing the premature aging phenotypes in HGPS cells and suggest MB as a promising therapeutic approach for HGPS.

  10. The Maize Ncs2 Abnormal Growth Mutant Has a Chimeric Nad4-Nad7 Mitochondrial Gene and Is Associated with Reduced Complex I Function

    PubMed Central

    Marienfeld, J. R.; Newton, K. J.

    1994-01-01

    The molecular basis of the maternally inherited, heteroplasmic NCS2 mutant of maize was investigated. Analysis of the NCS2 mtDNA showed that it closely resembles the progenitor cmsT mitochondrial genome, except that the mutant genome contains a fused nad4-nad7 gene and is deleted for the small fourth exon of nad4. The rearrangement has occurred at a 16-bp repeat present in the third intron of the nad4 gene and in the second intron of the nad7 gene. Transcripts containing exon 4 of the nad4 gene are greatly reduced in mtRNA preparations from heteroplasmic NCS2 plants; larger transcripts are associated with the first three nad4 exons. Identical 5' ends of the nad4 transcripts have been mapped 396 and 247 bp upstream of the start codon in mtRNAs from both NCS2 and related non-NCS plants. The putative transcription termination signal of nad4 is deleted in mutant DNA, resulting in the production of the unique longer transcripts. The complex transcript pattern associated with nad7 is also altered in the mutant. Both nad4 and nad7 encode subunits of complex I (NADH dehydrogenase) of the mitochondrial electron transfer chain. Oxygen uptake experiments show that the functioning of complex I is specifically reduced in mitochondria isolated from NCS2 mutant plants. PMID:7851780

  11. Inhibition of NAPDH Oxidase 2 (NOX2) Prevents Oxidative Stress and Mitochondrial Abnormalities Caused by Saturated Fat in Cardiomyocytes.

    PubMed

    Joseph, Leroy C; Barca, Emanuele; Subramanyam, Prakash; Komrowski, Michael; Pajvani, Utpal; Colecraft, Henry M; Hirano, Michio; Morrow, John P

    2016-01-01

    Obesity and high saturated fat intake increase the risk of heart failure and arrhythmias. The molecular mechanisms are poorly understood. We hypothesized that physiologic levels of saturated fat could increase mitochondrial reactive oxygen species (ROS) in cardiomyocytes, leading to abnormalities of calcium homeostasis and mitochondrial function. We investigated the effect of saturated fat on mitochondrial function and calcium homeostasis in isolated ventricular myocytes. The saturated fatty acid palmitate causes a decrease in mitochondrial respiration in cardiomyocytes. Palmitate, but not the monounsaturated fatty acid oleate, causes an increase in both total cellular ROS and mitochondrial ROS. Palmitate depolarizes the mitochondrial inner membrane and causes mitochondrial calcium overload by increasing sarcoplasmic reticulum calcium leak. Inhibitors of PKC or NOX2 prevent mitochondrial dysfunction and the increase in ROS, demonstrating that PKC-NOX2 activation is also required for amplification of palmitate induced-ROS. Cardiomyocytes from mice with genetic deletion of NOX2 do not have palmitate-induced ROS or mitochondrial dysfunction. We conclude that palmitate induces mitochondrial ROS that is amplified by NOX2, causing greater mitochondrial ROS generation and partial depolarization of the mitochondrial inner membrane. The abnormal sarcoplasmic reticulum calcium leak caused by palmitate could promote arrhythmia and heart failure. NOX2 inhibition is a potential therapy for heart disease caused by diabetes or obesity.

  12. Normal and abnormal lid function.

    PubMed

    Rucker, Janet C

    2011-01-01

    This chapter on lid function is comprised of two primary sections, the first on normal eyelid anatomy, neurological innervation, and physiology, and the second on abnormal eyelid function in disease states. The eyelids serve several important ocular functions, the primary objectives of which are protection of the anterior globe from injury and maintenance of the ocular tear film. Typical eyelid behaviors to perform these functions include blinking (voluntary, spontaneous, or reflexive), voluntary eye closure (gentle or forced), partial lid lowering during squinting, normal lid retraction during emotional states such as surprise or fear (startle reflex), and coordination of lid movements with vertical eye movements for maximal eye protection. Detailed description of the neurological innervation patterns and neurophysiology of each of these lid behaviors is provided. Abnormal lid function is divided by conditions resulting in excessive lid closure (cerebral ptosis, apraxia of lid opening, blepharospasm, oculomotor palsy, Horner's syndrome, myasthenia gravis, and mechanical) and those resulting in excessive lid opening (midbrain lid retraction, facial nerve palsy, and lid retraction due to orbital disease).

  13. Abnormal mitochondrial transport and morphology as early pathological changes in human models of spinal muscular atrophy.

    PubMed

    Xu, Chong-Chong; Denton, Kyle R; Wang, Zhi-Bo; Zhang, Xiaoqing; Li, Xue-Jun

    2016-01-01

    Spinal muscular atrophy (SMA), characterized by specific degeneration of spinal motor neurons, is caused by mutations in the survival of motor neuron 1, telomeric (SMN1) gene and subsequent decreased levels of functional SMN. How the deficiency of SMN, a ubiquitously expressed protein, leads to spinal motor neuron-specific degeneration in individuals affected by SMA remains unknown. In this study, we examined the role of SMN in mitochondrial axonal transport and morphology in human motor neurons by generating SMA type 1 patient-specific induced pluripotent stem cells (iPSCs) and differentiating these cells into spinal motor neurons. The initial specification of spinal motor neurons was not affected, but these SMA spinal motor neurons specifically degenerated following long-term culture. Moreover, at an early stage in SMA spinal motor neurons, but not in SMA forebrain neurons, the number of mitochondria, mitochondrial area and mitochondrial transport were significantly reduced in axons. Knocking down of SMN expression led to similar mitochondrial defects in spinal motor neurons derived from human embryonic stem cells, confirming that SMN deficiency results in impaired mitochondrial dynamics. Finally, the application of N-acetylcysteine (NAC) mitigated the impairment in mitochondrial transport and morphology and rescued motor neuron degeneration in SMA long-term cultures. Furthermore, NAC ameliorated the reduction in mitochondrial membrane potential in SMA spinal motor neurons, suggesting that NAC might rescue apoptosis and motor neuron degeneration by improving mitochondrial health. Overall, our data demonstrate that SMN deficiency results in abnormal mitochondrial transport and morphology and a subsequent reduction in mitochondrial health, which are implicated in the specific degeneration of spinal motor neurons in SMA.

  14. Mitochondrial function as a therapeutic target in heart failure

    PubMed Central

    Brown, David A.; Perry, Justin B.; Allen, Mitchell E.; Sabbah, Hani N.; Stauffer, Brian L.; Shaikh, Saame Raza; Cleland, John G. F.; Colucci, Wilson S.; Butler, Javed; Voors, Adriaan A.; Anker, Stefan D.; Pitt, Bertram; Pieske, Burkert; Filippatos, Gerasimos; Greene, Stephen J.; Gheorghiade, Mihai

    2017-01-01

    Heart failure is a pressing worldwide public-health problem with millions of patients having worsening heart failure. Despite all the available therapies, the condition carries a very poor prognosis. Existing therapies provide symptomatic and clinical benefit, but do not fully address molecular abnormalities that occur in cardiomyocytes. This shortcoming is particularly important given that most patients with heart failure have viable dysfunctional myocardium, in which an improvement or normalization of function might be possible. Although the pathophysiology of heart failure is complex, mitochondrial dysfunction seems to be an important target for therapy to improve cardiac function directly. Mitochondrial abnormalities include impaired mitochondrial electron transport chain activity, increased formation of reactive oxygen species, shifted metabolic substrate utilization, aberrant mitochondrial dynamics, and altered ion homeostasis. In this Consensus Statement, insights into the mechanisms of mitochondrial dysfunction in heart failure are presented, along with an overview of emerging treatments with the potential to improve the function of the failing heart by targeting mitochondria. PMID:28004807

  15. Mitochondrial function, ornamentation, and immunocompetence.

    PubMed

    Koch, Rebecca E; Josefson, Chloe C; Hill, Geoffrey E

    2016-07-25

    Understanding the mechanisms that link ornamental displays and individual condition is key to understanding the evolution and function of ornaments. Immune function is an aspect of individual quality that is often associated with the expression of ornamentation, but a general explanation for why the expression of some ornaments seems to be consistently linked to immunocompetence remains elusive. We propose that condition-dependent ornaments may be linked to key aspects of immunocompetence through co-dependence on mitochondrial function. Mitochondrial involvement in immune function is rarely considered outside of the biomedical literature, but the role of mitochondria as the primary energy producers of the cell and the centres of biosynthesis, the oxidative stress response, and cellular signalling place them at the hub of a variety of immune pathways. A promising new mechanistic explanation for correlations between a wide range of ornamental traits and the properties of individual quality is that mitochondrial function may be the 'shared pathway' responsible for links between ornament production and individual condition. Herein, we first review the role of mitochondria as both signal transducers and metabolic regulators of immune function. We then describe connections between hormonal pathways and mitochondria, with implications for both immune function and the expression of ornamentation. Finally, we explore the possibility that ornament expression may link directly to mitochondrial function. Considering condition-dependent traits within the framework of mitochondrial function has the potential to unify central tenets within the study of sexual selection, eco-immunology, oxidative stress ecology, stress and reproductive hormone biology, and animal physiology.

  16. Redox Regulation of Mitochondrial Function

    PubMed Central

    Handy, Diane E.

    2012-01-01

    Abstract Redox-dependent processes influence most cellular functions, such as differentiation, proliferation, and apoptosis. Mitochondria are at the center of these processes, as mitochondria both generate reactive oxygen species (ROS) that drive redox-sensitive events and respond to ROS-mediated changes in the cellular redox state. In this review, we examine the regulation of cellular ROS, their modes of production and removal, and the redox-sensitive targets that are modified by their flux. In particular, we focus on the actions of redox-sensitive targets that alter mitochondrial function and the role of these redox modifications on metabolism, mitochondrial biogenesis, receptor-mediated signaling, and apoptotic pathways. We also consider the role of mitochondria in modulating these pathways, and discuss how redox-dependent events may contribute to pathobiology by altering mitochondrial function. Antioxid. Redox Signal. 16, 1323–1367. PMID:22146081

  17. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage

    PubMed Central

    Shirendeb, Ulziibat; Reddy, Arubala P.; Manczak, Maria; Calkins, Marcus J.; Mao, Peizhong; Tagle, Danilo A.; Hemachandra Reddy, P.

    2011-01-01

    The purpose of our study was to determine the relationship between mutant huntingtin (Htt) and mitochondrial dynamics in the progression of Huntington's disease (HD). We measured the mRNA levels of electron transport chain genes, and mitochondrial structural genes, Drp1 (dynamin-related protein 1), Fis1 (fission 1), Mfn1 (mitofusin 1), Mfn2 (mitofusin 2), Opa1 (optric atrophy 1), Tomm40 (translocase of outermembrane 40) and CypD (cyclophilin D) in grade III and grade IV HD patients and controls. The mutant Htt oligomers and the mitochondrial structural proteins were quantified in the striatum and frontal cortex of HD patients. Changes in expressions of the electron transport chain genes were found in HD patients and may represent a compensatory response to mitochondrial damage caused by mutant Htt. Increased expression of Drp1 and Fis1 and decreased expression of Mfn1, Mfn2, Opa1 and Tomm40 were found in HD patients relative to the controls. CypD was upregulated in HD patients, and this upregulation increased as HD progressed. Significantly increased immunoreactivity of 8-hydroxy-guanosine was found in the cortical specimens from stage III and IV HD patients relative to controls, suggesting increased oxidative DNA damage in HD patients. In contrast, significantly decreased immunoreactivities of cytochrome oxidase 1 and cytochrome b were found in HD patients relative to controls, indicating a loss of mitochondrial function in HD patients. Immunoblotting analysis revealed 15, 25 and 50 kDa mutant Htt oligomers in the brain specimens of HD patients. All oligomeric forms of mutant Htt were significantly increased in the cortical tissues of HD patients, and mutant Htt oligomers were found in the nucleus and in mitochondria. The increase in Drp1, Fis1 and CypD and the decrease in Mfn1 and Mfn2 may be responsible for abnormal mitochondrial dynamics that we found in the cortex of HD patients, and may contribute to neuronal damage in HD patients. The presence of mutant Htt

  18. Abnormal mitochondrial dynamics, mitochondrial loss and mutant huntingtin oligomers in Huntington's disease: implications for selective neuronal damage.

    PubMed

    Shirendeb, Ulziibat; Reddy, Arubala P; Manczak, Maria; Calkins, Marcus J; Mao, Peizhong; Tagle, Danilo A; Reddy, P Hemachandra

    2011-04-01

    The purpose of our study was to determine the relationship between mutant huntingtin (Htt) and mitochondrial dynamics in the progression of Huntington's disease (HD). We measured the mRNA levels of electron transport chain genes, and mitochondrial structural genes, Drp1 (dynamin-related protein 1), Fis1 (fission 1), Mfn1 (mitofusin 1), Mfn2 (mitofusin 2), Opa1 (optric atrophy 1), Tomm40 (translocase of outermembrane 40) and CypD (cyclophilin D) in grade III and grade IV HD patients and controls. The mutant Htt oligomers and the mitochondrial structural proteins were quantified in the striatum and frontal cortex of HD patients. Changes in expressions of the electron transport chain genes were found in HD patients and may represent a compensatory response to mitochondrial damage caused by mutant Htt. Increased expression of Drp1 and Fis1 and decreased expression of Mfn1, Mfn2, Opa1 and Tomm40 were found in HD patients relative to the controls. CypD was upregulated in HD patients, and this upregulation increased as HD progressed. Significantly increased immunoreactivity of 8-hydroxy-guanosine was found in the cortical specimens from stage III and IV HD patients relative to controls, suggesting increased oxidative DNA damage in HD patients. In contrast, significantly decreased immunoreactivities of cytochrome oxidase 1 and cytochrome b were found in HD patients relative to controls, indicating a loss of mitochondrial function in HD patients. Immunoblotting analysis revealed 15, 25 and 50 kDa mutant Htt oligomers in the brain specimens of HD patients. All oligomeric forms of mutant Htt were significantly increased in the cortical tissues of HD patients, and mutant Htt oligomers were found in the nucleus and in mitochondria. The increase in Drp1, Fis1 and CypD and the decrease in Mfn1 and Mfn2 may be responsible for abnormal mitochondrial dynamics that we found in the cortex of HD patients, and may contribute to neuronal damage in HD patients. The presence of mutant Htt

  19. Subclinical hypothyroidism affects mitochondrial function.

    PubMed

    Kvetny, J; Wilms, L; Pedersen, P L; Larsen, J

    2010-05-01

    The aim of the present study was to examine mitochondrial function in cells from persons with subclinical hypothyroidism and euthyroid controls. The participating persons were examined clinically and had basal oxygen consumption (VO(2)) determined. The concentrations of thyroid hormones and thyrotropine stimulating hormone were determined, and mitochondrial function in isolated mononuclear blood cells was examined by enzymatic methods [citrate synthase activity (CS)] and by flow cytometry (mitochondrial membrane potential by TMRM fluorescence and mitochondrial mass by MTG fluorescence). The ratio of T(4)/T(3) was lowered in subclinical hypothyroidism patients compared to controls (2.5+/-0.5 vs. 2.9+/-0.4, p=0.005). VO(2) was increased in persons with subclinical hypothyroidism compared to controls (adolescents: 134+/-27 ml O(2)/min*m(2) vs. 119+/-27 ml O(2)/min*m(2), p=0.006, adults: 139+/-14 ml O(2)/min*m(2) vs. 121+/-17 ml O(2)/min*m(2), p=0.001). The mitochondrial function, represented by citrate synthase activity, MTG, and TMRM fluorescence were all increased (CS in subclinical hypothyroidism vs. controls: 0.074+/-0.044 nmol/mg*min vs. 0.056+/-0.021 nmol/mg*min, p=0.005; MTG fluorescence in subclinical hypothyroidism vs. controls: 7,482+/-1,733 a.u. vs. 6,391+/-2,171 a.u., p=0.027; TMRM fluorescence in subclinical hypothyroidism vs. controls: 13,449+/-3,807 a.u. vs. 11,733+/-4,473 a.u, p=0.04). Our results indicate an increased mitochondrial stimulation, eventually caused by increased deiodination of T(4) to intracellular bioactive iodothyronines in adults and adolescents with subclinical hypothyroidism.

  20. The Function of the Mitochondrial Calcium Uniporter in Neurodegenerative Disorders

    PubMed Central

    Liao, Yajin; Dong, Yuan; Cheng, Jinbo

    2017-01-01

    The mitochondrial calcium uniporter (MCU)—a calcium uniporter on the inner membrane of mitochondria—controls the mitochondrial calcium uptake in normal and abnormal situations. Mitochondrial calcium is essential for the production of adenosine triphosphate (ATP); however, excessive calcium will induce mitochondrial dysfunction. Calcium homeostasis disruption and mitochondrial dysfunction is observed in many neurodegenerative disorders. However, the role and regulatory mechanism of the MCU in the development of these diseases are obscure. In this review, we summarize the role of the MCU in controlling oxidative stress-elevated mitochondrial calcium and its function in neurodegenerative disorders. Inhibition of the MCU signaling pathway might be a new target for the treatment of neurodegenerative disorders. PMID:28208618

  1. Natural Compounds Modulating Mitochondrial Functions

    PubMed Central

    Gibellini, Lara; Bianchini, Elena; De Biasi, Sara; Nasi, Milena; Cossarizza, Andrea; Pinti, Marcello

    2015-01-01

    Mitochondria are organelles responsible for several crucial cell functions, including respiration, oxidative phosphorylation, and regulation of apoptosis; they are also the main intracellular source of reactive oxygen species (ROS). In the last years, a particular interest has been devoted to studying the effects on mitochondria of natural compounds of vegetal origin, quercetin (Qu), resveratrol (RSV), and curcumin (Cur) being the most studied molecules. All these natural compounds modulate mitochondrial functions by inhibiting organelle enzymes or metabolic pathways (such as oxidative phosphorylation), by altering the production of mitochondrial ROS and by modulating the activity of transcription factors which regulate the expression of mitochondrial proteins. While Qu displays both pro- and antioxidant activities, RSV and Cur are strong antioxidant, as they efficiently scavenge mitochondrial ROS and upregulate antioxidant transcriptional programmes in cells. All the three compounds display a proapoptotic activity, mediated by the capability to directly cause the release of cytochrome c from mitochondria or indirectly by upregulating the expression of proapoptotic proteins of Bcl-2 family and downregulating antiapoptotic proteins. Interestingly, these effects are particularly evident on proliferating cancer cells and can have important therapeutic implications. PMID:26167193

  2. Cardiac mitochondrial biogenesis in endotoxemia is not accompanied by mitochondrial function recovery.

    PubMed

    Vanasco, Virginia; Saez, Trinidad; Magnani, Natalia D; Pereyra, Leonardo; Marchini, Timoteo; Corach, Alejandra; Vaccaro, María Inés; Corach, Daniel; Evelson, Pablo; Alvarez, Silvia

    2014-12-01

    Mitochondrial biogenesis emerges as a compensatory mechanism involved in the recovery process in endotoxemia and sepsis. The aim of this work was to analyze the time course of the cardiac mitochondrial biogenesis process occurring during endotoxemia, with emphasis on the quantitative analysis of mitochondrial function. Female Sprague-Dawley rats (45 days old) were ip injected with LPS (10 mg/kg). Measurements were performed at 0-24 h after LPS administration. PGC-1α and mtTFA expression for biogenesis and p62 and LC3 expression for autophagy were analyzed by Western blot; mitochondrial DNA levels by qPCR, and mitochondrial morphology by transmission electron microscopy. Mitochondrial function was evaluated as oxygen consumption and respiratory chain complex activity. PGC-1α and mtTFA expression significantly increased in every time point analyzed, and mitochondrial mass was increased by 20% (P<0.05) at 24 h. p62 expression was significantly decreased in a time-dependent manner. LC3-II expression was significantly increased at all time points analyzed. Ultrastructurally, mitochondria displayed several abnormalities (internal vesicles, cristae disruption, and swelling) at 6 and 18 h. Structures compatible with fusion/fission processes were observed at 24 h. A significant decrease in state 3 respiration was observed in every time point analyzed (LPS 6h: 20%, P<0.05). Mitochondrial complex I activity was found decreased by 30% in LPS-treated animals at 6 and 24h. Complex II and complex IV showed decreased activity only at 24 h. The present results show that partial restoration of cardiac mitochondrial architecture is not accompanied by improvement of mitochondrial function in acute endotoxemia. The key implication of our study is that cardiac failure due to bioenergetic dysfunction will be overcome by therapeutic interventions aimed to restore cardiac mitochondrial function.

  3. Mechanical ventilation triggers abnormal mitochondrial dynamics and morphology in the diaphragm.

    PubMed

    Picard, Martin; Azuelos, Ilan; Jung, Boris; Giordano, Christian; Matecki, Stefan; Hussain, Sabah; White, Kathryn; Li, Tong; Liang, Feng; Benedetti, Andrea; Gentil, Benoit J; Burelle, Yan; Petrof, Basil J

    2015-05-01

    The diaphragm is a unique skeletal muscle designed to be rhythmically active throughout life, such that its sustained inactivation by the medical intervention of mechanical ventilation (MV) represents an unanticipated physiological state in evolutionary terms. Within a short period after initiating MV, the diaphragm develops muscle atrophy, damage, and diminished strength, and many of these features appear to arise from mitochondrial dysfunction. Notably, in response to metabolic perturbations, mitochondria fuse, divide, and interact with neighboring organelles to remodel their shape and functional properties-a process collectively known as mitochondrial dynamics. Using a quantitative electron microscopy approach, here we show that diaphragm contractile inactivity induced by 6 h of MV in mice leads to fragmentation of intermyofibrillar (IMF) but not subsarcolemmal (SS) mitochondria. Furthermore, physical interactions between adjacent organellar membranes were less abundant in IMF mitochondria during MV. The profusion proteins Mfn2 and OPA1 were unchanged, whereas abundance and activation status of the profission protein Drp1 were increased in the diaphragm following MV. Overall, our results suggest that mitochondrial morphological abnormalities characterized by excessive fission-fragmentation represent early events during MV, which could potentially contribute to the rapid onset of mitochondrial dysfunction, maladaptive signaling, and associated contractile dysfunction of the diaphragm.

  4. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function.

    PubMed

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara

    2016-04-01

    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.

  5. Reincarnation in cultured muscle of mitochondrial abnormalities. Two patients with epilepsy and lactic acidosis.

    PubMed

    Askanas, V; Engel, W K; Britton, D E; Adornato, B T; Eiben, R M

    1978-12-01

    Two unrelated 9-year-old boys failed to thrive from ages 5 and 4 years, and had focal cerebral seizures followed by transcent hemipareses. Histochemistry of their muscle biopsies showed "ragged-red" fibers, which ultrastructurally contained clusters of mitochondria having loss of crisp delineation of crista membranes and contained amorphous inclusion material and parallel-packed cristae and sometimes paracrystalline inclusions. In the patients' cultured muscles, similar mitochondrial abnormalities were present. 2,4-Dinitrophenol, introduced to the medium of cultures of normal human muscle, produced mitochondrial abnormalities similar to those of the patients', and the medium of the patients' muscle cultures worsened the mitochondrial abnormalities. This study, in demonstrating a mitochondrial defect reproducible in the cultured muscle fibers and, therefore, intrinsic to the ragged-red muscle fibers themselves, raises the possibility of a collateral mitochondrial defect in CNS cells as part of a multicellular mitochondriopathy.

  6. Impaired mitochondrial biogenesis, defective axonal transport of mitochondria, abnormal mitochondrial dynamics and synaptic degeneration in a mouse model of Alzheimer's disease.

    PubMed

    Calkins, Marcus J; Manczak, Maria; Mao, Peizhong; Shirendeb, Ulziibat; Reddy, P Hemachandra

    2011-12-01

    Increasing evidence suggests that the accumulation of amyloid beta (Aβ) in synapses and synaptic mitochondria causes synaptic mitochondrial failure and synaptic degeneration in Alzheimer's disease (AD). The purpose of this study was to better understand the effects of Aβ in mitochondrial activity and synaptic alterations in neurons from a mouse model of AD. Using primary neurons from a well-characterized Aβ precursor protein transgenic (AβPP) mouse model (Tg2576 mouse line), for the first time, we studied mitochondrial activity, including axonal transport of mitochondria, mitochondrial dynamics, morphology and function. Further, we also studied the nature of Aβ-induced synaptic alterations, and cell death in primary neurons from Tg2576 mice, and we sought to determine whether the mitochondria-targeted antioxidant SS31 could mitigate the effects of oligomeric Aβ. We found significantly decreased anterograde mitochondrial movement, increased mitochondrial fission and decreased fusion, abnormal mitochondrial and synaptic proteins and defective mitochondrial function in primary neurons from AβPP mice compared with wild-type (WT) neurons. Transmission electron microscopy revealed a large number of small mitochondria and structurally damaged mitochondria, with broken cristae in AβPP primary neurons. We also found an increased accumulation of oligomeric Aβ and increased apoptotic neuronal death in the primary neurons from the AβPP mice relative to the WT neurons. Our results revealed an accumulation of intraneuronal oligomeric Aβ, leading to mitochondrial and synaptic deficiencies, and ultimately causing neurodegeneration in AβPP cultures. However, we found that the mitochondria-targeted antioxidant SS31 restored mitochondrial transport and synaptic viability, and decreased the percentage of defective mitochondria, indicating that SS31 protects mitochondria and synapses from Aβ toxicity.

  7. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.

    PubMed

    Singh, François; Charles, Anne-Laure; Schlagowski, Anna-Isabel; Bouitbir, Jamal; Bonifacio, Annalisa; Piquard, François; Krähenbühl, Stephan; Geny, Bernard; Zoll, Joffrey

    2015-07-01

    Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.

  8. MITO-Porter for Mitochondrial Delivery and Mitochondrial Functional Analysis.

    PubMed

    Yamada, Yuma; Harashima, Hideyoshi

    2016-11-10

    Mitochondria are attractive organelles that have the potential to contribute greatly to medical therapy, the maintenance of beauty and health, and the development of the life sciences. Therefore, it would be expected that the further development of mitochondrial drug delivery systems (DDSs) would exert a significant impact on the medical and life sciences. To achieve such an innovative objective, it will be necessary to deliver various cargoes to mitochondria in living cells. However, only a limited number of approaches are available for accomplishing this. We recently proposed a new concept for mitochondrial delivery, a MITO-Porter, a liposome-based carrier that introduces macromolecular cargoes into mitochondria via membrane fusion. To date, we have demonstrated the utility of mitochondrial therapeutic strategy by MITO-Porter using animal models of diseases. We also showed that the mitochondrial delivery of antisense oligo-RNA by the MITO-Porter results in mitochondrial RNA knockdown and has a functional impact on mitochondria. Here, we summarize the current state of mitochondrial DDS focusing on our research and show some examples of mitochondrial functional regulations using mitochondrial DDS.

  9. Desmin Cytoskeleton Linked to Muscle Mitochondrial Distribution and Respiratory Function

    PubMed Central

    Milner, Derek J.; Mavroidis, Manolis; Weisleder, Noah; Capetanaki, Yassemi

    2000-01-01

    Ultrastructural studies have previously suggested potential association of intermediate filaments (IFs) with mitochondria. Thus, we have investigated mitochondrial distribution and function in muscle lacking the IF protein desmin. Immunostaining of skeletal muscle tissue sections, as well as histochemical staining for the mitochondrial marker enzymes cytochrome C oxidase and succinate dehydrogenase, demonstrate abnormal accumulation of subsarcolemmal clumps of mitochondria in predominantly slow twitch skeletal muscle of desmin-null mice. Ultrastructural observation of desmin-null cardiac muscle demonstrates in addition to clumping, extensive mitochondrial proliferation in a significant fraction of the myocytes, particularly after work overload. These alterations are frequently associated with swelling and degeneration of the mitochondrial matrix. Mitochondrial abnormalities can be detected very early, before other structural defects become obvious. To investigate related changes in mitochondrial function, we have analyzed ADP-stimulated respiration of isolated muscle mitochondria, and ADP-stimulated mitochondrial respiration in situ using saponin skinned muscle fibers. The in vitro maximal rates of respiration in isolated cardiac mitochondria from desmin-null and wild-type mice were similar. However, mitochondrial respiration in situ is significantly altered in desmin-null muscle. Both the maximal rate of ADP-stimulated oxygen consumption and the dissociation constant (Km) for ADP are significantly reduced in desmin-null cardiac and soleus muscle compared with controls. Respiratory parameters for desmin-null fast twitch gastrocnemius muscle were unaffected. Additionally, respiratory measurements in the presence of creatine indicate that coupling of creatine kinase and the adenine translocator is lost in desmin-null soleus muscle. This coupling is unaffected in cardiac muscle from desmin-null animals. All of these studies indicate that desmin IFs play a significant

  10. Neonatal mitochondrial abnormalities due to PINK1 deficiency: Proteomics reveals early changes relevant to Parkinson׳s disease

    PubMed Central

    Villeneuve, Lance M.; Purnell, Phillip R.; Stauch, Kelly L.; Fox, Howard S.

    2015-01-01

    Parkinson׳s disease (PD), the second most common neurodegenerative disorder, affects roughly 7–10 million people worldwide. A wide array of research has suggested that PD has a mitochondrial component and that mitochondrial dysfunction occurs well in advance of the clinical manifestation of the disease. Previous work by our lab has categorized the mitochondrial disorder associated with Parkinson׳s disease in a PINK1 knockout rat model. This model develops Parkinson׳s disease in a spontaneous, predictable manner. Our findings demonstrated PINK1-deficient rats at 4 months of age had mitochondrial proteomic and functional abnormalities before the onset of Parkinsonian symptoms (6 months) such as the movement disorder, loss of midbrain dopaminergic neurons, or the progressive degeneration present at 9 months. With this in mind, our group investigated the PINK1 knockout genetic rat model at postnatal day 10 to determine if the observed alterations at 4 months were present at an earlier time point. Using a proteomic analysis of brain mitochondria, we identified significant mitochondrial proteomic alterations in the absence of mitochondrial functional changes suggesting the observed alterations are part of the mitochondrial pathways leading to PD. Specifically, we identified differentially expressed proteins in the PINK1 knockout rat involved in glycolysis, the tricarboxylic acid cycle, and fatty acid metabolism demonstrating abnormalities occur well in advance of the manifestation of clinical symptoms. Additionally, 13 of the differentially expressed proteins have been previously identified in older PINK1 knockout animals as differentially regulated suggesting these proteins may be viable markers of the PD pathology, and further, the abnormally regulated pathways could be targeted for therapeutic interventions. All raw data can be found in Supplementary Table 1. PMID:26866053

  11. Abnormalities of lung function in hay fever.

    PubMed Central

    Morgan, E J; Hall, D R

    1976-01-01

    Twenty subjects with symptoms of hay fever were studied to see whether abnormalities could be detected in the function of small airways. The investigations included dynamic compliance at varying respiratory frequencies, closing capacity, residual volume, transfer factor, and maximal expiratory flow-volume curves. The tests were repeated in the winter when symptoms had resolved. Frequency dependence of compliance was found in eight subjects with symptoms (40%), closing capacities being abnormal in only two instances. Conventional pulmonary function tests, including expiratory flow rates at mid vital capacity, were within the predicted range of all subjects. When tests were repeated in the winter, frequency dependence of compliance was no longer present in subjects whose symptoms had resolved. The study suggests that reversible small airway abnormalities are present in a significant proportion of subjects with symptoms of hay fever and that such abnormalities are best detected by the measurement of dynamic compliance at varying respiratory frequencies. PMID:769243

  12. The small GTPase Arf1 modulates mitochondrial morphology and function.

    PubMed

    Ackema, Karin B; Hench, Jürgen; Böckler, Stefan; Wang, Shyi Chyi; Sauder, Ursula; Mergentaler, Heidi; Westermann, Benedikt; Bard, Frédéric; Frank, Stephan; Spang, Anne

    2014-11-18

    The small GTPase Arf1 plays critical roles in membrane traffic by initiating the recruitment of coat proteins and by modulating the activity of lipid-modifying enzymes. Here, we report an unexpected but evolutionarily conserved role for Arf1 and the ArfGEF GBF1 at mitochondria. Loss of function of ARF-1 or GBF-1 impaired mitochondrial morphology and activity in Caenorhabditis elegans. Similarly, mitochondrial defects were observed in mammalian and yeast cells. In Saccharomyces cerevisiae, aberrant clusters of the mitofusin Fzo1 accumulated in arf1-11 mutants and were resolved by overexpression of Cdc48, an AAA-ATPase involved in ER and mitochondria-associated degradation processes. Yeast Arf1 co-fractionated with ER and mitochondrial membranes and interacted genetically with the contact site component Gem1. Furthermore, similar mitochondrial abnormalities resulted from knockdown of either GBF-1 or contact site components in worms, suggesting that the role of Arf1 in mitochondrial functioning is linked to ER-mitochondrial contacts. Thus, Arf1 is involved in mitochondrial homeostasis and dynamics, independent of its role in vesicular traffic.

  13. Impaired mitochondrial function in human placenta with increased maternal adiposity.

    PubMed

    Mele, James; Muralimanoharan, Sribalasubashini; Maloyan, Alina; Myatt, Leslie

    2014-09-01

    The placenta plays a key role in regulation of fetal growth and development and in mediating in utero developmental programming. Obesity, which is associated with chronic inflammation and mitochondrial dysfunction in many tissues, exerts a programming effect in pregnancy. We determined the effect of increasing maternal adiposity and of fetal sex on placental ATP generation, mitochondrial biogenesis, expression of electron transport chain subunits, and mitochondrial function in isolated trophoblasts. Placental tissue was collected from women with prepregnancy BMI ranging from 18.5 to 45 following C-section at term with no labor. Increasing maternal adiposity was associated with excessive production of reactive oxygen species and a significant reduction in placental ATP levels in placentae with male and female fetuses. To explore the potential mechanism of placental mitochondrial dysfunction, levels of transcription factors regulating the expression of genes involved in electron transport and mitochondrial biogenesis were measured. Our in vitro studies showed significant reduction in mitochondrial respiration in cultured primary trophoblasts with increasing maternal obesity along with an abnormal metabolic flexibility of these cells. This reduction in placental mitochondrial respiration in pregnancies complicated by maternal obesity could compromise placental function and potentially underlie the increased susceptibility of these pregnancies to fetal demise in late gestation and to developmental programming.

  14. CARNITINE HOMEOSTASIS, MITOCHONDRIAL FUNCTION, AND CARDIOVASCULAR DISEASE

    PubMed Central

    Sharma, Shruti; Black, Stephen M.

    2009-01-01

    Carnitines are involved in mitochondrial transport of fatty acids and are of critical importance for maintaining normal mitochondrial function. This review summarizes recent experimental and clinical studies showing that mitochondrial dysfunction secondary to a disruption of carnitine homeostasis may play a role in decreased NO signaling and the development of endothelial dysfunction. Future challenges include development of agents that can positively modulate L-carnitine homeostasis which may have high therapeutic potential. PMID:20648231

  15. Normal and abnormal human vestibular ocular function

    NASA Technical Reports Server (NTRS)

    Peterka, R. J.; Black, F. O.

    1986-01-01

    The major motivation of this research is to understand the role the vestibular system plays in sensorimotor interactions which result in spatial disorientation and motion sickness. A second goal was to explore the range of abnormality as it is reflected in quantitative measures of vestibular reflex responses. The results of a study of vestibular reflex measurements in normal subjects and preliminary results in abnormal subjects are presented in this report. Statistical methods were used to define the range of normal responses, and determine age related changes in function.

  16. Targeting mitochondrial function to treat optic neuropathy.

    PubMed

    Gueven, Nuri; Nadikudi, Monila; Daniel, Abraham; Chhetri, Jamuna

    2016-07-28

    Many reports have illustrated a tight connection between vision and mitochondrial function. Not only are most mitochondrial diseases associated with some form of vision impairment, many ophthalmological disorders such as glaucoma, age-related macular degeneration and diabetic retinopathy also show signs of mitochondrial dysfunction. Despite a vast amount of evidence, vision loss is still only treated symptomatically, which is only partially a consequence of resistance to acknowledge that mitochondria could be the common denominator and hence a promising therapeutic target. More importantly, clinical support of this concept is only emerging. Moreover, only a few drug candidates and treatment strategies are in development or approved that selectively aim to restore mitochondrial function. This review rationalizes the currently developed therapeutic approaches that target mitochondrial function by discussing their proposed mode(s) of action and provides an overview on their development status with regards to optic neuropathies.

  17. Progressive dopaminergic alterations and mitochondrial abnormalities in LRRK2 G2019S knock in mice

    PubMed Central

    Yue, M.; Hinkle, K.; Davies, P.; Trushina, E.; Fiesel, F.; Christenson, T.; Schroeder, A.; Zhang, L.; Bowles, E.; Behrouz, B.; Lincoln, S.; Beevers, J.; Milnerwood, A.; Kurti, A.; McLean, P. J.; Fryer, J. D.; Springer, W.; Dickson, D.; Farrer, M.; Melrose, H.

    2015-01-01

    Mutations in the LRRK2 gene represent the most common genetic cause of late onset Parkinson’s disease. The physiological and pathological roles of LRRK2 are yet to be fully determined but evidence points towards LRRK2 mutations causing a gain in kinase function, impacting on neuronal maintenance, vesicular dynamics and neurotransmitter release. To explore the role of physiological levels of mutant LRRK2, we created knock in mice harboring the most common LRRK2 mutation G2019S in their own genome. We have performed comprehensive dopaminergic, behavioral and neuropathological analyses in this model up to 24 months of age. We find elevated kinase activity in the brain of both heterozygous and homozygous mice. Although normal at 6 months, by 12 months of age, basal and pharmacologically induced extracellular release of dopamine is impaired in both heterozygous and homozygous mice, corroborating previous findings in transgenic models over-expressing mutant LRRK2. Via in vivo microdialysis measurement of basal and drug- evoked extracellular release of dopamine and its metabolites, our findings indicate that exocytotic release from the vesicular pool is impaired. Furthermore, profound mitochondrial abnormalities are evident in the striatum of older homozygous G2019S mice, which are consistent with mitochondrial fission arrest. We anticipate the G2019S will be a useful pre-clinical model for further evaluation of early mechanistic events in LRRK2 pathogenesis and for second-hit approaches to model disease progression. PMID:25836420

  18. Mitochondrial division inhibitor 1 protects against mutant huntingtin-induced abnormal mitochondrial dynamics and neuronal damage in Huntington's disease.

    PubMed

    Manczak, Maria; Reddy, P Hemachandra

    2015-12-20

    The objective of this study was to determine the protective effects of the mitochondrial division inhibitor 1 (Mdivi1) in striatal neurons that stably express mutant Htt (STHDhQ111/Q111) and wild-type (WT) Htt (STHDhQ7/Q7). Using gene expression analysis, biochemical methods, transmission electron microscopy (TEM) and confocal microscopy methods, we studied (i) mitochondrial and synaptic activities by measuring mRNA and the protein levels of mitochondrial and synaptic genes, (ii) mitochondrial function and (iii) ultra-structural changes in mutant Htt neurons relative to WT Htt neurons. We also studied these parameters in Mdivil-treated and untreated WT and mutant Htt neurons. Increased expressions of mitochondrial fission genes, decreased expression of fusion genes and synaptic genes were found in the mutant Htt neurons relative to the WT Htt neurons. Electron microscopy of the mutant Htt neurons revealed a significantly increased number of mitochondria, indicating that mutant Htt fragments mitochondria. Biochemical analysis revealed defective mitochondrial functioning. In the Mdivil-treated mutant Htt neurons, fission genes were down-regulated, and fusion genes were up-regulated, suggesting that Mdivil decreases fission activity. Synaptic genes were up-regulated, and mitochondrial function was normal in the Mdivi1-treated mutant Htt neurons. Immunoblotting findings of mitochondrial and synaptic proteins agreed with mRNA findings. The TEM studies revealed that increased numbers of structurally intact mitochondria were present in Mdivi1-treated mutant Htt neurons. Increased synaptic and mitochondrial fusion genes and decreased fission genes were found in the Mdivi1-treated WT Htt neurons, indicating that Mdivi1 beneficially affects healthy neurons. Taken together, these findings suggest that Mdivi1 is protective against mutant Htt-induced mitochondrial and synaptic damage in HD neurons and that Mdivi1 may be a promising molecule for the treatment of HD patients.

  19. Hyperglycemia decreases mitochondrial function: The regulatory role of mitochondrial biogenesis

    SciTech Connect

    Palmeira, Carlos M. Rolo, Anabela P.; Berthiaume, Jessica; Bjork, James A.; Wallace, Kendall B.

    2007-12-01

    Increased generation of reactive oxygen species (ROS) is implicated in 'glucose toxicity' in diabetes. However, little is known about the action of glucose on the expression of transcription factors in hepatocytes, especially those involved in mitochondrial DNA (mtDNA) replication and transcription. Since mitochondrial functional capacity is dynamically regulated, we hypothesized that stressful conditions of hyperglycemia induce adaptations in the transcriptional control of cellular energy metabolism, including inhibition of mitochondrial biogenesis and oxidative metabolism. Cell viability, mitochondrial respiration, ROS generation and oxidized proteins were determined in HepG2 cells cultured in the presence of either 5.5 mM (control) or 30 mM glucose (high glucose) for 48 h, 96 h and 7 days. Additionally, mtDNA abundance, plasminogen activator inhibitor-1 (PAI-1), mitochondrial transcription factor A (TFAM) and nuclear respiratory factor-1 (NRF-1) transcripts were evaluated by real time PCR. High glucose induced a progressive increase in ROS generation and accumulation of oxidized proteins, with no changes in cell viability. Increased expression of PAI-1 was observed as early as 96 h of exposure to high glucose. After 7 days in hyperglycemia, HepG2 cells exhibited inhibited uncoupled respiration and decreased MitoTracker Red fluorescence associated with a 25% decrease in mtDNA and 16% decrease in TFAM transcripts. These results indicate that glucose may regulate mtDNA copy number by modulating the transcriptional activity of TFAM in response to hyperglycemia-induced ROS production. The decrease of mtDNA content and inhibition of mitochondrial function may be pathogenic hallmarks in the altered metabolic status associated with diabetes.

  20. Methods for Assessing Mitochondrial Function in Diabetes

    PubMed Central

    Kane, Daniel A.; Lanza, Ian R.; Neufer, P. Darrell

    2013-01-01

    A growing body of research is investigating the potential contribution of mitochondrial function to the etiology of type 2 diabetes. Numerous in vitro, in situ, and in vivo methodologies are available to examine various aspects of mitochondrial function, each requiring an understanding of their principles, advantages, and limitations. This review provides investigators with a critical overview of the strengths, limitations and critical experimental parameters to consider when selecting and conducting studies on mitochondrial function. In vitro (isolated mitochondria) and in situ (permeabilized cells/tissue) approaches provide direct access to the mitochondria, allowing for study of mitochondrial bioenergetics and redox function under defined substrate conditions. Several experimental parameters must be tightly controlled, including assay media, temperature, oxygen concentration, and in the case of permeabilized skeletal muscle, the contractile state of the fibers. Recently developed technology now offers the opportunity to measure oxygen consumption in intact cultured cells. Magnetic resonance spectroscopy provides the most direct way of assessing mitochondrial function in vivo with interpretations based on specific modeling approaches. The continuing rapid evolution of these technologies offers new and exciting opportunities for deciphering the potential role of mitochondrial function in the etiology and treatment of diabetes. PMID:23520284

  1. Melatonin prevents abnormal mitochondrial dynamics resulting from the neurotoxicity of cadmium by blocking calcium-dependent translocation of Drp1 to the mitochondria.

    PubMed

    Xu, Shangcheng; Pi, Huifeng; Zhang, Lei; Zhang, Nixian; Li, YuMing; Zhang, Huiliang; Tang, Ju; Li, Huijuan; Feng, Min; Deng, Ping; Guo, Pan; Tian, Li; Xie, Jia; He, Mindi; Lu, Yonghui; Zhong, Min; Zhang, Yanwen; Wang, Wang; Reiter, Russel J; Yu, Zhengping; Zhou, Zhou

    2016-04-01

    Cadmium (Cd) is a persistent environmental toxin and occupational pollutant that is considered to be a potential risk factor in the development of neurodegenerative diseases. Abnormal mitochondrial dynamics are increasingly implicated in mitochondrial damage in various neurological pathologies. The aim of this study was to investigate whether the disturbance of mitochondrial dynamics contributed to Cd-induced neurotoxicity and whether melatonin has any neuroprotective properties. After cortical neurons were exposed to 10 μM cadmium chloride (CdCl2 ) for various periods (0, 3, 6, 12, and 24 hr), the morphology of their mitochondria significantly changed from the normal tubular networks into punctuated structures within 3 hr. Following this pronounced mitochondrial fragmentation, Cd treatment led to signs of mitochondrial dysfunction, including excess reactive oxygen species (ROS) production, decreased ATP content, and mitochondrial membrane potential (▵Ψm) loss. However, 1 mM melatonin pretreatment efficiently attenuated the Cd-induced mitochondrial fragmentation, which improved the turnover of mitochondrial function. In the brain tissues of rats that were intraperitoneally given 1 mg/kg CdCl2 for 7 days, melatonin also ameliorated excessive mitochondrial fragmentation and mitochondrial damage in vivo. Melatonin's protective effects were attributed to its roles in preventing cytosolic calcium ([Ca(2+) ]i ) overload, which blocked the recruitment of Drp1 from the cytoplasm to the mitochondria. Taken together, our results are the first to demonstrate that abnormal mitochondrial dynamics is involved in cadmium-induced neurotoxicity. Melatonin has significant pharmacological potential in protecting against the neurotoxicity of Cd by blocking the disbalance of mitochondrial fusion and fission.

  2. DJ-1 Null Dopaminergic Neuronal Cells Exhibit Defects in Mitochondrial Function and Structure: Involvement of Mitochondrial Complex I Assembly

    PubMed Central

    Heo, Jun Young; Park, Ji Hoon; Kim, Soung Jung; Seo, Kang Sik; Han, Jeong Su; Lee, Sang Hee; Kim, Jin Man; Park, Jong Il; Park, Seung Kiel; Lim, Kyu; Hwang, Byung Doo; Shong, Minho; Kweon, Gi Ryang

    2012-01-01

    DJ-1 is a Parkinson's disease-associated gene whose protein product has a protective role in cellular homeostasis by removing cytosolic reactive oxygen species and maintaining mitochondrial function. However, it is not clear how DJ-1 regulates mitochondrial function and why mitochondrial dysfunction is induced by DJ-1 deficiency. In a previous study we showed that DJ-1 null dopaminergic neuronal cells exhibit defective mitochondrial respiratory chain complex I activity. In the present article we investigated the role of DJ-1 in complex I formation by using blue native-polyacrylamide gel electrophoresis and 2-dimensional gel analysis to assess native complex status. On the basis of these experiments, we concluded that DJ-1 null cells have a defect in the assembly of complex I. Concomitant with abnormal complex I formation, DJ-1 null cells show defective supercomplex formation. It is known that aberrant formation of the supercomplex impairs the flow of electrons through the channels between respiratory chain complexes, resulting in mitochondrial dysfunction. We took two approaches to study these mitochondrial defects. The first approach assessed the structural defect by using both confocal microscopy with MitoTracker staining and electron microscopy. The second approach assessed the functional defect by measuring ATP production, O2 consumption, and mitochondrial membrane potential. Finally, we showed that the assembly defect as well as the structural and functional abnormalities in DJ-1 null cells could be reversed by adenovirus-mediated overexpression of DJ-1, demonstrating the specificity of DJ-1 on these mitochondrial properties. These mitochondrial defects induced by DJ-1mutation may be a pathological mechanism for the degeneration of dopaminergic neurons in Parkinson's disease. PMID:22403686

  3. Mitochondrial Abnormality Associates with Type-Specific Neuronal Loss and Cell Morphology Changes in the Pedunculopontine Nucleus in Parkinson Disease

    PubMed Central

    Pienaar, Ilse S.; Elson, Joanna L.; Racca, Claudia; Nelson, Glyn; Turnbull, Douglass M.; Morris, Christopher M.

    2014-01-01

    Cholinergic neuronal loss in the pedunculopontine nucleus (PPN) associates with abnormal functions, including certain motor and nonmotor symptoms. This realization has led to low-frequency stimulation of the PPN for treating patients with Parkinson disease (PD) who are refractory to other treatment modalities. However, the molecular mechanisms underlying PPN neuronal loss and the therapeutic substrate for the clinical benefits following PPN stimulation remain poorly characterized, hampering progress toward designing more efficient therapies aimed at restoring the PPN's normal functions during progressive parkinsonism. Here, we investigated postmortem pathological changes in the PPN of PD cases. Our study detected a loss of neurons producing gamma-aminobutyric acid (GABA) as their output and glycinergic neurons, along with the pronounced loss of cholinergic neurons. These losses were accompanied by altered somatic cell size that affected the remaining neurons of all neuronal subtypes studied here. Because studies showed that mitochondrial dysfunction exists in sporadic PD and in PD animal models, we investigated whether altered mitochondrial composition exists in the PPN. A significant up-regulation of several mitochondrial proteins was seen in GABAergic and glycinergic neurons; however, cholinergic neurons indicated down-regulation of the same proteins. Our findings suggest an imbalance in the activity of key neuronal subgroups of the PPN in PD, potentially because of abnormal inhibitory activity and altered cholinergic outflow. PMID:24099985

  4. Mitochondrial Biogenesis and Function in Arabidopsis†

    PubMed Central

    Millar, A. Harvey; Small, Ian D.; Day, David A.; Whelan, James

    2008-01-01

    Mitochondria represent the powerhouse of cells through their synthesis of ATP. However, understanding the role of mitochondria in the growth and development of plants will rely on a much deeper appreciation of the complexity of this organelle. Arabidopsis research has provided clear identification of mitochondrial components, allowed wide-scale analysis of gene expression, and has aided reverse genetic manipulation to test the impact of mitochondrial component loss on plant function. Forward genetics in Arabidopsis has identified mitochondrial involvement in mutations with notable impacts on plant metabolism, growth and development. Here we consider the evidence for components involved in mitochondria biogenesis, metabolism and signalling to the nucleus. PMID:22303236

  5. Abnormal interaction of VDAC1 with amyloid beta and phosphorylated tau causes mitochondrial dysfunction in Alzheimer's disease

    PubMed Central

    Manczak, Maria; Reddy, P. Hemachandra

    2012-01-01

    The purpose of our study was to determine the relationship between voltage-dependent anion channel 1 protein (VDAC1) and amyloid beta (Aβ) and phosphorylated tau in Alzheimer's disease (AD). Using brain specimens from AD patients, control subjects and 6-, 12- and 24-month-old Aβ precursor protein (APP) transgenic mice, we studied VDAC1 protein levels. Further, we also studied the interaction between VDAC1 and Aβ (monomers and oligomers) and phosphorylated tau, using cortical issues from AD patients, control subjects, APP, APP/PS1 and 3XTg.AD mice. We also studied age- and VDAC1-linked, mutant APP/Aβ-induced mitochondrial dysfunction in APP and non-transgenic wild-type (WT) mice. We found progressively increased levels of VDAC1 in the cortical tissues from the brains of patients with AD, relative to control subjects, and significantly increased levels of VDAC1 in the cerebral cortices of 6-, 12- and 24-month-old APP transgenic mice, relative to the age-matched control WT mice. Interestingly, we found VDAC1 interacted with Aβ and phosphorylated tau in the brains from AD patients and from APP, APP/PS1 and 3XTg.AD mice. We found progressively increased mitochondrial dysfunction in APP mice relative to WT mice. These observations led us to conclude that VDAC1 interacts with Aβ, and phosphorylated tau may in turn block mitochondrial pores, leading to mitochondrial dysfunction in AD pathogenesis. Based on current study observations, we propose that reduced levels of VDAC1, Aβ and phosphorylated tau may reduce the abnormal interaction between VDAC1 and APP, VDAC1 and Aβ, and VDAC1 and phosphorylated tau; and that reduced levels of VDAC1, Aβ and phosphorylated tau may maintain normal mitochondrial pore opening and pore closure, ultimately leading to normal mitochondrial function, mitochondria supplying ATP to nerve terminals and boosting synaptic and cognitive function in AD. PMID:22926141

  6. Abnormal mitochondrial transport and morphology are common pathological denominators in SOD1 and TDP43 ALS mouse models.

    PubMed

    Magrané, Jordi; Cortez, Czrina; Gan, Wen-Biao; Manfredi, Giovanni

    2014-03-15

    Neuronal mitochondrial morphology abnormalities occur in models of familial amyotrophic lateral sclerosis (ALS) associated with SOD1 and TDP43 mutations. These abnormalities have been linked to mitochondrial axonal transport defects, but the temporal and spatial relationship between mitochondrial morphology and transport alterations in these two distinct genetic forms of ALS has not been investigated in vivo. To address this question, we crossed SOD1 (wild-type SOD1(WT) and mutant SOD1(G93A)) or TDP43 (mutant TDP43(A315T)) transgenic mice with mice expressing the fluorescent protein Dendra targeted to mitochondria in neurons (mitoDendra). At different time points during the disease course, we studied mitochondrial transport in the intact sciatic nerve of living mice and analyzed axonal mitochondrial morphology at multiple sites, spanning from the spinal cord to the motor terminals. Defects of retrograde mitochondrial transport were detected at 45 days of age, before the onset of symptoms, in SOD1(G93A) and TDP43(A315T) mice, but not in SOD1(WT). At later disease stages, also anterograde mitochondrial transport was affected in both mutant mouse lines. In SOD1(G93A) mice, mitochondrial morphological abnormalities were apparent at 15 days of age, thus preceding transport abnormalities. Conversely, in TDP43(A315T) mice, morphological abnormalities appeared after the onset of transport defects. Taken together, these findings demonstrate that neuronal mitochondrial transport and morphology abnormalities occur in vivo and that they are common denominators of different genetic forms of the ALS. At the same time, differences in the temporal and spatial manifestation of mitochondrial abnormalities between the two mouse models of familial ALS imply that different molecular mechanisms may be involved.

  7. Abnormal Mitochondrial cAMP/PKA Signaling Is Involved in Sepsis-Induced Mitochondrial and Myocardial Dysfunction

    PubMed Central

    Neviere, Remi; Delguste, Florian; Durand, Arthur; Inamo, Jocelyn; Boulanger, Eric; Preau, Sebastien

    2016-01-01

    Adrenergic receptors couple to Gs-proteins leading to transmembrane adenylyl cyclase activation and cytosolic cyclic adenosine monophosphate (cAMP) production. Cyclic AMP is also produced in the mitochondrial matrix, where it regulates respiration through protein kinase A (PKA)-dependent phosphorylation of respiratory chain complexes. We hypothesized that a blunted mitochondrial cAMP-PKA pathway would participate in sepsis-induced heart dysfunction. Adult male mice were subjected to intra-abdominal sepsis. Mitochondrial respiration of cardiac fibers and myocardial contractile performance were evaluated in response to 8Br-cAMP, PKA inhibition (H89), soluble adenylyl cyclase inhibition (KH7), and phosphodiesterase inhibition (IBMX; BAY60-7550). Adenosine diphosphate (ADP)-stimulated respiratory rates of cardiac fibers were reduced in septic mice. Compared with controls, stimulatory effects of 8Br-cAMP on respiration rates were enhanced in septic fibers, whereas inhibitory effects of H89 were reduced. Ser-58 phosphorylation of cytochrome c oxidase subunit IV-1 was reduced in septic hearts. In vitro, incubation of septic cardiac fibers with BAY60-7550 increased respiratory control ratio and improved cardiac MVO2 efficiency in isolated septic heart. In vivo, BAY60-7550 pre-treatment of septic mice have limited impact on myocardial function. Mitochondrial cAMP-PKA signaling is impaired in the septic myocardium. PDE2 phosphodiesterase inhibition by BAY60-7550 improves mitochondrial respiration and cardiac MVO2 efficiency in septic mice. PMID:27973394

  8. Viruses as Modulators of Mitochondrial Functions

    PubMed Central

    Anand, Sanjeev K.; Tikoo, Suresh K.

    2013-01-01

    Mitochondria are multifunctional organelles with diverse roles including energy production and distribution, apoptosis, eliciting host immune response, and causing diseases and aging. Mitochondria-mediated immune responses might be an evolutionary adaptation by which mitochondria might have prevented the entry of invading microorganisms thus establishing them as an integral part of the cell. This makes them a target for all the invading pathogens including viruses. Viruses either induce or inhibit various mitochondrial processes in a highly specific manner so that they can replicate and produce progeny. Some viruses encode the Bcl2 homologues to counter the proapoptotic functions of the cellular and mitochondrial proteins. Others modulate the permeability transition pore and either prevent or induce the release of the apoptotic proteins from the mitochondria. Viruses like Herpes simplex virus 1 deplete the host mitochondrial DNA and some, like human immunodeficiency virus, hijack the host mitochondrial proteins to function fully inside the host cell. All these processes involve the participation of cellular proteins, mitochondrial proteins, and virus specific proteins. This review will summarize the strategies employed by viruses to utilize cellular mitochondria for successful multiplication and production of progeny virus. PMID:24260034

  9. Mitofusin 2 regulates the oocytes development and quality by modulating meiosis and mitochondrial function

    PubMed Central

    Liu, Qun; Kang, Lina; Wang, Lingjuan; Zhang, Ling; Xiang, Wenpei

    2016-01-01

    Mitofusin-2 (Mfn2), one of the mitochondrial dynamic proteins plays a key role in maintaining the integrity of mitochondrial morphology and function. However, it is unknown if Mfn2 influences the quality of oocytes in the process of development by modulating mitochondrial function in vitro. In this study, immature oocytes were transfected with Mfn2-siRNA for 16 h. We found that the expression level of the Mfn2 gene was significantly lower than those of the control group. The rates of maturation and fertility were also found to have declined. Moreover, mitochondrial structure and function, especially the morphogenesis of spindles, were observed as abnormal during meiosis. Thus, the above findings indicate that down-regulation of Mfn2 may have an impact on the maturation and fertilization of immature oocytes in vitro by modulating meiosis and mitochondrial function. PMID:27469431

  10. Glucocorticoid Modulation of Mitochondrial Function in Hepatoma Cells Requires the Mitochondrial Fission Protein Drp1

    PubMed Central

    Hernández-Alvarez, María Isabel; Paz, José C.; Sebastián, David; Muñoz, Juan Pablo; Liesa, Marc; Segalés, Jessica; Palacín, Manuel

    2013-01-01

    Abstract Aims: Glucocorticoids, such as dexamethasone, enhance hepatic energy metabolism and gluconeogenesis partly through changes in mitochondrial function. Mitochondrial function is influenced by the balance between mitochondrial fusion and fission events. However, whether glucocorticoids modulate mitochondrial function through the regulation of mitochondrial dynamics is currently unknown. Results: Here, we report that the effects of dexamethasone on mitochondrial function and gluconeogenesis in hepatoma cells are dependent on the mitochondrial fission protein dynamin-related protein 1 (Drp1). Dexamethasone increased routine oxygen consumption, maximal respiratory capacity, superoxide anion, proton leak, and gluconeogenesis in hepatoma cells. Under these conditions, dexamethasone altered mitochondrial morphology, which was paralleled by a large increase in Drp1 expression, and reduced mitofusin 1 (Mfn1) and Mfn2. In vivo dexamethasone treatment also enhanced Drp1 expression in mouse liver. On the basis of these observations, we analyzed the dependence on the Drp1 function of dexamethasone effects on mitochondrial respiration and gluconeogenesis. We show that the increase in mitochondrial respiration and gluconeogenesis induced by dexamethasone are hampered by the inhibition of Drp1 function. Innovation: Our findings provide the first evidence that the effects of glucocorticoids on hepatic metabolism require the mitochondrial fission protein Drp1. Conclusion: In summary, we demonstrate that the mitochondrial effects of dexamethasone both on mitochondrial respiration and on the gluconeogenic pathway depend on Drp1. Antioxid. Redox Signal. 19, 366–378. PMID:22703557

  11. Translating the basic knowledge of mitochondrial functions to metabolic therapy: role of L-carnitine.

    PubMed

    Marcovina, Santica M; Sirtori, Cesare; Peracino, Andrea; Gheorghiade, Mihai; Borum, Peggy; Remuzzi, Giuseppe; Ardehali, Hossein

    2013-02-01

    Mitochondria play important roles in human physiological processes, and therefore, their dysfunction can lead to a constellation of metabolic and nonmetabolic abnormalities such as a defect in mitochondrial gene expression, imbalance in fuel and energy homeostasis, impairment in oxidative phosphorylation, enhancement of insulin resistance, and abnormalities in fatty acid metabolism. As a consequence, mitochondrial dysfunction contributes to the pathophysiology of insulin resistance, obesity, diabetes, vascular disease, and chronic heart failure. The increased knowledge on mitochondria and their role in cellular metabolism is providing new evidence that these disorders may benefit from mitochondrial-targeted therapies. We review the current knowledge of the contribution of mitochondrial dysfunction to chronic diseases, the outcomes of experimental studies on mitochondrial-targeted therapies, and explore the potential of metabolic modulators in the treatment of selected chronic conditions. As an example of such modulators, we evaluate the efficacy of the administration of L-carnitine and its analogues acetyl and propionyl L-carnitine in several chronic diseases. L-carnitine is intrinsically involved in mitochondrial metabolism and function as it plays a key role in fatty acid oxidation and energy metabolism. In addition to the transportation of free fatty acids across the inner mitochondrial membrane, L-carnitine modulates their oxidation rate and is involved in the regulation of vital cellular functions such as apoptosis. Thus, L-carnitine and its derivatives show promise in the treatment of chronic conditions and diseases associated with mitochondrial dysfunction but further translational studies are needed to fully explore their potential.

  12. Early Expression of Parkinson's Disease-Related Mitochondrial Abnormalities in PINK1 Knockout Rats.

    PubMed

    Villeneuve, Lance M; Purnell, Phillip R; Boska, Michael D; Fox, Howard S

    2016-01-01

    PTEN-induced kinase 1 (PINK1) mutations are responsible for an autosomal recessive, familial form of Parkinson's disease. PINK1 protein is a Ser/Thr kinase localized to the mitochondrial membrane and is involved in many processes including mitochondrial trafficking, mitophagy, and proteasomal function. Using a new PINK1 knockout (PINK1 KO) rat model, we found altered brain metabolomic markers using magnetic resonance spectroscopy, identified changes in mitochondrial pathways with quantitative proteomics using sequential window acquisition of all theoretical spectra (SWATH) mass spectrometry, and demonstrated mitochondrial functional alterations through measurement of oxygen consumption and acidification rates. The observed alterations included reduced creatine, decreased levels of complex I of the electron transport chain, and increased proton leak in the electron transport chain in PINK1 KO rat brains. In conjunction, these results demonstrate metabolomic and mitochondrial alterations occur during the asymptomatic phase of Parkinson's disease in this model. These results indicate both potential early diagnostic markers and therapeutic pathways that can be used in PD.

  13. MELAS syndrome and cardiomyopathy: linking mitochondrial function to heart failure pathogenesis.

    PubMed

    Hsu, Ying-Han R; Yogasundaram, Haran; Parajuli, Nirmal; Valtuille, Lucas; Sergi, Consolato; Oudit, Gavin Y

    2016-01-01

    Heart failure remains an important clinical burden, and mitochondrial dysfunction plays a key role in its pathogenesis. The heart has a high metabolic demand, and mitochondrial function is a key determinant of myocardial performance. In mitochondrial disorders, hypertrophic remodeling is the early pattern of cardiomyopathy with progression to dilated cardiomyopathy, conduction defects and ventricular pre-excitation occurring in a significant proportion of patients. Cardiac dysfunction occurs in approximately a third of patients with mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes (MELAS) syndrome, a stereotypical example of a mitochondrial disorder leading to a cardiomyopathy. We performed unique comparative ultrastructural and gene expression in a MELAS heart compared with non-failing controls. Our results showed a remarkable increase in mitochondrial inclusions and increased abnormal mitochondria in MELAS cardiomyopathy coupled with variable sarcomere thickening, heterogeneous distribution of affected cardiomyocytes and a greater elevation in the expression of disease markers. Investigation and management of patients with mitochondrial cardiomyopathy should follow the well-described contemporary heart failure clinical practice guidelines and include an important role of medical and device therapies. Directed metabolic therapy is lacking, but current research strategies are dedicated toward improving mitochondrial function in patients with mitochondrial disorders.

  14. Mitochondrial functions modulate neuroendocrine, metabolic, inflammatory, and transcriptional responses to acute psychological stress

    PubMed Central

    Picard, Martin; McManus, Meagan J.; Gray, Jason D.; Nasca, Carla; Moffat, Cynthia; Kopinski, Piotr K.; Seifert, Erin L.; McEwen, Bruce S.; Wallace, Douglas C.

    2015-01-01

    The experience of psychological stress triggers neuroendocrine, inflammatory, metabolic, and transcriptional perturbations that ultimately predispose to disease. However, the subcellular determinants of this integrated, multisystemic stress response have not been defined. Central to stress adaptation is cellular energetics, involving mitochondrial energy production and oxidative stress. We therefore hypothesized that abnormal mitochondrial functions would differentially modulate the organism’s multisystemic response to psychological stress. By mutating or deleting mitochondrial genes encoded in the mtDNA [NADH dehydrogenase 6 (ND6) and cytochrome c oxidase subunit I (COI)] or nuclear DNA [adenine nucleotide translocator 1 (ANT1) and nicotinamide nucleotide transhydrogenase (NNT)], we selectively impaired mitochondrial respiratory chain function, energy exchange, and mitochondrial redox balance in mice. The resulting impact on physiological reactivity and recovery from restraint stress were then characterized. We show that mitochondrial dysfunctions altered the hypothalamic–pituitary–adrenal axis, sympathetic adrenal–medullary activation and catecholamine levels, the inflammatory cytokine IL-6, circulating metabolites, and hippocampal gene expression responses to stress. Each mitochondrial defect generated a distinct whole-body stress-response signature. These results demonstrate the role of mitochondrial energetics and redox balance as modulators of key pathophysiological perturbations previously linked to disease. This work establishes mitochondria as stress-response modulators, with implications for understanding the mechanisms of stress pathophysiology and mitochondrial diseases. PMID:26627253

  15. OXPHOS-Dependent Cells Identify Environmental Disruptors of Mitochondrial Function

    EPA Science Inventory

    Mitochondrial dysfunction is associated with numerous chronic diseases including metabolic syndrome. Environmental chemicals can impair mitochondrial function through numerous mechanisms such as membrane disruption, complex inhibition and electron transport chain uncoupling. Curr...

  16. Acetyl-L-carnitine and lipoic acid improve mitochondrial abnormalities and serum levels of liver enzymes in a mouse model of nonalcoholic fatty liver disease.

    PubMed

    Kathirvel, Elango; Morgan, Kengathevy; French, Samuel W; Morgan, Timothy R

    2013-11-01

    Mitochondrial abnormalities are suggested to be associated with the development of nonalcoholic fatty liver. Liver mitochondrial content and function have been shown to improve in oral feeding of acetyl-L-carnitine (ALC) to rodents. Carnitine is involved in the transport of acyl-coenzyme A across the mitochondrial membrane to be used in mitochondrial β-oxidation. We hypothesized that oral administration ALC with the antioxidant lipoic acid (ALC + LA) would benefit nonalcoholic fatty liver. To test our hypothesis, we fed Balb/C mice a standard diet (SF) or SF with ALC + LA or high-fat diet (HF) or HF with ALC + LA for 6 months. Acetyl-L-carnitine and LA were dissolved at 0.2:0.1% (wt/vol) in drinking water, and mice were allowed free access to food and water. Along with physical parameters, insulin resistance (blood glucose, insulin, glucose tolerance), liver function (alanine transaminase [ALT], aspartate transaminase [AST]), liver histology (hematoxylin and eosin), oxidative stress (malondialdehyde), and mitochondrial abnormalities (carbamoyl phosphate synthase 1 and electron microscopy) were done. Compared with SF, HF had higher body, liver, liver-to-body weight ratio, white adipose tissue, ALT, AST, liver fat, oxidative stress, and insulin resistance. Coadministration of ALC + LA to HF animals significantly improved the mitochondrial marker carbamoyl phosphate synthase 1 and the size of the mitochondria in liver. Alanine transaminase and AST levels were decreased. In a nonalcoholic fatty liver mice model, ALC + LA combination improved liver mitochondrial content, size, serum ALT, and AST without significant changes in oxidative stress, insulin resistance, and liver fat accumulation.

  17. Mutant huntingtin, abnormal mitochondrial dynamics, defective axonal transport of mitochondria, and selective synaptic degeneration in Huntington's disease.

    PubMed

    Reddy, P Hemachandra; Shirendeb, Ulziibat P

    2012-02-01

    Huntington's disease (HD) is a progressive, fatal neurodegenerative disease caused by expanded polyglutamine repeats in the HD gene. HD is characterized by chorea, seizures, involuntary movements, dystonia, cognitive decline, intellectual impairment and emotional disturbances. Research into mutant huntingtin (Htt) and mitochondria has found that mutant Htt interacts with the mitochondrial protein dynamin-related protein 1 (Drp1), enhances GTPase Drp1 enzymatic activity, and causes excessive mitochondrial fragmentation and abnormal distribution, leading to defective axonal transport of mitochondria and selective synaptic degeneration. This article summarizes latest developments in HD research and focuses on the role of abnormal mitochondrial dynamics and defective axonal transport in HD neurons. This article also discusses the therapeutic strategies that decrease mitochondrial fragmentation and neuronal damage in HD.

  18. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries

    PubMed Central

    Jia, Longfei; Li, Juan; He, Bin; Jia, Yimin; Niu, Yingjie; Wang, Chenfei; Zhao, Ruqian

    2016-01-01

    Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated from healthy and polycystic gilt ovaries was evaluated in vitro in association with one-carbon metabolism, mitochondrial DNA (mtDNA) methylation, and mitochondrial function. PCO oocytes demonstrated impaired polar body extrusion, and significantly decreased cleavage and blastocyst rates. The mitochondrial distribution was disrupted in PCO oocytes, together with decreased mitochondrial membrane potential and deformed mitochondrial structure. The mtDNA copy number and the expression of mtDNA-encoded genes were significantly lower in PCO oocytes. Homocysteine concentration in follicular fluid was significantly higher in PCO group, which was associated with significantly up-regulated one-carbon metabolic enzymes betaine homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT) and the DNA methyltransferase DNMT1. Moreover, mtDNA sequences coding for 12S, 16S rRNA and ND4, as well as the D-loop region were significantly hypermethylated in PCO oocytes. These results indicate that an abnormal activation of one-carbon metabolism and hypermethylation of mtDNA may contribute, largely, to the mitochondrial malfunction and decreased quality of PCO-derived oocytes in gilts. PMID:26758245

  19. Abnormally activated one-carbon metabolic pathway is associated with mtDNA hypermethylation and mitochondrial malfunction in the oocytes of polycystic gilt ovaries.

    PubMed

    Jia, Longfei; Li, Juan; He, Bin; Jia, Yimin; Niu, Yingjie; Wang, Chenfei; Zhao, Ruqian

    2016-01-13

    Polycystic ovarian syndrome (PCOS) is associated with hyperhomocysteinemia and polycystic ovaries (PCO) usually produce oocytes of poor quality. However, the intracellular mechanism linking hyperhomocysteinemia and oocyte quality remains elusive. In this study, the quality of the oocytes isolated from healthy and polycystic gilt ovaries was evaluated in vitro in association with one-carbon metabolism, mitochondrial DNA (mtDNA) methylation, and mitochondrial function. PCO oocytes demonstrated impaired polar body extrusion, and significantly decreased cleavage and blastocyst rates. The mitochondrial distribution was disrupted in PCO oocytes, together with decreased mitochondrial membrane potential and deformed mitochondrial structure. The mtDNA copy number and the expression of mtDNA-encoded genes were significantly lower in PCO oocytes. Homocysteine concentration in follicular fluid was significantly higher in PCO group, which was associated with significantly up-regulated one-carbon metabolic enzymes betaine homocysteine methyltransferase (BHMT), glycine N-methyltransferase (GNMT) and the DNA methyltransferase DNMT1. Moreover, mtDNA sequences coding for 12S, 16S rRNA and ND4, as well as the D-loop region were significantly hypermethylated in PCO oocytes. These results indicate that an abnormal activation of one-carbon metabolism and hypermethylation of mtDNA may contribute, largely, to the mitochondrial malfunction and decreased quality of PCO-derived oocytes in gilts.

  20. Abnormal mitochondrial dynamics and synaptic degeneration as early events in Alzheimer's disease: implications to mitochondria-targeted antioxidant therapeutics.

    PubMed

    Reddy, P Hemachandra; Tripathi, Raghav; Troung, Quang; Tirumala, Karuna; Reddy, Tejaswini P; Anekonda, Vishwanath; Shirendeb, Ulziibat P; Calkins, Marcus J; Reddy, Arubala P; Mao, Peizhong; Manczak, Maria

    2012-05-01

    Synaptic pathology and mitochondrial oxidative damage are early events in Alzheimer's disease (AD) progression. Loss of synapses and synaptic damage are the best correlates of cognitive deficits found in AD patients. Recent research on amyloid beta (Aβ) and mitochondria in AD revealed that Aβ accumulates in synapses and synaptic mitochondria, leading to abnormal mitochondrial dynamics and synaptic degeneration in AD neurons. Further, recent studies using live-cell imaging and primary neurons from amyloid beta precursor protein (AβPP) transgenic mice revealed reduced mitochondrial mass, defective axonal transport of mitochondria and synaptic degeneration, indicating that Aβ is responsible for mitochondrial and synaptic deficiencies. Tremendous progress has been made in studying antioxidant approaches in mouse models of AD and clinical trials of AD patients. This article highlights the recent developments made in Aβ-induced abnormal mitochondrial dynamics, defective mitochondrial biogenesis, impaired axonal transport and synaptic deficiencies in AD. This article also focuses on mitochondrial approaches in treating AD, and also discusses latest research on mitochondria-targeted antioxidants in AD. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.

  1. Dynein mutations associated with hereditary motor neuropathies impair mitochondrial morphology and function with age.

    PubMed

    Eschbach, Judith; Sinniger, Jérôme; Bouitbir, Jamal; Fergani, Anissa; Schlagowski, Anna-Isabel; Zoll, Joffrey; Geny, Bernard; René, Frédérique; Larmet, Yves; Marion, Vincent; Baloh, Robert H; Harms, Matthew B; Shy, Michael E; Messadeq, Nadia; Weydt, Patrick; Loeffler, Jean-Philippe; Ludolph, Albert C; Dupuis, Luc

    2013-10-01

    Mutations in the DYNC1H1 gene encoding for dynein heavy chain cause two closely related human motor neuropathies, dominant spinal muscular atrophy with lower extremity predominance (SMA-LED) and axonal Charcot-Marie-Tooth (CMT) disease, and lead to sensory neuropathy and striatal atrophy in mutant mice. Dynein is the molecular motor carrying mitochondria retrogradely on microtubules, yet the consequences of dynein mutations on mitochondrial physiology have not been explored. Here, we show that mouse fibroblasts bearing heterozygous or homozygous point mutation in Dync1h1, similar to human mutations, show profoundly abnormal mitochondrial morphology associated with the loss of mitofusin 1. Furthermore, heterozygous Dync1h1 mutant mice display progressive mitochondrial dysfunction in muscle and mitochondria progressively increase in size and invade sarcomeres. As a likely consequence of systemic mitochondrial dysfunction, Dync1h1 mutant mice develop hyperinsulinemia and hyperglycemia and progress to glucose intolerance with age. Similar defects in mitochondrial morphology and mitofusin levels are observed in fibroblasts from patients with SMA-LED. Last, we show that Dync1h1 mutant fibroblasts show impaired perinuclear clustering of mitochondria in response to mitochondrial uncoupling. Our results show that dynein function is required for the maintenance of mitochondrial morphology and function with aging and suggest that mitochondrial dysfunction contributes to dynein-dependent neurological diseases, such as SMA-LED.

  2. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia

    PubMed Central

    Jobling, Rebekah K.; Assoum, Mirna; Gakh, Oleksandr; Blaser, Susan; Raiman, Julian A.; Mignot, Cyril; Roze, Emmanuel; Dürr, Alexandra; Brice, Alexis; Lévy, Nicolas; Prasad, Chitra; Paton, Tara; Paterson, Andrew D.; Roslin, Nicole M.; Marshall, Christian R.; Desvignes, Jean-Pierre; Roëckel-Trevisiol, Nathalie; Scherer, Stephen W.; Rouleau, Guy A.; Mégarbané, André; Isaya, Grazia

    2015-01-01

    Non-progressive cerebellar ataxias are a rare group of disorders that comprise approximately 10% of static infantile encephalopathies. We report the identification of mutations in PMPCA in 17 patients from four families affected with cerebellar ataxia, including the large Lebanese family previously described with autosomal recessive cerebellar ataxia and short stature of Norman type and localized to chromosome 9q34 (OMIM #213200). All patients present with non-progressive cerebellar ataxia, and the majority have intellectual disability of variable severity. PMPCA encodes α-MPP, the alpha subunit of mitochondrial processing peptidase, the primary enzyme responsible for the maturation of the vast majority of nuclear-encoded mitochondrial proteins, which is necessary for life at the cellular level. Analysis of lymphoblastoid cells and fibroblasts from patients homozygous for the PMPCA p.Ala377Thr mutation and carriers demonstrate that the mutation impacts both the level of the alpha subunit encoded by PMPCA and the function of mitochondrial processing peptidase. In particular, this mutation impacts the maturation process of frataxin, the protein which is depleted in Friedreich ataxia. This study represents the first time that defects in PMPCA and mitochondrial processing peptidase have been described in association with a disease phenotype in humans. PMID:25808372

  3. Mitochondrial respiration controls lysosomal function during inflammatory T cell responses

    PubMed Central

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Dolores Ledesma, Maria; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2016-01-01

    Summary The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4+ T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration-deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward pro-inflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD+ levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify novel strategies for intervention in mitochondrial-related diseases. PMID:26299452

  4. Mitochondrial Respiration Controls Lysosomal Function during Inflammatory T Cell Responses.

    PubMed

    Baixauli, Francesc; Acín-Pérez, Rebeca; Villarroya-Beltrí, Carolina; Mazzeo, Carla; Nuñez-Andrade, Norman; Gabandé-Rodriguez, Enrique; Ledesma, Maria Dolores; Blázquez, Alberto; Martin, Miguel Angel; Falcón-Pérez, Juan Manuel; Redondo, Juan Miguel; Enríquez, Jose Antonio; Mittelbrunn, Maria

    2015-09-01

    The endolysosomal system is critical for the maintenance of cellular homeostasis. However, how endolysosomal compartment is regulated by mitochondrial function is largely unknown. We have generated a mouse model with defective mitochondrial function in CD4(+) T lymphocytes by genetic deletion of the mitochondrial transcription factor A (Tfam). Mitochondrial respiration deficiency impairs lysosome function, promotes p62 and sphingomyelin accumulation, and disrupts endolysosomal trafficking pathways and autophagy, thus linking a primary mitochondrial dysfunction to a lysosomal storage disorder. The impaired lysosome function in Tfam-deficient cells subverts T cell differentiation toward proinflammatory subsets and exacerbates the in vivo inflammatory response. Restoration of NAD(+) levels improves lysosome function and corrects the inflammatory defects in Tfam-deficient T cells. Our results uncover a mechanism by which mitochondria regulate lysosome function to preserve T cell differentiation and effector functions, and identify strategies for intervention in mitochondrial-related diseases.

  5. Membrane trafficking and mitochondrial abnormalities precede subunit c deposition in a cerebellar cell model of juvenile neuronal ceroid lipofuscinosis

    PubMed Central

    Fossale, Elisa; Wolf, Pavlina; Espinola, Janice A; Lubicz-Nawrocka, Tanya; Teed, Allison M; Gao, Hanlin; Rigamonti, Dorotea; Cattaneo, Elena; MacDonald, Marcy E; Cotman, Susan L

    2004-01-01

    Background JNCL is a recessively inherited, childhood-onset neurodegenerative disease most-commonly caused by a ~1 kb CLN3 mutation. The resulting loss of battenin activity leads to deposition of mitochondrial ATP synthase, subunit c and a specific loss of CNS neurons. We previously generated Cln3Δex7/8 knock-in mice, which replicate the common JNCL mutation, express mutant battenin and display JNCL-like pathology. Results To elucidate the consequences of the common JNCL mutation in neuronal cells, we used P4 knock-in mouse cerebella to establish conditionally immortalized CbCln3 wild-type, heterozygous, and homozygous neuronal precursor cell lines, which can be differentiated into MAP-2 and NeuN-positive, neuron-like cells. Homozygous CbCln3Δex7/8 precursor cells express low levels of mutant battenin and, when aged at confluency, accumulate ATPase subunit c. Recessive phenotypes are also observed at sub-confluent growth; cathepsin D transport and processing are altered, although enzyme activity is not significantly affected, lysosomal size and distribution are altered, and endocytosis is reduced. In addition, mitochondria are abnormally elongated, cellular ATP levels are decreased, and survival following oxidative stress is reduced. Conclusions These findings reveal that battenin is required for intracellular membrane trafficking and mitochondrial function. Moreover, these deficiencies are likely to be early events in the JNCL disease process and may particularly impact neuronal survival. PMID:15588329

  6. Bezafibrate improves mitochondrial function in the CNS of a mouse model of mitochondrial encephalopathy

    PubMed Central

    Noe, Natalie; Dillon, Lloye; Lellek, Veronika; Diaz, Francisca; Hida, Aline; Moraes, Carlos T.; Wenz, Tina

    2013-01-01

    Mitochondrial dysfunction frequently affects the central nervous system. Here, we investigated the effect of bezafibrate treatment on neuronal mitochondrial function and its impact on the progression of a mitochondrial encephalopathy. We used a murine model with a forebrain-specific cytochrome c oxidase deficiency caused by conditional deletion of the COX10 gene. In this mouse model, bezafibrate-administration improved the phenotype of the mice associated with an increase in mitochondrial proteins and mitochondrial ATP generating capacity. Bezafibrate-treatment also attenuated astrogliosis and decreased the level of inflammatory markers in the affected tissues. Overall, bezafibrate had a neuroprotective effect in this mouse model of mitochondrial encephalopathy. These findings imply that bezafibrate might be a promising therapeutic agent for the treatment of neurodegenerative disease associated with mitochondrial dysfunction. PMID:23261681

  7. Impaired cerebral mitochondrial oxidative phosphorylation function in a rat model of ventricular fibrillation and cardiopulmonary resuscitation.

    PubMed

    Jiang, Jun; Fang, Xiangshao; Fu, Yue; Xu, Wen; Jiang, Longyuan; Huang, Zitong

    2014-01-01

    Postcardiac arrest brain injury significantly contributes to mortality and morbidity in patients suffering from cardiac arrest (CA). Evidence that shows that mitochondrial dysfunction appears to be a key factor in tissue damage after ischemia/reperfusion is accumulating. However, limited data are available regarding the cerebral mitochondrial dysfunction during CA and cardiopulmonary resuscitation (CPR) and its relationship to the alterations of high-energy phosphate. Here, we sought to identify alterations of mitochondrial morphology and oxidative phosphorylation function as well as high-energy phosphates during CA and CPR in a rat model of ventricular fibrillation (VF). We found that impairment of mitochondrial respiration and partial depletion of adenosine triphosphate (ATP) and phosphocreatine (PCr) developed in the cerebral cortex and hippocampus following a prolonged cardiac arrest. Optimal CPR might ameliorate the deranged phosphorus metabolism and preserve mitochondrial function. No obvious ultrastructural abnormalities of mitochondria have been found during CA. We conclude that CA causes cerebral mitochondrial dysfunction along with decay of high-energy phosphates, which would be mitigated with CPR. This study may broaden our understanding of the pathogenic processes underlying global cerebral ischemic injury and provide a potential therapeutic strategy that aimed at preserving cerebral mitochondrial function during CA.

  8. Mitochondrial death functions of p53

    PubMed Central

    Marchenko, N D; Moll, U M

    2014-01-01

    The p53 tumor suppressor network plays a fundamental surveillance role in both homeostatic and adaptive cell biology. p53 is one of the most important barriers against malignant derailment of normal cells, orchestrating growth arrest, senescence, or cell death by linking many different pathways in response to genotoxic and non-genotoxic insults. p53 is the key broadband sensor for numerous cellular stresses such as DNA damage, hypoxia, oxidative stress, oncogenic signaling, and nucleolar stress. The crucial tumor suppressive and tissue homeostasis activity of p53 is its ability to activate cell death via multiple different pathways. A well-characterized biochemical function of p53 in the regulation of apoptosis is its role as a potent transcriptional regulator. p53 activates a panel of proapoptotic genes from the mitochondrial apoptotic and death receptor programs while repressing antiapoptotic Bcl2 family genes. In addition, over the last 10 y a growing body of evidence has also defined direct extranuclear non-transcriptional p53 activities within mitochondria-mediated cell death pathways that are based on p53 protein accumulation in cytosolic and mitochondrial compartments and protein-protein interactions. To date, transcription-independent p53-mediated cell death regulation has been described for apoptosis, necrosis, and autophagy. Because mitochondrial dysregulation is central to the development of a number of pathologic processes such as cancer and neurodegenerative and age-related diseases, understanding the direct roles of p53 protein in mitochondria has high translational impact and could facilitate the development of novel drug targets to combat these diseases. In this review we will mainly focus on mechanisms of p53-mediated transcription-independent cell death pathways at mitochondria. PMID:27308326

  9. Swimming attenuates D-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    PubMed

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-03-16

    MicroRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. In order to explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with (D-galactose) D-gal-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of D-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the up-regulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, rescue the up-regulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of Drp1 in D-gal-induced aging model rats. In contrast, miR-34a inhibitor in cell model not only attenuated D-gal-induced autophagy impairment, but also decreased the expression of Drp1 and Mfn2. Therefore, swimming training can attenuate the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics during D-gal-induced aging process in rat hippocampal tissue, which may be one of the mechanisms for delaying brain aging through swimming training, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD.

  10. Proteasome Modulates Mitochondrial Function During Cellular Senescence

    PubMed Central

    Torres, Claudio A.; Perez, Viviana I.

    2009-01-01

    Proteasome plays fundamental roles in the removal of oxidized proteins and in the normal degradation of short-lived proteins. Previously we have provided evidences that the impairment in proteasome observed during the replicative senescence of human fibroblasts has significant effects on MAPK signaling, proliferation, life span, senescent phenotype and protein oxidative status. These studies have demonstrated that proteasome inhibition and replicative senescence caused accumulation of intracellular protein carbonyl content. In this study, we have investigated the mechanisms by which proteasome dysfunction modulates protein oxidation during cellular senescence. The results indicate that proteasome inhibition during replicative senescence have significant effects on the intra and extracellular ROS production in vitro. The data also show that ROS impaired the proteasome function, which is partially reversible by antioxidants. Increases in ROS after proteasome inhibition correlated with a significant negative effect on the activity of most mitochondrial electron transporters. We propose that failures in proteasome during cellular senescence lead to mitochondrial dysfunction, ROS production and oxidative stress. Furthermore, it is likely that changes in proteasome dynamics could generate a pro-oxidative condition at the immediate extracellular microenvironment that could cause tissue injury during aging, in vivo. PMID:17976388

  11. Upstream Pathways Controlling Mitochondrial Function in Major Psychosis

    PubMed Central

    Machado, Alencar Kolinski; Pan, Alexander Yongshuai; da Silva, Tatiane Morgana; Duong, Angela

    2016-01-01

    Mitochondrial dysfunction is commonly observed in bipolar disorder (BD) and schizophrenia (SCZ) and may be a central feature of psychosis. These illnesses are complex and heterogeneous, which is reflected by the complexity of the processes regulating mitochondrial function. Mitochondria are typically associated with energy production; however, dysfunction of mitochondria affects not only energy production but also vital cellular processes, including the formation of reactive oxygen species, cell cycle and survival, intracellular Ca2+ homeostasis, and neurotransmission. In this review, we characterize the upstream components controlling mitochondrial function, including 1) mutations in nuclear and mitochondrial DNA, 2) mitochondrial dynamics, and 3) intracellular Ca2+ homeostasis. Characterizing and understanding the upstream factors that regulate mitochondrial function is essential to understand progression of these illnesses and develop biomarkers and therapeutics. PMID:27310240

  12. Complex I function in mitochondrial supercomplexes.

    PubMed

    Lenaz, Giorgio; Tioli, Gaia; Falasca, Anna Ida; Genova, Maria Luisa

    2016-07-01

    This review discusses the functional properties of mitochondrial Complex I originating from its presence in an assembled form as a supercomplex comprising Complex III and Complex IV in stoichiometric ratios. In particular several lines of evidence are presented favouring the concept that electron transfer from Complex I to Complex III is operated by channelling of electrons through Coenzyme Q molecules bound to the supercomplex, in contrast with the hypothesis that the transfer of reducing equivalents from Complex I to Complex III occurs via random diffusion of the Coenzyme Q molecules in the lipid bilayer. Furthermore, another property provided by the supercomplex assembly is the control of generation of reactive oxygen species by Complex I. This article is part of a Special Issue entitled Respiratory Complex I, edited by Volker Zickermann and Ulrich Brandt.

  13. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells

    SciTech Connect

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Tikka, Saara

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ{sub m}) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology. -- Highlights: ► CADASIL is an inherited disease of cerebral vascular cells. ► Mitochondrial dysfunction has been implicated in the pathogenesis of CADASIL. ► Lower proliferation rates in CADASIL VSMC. ► Increased irregular and abnormal mitochondria and lower mitochondrial membrane potential in CADASIL VSMCs. ► Reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs.

  14. Genetic ablation of calcium-independent phospholipase A2gamma leads to alterations in mitochondrial lipid metabolism and function resulting in a deficient mitochondrial bioenergetic phenotype.

    PubMed

    Mancuso, David J; Sims, Harold F; Han, Xianlin; Jenkins, Christopher M; Guan, Shao Ping; Yang, Kui; Moon, Sung Ho; Pietka, Terri; Abumrad, Nada A; Schlesinger, Paul H; Gross, Richard W

    2007-11-30

    Previously, we identified a novel calcium-independent phospholipase, designated calcium-independent phospholipase A(2) gamma (iPLA(2)gamma), which possesses dual mitochondrial and peroxisomal subcellular localization signals. To identify the roles of iPLA(2)gamma in cellular bioenergetics, we generated mice null for the iPLA(2)gamma gene by eliminating the active site of the enzyme through homologous recombination. Mice null for iPLA(2)gamma display multiple bioenergetic dysfunctional phenotypes, including 1) growth retardation, 2) cold intolerance, 3) reduced exercise endurance, 4) greatly increased mortality from cardiac stress after transverse aortic constriction, 5) abnormal mitochondrial function with a 65% decrease in ascorbate-induced Complex IV-mediated oxygen consumption, and 6) a reduction in myocardial cardiolipin content accompanied by an altered cardiolipin molecular species composition. We conclude that iPLA(2)gamma is essential for maintaining efficient bioenergetic mitochondrial function through tailoring mitochondrial membrane lipid metabolism and composition.

  15. Kif5 regulates mitochondrial movement, morphology, function and neuronal survival.

    PubMed

    Iworima, Diepiriye G; Pasqualotto, Bryce A; Rintoul, Gordon L

    2016-04-01

    Due to the unique architecture of neurons, trafficking of mitochondria throughout processes to regions of high energetic demand is critical to sustain neuronal health. It has been suggested that compromised mitochondrial trafficking may play a role in neurodegenerative diseases. We evaluated the consequences of disrupted kif5c-mediated mitochondrial trafficking on mitochondrial form and function in primary rat cortical neurons. Morphological changes in mitochondria appeared to be due to remodelling, a phenomenon distinct from mitochondrial fission, which resulted in punctate-shaped mitochondria. We also demonstrated that neurons displaying punctate mitochondria exhibited relatively decreased ROS and increased cellular ATP levels using ROS-sensitive GFP and ATP FRET probes, respectively. Somewhat unexpectedly, neurons overexpressing the dominant negative form of kif5c exhibited enhanced survival following excitotoxicity, suggesting that the impairment of mitochondrial trafficking conferred some form of neuroprotection. However, when neurons were exposed to H2O2, disruption of kif5c exacerbated cell death indicating that the effect on cell viability was dependent on the mode of toxicity. Our results suggest a novel role of kif5c. In addition to mediating mitochondrial transport, kif5c plays a role in the mechanism of regulating mitochondrial morphology. Our results also suggest that kif5c mediated mitochondrial dynamics may play an important role in regulating mitochondrial function and in turn cellular health. Moreover, our studies demonstrate an interesting interplay between the regulation of mitochondrial motility and morphology.

  16. Blood cells from Friedreich ataxia patients harbor frataxin deficiency without a loss of mitochondrial function

    PubMed Central

    Selak, Mary A.; Lyver, Elise; Micklow, Elizabeth; Deutsch, Eric C.; Önder, Özlem; Selamoglu, Nur; Yager, Claire; Knight, Simon; Carroll, Martin; Daldal, Fevzi; Dancis, Andrew; Lynch, David R.; Sarry, Jean-Emmanuel

    2015-01-01

    Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder caused by GAA triplet expansions or point mutations in the FXN gene on chromosome 9q13. The gene product called frataxin, a mitochondrial protein that is severely reduced in FRDA patients, leads to mitochondrial iron accumulation, FeS cluster deficiency and oxidative damage. The tissue specificity of this mitochondrial disease is complex and poorly understood. While frataxin is ubiquitously expressed, the cellular phenotype is most severe in neurons and cardiomyocytes. Here, we conducted comprehensive proteomic, metabolic and functional studies to determine whether subclinical abnormalities exist in mitochondria of blood cells from FRDA patients. Frataxin protein levels were significantly decreased in platelets and peripheral blood mononuclear cells from FRDA patients. Furthermore, the most significant differences associated with frataxin deficiency in FRDA blood cell mitochondria were the decrease of two mitochondrial heat shock proteins. We did not observe profound changes in frataxin-targeted mitochondrial proteins or mitochondrial functions or an increase of apoptosis in peripheral blood cells, suggesting that functional defects in these mitochondria are not readily apparent under resting conditions in these cells. PMID:21147271

  17. In vivo imaging of mitochondrial function in methamphetamine-treated rats.

    PubMed

    Shiba, Takeshi; Yamato, Mayumi; Kudo, Wataru; Watanabe, Toshiaki; Utsumi, Hideo; Yamada, Ken-ichi

    2011-08-01

    Abuse of the powerfully addictive psychostimulant, methamphetamine, occurs worldwide. Recent studies have suggested that methamphetamine-induced dopaminergic neurotoxicity is related to oxidative stress. In response to nerve activation, the mitochondrial respiratory chain is rapidly activated. The enhancement of mitochondrial respiratory chain activation may induce oxidative stress in the brain. However, there is little experimental evidence regarding the mitochondrial function after methamphetamine administration in vivo. Here, we evaluated whether a single administration of methamphetamine induces ATP consumption and overactivation of mitochondria. We measured mitochondrial function in two different ways: by monitoring oxygen partial pressure using an oxygen-selective electrode, and by imaging of redox reactions using a nitroxyl radical (i.e., nitroxide) coupled with Overhauser-enhanced magnetic resonance imaging (OMRI). A single administration of methamphetamine to Wistar rats induced dopaminergic nerve activation, ATP consumption and an increase in mitochondrial respiratory chain function in both the striatum and cortex. Furthermore, antioxidant TEMPOL prevented the increase in mitochondrial oxidative damage and methamphetamine-induced sensitization. These findings suggest that energy-supplying reactions after dopaminergic nerve activation are associated with oxidative stress in both the striatum and cortex, leading to abnormal behavior.

  18. Caveolin-1 controls mitochondrial function through regulation of m-AAA mitochondrial protease

    PubMed Central

    Volonte, Daniela; Liu, Zhongmin; Shiva, Sruti; Galbiati, Ferruccio

    2016-01-01

    Mitochondrial proteases ensure mitochondrial integrity and function after oxidative stress by providing mitochondrial protein quality control. However, the molecular mechanisms that regulate this basic biological function in eukaryotic cells remain largely unknown. Caveolin-1 is a scaffolding protein involved in signal transduction. We find that AFG3L2, a m-AAA type of mitochondrial protease, is a novel caveolin-1-interacting protein in vitro. We show that oxidative stress promotes the translocation of both caveolin-1 and AFG3L2 to mitochondria, enhances the interaction of caveolin-1 with AFG3L2 in mitochondria and stimulates mitochondrial protease activity in wild-type fibroblasts. Localization of AFG3L2 to mitochondria after oxidative stress is inhibited in fibroblasts lacking caveolin-1, which results in impaired mitochondrial protein quality control, an oxidative phosphorylation to aerobic glycolysis switch and reduced ATP production. Mechanistically, we demonstrate that a lack of caveolin-1 does not alter either mitochondrial number or morphology but leads to the cytoplasmic and proteasome-dependent degradation of complexes I, III, IV and V upon oxidant stimulation. Restoration of mitochondrial respiratory chain complexes in caveolin-1 null fibroblasts reverts the enhanced glycolysis observed in these cells. Expression of a mutant form of AFG3L2, which has reduced affinity for caveolin-1, fails to localize to mitochondria and promotes degradation of complex IV after oxidative stress. Thus, caveolin-1 maintains mitochondrial integrity and function when cells are challenged with free radicals by promoting the mitochondrial localization of m-AAA protease and its quality control functions. PMID:27705926

  19. Distribution of Diseases Causing Liver Function Test Abnormality in Children and Natural Recovery Time of the Abnormal Liver Function

    PubMed Central

    2016-01-01

    Although liver function test abnormality is frequently noted in children, there is no report about the distribution of the etiology and natural recovery time of the abnormal liver function. From March 2005 to February 2014, clinical information was retrospectively collected from 559 children who had abnormal liver function and were hospitalized or visited the outpatient clinic at the Jeju National University Hospital. The etiology of abnormal liver function was classified into groups and the natural recovery time of abnormal liver function was analyzed. The etiological groups of 559 patients included ‘nonspecific hepatitis’ in 42 (7.5%), ‘infection’ in 323 (57.8%), ‘rheumatologic and autoimmune’ in 66 (11.8%), ‘nonalcoholic fatty liver disease’ in 57 (10.2%), ‘anatomic’ in 12 (2.1%), ‘toxic’ in 13 (2.1%), ‘metabolic’ in 8 (1.4%), ‘hematologic’ in 7 (1.3%), ‘hemodynamic’ in 4 (0.7%), and ‘others’ in 27 (4.8%). Among the ‘infection’ group (57.8%), the ‘viral infection in the respiratory tract’ subgroup, which had 111 patients (19.8%), was the most common. The natural recovery time of the abnormal liver function was 27 days (median) in ‘nonspecific hepatitis’, 13 days (median) in ‘viral respiratory tract disease’, 16 days (median) in ‘viral gastroenteritis’, 42 days (median) in ‘viral febrile illness”, and 7 days (median) in “Kawasaki disease”. The information on the natural recovery time of abnormal liver function may help the physician to perform good clinical consultation for patients and their parents. PMID:27709857

  20. Abnormal Functional Connectivity in Autism Spectrum Disorders during Face Processing

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Sterling, Lindsey; Stegbauer, Keith C.; Mahurin, Roderick; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2008-01-01

    Abnormalities in the interactions between functionally linked brain regions have been suggested to be associated with the clinical impairments observed in autism spectrum disorders (ASD). We investigated functional connectivity within the limbic system during face identification; a primary component of social cognition, in 19 high-functioning…

  1. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function

    PubMed Central

    Zhang, Yong; Zhao, Zhiyun; Ke, Bilun; Wan, Lin; Wang, Hui; Ye, Jianping

    2016-01-01

    It is generally accepted that ATP regulates mitochondrial function through the AMPK signaling pathway. However, the AMPK-independent pathway remains largely unknown. In this study, we investigated ATP surplus in the negative regulation of mitochondrial function with a focus on pyruvate dehydrogenase (PDH) phosphorylation and protein acetylation. PDH phosphorylation was induced by a high fat diet in the liver of obese mice, which was associated with ATP elevation. In 1c1c7 hepatoma cells, the phosphorylation was induced by palmitate treatment through induction of ATP production. The phosphorylation was associated with a reduction in mitochondria oxygen consumption after 4 h treatment. The palmitate effect was blocked by etomoxir, which inhibited ATP production through suppression of fatty acid β-oxidation. The PDH phosphorylation was induced by incubation of mitochondrial lysate with ATP in vitro without altering the expression of PDH kinase 2 (PDK2) and 4 (PDK4). In addition, acetylation of multiple mitochondrial proteins was induced by ATP in the same conditions. Acetyl-CoA exhibited a similar activity to ATP in induction of the phosphorylation and acetylation. These data suggest that ATP elevation may inhibit mitochondrial function through induction of the phosphorylation and acetylation of mitochondrial proteins. The results suggest an AMPK-independent mechanism for ATP regulation of mitochondrial function. PMID:26930489

  2. Induction of Posttranslational Modifications of Mitochondrial Proteins by ATP Contributes to Negative Regulation of Mitochondrial Function.

    PubMed

    Zhang, Yong; Zhao, Zhiyun; Ke, Bilun; Wan, Lin; Wang, Hui; Ye, Jianping

    2016-01-01

    It is generally accepted that ATP regulates mitochondrial function through the AMPK signaling pathway. However, the AMPK-independent pathway remains largely unknown. In this study, we investigated ATP surplus in the negative regulation of mitochondrial function with a focus on pyruvate dehydrogenase (PDH) phosphorylation and protein acetylation. PDH phosphorylation was induced by a high fat diet in the liver of obese mice, which was associated with ATP elevation. In 1c1c7 hepatoma cells, the phosphorylation was induced by palmitate treatment through induction of ATP production. The phosphorylation was associated with a reduction in mitochondria oxygen consumption after 4 h treatment. The palmitate effect was blocked by etomoxir, which inhibited ATP production through suppression of fatty acid β-oxidation. The PDH phosphorylation was induced by incubation of mitochondrial lysate with ATP in vitro without altering the expression of PDH kinase 2 (PDK2) and 4 (PDK4). In addition, acetylation of multiple mitochondrial proteins was induced by ATP in the same conditions. Acetyl-CoA exhibited a similar activity to ATP in induction of the phosphorylation and acetylation. These data suggest that ATP elevation may inhibit mitochondrial function through induction of the phosphorylation and acetylation of mitochondrial proteins. The results suggest an AMPK-independent mechanism for ATP regulation of mitochondrial function.

  3. Mitochondrial genome acquisition restores respiratory function and tumorigenic potential of cancer cells without mitochondrial DNA.

    PubMed

    Tan, An S; Baty, James W; Dong, Lan-Feng; Bezawork-Geleta, Ayenachew; Endaya, Berwini; Goodwin, Jacob; Bajzikova, Martina; Kovarova, Jaromira; Peterka, Martin; Yan, Bing; Pesdar, Elham Alizadeh; Sobol, Margarita; Filimonenko, Anatolyj; Stuart, Shani; Vondrusova, Magdalena; Kluckova, Katarina; Sachaphibulkij, Karishma; Rohlena, Jakub; Hozak, Pavel; Truksa, Jaroslav; Eccles, David; Haupt, Larisa M; Griffiths, Lyn R; Neuzil, Jiri; Berridge, Michael V

    2015-01-06

    We report that tumor cells without mitochondrial DNA (mtDNA) show delayed tumor growth, and that tumor formation is associated with acquisition of mtDNA from host cells. This leads to partial recovery of mitochondrial function in cells derived from primary tumors grown from cells without mtDNA and a shorter lag in tumor growth. Cell lines from circulating tumor cells showed further recovery of mitochondrial respiration and an intermediate lag to tumor growth, while cells from lung metastases exhibited full restoration of respiratory function and no lag in tumor growth. Stepwise assembly of mitochondrial respiratory (super)complexes was correlated with acquisition of respiratory function. Our findings indicate horizontal transfer of mtDNA from host cells in the tumor microenvironment to tumor cells with compromised respiratory function to re-establish respiration and tumor-initiating efficacy. These results suggest pathophysiological processes for overcoming mtDNA damage and support the notion of high plasticity of malignant cells.

  4. Impaired Mitochondrial Function and Dynamics in the Pathogenesis of FXTAS.

    PubMed

    Alvarez-Mora, M I; Rodriguez-Revenga, L; Madrigal, I; Guitart-Mampel, M; Garrabou, G; Milà, M

    2016-10-22

    Mitochondrial involvement plays an important role in neurodegenerative diseases. At least one-third of adult carriers of a FMR1 premutation (55-200 CGG repeats) are at risk of presenting an adult-onset neurodegenerative disorder known as fragile X-associated tremor/ataxia syndrome (FXTAS). In an attempt to provide new insights into the mechanisms involved in the pathogenesis of FXTAS, we characterized mitochondrial function and dynamics by the assessment of oxidative respiratory chain function, mitochondrial content, oxidative stress levels, and mitochondrial network complexity. Regarding mitochondrial function, we found that mitochondrial respiratory capacity is compromised in skin fibroblasts whereas in blood, no differences were observed between the FXTAS and control groups. Furthermore, fibroblasts from FXTAS patients presented altered mitochondrial architecture, with more circular and less interconnected mitochondria being observed. Mitochondrial function and dynamics deregulation and characteristic of neurological disorders are present in FXTAS patients. These features might be limiting temporal and spatial bioenergetics cells supply and thus contributing to disease pathogenesis.

  5. Effect of glycolysis inhibition on mitochondrial function in rat brain.

    PubMed

    Cano-Ramírez, D; Torres-Vargas, C E; Guerrero-Castillo, S; Uribe-Carvajal, S; Hernández-Pando, R; Pedraza-Chaverri, J; Orozco-Ibarra, M

    2012-05-01

    Inhibition of the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase enhances the neural vulnerability to excitotoxicity both in vivo and in vitro through an unknown mechanism possibly related to mitochondrial failure. However, as the effect of glycolysis inhibition on mitochondrial function in brain has not been studied, the aim of the present work was to evaluate the effect of glycolysis inhibition induced by iodoacetate on mitochondrial function and oxidative stress in brain. Mitochondria were isolated from brain cortex, striatum and cerebellum of rats treated systemically with iodoacetate (25 mg/kg/day for 3 days). Oxygen consumption, ATP synthesis, transmembrane potential, reactive oxygen species production, lipoperoxidation, glutathione levels, and aconitase activity were assessed. Oxygen consumption and aconitase activity decreased in the brain cortex and striatum, showing that glycolysis inhibition did not trigger severe mitochondrial impairment, but a slight mitochondrial malfunction and oxidative stress were present.

  6. Protein Carbonylation and Adipocyte Mitochondrial Function*

    PubMed Central

    Curtis, Jessica M.; Hahn, Wendy S.; Stone, Matthew D.; Inda, Jacob J.; Droullard, David J.; Kuzmicic, Jovan P.; Donoghue, Margaret A.; Long, Eric K.; Armien, Anibal G.; Lavandero, Sergio; Arriaga, Edgar; Griffin, Timothy J.; Bernlohr, David A.

    2012-01-01

    Carbonylation is the covalent, non-reversible modification of the side chains of cysteine, histidine, and lysine residues by lipid peroxidation end products such as 4-hydroxy- and 4-oxononenal. In adipose tissue the effects of such modifications are associated with increased oxidative stress and metabolic dysregulation centered on mitochondrial energy metabolism. To address the role of protein carbonylation in the pathogenesis of mitochondrial dysfunction, quantitative proteomics was employed to identify specific targets of carbonylation in GSTA4-silenced or overexpressing 3T3-L1 adipocytes. GSTA4-silenced adipocytes displayed elevated carbonylation of several key mitochondrial proteins including the phosphate carrier protein, NADH dehydrogenase 1α subcomplexes 2 and 3, translocase of inner mitochondrial membrane 50, and valyl-tRNA synthetase. Elevated protein carbonylation is accompanied by diminished complex I activity, impaired respiration, increased superoxide production, and a reduction in membrane potential without changes in mitochondrial number, area, or density. Silencing of the phosphate carrier or NADH dehydrogenase 1α subcomplexes 2 or 3 in 3T3-L1 cells results in decreased basal and maximal respiration. These results suggest that protein carbonylation plays a major instigating role in cytokine-dependent mitochondrial dysfunction and may be linked to the development of insulin resistance in the adipocyte. PMID:22822087

  7. Analysis of functional domains of rat mitochondrial Fis1, the mitochondrial fission-stimulating protein

    SciTech Connect

    Jofuku, Akihiro; Ishihara, Naotada; Mihara, Katsuyoshi . E-mail: mihara@cell.med.kyushu-u.ac.jp

    2005-07-29

    In yeast, mitochondrial-fission is regulated by the cytosolic dynamin-like GTPase (Dnm1p) in conjunction with a peripheral protein, Mdv1p, and a C-tail-anchored outer membrane protein, Fis1p. In mammals, a dynamin-related protein (Drp1) and Fis1 are involved in the mitochondrial-fission reaction as Dnm1 and Fis1 orthologues, respectively. The involvement of other component(s), such as the Mdv1 homologue, and the mechanisms regulating mitochondrial-fission remain unclear. Here, we identified rat Fis1 (rFis1) and analyzed its structure-function relationship. Blue-native-polyacrylamide gel electrophoresis revealed that rFis1 formed a {approx}200-kDa complex in the outer mitochondrial membrane. Its expression in HeLa cells promoted extensive mitochondrial fragmentation, and gene knock-down by RNAi induced extension of the mitochondrial networks. Taking advantage of these properties, we analyzed functional domains of rFis1. These experiments revealed that the N-terminal and C-terminal segments are both essential for oligomeric rFis1 interaction, and the middle TPR-like domains regulate proper oligomer assembly. Any mutations that disturb the proper oligomeric assembly compromise mitochondrial division-stimulating activity of rFis1.

  8. Identification and functional prediction of mitochondrial complex III and IV mutations associated with glioblastoma

    PubMed Central

    Lloyd, Rhiannon E.; Keatley, Kathleen; Littlewood, D. Timothy J.; Meunier, Brigitte; Holt, William V.; An, Qian; Higgins, Samantha C.; Polyzoidis, Stavros; Stephenson, Katie F.; Ashkan, Keyoumars; Fillmore, Helen L.; Pilkington, Geoffrey J.; McGeehan, John E.

    2015-01-01

    Background Glioblastoma (GBM) is the most common primary brain tumor in adults, with a dismal prognosis. Treatment is hampered by GBM's unique biology, including differential cell response to therapy. Although several mitochondrial abnormalities have been identified, how mitochondrial DNA (mtDNA) mutations contribute to GBM biology and therapeutic response remains poorly described. We sought to determine the spectrum of functional complex III and IV mtDNA mutations in GBM. Methods The complete mitochondrial genomes of 10 GBM cell lines were obtained using next-generation sequencing and combined with another set obtained from 32 GBM tissues. Three-dimensional structural mapping and analysis of all the nonsynonymous mutations identified in complex III and IV proteins was then performed to investigate functional importance. Results Over 200 mutations were identified in the mtDNAs, including a significant proportion with very low mutational loads. Twenty-five were nonsynonymous mutations in complex III and IV, 9 of which were predicted to be functional and affect mitochondrial respiratory chain activity. Most of the functional candidates were GBM specific and not found in the general population, and 2 were present in the germ-line. Patient-specific maps reveal that 43% of tumors carry at least one functional candidate. Conclusions We reveal that the spectrum of GBM-associated mtDNA mutations is wider than previously thought, as well as novel structural-functional links between specific mtDNA mutations, abnormal mitochondria, and the biology of GBM. These results could provide tangible new prognostic indicators as well as targets with which to guide the development of patient-specific mitochondrially mediated chemotherapeutic approaches. PMID:25731774

  9. Early degenerative changes in transgenic mice expressing mutant huntingtin involve dendritic abnormalities but no impairment of mitochondrial energy production.

    PubMed

    Guidetti, P; Charles, V; Chen, E Y; Reddy, P H; Kordower, J H; Whetsell, W O; Schwarcz, R; Tagle, D A

    2001-06-01

    Mitochondrial defects, which occur in the brain of late-stage Huntington's disease (HD) patients, have been proposed to underlie the selective neuronal loss in the disease. To shed light on the possible role of mitochondrial energy impairment in the early phases of HD pathophysiology, we carried out Golgi impregnation and quantitative histochemical/biochemical studies in HD full-length cDNA transgenic mice that were symptomatic but had not developed to a stage in which neuronal loss could be documented. Golgi staining showed morphologic abnormalities that included a significant decrease in the number of dendritic spines and a thickening of proximal dendrites in striatal and cortical neurons. In contrast, measurements of mitochondrial electron transport Complexes I-IV did not reveal changes in the striatum and cerebral cortex in these mice. Examination of the neostriatum and cerebral cortex in human presymptomatic and pathological Grade 1 HD cases also showed no change in the activity of mitochondrial Complexes I-IV. These data suggest that dendritic alterations precede irreversible cell loss in HD, and that mitochondrial energy impairment is a consequence, rather than a cause, of early neuropathological changes.

  10. Targeting the mitochondrial genome via a dual function MITO-Porter: evaluation of mtDNA levels and mitochondrial function.

    PubMed

    Yamada, Yuma; Harashima, Hideyoshi

    2015-01-01

    Genetic mutations and defects in mitochondrial DNA (mtDNA) are associated with certain types of mitochondrial dysfunction, ultimately resulting in the occurrence of a variety of human diseases. For an effective mitochondrial gene therapy, it will be necessary to deliver therapeutic agents to the innermost mitochondrial space (the mitochondrial matrix), which contains the mtDNA pool. We recently developed a MITO-Porter, a liposome-based nano-carrier that delivers cargo to mitochondria via a membrane-fusion mechanism. Using propidium iodide, as a probe to detect mtDNA, we were able to confirm that the MITO-Porter delivered cargoes to mitochondrial matrices in living cells. More recently, we constructed a Dual Function (DF)-MITO-Porter, a liposome-based nanocarrier for mitochondrial delivery via a stepwise process. In this chapter, we describe the methodology used to deliver bioactive molecules to the mitochondrial matrix using the above DF-MITO-Porter, and the evaluation of mtDNA levels and mitochondrial activities in living cells.

  11. Abnormal megakaryocyte development and platelet function in Nbeal2(-/-) mice.

    PubMed

    Kahr, Walter H A; Lo, Richard W; Li, Ling; Pluthero, Fred G; Christensen, Hilary; Ni, Ran; Vaezzadeh, Nima; Hawkins, Cynthia E; Weyrich, Andrew S; Di Paola, Jorge; Landolt-Marticorena, Carolina; Gross, Peter L

    2013-11-07

    Gray platelet syndrome (GPS) is an inherited bleeding disorder associated with macrothrombocytopenia and α-granule-deficient platelets. GPS has been linked to loss of function mutations in NEABL2 (neurobeachin-like 2), and we describe here a murine GPS model, the Nbeal2(-/-) mouse. As in GPS, Nbeal2(-/-) mice exhibit splenomegaly, macrothrombocytopenia, and a deficiency of platelet α-granules and their cargo, including von Willebrand factor (VWF), thrombospondin-1, and platelet factor 4. The platelet α-granule membrane protein P-selectin is expressed at 48% of wild-type levels and externalized upon platelet activation. The presence of P-selectin and normal levels of VPS33B and VPS16B in Nbeal2(-/-) platelets suggests that NBEAL2 acts independently of VPS33B/VPS16B at a later stage of α-granule biogenesis. Impaired Nbeal2(-/-) platelet function was shown by flow cytometry, platelet aggregometry, bleeding assays, and intravital imaging of laser-induced arterial thrombus formation. Microscopic analysis detected marked abnormalities in Nbeal2(-/-) bone marrow megakaryocytes, which when cultured showed delayed maturation, decreased survival, decreased ploidy, and developmental abnormalities, including abnormal extracellular distribution of VWF. Our results confirm that α-granule secretion plays a significant role in platelet function, and they also indicate that abnormal α-granule formation in Nbeal2(-/-) mice has deleterious effects on megakaryocyte survival, development, and platelet production.

  12. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice

    PubMed Central

    Zabielski, Piotr; Lanza, Ian R.; Gopala, Srinivas; Holtz Heppelmann, Carrie J.; Bergen, H. Robert; Dasari, Surendra

    2016-01-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  13. Profiling of the Tox21 Chemical Collection for Mitochondrial Function: I. Compounds that Decrease Mitochondrial Membrane Potential

    EPA Science Inventory

    Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding how different environmental chemicals and drug-like molecules impact mitochondrial function rep...

  14. Chloroplast Structure and Function Is Altered in the NCS2 Maize Mitochondrial Mutant 1

    PubMed Central

    Roussell, Deborah L.; Thompson, Deborah L.; Pallardy, Steve G.; Miles, Donald; Newton, Kathleen J.

    1991-01-01

    The nonchromosomal stripe 2 (NCS2) mutant of maize (Zea mays L.) has a DNA rearrangement in the mitochondrial genome that segregates with the abnormal growth phenotype. Yet, the NCS2 characteristic phenotype includes striped sectors of pale-green tissue on the leaves. This suggests a chloroplast abnormality. To characterize the chloroplasts present in the mutant sectors, we examined the chloroplast structure by electron microscopy, chloroplast function by radiolabeled carbon dioxide fixation and fluorescence induction kinetics, and thylakoid protein composition by polyacrylamide gel electrophoresis. The data from these analyses suggest abnormal or prematurely arrested chloroplast development. Deleterious effects of the NCS2 mutant mitochondria upon the cells of the leaf include structural and functional alterations in the both the bundle sheath and mesophyll chloroplasts. ImagesFigure 1Figure 2Figure 3Figure 5Figure 6 PMID:16668157

  15. Functional brain networks and abnormal connectivity in the movement disorders

    PubMed Central

    Poston, Kathleen L.; Eidelberg, David

    2012-01-01

    Clinical manifestations of movement disorders, such as Parkinson’s disease (PD) and dystonia, arise from neurophysiological changes within the cortico-striato-pallidothalamocortical (CSPTC) and cerebello-thalamo-cortical (CbTC) circuits. Neuroimaging techniques that probe connectivity within these circuits can be used to understand how these disorders develop as well as identify potential targets for medical and surgical therapies. Indeed, network analysis of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has identified abnormal metabolic networks associated with the cardinal motor symptoms of PD, such as akinesia and tremor, as well as PD-related cognitive dysfunction. More recent task-based and resting state functional magnetic resonance imaging studies have reproduced several of the altered connectivity patterns identified in these abnormal PD-related networks. A similar network analysis approach in dystonia revealed abnormal disease related metabolic patterns in both manifesting and non-manifesting carriers of dystonia mutations. Other multimodal imaging approaches using magnetic resonance diffusion tensor imaging in patients with primary genetic dystonia suggest abnormal connectivity within the CbTC circuits mediate the clinical manifestations of this inherited neurodevelopmental disorder. Ongoing developments in functional imaging and future studies in early patients are likely to enhance our understanding of these movement disorders and guide novel targets for future therapies. PMID:22206967

  16. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy

    PubMed Central

    Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  17. Mitochondrial cereblon functions as a Lon-type protease

    PubMed Central

    Kataoka, Kosuke; Nakamura, China; Asahi, Toru; Sawamura, Naoya

    2016-01-01

    Lon protease plays a major role in the protein quality control system in mammalian cell mitochondria. It is present in the mitochondrial matrix, and degrades oxidized and misfolded proteins, thereby protecting the cell from various extracellular stresses, including oxidative stress. The intellectual disability-associated and thalidomide-binding protein cereblon (CRBN) contains a large, highly conserved Lon domain. However, whether CRBN has Lon protease-like function remains unknown. Here, we determined if CRBN has a protective function against oxidative stress, similar to Lon protease. We report that CRBN partially distributes in mitochondria, suggesting it has a mitochondrial function. To specify the mitochondrial role of CRBN, we mitochondrially expressed CRBN in human neuroblastoma SH-SY5Y cells. The resulting stable SH-SY5Y cell line showed no apparent effect on the mitochondrial functions of fusion, fission, and membrane potential. However, mitochondrially expressed CRBN exhibited protease activity, and was induced by oxidative stress. In addition, stably expressed cells exhibited suppressed neuronal cell death induced by hydrogen peroxide. These results suggest that CRBN functions specifically as a Lon-type protease in mitochondria. PMID:27417535

  18. Mitochondrial cereblon functions as a Lon-type protease.

    PubMed

    Kataoka, Kosuke; Nakamura, China; Asahi, Toru; Sawamura, Naoya

    2016-07-15

    Lon protease plays a major role in the protein quality control system in mammalian cell mitochondria. It is present in the mitochondrial matrix, and degrades oxidized and misfolded proteins, thereby protecting the cell from various extracellular stresses, including oxidative stress. The intellectual disability-associated and thalidomide-binding protein cereblon (CRBN) contains a large, highly conserved Lon domain. However, whether CRBN has Lon protease-like function remains unknown. Here, we determined if CRBN has a protective function against oxidative stress, similar to Lon protease. We report that CRBN partially distributes in mitochondria, suggesting it has a mitochondrial function. To specify the mitochondrial role of CRBN, we mitochondrially expressed CRBN in human neuroblastoma SH-SY5Y cells. The resulting stable SH-SY5Y cell line showed no apparent effect on the mitochondrial functions of fusion, fission, and membrane potential. However, mitochondrially expressed CRBN exhibited protease activity, and was induced by oxidative stress. In addition, stably expressed cells exhibited suppressed neuronal cell death induced by hydrogen peroxide. These results suggest that CRBN functions specifically as a Lon-type protease in mitochondria.

  19. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.

  20. Experimental studies of mitochondrial function in CADASIL vascular smooth muscle cells.

    PubMed

    Viitanen, Matti; Sundström, Erik; Baumann, Marc; Poyhonen, Minna; Tikka, Saara; Behbahani, Homira

    2013-02-01

    Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL) is a familiar fatal progressive degenerative disorder characterized by cognitive decline, and recurrent stroke in young adults. Pathological features include a dramatic reduction of brain vascular smooth muscle cells and severe arteriopathy with the presence of granular osmophilic material in the arterial walls. Here we have investigated the cellular and mitochondrial function in vascular smooth muscle cell lines (VSMCs) established from CADASIL mutation carriers (R133C) and healthy controls. We found significantly lower proliferation rates in CADASIL VSMC as compared to VSMC from controls. Cultured CADASIL VSMCs were not more vulnerable than control cells to a number of toxic substances. Morphological studies showed reduced mitochondrial connectivity and increased number of mitochondria in CADASIL VSMCs. Transmission electron microscopy analysis demonstrated increased irregular and abnormal mitochondria in CADASIL VSMCs. Measurements of mitochondrial membrane potential (Δψ(m)) showed a lower percentage of fully functional mitochondria in CADASIL VSMCs. For a number of genes previously reported to be changed in CADASIL VSMCs, immunoblotting analysis demonstrated a significantly reduced SOD1 expression. These findings suggest that alteration of proliferation and mitochondrial function in CADASIL VSMCs might have an effect on vital cellular functions important for CADASIL pathology.

  1. Carnitine palmitoyl transferase deficiency with an atypical presentation and ultrastructural mitochondrial abnormalities.

    PubMed Central

    Carey, M P; Poulton, K; Hawkins, C; Murphy, R P

    1987-01-01

    A case of carnitine palmitoyl transferase deficiency presenting in a 72 year old woman with the clinical picture of ophthalmoplegia plus other muscle weakness is reported. Histological and ultrastructural examination showed the features of a mitochondrial myopathy. Images PMID:3655814

  2. Mitochondrial genome function and maternal inheritance.

    PubMed

    Allen, John F; de Paula, Wilson B M

    2013-10-01

    The persistence of mtDNA to encode a small subset of mitochondrial proteins reflects the selective advantage of co-location of key respiratory chain subunit genes with their gene products. The disadvantage of this co-location is exposure of mtDNA to mutagenic ROS (reactive oxygen species), which are by-products of aerobic respiration. The resulting 'vicious circle' of mitochondrial mutation has been proposed to underlie aging and its associated degenerative diseases. Recent evidence is consistent with the hypothesis that oocyte mitochondria escape the aging process by acting as quiescent genetic templates, transcriptionally and bioenergetically repressed. Transmission of unexpressed mtDNA in the female germline is considered as a reason for the existence of separate sexes, i.e. male and female. Maternal inheritance then circumvents incremental accumulation of age-related disease in each new generation.

  3. Thymidine Kinase 2 Deficiency-Induced Mitochondrial DNA Depletion Causes Abnormal Development of Adipose Tissues and Adipokine Levels in Mice

    PubMed Central

    Villarroya, Joan; Dorado, Beatriz; Vilà, Maya R.; Garcia-Arumí, Elena; Domingo, Pere; Giralt, Marta; Hirano, Michio; Villarroya, Francesc

    2011-01-01

    Mammal adipose tissues require mitochondrial activity for proper development and differentiation. The components of the mitochondrial respiratory chain/oxidative phosphorylation system (OXPHOS) are encoded by both mitochondrial and nuclear genomes. The maintenance of mitochondrial DNA (mtDNA) is a key element for a functional mitochondrial oxidative activity in mammalian cells. To ascertain the role of mtDNA levels in adipose tissue, we have analyzed the alterations in white (WAT) and brown (BAT) adipose tissues in thymidine kinase 2 (Tk2) H126N knockin mice, a model of TK2 deficiency-induced mtDNA depletion. We observed respectively severe and moderate mtDNA depletion in TK2-deficient BAT and WAT, showing both tissues moderate hypotrophy and reduced fat accumulation. Electron microscopy revealed altered mitochondrial morphology in brown but not in white adipocytes from TK2-deficient mice. Although significant reduction in mtDNA-encoded transcripts was observed both in WAT and BAT, protein levels from distinct OXPHOS complexes were significantly reduced only in TK2-deficient BAT. Accordingly, the activity of cytochrome c oxidase was significantly lowered only in BAT from TK2-deficient mice. The analysis of transcripts encoding up to fourteen components of specific adipose tissue functions revealed that, in both TK2-deficient WAT and BAT, there was a consistent reduction of thermogenesis related gene expression and a severe reduction in leptin mRNA. Reduced levels of resistin mRNA were found in BAT from TK2-deficient mice. Analysis of serum indicated a dramatic reduction in circulating levels of leptin and resistin. In summary, our present study establishes that mtDNA depletion leads to a moderate impairment in mitochondrial respiratory function, especially in BAT, causes substantial alterations in WAT and BAT development, and has a profound impact in the endocrine properties of adipose tissues. PMID:22216345

  4. Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue.

    PubMed

    Winter, Lilli; Wittig, Ilka; Peeva, Viktoriya; Eggers, Britta; Heidler, Juliana; Chevessier, Frederic; Kley, Rudolf A; Barkovits, Katalin; Strecker, Valentina; Berwanger, Carolin; Herrmann, Harald; Marcus, Katrin; Kornblum, Cornelia; Kunz, Wolfram S; Schröder, Rolf; Clemen, Christoph S

    2016-09-01

    Secondary mitochondrial dysfunction is a feature in a wide variety of human protein aggregate diseases caused by mutations in different proteins, both in the central nervous system and in striated muscle. The functional relationship between the expression of a mutated protein and mitochondrial dysfunction is largely unknown. In particular, the mechanism how this dysfunction drives the disease process is still elusive. To address this issue for protein aggregate myopathies, we performed a comprehensive, multi-level analysis of mitochondrial pathology in skeletal muscles of human patients with mutations in the intermediate filament protein desmin and in muscles of hetero- and homozygous knock-in mice carrying the R349P desmin mutation. We demonstrate that the expression of mutant desmin causes disruption of the extrasarcomeric desmin cytoskeleton and extensive mitochondrial abnormalities regarding subcellular distribution, number and shape. At the molecular level, we uncovered changes in the abundancy and assembly of the respiratory chain complexes and supercomplexes. In addition, we revealed a marked reduction of mtDNA- and nuclear DNA-encoded mitochondrial proteins in parallel with large-scale deletions in mtDNA and reduced mtDNA copy numbers. Hence, our data demonstrate that the expression of mutant desmin causes multi-level damage of mitochondria already in early stages of desminopathies.

  5. Acquired Mitochondrial Abnormalities, Including Epigenetic Inhibition of Superoxide Dismutase 2, in Pulmonary Hypertension and Cancer: Therapeutic Implications.

    PubMed

    Archer, Stephen L

    2016-01-01

    There is no cure for non-small-cell lung cancer (NSCLC) or pulmonary arterial hypertension (PAH). Therapies lack efficacy and/or are toxic, reflecting a failure to target disease abnormalities that are distinct from processes vital to normal cells. NSCLC and PAH share reversible mitochondrial-metabolic abnormalities which may offer selective therapeutic targets. The following mutually reinforcing, mitochondrial abnormalities favor proliferation, impair apoptosis, and are relatively restricted to PAH and cancer cells: (1) Epigenetic silencing of superoxide dismutase-2 (SOD2) by methylation of CpG islands creates a pseudohypoxic redox environment that causes normoxic activation of hypoxia inducible factor (HIF-1α). (2) HIF-1α increases expression of pyruvate dehydrogenase kinase (PDK), which impairs oxidative metabolism and promotes a glycolytic metabolic state. (3) Mitochondrial fragmentation, partially due to mitofusin-2 downregulation, promotes proliferation. This review focuses on the recent discovery that decreased expression of SOD2, a putative tumor-suppressor gene and the major source of H2O2, results from hypermethylation of CpG islands. In cancer and PAH hypermethylation of a site in the enhancer region of intron 2 inhibits SOD2 transcription. In normal PASMC, SOD2 siRNA decreases H2O2 and activates HIF-1α. In PAH, reduced SOD2 expression decreases H2O2, reduces the cytosol and thereby activates HIF-1α. This causes a glycolytic shift in metabolism and increases the proliferation/apoptosis ratio by downregulating Kv1.5 channels, increasing cytosolic calcium, and inhibiting caspases. The DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine, which restores SOD2 expression, corrects the proliferation/apoptosis imbalance in PAH and cancer cells. The specificity of PAH for lung vessels may relate to the selective upregulation of DNA methyltransferases that mediate CpG methylation in PASMC (DNA MT-1A and -3B). SOD2 augmentation inactivates HIF-1α in PAH

  6. The mitochondrial elongation factors MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics

    SciTech Connect

    Liu, Tong; Yu, Rong; Jin, Shao-Bo; Han, Liwei; Lendahl, Urban; Zhao, Jian; Nistér, Monica

    2013-11-01

    Mitochondria are dynamic organelles whose morphology is regulated by a complex balance of fission and fusion processes, and we still know relatively little about how mitochondrial dynamics is regulated. MIEF1 (also called MiD51) has recently been characterized as a key regulator of mitochondrial dynamics and in this report we explore the functions of its paralog MIEF2 (also called MiD49), to learn to what extent MIEF2 is functionally distinct from MIEF1. We show that MIEF1 and MIEF2 have many functions in common. Both are anchored in the mitochondrial outer membrane, recruit Drp1 from the cytoplasm to the mitochondrial surface and cause mitochondrial fusion, and MIEF2, like MIEF1, can interact with Drp1 and hFis1. MIEF1 and MIEF2, however, also differ in certain aspects. MIEF1 and MIEF2 are differentially expressed in human tissues during development. When overexpressed, MIEF2 exerts a stronger fusion-promoting effect than MIEF1, and in line with this, hFis1 and Mff can only partially revert the MIEF2-induced fusion phenotype, whereas MIEF1-induced fusion is reverted to a larger extent by hFis1 and Mff. MIEF2 forms high molecular weight oligomers, while MIEF1 is largely present as a dimer. Furthermore, MIEF1 and MIEF2 use distinct domains for oligomerization: in MIEF1, the region from amino acid residues 109–154 is required, whereas oligomerization of MIEF2 depends on amino acid residues 1 to 49, i.e. the N-terminal end. We also show that oligomerization of MIEF1 is not required for its mitochondrial localization and interaction with Drp1. In conclusion, our data suggest that the mitochondrial regulators MIEF1 and MIEF2 exert partially distinct functions in mitochondrial dynamics. - Highlights: • MIEF1 and MIEF2 recruit Drp1 to mitochondria and cause mitochondrial fusion. • MIEF2, like MIEF1, can interact with Drp1 and hFis1. • MIEF1 and MIEF2 are differentially expressed in human tissues during development. • MIEF2 exerts a stronger fusion

  7. Dynamics, Structure, and Function are Coupled in the Mitochondrial Matrix

    NASA Astrophysics Data System (ADS)

    Scalettar, Bethe A.; Abney, James R.; Hackenbrock, Charles R.

    1991-09-01

    The coupling between molecular diffusion and the structure and function of the rat liver mitochondrial matrix was explored using fluorescence anisotropy techniques and electron microscopy. The results confirm that matrix ultrastructure and the concentration of matrix protein are influenced by the respiratory state of mitochondria and the osmolarity of the external medium. At physiological osmolarity, a fluorescent metabolite-sized probe was found to diffuse slowly in the mitochondrial matrix but not to be completely immobile. In addition, significant differences in diffusion rates were found to exist between different mitochondrial respiratory states, with the slowest diffusion occurring in states with the highest matrix protein concentration. These data support the concept of a matrix structure in which diffusion is considerably hindered due to limited probe-accessible water and further suggest that volume-dependent regulation of matrix protein packing may modulate metabolite diffusion and, in turn, mitochondrial metabolism.

  8. Cardiac nuclear receptors: architects of mitochondrial structure and function.

    PubMed

    Vega, Rick B; Kelly, Daniel P

    2017-04-03

    The adult heart is uniquely designed and equipped to provide a continuous supply of energy in the form of ATP to support persistent contractile function. This high-capacity energy transduction system is the result of a remarkable surge in mitochondrial biogenesis and maturation during the fetal-to-adult transition in cardiac development. Substantial evidence indicates that nuclear receptor signaling is integral to dynamic changes in the cardiac mitochondrial phenotype in response to developmental cues, in response to diverse postnatal physiologic conditions, and in disease states such as heart failure. A subset of cardiac-enriched nuclear receptors serve to match mitochondrial fuel preferences and capacity for ATP production with changing energy demands of the heart. In this Review, we describe the role of specific nuclear receptors and their coregulators in the dynamic control of mitochondrial biogenesis and energy metabolism in the normal and diseased heart.

  9. Cause and Consequence: Mitochondrial Dysfunction Initiates and Propagates Neuronal Dysfunction, Neuronal Death and Behavioral Abnormalities in Age Associated Neurodegenerative Diseases

    PubMed Central

    Gibson, Gary E.; Starkov, Anatoly; Blass, John P.; Ratan, Rajiv R.; Beal, M. Flint

    2009-01-01

    SUMMARY Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sub lethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the α-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhance ROS production in Alzheimer’s Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington’s Disease (HD), a movement disorder with cognitive features distinct form AD, complex II + III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a cross linking enzymes that can modulate transcrption, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic

  10. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    PubMed

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction.

  11. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    PubMed

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.

  12. Evolution of metabolic disorder in rats fed high sucrose or high fat diet: Focus on redox state and mitochondrial function.

    PubMed

    Long, Zi; Zhang, Xuesi; Sun, Quangui; Liu, Ying; Liao, Nai; Wu, Hao; Wang, Xin; Hai, Chunxu

    2017-02-01

    Glucotoxicity and lipotoxicity are major hallmarks of metabolic disorder. High consumption of fat or carbohydrate rich food is a major risk of metabolic disorder. However, the evolution of high fat or high carbohydrate diet-induced metabolic disorder is not clear. In the study, we tried to find distinguished and common ways involved in the pathogenesis of insulin resistance induced by high fat (HF) and high sucrose (HS) diet. We found that HS diet induced mild glucose intolerance (2month), followed by a "temporary non-symptom phase" (3month), and then induced significant metabolic abnormality (4month). HF diet induced an early "responsive enhancement phase" (2month), and then gradually caused severe metabolic dysfunction (3-4month). After a mild induction of mitochondrial ROS generation (2month), HS diet resulted in a "temporary non-symptom phase" (3month), and then induced a more significant mitochondrial ROS production (4month). The impairment of mitochondrial function induced by HS diet was progressive (2-4month). HF diet induced gradual mitochondrial ROS generation and hyperpolarization. HF diet induced an early "responsive enhancement" of mitochondrial function (2month), and then gradually resulted in severe decrease of mitochondrial function (3-4month). Despite the patterns of HS and HF diet-induced insulin resistance were differential, final mitochondrial ROS generation combined with mitochondrial dysfunction may be the common pathway. These findings demonstrate a novel understanding of the mechanism of insulin resistance and highlight the pivotal role of mitochondrial ROS generation and mitochondrial dysfunction in the pathogenesis of metabolic disorder.

  13. Modulation of mitochondrial function and morphology by interaction of Omi/HtrA2 with the mitochondrial fusion factor OPA1

    SciTech Connect

    Kieper, Nicole; Holmstroem, Kira M.; Ciceri, Dalila; Fiesel, Fabienne C.; Wolburg, Hartwig; Ziviani, Elena; Whitworth, Alexander J.; Martins, L. Miguel; Kahle, Philipp J.; Krueger, Rejko

    2010-04-15

    Loss of Omi/HtrA2 function leads to nerve cell loss in mouse models and has been linked to neurodegeneration in Parkinson's and Huntington's disease. Omi/HtrA2 is a serine protease released as a pro-apoptotic factor from the mitochondrial intermembrane space into the cytosol. Under physiological conditions, Omi/HtrA2 is thought to be involved in protection against cellular stress, but the cytological and molecular mechanisms are not clear. Omi/HtrA2 deficiency caused an accumulation of reactive oxygen species and reduced mitochondrial membrane potential. In Omi/HtrA2 knockout mouse embryonic fibroblasts, as well as in Omi/HtrA2 silenced human HeLa cells and Drosophila S2R+ cells, we found elongated mitochondria by live cell imaging. Electron microscopy confirmed the mitochondrial morphology alterations and showed abnormal cristae structure. Examining the levels of proteins involved in mitochondrial fusion, we found a selective up-regulation of more soluble OPA1 protein. Complementation of knockout cells with wild-type Omi/HtrA2 but not with the protease mutant [S306A]Omi/HtrA2 reversed the mitochondrial elongation phenotype and OPA1 alterations. Finally, co-immunoprecipitation showed direct interaction of Omi/HtrA2 with endogenous OPA1. Thus, we show for the first time a direct effect of loss of Omi/HtrA2 on mitochondrial morphology and demonstrate a novel role of this mitochondrial serine protease in the modulation of OPA1. Our results underscore a critical role of impaired mitochondrial dynamics in neurodegenerative disorders.

  14. Morphological and functional abnormalities in mitochondria associated with synaptic degeneration in prion disease.

    PubMed

    Sisková, Zuzana; Mahad, Don Joseph; Pudney, Carianne; Campbell, Graham; Cadogan, Mark; Asuni, Ayodeji; O'Connor, Vincent; Perry, Victor Hugh

    2010-09-01

    Synaptic and dendritic pathology is a well-documented component of prion disease. In common with other neurodegenerative diseases that contain an element of protein misfolding, little is known about the underlying mechanisms of synaptic degeneration. In particular, in prion disease the relationship between synaptic malfunction, degeneration, and mitochondria has been neglected. We investigated a wide range of mitochondrial parameters, including changes in mitochondrial density, inner membrane ultrastructure, functional properties and nature of mitochondrial DNA from hippocampal tissue of mice with prion disease, which have ongoing synaptic pathology. Our results indicate that despite a lack of detectable changes in either mitochondrial density or expression of the mitochondrial proteins, mitochondrial function was impaired when compared with age-matched control animals. We observed changes in mitochondrial inner membrane morphology and a reduction in the cytochrome c oxidase activity relative to a sustained level of mitochondrial proteins such as porin and individual, functionally important subunits of complex II and complex IV. These data support the idea that mitochondrial dysfunction appears to occur due to inhibition or modification of respiratory complex rather than deletions of mitochondrial DNA. Indeed, these changes were seen in the stratum radiatum where synaptic pathology is readily detected, indicating that mitochondrial function is impaired and could potentially contribute to or even initiate the synaptic pathology in prion disease.

  15. Latent and Abnormal Functional Connectivity Circuits in Autism Spectrum Disorder

    PubMed Central

    Chen, Shuo; Xing, Yishi; Kang, Jian

    2017-01-01

    Autism spectrum disorder (ASD) is associated with disrupted brain networks. Neuroimaging techniques provide noninvasive methods of investigating abnormal connectivity patterns in ASD. In the present study, we compare functional connectivity networks in people with ASD with those in typical controls, using neuroimaging data from the Autism Brain Imaging Data Exchange (ABIDE) project. Specifically, we focus on the characteristics of intrinsic functional connectivity based on data collected by resting-state functional magnetic resonance imaging (rs-fMRI). Our aim was to identify disrupted brain connectivity patterns across all networks, instead of in individual edges, by using advanced statistical methods. Unlike many brain connectome studies, in which networks are prespecified before the edge connectivity in each network is compared between clinical groups, we detected the latent differentially expressed networks automatically. Our network-level analysis identified abnormal connectome networks that (i) included a high proportion of edges that were differentially expressed between people with ASD and typical controls; and (ii) showed highly-organized graph topology. These findings provide new insight into the study of the underlying neuropsychiatric mechanism of ASD. PMID:28377688

  16. Developmental plasticity of mitochondrial function in American alligators, Alligator mississippiensis

    PubMed Central

    Crossley, Janna; Elsey, Ruth M.; Dzialowski, Edward M.; Shiels, Holly A.; Crossley, Dane A.

    2016-01-01

    The effect of hypoxia on cellular metabolism is well documented in adult vertebrates, but information is entirely lacking for embryonic organisms. The effect of hypoxia on embryonic physiology is particularly interesting, as metabolic responses during development may have life-long consequences, due to developmental plasticity. To this end, we investigated the effects of chronic developmental hypoxia on cardiac mitochondrial function in embryonic and juvenile American alligators (Alligator mississippiensis). Alligator eggs were incubated in 21% or 10% oxygen from 20 to 90% of embryonic development. Embryos were either harvested at 90% development or allowed to hatch and then reared in 21% oxygen for 3 yr. Ventricular mitochondria were isolated from embryonic/juvenile alligator hearts. Mitochondrial respiration and enzymatic activities of electron transport chain complexes were measured with a microrespirometer and spectrophotometer, respectively. Developmental hypoxia induced growth restriction and increased relative heart mass, and this phenotype persisted into juvenile life. Embryonic mitochondrial function was not affected by developmental hypoxia, but at the juvenile life stage, animals from hypoxic incubations had lower levels of Leak respiration and higher respiratory control ratios, which is indicative of enhanced mitochondrial efficiency. Our results suggest developmental hypoxia can have life-long consequences for alligator morphology and metabolic function. Further investigations are necessary to reveal the adaptive significance of the enhanced mitochondrial efficiency in the hypoxic phenotype. PMID:27707718

  17. Dietary restriction, mitochondrial function and aging: from yeast to humans

    PubMed Central

    Ruetenik, Andrea; Barrientos, Antoni

    2015-01-01

    SUMMARY Dietary restriction (DR) attenuates many detrimental effects of aging and consequently promotes health and increases longevity across organisms. While over the last 15 years extensive research has been devoted towards understanding the biology of aging, the precise mechanistic aspects of DR are yet to be settled. Abundant experimental evidence indicates that the DR effect on stimulating health impinges several metabolic and stress-resistance pathways. Downstream effects of these pathways include a reduction in cellular damage induced by oxidative stress, enhanced efficiency of mitochondrial functions and maintenance of mitochondrial dynamics and quality control, thereby attenuating age-related declines in mitochondrial function. However, the literature also accumulates conflicting evidence regarding how DR ameliorates mitochondrial performance and whether that is enough to slow age-dependent cellular and organismal deterioration. Here, we will summarize the current knowledge about how and to which extent the influence of different DR regimes on mitochondrial biogenesis and function contribute to postpone the detrimental effects of aging on healthspan and lifespan. PMID:25979234

  18. Mitochondrial function in the brain links anxiety with social subordination.

    PubMed

    Hollis, Fiona; van der Kooij, Michael A; Zanoletti, Olivia; Lozano, Laura; Cantó, Carles; Sandi, Carmen

    2015-12-15

    Dominance hierarchies are integral aspects of social groups, yet whether personality traits may predispose individuals to a particular rank remains unclear. Here we show that trait anxiety directly influences social dominance in male outbred rats and identify an important mediating role for mitochondrial function in the nucleus accumbens. High-anxious animals that are prone to become subordinate during a social encounter with a low-anxious rat exhibit reduced mitochondrial complex I and II proteins and respiratory capacity as well as decreased ATP and increased ROS production in the nucleus accumbens. A causal link for these findings is indicated by pharmacological approaches. In a dyadic contest between anxiety-matched animals, microinfusion of specific mitochondrial complex I or II inhibitors into the nucleus accumbens reduced social rank, mimicking the low probability to become dominant observed in high-anxious animals. Conversely, intraaccumbal infusion of nicotinamide, an amide form of vitamin B3 known to enhance brain energy metabolism, prevented the development of a subordinate status in high-anxious individuals. We conclude that mitochondrial function in the nucleus accumbens is crucial for social hierarchy establishment and is critically involved in the low social competitiveness associated with high anxiety. Our findings highlight a key role for brain energy metabolism in social behavior and point to mitochondrial function in the nucleus accumbens as a potential marker and avenue of treatment for anxiety-related social disorders.

  19. Mitochondrial Abnormalities and Synaptic Loss Underlie Memory Deficits Seen in Mouse Models of Obesity and Alzheimer’s Disease

    PubMed Central

    Martins, Isaura V.A.; Rivers-Auty, Jack; Allan, Stuart M.; Lawrence, Catherine B.

    2016-01-01

    Obesity is associated with impaired memory in humans, and obesity induced by high-fat diets leads to cognitive deficits in rodents and in mouse models of Alzheimer’s disease (AD). However, it remains unclear how high-fat diets contribute to memory impairment. Therefore, we tested the effect of a high-fat diet on memory in male and female control non-transgenic (Non-Tg) and triple-transgenic AD (3xTgAD) mice and determined if a high-fat diet caused similar ultrastructural abnormalities to those observed in AD. Behavior was assessed in mice on control or high-fat diet at 4, 8, or 14 months of age and ultrastructural analysis at 8 months of age. A high-fat diet increased body weight, fat weight, and insulin levels with some differences in these metabolic responses observed between Non-Tg and 3xTgAD mice. In both sexes, high-fat feeding caused memory impairments in Non-Tg mice and accelerated memory deficits in 3xTgAD mice. In 3xTgAD mice, changes in hippocampal mitochondrial morphology were observed in capillaries and brain neuropil that were accompanied by a reduction in synapse number. A high-fat diet also caused mitochondria abnormalities and a reduction in synapse number in Non-Tg mice, but did not exacerbate the changes seen in 3xTgAD mice. Our data demonstrate that a high-fat diet affected memory in Non-Tg mice and produced similar impairments in mitochondrial morphology and synapse number comparable to those seen in AD mice, suggesting that the detrimental effects of a high-fat diet on memory might be due to changes in mitochondrial morphology leading to a reduction in synaptic number. PMID:27802235

  20. Altered Mitochondrial Respiration and Other Features of Mitochondrial Function in Parkin-Mutant Fibroblasts from Parkinson's Disease Patients

    PubMed Central

    Swart, Chrisna; van der Westhuizen, Francois; van Dyk, Hayley; van der Merwe, Lize; van der Merwe, Celia; Loos, Ben; Carr, Jonathan; Kinnear, Craig; Bardien, Soraya

    2016-01-01

    Mutations in the parkin gene are the most common cause of early-onset Parkinson's disease (PD). Parkin, an E3 ubiquitin ligase, is involved in respiratory chain function, mitophagy, and mitochondrial dynamics. Human cellular models with parkin null mutations are particularly valuable for investigating the mitochondrial functions of parkin. However, published results reporting on patient-derived parkin-mutant fibroblasts have been inconsistent. This study aimed to functionally compare parkin-mutant fibroblasts from PD patients with wild-type control fibroblasts using a variety of assays to gain a better understanding of the role of mitochondrial dysfunction in PD. To this end, dermal fibroblasts were obtained from three PD patients with homozygous whole exon deletions in parkin and three unaffected controls. Assays of mitochondrial respiration, mitochondrial network integrity, mitochondrial membrane potential, and cell growth were performed as informative markers of mitochondrial function. Surprisingly, it was found that mitochondrial respiratory rates were markedly higher in the parkin-mutant fibroblasts compared to control fibroblasts (p = 0.0093), while exhibiting more fragmented mitochondrial networks (p = 0.0304). Moreover, cell growth of the parkin-mutant fibroblasts was significantly higher than that of controls (p = 0.0001). These unanticipated findings are suggestive of a compensatory mechanism to preserve mitochondrial function and quality control in the absence of parkin in fibroblasts, which warrants further investigation. PMID:27034887

  1. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts

    PubMed Central

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R.; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I.; Opal, Puneet; Goldman, Robert D.

    2016-01-01

    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320

  2. Abnormal intermediate filament organization alters mitochondrial motility in giant axonal neuropathy fibroblasts.

    PubMed

    Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I; Opal, Puneet; Goldman, Robert D

    2016-02-15

    Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility.

  3. The yeast dynamin-like protein, Mgm1p, functions on the mitochondrial outer membrane to mediate mitochondrial inheritance.

    PubMed

    Shepard, K A; Yaffe, M P

    1999-02-22

    The mdm17 mutation causes temperature-dependent defects in mitochondrial inheritance, mitochondrial morphology, and the maintenance of mitochondrial DNA in the yeast Saccharomyces cerevisiae. Defects in mitochondrial transmission to daughter buds and changes in mitochondrial morphology were apparent within 30 min after shifting cells to 37 degrees C, while loss of the mitochondrial genome occurred after 4-24 h at the elevated temperature. The mdm17 lesion mapped to MGM1, a gene encoding a dynamin-like GTPase previously implicated in mitochondrial genome maintenance, and the cloned MGM1 gene complements all of the mdm17 mutant phenotypes. Cells with an mgm1-null mutation displayed aberrant mitochondrial inheritance and morphology. A version of mgm1 mutated in a conserved residue in the putative GTP-binding site was unable to complement any of the mutant defects. It also caused aberrant mitochondrial distribution and morphology when expressed at high levels in cells that also contained a wild-type copy of the gene. Mgm1p was localized to the mitochondrial outer membrane and fractionated as a component of a high molecular weight complex. These results indicate that Mgm1p is a mitochondrial inheritance and morphology component that functions on the mitochondrial surface.

  4. Relaxation of yeast mitochondrial functions after whole-genome duplication

    PubMed Central

    Jiang, Huifeng; Guan, Wenjun; Pinney, David; Wang, Wen; Gu, Zhenglong

    2008-01-01

    Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can survive without a functional mitochondrial genome. In this study, we show that the rate of evolution for the nuclear-encoded mitochondrial genes was greater in post-WGD species than pre-WGD species. Furthermore, codon usage bias was relaxed for these genes in post-WGD yeast species. The codon usage pattern and the distribution of a particular transcription regulatory element suggest that the change to an efficient aerobic fermentation lifestyle in this lineage might have emerged after WGD between the divergence of Kluyveromyces polysporus and Saccharomyces castellii from their common ancestor. This new energy production strategy could have led to the relaxation of mitochondrial function in the relevant yeast species. PMID:18669479

  5. Abnormal Default System Functioning in Depression: Implications for Emotion Regulation

    PubMed Central

    Messina, Irene; Bianco, Francesca; Cusinato, Maria; Calvo, Vincenzo; Sambin, Marco

    2016-01-01

    Depression is widely seen as the result of difficulties in regulating emotions. Based on neuroimaging studies on voluntary emotion regulation, neurobiological models have focused on the concept of cognitive control, considering emotion regulation as a shift toward involving controlled processes associated with activation of the prefrontal and parietal executive areas, instead of responding automatically to emotional stimuli. According to such models, the weaker executive area activation observed in depressed patients is attributable to a lack of cognitive control over negative emotions. Going beyond the concept of cognitive control, psychodynamic models describe the development of individuals’ capacity to regulate their emotional states in mother-infant interactions during childhood, through the construction of the representation of the self, others, and relationships. In this mini-review, we link these psychodynamic models with recent findings regarding the abnormal functioning of the default system in depression. Consistently with psychodynamic models, psychological functions associated with the default system include self-related processing, semantic processes, and implicit forms of emotion regulation. The abnormal activation of the default system observed in depression may explain the dysfunctional aspects of emotion regulation typical of the condition, such as an exaggerated negative self-focus and rumination on self-esteem issues. We also discuss the clinical implications of these findings with reference to the therapeutic relationship as a key tool for revisiting impaired or distorted representations of the self and relational objects. PMID:27375536

  6. Impaired complex IV activity in response to loss of LRPPRC function can be compensated by mitochondrial hyperfusion

    PubMed Central

    Rolland, Stéphane G.; Motori, Elisa; Memar, Nadin; Hench, Jürgen; Frank, Stephan; Winklhofer, Konstanze F.; Conradt, Barbara

    2013-01-01

    Mitochondrial morphology changes in response to various stimuli but the significance of this is unclear. In a screen for mutants with abnormal mitochondrial morphology, we identified MMA-1, the Caenorhabditis elegans homolog of the French Canadian Leigh Syndrome protein LRPPRC (leucine-rich pentatricopeptide repeat containing). We demonstrate that reducing mma-1 or LRPPRC function causes mitochondrial hyperfusion. Reducing mma-1/LRPPRC function also decreases the activity of complex IV of the electron transport chain, however without affecting cellular ATP levels. Preventing mitochondrial hyperfusion in mma-1 animals causes larval arrest and embryonic lethality. Furthermore, prolonged LRPPRC knock-down in mammalian cells leads to mitochondrial fragmentation and decreased levels of ATP. These findings indicate that in a mma-1/LRPPRC–deficient background, hyperfusion allows mitochondria to maintain their functions despite a reduction in complex IV activity. Our data reveal an evolutionary conserved mechanism that is triggered by reduced complex IV function and that induces mitochondrial hyperfusion to transiently compensate for a drop in the activity of the electron transport chain. PMID:23878239

  7. Impaired mitochondrial functions in organophosphate induced delayed neuropathy in rats.

    PubMed

    Masoud, Anwar; Kiran, Ravi; Sandhir, Rajat

    2009-12-01

    Acute exposure to organophosphates induces a delayed neurodegenerative condition known as organophosphate-induced delayed neuropathy (OPIDN). The mechanism of OPIDN has not been fully understood as it does not involve cholinergic crisis. The present study has been designed to evaluate the role of mitochondrial dysfunctions in the development of OPIDN. OPIDN was induced in rats by administering acute dose of monocrotophos (MCP, 20 mg/kg body weight, orally) or dichlorvos (DDVP, 200 mg/kg body weight, subcutaneously), 15-20 min after treatment with antidotes [atropine (20 mg/kg body weight) and 2-PAM (100 mg/kg body weight) intraperitoneally]. MDA levels were observed to be higher and thiol content was lower in mitochondria from brain regions of OP exposed animals. This was accompanied by decreased activities of the mitochondrial enzymes; NADH dehydrogenase, succinate dehydrogenase, and cytochrome oxidase. In addition, mitochondrial functions assessed by MTT reduction also confirmed mitochondrial dysfunctions following development of OPIDN. The spatial long-term memory evaluated using elevated plus-maze test was observed to be deficit in OPIDN. The results suggest impaired mitochondrial functions as a mechanism involved in the development of organophosphate induced delayed neuropathy.

  8. Mammalian adaptation to extrauterine environment: mitochondrial functional impairment caused by prematurity.

    PubMed Central

    Valcarce, C; Izquierdo, J M; Chamorro, M; Cuezva, J M

    1994-01-01

    In this paper we report that, compared with term rat neonates, both mitochondrial content and function are diminished in liver of preterm neonates (delivered 24 h before full term) compromising cellular energy provision in the postnatal period. In addition, there is a parallel reduction in the content of mRNAs encoding mitochondrial proteins in preterm rats. Also, efficient oxidative phosphorylation is not attained in these pups until 3 h after birth. Although isolated liver mitochondria from preterm neonates show a two-fold increase in F1-ATPase beta-subunit and cytochrome c oxidase activity 1 h after birth, the abnormal coupling efficiency between respiration and oxidative phosphorylation (ADP/O ratio) is due to maintenance of high H(+)-leakage values in the inner mitochondrial membrane. Postnatal reduction of the H+ leak occurs concomitantly with an increase in intra-mitochondrial adenine nucleotide concentration. Accumulation of adenine nucleotides in preterm and term liver mitochondria parallels the postnatal increase in total liver adenine nucleotides. Delayed postnatal induction of adenine biosynthesis most likely accounts for the lower adenine nucleotide pool in the liver of preterm neonates. The delayed postnatal accumulation of adenine nucleotides in mitochondria is thus responsible for the impairment in oxidative phosphorylation displayed by organelles of the preterm liver. Images Figure 1 PMID:7980455

  9. Functional proteomics of nonalcoholic steatohepatitis: Mitochondrial proteins as targets of S-adenosylmethionine

    PubMed Central

    Santamaría, Enrique; Avila, Matías A.; Latasa, M. Ujue; Rubio, Angel; Martín-Duce, Antonio; Lu, Shelly C.; Mato, José M.; Corrales, Fernando J.

    2003-01-01

    Recent work shows that S-adenosylmethionine (AdoMet) helps maintain normal liver function as chronic hepatic deficiency results in spontaneous development of steatohepatitis and hepatocellular carcinoma. The mechanisms by which these nontraditional functions of AdoMet occur are unknown. Here, we use knockout mice deficient in hepatic AdoMet synthesis (MAT1A−/−) to study the proteome of the liver during the development of steatohepatitis. One hundred and seventeen protein spots, differentially expressed during the development of steatohepatitis, were selected and identified by peptide mass fingerprinting. Among them, 12 proteins were found to be affected from birth, when MAT1A−/− expression is switched on in WT mouse liver, to the rise of histological lesions, which occurs at ≈8 months. Of the 12 proteins, 4 [prohibitin 1 (PHB1), cytochrome c oxidase I and II, and ATPase β-subunit] have known roles in mitochondrial function. We show that the alteration in expression of PHB1 correlates with a loss of mitochondrial function. Experiments in isolated rat hepatocytes indicate that AdoMet regulates PHB1 content, thus suggesting ways by which steatohepatitis may be induced. Importantly, we found the expression of these mitochondrial proteins was abnormal in ob/ob mice and obese patients who are at risk for nonalcoholic steatohepatitis. PMID:12631701

  10. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants.

    PubMed Central

    Johns, C; Lu, M; Lyznik, A; Mackenzie, S

    1992-01-01

    Cytoplasmic male sterility (CMS) in common bean is associated with the presence of a 3-kb unique mitochondrial sequence designated pvs. The pvs sequence encodes at least two open reading frames (297 and 720 bp in length) with portions derived from the chloroplast genome. Fertility restoration by the nuclear restorer gene Fr results in the loss of this transcriptionally active unique region. We examined the effect of CMS (pvs present) and fertility restoration by Fr (pvs absent) on the pattern of pollen development in bean. In the CMS line, pollen aborted in the tetrad stage late in microgametogenesis. Microspores maintained cytoplasmic connections throughout pollen development, indicating aberrant or incomplete cytokinesis. Pollen-specific events associated with pollen abortion and fertility restoration imply that a gametophytic factor or event may be involved in CMS. In situ hybridization experiments suggested that significant reduction or complete loss of the mitochondrial sterility-associated sequence occurred in fertile pollen of F2 populations segregating for fertility. These observations support a model of fertility restoration by the loss of a mitochondrial DNA sequence prior to or during microsporogenesis/gametogenesis. PMID:1498602

  11. Auditory abnormalities in autism: toward functional distinctions among findings.

    PubMed

    Kellerman, Gabriella R; Fan, Jin; Gorman, Jack M

    2005-09-01

    Recently, findings on a wide range of auditory abnormalities among individuals with autism have been reported. To date, functional distinctions among these varied findings are poorly established. Such distinctions should be of interest to clinicians and researchers alike given their potential therapeutic and experimental applications. This review suggests three general trends among these findings as a starting point for future analyses. First, studies of auditory perception of linguistic and social auditory stimuli among individuals with autism generally have found impaired perception versus normal controls. Such findings may correlate with impaired language and communication skills and social isolation observed among individuals with autism. Second, studies of auditory perception of pitch and music among individuals with autism generally have found enhanced perception versus normal controls. These findings may correlate with the restrictive and highly focused behaviors observed among individuals with autism. Third, findings on the auditory perception of non-linguistic, non-musical stimuli among autism patients resist any generalized conclusions. Ultimately, as some researchers have already suggested, the distinction between impaired global processing and enhanced local processing may prove useful in making sense of apparently discordant findings on auditory abnormalities among individuals with autism.

  12. Mitochondrial respiratory chain function in skeletal muscle of ALS patients.

    PubMed

    Echaniz-Laguna, Andoni; Zoll, Joffrey; Ribera, Florence; Tranchant, Christine; Warter, Jean-Marie; Lonsdorfer, Jean; Lampert, Eliane

    2002-11-01

    Evidence implicating mitochondrial dysfunction in the central nervous system of patients with sporadic amyotrophic lateral sclerosis (SALS) has recently been accumulating. In contrast, data on mitochondrial function in skeletal muscle in SALS are scarce and controversial. We investigated the in situ properties of muscle mitochondria in patients with early-stage SALS and sedentary (SED) controls using the skinned fiber technique to determine whether respiration of muscle tissue is altered in early-stage SALS in comparison with SED. Musculus vastus lateralis biopsies were obtained from 7 SED group members and 14 patients with early-stage SALS (mean disease duration, 9 months). Muscle fibers were permeabilized with saponine and then skinned and placed in an oxygraphic chamber to measure basal (V(0)) and maximal (V(max)) adenosine diphosphate-stimulated respiration rates and to assess mitochondrial regulation by adenosine diphosphate. Muscle oxidative capacity, evaluated with V(max), was identical in patients in the SALS and SED groups (V(0): SALS, 1.1 +/- 0.1; SED, 0.8 +/- 0.1, micromol 0(2). min(-1). gm(-1)dw and V(max): SALS, 3.1 +/- 0.3; SED, 2.5 +/- 0.3, micromol 0(2). min(-1). gm(-1)dw). This study shows an absence of large mitochondrial damage in skeletal muscle of patients with early-stage SALS, suggesting that mitochondrial dysfunction in the earlier stages of SALS is almost certainly not systemic.

  13. Mitochondrial targeting functional peptides as potential devices for the mitochondrial delivery of a DF-MITO-Porter.

    PubMed

    Kawamura, Eriko; Yamada, Yuma; Harashima, Hideyoshi

    2013-11-01

    To achieve mitochondrial therapy, we previously reported on the use of an octaarginine (R8) modified Dual Function (DF)-MITO-Porter for delivering molecules to mitochondria in living cells. In this study, using isolated mitochondria, homogenates and living cells, we evaluated the utility of mitochondrial targeting functional peptides as a ligand for delivering carriers. The S2 peptide modified carrier showed a high mitochondrial targeting activity in homogenates and living cells. In addition, the S2 peptide had a lower cell toxicity compared to R8 modified liposomes. The S2 peptide represents a potentially useful moiety for constructing an efficient and safe mitochondrial delivery system.

  14. Mitochondrial function controls intestinal epithelial stemness and proliferation

    PubMed Central

    Berger, Emanuel; Rath, Eva; Yuan, Detian; Waldschmitt, Nadine; Khaloian, Sevana; Allgäuer, Michael; Staszewski, Ori; Lobner, Elena M.; Schöttl, Theresa; Giesbertz, Pieter; Coleman, Olivia I.; Prinz, Marco; Weber, Achim; Gerhard, Markus; Klingenspor, Martin; Janssen, Klaus-Peter; Heikenwalder, Mathias; Haller, Dirk

    2016-01-01

    Control of intestinal epithelial stemness is crucial for tissue homeostasis. Disturbances in epithelial function are implicated in inflammatory and neoplastic diseases of the gastrointestinal tract. Here we report that mitochondrial function plays a critical role in maintaining intestinal stemness and homeostasis. Using intestinal epithelial cell (IEC)-specific mouse models, we show that loss of HSP60, a mitochondrial chaperone, activates the mitochondrial unfolded protein response (MT-UPR) and results in mitochondrial dysfunction. HSP60-deficient crypts display loss of stemness and cell proliferation, accompanied by epithelial release of WNT10A and RSPO1. Sporadic failure of Cre-mediated Hsp60 deletion gives rise to hyperproliferative crypt foci originating from OLFM4+ stem cells. These effects are independent of the MT-UPR-associated transcription factor CHOP. In conclusion, compensatory hyperproliferation of HSP60+ escaper stem cells suggests paracrine release of WNT-related factors from HSP60-deficient, functionally impaired IEC to be pivotal in the control of the proliferative capacity of the stem cell niche. PMID:27786175

  15. The impact of severe burns on skeletal muscle mitochondrial function.

    PubMed

    Porter, Craig; Herndon, David N; Sidossis, Labros S; Børsheim, Elisabet

    2013-09-01

    Severe burns induce a pathophysiological response that affects almost every physiological system within the body. Inflammation, hypermetabolism, muscle wasting, and insulin resistance are all hallmarks of the pathophysiological response to severe burns, with perturbations in metabolism known to persist for several years post injury. Skeletal muscle is the principal depot of lean tissue within the body and as the primary site of peripheral glucose disposal, plays an important role in metabolic regulation. Following a large burn, skeletal muscle functions as and endogenous amino acid store, providing substrates for more pressing functions, such as the synthesis of acute phase proteins and the deposition of new skin. Subsequently, burn patients become cachectic, which is associated with poor outcomes in terms of metabolic health and functional capacity. While a loss of skeletal muscle contractile proteins per se will no doubt negatively impact functional capacity, detriments in skeletal muscle quality, i.e. a loss in mitochondrial number and/or function may be quantitatively just as important. The goal of this review article is to summarise the current understanding of the impact of thermal trauma on skeletal muscle mitochondrial content and function, to offer direction for future research concerning skeletal muscle mitochondrial function in patients with severe burns, and to renew interest in the role of these organelles in metabolic dysfunction following severe burns.

  16. 5-HTR3 and 5-HTR4 located on the mitochondrial membrane and functionally regulated mitochondrial functions

    PubMed Central

    Wang, Qingyi; Zhang, Huiyuan; Xu, Hao; Guo, Dongqing; Shi, Hui; Li, Yuan; Zhang, Weiwei; Gu, Yuchun

    2016-01-01

    5-HT has been reported to possess significant effects on cardiac activities, but activation of 5-HTR on the cell membrane failed to illustrate the controversial cardiac reaction. Because 5-HT constantly comes across the cell membrane via 5-HT transporter (5-HTT) into the cytoplasm, whether 5-HTR is functional present on the cellular organelles is unknown. Here we show 5-HTR3 and 5-HTR4 were located in cardiac mitochondria, and regulated mitochondrial activities and cellular functions. Knock down 5-HTR3 and 5-HTR4 in neonatal cardiomyocytes resulted in significant increase of cell damage in response to hypoxia, and also led to alternation in heart beating. Activation of 5-HTR4 attenuated mitochondrial Ca2+ uptake under the both normoxic and hypoxic conditions, whereas 5-HTR3 augmented Ca2+ uptake only under hypoxia. 5-HTR3 and 5-HTR4 exerted the opposite effects on the mitochondrial respiration: 5-HTR3 increased RCR (respiration control ratio), but 5-HTR4 reduced RCR. Moreover, activation of 5-HTR3 and 5-HTR4 both significantly inhibited the opening of mPTP. Our results provided the first evidence that 5-HTR as a GPCR and an ion channel, functionally expressed in mitochondria and participated in the mitochondria function and regulation to maintain homeostasis of mitochondrial [Ca2+], ROS, and ATP generation efficiency in cardiomyocytes in response to stress and O2 tension. PMID:27874067

  17. Aging and male reproductive function: a mitochondrial perspective.

    PubMed

    Amaral, Sandra; Amaral, Alexandra; Ramalho-Santos, Joao

    2013-01-01

    Researching the effects of aging in the male reproductive system is not trivial. Not only are multiple changes at molecular, cellular and endocrine levels involved, but any findings must be discussed with variable individual characteristics, as well as with lifestyle and environmental factors. Age-related changes in the reproductive system include any aspect of reproductive function, from deregulation of the hypothalamic-pituitary-gonadal axis and of local auto/paracrine interactions, to effects on testicular stem cells, defects in testicular architecture and spermatogenesis, or sperm with decreased functionality. Several theories place mitochondria at the hub of cellular events related to aging, namely regarding the accumulation of oxidative damage to cells and tissues, a process in which these organelles play a prominent role, although alternative theories have also emerged. However, oxidative stress is not the only process involved in mitochondrial-related aging; mitochondrial energy metabolism, changes in mitochondrial DNA or in mitochondrial-dependent testosterone production are also important. Crucially, all these issues are likely interdependent. We will review evidence that suggests that mitochondria constitute a common link between aging and fertility loss.

  18. Sphingolipids and mitochondrial function, lessons learned from yeast

    PubMed Central

    Spincemaille, Pieter; Cammue, Bruno P.; Thevissen, Karin

    2014-01-01

    Mitochondrial dysfunction is a hallmark of several neurodegenerative diseases such as Alzheimer’s disease and Parkinson’s disease, but also of cancer, diabetes and rare diseases such as Wilson’s disease (WD) and Niemann Pick type C1 (NPC). Mitochondrial dysfunction underlying human pathologies has often been associated with an aberrant cellular sphingolipid metabolism. Sphingolipids (SLs) are important membrane constituents that also act as signaling molecules. The yeast Saccharomyces cerevisiae has been pivotal in unraveling mammalian SL metabolism, mainly due to the high degree of conservation of SL metabolic pathways. In this review we will first provide a brief overview of the major differences in SL metabolism between yeast and mammalian cells and the use of SL biosynthetic inhibitors to elucidate the contribution of specific parts of the SL metabolic pathway in response to for instance stress. Next, we will discuss recent findings in yeast SL research concerning a crucial signaling role for SLs in orchestrating mitochondrial function, and translate these findings to relevant disease settings such as WD and NPC. In summary, recent research shows that S. cerevisiae is an invaluable model to investigate SLs as signaling molecules in modulating mitochondrial function, but can also be used as a tool to further enhance our current knowledge on SLs and mitochondria in mammalian cells. PMID:28357246

  19. Diabetes and mitochondrial function: Role of hyperglycemia and oxidative stress

    SciTech Connect

    Rolo, Anabela P.; Palmeira, Carlos M. . E-mail: palmeira@ci.uc.pt

    2006-04-15

    Hyperglycemia resulting from uncontrolled glucose regulation is widely recognized as the causal link between diabetes and diabetic complications. Four major molecular mechanisms have been implicated in hyperglycemia-induced tissue damage: activation of protein kinase C (PKC) isoforms via de novo synthesis of the lipid second messenger diacylglycerol (DAG), increased hexosamine pathway flux, increased advanced glycation end product (AGE) formation, and increased polyol pathway flux. Hyperglycemia-induced overproduction of superoxide is the causal link between high glucose and the pathways responsible for hyperglycemic damage. In fact, diabetes is typically accompanied by increased production of free radicals and/or impaired antioxidant defense capabilities, indicating a central contribution for reactive oxygen species (ROS) in the onset, progression, and pathological consequences of diabetes. Besides oxidative stress, a growing body of evidence has demonstrated a link between various disturbances in mitochondrial functioning and type 2 diabetes. Mutations in mitochondrial DNA (mtDNA) and decreases in mtDNA copy number have been linked to the pathogenesis of type 2 diabetes. The study of the relationship of mtDNA to type 2 diabetes has revealed the influence of the mitochondria on nuclear-encoded glucose transporters, glucose-stimulated insulin secretion, and nuclear-encoded uncoupling proteins (UCPs) in {beta}-cell glucose toxicity. This review focuses on a range of mitochondrial factors important in the pathogenesis of diabetes. We review the published literature regarding the direct effects of hyperglycemia on mitochondrial function and suggest the possibility of regulation of mitochondrial function at a transcriptional level in response to hyperglycemia. The main goal of this review is to include a fresh consideration of pathways involved in hyperglycemia-induced diabetic complications.

  20. The oral administration of D-galactose induces abnormalities within the mitochondrial respiratory chain in the brain of rats.

    PubMed

    Budni, Josiane; Garcez, Michelle Lima; Mina, Francielle; Bellettini-Santos, Tatiani; da Silva, Sabrina; Luz, Aline Pereira da; Schiavo, Gustavo Luiz; Batista-Silva, Hemily; Scaini, Giselli; Streck, Emílio Luiz; Quevedo, João

    2017-02-24

    D-Galactose (D-gal) chronic administration via intraperitoneal and subcutaneous routes has been used as a model of aging and Alzheimer disease in rodents. Intraperitoneal and subcutaneous administration of D-gal causes memory impairments, a reduction in the neurogenesis of adult mice, an increase in the levels of the amyloid precursor protein and oxidative damage; However, the effects of oral D-gal remain unclear. The aim of this study was to evaluate whether the oral administration of D-gal induces abnormalities within the mitochondrial respiratory chain of rats. Male Wistar rats (4 months old) received D-gal (100 mg/kg v.o.), during the 1st, 2nd, 4th, 6th or 8th weeks by oral gavage. The activity of the mitochondrial respiratory chain complexes was measured in the 1st, 2nd, 4th, 6th and 8th weeks after the administration of D-gal. The activity of the respiratory chain complex I was found to have increased in the prefrontal cortex and hippocampus in the 1st, 6th and 8th weeks, while the activity of the respiratory chain complex II increased in the 1st, 2nd, 4th, 6th and 8th weeks within the hippocampus and in the 2nd, 4th, 6th and 8th weeks within the prefrontal cortex. The activity of complex II-III increased within the prefrontal cortex and hippocampus in each week of oral D-gal treatment. The activity of complex IV increased within the prefrontal cortex and hippocampus in the 1st, 2nd, 6th and 8th weeks of treatment. After 4 weeks of treatment the activity increased only in hippocampus. In conclusion, the present study showed that the oral administration of D-gal increased the activity of the mitochondrial respiratory chain complexes I, II, II-III and IV in the prefrontal cortex and hippocampus. Furthermore, the administration of D-gal via the oral route seems to cause the alterations in the mitochondrial respiratory complexes observed in brain neurodegeneration.

  1. Impairment of striatal mitochondrial function by acute paraquat poisoning.

    PubMed

    Czerniczyniec, Analía; Lanza, E M; Karadayian, A G; Bustamante, J; Lores-Arnaiz, S

    2015-10-01

    Mitochondria are essential for survival. Their primary function is to support aerobic respiration and to provide energy for intracellular metabolic pathways. Paraquat is a redox cycling agent capable of generating reactive oxygen species. The aim of the present study was to evaluate changes in cortical and striatal mitochondrial function in an experimental model of acute paraquat toxicity and to compare if the brain areas and the molecular mechanisms involved were similar to those observed after chronic exposure. Sprague-Dawley rats received paraquat (25 mg/Kg i.p.) or saline and were sacrificed after 24 h. Paraquat treatment decreased complex I and IV activity by 37 and 21 % respectively in striatal mitochondria. Paraquat inhibited striatal state 4 and state 3 KCN-sensitive respiration by 80 % and 62 % respectively, indicating a direct effect on respiratory chain. An increase of 2.2 fold in state 4 and 2.3 fold in state 3 in KCN-insensitive respiration was observed in striatal mitochondria from paraquat animals, suggesting that paraquat redox cycling also consumed oxygen. Paraquat treatment increased hydrogen peroxide production (150 %), TBARS production (42 %) and cardiolipin oxidation/depletion (12 %) in striatal mitochondria. Also, changes in mitochondrial polarization was induced after paraquat treatment. However, no changes were observed in any of these parameters in cortical mitochondria from paraquat treated-animals. These results suggest that paraquat treatment induced a clear striatal mitochondrial dysfunction due to both paraquat redox cycling reactions and impairment of the mitochondrial electron transport, causing oxidative damage. As a consequence, mitochondrial dysfunction could probably lead to alterations in cellular bioenergetics.

  2. Characterization of mitochondrial function in cells with impaired cystic fibrosis transmembrane conductance regulator (CFTR) function.

    PubMed

    Atlante, Anna; Favia, Maria; Bobba, Antonella; Guerra, Lorenzo; Casavola, Valeria; Reshkin, Stephan Joel

    2016-06-01

    Evidence supporting the occurrence of oxidative stress in Cystic Fibrosis (CF) is well established and the literature suggests that oxidative stress is inseparably linked to mitochondrial dysfunction. Here, we have characterized mitochondrial function, in particular as it regards the steps of oxidative phosphorylation and ROS production, in airway cells either homozygous for the F508del-CFTR allele or stably expressing wt-CFTR. We find that oxygen consumption, ΔΨ generation, adenine nucleotide translocator-dependent ADP/ATP exchange and both mitochondrial Complex I and IV activities are impaired in CF cells, while both mitochondrial ROS production and membrane lipid peroxidation increase. Importantly, treatment of CF cells with the small molecules VX-809 and 4,6,4'-trimethylangelicin, which act as "correctors" for F508del CFTR by rescuing the F508del CFTR-dependent chloride secretion, while having no effect per sè on mitochondrial function in wt-CFTR cells, significantly improved all the above mitochondrial parameters towards values found in the airway cells expressing wt-CFTR. This novel study on mitochondrial bioenergetics provides a springboard for future research to further understand the molecular mechanisms responsible for the involvement of mitochondria in CF and identify the proteins primarily responsible for the F508del-CFTR-dependent mitochondrial impairment and thus reveal potential novel targets for CF therapy.

  3. Regulation of mitochondrial functions by protein phosphorylation and dephosphorylation.

    PubMed

    Lim, Sangbin; Smith, Kelly R; Lim, Ssang-Taek Steve; Tian, Rong; Lu, Jianrong; Tan, Ming

    2016-01-01

    The mitochondria are double membrane-bound organelles found in most eukaryotic cells. They generate most of the cell's energy supply of adenosine triphosphate (ATP). Protein phosphorylation and dephosphorylation are critical mechanisms in the regulation of cell signaling networks and are essential for almost all the cellular functions. For many decades, mitochondria were considered autonomous organelles merely functioning to generate energy for cells to survive and proliferate, and were thought to be independent of the cellular signaling networks. Consequently, phosphorylation and dephosphorylation processes of mitochondrial kinases and phosphatases were largely neglected. However, evidence accumulated in recent years on mitochondria-localized kinases/phosphatases has changed this longstanding view. Mitochondria are increasingly recognized as a hub for cell signaling, and many kinases and phosphatases have been reported to localize in mitochondria and play important functions. However, the strength of the evidence on mitochondrial localization and the activities of the reported kinases and phosphatases vary greatly, and the detailed mechanisms on how these kinases/phosphatases translocate to mitochondria, their subsequent function, and the physiological and pathological implications of their localization are still poorly understood. Here, we provide an updated perspective on the recent advancement in this area, with an emphasis on the implications of mitochondrial kinases/phosphatases in cancer and several other diseases.

  4. Peripheral neuropathy in mitochondrial disorders.

    PubMed

    Pareyson, Davide; Piscosquito, Giuseppe; Moroni, Isabella; Salsano, Ettore; Zeviani, Massimo

    2013-10-01

    Why is peripheral neuropathy common but mild in many mitochondrial disorders, and why is it, in some cases, the predominant or only manifestation? Although this question remains largely unanswered, recent advances in cellular and molecular biology have begun to clarify the importance of mitochondrial functioning and distribution in the peripheral nerve. Mutations in proteins involved in mitochondrial dynamics (ie, fusion and fission) frequently result in a Charcot-Marie-Tooth phenotype. Peripheral neuropathies with different phenotypic presentations occur in mitochondrial diseases associated with abnormalities in mitochondrial DNA replication and maintenance, or associated with defects in mitochondrial respiratory chain complex V. Our knowledge of mitochondrial disorders is rapidly growing as new nuclear genes are identified and new phenotypes described. Early diagnosis of mitochondrial disorders, essential to provide appropriate genetic counselling, has become crucial in a few treatable conditions. Recognising and diagnosing an underlying mitochondrial defect in patients presenting with peripheral neuropathy is therefore of paramount importance.

  5. Structure-function analysis of the yeast mitochondrial Rho GTPase, Gem1p: implications for mitochondrial inheritance.

    PubMed

    Koshiba, Takumi; Holman, Holly A; Kubara, Kenji; Yasukawa, Kai; Kawabata, Shun-ichiro; Okamoto, Koji; MacFarlane, Jane; Shaw, Janet M

    2011-01-07

    Mitochondria undergo continuous cycles of homotypic fusion and fission, which play an important role in controlling organelle morphology, copy number, and mitochondrial DNA maintenance. Because mitochondria cannot be generated de novo, the motility and distribution of these organelles are essential for their inheritance by daughter cells during division. Mitochondrial Rho (Miro) GTPases are outer mitochondrial membrane proteins with two GTPase domains and two EF-hand motifs, which act as receptors to regulate mitochondrial motility and inheritance. Here we report that although all of these domains are biochemically active, only the GTPase domains are required for the mitochondrial inheritance function of Gem1p (the yeast Miro ortholog). Mutations in either of the Gem1p GTPase domains completely abrogated mitochondrial inheritance, although the mutant proteins retained half the GTPase activity of the wild-type protein. Although mitochondrial inheritance was not dependent upon Ca(2+) binding by the two EF-hands of Gem1p, a functional N-terminal EF-hand I motif was critical for stable expression of Gem1p in vivo. Our results suggest that basic features of Miro protein function are conserved from yeast to humans, despite differences in the cellular machinery mediating mitochondrial distribution in these organisms.

  6. Mitochondrial function in Antarctic nototheniids with ND6 translocation.

    PubMed

    Mark, Felix C; Lucassen, Magnus; Strobel, Anneli; Barrera-Oro, Esteban; Koschnick, Nils; Zane, Lorenzo; Patarnello, Tomaso; Pörtner, Hans O; Papetti, Chiara

    2012-01-01

    Fish of the suborder Notothenioidei have successfully radiated into the Southern Ocean and today comprise the dominant fish sub-order in Antarctic waters in terms of biomass and species abundance. During evolution in the cold and stable Antarctic climate, the Antarctic lineage of notothenioids developed several unique physiological adaptations, which make them extremely vulnerable to the rapid warming of Antarctic waters currently observed. Only recently, a further phenomenon exclusive to notothenioid fish was reported: the translocation of the mitochondrial gene encoding the NADH Dehydrogenase subunit 6 (ND6), an indispensable part of complex I in the mitochondrial electron transport system.This study investigated the potential physiological consequences of ND6 translocation for the function and thermal sensitivity of the electron transport system in isolated liver mitochondria of the two nototheniid species Notothenia coriiceps and Notothenia rossii, with special attention to the contributions of complex I (NADH DH) and complex II (Succinate DH) to oxidative phosphorylation. Furthermore, enzymatic activities of NADH:Cytochrome c Oxidoreductase and Cytochrome C Oxidase were measured in membrane-enriched tissue extracts.During acute thermal challenge (0-15°C), capacities of mitochondrial respiration and enzymatic function in the liver could only be increased until 9°C. Mitochondrial complex I (NADH Dehydrogenase) was fully functional but displayed a higher thermal sensitivity than the other complexes of the electron transport system, which may specifically result from its unique amino acid composition, revealing a lower degree of stability in notothenioids in general. We interpret the translocation of ND6 as functionally neutral but the change in amino acid sequence as adaptive and supportive of cold stenothermy in Antarctic nototheniids. From these findings, an enhanced sensitivity to ocean warming can be deduced for Antarctic notothenioid fish.

  7. Mitochondrial Function in Antarctic Nototheniids with ND6 Translocation

    PubMed Central

    Mark, Felix C.; Lucassen, Magnus; Strobel, Anneli; Barrera-Oro, Esteban; Koschnick, Nils; Zane, Lorenzo; Patarnello, Tomaso; Pörtner, Hans O.; Papetti, Chiara

    2012-01-01

    Fish of the suborder Notothenioidei have successfully radiated into the Southern Ocean and today comprise the dominant fish sub-order in Antarctic waters in terms of biomass and species abundance. During evolution in the cold and stable Antarctic climate, the Antarctic lineage of notothenioids developed several unique physiological adaptations, which make them extremely vulnerable to the rapid warming of Antarctic waters currently observed. Only recently, a further phenomenon exclusive to notothenioid fish was reported: the translocation of the mitochondrial gene encoding the NADH Dehydrogenase subunit 6 (ND6), an indispensable part of complex I in the mitochondrial electron transport system. This study investigated the potential physiological consequences of ND6 translocation for the function and thermal sensitivity of the electron transport system in isolated liver mitochondria of the two nototheniid species Notothenia coriiceps and Notothenia rossii, with special attention to the contributions of complex I (NADH DH) and complex II (Succinate DH) to oxidative phosphorylation. Furthermore, enzymatic activities of NADH∶Cytochrome c Oxidoreductase and Cytochrome C Oxidase were measured in membrane-enriched tissue extracts. During acute thermal challenge (0–15°C), capacities of mitochondrial respiration and enzymatic function in the liver could only be increased until 9°C. Mitochondrial complex I (NADH Dehydrogenase) was fully functional but displayed a higher thermal sensitivity than the other complexes of the electron transport system, which may specifically result from its unique amino acid composition, revealing a lower degree of stability in notothenioids in general. We interpret the translocation of ND6 as functionally neutral but the change in amino acid sequence as adaptive and supportive of cold stenothermy in Antarctic nototheniids. From these findings, an enhanced sensitivity to ocean warming can be deduced for Antarctic notothenioid fish. PMID

  8. The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles

    PubMed Central

    Gali Ramamoorthy, Thanuja; Laverny, Gilles; Schlagowski, Anna-Isabel; Zoll, Joffrey; Messaddeq, Nadia; Bornert, Jean-Marc; Panza, Salvatore; Ferry, Arnaud; Geny, Bernard; Metzger, Daniel

    2015-01-01

    The transcriptional coregulators PGC-1α and PGC-1β modulate the expression of numerous partially overlapping genes involved in mitochondrial biogenesis and energetic metabolism. The physiological role of PGC-1β is poorly understood in skeletal muscle, a tissue of high mitochondrial content to produce ATP levels required for sustained contractions. Here we determine the physiological role of PGC-1β in skeletal muscle using mice, in which PGC-1β is selectively ablated in skeletal myofibres at adulthood (PGC-1β(i)skm−/− mice). We show that myofibre myosin heavy chain composition and mitochondrial number, muscle strength and glucose homeostasis are unaffected in PGC-1β(i)skm−/− mice. However, decreased expression of genes controlling mitochondrial protein import, translational machinery and energy metabolism in PGC-1β(i)skm−/− muscles leads to mitochondrial structural and functional abnormalities, impaired muscle oxidative capacity and reduced exercise performance. Moreover, enhanced free-radical leak and reduced expression of the mitochondrial anti-oxidant enzyme Sod2 increase muscle oxidative stress. PGC-1β is therefore instrumental for skeletal muscles to cope with high energetic demands. PMID:26674215

  9. The transcriptional coregulator PGC-1β controls mitochondrial function and anti-oxidant defence in skeletal muscles.

    PubMed

    Gali Ramamoorthy, Thanuja; Laverny, Gilles; Schlagowski, Anna-Isabel; Zoll, Joffrey; Messaddeq, Nadia; Bornert, Jean-Marc; Panza, Salvatore; Ferry, Arnaud; Geny, Bernard; Metzger, Daniel

    2015-12-17

    The transcriptional coregulators PGC-1α and PGC-1β modulate the expression of numerous partially overlapping genes involved in mitochondrial biogenesis and energetic metabolism. The physiological role of PGC-1β is poorly understood in skeletal muscle, a tissue of high mitochondrial content to produce ATP levels required for sustained contractions. Here we determine the physiological role of PGC-1β in skeletal muscle using mice, in which PGC-1β is selectively ablated in skeletal myofibres at adulthood (PGC-1β((i)skm-/-) mice). We show that myofibre myosin heavy chain composition and mitochondrial number, muscle strength and glucose homeostasis are unaffected in PGC-1β((i)skm-/-) mice. However, decreased expression of genes controlling mitochondrial protein import, translational machinery and energy metabolism in PGC-1β((i)skm-/-) muscles leads to mitochondrial structural and functional abnormalities, impaired muscle oxidative capacity and reduced exercise performance. Moreover, enhanced free-radical leak and reduced expression of the mitochondrial anti-oxidant enzyme Sod2 increase muscle oxidative stress. PGC-1β is therefore instrumental for skeletal muscles to cope with high energetic demands.

  10. Effects of exercise and ethanol on liver mitochondrial function

    SciTech Connect

    Ardies, C.M.; Morris, G.S.; Erickson, C.K.; Farrar, R.P.

    1987-03-16

    Rates of ADP stimulated respiration for various substrates were determined in mitochondria isolated from the livers of female Sprague-Dawley rats following 8 weeks of treatment with daily swimming, ethanol consumption, or both. All rats were fed an American Institute of Nutrition (AIN) type liquid diet with the ethanol treated rats receiving 35% of the calories as ethanol. Chronic exposure to ethanol depressed both state 3 respiration with glutamate as a substrate and cytochrome oxidase activity. Respiratory control ratios and P:O ratios, however, were unaffected by the ethanol exposure. Exercise alone had no effect on hepatic mitochondrial function. There were also no significant alterations in oxidative function of hepatic mitochondria from rats which were endurance-trained by swimming while receiving the ethanol diet. This lack of alteration in mitochondrial function was in spite of the fact that these rats consumed an identical amount of ethanol as those which incurred mitochondrial dysfunction. These results indicate that regular exercise has the potential to attenuate the ethanol induced decline in hepatic mitochondria. 32 references, 2 figures, 1 table.

  11. Reye's syndrome: salicylate and mitochondrial monoamine oxidase function

    SciTech Connect

    Faraj, B.A.; Caplan, D.; Lolies, P.

    1986-03-01

    It has been suggested that aspirin is somehow linked with the onset of Reye's syndrome (RS). A general feature of Reye's syndrome is severe impairment of mitochondrial monoamine oxidase (MAO) function. The main objective of this investigation was to study the effect of salicylate on platelet mitochondrial MAO activity in three groups: group A (healthy children, n = 21) and group C (healthy adults, n = 10). Platelet MAO was measured by radio-enzymatic technique with /sup 14/C-tyramine as a substrate. The results showed that salicyclate (10 mM) had a 20 to 60 percent inhibitory effect on platelet MAO function in only 1, 3 and 2 of the subjects in group A, B and C. Furthermore, there was an association between low enzyme activity and salicylate MAO inhibitory effect in these subjects. These preliminary findings suggest that salicylate may induce deterioration in mitochondrial function in susceptible individuals and that the assessment of salicylate MAO inhibitory effect may identify those who may be at risk to develop aspirin poisoning and Reye's syndrome.

  12. Improving Mitochondrial Function Protects Bumblebees from Neonicotinoid Pesticides

    PubMed Central

    Powner, Michael B.; Salt, Thomas E.; Hogg, Chris; Jeffery, Glen

    2016-01-01

    Global pollination is threatened by declining insect pollinator populations that may be linked to neonicotinoid pesticide use. Neonicotinoids over stimulate neurons and depolarize their mitochondria, producing immobility and death. However, mitochondrial function can be improved by near infrared light absorbed by cytochrome c oxidase in mitochondrial respiration. In flies, daily exposure to 670nm light throughout life increases average lifespan and aged mobility, and reduces systemic inflammation. Here we treat bumble bees with Imidacloprid a common neonicotinoid. This undermined ATP and rapidly induced immobility and reduced visual function and survival. Bees exposed to insecticide and daily to 670nm light showed corrected ATP levels and significantly improved mobility allowing them to feed. Physiological recordings from eyes revealed that light exposure corrected deficits induced by the pesticide. Overall, death rates in bees exposed to insecticide but also given 670nm light were indistinguishable from controls. When Imidacloprid and light exposure were withdrawn, survival was maintained. Bees and insects generally cannot see deep red light so it does not disturb their behaviour. Hence, we show that deep red light exposure that improves mitochondrial function, reverses the sensory and motor deficits induced by Imidacloprid. These results may have important implications as light delivery is economic and can be placed in hives/colonies. PMID:27846310

  13. Hyperforin promotes mitochondrial function and development of oligodendrocytes.

    PubMed

    Wang, Yanlin; Zhang, Yanbo; He, Jue; Zhang, Handi; Xiao, Lan; Nazarali, Adil; Zhang, Zhijun; Zhang, Dai; Tan, Qingrong; Kong, Jiming; Li, Xin-Min

    2011-11-01

    St. John's wort has been found to be an effective and safe herbal treatment for depression in several clinical trials. However, the underlying mechanism of its therapeutic effects is unclear. Recent studies show that the loss and malfunction of oligodendrocytes are closely related to the neuropathological changes in depression, which can be reversed by antidepressant treatment. In this study, we evaluated the effects of hyperforin, a major active component of St. John's wort, on the proliferation, development and mitochondrial function of oligodendrocytes. The study results revealed that hyperforin promotes maturation of oligodendrocytes and increases mitochondrial function without affecting proliferation of an oligodendrocyte progenitor cell line and neural stem/progenitor cells. Hyperforin also prevented mitochondrial toxin-induced cytotoxicity in an oligodendrocyte progenitor cell line. These findings suggest that hyperforin may stimulate the development and function of oligodendrocytes, which could be a mechanism of its effect in depression. Future in vitro and in vivo studies are required to further characterize the mechanisms of hyperforin.

  14. Improving Mitochondrial Function Protects Bumblebees from Neonicotinoid Pesticides.

    PubMed

    Powner, Michael B; Salt, Thomas E; Hogg, Chris; Jeffery, Glen

    2016-01-01

    Global pollination is threatened by declining insect pollinator populations that may be linked to neonicotinoid pesticide use. Neonicotinoids over stimulate neurons and depolarize their mitochondria, producing immobility and death. However, mitochondrial function can be improved by near infrared light absorbed by cytochrome c oxidase in mitochondrial respiration. In flies, daily exposure to 670nm light throughout life increases average lifespan and aged mobility, and reduces systemic inflammation. Here we treat bumble bees with Imidacloprid a common neonicotinoid. This undermined ATP and rapidly induced immobility and reduced visual function and survival. Bees exposed to insecticide and daily to 670nm light showed corrected ATP levels and significantly improved mobility allowing them to feed. Physiological recordings from eyes revealed that light exposure corrected deficits induced by the pesticide. Overall, death rates in bees exposed to insecticide but also given 670nm light were indistinguishable from controls. When Imidacloprid and light exposure were withdrawn, survival was maintained. Bees and insects generally cannot see deep red light so it does not disturb their behaviour. Hence, we show that deep red light exposure that improves mitochondrial function, reverses the sensory and motor deficits induced by Imidacloprid. These results may have important implications as light delivery is economic and can be placed in hives/colonies.

  15. Early effects of the antineoplastic agent salinomycin on mitochondrial function.

    PubMed

    Managò, A; Leanza, L; Carraretto, L; Sassi, N; Grancara, S; Quintana-Cabrera, R; Trimarco, V; Toninello, A; Scorrano, L; Trentin, L; Semenzato, G; Gulbins, E; Zoratti, M; Szabò, I

    2015-10-22

    Salinomycin, isolated from Streptomyces albus, displays antimicrobial activity. Recently, a large-scale screening approach identified salinomycin and nigericin as selective apoptosis inducers of cancer stem cells. Growing evidence suggests that salinomycin is able to kill different types of non-stem tumor cells that usually display resistance to common therapeutic approaches, but the mechanism of action of this molecule is still poorly understood. Since salinomycin has been suggested to act as a K(+) ionophore, we explored its impact on mitochondrial bioenergetic performance at an early time point following drug application. In contrast to the K(+) ionophore valinomycin, salinomycin induced a rapid hyperpolarization. In addition, mitochondrial matrix acidification and a significant decrease of respiration were observed in intact mouse embryonic fibroblasts (MEFs) and in cancer stem cell-like HMLE cells within tens of minutes, while increased production of reactive oxygen species was not detected. By comparing the chemical structures and cellular effects of this drug with those of valinomycin (K(+) ionophore) and nigericin (K(+)/H(+) exchanger), we conclude that salinomycin mediates K(+)/H(+) exchange across the inner mitochondrial membrane. Compatible with its direct modulation of mitochondrial function, salinomycin was able to induce cell death also in Bax/Bak-less double-knockout MEF cells. Since at the concentration range used in most studies (around 10 μM) salinomycin exerts its effect at the level of mitochondria and alters bioenergetic performance, the specificity of its action on pathologic B cells isolated from patients with chronic lymphocytic leukemia (CLL) versus B cells from healthy subjects was investigated. Mesenchymal stromal cells (MSCs), proposed to mimic the tumor environment, attenuated the apoptotic effect of salinomycin on B-CLL cells. Apoptosis occurred to a significant extent in healthy B cells as well as in MSCs and human primary

  16. The emerging role of Nrf2 in mitochondrial function

    PubMed Central

    Dinkova-Kostova, Albena T.; Abramov, Andrey Y.

    2015-01-01

    The transcription factor NF-E2 p45-related factor 2 (Nrf2; gene name NFE2L2) allows adaptation and survival under conditions of stress by regulating the gene expression of diverse networks of cytoprotective proteins, including antioxidant, anti-inflammatory, and detoxification enzymes as well as proteins that assist in the repair or removal of damaged macromolecules. Nrf2 has a crucial role in the maintenance of cellular redox homeostasis by regulating the biosynthesis, utilization, and regeneration of glutathione, thioredoxin, and NADPH and by controlling the production of reactive oxygen species by mitochondria and NADPH oxidase. Under homeostatic conditions, Nrf2 affects the mitochondrial membrane potential, fatty acid oxidation, availability of substrates (NADH and FADH2/succinate) for respiration, and ATP synthesis. Under conditions of stress or growth factor stimulation, activation of Nrf2 counteracts the increased reactive oxygen species production in mitochondria via transcriptional upregulation of uncoupling protein 3 and influences mitochondrial biogenesis by maintaining the levels of nuclear respiratory factor 1 and peroxisome proliferator-activated receptor γ coactivator 1α, as well as by promoting purine nucleotide biosynthesis. Pharmacological Nrf2 activators, such as the naturally occurring isothiocyanate sulforaphane, inhibit oxidant-mediated opening of the mitochondrial permeability transition pore and mitochondrial swelling. Curiously, a synthetic 1,4-diphenyl-1,2,3-triazole compound, originally designed as an Nrf2 activator, was found to promote mitophagy, thereby contributing to the overall mitochondrial homeostasis. Thus, Nrf2 is a prominent player in supporting the structural and functional integrity of the mitochondria, and this role is particularly crucial under conditions of stress. PMID:25975984

  17. Defining a Model for Mitochondrial Function in mESC Differentiation

    EPA Science Inventory

    Defining a Model for Mitochondrial Function in mESC DifferentiationDefining a Model for Mitochondrial Function in mESC Differentiation Differentiating embryonic stem cells (ESCs) undergo mitochondrial maturation leading to a switch from a system dependent upon glycolysis to a re...

  18. Mitochondrial Reactive Oxygen Species Production in Excitable Cells: Modulators of Mitochondrial and Cell Function

    PubMed Central

    Camara, Amadou K. S.

    2009-01-01

    Abstract The mitochondrion is a major source of reactive oxygen species (ROS). Superoxide (O2•−) is generated under specific bioenergetic conditions at several sites within the electron-transport system; most is converted to H2O2 inside and outside the mitochondrial matrix by superoxide dismutases. H2O2 is a major chemical messenger that, in low amounts and with its products, physiologically modulates cell function. The redox state and ROS scavengers largely control the emission (generation scavenging) of O2•−. Cell ischemia, hypoxia, or toxins can result in excess O2•− production when the redox state is altered and the ROS scavenger systems are overwhelmed. Too much H2O2 can combine with Fe2+ complexes to form reactive ferryl species (e.g., Fe(IV) = O•). In the presence of nitric oxide (NO•), O2•− forms the reactant peroxynitrite (ONOO−), and ONOOH-induced nitrosylation of proteins, DNA, and lipids can modify their structure and function. An initial increase in ROS can cause an even greater increase in ROS and allow excess mitochondrial Ca2+ entry, both of which are factors that induce cell apoptosis and necrosis. Approaches to reduce excess O2•− emission include selectively boosting the antioxidant capacity, uncoupling of oxidative phosphorylation to reduce generation of O2•− by inducing proton leak, and reversibly inhibiting electron transport. Mitochondrial cation channels and exchangers function to maintain matrix homeostasis and likely play a role in modulating mitochondrial function, in part by regulating O2•− generation. Cell-signaling pathways induced physiologically by ROS include effects on thiol groups and disulfide linkages to modify posttranslationally protein structure to activate/inactivate specific kinase/phosphatase pathways. Hypoxia-inducible factors that stimulate a cascade of gene transcription may be mediated physiologically by ROS. Our knowledge of the role played by ROS and their scavenging systems in

  19. Biochemical and functional abnormalities in hypercholesterolemic rabbit platelets

    SciTech Connect

    Dalal, K.B.; Ebbe, S.; Mazoyer, E.; Carpenter, D.; Yee, T. )

    1990-02-01

    This study was designed to elucidate changes in rabbit platelet lipids induced by a cholesterol rich diet and to explore the possible correlation of these lipid changes with platelet abnormalities. Pronounced biochemical alterations were observed when serum cholesterol levels of 700-1000 mg% were reached. Hypercholesterolemic (HC) platelets contained 37% more neutral lipids and 16% less phospholipids than the controls. Lysolecithin, cholesterol esters and phosphatidylinositol (PI) levels were increased in HC platelets, and the levels of phosphatidylcholine (PC) were decreased. The cholesterol/phospholipid molar ratio of lipidemic platelets increased from 0.55 +/- 0.011 to 0.89 +/- 0.016 (P less than 0.01) in eight weeks. HC platelets had 90% more arachidonic acid (AA) in the PI than normal platelets. No significant changes in AA of PC were observed. Platelet function was monitored by the uptake and release of (14C)serotonin in platelet rich plasma (PRP), using varying concentrations of collagen as an aggregating agent. The uptake of (14C)serotonin in HC and normal platelets ranged from 78-94%. The percent of (14C)serotonin released from normal and HC platelets was proportional to the concentration of collagen. However, lipidemic platelets were hyperreactive to low concentrations of collagen. Incorporation of 50 microM acetylsalicylic acid into the aggregating medium suppressed the release of (14C)serotonin in normal PRP by more than 90%, but had only a partial effect on lipidemic PRP.

  20. Impaired cortical mitochondrial function following TBI precedes behavioral changes

    PubMed Central

    Watson, William D.; Buonora, John E.; Yarnell, Angela M.; Lucky, Jessica J.; D’Acchille, Michaela I.; McMullen, David C.; Boston, Andrew G.; Kuczmarski, Andrew V.; Kean, William S.; Verma, Ajay; Grunberg, Neil E.; Cole, Jeffrey T.

    2014-01-01

    Traumatic brain injury (TBI) pathophysiology can be attributed to either the immediate, primary physical injury, or the delayed, secondary injury which begins minutes to hours after the initial injury and can persist for several months or longer. Because these secondary cascades are delayed and last for a significant time period post-TBI, they are primary research targets for new therapeutics. To investigate changes in mitochondrial function after a brain injury, both the cortical impact site and ipsilateral hippocampus of adult male rats 7 and 17 days after a controlled cortical impact (CCI) injury were examined. State 3, state 4, and uncoupler-stimulated rates of oxygen consumption, respiratory control ratios (RCRs) were measured and membrane potential quantified, and all were significantly decreased in 7 day post-TBI cortical mitochondria. By contrast, hippocampal mitochondria at 7 days showed only non-significant decreases in rates of oxygen consumption and membrane potential. NADH oxidase activities measured in disrupted mitochondria were normal in both injured cortex and hippocampus at 7 days post-CCI. Respiratory and phosphorylation capacities at 17 days post-CCI were comparable to naïve animals for both cortical and hippocampus mitochondria. However, unlike oxidative phosphorylation, membrane potential of mitochondria in the cortical lining of the impact site did not recover at 17 days, suggesting that while diminished cortical membrane potential at 17 days does not adversely affect mitochondrial capacity to synthesize ATP, it may negatively impact other membrane potential-sensitive mitochondrial functions. Memory status, as assessed by a passive avoidance paradigm, was not significantly impaired until 17 days after injury. These results indicate pronounced disturbances in cortical mitochondrial function 7 days after CCI which precede the behavioral impairment observed at 17 days. PMID:24550822

  1. Abnormal regional brain function in Parkinson's disease: truth or fiction?

    PubMed

    Ma, Yilong; Tang, Chengke; Moeller, James R; Eidelberg, David

    2009-04-01

    Normalization of regional measurements by the global mean is commonly employed to minimize inter-subject variability in functional imaging studies. This practice is based on the assumption that global values do not substantially differ between patient and control groups. In this issue of NeuroImage, Borghammer and colleagues challenge the validity of this assumption. They focus on Parkinson's disease (PD) and use computer simulations to show that lower global values can produce spurious increases in subcortical brain regions. The authors speculate that the increased signal observed in these areas in PD is artefactual and unrelated to localized changes in brain function. In this commentary, we summarize what is currently known of the relationship between regional and global metabolic activity in PD and experimental parkinsonism. We found that early stage PD patients exhibit global values that are virtually identical to those of age-matched healthy subjects. SPM analysis revealed increased normalized metabolic activity in a discrete set of biologically relevant subcortical brain regions. Because of their higher variability, the corresponding absolute regional measures did not differ across the two groups. Longitudinal imaging studies in this population showed that the subcortical elevations in normalized metabolism appeared earlier and progressed faster than did focal cortical or global metabolic reductions. The observed increases in subcortical activity, but not the global changes, correlated with independent clinical measures of disease progression. Multivariate analysis with SSM/PCA further confirmed that the abnormal spatial covariance structure of early PD is dominated by these subcortical increases as opposed to network-related reductions in cortical metabolic activity or global changes. Thus, increased subcortical activity in PD cannot be regarded as a simple artefact of global normalization. Moreover, stability of the normalized measurements, particularly at

  2. Prefrontal dopaminergic receptor abnormalities and executive functions in Parkinson's disease.

    PubMed

    Ko, Ji Hyun; Antonelli, Francesca; Monchi, Oury; Ray, Nicola; Rusjan, Pablo; Houle, Sylvain; Lang, Anthony E; Christopher, Leigh; Strafella, Antonio P

    2013-07-01

    The main pattern of cognitive impairments seen in early to moderate stages of Parkinson's disease (PD) includes deficits of executive functions. These nonmotor complications have a significant impact on the quality of life and day-to-day activities of PD patients and are not effectively managed by current therapies, a problem which is almost certainly due to the fact that the disease extends beyond the nigrostriatal system. To investigate the role of extrastriatal dopamine in executive function in PD, PD patients and a control group were studied with positron-emission-tomography using a high-affinity dopamine D2/D3 receptor tracer, [(11) C]FLB-457. All participants were scanned twice while performing an executive task and a control task. Patients were off medication for at least 12 h. The imaging analysis revealed that parkinsonian patients had lower [(11) C]FLB-457 binding than control group independently of task conditions across different brain regions. Cognitive assessment measures were positively correlated with [(11) C]FLB-457 binding in the bilateral dorsolateral prefrontal cortex and anterior cingulate cortex only in control group, but not in PD patients. Within the control group, during the executive task (as compared to control task), there was evidence of reduced [(11) C]FLB-457 binding (indicative of increased dopamine release) in the right orbitofrontal cortex. In contrast, PD patients did not show any reduction in binding during the executive task (as compared with control task). These findings suggest that PD patients present significant abnormalities in extrastriatal dopamine associated with executive processing. These observations provide important insights on the pathophysiology of cognitive dysfunction in PD.

  3. Dietary nitrate does not reduce oxygen cost of exercise or improve muscle mitochondrial function in mitochondrial myopathy patients.

    PubMed

    Nabben, Miranda; Schmitz, Joep P J; Ciapaite, Jolita; Le Clercq, Carlijn M P; van Riel, Natal A; Haak, Harm R; Nicolay, Klaas; de Coo, Irenaeus F; Smeets, Hubert J M; Praet, Stephan F; van Loon, Luc J C; Prompers, Jeanine J

    2017-02-08

    Muscle weakness and exercise intolerance negatively affect the quality of life of mitochondrial myopathy patients. Short-term dietary nitrate supplementation has been shown to improve exercise performance and reduce oxygen cost of exercise in healthy humans and trained athletes. We investigated if 1 week of dietary inorganic nitrate supplementation decreases the oxygen cost of exercise and improves mitochondrial function in mitochondrial myopathy patients. Ten mitochondrial myopathy patients (40 ± 5 years, maximal whole-body oxygen uptake = 21.2 ± 3.2 mL/min/kg body weight, maximal workload = 122 ± 26 W) received 8.5 mg/kg body weight/day of inorganic nitrate (~7 mmol) for 8 days. Whole-body oxygen consumption at 50% of the maximal workload, in vivo skeletal muscle oxidative capacity (evaluated from post-exercise phosphocreatine recovery using (31)P magnetic resonance spectroscopy) and ex vivo mitochondrial oxidative capacity in permeabilized skinned muscle fibers (measured with high-resolution respirometry) were determined before and after nitrate supplementation. Despite a 6-fold increase in plasma nitrate levels, nitrate supplementation did not affect whole-body oxygen cost during submaximal exercise. Additionally, no beneficial effects of nitrate were found on in vivo or ex vivo muscle mitochondrial oxidative capacity. This is the first time that the therapeutic potential of dietary nitrate for mitochondrial myopathy patients was evaluated. We conclude that 1 week of dietary nitrate supplementation does not reduce oxygen cost of exercise or improve mitochondrial function in the group of patients tested.

  4. Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria.

    PubMed

    Furukawa, Ryo; Yamada, Yuma; Kawamura, Eriko; Harashima, Hideyoshi

    2015-07-01

    Mitochondrial genome-targeting nucleic acids are promising therapeutic candidates for treating mitochondrial diseases. To date, a number of systems for delivering genetic information to the cytosol and the nucleus have been reported, and several successful gene therapies involving gene delivery targeted to the cytosol and the nucleus have been reported. However, much less progress has been made concerning mitochondrial gene delivery systems, and mitochondrial gene therapy has never been achieved. Here, we report on the mitochondrial delivery of an antisense RNA oligonucleotide (ASO) to perform mitochondrial RNA knockdown to regulate mitochondrial function. Mitochondrial delivery of the ASO was achieved using a combination of a MITO-Porter system, which contains mitochondrial fusogenic lipid envelopes for mitochondrial delivery via membrane fusion and D-arm, a mitochondrial import signal of tRNA to the matrix. Mitochondrial delivery of the ASO induces the knockdown of the targeted mitochondria-encoded mRNA and protein, namely cytochrome c oxidase subunit II, a component of the mitochondrial respiratory chain. Furthermore, the mitochondrial membrane potential was depolarized by the down regulation of the respiratory chain as the result of the mitochondrial delivery of ASO. This finding constitutes the first report to demonstrate that the nanocarrier-mediated mitochondrial genome targeting of antisense RNA effects mitochondrial function.

  5. Characteristics and Possible Functions of Mitochondrial Ca2+ Transport Mechanisms

    PubMed Central

    Gunter, Thomas E.; Sheu, Shey-Shing

    2009-01-01

    Mitochondria produce around 92% of the ATP used in the typical animal cell by oxidative phosphorylation using energy from their electrochemical proton gradient. Intramitochondrial free Ca2+ concentration ([Ca2+]m) has been found to be an important component of control of the rate of this ATP production. In addition, [Ca2+]m also controls the opening of a large pore in the inner mitochondrial membrane, the permeability transition pore (PTP), which plays a role in mitochondrial control of programmed cell death or apoptosis. Therefore, [Ca2+]m can control whether the cell has sufficient ATP to fulfill its functions and survive or is condemned to death. Ca2+ is also one of the most important second messengers within the cytosol, signaling changes in cellular response through Ca2+ pulses or transients. Mitochondria can also sequester Ca2+ from these transients so as to modify the shape of Ca2+ signaling transients or control their location within the cell. All of this is controlled by the action of four or five mitochondrial Ca2+ transport mechanisms and the PTP. The characteristics of these mechanisms of Ca2+ transport and a discussion of how they might function are described in this paper. PMID:19161975

  6. Sex differences in mitochondrial (dys)function: Implications for neuroprotection

    PubMed Central

    McCarthy, Margaret M.

    2016-01-01

    Decades of research have revealed numerous differences in brain structure size, connectivity and metabolism between males and females. Sex differences in neurobehavioral and cognitive function after various forms of central nervous system (CNS) injury are observed in clinical practice and animal research studies. Sources of sex differences include early life exposure to gonadal hormones, chromosome compliment and adult hormonal modulation. It is becoming increasingly apparent that mitochondrial metabolism and cell death signaling are also sexually dimorphic. Mitochondrial metabolic dysfunction is a common feature of CNS injury. Evidence suggests males predominantly utilize proteins while females predominantly use lipids as a fuel source within mitochondria and that these differences may significantly affect cellular survival following injury. These fundamental biochemical differences have a profound impact on energy production and many cellular processes in health and disease. This review will focus on the accumulated evidence revealing sex differences in mitochondrial function and cellular signaling pathways in the context of CNS injury mechanisms and the potential implications for neuroprotective therapy development. PMID:25293493

  7. Selfish drive can trump function when animal mitochondrial genomes compete

    PubMed Central

    Ma, Hansong; O’Farrell, Patrick H.

    2016-01-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection1. Contrastingly, matchups between distant genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes revealed that the non-coding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, within each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection promoting change in the sequences influencing transmission. PMID:27270106

  8. Selfish drive can trump function when animal mitochondrial genomes compete.

    PubMed

    Ma, Hansong; O'Farrell, Patrick H

    2016-07-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.

  9. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult

    PubMed Central

    Carreira, Vinicius S.; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease. PMID:26555816

  10. Morphological and functional platelet abnormalities in Berkeley sickle cell mice.

    PubMed

    Shet, Arun S; Hoffmann, Thomas J; Jirouskova, Marketa; Janczak, Christin A; Stevens, Jacqueline R M; Adamson, Adewole; Mohandas, Narla; Manci, Elizabeth A; Cynober, Therese; Coller, Barry S

    2008-01-01

    Berkeley sickle cell mice are used as animal models of human sickle cell disease but there are no reports of platelet studies in this model. Since humans with sickle cell disease have platelet abnormalities, we studied platelet morphology and function in Berkeley mice (SS). We observed elevated mean platelet forward angle light scatter (FSC) values (an indirect measure of platelet volume) in SS compared to wild type (WT) (37+/-3.2 vs. 27+/-1.4, mean+/-SD; p<0.001), in association with moderate thrombocytopenia (505+/-49 x 10(3)/microl vs. 1151+/-162 x 10(3)/microl; p<0.001). Despite having marked splenomegaly, SS mice had elevated levels of Howell-Jolly bodies and "pocked" erythrocytes (p<0.001 for both) suggesting splenic dysfunction. SS mice also had elevated numbers of thiazole orange positive platelets (5+/-1% vs. 1+/-1%; p<0.001), normal to low plasma thrombopoietin levels, normal plasma glycocalicin levels, normal levels of platelet recovery, and near normal platelet life spans. Platelets from SS mice bound more fibrinogen and antibody to P-selectin following activation with a threshold concentration of a protease activated receptor (PAR)-4 peptide compared to WT mice. Enlarged platelets are associated with a predisposition to arterial thrombosis in humans and some humans with SCD have been reported to have large platelets. Thus, additional studies are needed to assess whether large platelets contribute either to pulmonary hypertension or the large vessel arterial occlusion that produces stroke in some children with sickle cell disease.

  11. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling

    PubMed Central

    Gomes, Katia M.S.; Campos, Juliane C.; Bechara, Luiz R.G.; Queliconi, Bruno; Lima, Vanessa M.; Disatnik, Marie-Helene; Magno, Paulo; Chen, Che-Hong; Brum, Patricia C.; Kowaltowski, Alicia J.; Mochly-Rosen, Daria; Ferreira, Julio C.B.

    2014-01-01

    Aims We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model. Methods and results We showed that a 6-week treatment of myocardial infarction-induced HF rats with a selective ALDH2 activator (Alda-1), starting 4 weeks after myocardial infarction at a time when ventricular remodelling and cardiac dysfunction were present, improved cardiomyocyte shortening, cardiac function, left ventricular compliance and diastolic function under basal conditions, and after isoproterenol stimulation. Importantly, sustained Alda-1 treatment showed no toxicity and promoted a cardiac anti-remodelling effect by suppressing myocardial hypertrophy and fibrosis. Moreover, accumulation of 4-hydroxynonenal (4-HNE)-protein adducts and protein carbonyls seen in HF was not observed in Alda-1-treated rats, suggesting that increasing the activity of ALDH2 contributes to the reduction of aldehydic load in failing hearts. ALDH2 activation was associated with improved mitochondrial function, including elevated mitochondrial respiratory control ratios and reduced H2O2 release. Importantly, selective ALDH2 activation decreased mitochondrial Ca2+-induced permeability transition and cytochrome c release in failing hearts. Further supporting a mitochondrial mechanism for ALDH2, Alda-1 treatment preserved mitochondrial function upon in vitro aldehydic load. Conclusions Selective activation of mitochondrial ALDH2 is sufficient to improve the HF outcome by reducing the toxic effects of aldehydic overload on mitochondrial bioenergetics and reactive oxygen species generation, suggesting that ALDH2 activators, such as Alda-1, have a potential therapeutic value for treating HF patients. PMID:24817685

  12. Genetically enhancing mitochondrial antioxidant activity improves muscle function in aging.

    PubMed

    Umanskaya, Alisa; Santulli, Gaetano; Xie, Wenjun; Andersson, Daniel C; Reiken, Steven R; Marks, Andrew R

    2014-10-21

    Age-related skeletal muscle dysfunction is a leading cause of morbidity that affects up to half the population aged 80 or greater. Here we tested the effects of increased mitochondrial antioxidant activity on age-dependent skeletal muscle dysfunction using transgenic mice with targeted overexpression of the human catalase gene to mitochondria (MCat mice). Aged MCat mice exhibited improved voluntary exercise, increased skeletal muscle specific force and tetanic Ca(2+) transients, decreased intracellular Ca(2+) leak and increased sarcoplasmic reticulum (SR) Ca(2+) load compared with age-matched wild type (WT) littermates. Furthermore, ryanodine receptor 1 (the sarcoplasmic reticulum Ca(2+) release channel required for skeletal muscle contraction; RyR1) from aged MCat mice was less oxidized, depleted of the channel stabilizing subunit, calstabin1, and displayed increased single channel open probability (Po). Overall, these data indicate a direct role for mitochondrial free radicals in promoting the pathological intracellular Ca(2+) leak that underlies age-dependent loss of skeletal muscle function. This study harbors implications for the development of novel therapeutic strategies, including mitochondria-targeted antioxidants for treatment of mitochondrial myopathies and other healthspan-limiting disorders.

  13. Mitochondrial activity and brain functions during cortical depolarization

    NASA Astrophysics Data System (ADS)

    Mayevsky, Avraham; Sonn, Judith

    2008-12-01

    Cortical depolarization (CD) of the cerebral cortex could be developed under various pathophysiological conditions. In animal models, CD was recorded under partial or complete ischemia as well as when cortical spreading depression (SD) was induced externally or by internal stimulus. The development of CD in patients and the changes in various metabolic parameters, during CD, was rarely reported. Brain metabolic, hemodynamic, ionic and electrical responses to the CD event are dependent upon the O2 balance in the tissue. When the O2 balance is negative (i.e. ischemia), the CD process will be developed due to mitochondrial dysfunction, lack of energy and the inhibition of Na+-K+-ATPase. In contradiction, when oxygen is available (i.e. normoxia) the development of CD after induction of SD will accelerate mitochondrial respiration for retaining ionic homeostasis and normal brain functions. We used the multiparametric monitoring approach that enable real time monitoring of mitochondrial NADH redox state, microcirculatory blood flow and oxygenation, extracellular K+, Ca2+, H+ levels, DC steady potential and electrocorticogram (ECoG). This monitoring approach, provide a unique tool that has a significant value in analyzing the pathophysiology of the brain when SD developed under normoxia, ischemia, or hypoxia. We applied the same monitoring approach to patients suffered from severe head injury or exposed to neurosurgical procedures.

  14. Bmi1 regulates mitochondrial function and the DNA damage response pathway.

    PubMed

    Liu, Jie; Cao, Liu; Chen, Jichun; Song, Shiwei; Lee, In Hye; Quijano, Celia; Liu, Hongjun; Keyvanfar, Keyvan; Chen, Haoqian; Cao, Long-Yue; Ahn, Bong-Hyun; Kumar, Neil G; Rovira, Ilsa I; Xu, Xiao-Ling; van Lohuizen, Maarten; Motoyama, Noboru; Deng, Chu-Xia; Finkel, Toren

    2009-05-21

    Mice deficient in the Polycomb repressor Bmi1 develop numerous abnormalities including a severe defect in stem cell self-renewal, alterations in thymocyte maturation and a shortened lifespan. Previous work has implicated de-repression of the Ink4a/Arf (also known as Cdkn2a) locus as mediating many of the aspects of the Bmi1(-/-) phenotype. Here we demonstrate that cells derived from Bmi1(-/-) mice also have impaired mitochondrial function, a marked increase in the intracellular levels of reactive oxygen species and subsequent engagement of the DNA damage response pathway. Furthermore, many of the deficiencies normally observed in Bmi1(-/-) mice improve after either pharmacological treatment with the antioxidant N-acetylcysteine or genetic disruption of the DNA damage response pathway by Chk2 (also known as Chek2) deletion. These results demonstrate that Bmi1 has an unexpected role in maintaining mitochondrial function and redox homeostasis and indicate that the Polycomb family of proteins can coordinately regulate cellular metabolism with stem and progenitor cell function.

  15. Actin-dependent mitochondrial internalization in cardiomyocytes: evidence for rescue of mitochondrial function

    PubMed Central

    Pacak, Christina A.; Preble, Janine M.; Kondo, Hiroshi; Seibel, Peter; Levitsky, Sidney; del Nido, Pedro J.; Cowan, Douglas B.; McCully, James D.

    2015-01-01

    Previously, we have demonstrated that the transplantation of viable, structurally intact, respiration competent mitochondria into the ischemic myocardium during early reperfusion significantly enhanced cardioprotection by decreasing myocellular damage and enhancing functional recovery. Our in vitro and in vivo studies established that autologous mitochondria are internalized into cardiomyocytes following transplantation; however, the mechanism(s) modulating internalization of these organelles were unknown. Here, we show that internalization of mitochondria occurs through actin-dependent endocytosis and rescues cell function by increasing ATP content and oxygen consumption rates. We also show that internalized mitochondria replace depleted mitochondrial (mt)DNA. These results describe the mechanism for internalization of mitochondria within host cells and provide a basis for novel therapeutic interventions allowing for the rescue and replacement of damaged or impaired mitochondria. PMID:25862247

  16. Cutaneous Respirometry as Novel Technique to Monitor Mitochondrial Function: A Feasibility Study in Healthy Volunteers

    PubMed Central

    Stolker, Robert Jan; Mik, Egbert

    2016-01-01

    Background The protoporphyrin IX-triplet state lifetime technique (PpIX-TSLT) is proposed as a potential clinical non-invasive tool to monitor mitochondrial function. This technique has been evaluated in several animal studies. Mitochondrial respirometry allows measurement in vivo of mitochondrial oxygen tension (mitoPO2) and mitochondrial oxygen consumption (mitoVO2) in skin. This study describes the first use of a clinical prototype in skin of humans. Methods The clinical prototype was tested in 30 healthy volunteers. A self-adhesive patch containing 2 mg 5-aminolevulinic acid (ALA) was applied on the skin of the anterior chest wall (sternal) for induction of mitochondrial protoporphyrin IX and was protected from light for 5 h. MitoPO2 was measured by means of oxygen-dependent delayed fluorescence of protoporphyrin IX. MitoVO2 was determined by dynamic mitoPO2 measurements on the primed skin, while locally blocking oxygen supply by applying local pressure with the measurement probe. MitoPO2 was recorded before and during a 60-s period of compression of the microcirculation, at an interval of 1 Hz. Oxygen consumption (i.e. the local oxygen disappearance rate) was calculated from the decay of the mitoPO2 slope. Results Oxygen-dependent delayed fluorescence measurements were successfully performed in the skin of 27 volunteers. The average value (± SD) of mitoPO2 was 44 ± 17 mmHg and mean mitoVO2 values were 5.8 ± 2.3 and 6.1 ± 1.6 mmHg s-1 at a skin temperature of 34°C and 40°C, respectively. No major discomfort during measurement and no long-term dermatological abnormalities were reported in a survey performed 1 month after measurements. Conclusion These results show that the clinical prototype allows measurement of mitochondrial oxygenation and oxygen consumption in humans. The development of this clinically applicable device offers opportunities for further evaluation of the technique in humans and the start of first clinical studies. PMID:27455073

  17. The Therapeutic Function of the Instructor in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Halgin, Richard P.

    1982-01-01

    Describes three main types of therapeutic problems which college instructors of abnormal psychology courses may encounter with their students. Students may seek the instructor's assistance in helping a relative or acquaintance or for self-help. Often a student may not seek help but may display pathological behavior. (AM)

  18. Echinochrome A Increases Mitochondrial Mass and Function by Modulating Mitochondrial Biogenesis Regulatory Genes

    PubMed Central

    Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In-Sung; Noh, Su Jin; Marquez, Jubert; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoreyev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (Ech A) is a natural pigment from sea urchins that has been reported to have antioxidant properties and a cardio protective effect against ischemia reperfusion injury. In this study, we ascertained whether Ech A enhances the mitochondrial biogenesis and oxidative phosphorylation in rat cardio myoblast H9c2 cells. To study the effects of Ech A on mitochondrial biogenesis, we measured mitochondrial mass, level of oxidative phosphorylation, and mitochondrial biogenesis regulatory gene expression. Ech A treatment did not induce cytotoxicity. However, Ech A treatment enhanced oxygen consumption rate and mitochondrial ATP level. Likewise, Ech A treatment increased mitochondrial contents in H9c2 cells. Furthermore, Ech A treatment up-regulated biogenesis of regulatory transcription genes, including proliferator-activated receptor gamma co-activator (PGC)-1α, estrogen-related receptor (ERR)-α, peroxisome proliferator-activator receptor (PPAR)-γ, and nuclear respiratory factor (NRF)-1 and such mitochondrial transcription regulatory genes as mitochondrial transcriptional factor A (TFAM), mitochondrial transcription factor B2 (TFB2M), mitochondrial DNA direct polymerase (POLMRT), single strand binding protein (SSBP) and Tu translation elongation factor (TUFM). In conclusion, these data suggest that Ech A is a potentiated marine drug which enhances mitochondrial biogenesis. PMID:25196935

  19. Mitochondrial transfer from Wharton's jelly-derived mesenchymal stem cells to mitochondria-defective cells recaptures impaired mitochondrial function.

    PubMed

    Lin, Hung-Yu; Liou, Chia-Wei; Chen, Shang-Der; Hsu, Te-Yao; Chuang, Jiin-Haur; Wang, Pei-Wen; Huang, Sheng-Teng; Tiao, Mao-Meng; Chen, Jin-Bor; Lin, Tsu-Kung; Chuang, Yao-Chung

    2015-05-01

    Adult mesenchymal stem cell (MSC)-conducted mitochondrial transfer has been recently shown to rescue cellular bioenergetics and prevent cell death caused by mitochondrial dysfunction. Wharton's jelly-derived MSCs (WJMSCs) harvested from postpartum umbilical cords are an accessible and abundant source of stem cells. This study aimed to determine the capability of WJMSCs to transfer their own mitochondria and rescue impaired oxidative phosphorylation (OXPHOS) and bioenergetics caused by mitochondrial DNA defects. To do this, WJMSCs were co-cultured with mitochondrial DNA (mtDNA)-depleted ρ(0) cells and the recapture of mitochondrial function was evaluated. WJMSCs were shown to be capable of transferring their own mitochondria into ρ(0) cells and underwent interorganellar mixture within these cells. Permissive culture media (BrdU-containing and pyruvate- and uridine-free) sieved out a survival cell population from the co-cultured WJMSCs (BrdU-sensitive) and ρ(0) cells (pyruvate/uridine-free). The survival cells had mtDNA identical to that of WJMSCs, whereas they expressed cellular markers identical to that of ρ(0) cells. Importantly, these ρ(0)-plus -WJMSC-mtDNA (ρ(+W)) cells recovered the expression of mtDNA-encoded proteins and exhibited functional oxygen consumption and respiratory control, as well as the activity of electron transport chain (ETC) complexes I, II, III and IV. In addition, ETC complex V-inhibitor-sensitive ATP production and metabolic shifting were also recovered. Furthermore, cellular behaviors including attachment-free proliferation, aerobic viability and OXPHOS-reliant cellular motility were also regained after mitochondrial transfer by WJMSCs. The therapeutic effect of WJMSCs-derived mitochondrial transfer was able to stably sustain for at least 45 passages. In conclusion, this study suggests that WJMSCs may serve as a potential therapeutic strategy for diseases linked to mitochondrial dysfunction through the donation of healthy

  20. Liver condition of Holstein cows affects mitochondrial function and fertilization ability of oocytes

    PubMed Central

    TANAKA, Hiroshi; TAKEO, Shun; ABE, Takahito; KIN, Airi; SHIRASUNA, Koumei; KUWAYAMA, Takehito; IWATA, Hisataka

    2016-01-01

    The aim of the present study was to examine the fertilization ability and mitochondrial function of oocytes derived from cows with or without liver damage. Oocytes were collected from the ovaries of cows with damaged livers (DL) and those of cows with healthy livers (HL), subjected to in vitro maturation, and fertilized in vitro. A significantly high abnormal fertilization rate was observed for oocytes from DL cows compared to oocytes from HL cows. The time to dissolve the zona pellucida by protease before fertilization was similar between the two liver conditions, whereas after fertilization treatment this time was shorter for DL cows than for HL cows. The percentage of oocytes with equivalent cortical granule distributions underneath the membrane was greater for in vitro matured oocytes from HL cows, whereas an immature distribution pattern was observed for oocytes from DL cows. In addition, a greater percentage of oocytes derived from HL cows released cortical granules following fertilization compared with oocytes from DL cows. Mitochondrial function determined by ATP content and membrane potential were similar at the germinal vesicle stage, but post-in vitro maturation, the oocytes derived from HL cows showed higher values than DL cows. The mitochondrial DNA copy number in oocytes was similar between the two liver conditions for both the germinal vesicle and post-in vitro maturation oocytes. In conclusion, liver damage induces low fertilization, likely because of incomplete cortical granule distribution and release, and the maturation of oocytes from DL cows contain low-functioning mitochondria compared to their HL counterparts. PMID:26832309

  1. Regulation of skeletal muscle mitochondrial function by nuclear receptors: implications for health and disease.

    PubMed

    Perez-Schindler, Joaquin; Philp, Andrew

    2015-10-01

    Skeletal muscle metabolism is highly dependent on mitochondrial function, with impaired mitochondrial biogenesis associated with the development of metabolic diseases such as insulin resistance and type 2 diabetes. Mitochondria display substantial plasticity in skeletal muscle, and are highly sensitive to levels of physical activity. It is thought that physical activity promotes mitochondrial biogenesis in skeletal muscle through increased expression of genes encoded in both the nuclear and the mitochondrial genome; however, how this process is co-ordinated at the cellular level is poorly understood. Nuclear receptors (NRs) are key signalling proteins capable of integrating environmental factors and mitochondrial function, thereby providing a potential link between exercise and mitochondrial biogenesis. The aim of this review is to highlight the function of NRs in skeletal muscle mitochondrial biogenesis and discuss the therapeutic potential of NRs for the management and treatment of chronic metabolic disease.

  2. Mitochondrial function, GSH and iron in neurodegeneration and Lewy body diseases.

    PubMed

    Gu, M; Owen, A D; Toffa, S E; Cooper, J M; Dexter, D T; Jenner, P; Marsden, C D; Schapira, A H

    1998-06-11

    The cause of neuronal loss in patients with idiopathic Parkinson's disease is unknown. Oxidative stress and complex I deficiency have both been identified in the substantia nigra in Parkinson's disease but their place in the sequence of events resulting in dopaminergic cell death is uncertain. We have analysed respiratory chain activity, iron and reduced glutathione concentrations in Parkinson's disease substantia innominata and in the cingulate cortex of patients with Parkinson's disease, Alzheimer's disease and dementia with Lewy bodies to investigate their association with neuronal death and Lewy body formation. No abnormalities of mitochondrial function, iron or reduced glutathione levels were identified in Parkinson's disease substantia innominata or cingulate cortex. Mitochondrial function also appeared to be unchanged in cingulate cortex from patients with Alzheimer's disease and from patients with dementia with Lewy bodies, however, iron concentrations were mildly increased in both, and reduced glutathione decreased only in Alzheimer's disease. These results confirm the anatomic specificity of the complex I deficiency and decreased levels of reduced glutathione within the Parkinson's disease brain and suggest that these parameters are not associated with cholinergic cell loss in Parkinson's disease nor with Lewy body formation in this or other diseases. We propose that our data support a 'two-hit' hypothesis for the cause of neuronal death in Parkinson's disease.

  3. Alteration of Fatty-Acid-Metabolizing Enzymes Affects Mitochondrial Form and Function in Hereditary Spastic Paraplegia

    PubMed Central

    Tesson, Christelle; Nawara, Magdalena; Salih, Mustafa A.M.; Rossignol, Rodrigue; Zaki, Maha S.; Al Balwi, Mohammed; Schule, Rebecca; Mignot, Cyril; Obre, Emilie; Bouhouche, Ahmed; Santorelli, Filippo M.; Durand, Christelle M.; Oteyza, Andrés Caballero; El-Hachimi, Khalid H.; Al Drees, Abdulmajeed; Bouslam, Naima; Lamari, Foudil; Elmalik, Salah A.; Kabiraj, Mohammad M.; Seidahmed, Mohammed Z.; Esteves, Typhaine; Gaussen, Marion; Monin, Marie-Lorraine; Gyapay, Gabor; Lechner, Doris; Gonzalez, Michael; Depienne, Christel; Mochel, Fanny; Lavie, Julie; Schols, Ludger; Lacombe, Didier; Yahyaoui, Mohamed; Al Abdulkareem, Ibrahim; Zuchner, Stephan; Yamashita, Atsushi; Benomar, Ali; Goizet, Cyril; Durr, Alexandra; Gleeson, Joseph G.; Darios, Frederic; Brice, Alexis; Stevanin, Giovanni

    2012-01-01

    Hereditary spastic paraplegia (HSP) is considered one of the most heterogeneous groups of neurological disorders, both clinically and genetically. The disease comprises pure and complex forms that clinically include slowly progressive lower-limb spasticity resulting from degeneration of the corticospinal tract. At least 48 loci accounting for these diseases have been mapped to date, and mutations have been identified in 22 genes, most of which play a role in intracellular trafficking. Here, we identified mutations in two functionally related genes (DDHD1 and CYP2U1) in individuals with autosomal-recessive forms of HSP by using either the classical positional cloning or a combination of whole-genome linkage mapping and next-generation sequencing. Interestingly, three subjects with CYP2U1 mutations presented with a thin corpus callosum, white-matter abnormalities, and/or calcification of the basal ganglia. These genes code for two enzymes involved in fatty-acid metabolism, and we have demonstrated in human cells that the HSP pathophysiology includes alteration of mitochondrial architecture and bioenergetics with increased oxidative stress. Our combined results focus attention on lipid metabolism as a critical HSP pathway with a deleterious impact on mitochondrial bioenergetic function. PMID:23176821

  4. Apigenin Protects Endothelial Cells from Lipopolysaccharide (LPS)-Induced Inflammation by Decreasing Caspase-3 Activation and Modulating Mitochondrial Function

    PubMed Central

    Duarte, Silvia; Arango, Daniel; Parihar, Arti; Hamel, Patrice; Yasmeen, Rumana; Doseff, Andrea I.

    2013-01-01

    Acute and chronic inflammation is characterized by increased reactive oxygen species (ROS) production, dysregulation of mitochondrial metabolism and abnormal immune function contributing to cardiovascular diseases and sepsis. Clinical and epidemiological studies suggest potential beneficial effects of dietary interventions in inflammatory diseases but understanding of how nutrients work remains insufficient. In the present study, we evaluated the effects of apigenin, an anti-inflammatory flavonoid abundantly found in our diet, in endothelial cells during inflammation. Here, we show that apigenin reduced lipopolysaccharide (LPS)-induced apoptosis by decreasing ROS production and the activity of caspase-3 in endothelial cells. Apigenin conferred protection against LPS-induced mitochondrial dysfunction and reestablished normal mitochondrial complex I activity, a major site of electron leakage and superoxide production, suggesting its ability to modulate endothelial cell metabolic function during inflammation. Collectively, these findings indicate that the dietary compound apigenin stabilizes mitochondrial function during inflammation preventing endothelial cell damage and thus provide new translational opportunities for the use of dietary components in the prevention and treatment of inflammatory diseases. PMID:23989609

  5. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    PubMed

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration.

  6. How mitochondrial dysfunction affects zebrafish development and cardiovascular function: an in vivo model for testing mitochondria-targeted drugs

    PubMed Central

    Pinho, Brígida R; Santos, Miguel M; Fonseca-Silva, Anabela; Valentão, Patrícia; Andrade, Paula B; Oliveira, Jorge M A

    2013-01-01

    Background and Purpose Mitochondria are a drug target in mitochondrial dysfunction diseases and in antiparasitic chemotherapy. While zebrafish is increasingly used as a biomedical model, its potential for mitochondrial research remains relatively unexplored. Here, we perform the first systematic analysis of how mitochondrial respiratory chain inhibitors affect zebrafish development and cardiovascular function, and assess multiple quinones, including ubiquinone mimetics idebenone and decylubiquinone, and the antimalarial atovaquone. Experimental Approach Zebrafish (Danio rerio) embryos were chronically and acutely exposed to mitochondrial inhibitors and quinone analogues. Concentration-response curves, developmental and cardiovascular phenotyping were performed together with sequence analysis of inhibitor-binding mitochondrial subunits in zebrafish versus mouse, human and parasites. Phenotype rescuing was assessed in co-exposure assays. Key Results Complex I and II inhibitors induced developmental abnormalities, but their submaximal toxicity was not additive, suggesting active alternative pathways for complex III feeding. Complex III inhibitors evoked a direct normal-to-dead transition. ATP synthase inhibition arrested gastrulation. Menadione induced hypochromic anaemia when transiently present following primitive erythropoiesis. Atovaquone was over 1000-fold less lethal in zebrafish than reported for Plasmodium falciparum, and its toxicity partly rescued by the ubiquinone precursor 4-hydroxybenzoate. Idebenone and decylubiquinone delayed rotenone- but not myxothiazol- or antimycin-evoked cardiac dysfunction. Conclusion and Implications This study characterizes pharmacologically induced mitochondrial dysfunction phenotypes in zebrafish, laying the foundation for comparison with future studies addressing mitochondrial dysfunction in this model organism. It has relevant implications for interpreting zebrafish disease models linked to complex I/II inhibition. Further

  7. Mitochondrial function in pluripotent stem cells and cellular reprogramming.

    PubMed

    Bukowiecki, Raul; Adjaye, James; Prigione, Alessandro

    2014-01-01

    Mitochondria are organelles playing pivotal roles in a range of diverse cellular functions, from energy generation to redox homeostasis and apoptosis regulation. Their loss of functionality may indeed contribute to the development of aging and age-related neurodegenerative disorders. Recently, mitochondria have been shown to exhibit peculiar features in pluripotent stem cells (PSCs). Moreover, an extensive restructuring of mitochondria has been observed during the process of cellular reprogramming, i.e. the conversion of somatic cells into induced pluripotent stem cells (iPSCs). These transformation events impact mitochondrial number, morphology, activity, cellular metabolism, and mtDNA integrity. PSCs retain the capability to self-renew indefinitely and to give rise to virtually any cell type of the body and thus hold great promise in medical research. Understanding the mitochondrial properties of PSCs, and how to modulate them, may thus help to shed light on the features of stemness and possibly increase our knowledge on cellular identity and differentiation pathways. Here, we review these recent findings and discuss their implications in the context of stem cell biology, aging research, and regenerative medicine.

  8. Abnormal ventilation scans in middle-aged smokers. Comparison with tests of overall lung function

    SciTech Connect

    Barter, S.J.; Cunningham, D.A.; Lavender, J.P.; Gibellino, F.; Connellan, S.J.; Pride, N.B.

    1985-07-01

    The uniformity of regional ventilation during tidal breathing has been assessed using continuous inhalation of krypton-81m in 43 male, lifelong nonsmokers and 46 male, current cigarette smokers (mean daily consumption 24.1 cigarettes/day) between 44 and 61 yr of age and with mild or no respiratory symptoms. All subjects had normal chest radiographs. The results of the ventilation scans were compared with tests of overall lung function (spirometry, maximal expiratory flow-volume curves, and single-breath N2 test). Diffuse abnormalities of the ventilation scan were found in 19 (41%) of the 46 smokers but in none of the nonsmokers. Focal abnormalities were found in 7 smokers and 3 nonsmokers. Smokers showed the expected abnormalities in overall lung function (reduced FEV1 and VC, increased single-breath N2 slope, and closing volume), but in individual smokers there was only a weak relation between the severity of abnormality of overall lung function and an abnormal ventilation scan. Abnormal scans could be found when overall lung function was normal and were not invariably found when significant abnormalities in FEV1/VC or N2 slope were present. There was no relation between the presence of chronic expectoration and an abnormal scan. The prognostic significance of an abnormal ventilation scan in such smokers remains to be established.

  9. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats.

    PubMed

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨ m ), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress.

  10. Avocado Oil Improves Mitochondrial Function and Decreases Oxidative Stress in Brain of Diabetic Rats

    PubMed Central

    Ortiz-Avila, Omar; Esquivel-Martínez, Mauricio; Olmos-Orizaba, Berenice Eridani; Saavedra-Molina, Alfredo; Rodriguez-Orozco, Alain R.; Cortés-Rojo, Christian

    2015-01-01

    Diabetic encephalopathy is a diabetic complication related to the metabolic alterations featuring diabetes. Diabetes is characterized by increased lipid peroxidation, altered glutathione redox status, exacerbated levels of ROS, and mitochondrial dysfunction. Although the pathophysiology of diabetic encephalopathy remains to be clarified, oxidative stress and mitochondrial dysfunction play a crucial role in the pathogenesis of chronic diabetic complications. Taking this into consideration, the aim of this work was to evaluate the effects of 90-day avocado oil intake in brain mitochondrial function and oxidative status in streptozotocin-induced diabetic rats (STZ rats). Avocado oil improves brain mitochondrial function in diabetic rats preventing impairment of mitochondrial respiration and mitochondrial membrane potential (ΔΨm), besides increasing complex III activity. Avocado oil also decreased ROS levels and lipid peroxidation and improved the GSH/GSSG ratio as well. These results demonstrate that avocado oil supplementation prevents brain mitochondrial dysfunction induced by diabetes in association with decreased oxidative stress. PMID:26180820

  11. A 31P magnetic resonance spectroscopy study of mitochondrial function in skeletal muscle of patients with Parkinson's disease.

    PubMed

    Taylor, D J; Krige, D; Barnes, P R; Kemp, G J; Carroll, M T; Mann, V M; Cooper, J M; Marsden, C D; Schapira, A H

    1994-08-01

    The activity of complex I of the respiratory chain is decreased in the substantia nigra of patients with Parkinson's disease (PD) but the presence of this defect in skeletal muscle is controversial. Therefore, the mitochondrial function of skeletal muscle in patients with PD was investigated in vivo using 31P magnetic resonance spectroscopy. Results from 7 PD patients, 11 age matched controls and 9 mitochondrial myopathy patients with proven complex I deficiency were obtained from finger flexor muscle at rest, during exercise and in recovery from exercise. In resting muscle, the patients with mitochondrial myopathy showed a low PCr/ATP ratio, a low phosphorylation potential, a high P(i)/PCr ratio and a high calculated free [ADP]. During exercise, stores of high energy phosphate were depleted more rapidly than normal, while in recovery, the concentration of phosphocreatine and free ADP returned to pre-exercise values more slowly than normal. In contrast, the patients with PD were not significantly different from normal for any of these variables, and no abnormality of muscle energetics was detected. Three of the PD patients also had mitochondrial function assessed biochemically in muscle biopsies. No respiratory chain defect was identified in any of these patients by polarography or enzyme analysis when compared with age-matched controls. These results suggest that skeletal muscle is not a suitable tissue for the investigation and identification of the biochemical basis of the nigral complex I deficiency in PD.

  12. Accumulation of Mitochondrial DNA Mutations Disrupts Cardiac Progenitor Cell Function and Reduces Survival.

    PubMed

    Orogo, Amabel M; Gonzalez, Eileen R; Kubli, Dieter A; Baptista, Igor L; Ong, Sang-Bing; Prolla, Tomas A; Sussman, Mark A; Murphy, Anne N; Gustafsson, Åsa B

    2015-09-04

    Transfer of cardiac progenitor cells (CPCs) improves cardiac function in heart failure patients. However, CPC function is reduced with age, limiting their regenerative potential. Aging is associated with numerous changes in cells including accumulation of mitochondrial DNA (mtDNA) mutations, but it is unknown how this impacts CPC function. Here, we demonstrate that acquisition of mtDNA mutations disrupts mitochondrial function, enhances mitophagy, and reduces the replicative and regenerative capacities of the CPCs. We show that activation of differentiation in CPCs is associated with expansion of the mitochondrial network and increased mitochondrial oxidative phosphorylation. Interestingly, mutant CPCs are deficient in mitochondrial respiration and rely on glycolysis for energy. In response to differentiation, these cells fail to activate mitochondrial respiration. This inability to meet the increased energy demand leads to activation of cell death. These findings demonstrate the consequences of accumulating mtDNA mutations and the importance of mtDNA integrity in CPC homeostasis and regenerative potential.

  13. Tridecanoin is anticonvulsant, antioxidant, and improves mitochondrial function.

    PubMed

    Tan, Kah Ni; Carrasco-Pozo, Catalina; McDonald, Tanya S; Puchowicz, Michelle; Borges, Karin

    2016-07-14

    The hypothesis that chronic feeding of the triglycerides of octanoate (trioctanoin) and decanoate (tridecanoin) in "a regular non-ketogenic diet" is anticonvulsant was tested and possible mechanisms of actions were subsequently investigated. Chronic feeding of 35E% of calories from tridecanoin, but not trioctanoin, was reproducibly anticonvulsant in two acute CD1 mouse seizure models. The levels of beta-hydroxybutyrate in plasma and brain were not significantly increased by either treatment relative to control diet. The respective decanoate and octanoate levels are 76 µM and 33 µM in plasma and 1.17 and 2.88 nmol/g in brain. Tridecanoin treatment did not alter the maximal activities of several glycolytic enzymes, suggesting that there is no reduction in glycolysis contributing to anticonvulsant effects. In cultured astrocytes, 200 µM of octanoic and decanoic acids increased basal respiration and ATP turnover, suggesting that both medium chain fatty acids are used as fuel. Only decanoic acid increased mitochondrial proton leak which may reduce oxidative stress. In mitochondria isolated from hippocampal formations, tridecanoin increased respiration linked to ATP synthesis, indicating that mitochondrial metabolic functions are improved. In addition, tridecanoin increased the plasma antioxidant capacity and hippocampal mRNA levels of heme oxygenase 1, and FoxO1.

  14. Intracellular shuttling and mitochondrial function of thioredoxin-interacting protein.

    PubMed

    Saxena, Geetu; Chen, Junqin; Shalev, Anath

    2010-02-05

    The thioredoxin-interacting protein TXNIP is a ubiquitously expressed redox protein that promotes apoptosis. Recently, we found that TXNIP deficiency protects against type 1 and 2 diabetes by inhibiting beta cell apoptosis and maintaining pancreatic beta cell mass, indicating that TXNIP plays a key role in beta cell biology. However, very little is known about the intracellular localization and function of TXNIP, and although TXNIP has been thought to be a cytoplasmic protein, our immunohistochemistry studies in beta cells surprisingly revealed a nuclear TXNIP localization, suggesting that TXNIP may shuttle within the cell. Using immunohistochemistry/confocal imaging and cell fractionation/co-immunoprecipitation, we found that, under physiological conditions, TXNIP is localized primarily in the nucleus of pancreatic beta cells, whereas oxidative stress leads to TXNIP shuttling into the mitochondria. In mitochondria, TXNIP binds to and oxidizes Trx2, thereby reducing Trx2 binding to ASK1 and allowing for ASK1 phosphorylation/activation, resulting in induction of the mitochondrial pathway of apoptosis with cytochrome c release and caspase-3 cleavage. TXNIP overexpression and Trx2 (but not cytosolic Trx1) silencing mimic these effects. Thus, we discovered that TXNIP shuttles between subcellular compartments in response to oxidative stress and identified a novel redox-sensitive mitochondrial TXNIP-Trx2-ASK1 signaling cascade.

  15. The Use of Neuroimaging in the Diagnosis of Mitochondrial Disease

    ERIC Educational Resources Information Center

    Friedman, Seth D.; Shaw, Dennis W. W.; Ishak, Gisele; Gropman, Andrea L.; Saneto, Russell P.

    2010-01-01

    Mutations in nuclear and mitochondrial DNA impacting mitochondrial function result in disease manifestations ranging from early death to abnormalities in all major organ systems and to symptoms that can be largely confined to muscle fatigue. The definitive diagnosis of a mitochondrial disorder can be difficult to establish. When the constellation…

  16. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    NASA Astrophysics Data System (ADS)

    Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  17. Receptor-interacting protein 140 overexpression impairs cardiac mitochondrial function and accelerates the transition to heart failure in chronically infarcted rats.

    PubMed

    Chen, YanFang; Chen, ShaoRui; Yue, ZhongBao; Zhang, YiQiang; Zhou, ChangHua; Cao, WeiWei; Chen, Xi; Zhang, LuanKun; Liu, PeiQing

    2017-02-01

    Heart failure (HF) is associated with myocardial energy metabolic abnormality. Receptor-interacting protein 140 (RIP140) is an important transcriptional cofactor for maintaining energy balance in high-oxygen consumption tissues. However, the role of RIP140 in the pathologic processes of HF remains to be elucidated. In this study, we investigated the role of RIP140 in mitochondrial and cardiac functions in rodent hearts under myocardial infarction (MI) stress. MI was created by a permanent ligation of left anterior descending coronary artery and exogenous expression of RIP140 by adenovirus (Ad) vector delivery. Four weeks after MI or Ad-RIP140 treatment, cardiac function was assessed by echocardiographic and hemodynamics analyses, and the mitochondrial function was determined by mitochondrial genes expression, biogenesis, and respiration rates. In Ad-RIP140 or MI group, a subset of metabolic genes changed, accompanied with slight reductions in mitochondrial biogenesis and respiration rates but no change in adenosine triphosphate (ATP) content. Cardiac malfunction was compensated. However, under MI stress, rats overexpressing RIP140 exhibited greater repressions in mitochondrial genes, state 3 respiration rates, respiration control ratio, and ATP content and had further deteriorated cardiac malfunction. In conclusion, RIP140 overexpression leads to comparable cardiac function as resulted from MI, but RIP140 aggravates metabolic repression, mitochondrial malfunction, and further accelerates the transition to HF in response to MI stress.

  18. Effect of fluoroquinolones on mitochondrial function in pancreatic beta cells.

    PubMed

    Ghaly, Hany; Jörns, Anne; Rustenbeck, Ingo

    2014-02-14

    Hyper- and hypoglycaemias are known side effects of fluoroquinolone antibiotics, resulting in a number of fatalities. Fluoroquinolone-induced hypoglycaemias are due to stimulated insulin release by the inhibition of the KATP channel activity of the beta cell. Recently, it was found that fluoroquinolones were much less effective on metabolically intact beta cells than on open cell preparations. Thus the intracellular effects of gatifloxacin, moxifloxacin and ciprofloxacin were investigated by measuring NAD(P)H- and FAD-autofluorescence, the mitochondrial membrane potential, and the adenine nucleotide content of isolated pancreatic islets and beta cells. 100 μM of moxifloxacin abolished the NAD(P)H increase elicited by 20mM glucose, while gatifloxacin diminished it and ciprofloxacin had no significant effect. This pattern was also seen with islets from SUR1 Ko mice, which have no functional KATP channels. Moxifloxacin also diminished the glucose-induced decrease of FAD-fluorescence, which reflects the intramitochondrial production of reducing equivalents. Moxifloxacin, but not ciprofloxacin or gatifloxacin significantly reduced the effect of 20mM glucose on the ATP/ADP ratio. The mitochondrial hyperpolarization caused by 20mM glucose was partially antagonized by moxifloxacin, but not by ciprofloxacin or gatifloxacin. Ultrastructural analyses after 20 h tissue culture showed that all three compounds (at 10 and 100 μM) diminished the number of insulin secretory granules and that gatifloxacin and ciprofloxacin, but not moxifloxacin induced fission/fusion configurations of the beta cell mitochondria. In conclusion, fluoroquinolones affect the function of the mitochondria in pancreatic beta cells which may diminish the insulinotropic effect of KATP channel closure and contribute to the hyperglycaemic episodes.

  19. Glutamatergic Neurotransmission Links Sensitivity to Volatile Anesthetics with Mitochondrial Function.

    PubMed

    Zimin, Pavel I; Woods, Christian B; Quintana, Albert; Ramirez, Jan-Marino; Morgan, Philip G; Sedensky, Margaret M

    2016-08-22

    An enigma of modern medicine has persisted for over 150 years. The mechanisms by which volatile anesthetics (VAs) produce their effects (loss of consciousness, analgesia, amnesia, and immobility) remain an unsolved mystery. Many attractive putative molecular targets have failed to produce a significant effect when genetically tested in whole-animal models [1-3]. However, mitochondrial defects increase VA sensitivity in diverse organisms from nematodes to humans [4-6]. Ndufs4 knockout (KO) mice lack a subunit of mitochondrial complex I and are strikingly hypersensitive to VAs yet resistant to the intravenous anesthetic ketamine [7]. The change in VA sensitivity is the largest reported for a mammal. Limiting NDUFS4 loss to a subset of glutamatergic neurons recapitulates the VA hypersensitivity of Ndufs4(KO) mice, while loss in GABAergic or cholinergic neurons does not. Baseline electrophysiologic function of CA1 pyramidal neurons does not differ between Ndufs4(KO) and control mice. Isoflurane concentrations that anesthetize only Ndufs4(KO) mice (0.6%) decreased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) only in Ndufs4(KO) CA1 neurons, while concentrations effective in control mice (1.2%) decreased sEPSC frequencies in both control and Ndufs4(KO) CA1 pyramidal cells. Spontaneous inhibitory postsynaptic currents (sIPSCs) were not differentially affected between genotypes. The effects of isoflurane were similar on evoked field excitatory postsynaptic potentials (fEPSPs) and paired pulse facilitation (PPF) in KO and control hippocampal slices. We propose that CA1 presynaptic excitatory neurotransmission is hypersensitive to isoflurane in Ndufs4(KO) mice due to the inhibition of pre-existing reduced complex I function, reaching a critical reduction that can no longer meet metabolic demands.

  20. Calcium trafficking integrates endoplasmic reticulum function with mitochondrial bioenergetics

    PubMed Central

    Kaufman, Randal J.; Malhotra, Jyoti D.

    2014-01-01

    Calcium homeostasis is central to all cellular functions and has been studied for decades. Calcium acts as a critical second messenger for both extracellular and intracellular signaling and is fundamental in cell life and death decisions [1]. The calcium gradient in the cell is coupled with an inherent ability of the divalent cation to reversibly bind multiple target biological molecules to generate an extremely versatile signaling system [2]. Calcium signals are used by the cell to control diverse processes as development, neurotransmitter release, muscle contraction, metabolism, autophagy and cell death. “Cellular calcium overload” is detrimental to cellular health, resulting in massive activation of proteases and phospholipases leading to cell death [3]. Historically, cell death associated with calcium ion perturbations has been primarily recognized as necrosis. Recent evidence clearly associate changes in calcium ion concentrations with more sophisticated forms of cellular demise, including apoptosis [4] [5] [6] [7]. Although the endoplasmic reticulum (ER) serves as the primary calcium store in the metazoan cell, dynamic calcium release to the cytosol, mitochondria, nuclei and other organelles orchestrate diverse coordinated responses. Most evidence supports that calcium transport from the ER to mitochondria plays a significant role in regulating cellular bioenergetics, production of reactive oxygen species, induction of autophagy and apoptosis. Recently, molecular identities that mediate calcium traffic between the ER and mitochondria have been discovered [8] [9] [10]. The next questions are how they are regulated for exquisite tight control of ER – mitochondrial calcium dynamics. This review attempts to summarize recent advances in the role of calcium in regulation of ER and mitochondrial function. PMID:24690484

  1. Specific requirements of nonbilayer phospholipids in mitochondrial respiratory chain function and formation

    PubMed Central

    Baker, Charli D.; Basu Ball, Writoban; Pryce, Erin N.; Gohil, Vishal M.

    2016-01-01

    Mitochondrial membrane phospholipid composition affects mitochondrial function by influencing the assembly of the mitochondrial respiratory chain (MRC) complexes into supercomplexes. For example, the loss of cardiolipin (CL), a signature non–bilayer-forming phospholipid of mitochondria, results in disruption of MRC supercomplexes. However, the functions of the most abundant mitochondrial phospholipids, bilayer-forming phosphatidylcholine (PC) and non–bilayer-forming phosphatidylethanolamine (PE), are not clearly defined. Using yeast mutants of PE and PC biosynthetic pathways, we show a specific requirement for mitochondrial PE in MRC complex III and IV activities but not for their formation, whereas loss of PC does not affect MRC function or formation. Unlike CL, mitochondrial PE or PC is not required for MRC supercomplex formation, emphasizing the specific requirement of CL in supercomplex assembly. Of interest, PE biosynthesized in the endoplasmic reticulum (ER) can functionally substitute for the lack of mitochondrial PE biosynthesis, suggesting the existence of PE transport pathway from ER to mitochondria. To understand the mechanism of PE transport, we disrupted ER–mitochondrial contact sites formed by the ERMES complex and found that, although not essential for PE transport, ERMES facilitates the efficient rescue of mitochondrial PE deficiency. Our work highlights specific roles of non–bilayer-forming phospholipids in MRC function and formation. PMID:27226479

  2. Screen for abnormal mitochondrial phenotypes in mouse embryonic stem cells identifies a model for succinyl-CoA ligase deficiency and mtDNA depletion

    PubMed Central

    Donti, Taraka R.; Stromberger, Carmen; Ge, Ming; Eldin, Karen W.; Craigen, William J.; Graham, Brett H.

    2014-01-01

    ABSTRACT Mutations in subunits of succinyl-CoA synthetase/ligase (SCS), a component of the citric acid cycle, are associated with mitochondrial encephalomyopathy, elevation of methylmalonic acid (MMA), and mitochondrial DNA (mtDNA) depletion. A FACS-based retroviral-mediated gene trap mutagenesis screen in mouse embryonic stem (ES) cells for abnormal mitochondrial phenotypes identified a gene trap allele of Sucla2 (Sucla2SAβgeo), which was used to generate transgenic mice. Sucla2 encodes the ADP-specific β-subunit isoform of SCS. Sucla2SAβgeo homozygotes exhibited recessive lethality, with most mutants dying late in gestation (e18.5). Mutant placenta and embryonic (e17.5) brain, heart and muscle showed varying degrees of mtDNA depletion (20–60%). However, there was no mtDNA depletion in mutant liver, where the gene is not normally expressed. Elevated levels of MMA were observed in embryonic brain. SCS-deficient mouse embryonic fibroblasts (MEFs) demonstrated a 50% reduction in mtDNA content compared with wild-type MEFs. The mtDNA depletion resulted in reduced steady state levels of mtDNA encoded proteins and multiple respiratory chain deficiencies. mtDNA content could be restored by reintroduction of Sucla2. This mouse model of SCS deficiency and mtDNA depletion promises to provide insights into the pathogenesis of mitochondrial diseases with mtDNA depletion and into the biology of mtDNA maintenance. In addition, this report demonstrates the power of a genetic screen that combines gene trap mutagenesis and FACS analysis in mouse ES cells to identify mitochondrial phenotypes and to develop animal models of mitochondrial dysfunction. PMID:24271779

  3. Huaier Cream Protects against Adriamycin-Induced Nephropathy by Restoring Mitochondrial Function via PGC-1α Upregulation

    PubMed Central

    Che, Ruochen; Zhu, Chunhua; Ding, Guixia; Zhao, Min; Bai, Mi; Jia, Zhanjun; Zhang, Aihua; Huang, Songming

    2015-01-01

    The mechanism by which Huaier, a Chinese traditional medicine, protects podocytes remains unclear. We designed the present study to examine whether mitochondrial function restored by PGC-1α serves as the major target of Huaier cream in protecting ADR nephropathy. After ADR administration, the podocytes exhibited remarkable cell injury and mitochondrial dysfunction. Additionally, ADR also reduced PGC-1α both in vivo and in vitro. Following the Huaier treatment, the notable downregulation of PGC-1α and its downstream molecule mitochondrial transcription factor A (TFAM) were almost entirely blocked. Correspondingly, Huaier markedly ameliorated ADR-induced podocyte injury and mitochondrial dysfunction in both rat kidneys and incubated cells as it inhibited the decrease of nephrin and podocin expression, mtDNA copy number, MMP, and ATP content. Transmission electron microscopy result also showed that Huaier protected mitochondria against ADR-induced severe mitophagy and abnormal changes of ultrastructural morphology. In conclusion, Huaier can protect podocytes against ADR-induced cytotoxicity possibly by reversing the dysfunction of mitochondria via PGC-1α overexpression, which may be a novel therapeutic drug target in glomerular diseases. PMID:25861251

  4. The Importance of Cardiolipin Synthase for Mitochondrial Ultrastructure, Respiratory Function, Plant Development, and Stress Responses in Arabidopsis[W

    PubMed Central

    Pineau, Bernard; Bourge, Mickaël; Marion, Jessica; Mauve, Caroline; Gilard, Francoise; Maneta-Peyret, Lilly; Moreau, Patrick; Satiat-Jeunemaître, Béatrice; Brown, Spencer C.; De Paepe, Rosine; Danon, Antoine

    2013-01-01

    Cardiolipin (CL) is the signature phospholipid of the mitochondrial inner membrane. In animals and yeast (Saccharomyces cerevisiae), CL depletion affects the stability of respiratory supercomplexes and is thus crucial to the energy metabolism of obligate aerobes. In eukaryotes, the last step of CL synthesis is catalyzed by CARDIOLIPIN SYNTHASE (CLS), encoded by a single-copy gene. Here, we characterize a cls mutant in Arabidopsis thaliana, which is devoid of CL. In contrast to yeast cls, where development is little affected, Arabidopsis cls seedlings are slow developing under short-day conditions in vitro and die if they are transferred to long-day (LD) conditions. However, when transferred to soil under LD conditions under low light, cls plants can reach the flowering stage, but they are not fertile. The cls mitochondria display abnormal ultrastructure and reduced content of respiratory complex I/complex III supercomplexes. The marked accumulation of tricarboxylic acid cycle derivatives and amino acids demonstrates mitochondrial dysfunction. Mitochondrial and chloroplastic antioxidant transcripts are overexpressed in cls leaves, and cls protoplasts are more sensitive to programmed cell death effectors, UV light, and heat shock. Our results show that CLS is crucial for correct mitochondrial function and development in Arabidopsis under both optimal and stress conditions. PMID:24151294

  5. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    PubMed Central

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  6. Mitochondrial proteolytic stress induced by loss of mortalin function is rescued by Parkin and PINK1

    PubMed Central

    Burbulla, L F; Fitzgerald, J C; Stegen, K; Westermeier, J; Thost, A-K; Kato, H; Mokranjac, D; Sauerwald, J; Martins, L M; Woitalla, D; Rapaport, D; Riess, O; Proikas-Cezanne, T; Rasse, T M; Krüger, R

    2014-01-01

    The mitochondrial chaperone mortalin was implicated in Parkinson's disease (PD) because of its reduced levels in the brains of PD patients and disease-associated rare genetic variants that failed to rescue impaired mitochondrial integrity in cellular knockdown models. To uncover the molecular mechanisms underlying mortalin-related neurodegeneration, we dissected the cellular surveillance mechanisms related to mitochondrial quality control, defined the effects of reduced mortalin function at the molecular and cellular levels and investigated the functional interaction of mortalin with Parkin and PINK1, two PD-related proteins involved in mitochondrial homeostasis. We found that reduced mortalin function leads to: (1) activation of the mitochondrial unfolded protein response (UPR(mt)), (2) increased susceptibility towards intramitochondrial proteolytic stress, (3) increased autophagic degradation of fragmented mitochondria and (4) reduced mitochondrial mass in human cells in vitro and ex vivo. These alterations caused increased vulnerability toward apoptotic cell death. Proteotoxic perturbations induced by either partial loss of mortalin or chemical induction were rescued by complementation with native mortalin, but not disease-associated mortalin variants, and were independent of the integrity of autophagic pathways. However, Parkin and PINK1 rescued loss of mortalin phenotypes via increased lysosomal-mediated mitochondrial clearance and required intact autophagic machinery. Our results on loss of mortalin function reveal a direct link between impaired mitochondrial proteostasis, UPR(mt) and PD and show that effective removal of dysfunctional mitochondria via either genetic (PINK1 and Parkin overexpression) or pharmacological intervention (rapamycin) may compensate mitochondrial phenotypes. PMID:24743735

  7. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    PubMed

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  8. Ciprofloxacin does not inhibit mitochondrial functions but other antibiotics do.

    PubMed Central

    Riesbeck, K; Bredberg, A; Forsgren, A

    1990-01-01

    At clinical concentrations, ciprofloxacin did not inhibit mitochondrial DNA replication, oxidative phosphorylation, protein synthesis, or mitochondrial mass (transmembrane potential). No difference in supercoiled forms of DNA was observed. The tetracyclines and chloramphenicol inhibited protein synthesis at clinically achievable concentrations, while rifampin, fusidic acid, and clindamycin did not. PMID:2327755

  9. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury.

    PubMed

    Stevens, Michael C; Lovejoy, David; Kim, Jinsuh; Oakes, Howard; Kureshi, Inam; Witt, Suzanne T

    2012-06-01

    Several reports show that traumatic brain injury (TBI) results in abnormalities in the coordinated activation among brain regions. Because most previous studies examined moderate/severe TBI, the extensiveness of functional connectivity abnormalities and their relationship to postconcussive complaints or white matter microstructural damage are unclear in mild TBI. This study characterized widespread injury effects on multiple integrated neural networks typically observed during a task-unconstrained "resting state" in mild TBI patients. Whole brain functional connectivity for twelve separate networks was identified using independent component analysis (ICA) of fMRI data collected from thirty mild TBI patients mostly free of macroscopic intracerebral injury and thirty demographically-matched healthy control participants. Voxelwise group comparisons found abnormal mild TBI functional connectivity in every brain network identified by ICA, including visual processing, motor, limbic, and numerous circuits believed to underlie executive cognition. Abnormalities not only included functional connectivity deficits, but also enhancements possibly reflecting compensatory neural processes. Postconcussive symptom severity was linked to abnormal regional connectivity within nearly every brain network identified, particularly anterior cingulate. A recently developed multivariate technique that identifies links between whole brain profiles of functional and anatomical connectivity identified several novel mild TBI abnormalities, and represents a potentially important new tool in the study of the complex neurobiological sequelae of TBI.

  10. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury.

    PubMed

    Jesinkey, Sean R; Funk, Jason A; Stallons, L Jay; Wills, Lauren P; Megyesi, Judit K; Beeson, Craig C; Schnellmann, Rick G

    2014-06-01

    Mitochondrial biogenesis may be an adaptive response necessary for meeting the increased metabolic and energy demands during organ recovery after acute injury, and renal mitochondrial dysfunction has been implicated in the pathogenesis of AKI. We proposed that stimulation of mitochondrial biogenesis 24 hours after ischemia/reperfusion (I/R)-induced AKI, when renal dysfunction is maximal, would accelerate recovery of mitochondrial and renal function in mice. We recently showed that formoterol, a potent, highly specific, and long-acting β2-adrenergic agonist, induces renal mitochondrial biogenesis in naive mice. Animals were subjected to sham or I/R-induced AKI, followed by once-daily intraperitoneal injection with vehicle or formoterol beginning 24 hours after surgery and continuing through 144 hours after surgery. Treatment with formoterol restored renal function, rescued renal tubules from injury, and diminished necrosis after I/R-induced AKI. Concomitantly, formoterol stimulated mitochondrial biogenesis and restored the expression and function of mitochondrial proteins. Taken together, these results provide proof of principle that a novel drug therapy to treat AKI, and potentially other acute organ failures, works by restoring mitochondrial function and accelerating the recovery of renal function after injury has occurred.

  11. Improvement of mitochondrial function and dynamics by the metabolic enhancer piracetam.

    PubMed

    Stockburger, Carola; Kurz, Christopher; Koch, Konrad A; Eckert, Schamim H; Leuner, Kristina; Müller, Walter E

    2013-10-01

    The metabolic enhancer piracetam is used in many countries to treat cognitive impairment in aging, brain injuries, as well as dementia such as AD (Alzheimer's disease). As a specific feature of piracetam, beneficial effects are usually associated with mitochondrial dysfunction. In previous studies we were able to show that piracetam enhanced ATP production, mitochondrial membrane potential as well as neurite outgrowth in cell and animal models for aging and AD. To investigate further the effects of piracetam on mitochondrial function, especially mitochondrial fission and fusion events, we decided to assess mitochondrial morphology. Human neuroblastoma cells were treated with the drug under normal conditions and under conditions imitating aging and the occurrence of ROS (reactive oxygen species) as well as in stably transfected cells with the human wild-type APP (amyloid precursor protein) gene. This AD model is characterized by expressing only 2-fold more human Aβ (amyloid β-peptide) compared with control cells and therefore representing very early stages of AD when Aβ levels gradually increase over decades. Interestingly, these cells exhibit an impaired mitochondrial function and morphology under baseline conditions. Piracetam is able to restore this impairment and shifts mitochondrial morphology back to elongated forms, whereas there is no effect in control cells. After addition of a complex I inhibitor, mitochondrial morphology is distinctly shifted to punctate forms in both cell lines. Under these conditions piracetam is able to ameliorate morphology in cells suffering from the mild Aβ load, as well as mitochondrial dynamics in control cells.

  12. Etiologic factors in long-term respiratory function abnormalities following esophageal atresia repair.

    PubMed

    LeSouëf, P N; Myers, N A; Landau, L I

    1987-10-01

    Recurrent respiratory illnesses are frequent in infants following repair of esophageal atresia and functional abnormalities of respiratory and esophageal function are often seen in older children. Recurrent aspiration is a potential cause of these respiratory abnormalities, but a relationship between abnormalities of gastrointestinal and respiratory mechanics has not been adequately investigated. We sought an association between lower esophageal sphincter (LES) incompetence, gastroesophageal reflux (GER), and respiratory function abnormalities in 18 subjects (age 12 to 21 years) following repair of esophageal atresia (Vogt type 111B). In each subject, measurements were made of spirometry, lung volumes assessed by plethysmography, esophageal manometry recorded using a constantly infused fluid-filled trilumen catheter to assess LES pressure and esophageal motility, and esophageal pH monitoring to detect GER. Subjects were grouped according to the presence or absence of a radiologically supported diagnosis of pneumonia in the first 4 years of life. Lung volumes were mildly but significantly decreased in the "pneumonia" group compared with the "nonpneumonia" group. There was no association between abnormalities of respiratory function and abnormal LES pressure or the presence of GER. These data suggest that pneumonia in esophageal atresia infants is associated with mild long-term lung damage. LES dysfunction and GER do not appear to play a major role in this process.

  13. Regulation of mitochondrial morphology and function by stearoylation of TFR1.

    PubMed

    Senyilmaz, Deniz; Virtue, Sam; Xu, Xiaojun; Tan, Chong Yew; Griffin, Julian L; Miller, Aubry K; Vidal-Puig, Antonio; Teleman, Aurelio A

    2015-09-03

    Mitochondria are involved in a variety of cellular functions, including ATP production, amino acid and lipid biogenesis and breakdown, signalling and apoptosis. Mitochondrial dysfunction has been linked to neurodegenerative diseases, cancer and ageing. Although transcriptional mechanisms that regulate mitochondrial abundance are known, comparatively little is known about how mitochondrial function is regulated. Here we identify the metabolite stearic acid (C18:0) and human transferrin receptor 1 (TFR1; also known as TFRC) as mitochondrial regulators. We elucidate a signalling pathway whereby C18:0 stearoylates TFR1, thereby inhibiting its activation of JNK signalling. This leads to reduced ubiquitination of mitofusin via HUWE1, thereby promoting mitochondrial fusion and function. We find that animal cells are poised to respond to both increases and decreases in C18:0 levels, with increased C18:0 dietary intake boosting mitochondrial fusion in vivo. Intriguingly, dietary C18:0 supplementation can counteract the mitochondrial dysfunction caused by genetic defects such as loss of the Parkinson's disease genes Pink or Parkin in Drosophila. This work identifies the metabolite C18:0 as a signalling molecule regulating mitochondrial function in response to diet.

  14. An Artificial Reaction Promoter Modulates Mitochondrial Functions via Chemically Promoting Protein Acetylation

    PubMed Central

    Shindo, Yutaka; Komatsu, Hirokazu; Hotta, Kohji; Ariga, Katsuhiko; Oka, Kotaro

    2016-01-01

    Acetylation, which modulates protein function, is an important process in intracellular signalling. In mitochondria, protein acetylation regulates a number of enzymatic activities and, therefore, modulates mitochondrial functions. Our previous report showed that tributylphosphine (PBu3), an artificial reaction promoter that promotes acetylransfer reactions in vitro, also promotes the reaction between acetyl-CoA and an exogenously introduced fluorescent probe in mitochondria. In this study, we demonstrate that PBu3 induces the acetylation of mitochondrial proteins and a decrease in acetyl-CoA concentration in PBu3-treated HeLa cells. This indicates that PBu3 can promote the acetyltransfer reaction between acetyl-CoA and mitochondrial proteins in living cells. PBu3-induced acetylation gradually reduced mitochondrial ATP concentrations in HeLa cells without changing the cytoplasmic ATP concentration, suggesting that PBu3 mainly affects mitochondrial functions. In addition, pyruvate, which is converted into acetyl-CoA in mitochondria and transiently increases ATP concentrations in the absence of PBu3, elicited a further decrease in mitochondrial ATP concentrations in the presence of PBu3. Moreover, the application and removal of PBu3 reversibly alternated mitochondrial fragmentation and elongation. These results indicate that PBu3 enhances acetyltransfer reactions in mitochondria and modulates mitochondrial functions in living cells. PMID:27374857

  15. InsP3R, the calcium whisperer: Maintaining mitochondrial function in cancer.

    PubMed

    Lovy, Alenka; Foskett, J Kevin; Cárdenas, César

    2016-07-01

    Mitochondrial metabolism is essential to fulfill the large demand for macromolecule biosynthesis in cancer. We recently identified low-level InsP3R-mediated Ca(2+) transfer to mitochondria as an unexpected requirement for mitochondrial function. Here we reveal that its absence specifically targets cancer cells and causes necrosis at daughter cell separation during ongoing proliferation.

  16. Oxytocin mitigated the depressive-like behaviors of maternal separation stress through modulating mitochondrial function and neuroinflammation.

    PubMed

    Amini-Khoei, Hossein; Mohammadi-Asl, Ali; Amiri, Shayan; Hosseini, Mir-Jamal; Momeny, Majid; Hassanipour, Mahsa; Rastegar, Mojgan; Haj-Mirzaian, Arya; Mirzaian, Arvin Haj; Sanjarimoghaddam, Hossein; Mehr, Shahram Ejtemaei; Dehpour, Ahmad Reza

    2017-03-01

    Mother-infant contact has a critical role on brain development and behavior. Experiencing early-life adversities (such as maternal separation stress or MS in rodents) results in adaptations of neurotransmission systems, which may subsequently increase the risk of depression symptoms later in life. In this study, we show that Oxytocin (OT) exerted antioxidant and anti-inflammatory properties. Previous studies indicate that neuroinflammation and mitochondrial dysfunction are associated with the pathophysiology of depression. To investigate the antidepressant-like effects of OT, we applied MS paradigm (as a valid animal model of depression) to male mice at postnatal day (PND) 2 to PND 14 (3h daily, 9AM to 12AM) and investigated the depressive-like behaviors of these animals at PND 60 in different groups. Animals in this work were divided into 4 experimental groups: 1) saline-treated, 2) OT-treated, 3) atosiban (OT antagonist)-treated and, 4) OT+ atosiban-treated mice. We used forced swimming test (FST), splash test, sucrose preference test (SPT) and open field test (OFT) for behavioral assessment. Additionally, we used another set of animals to investigate the effects of MS and different treatments on mitochondrial function and the expression of the relevant genes for neuroinflammation. Our results showed that MS provoked depressive- like behaviors in the FST, SPT and splash test. In addition, our molecular findings revealed that MS is capable of inducing abnormal mitochondrial function and immune-inflammatory response in the hippocampus. Further, we observed that treating stressed animals with OT (intracerebroventricular, i.c.v. injection) attenuated the MS-induced depressive-like behaviors through improving mitochondrial function and decreasing the hippocampal expression of immune-inflammatory genes. In conclusion, we showed that MS-induced depressive-like behaviors in adult male mice are associated with abnormal mitochondrial function and immune

  17. Mitochondrial implications in bulbospinal muscular atrophy (Kennedy disease).

    PubMed

    Finsterer, Josef; Mishra, Anushree; Wakil, Salma; Pennuto, Maria; Soraru, Gianni

    2015-01-01

    There is increasing evidence that mitochondrial functions are secondarily disturbed in bulbospinal muscular atrophy (BSMA). This review focuses on the relation between BSMA and the effect of the expanded polyglutamine (poly-Q) androgen receptor (AR) on mitochondrial functions. Mitochondrial functions in bulbospinal muscular atrophy (SBMA) are affected on the molecular, clinical, and therapeutic level. On the molecular level there is down-regulation of various nuclear-DNA-encoded mitochondrial proteins by mutant androgen receptor (mAR), colocalization of the mAR with various mitochondrial proteins, association of mAR aggregates with mitochondria resulting in abnormal distribution of mitochondria, mtDNA depletion or multiple mtDNA deletions, mitochondrial membrane depolarization, increase in reactive oxidative species, and activation of the mitochondrial caspase pathway. On the clinical level various mitochondrial disorders mimic SBMA, and on the therapeutic level pioglitazone expresses PPAR-γ, cyclosporine-A restores mitochondrial membrane potentials, coenzyme-Q and idebenone reduce oxidative stress, and geldanamycin up-regulates protective mitochondrial heat shock proteins. In conclusion, in BSMA mitochondrial dysfunction results from various interactions of elongated poly-Q AR with mitochondria, mitochondrial proteins, nuclear or mitochondrial DNA, causing oxidative stress, decreased mitochondrial membrane potential, or activation of the mitochondrial caspase pathway. Additionally, mitochondrial disease may mimic BSMA and therapeutic approaches may depend on modifications of mitochondrial pathways.

  18. Naltrexone ameliorates functional network abnormalities in alcohol-dependent individuals.

    PubMed

    Morris, Laurel S; Baek, Kwangyeol; Tait, Roger; Elliott, Rebecca; Ersche, Karen D; Flechais, Remy; McGonigle, John; Murphy, Anna; Nestor, Liam J; Orban, Csaba; Passetti, Filippo; Paterson, Louise M; Rabiner, Ilan; Reed, Laurence; Smith, Dana; Suckling, John; Taylor, Eleanor M; Bullmore, Edward T; Lingford-Hughes, Anne R; Deakin, Bill; Nutt, David J; Sahakian, Barbara J; Robbins, Trevor W; Voon, Valerie

    2017-02-28

    Naltrexone, an opioid receptor antagonist, is commonly used as a relapse prevention medication in alcohol and opiate addiction, but its efficacy and the mechanisms underpinning its clinical usefulness are not well characterized. In the current study, we examined the effects of 50-mg naltrexone compared with placebo on neural network changes associated with substance dependence in 21 alcohol and 36 poly-drug-dependent individuals compared with 36 healthy volunteers. Graph theoretic and network-based statistical analysis of resting-state functional magnetic resonance imaging (MRI) data revealed that alcohol-dependent subjects had reduced functional connectivity of a dispersed network compared with both poly-drug-dependent and healthy subjects. Higher local efficiency was observed in both patient groups, indicating clustered and segregated network topology and information processing. Naltrexone normalized heightened local efficiency of the neural network in alcohol-dependent individuals, to the same levels as healthy volunteers. Naltrexone failed to have an effect on the local efficiency in abstinent poly-substance-dependent individuals. Across groups, local efficiency was associated with substance, but no alcohol exposure implicating local efficiency as a potential premorbid risk factor in alcohol use disorders that can be ameliorated by naltrexone. These findings suggest one possible mechanism for the clinical effects of naltrexone, namely, the amelioration of disrupted network topology.

  19. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat.

    PubMed

    Xiao, W H; Zheng, H; Zheng, F Y; Nuydens, R; Meert, T F; Bennett, G J

    2011-12-29

    The dose-limiting side effect of the anti-neoplastic agent, paclitaxel, is a chronic distal symmetrical peripheral neuropathy that produces sensory dysfunction (hypoesthesia and neuropathic pain) but little or no distal motor dysfunction. Similar peripheral neuropathies are seen with chemotherapeutics in the vinca alkaloid, platinum-complex, and proteasome inhibitor classes. Studies in rats suggest that the cause is a mitotoxic effect on axonal mitochondria. If so, then the absence of motor dysfunction may be due to mitotoxicity that affects sensory axons but spares motor axons. To investigate this, paclitaxel exposure levels in the dorsal root, ventral root, dorsal root ganglion, peripheral nerve, and spinal cord were measured, and the ultrastructure and the respiratory function of mitochondria in dorsal roots and ventral roots were compared. Sensory and motor axons in the roots and nerve had comparably low exposure to paclitaxel and exposure in the spinal cord was negligible. However, sensory neurons in the dorsal root ganglion had a very high and remarkably persistent (up to 10 days or more after the last injection) exposure to paclitaxel. Paclitaxel evoked a significant increase in the incidence of swollen and vacuolated mitochondria in the myelinated and unmyelinated sensory axons of the dorsal root (as seen previously in the peripheral nerve) but not in the motor axons of the ventral root. Stimulated mitochondrial respiration in the dorsal root was significantly depressed in paclitaxel-treated animals examined 2-4 weeks after the last injection, whereas respiration in the ventral root was normal. We conclude that the absence of motor dysfunction in paclitaxel-evoked peripheral neuropathy may be due to the absence of a mitotoxic effect in motor neuron axons, whereas the sensory dysfunction may be due to a mitotoxic effect resulting from the primary afferent neuron's cell body being exposed to high and persistent levels of paclitaxel.

  20. Chemical screening identifies ROCK as a target for recovering mitochondrial function in Hutchinson-Gilford progeria syndrome.

    PubMed

    Kang, Hyun Tae; Park, Joon Tae; Choi, Kobong; Choi, Hyo Jei Claudia; Jung, Chul Won; Kim, Gyu Ree; Lee, Young-Sam; Park, Sang Chul

    2017-03-19

    Hutchinson-Gilford progeria syndrome (HGPS) constitutes a genetic disease wherein an aging phenotype manifests in childhood. Recent studies indicate that reactive oxygen species (ROS) play important roles in HGPS phenotype progression. Thus, pharmacological reduction in ROS levels has been proposed as a potentially effective treatment for patient with this disorder. In this study, we performed high-throughput screening to find compounds that could reduce ROS levels in HGPS fibroblasts and identified rho-associated protein kinase (ROCK) inhibitor (Y-27632) as an effective agent. To elucidate the underlying mechanism of ROCK in regulating ROS levels, we performed a yeast two-hybrid screen and discovered that ROCK1 interacts with Rac1b. ROCK activation phosphorylated Rac1b at Ser71 and increased ROS levels by facilitating the interaction between Rac1b and cytochrome c. Conversely, ROCK inactivation with Y-27632 abolished their interaction, concomitant with ROS reduction. Additionally, ROCK activation resulted in mitochondrial dysfunction, whereas ROCK inactivation with Y-27632 induced the recovery of mitochondrial function. Furthermore, a reduction in the frequency of abnormal nuclear morphology and DNA double-strand breaks was observed along with decreased ROS levels. Thus, our study reveals a novel mechanism through which alleviation of the HGPS phenotype is mediated by the recovery of mitochondrial function upon ROCK inactivation.

  1. ChChd3, an Inner Mitochondrial Membrane Protein, Is Essential for Maintaining Crista Integrity and Mitochondrial Function*

    PubMed Central

    Darshi, Manjula; Mendiola, Vincent L.; Mackey, Mason R.; Murphy, Anne N.; Koller, Antonius; Perkins, Guy A.; Ellisman, Mark H.; Taylor, Susan S.

    2011-01-01

    The mitochondrial inner membrane (IM) serves as the site for ATP production by hosting the oxidative phosphorylation complex machinery most notably on the crista membranes. Disruption of the crista structure has been implicated in a variety of cardiovascular and neurodegenerative diseases. Here, we characterize ChChd3, a previously identified PKA substrate of unknown function (Schauble, S., King, C. C., Darshi, M., Koller, A., Shah, K., and Taylor, S. S. (2007) J. Biol. Chem. 282, 14952–14959), and show that it is essential for maintaining crista integrity and mitochondrial function. In the mitochondria, ChChd3 is a peripheral protein of the IM facing the intermembrane space. RNAi knockdown of ChChd3 in HeLa cells resulted in fragmented mitochondria, reduced OPA1 protein levels and impaired fusion, and clustering of the mitochondria around the nucleus along with reduced growth rate. Both the oxygen consumption and glycolytic rates were severely restricted. Ultrastructural analysis of these cells revealed aberrant mitochondrial IM structures with fragmented and tubular cristae or loss of cristae, and reduced crista membrane. Additionally, the crista junction opening diameter was reduced to 50% suggesting remodeling of cristae in the absence of ChChd3. Analysis of the ChChd3-binding proteins revealed that ChChd3 interacts with the IM proteins mitofilin and OPA1, which regulate crista morphology, and the outer membrane protein Sam50, which regulates import and assembly of β-barrel proteins on the outer membrane. Knockdown of ChChd3 led to almost complete loss of both mitofilin and Sam50 proteins and alterations in several mitochondrial proteins, suggesting that ChChd3 is a scaffolding protein that stabilizes protein complexes involved in maintaining crista architecture and protein import and is thus essential for maintaining mitochondrial structure and function. PMID:21081504

  2. Abnormal Amygdala Resting-State Functional Connectivity in Adolescent Depression

    PubMed Central

    Cullen, Kathryn R.; Westlund, Melinda; Klimes-Dougan, Bonnie; Mueller, Bryon A.; Houri, Alaa; Eberly, Lynn E.; Lim, Kelvin O.

    2015-01-01

    Importance Major depressive disorder (MDD) frequently emerges during adolescence and can lead to persistent illness, disability and suicide. The maturational changes that take place in the brain during adolescence underscore the importance of examining neurobiological mechanisms during this time period of early illness. However, neural mechanisms of depression in adolescents have been understudied. Prior research has implicated the amygdala in emotion processing in mood disorders, and adult depression studies have suggested amygdala-frontal connectivity deficits. Resting-state functional magnetic resonance imaging (rsfMRI) is an advanced tool that can be used to probe neural networks and identify brain-behavior relationships. Objective To examine amygdala resting-state functional connectivity (RSFC) in adolescents with and without MDD using rsfMRI, and to examine how amygdala RSFC relates to a broad range of symptom dimensions. Design Cross-sectional rsfMRI study. Setting Depression research program at an academic medical center. Participants 41 girls and boys aged 12–19 years with MDD and 29 healthy adolescents (frequency matched on age and sex) with no psychiatric diagnoses. Main Outcome Measure Using a whole-brain functional connectivity approach, we examined correlation of spontaneous fluctuation of blood-oxygen-level-dependent (BOLD) signal of each voxel in the whole brain with that of the amygdala. Results Adolescents with MDD showed lower positive RSFC between amygdala and hippocampus, parahippocampus and brain stem; this connectivity was inversely correlated with general depression, dysphoria, and lassitude, and positively correlated with well-being. Patients also showed greater (positive) amygdala-precuneus RSFC (in contrast to negative amygdala-precuneus RSFC in controls.) Conclusion Impaired amygdala-hippocampal/brainstem and amygdala-precuneus RSFC has not previously been highlighted in depression and may be unique to adolescent MDD. These circuits

  3. Abnormal GABAergic function and negative affect in schizophrenia.

    PubMed

    Taylor, Stephan F; Demeter, Elise; Phan, K Luan; Tso, Ivy F; Welsh, Robert C

    2014-03-01

    Deficits in the γ-aminobutyric acid (GABA) system have been reported in postmortem studies of schizophrenia, and therapeutic interventions in schizophrenia often involve potentiation of GABA receptors (GABAR) to augment antipsychotic therapy and treat negative affect such as anxiety. To map GABAergic mechanisms associated with processing affect, we used a benzodiazepine challenge while subjects viewed salient visual stimuli. Fourteen stable, medicated schizophrenia/schizoaffective patients and 13 healthy comparison subjects underwent functional magnetic resonance imaging using the blood oxygenation level-dependent (BOLD) technique while they viewed salient emotional images. Subjects received intravenous lorazepam (LRZ; 0.01 mg/kg) or saline in a single-blinded, cross-over design (two sessions separated by 1-3 weeks). A predicted group by drug interaction was noted in the dorsal medial prefrontal cortex (dmPFC) as well as right superior frontal gyrus and left and right occipital regions, such that psychosis patients showed an increased BOLD signal to LRZ challenge, rather than the decreased signal exhibited by the comparison group. A main effect of reduced BOLD signal in bilateral occipital areas was noted across groups. Consistent with the role of the dmPFC in processing emotion, state negative affect positively correlated with the response to the LRZ challenge in the dmPFC for the patients and comparison subjects. The altered response to LRZ challenge is consistent with altered inhibition predicted by postmortem findings of altered GABAR in schizophrenia. These results also suggest that negative affect in schizophrenia/schizoaffective disorder is associated-directly or indirectly-with GABAergic function on a continuum with normal behavior.

  4. Disrupted mitochondrial function in the Opa3L122P mouse model for Costeff Syndrome impairs skeletal integrity

    PubMed Central

    Navein, Alice E.; Cooke, Esther J.; Davies, Jennifer R.; Smith, Terence G.; Wells, Lois H. M.; Ohazama, Atsushi; Healy, Christopher; Sharpe, Paul T.; Evans, Sam L.; Evans, Bronwen A. J.; Votruba, Marcela; Wells, Timothy

    2016-01-01

    Mitochondrial dysfunction connects metabolic disturbance with numerous pathologies, but the significance of mitochondrial activity in bone remains unclear. We have, therefore, characterized the skeletal phenotype in the Opa3L122P mouse model for Costeff syndrome, in which a missense mutation of the mitochondrial membrane protein, Opa3, impairs mitochondrial activity resulting in visual and metabolic dysfunction. Although widely expressed in the developing normal mouse head, Opa3 expression was restricted after E14.5 to the retina, brain, teeth and mandibular bone. Opa3 was also expressed in adult tibiae, including at the trabecular surfaces and in cortical osteocytes, epiphyseal chondrocytes, marrow adipocytes and mesenchymal stem cell rosettes. Opa3L122P mice displayed craniofacial abnormalities, including undergrowth of the lower mandible, accompanied in some individuals by cranial asymmetry and incisor malocclusion. Opa3L122P mice showed an 8-fold elevation in tibial marrow adiposity, due largely to increased adipogenesis. In addition, femoral length and cortical diameter and wall thickness were reduced, the weakening of the calcified tissue and the geometric component of strength reducing overall cortical strength in Opa3L122P mice by 65%. In lumbar vertebrae reduced vertebral body area and wall thickness were accompanied by a proportionate reduction in marrow adiposity. Although the total biomechanical strength of lumbar vertebrae was reduced by 35%, the strength of the calcified tissue (σmax) was proportionate to a 38% increase in trabecular number. Thus, mitochondrial function is important for the development and maintenance of skeletal integrity, impaired bone growth and strength, particularly in limb bones, representing a significant new feature of the Costeff syndrome phenotype. PMID:27106103

  5. Mitochondrial regulation of β-cell function: maintaining the momentum for insulin release

    PubMed Central

    Soleimanpour, Scott A.

    2015-01-01

    All forms of diabetes share the common etiology of insufficient pancreatic β-cell function to meet peripheral insulin demand. In pancreatic β-cells, mitochondria serve to integrate the metabolism of exogenous nutrients into energy output, which ultimately leads to insulin release. As such, mitochondrial dysfunction underlies β-cell failure and the development of diabetes. Mitochondrial regulation of β-cell function occurs through many diverse pathways, including metabolic coupling, generation of reactive oxygen species, maintenance of mitochondrial mass, and through interaction with other cellular organelles. In this chapter, we will focus on the importance of enzymatic regulators of mitochondrial fuel metabolism and control of mitochondrial mass to pancreatic β-cell function, describing how defects in these pathways ultimately lead to diabetes. Furthermore, we will examine the factors responsible for mitochondrial biogenesis and degradation and their roles in the balance of mitochondrial mass in β-cells. Clarifying the causes of β-cell mitochondrial dysfunction may inform new approaches to treat the underlying etiologies of diabetes. PMID:25659350

  6. Abnormalities of thyroid function tests in hospital inpatients.

    PubMed Central

    Sheppard, M. C.; Ramsden, D. B.

    1985-01-01

    Results of thyroid function tests were analysed in 199 clinically euthyroid inpatients with normal serum thyroid stimulating hormone values. Serum total triiodothyronine was less than 1.25 nmol/l in 61.8% of samples, free triiodothyronine less than 3.9 pmol/l in 57.8%, total thyroxine less than 63 nmol/l in 21.1% and free thyroxine less than 9.5 pmol/l in 17.6%. In contrast, thyroxine binding globulin ratio was below normal (less than 5) in only 5 samples. A significant positive correlation (P less than 0.001) of serum free thyroxine with total thyroxine, thyroxine/thyroxine binding globulin ratio and free triiodothyronine was present as well as a significant negative correlation (P less than 0.001) with serum thyroid stimulating hormone. There was no correlation of free thyroxine measurements with serum albumin or non-esterified fatty acid concentrations. Although serum free thyroxine is low in a number of patients with non-thyroidal illnesses, this does not appear to be due to a rise in non-esterified fatty acids or a fall in albumin as has been proposed. Serum thyroid stimulating hormone measurements are essential to confirm the diagnosis of hypothyroidism in such subjects. PMID:4070117

  7. Effects of the Czech Propolis on Sperm Mitochondrial Function

    PubMed Central

    Cedikova, Miroslava; Miklikova, Michaela; Stachova, Lenka; Grundmanova, Martina; Tuma, Zdenek; Vetvicka, Vaclav; Zech, Nicolas; Kralickova, Milena; Kuncova, Jitka

    2014-01-01

    Propolis is a natural product that honeybees collect from various plants. It is known for its beneficial pharmacological effects. The aim of our study was to evaluate the impact of propolis on human sperm motility, mitochondrial respiratory activity, and membrane potential. Semen samples from 10 normozoospermic donors were processed according to the World Health Organization criteria. Propolis effects on the sperm motility and mitochondrial activity parameters were tested in the fresh ejaculate and purified spermatozoa. Propolis preserved progressive motility of spermatozoa in the native semen samples. Oxygen consumption determined in purified permeabilized spermatozoa by high-resolution respirometry in the presence of adenosine diphosphate and substrates of complex I and complex II (state OXPHOSI+II) was significantly increased in the propolis-treated samples. Propolis also increased uncoupled respiration in the presence of rotenone (state ETSII) and complex IV activity, but it did not influence state LEAK induced by oligomycin. Mitochondrial membrane potential was not affected by propolis. This study demonstrates that propolis maintains sperm motility in the native ejaculates and increases activities of mitochondrial respiratory complexes II and IV without affecting mitochondrial membrane potential. The data suggest that propolis improves the total mitochondrial respiratory efficiency in the human spermatozoa in vitro thereby having potential to improve sperm motility. PMID:25104965

  8. Abnormal functional connectivity during visuospatial processing is associated with disrupted organisation of white matter in autism

    PubMed Central

    McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Leemans, Alexander; Gallagher, Louise

    2013-01-01

    Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were (1) to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM) in ASD and (2) to examine the relationships between aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution (CSD) based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left thalamus, and left cuneus. Measures of WM microstructural organization were extracted from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant WM microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute (1) to abnormal functional connectivity and (2) to atypical visuospatial processing in ASD. PMID:24133425

  9. Impact of Cold Ischemia on Mitochondrial Function in Porcine Hearts and Blood Vessels

    PubMed Central

    Wiedemann, Dominik; Schachner, Thomas; Bonaros, Nikolaos; Dorn, Melissa; Andreas, Martin; Kocher, Alfred; Kuznetsov, Andrey V.

    2013-01-01

    The effects of cold storage using Custodiol® (Histidine-Tryptophan-Ketoglutarate, HTK) or isotonic saline solution on mitochondrial function in hearts (left and rights ventricles) and various blood vessels of pigs were investigated. Hearts, saphenous veins, internal-mammary-arteries and aortas of male landrace pigs were harvested and exposed to cold ischemia in either saline or Custodiol-HTK solution. Mitochondrial function was measured in situ in permeabilized fibers by high-resolution respirometry. Mitochondrial respiratory capacities (maximal respiration rates) were similar in the right and left ventricle in controls and after 14 h of cold storage were significantly better preserved in Custodiol-HTK than in saline solution. Mitochondrial respiration rates in various blood vessels including aorta, arteries and veins were less than 5% of myocardium rates. In contrast to the pig heart, in some blood vessels, like veins, mitochondrial function remained stable even after 24 h of cold ischemia. HTK-Custodiol protection of mitochondrial function after prolonged cold ischemia was observed in the myocardium but not in blood vessels. HTK-Custodiol solution thus offers significant protection of myocardial mitochondria against cold ischemic injury and can be used as efficient preservation solution in organ transplantation but probably has no benefit for blood vessels preservation. Analysis of mitochondrial function can be used as a valuable approach for the assessment of cold ischemic injury in various tissues including pig heart and various blood vessels. PMID:24213604

  10. Yeast mitochondrial protein-protein interactions reveal diverse complexes and disease-relevant functional relationships.

    PubMed

    Jin, Ke; Musso, Gabriel; Vlasblom, James; Jessulat, Matthew; Deineko, Viktor; Negroni, Jacopo; Mosca, Roberto; Malty, Ramy; Nguyen-Tran, Diem-Hang; Aoki, Hiroyuki; Minic, Zoran; Freywald, Tanya; Phanse, Sadhna; Xiang, Qian; Freywald, Andrew; Aloy, Patrick; Zhang, Zhaolei; Babu, Mohan

    2015-02-06

    Although detailed, focused, and mechanistic analyses of associations among mitochondrial proteins (MPs) have identified their importance in varied biological processes, a systematic understanding of how MPs function in concert both with one another and with extra-mitochondrial proteins remains incomplete. Consequently, many questions regarding the role of mitochondrial dysfunction in the development of human disease remain unanswered. To address this, we compiled all existing mitochondrial physical interaction data for over 1200 experimentally defined yeast MPs and, through bioinformatic analysis, identified hundreds of heteromeric MP complexes having extensive associations both within and outside the mitochondria. We provide support for these complexes through structure prediction analysis, morphological comparisons of deletion strains, and protein co-immunoprecipitation. The integration of these MP complexes with reported genetic interaction data reveals substantial crosstalk between MPs and non-MPs and identifies novel factors in endoplasmic reticulum-mitochondrial organization, membrane structure, and mitochondrial lipid homeostasis. More than one-third of these MP complexes are conserved in humans, with many containing members linked to clinical pathologies, enabling us to identify genes with putative disease function through guilt-by-association. Although still remaining incomplete, existing mitochondrial interaction data suggests that the relevant molecular machinery is modular, yet highly integrated with non-mitochondrial processes.

  11. The role of mitochondrial dysfunction in bipolar disorder.

    PubMed

    Kato, Tadafumi

    2006-12-01

    Altered energy metabolism and accumulated mitochondrial DNA (mtDNA) mutations in the brain, associated mtDNA polymorphisms/mutations or nuclear encoded mitochondrial genes, effects of mood stabilizers on mitochondria and comorbidity of mood disorders with mitochondrial disorders, together suggest the role of mitochondrial dysfunction in the pathophysiology of bipolar disorder. Mitochondrial dysfunction may be involved in the calcium signaling abnormality found in bipolar disorder. We recently produced mice accumulating neuron-specific mtDNA deletions. Bipolar disorder-like behavioral phenotypes of these mice supported this hypothesis. Thus, development of new mood stabilizers acting on mitochondrial function might be warranted.

  12. Abnormal platelet von Willebrand factor (vWF) as a marker of abnormal function in megakaryocytic dysplasia.

    PubMed

    de Cataldo, F; Baudo, F; Redaelli, R; Corno, A R

    1995-03-01

    The myelodysplastic syndromes (MDS) are neoplastic disorders of the hemopoietic system; multilineage involvement is also evidenced by specific cellular dysfunctions. The von Willebrand factor (vWF), synthesized and processed in the megakaryocytes (MK), is stored in the alpha granules of the platelets. The platelet vWF multimeric pattern was studied in 18 patients with MDS, and in 4 with pernicious anemia (PA), to investigate whether the processing of vWF is abnormal in the megakaryocytic dysplasia. An abnormal multimeric pattern was observed in 10/18 MDS and 4/4 PA patients. The abnormality of this specific protein is the discrete expression of the basic disorder, and is reversible when hemopoiesis is normalized. Although the data do not allow any conclusion, abnormal synthesis is the likely explantation of the abnormality.

  13. hsa-miR-4485 regulates mitochondrial functions and inhibits the tumorigenicity of breast cancer cells.

    PubMed

    Sripada, Lakshmi; Singh, Kritarth; Lipatova, Anastasiya V; Singh, Aru; Prajapati, Paresh; Tomar, Dhanendra; Bhatelia, Khyati; Roy, Milton; Singh, Rochika; Godbole, Madan M; Chumakov, Peter M; Singh, Rajesh

    2017-02-20

    The modulation of mitochondrial functions is important for maintaining cellular homeostasis. Mitochondria essentially depend on the import of RNAs and proteins encoded by the nuclear genome. MicroRNAs encoded in the nucleus can translocate to mitochondria and target the genome, affecting mitochondrial function. Here, we analyzed the role of miR-4485 in the regulation of mitochondrial functions. We showed that miR-4485 translocated to mitochondria where its levels varied in response to different stress conditions. A direct binding of miR-4485 to mitochondrial 16S rRNA was demonstrated. MiR-4485 regulated the processing of pre-rRNA at the 16S rRNA-ND1 junction and the translation of downstream transcripts. MiR-4485 modulated mitochondrial complex I activity, the production of ATP, ROS levels, caspase-3/7 activation, and apoptosis. Transfection of a miR-4485 mimic downregulated the expression of regulatory glycolytic pathway genes and reduced the clonogenic ability of breast cancer cells. Ectopic expression of miR-4485 in MDA-MB-231 breast carcinoma cells decreased the tumorigenicity in a nude mouse xenograft model. Furthermore, levels of both precursor and mature miR-4485 are decreased in tumor tissue of breast cancer patients. We conclude that the mitochondria-targeted miR-4485 may act as a tumor suppressor in breast carcinoma cells by negatively regulating mitochondrial RNA processing and mitochondrial functions.

  14. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3

    PubMed Central

    Rimmelé, Pauline; Liang, Raymond; Bigarella, Carolina L; Kocabas, Fatih; Xie, Jingjing; Serasinghe, Madhavika N; Chipuk, Jerry; Sadek, Hesham; Zhang, Cheng Cheng; Ghaffari, Saghi

    2015-01-01

    Hematopoietic stem cells (HSC) are primarily dormant but have the potential to become highly active on demand to reconstitute blood. This requires a swift metabolic switch from glycolysis to mitochondrial oxidative phosphorylation. Maintenance of low levels of reactive oxygen species (ROS), a by-product of mitochondrial metabolism, is also necessary for sustaining HSC dormancy. Little is known about mechanisms that integrate energy metabolism with hematopoietic stem cell homeostasis. Here, we identify the transcription factor FOXO3 as a new regulator of metabolic adaptation of HSC. ROS are elevated in Foxo3−/− HSC that are defective in their activity. We show that Foxo3−/− HSC are impaired in mitochondrial metabolism independent of ROS levels. These defects are associated with altered expression of mitochondrial/metabolic genes in Foxo3−/− hematopoietic stem and progenitor cells (HSPC). We further show that defects of Foxo3−/− HSC long-term repopulation activity are independent of ROS or mTOR signaling. Our results point to FOXO3 as a potential node that couples mitochondrial metabolism with HSC homeostasis. These findings have critical implications for mechanisms that promote malignant transformation and aging of blood stem and progenitor cells. PMID:26209246

  15. A MACROMOLECULAR REPEATING UNIT OF MITOCHONDRIAL STRUCTURE AND FUNCTION

    PubMed Central

    Fernández-Morán, H.; Oda, T.; Blair, P. V.; Green, D. E.

    1964-01-01

    A repeating particle associated with the cristae and the inner membrane of the external envelope has been recognized and characterized in beef heart mitochondria by correlated electron microscopic and biochemical studies. Many thousands (ca. 104 to 105) of these particles, disposed in regular arrays, are present in a single mitochondrion. The repeating particle, called the elementary particle (EP), consists of three parts: (1) a spherical or polyhedral head piece (80 to 100 A in diameter); (2) a cylindrical stalk (about 50 A long and 30 to 40 A wide); and (3) a base piece (40 x 110 A). The base pieces of the elementary particles form an integral part of the outer dense layers of the cristae. The elementary particles can be seen in electron micrographs of mitochondria in situ, of isolated mitochondria, and of submitochondrial particles with a complete electron transfer chain. Negative staining with phosphotungstate is only one of several techniques that can be used for reproducible demonstration of the repeating particles and underlying subunit organization of mitochondrial membranes. A particulate unit containing a complete electron transfer chain can be isolated from beef heart mitochondria. The isolated unit approximates in size that of the elementary particle in situ. The molecular weight of the particle in situ is calculated to be 1.3 x 106. Evidence is presented for identifying the isolated unit with the elementary particle visualized in situ. The elementary particle of the mitochondrion is believed to be a prototype of a class of functional particles or macromolecular assemblies of similar size found in association with membranes generally. PMID:14195622

  16. Selective propagation of functional mitochondrial DNA during oogenesis restricts the transmission of a deleterious mitochondrial variant.

    PubMed

    Hill, Jahda H; Chen, Zhe; Xu, Hong

    2014-04-01

    Although mitochondrial DNA (mtDNA) is prone to mutation and few mtDNA repair mechanisms exist, crippling mitochondrial mutations are exceedingly rare. Recent studies have demonstrated strong purifying selection in the mouse female germline. However, the mechanisms underlying positive selection of healthy mitochondria remain to be elucidated. We visualized mtDNA replication during Drosophila melanogaster oogenesis, finding that mtDNA replication commenced before oocyte determination during the late germarium stage and was dependent on mitochondrial fitness. We isolated a temperature-sensitive lethal mtDNA allele, mt:CoI(T300I), which resulted in reduced mtDNA replication in the germarium at the restrictive temperature. Additionally, the frequency of the mt:CoI(T300I) allele in heteroplasmic flies was decreased, both during oogenesis and over multiple generations, at the restrictive temperature. Furthermore, we determined that selection against mt:CoI(T300I) overlaps with the timing of selective replication of mtDNA in the germarium. These findings establish a previously uncharacterized developmental mechanism for the selective amplification of wild-type mtDNA, which may be evolutionarily conserved to limit the transmission of deleterious mutations.

  17. 3′-Daidzein sulfonate sodium improves mitochondrial functions after cerebral ischemia/reperfusion injury

    PubMed Central

    Yuan, Wa; Chen, Qin; Zeng, Jing; Xiao, Hai; Huang, Zhi-hua; Li, Xiao; Lei, Qiong

    2017-01-01

    3′-Daidzein sulfonate sodium is a new synthetic water-soluble compound derived from daidzein (an active ingredient of the kudzu vine root). It has been shown to have a protective effect on cerebral ischemia/reperfusion injury in rats. We plan to study the mechanism of its protective effect. 3′-Daidzein sulfonate sodium was injected in rats after cerebral ischemia/reperfusion injury. Results showed that 3′-daidzein sulfonate sodium significantly reduced mitochondrial swelling, significantly elevated the mitochondrial membrane potential, increased mitochondrial superoxide dismutase and glutathione peroxidase activities, and decreased mitochondrial malondialdehyde levels. 3′-Daidzein sulfonate sodium improved the structural integrity of the blood-brain barrier and reduced blood-brain barrier permeability. These findings confirmed that 3′-daidzein sulfonate sodium has a protective effect on mitochondrial functions after cerebral ischemia/reperfusion injury, improves brain energy metabolism, and provides protection against blood-brain barrier damage.

  18. Triglyceride depletion of brown adipose tissue enables analysis of mitochondrial respiratory function in permeabilized biopsies.

    PubMed

    Dechandt, Carlos R P; Couto-Lima, Carlos A; Alberici, Luciane C

    2016-12-15

    The research on mitochondrial functions in adipocytes has increasingly evidenced that mitochondria plays an important role in the onset and/or progression of obesity and related pathologies. Mitochondrial function in brown adipose tissue (BAT) has been classically assessed by measuring either the levels/activity of mitochondrial enzymes, or the respiration in isolated mitochondria. Isolation of mitochondria is not advantageous because it demands significant time and amount of tissue and, as tissue homogenates, disrupts biochemical and physical connections of mitochondria within the cell. Here, we described a new and efficient protocol to analyze the mitochondrial respiratory states in BAT biopsies that relies on intracellular triglyceride depletion followed by tissue permeabilization. In addition to minimizing tissue requirements to ∼17 mg wet weight, the proposed protocol enabled analysis of all mitochondrial respiratory states, including phosphorylation (OXPHOS), no-phosphorylation (LEAK), and uncoupled (ETS) states, as well as the use of substrates for complex I, complex II, and cytochrome c; together, these features demonstrated mitochondrial integrity and validated the preparation efficacy. Therefore, the protocol described here increases the possibilities of answering physiological questions related to small BAT regions of human and animal models, which shall help to unravel the mechanisms that regulate mitochondrial function in health and disease.

  19. Prediction of mitochondrial protein function by comparative physiology and phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-01-01

    According to the endosymbiotic theory, mitochondria originate from a free-living alpha-proteobacteria that established an intracellular symbiosis with the ancestor of present-day eukaryotic cells. During the bacterium-to-organelle transformation, the proto-mitochondrial proteome has undergone a massive turnover, whereby less than 20 % of modern mitochondrial proteomes can be traced back to the bacterial ancestor. Moreover, mitochondrial proteomes from several eukaryotic organisms, for example, yeast and human, show a rather modest overlap, reflecting differences in mitochondrial physiology. Those differences may result from the combination of differential gain and loss of genes and retargeting processes among lineages. Therefore, an evolutionary signature, also called "phylogenetic profile", could be generated for every mitochondrial protein. Here, we present two evolutionary biology approaches to study mitochondrial physiology: the first strategy, which we refer to as "comparative physiology," allows the de novo identification of mitochondrial proteins involved in a physiological function; the second, known as "phylogenetic profiling," allows to predict protein functions and functional interactions by comparing phylogenetic profiles of uncharacterized and known components.

  20. Mitochondrial function is an inducible determinant of osmotic stress adaptation in yeast.

    PubMed

    Pastor, Mar Martínez; Proft, Markus; Pascual-Ahuir, Amparo

    2009-10-30

    Hyperosmotic stress triggers a great variety of adaptive responses in eukaryotic cells that affect many different physiological functions. Here we investigate the role of the mitochondria during osmostress adaptation in budding yeast. Mitochondrial function is generally required for proper salt and osmotic stress adaptation because mutants with defects in many different mitochondrial components show hypersensitivity to increased NaCl and KCl concentrations. Mitochondrial protein abundance rapidly increases upon osmoshock in a selective manner, because it affects Calvin cycle enzymes (Sdh2 and Cit1) and components of the electron transport chain (Cox6) but not the ATP synthase complex (Atp5). Transcription of the SDH2, CIT1, and COX6 genes is severalfold induced within the first minutes of osmotic shock, dependent to various degree on the Hog1 and Snf1 protein kinases. Mitochondrial succinate dehydrogenase enzyme activity is stimulated upon osmostress in a Snf1-dependent manner. The osmosensitivity of mitochondrial mutants is not caused by impaired stress-activated transcription or by a general depletion of the cellular ATP pool during osmostress. We finally show that the growth defect of mitochondrial mutants in high salt medium can be partially rescued by supplementation of glutathione. Additionally, mitochondrial defects cause the hyperaccumulation of reactive oxygen species during salt stress. Our results indicate that the antioxidant function of the mitochondria might play an important role in adaptation to hyperosmotic stress.

  1. Detection of Cardiac Function Abnormality from MRI Images Using Normalized Wall Thickness Temporal Patterns.

    PubMed

    Wael, Mai; Ibrahim, El-Sayed H; Fahmy, Ahmed S

    2016-01-01

    Purpose. To develop a method for identifying abnormal myocardial function based on studying the normalized wall motion pattern during the cardiac cycle. Methods. The temporal pattern of the normalized myocardial wall thickness is used as a feature vector to assess the cardiac wall motion abnormality. Principal component analysis is used to reduce the feature dimensionality and the maximum likelihood method is used to differentiate between normal and abnormal features. The proposed method was applied on a dataset of 27 cases from normal subjects and patients. Results. The developed method achieved 81.5%, 85%, and 88.5% accuracy for identifying abnormal contractility in the basal, midventricular, and apical slices, respectively. Conclusions. A novel feature vector, namely, the normalized wall thickness, has been introduced for detecting myocardial regional wall motion abnormality. The proposed method provides assessment of the regional myocardial contractility for each cardiac segment and slice; therefore, it could be a valuable tool for automatic and fast determination of regional wall motion abnormality from conventional cine MRI images.

  2. Regulation of mitochondrial function by voltage dependent anion channels in ethanol metabolism and the Warburg effect.

    PubMed

    Lemasters, John J; Holmuhamedov, Ekhson L; Czerny, Christoph; Zhong, Zhi; Maldonado, Eduardo N

    2012-06-01

    Voltage dependent anion channels (VDAC) are highly conserved proteins that are responsible for permeability of the mitochondrial outer membrane to hydrophilic metabolites like ATP, ADP and respiratory substrates. Although previously assumed to remain open, VDAC closure is emerging as an important mechanism for regulation of global mitochondrial metabolism in apoptotic cells and also in cells that are not dying. During hepatic ethanol oxidation to acetaldehyde, VDAC closure suppresses exchange of mitochondrial metabolites, resulting in inhibition of ureagenesis. In vivo, VDAC closure after ethanol occurs coordinately with mitochondrial uncoupling. Since acetaldehyde passes through membranes independently of channels and transporters, VDAC closure and uncoupling together foster selective and more rapid oxidative metabolism of toxic acetaldehyde to nontoxic acetate by mitochondrial aldehyde dehydrogenase. In single reconstituted VDAC, tubulin decreases VDAC conductance, and in HepG2 hepatoma cells, free tubulin negatively modulates mitochondrial membrane potential, an effect enhanced by protein kinase A. Tubulin-dependent closure of VDAC in cancer cells contributes to suppression of mitochondrial metabolism and may underlie the Warburg phenomenon of aerobic glycolysis. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.

  3. Chronic mild stress damages mitochondrial ultrastructure and function in mouse brain.

    PubMed

    Gong, Yu; Chai, Yi; Ding, Jian-Hua; Sun, Xiu-Lan; Hu, Gang

    2011-01-13

    Increasing evidence implicates mitochondrial failure as a crucial factor in the pathogenesis of mental disorders, such as depression. The aim of the present study was to investigate the effects of exposure to chronic mild stress (CMS), a paradigm developed in the late 1980s as an animal model of depression, on the mitochondrial function and mitochondrial ultrastructure in the mouse brain. The results showed that the CMS regime induced depressive-like symptoms in mice characterized by reduced sucrose preference and body weight. Moreover, CMS exposure was associated with a significant increase in immobility time in the tail suspension test. Exposure to the CMS paradigm inhibited mitochondrial respiration rates and dissipated mitochondrial membrane potential in hippocampus, cortex and hypothalamus of mice. In addition, we found a damaged mitochondrial ultrastructure in brains of mice exposed to CMS. These findings provide evidence for brain mitochondrial dysfunction and ultrastructural damage in a mouse model of depression. Moreover, these findings suggest that mitochondrial malfunction-induced oxidative injury could play a role in stress-related disorders such as depression.

  4. The rescue of microtubule-dependent traffic recovers mitochondrial function in Parkinson's disease.

    PubMed

    Esteves, A R; Gozes, I; Cardoso, S M

    2014-01-01

    In Parkinson's disease mitochondrial dysfunction can lead to a deficient ATP supply to microtubule protein motors leading to mitochondrial axonal transport disruption. Compromised axonal transport will then lead to a disorganized distribution of mitochondria and other organelles in the cell, as well as, the accumulation of aggregated proteins like alpha-synuclein. Moreover, axonal transport disruption can trigger synaptic accumulation of autophagosomes packed with damaged mitochondria and protein aggregates promoting synaptic failure. We previously observed that neuronal-like cells with an inherent mitochondrial impairment derived from PD patients contain a disorganized microtubule network, as well as, alpha-synuclein oligomer accumulation. In this work we provide new evidence that an agent that promotes microtubule network assembly, NAP (davunetide), improves microtubule-dependent traffic, restores the autophagic flux and potentiates autophagosome-lysosome fusion leading to autophagic vacuole clearance in Parkinson's disease cells. Moreover, NAP is capable of efficiently reducing alpha-synuclein oligomer content and its sequestration by the mitochondria. Most interestingly, NAP decreases mitochondrial ubiquitination levels, as well as, increases mitochondrial membrane potential indicating a rescue in mitochondrial function. Overall, we demonstrate that by improving microtubule-mediated traffic, we can avoid mitochondrial-induced damage and thus recover cell homeostasis. These results prove that NAP may be a promising therapeutic lead candidate for neurodegenerative diseases that involve axonal transport failure and mitochondrial impairment as hallmarks, like Parkinson's disease and related disorders.

  5. [Effects of exogenous spermidine on mitochondrial function of tomato seedling roots under salinity-alkalinity stress].

    PubMed

    Pan, Xiong-bo; Xiang, Li-xia; Hu, Xiao-hui; Ren, Wen-qi; Zhang, Li; Ni, Xin-xin

    2016-02-01

    Two cultivars of tomato (Solanum lycopersicum, cvs. 'Jinpengchaoguan' and 'Zhongza No. 9', with the former being more tolerant to saline-alkaline stress) seedlings grown hydroponically were subjected to salinity-alkalinity stress condition (NaCl: Na2SO4:NaHCO3:Na2CO3 = 1:9:9:1) without or with foliar application of 0.25 mmol . L-1 spermidine (Spd), and the root morphology and physiological characteristics of mitochondrial membrane were analyzed 8 days after treatment, to explore the protective effects of exogenous Spd on mitochondrial function in tomato roots under salinity-alkalinity stress. The results showed that the salinity-alkalinity stress increased the concentrations of both mitochondrial H2O2 and MDA as well as the mitochondrial membrane permeability in the roots of the two cultivars, while it decreased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity, which impaired the mitochondria and therefore inhibited the root growth; and these effects were more obvious in 'Zhongza No. 9' than in 'Jinpengechaoguan'. Under the salinity-alkalinity stress, foliar application Spd could effectively decrease the concentrations of mitochondrial H2O2 and MDA and mitochondrial membrane permeability, while increased the mitochondrial membrane fluidity, membrane potential, Cyt c/a and H+-ATPase activity. These results suggested that exogenous Spd could effectively mitigate the damage on mitochondria induced by salinity-alkalinity stress, and the alleviation effect was more obvious in 'Zhongza No. 9' than in 'Jinpengchaoguan'.

  6. AMPK dysregulation promotes diabetes-related reduction of superoxide and mitochondrial function.

    PubMed

    Dugan, Laura L; You, Young-Hyun; Ali, Sameh S; Diamond-Stanic, Maggie; Miyamoto, Satoshi; DeCleves, Anne-Emilie; Andreyev, Aleksander; Quach, Tammy; Ly, San; Shekhtman, Grigory; Nguyen, William; Chepetan, Andre; Le, Thuy P; Wang, Lin; Xu, Ming; Paik, Kacie P; Fogo, Agnes; Viollet, Benoit; Murphy, Anne; Brosius, Frank; Naviaux, Robert K; Sharma, Kumar

    2013-11-01

    Diabetic microvascular complications have been considered to be mediated by a glucose-driven increase in mitochondrial superoxide anion production. Here, we report that superoxide production was reduced in the kidneys of a steptozotocin-induced mouse model of type 1 diabetes, as assessed by in vivo real-time transcutaneous fluorescence, confocal microscopy, and electron paramagnetic resonance analysis. Reduction of mitochondrial biogenesis and phosphorylation of pyruvate dehydrogenase (PDH) were observed in kidneys from diabetic mice. These observations were consistent with an overall reduction of mitochondrial glucose oxidation. Activity of AMPK, the major energy-sensing enzyme, was reduced in kidneys from both diabetic mice and humans. Mitochondrial biogenesis, PDH activity, and mitochondrial complex activity were rescued by treatment with the AMPK activator 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside (AICAR). AICAR treatment induced superoxide production and was linked with glomerular matrix and albuminuria reduction in the diabetic kidney. Furthermore, diabetic heterozygous superoxide dismutase 2 (Sod2(+/-)) mice had no evidence of increased renal disease, and Ampka2(-/-) mice had increased albuminuria that was not reduced with AICAR treatment. Reduction of mitochondrial superoxide production with rotenone was sufficient to reduce AMPK phosphorylation in mouse kidneys. Taken together, these results demonstrate that diabetic kidneys have reduced superoxide and mitochondrial biogenesis and activation of AMPK enhances superoxide production and mitochondrial function while reducing disease activity.

  7. Mitochondrial function is altered in horse atypical myopathy.

    PubMed

    Lemieux, Hélène; Boemer, François; van Galen, Gaby; Serteyn, Didier; Amory, Hélène; Baise, Etienne; Cassart, Dominique; van Loon, Gunther; Marcillaud-Pitel, Christel; Votion, Dominique-M

    2016-09-01

    Equine atypical myopathy in Europe is a fatal rhabdomyolysis syndrome that results from the ingestion of hypoglycin A contained in seeds and seedlings of Acer pseudoplatanus (sycamore maple). Acylcarnitine concentrations in serum and muscle OXPHOS capacity were determined in 15 atypical myopathy cases. All but one acylcarnitine were out of reference range and mitochondrial respiratory capacity was severely decreased up to 49% as compared to 10 healthy controls. The hallmark of atypical myopathy thus consists of a severe alteration in the energy metabolism including a severe impairment in muscle mitochondrial respiration that could contribute to its high death rate.

  8. Reversible cold-induced abnormalities in myocardial perfusion and function in systemic sclerosis

    SciTech Connect

    Alexander, E.L.; Firestein, G.S.; Weiss, J.L.; Heuser, R.R.; Leitl, G.; Wagner, H.N. Jr.; Brinker, J.A.; Ciuffo, A.A.; Becker, L.C.

    1986-11-01

    The effects of peripheral cold exposure on myocardial perfusion and function were studied in 13 patients with scleroderma without clinically evident myocardial disease. Ten patients had at least one transient, cold-induced, myocardial perfusion defect visualized by thallium-201 scintigraphy, and 12 had reversible, cold-induced, segmental left ventricular hypokinesis by two-dimensional echocardiography. The 10 patients with transient perfusion defects all had anatomically corresponding ventricular wall motion abnormalities. No one in either of two control groups (9 normal volunteers and 7 patients with chest pain and normal coronary arteriograms) had cold-induced abnormalities. This study is the first to show the simultaneous occurrence of cold-induced abnormalities in myocardial perfusion and function in patients with scleroderma. The results suggest that cold exposure in such patients may elicit transient reflex coronary vasoconstriction resulting in reversible myocardial ischemia and dysfunction. Chronic recurrent episodes of coronary spasm may lead to focal myocardial fibrosis.

  9. N-acetylcysteineamide Preserves Mitochondrial Bioenergetics and Improves Functional Recovery Following Spinal Trauma

    PubMed Central

    Patel, Samir P.; Sullivan, Patrick G.; Pandya, Jignesh D.; Goldstein, Glenn A.; VanRooyen, Jenna L.; Yonutas, Heather M.; Eldahan, Khalid C.; Morehouse, Johnny; Magnuson, David S. K.; Rabchevsky, Alexander G.

    2014-01-01

    Mitochondrial dysfunction is becoming a pivotal target for neuroprotective strategies following contusion spinal cord injury (SCI) and the pharmacological compounds that maintain mitochondrial function confer neuroprotection and improve long-term hindlimb function after injury. In the current study we evaluated the efficacy of cell-permeating thiol, N-acetylcysteineamide (NACA), a precursor of endogenous antioxidant glutathione (GSH), on mitochondrial function acutely, and long-term tissue sparing and hindlimb locomotor recovery following upper lumbar contusion SCI. Some designated injured adult female Sprague-Dawley rats (n=120) received either Vehicle or NACA (75, 150, 300 or 600 mg/kg) at 15min and 6hrs post-injury. After 24hr the total, synaptic, and non-synaptic mitochondrial populations were isolated from a single 1.5cm spinal cord segment (centered at injury site) and assessed for mitochondrial bioenergetics. Results showed compromised total mitochondrial bioenergetics following acute SCI that was significantly improved with NACA treatment in a dose-dependent manner, with maximum effects at 300 mg/kg (n=4/group). For synaptic and non-synaptic mitochondria, only 300 mg/kg NACA dosage showed efficacy. Similar dosage (300mg/kg) also maintained mitochondrial GSH near normal levels. Other designated injured rats (n=21) received continuous NACA (150 or 300mg/kg/day) treatment starting at 15min post-injury for one week to assess long-term functional recovery over 6 weeks post-injury. Locomotor testing and novel gait analyses showed significantly improved hindlimb function with NACA that were associated with increased tissue sparing at the injury site. Overall, NACA treatment significantly maintained acute mitochondrial bioenergetics and normalized GSH levels following SCI, and prolonged delivery resulted in significant tissue sparing and improved recovery of hindlimb function. PMID:24805071

  10. Mitochondrial dynamics and peripheral neuropathy.

    PubMed

    Baloh, Robert H

    2008-02-01

    Peripheral neuropathy is perhaps the archetypal disease of axonal degeneration, characteristically involving degeneration of the longest axons in the body. Evidence from both inherited and acquired forms of peripheral neuropathy strongly supports that the primary pathology is in the axons themselves and points to disruption of axonal transport as an important disease mechanism. Recent studies in human genetics have further identified abnormalities in mitochondrial dynamics--the fusion, fission, and movement of mitochondria--as a player in the pathogenesis of inherited peripheral neuropathy. This review provides an update on the mechanisms of mitochondrial trafficking in axons and the emerging relationship between the disruption of mitochondrial dynamics and axonal degeneration. Evidence suggests mitochondria are a "critical cargo" whose transport is necessary for proper axonal and synaptic function. Importantly, understanding the regulation of mitochondrial movement and the consequences of decreased axonal mitochondrial function may define new paths for therapeutic agents in peripheral neuropathy and other neurodegenerative diseases.

  11. Hydrogen peroxide production regulates the mitochondrial function in insulin resistant muscle cells: effect of catalase overexpression.

    PubMed

    Barbosa, Marina R; Sampaio, Igor H; Teodoro, Bruno G; Sousa, Thais A; Zoppi, Claudio C; Queiroz, André L; Passos, Madla A; Alberici, Luciane C; Teixeira, Felipe R; Manfiolli, Adriana O; Batista, Thiago M; Cappelli, Ana Paula Gameiro; Reis, Rosana I; Frasson, Danúbia; Kettelhut, Isis C; Parreiras-e-Silva, Lucas T; Costa-Neto, Claudio M; Carneiro, Everardo M; Curi, Rui; Silveira, Leonardo R

    2013-10-01

    The mitochondrial redox state plays a central role in the link between mitochondrial overloading and insulin resistance. However, the mechanism by which the ROS induce insulin resistance in skeletal muscle cells is not completely understood. We examined the association between mitochondrial function and H2O2 production in insulin resistant cells. Our hypothesis is that the low mitochondrial oxygen consumption leads to elevated ROS production by a mechanism associated with reduced PGC1α transcription and low content of phosphorylated CREB. The cells were transfected with either the encoded sequence for catalase overexpression or the specific siRNA for catalase inhibition. After transfection, myotubes were incubated with palmitic acid (500μM) and the insulin response, as well as mitochondrial function and fatty acid metabolism, was determined. The low mitochondrial oxygen consumption led to elevated ROS production by a mechanism associated with β-oxidation of fatty acids. Rotenone was observed to reduce the ratio of ROS production. The elevated H2O2 production markedly decreased the PGC1α transcription, an effect that was accompanied by a reduced phosphorylation of Akt and CREB. The catalase transfection prevented the reduction in the phosphorylated level of Akt and upregulated the levels of phosphorylated CREB. The mitochondrial function was elevated and H2O2 production reduced, thus increasing the insulin sensitivity. The catalase overexpression improved mitochondrial respiration protecting the cells from fatty acid-induced, insulin resistance. This effect indicates that control of hydrogen peroxide production regulates the mitochondrial respiration preventing the insulin resistance in skeletal muscle cells by a mechanism associated with CREB phosphorylation and β-oxidation of fatty acids.

  12. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats

    PubMed Central

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E.; Hernandez, Jessica Soto; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-01-01

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle. PMID:26415224

  13. Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats.

    PubMed

    Javadov, Sabzali; Jang, Sehwan; Rodriguez-Reyes, Natividad; Rodriguez-Zayas, Ana E; Soto Hernandez, Jessica; Krainz, Tanja; Wipf, Peter; Frontera, Walter

    2015-11-24

    Mitochondrial dysfunction plays a central role in the pathogenesis of sarcopenia associated with a loss of mass and activity of skeletal muscle. In addition to energy deprivation, increased mitochondrial ROS damage proteins and lipids in aged skeletal muscle. Therefore, prevention of mitochondrial ROS is important for potential therapeutic strategies to delay sarcopenia. This study elucidates the pharmacological efficiency of the new developed mitochondria-targeted ROS and electron scavenger, XJB-5-131 (XJB) to restore muscle contractility and mitochondrial function in aged skeletal muscle. Male adult (5-month old) and aged (29-month old) Fischer Brown Norway (F344/BN) rats were treated with XJB for four weeks and contractile properties of single skeletal muscle fibres and activity of mitochondrial ETC complexes were determined at the end of the treatment period. XJB-treated old rats showed higher muscle contractility associated with prevention of protein oxidation in both muscle homogenate and mitochondria compared with untreated counterparts. XJB-treated animals demonstrated a high activity of the respiratory complexes I, III, and IV with no changes in citrate synthase activity. These data demonstrate that mitochondrial ROS play a causal role in muscle weakness, and that a ROS scavenger specifically targeted to mitochondria can reverse age-related alterations of mitochondrial function and improve contractile properties in skeletal muscle.

  14. The effects of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function after glutamate excitotoxicity.

    PubMed

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-11-07

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke.

  15. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30

    PubMed Central

    Yue, Wen; Chen, Ziheng; Liu, Haiyang; Yan, Chen; Chen, Ming; Feng, Du; Yan, Chaojun; Wu, Hao; Du, Lei; Wang, Yueying; Liu, Jinhua; Huang, Xiaohu; Xia, Laixin; Liu, Lei; Wang, Xiaohui; Jin, Haijing; Wang, Jun; Song, Zhiyin; Hao, Xiaojiang; Chen, Quan

    2014-01-01

    Mitochondrial fusion is a highly coordinated process that mixes and unifies the mitochondrial compartment for normal mitochondrial functions and mitochondrial DNA inheritance. Dysregulated mitochondrial fusion causes mitochondrial fragmentation, abnormal mitochondrial physiology and inheritance, and has been causally linked with a number of neuronal diseases. Here, we identified a diterpenoid derivative 15-oxospiramilactone (S3) that potently induced mitochondrial fusion to restore the mitochondrial network and oxidative respiration in cells that are deficient in either Mfn1 or Mfn2. A mitochondria-localized deubiquitinase USP30 is a target of S3. The inhibition of USP30 by S3 leads to an increase of non-degradative ubiquitination of Mfn1/2, which enhances Mfn1 and Mfn2 activity and promotes mitochondrial fusion. Thus, through the use of an inhibitor of USP30, our study uncovers an unconventional function of non-degradative ubiquitination of Mfns in promoting mitochondrial fusion. PMID:24513856

  16. A small natural molecule promotes mitochondrial fusion through inhibition of the deubiquitinase USP30.

    PubMed

    Yue, Wen; Chen, Ziheng; Liu, Haiyang; Yan, Chen; Chen, Ming; Feng, Du; Yan, Chaojun; Wu, Hao; Du, Lei; Wang, Yueying; Liu, Jinhua; Huang, Xiaohu; Xia, Laixin; Liu, Lei; Wang, Xiaohui; Jin, Haijing; Wang, Jun; Song, Zhiyin; Hao, Xiaojiang; Chen, Quan

    2014-04-01

    Mitochondrial fusion is a highly coordinated process that mixes and unifies the mitochondrial compartment for normal mitochondrial functions and mitochondrial DNA inheritance. Dysregulated mitochondrial fusion causes mitochondrial fragmentation, abnormal mitochondrial physiology and inheritance, and has been causally linked with a number of neuronal diseases. Here, we identified a diterpenoid derivative 15-oxospiramilactone (S3) that potently induced mitochondrial fusion to restore the mitochondrial network and oxidative respiration in cells that are deficient in either Mfn1 or Mfn2. A mitochondria-localized deubiquitinase USP30 is a target of S3. The inhibition of USP30 by S3 leads to an increase of non-degradative ubiquitination of Mfn1/2, which enhances Mfn1 and Mfn2 activity and promotes mitochondrial fusion. Thus, through the use of an inhibitor of USP30, our study uncovers an unconventional function of non-degradative ubiquitination of Mfns in promoting mitochondrial fusion.

  17. Functional Brain Network Abnormalities during Verbal Working Memory Performance in Adolescents and Young Adults with Dyslexia

    ERIC Educational Resources Information Center

    Wolf, Robert Christian; Sambataro, Fabio; Lohr, Christina; Steinbrink, Claudia; Martin, Claudia; Vasic, Nenad

    2010-01-01

    Behavioral and functional neuroimaging studies indicate deficits in verbal working memory (WM) and frontoparietal dysfunction in individuals with dyslexia. Additionally, structural brain abnormalities in dyslexics suggest a dysconnectivity of brain regions associated with phonological processing. However, little is known about the functional…

  18. Abnormal lateralization of functional connectivity between language and default mode regions in autism

    PubMed Central

    2014-01-01

    Background Lateralization of brain structure and function occurs in typical development, and abnormal lateralization is present in various neuropsychiatric disorders. Autism is characterized by a lack of left lateralization in structure and function of regions involved in language, such as Broca and Wernicke areas. Methods Using functional connectivity magnetic resonance imaging from a large publicly available sample (n = 964), we tested whether abnormal functional lateralization in autism exists preferentially in language regions or in a more diffuse pattern across networks of lateralized brain regions. Results The autism group exhibited significantly reduced left lateralization in a few connections involving language regions and regions from the default mode network, but results were not significant throughout left- and right-lateralized networks. There is a trend that suggests the lack of left lateralization in a connection involving Wernicke area and the posterior cingulate cortex associates with more severe autism. Conclusions Abnormal language lateralization in autism may be due to abnormal language development rather than to a deficit in hemispheric specialization of the entire brain. PMID:24502324

  19. Evolution meets disease: penetrance and functional epistasis of mitochondrial tRNA mutations.

    PubMed

    Moreno-Loshuertos, Raquel; Ferrín, Gustavo; Acín-Pérez, Rebeca; Gallardo, M Esther; Viscomi, Carlo; Pérez-Martos, Acisclo; Zeviani, Massimo; Fernández-Silva, Patricio; Enríquez, José Antonio

    2011-04-01

    About half of the mitochondrial DNA (mtDNA) mutations causing diseases in humans occur in tRNA genes. Particularly intriguing are those pathogenic tRNA mutations than can reach homoplasmy and yet show very different penetrance among patients. These mutations are scarce and, in addition to their obvious interest for understanding human pathology, they can be excellent experimental examples to model evolution and fixation of mitochondrial tRNA mutations. To date, the only source of this type of mutations is human patients. We report here the generation and characterization of the first mitochondrial tRNA pathological mutation in mouse cells, an m.3739G>A transition in the mitochondrial mt-Ti gene. This mutation recapitulates the molecular hallmarks of a disease-causing mutation described in humans, an m.4290T>C transition affecting also the human mt-Ti gene. We could determine that the pathogenic molecular mechanism, induced by both the mouse and the human mutations, is a high frequency of abnormal folding of the tRNA(Ile) that cannot be charged with isoleucine. We demonstrate that the cells harboring the mouse or human mutant tRNA have exacerbated mitochondrial biogenesis triggered by an increase in mitochondrial ROS production as a compensatory response. We propose that both the nature of the pathogenic mechanism combined with the existence of a compensatory mechanism can explain the penetrance pattern of this mutation. This particular behavior can allow a scenario for the evolution of mitochondrial tRNAs in which the fixation of two alleles that are individually deleterious can proceed in two steps and not require the simultaneous mutation of both.

  20. Impaired Exercise Performance and Skeletal Muscle Mitochondrial Function in Rats with Secondary Carnitine Deficiency

    PubMed Central

    Bouitbir, Jamal; Haegler, Patrizia; Singh, François; Joerin, Lorenz; Felser, Andrea; Duthaler, Urs; Krähenbühl, Stephan

    2016-01-01

    Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP), a carnitine analog inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats. Methods: Male Sprague Dawley rats were treated daily with water (control rats; n = 12) or with 20 mg/100 g body weight THP (n = 12) via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion. Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (–24%) and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption) was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected. Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle. PMID:27559315

  1. Caffeine increases mitochondrial function and blocks melatonin signaling to mitochondria in Alzheimer's mice and cells.

    PubMed

    Dragicevic, Natasa; Delic, Vedad; Cao, Chuanhai; Copes, Neil; Lin, Xiaoyang; Mamcarz, Maggie; Wang, Li; Arendash, Gary W; Bradshaw, Patrick C

    2012-12-01

    Caffeine and melatonin have been shown to protect the Swedish mutant amyloid precursor protein (APP(sw)) transgenic mouse model of Alzheimer's disease from cognitive dysfunction. But their mechanisms of action remain incompletely understood. These Alzheimer's mice have extensive mitochondrial dysfunction, which likely contributes to their cognitive decline. To further explore the mechanism through which caffeine and melatonin protect cognitive function in these mice, we monitored the function of isolated mitochondria from APP(sw) mice treated with caffeine, melatonin, or both in their drinking water for one month. Melatonin treatment yielded a near complete restoration of mitochondrial function in assays of respiratory rate, membrane potential, reactive oxygen species production, and ATP levels. Caffeine treatment by itself yielded a small increase in mitochondrial function. However, caffeine largely blocked the large enhancement of mitochondrial function provided by melatonin. Studies with N2a neuroblastoma cells stably expressing APP(sw) showed that specific inhibition of cAMP-dependent phosphodiesterase (PDE) 4 or cGMP-dependent PDE5 also blocked melatonin protection of mitochondrial function, but A(2a) and A₁ adenosine receptor antagonists were without effect. Melatonin or caffeine at the concentrations used to modulate mitochondrial function in the cells had no effect on cAMP-dependent PDE activity or cellular cAMP or cGMP levels. Therefore, caffeine and increased cyclic nucleotide levels likely block melatonin signaling to mitochondria by independent mechanisms that do not involve adenosine receptor antagonism. The results of this study indicate that melatonin restores mitochondrial function much more potently than caffeine in APP(sw) transgenic mouse and cell models of Alzheimer's disease.

  2. Dexamethasone provoked mitochondrial perturbations in thymus: Possible role of N-acetylglucosamine in restoration of mitochondrial function.

    PubMed

    Venugopalan, Santhosh Kumar; T S, Shanmugarajan; V, Navaratnam; S M, Mansor; S, Ramanathan

    2016-10-01

    Thymus mitochondria play a crucial role in immune function. This study identifies the novel protective role of N-Acetylglucosamine (NAG) in dexamethasone (DEX) induced mitochondrial perturbations in mice thymus. Mice were induced with DEX (5mg/kg) and treated with NAG i.p. (266μg/kg, 400μg/kg and 800μg/kg) for 14 days, Withanolide A (800μg/kg) has been used as positive control. Dose dependent treatment of NAG against DEX significantly restored the mitochondrial enzyme levels (ICDH, KDH, SDH and MDH) and elevated the mitochondrial glutathione antioxidants defense (GSH, SOD, GPX and GST) thus improving the ATP status which was confirmed by ultrastructural alterations in mitochondria and nucleus using TEM studies. Further histopathological studies also revealed that NAG attenuate DEX induced thymotoxicity. Finally, the study concludes that dose dependent treatment of NAG supports a potential role in preventing DEX induced thymotoxicity and NAG acts as a beneficial pharmacological intervention in the DEX induced thymic repercussions.

  3. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale

    PubMed Central

    Khan, Sheraz; Michmizos, Konstantinos; Tommerdahl, Mark; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Garel, Keri-Lee A.; Herbert, Martha R.; Hämäläinen, Matti S.

    2015-01-01

    Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8–18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism

  4. MITOCHONDRIAL DISEASES PART II: MOUSE MODELS OF OXPHOS DEFICIENCIES CAUSED BY DEFECTS IN REGULATORY FACTORS AND OTHER COMPONENTS REQUIRED FOR MITOCHONDRIAL FUNCTION

    PubMed Central

    Iommarini, Luisa; Peralta, Susana; Torraco, Alessandra; Diaz, Francisca

    2015-01-01

    Mitochondrial disorders are defined as defects that affect the oxidative phosphorylation system (OXPHOS). They are characterized by a heterogeneous array of clinical presentations due in part to a wide variety of factors required for proper function of the components of the OXPHOS system. There is no cure for these disorders owing our poor knowledge of the pathogenic mechanisms of disease. To understand the mechanisms of human disease numerous mouse models have been developed in recent years. Here we summarize the features of several mouse models of mitochondrial diseases directly related to those factors affecting mtDNA maintenance, replication, transcription, translation as well to other proteins that are involved in mitochondrial dynamics and quality control which affect mitochondrial OXPHOS function without been intrinsic components of the system. We discuss how these models have contributed to our understanding of mitochondrial diseases and their pathogenic mechanisms. PMID:25640959

  5. Profiling of the Tox21 Chemical Collection for Mitochondrial Function to Identify Compounds that Acutely Decrease Mitochondrial Membrane Potential

    PubMed Central

    Attene-Ramos, Matias S.; Huang, Ruili; Michael, Sam; Witt, Kristine L.; Richard, Ann; Tice, Raymond R.; Simeonov, Anton; Austin, Christopher P.

    2014-01-01

    Background: Mitochondrial dysfunction has been implicated in the pathogenesis of a variety of disorders including cancer, diabetes, and neurodegenerative and cardiovascular diseases. Understanding whether different environmental chemicals and druglike molecules impact mitochondrial function represents an initial step in predicting exposure-related toxicity and defining a possible role for such compounds in the onset of various diseases. Objectives: We sought to identify individual chemicals and general structural features associated with changes in mitochondrial membrane potential (MMP). Methods: We used a multiplexed [two end points in one screen; MMP and adenosine triphosphate (ATP) content] quantitative high throughput screening (qHTS) approach combined with informatics tools to screen the Tox21 library of 10,000 compounds (~ 8,300 unique chemicals) at 15 concentrations each in triplicate to identify chemicals and structural features that are associated with changes in MMP in HepG2 cells. Results: Approximately 11% of the compounds (913 unique compounds) decreased MMP after 1 hr of treatment without affecting cell viability (ATP content). In addition, 309 compounds decreased MMP over a concentration range that also produced measurable cytotoxicity [half maximal inhibitory concentration (IC50) in MMP assay/IC50 in viability assay ≤ 3; p < 0.05]. More than 11% of the structural clusters that constitute the Tox21 library (76 of 651 clusters) were significantly enriched for compounds that decreased the MMP. Conclusions: Our multiplexed qHTS approach allowed us to generate a robust and reliable data set to evaluate the ability of thousands of drugs and environmental compounds to decrease MMP. The use of structure-based clustering analysis allowed us to identify molecular features that are likely responsible for the observed activity. Citation: Attene-Ramos MS, Huang R, Michael S, Witt KL, Richard A, Tice RR, Simeonov A, Austin CP, Xia M. 2015. Profiling of the Tox

  6. NIR spectroscopic investigation of m. vastus lateralis in patients with mitochondrial myopathies as detected by respirometric investigation of mitochondrial function in skinned fibers

    NASA Astrophysics Data System (ADS)

    Gellerich, Frank N.; Mueller, Tobias; Nioka, Shoko; Hertel, Katrin; Schulte-Mattler, Wilhelm J.; Zierz, Stephan; Chance, Britton

    1998-01-01

    Noninvasive measurement of changes in oxygenation of human skeletal muscle can be done with a dual-wavelength near infrared (NIR) spectrophotometer. This allows a noninvasive investigation of muscle mitochondria. An exercise protocol was developed to study the load dependent changes in oxygenation of m. vastus lateralis of myopathic patients. On a bicycle ergometer exercise was done periodically. One period consisted of 1.5 min exercise followed by 3 min rest. Work load in the first period was 20 W, and was increased by 10 W for each subsequent period until maximal work load was reached. In 12 healthy volunteers we observed oxygenation of muscle during periods of low work load (warm-up effect). During periods of high work load the muscle deoxygenated. The work load at transition from oxygenation to deoxygenation (deoxygenation threshold) in controls was 75 W. In 3 patients with myopathies, in addition to NIR- spectroscopy, function of mitochondria of specimen of m. vastus lateralis was investigated biochemically. Muscle fibers were skinned with saponin and investigated with high resolution respirometry and multiple substrate-inhibitor- titration. Mitochondrial function was impaired in patients who had abnormal findings in NIR spectroscopy.

  7. NIR spectroscopic investigation of m. vastus lateralis in patients with mitochondrial myopathies as detected by respirometric investigation of mitochondrial function in skinned fibers

    NASA Astrophysics Data System (ADS)

    Gellerich, Frank N.; Mueller, Tobias; Nioka, Shoko; Hertel, Katrin; Schulte-Mattler, Wilhelm J.; Zierz, Stephan; Chance, Britton

    1997-12-01

    Noninvasive measurement of changes in oxygenation of human skeletal muscle can be done with a dual-wavelength near infrared (NIR) spectrophotometer. This allows a noninvasive investigation of muscle mitochondria. An exercise protocol was developed to study the load dependent changes in oxygenation of m. vastus lateralis of myopathic patients. On a bicycle ergometer exercise was done periodically. One period consisted of 1.5 min exercise followed by 3 min rest. Work load in the first period was 20 W, and was increased by 10 W for each subsequent period until maximal work load was reached. In 12 healthy volunteers we observed oxygenation of muscle during periods of low work load (warm-up effect). During periods of high work load the muscle deoxygenated. The work load at transition from oxygenation to deoxygenation (deoxygenation threshold) in controls was 75 W. In 3 patients with myopathies, in addition to NIR- spectroscopy, function of mitochondria of specimen of m. vastus lateralis was investigated biochemically. Muscle fibers were skinned with saponin and investigated with high resolution respirometry and multiple substrate-inhibitor- titration. Mitochondrial function was impaired in patients who had abnormal findings in NIR spectroscopy.

  8. In Vivo Quantification Reveals Extensive Natural Variation in Mitochondrial Form and Function in Caenorhabditis briggsae

    PubMed Central

    Hicks, Kiley A.; Howe, Dana K.; Leung, Aubrey; Denver, Dee R.; Estes, Suzanne

    2012-01-01

    We have analyzed natural variation in mitochondrial form and function among a set of Caenorhabditis briggsae isolates known to harbor mitochondrial DNA structural variation in the form of a heteroplasmic nad5 gene deletion (nad5Δ) that correlates negatively with organismal fitness. We performed in vivo quantification of 24 mitochondrial phenotypes including reactive oxygen species level, membrane potential, and aspects of organelle morphology, and observed significant among-isolate variation in 18 traits. Although several mitochondrial phenotypes were non-linearly associated with nad5Δ levels, most of the among-isolate phenotypic variation could be accounted for by phylogeographic clade membership. In particular, isolate-specific mitochondrial membrane potential was an excellent predictor of clade membership. We interpret this result in light of recent evidence for local adaptation to temperature in C. briggsae. Analysis of mitochondrial-nuclear hybrid strains provided support for both mtDNA and nuclear genetic variation as drivers of natural mitochondrial phenotype variation. This study demonstrates that multicellular eukaryotic species are capable of extensive natural variation in organellar phenotypes and highlights the potential of integrating evolutionary and cell biology perspectives. PMID:22952781

  9. Revisiting Mitochondrial Function and Metabolism in Pluripotent Stem Cells: Where Do We Stand in Neurological Diseases?

    PubMed

    Lopes, Carla; Rego, A Cristina

    2017-04-01

    Pluripotent stem cells (PSCs) are powerful cellular tools that can generate all the different cell types of the body, and thus overcome the often limited access to human disease tissues; this becomes highly relevant when aiming to investigate cellular (dys)function in diseases affecting the central nervous system. Recent studies have demonstrated that PSC and differentiated cells show altered mitochondrial function and metabolic profiles and production of reactive oxygen species. This raises an emerging paradigm about the role of mitochondria in stem cell biology and urges the need to identify mitochondrial pathways involved in these processes. In this respect, this review focuses on the metabolic profile of PSC and how mitochondrial function can influence the reprogramming and differentiation processes. Indeed, both embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) favor the glycolytic pathway as a major source of energy production over oxidative phosphorylation. PSC mitochondria are characterized by a spherical shape, low copy number of mitochondrial DNA, and a hyperpolarized state. Indeed, mitochondria appear to have a crucial role in reprogramming iPSC, in the maintenance of a pluripotent state, and in differentiation. Moreover, an increase in mitochondrial oxidative phosphorylation has to occur for differentiation to succeed. Therefore, in vitro differentiation of neural stem cells (NSCs) into neurons can be compromised if those mechanisms are impaired. Future research should shed light on how mitochondrial impairment occurring in pre differentiation neural stages (e.g., in NSC or premature neurons) may contribute for the etiopathogenesis of neurodevelopmental and neurological disorders.

  10. Echinochrome A Protects Mitochondrial Function in Cardiomyocytes against Cardiotoxic Drugs

    PubMed Central

    Jeong, Seung Hun; Kim, Hyoung Kyu; Song, In-Sung; Lee, Seon Joong; Ko, Kyung Soo; Rhee, Byoung Doo; Kim, Nari; Mishchenko, Natalia P.; Fedoryev, Sergey A.; Stonik, Valentin A.; Han, Jin

    2014-01-01

    Echinochrome A (Ech A) is a naphthoquinoid pigment from sea urchins that possesses antioxidant, antimicrobial, anti-inflammatory and chelating abilities. Although Ech A is the active substance in the ophthalmic and cardiac drug Histochrome®, its underlying cardioprotective mechanisms are not well understood. In this study, we investigated the protective role of Ech A against toxic agents that induce death of rat cardiac myoblast H9c2 cells and isolated rat cardiomyocytes. We found that the cardiotoxic agents tert-Butyl hydroperoxide (tBHP, organic reactive oxygen species (ROS) inducer), sodium nitroprusside (SNP; anti-hypertension drug), and doxorubicin (anti-cancer drug) caused mitochondrial dysfunction such as increased ROS level and decreased mitochondrial membrane potential. Co-treatment with Ech A, however, prevented this decrease in membrane potential and increase in ROS level. Co-treatment of Ech A also reduced the effects of these cardiotoxic agents on mitochondrial oxidative phosphorylation and adenosine triphosphate level. These findings indicate the therapeutic potential of Ech A for reducing cardiotoxic agent-induced damage. PMID:24828295

  11. Insights on altered mitochondrial function and dynamics in the pathogenesis of neurodegeneration

    PubMed Central

    2013-01-01

    In neurons, mitochondria are enriched to provide energy and calcium buffering required for synaptic transmission. Additionally, mitochondria localize to the synapse, where they are critical for the mobilization of reserve pool vesicles and for neurotransmitter release. Previously, functional defects in mitochondria were considered to be downstream effects of neurodegenerative diseases. However, more recent findings suggest mitochondria may serve as key mediators in the onset and progression of some types of neurodegeneration. In this review, we explore the possible roles of altered mitochondrial function and dynamics in the pathogenesis of neurodegenerative disorders, with a particular focus on Alzheimer’s disease (AD) and Parkinson’s disease (PD), which have highlighted the important role of mitochondria in neurodegeneration. While inheritable diseases like Charcot-Marie-Tooth disease type 2A are concretely linked to gene mutations affecting mitochondrial function, the cause of mitochondrial dysfunction in primarily sporadic diseases such as AD and PD is less clear. Neuronal death in PD is associated with defects in mitochondrial function and dynamics arising from mutations in proteins affecting these processes, including α-synuclein, DJ-1, LRRK2, Parkin and Pink1. In the case of AD, however, the connection between mitochondria and the onset of neurodegeneration has been less clear. Recent findings, however, have implicated altered function of ER-mitochondria contact sites and amyloid beta- and/or tau-induced defects in mitochondrial function and dynamics in the pathogenesis of AD, suggesting that mitochondrial defects may act as key mediators in the pathogenesis of AD as well. With recent findings at hand, it may be postulated that defects in mitochondrial processes comprise key events in the onset of neurodegeneration. PMID:23711354

  12. Hormone deprivation alters mitochondrial function and lipid profile in the hippocampus.

    PubMed

    Zárate, Sandra; Astiz, Mariana; Magnani, Natalia; Imsen, Mercedes; Merino, Florencia; Álvarez, Silvia; Reinés, Analía; Seilicovich, Adriana

    2017-04-01

    Mitochondrial dysfunction is a common hallmark in aging. In the female, reproductive senescence is characterized by loss of ovarian hormones, many of whose neuroprotective effects converge upon mitochondria. The functional integrity of mitochondria is dependent on membrane fatty acid and phospholipid composition, which are also affected during aging. The effect of long-term ovarian hormone deprivation upon mitochondrial function and its putative association with changes in mitochondrial membrane lipid profile in the hippocampus, an area primarily affected during aging and highly responsive to ovarian hormones, is unknown. To this aim, Wistar adult female rats were ovariectomized or sham-operated. Twelve weeks later, different parameters of mitochondrial function (O2 uptake, ATP production, membrane potential and respiratory complex activities) as well as membrane phospholipid content and composition were evaluated in hippocampal mitochondria. Chronic ovariectomy reduced mitochondrial O2 uptake and ATP production rates and induced membrane depolarization during active respiration without altering the activity of respiratory complexes. Mitochondrial membrane lipid profile showed no changes in cholesterol levels but higher levels of unsaturated fatty acids and a higher peroxidizability index in mitochondria from ovariectomized rats. Interestingly, ovariectomy also reduced cardiolipin content and altered cardiolipin fatty acid profile leading to a lower peroxidizability index. In conclusion, chronic ovarian hormone deprivation induces mitochondrial dysfunction and changes in the mitochondrial membrane lipid profile comparable to an aging phenotype. Our study provides insights into ovarian hormone loss-induced early lipidomic changes with bioenergetic deficits in the hippocampus that may contribute to the increased risk of Alzheimer's disease and other age-associated disorders observed in postmenopause.

  13. Abnormal whole-brain functional connectivity in patients with primary insomnia

    PubMed Central

    Li, Chao; Dong, Mengshi; Yin, Yi; Hua, Kelei; Fu, Shishun; Jiang, Guihua

    2017-01-01

    The investigation of the mechanism of insomnia could provide the basis for improved understanding and treatment of insomnia. The aim of this study is to investigate the abnormal functional connectivity throughout the entire brain of insomnia patients, and analyze the global distribution of these abnormalities. Whole brains of 50 patients with insomnia and 40 healthy controls were divided into 116 regions and abnormal connectivities were identified by comparing the Pearson’s correlation coefficients of each pair using general linear model analyses with covariates of age, sex, and duration of education. In patients with insomnia, regions that relate to wakefulness, emotion, worry/rumination, saliency/attention, and sensory-motor showed increased positive connectivity with each other; however, regions that often restrain each other, such as regions in salience network with regions in default mode network, showed decreased positive connectivity. Correlation analysis indicated that some increased positive functional connectivity was associated with the Self-Rating Depression Scale, Insomnia Severity Index, and Pittsburgh Sleep Quality Index scores. According to our findings, increased and decreased positive connectivities suggest function strengthening and function disinhibition, respectively, which offers a parsimonious explanation for the hyperarousal hypothesis in the level of the whole-brain functional connectivity in patients with insomnia. PMID:28243094

  14. Abnormal whole-brain functional connectivity in patients with primary insomnia.

    PubMed

    Li, Chao; Dong, Mengshi; Yin, Yi; Hua, Kelei; Fu, Shishun; Jiang, Guihua

    2017-01-01

    The investigation of the mechanism of insomnia could provide the basis for improved understanding and treatment of insomnia. The aim of this study is to investigate the abnormal functional connectivity throughout the entire brain of insomnia patients, and analyze the global distribution of these abnormalities. Whole brains of 50 patients with insomnia and 40 healthy controls were divided into 116 regions and abnormal connectivities were identified by comparing the Pearson's correlation coefficients of each pair using general linear model analyses with covariates of age, sex, and duration of education. In patients with insomnia, regions that relate to wakefulness, emotion, worry/rumination, saliency/attention, and sensory-motor showed increased positive connectivity with each other; however, regions that often restrain each other, such as regions in salience network with regions in default mode network, showed decreased positive connectivity. Correlation analysis indicated that some increased positive functional connectivity was associated with the Self-Rating Depression Scale, Insomnia Severity Index, and Pittsburgh Sleep Quality Index scores. According to our findings, increased and decreased positive connectivities suggest function strengthening and function disinhibition, respectively, which offers a parsimonious explanation for the hyperarousal hypothesis in the level of the whole-brain functional connectivity in patients with insomnia.

  15. Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis

    PubMed Central

    Sebastián, David; Hernández-Alvarez, María Isabel; Segalés, Jessica; Sorianello, Eleonora; Muñoz, Juan Pablo; Sala, David; Waget, Aurélie; Liesa, Marc; Paz, José C.; Gopalacharyulu, Peddinti; Orešič, Matej; Pich, Sara; Burcelin, Rémy; Palacín, Manuel; Zorzano, Antonio

    2012-01-01

    Mitochondria are dynamic organelles that play a key role in energy conversion. Optimal mitochondrial function is ensured by a quality-control system tightly coupled to fusion and fission. In this connection, mitofusin 2 (Mfn2) participates in mitochondrial fusion and undergoes repression in muscle from obese or type 2 diabetic patients. Here, we provide in vivo evidence that Mfn2 plays an essential role in metabolic homeostasis. Liver-specific ablation of Mfn2 in mice led to numerous metabolic abnormalities, characterized by glucose intolerance and enhanced hepatic gluconeogenesis. Mfn2 deficiency impaired insulin signaling in liver and muscle. Furthermore, Mfn2 deficiency was associated with endoplasmic reticulum stress, enhanced hydrogen peroxide concentration, altered reactive oxygen species handling, and active JNK. Chemical chaperones or the antioxidant N-acetylcysteine ameliorated glucose tolerance and insulin signaling in liver-specific Mfn2 KO mice. This study provides an important description of a unique unexpected role of Mfn2 coordinating mitochondria and endoplasmic reticulum function, leading to modulation of insulin signaling and glucose homeostasis in vivo. PMID:22427360

  16. Far-infrared radiation protects viability in a cell model of Spinocerebellar Ataxia by preventing polyQ protein accumulation and improving mitochondrial function

    PubMed Central

    Chang, Jui-Chih; Wu, Shey-Lin; Hoel, Fredrik; Cheng, Yu-Shan; Liu, Ko-Hung; Hsieh, Mingli; Hoel, August; Tronstad, Karl Johan; Yan, Kuo-Chia; Hsieh, Ching-Liang; Lin, Wei-Yong; Kuo, Shou-Jen; Su, Shih-Li; Liu, Chin-San

    2016-01-01

    Far infrared radiation (FIR) is currently investigated as a potential therapeutic strategy in various diseases though the mechanism is unknown. Presently, we tested if FIR mediates beneficial effects in a cell model of the neurodegenerative disease spinocerebellar ataxia type 3 (SCA3). SCA3 is caused by a mutation leading to an abnormal polyglutamine expansion (PolyQ) in ataxin-3 protein. The consequent aggregation of mutant ataxin-3 results in disruption of vital cell functions. In this study, neuroblastoma cells (SK-N-SH) was transduced to express either non-pathogenic ataxin-3-26Q or pathogenic ataxin-3-78Q proteins. The cells expressing ataxin-3-78Q demonstrated decreased viability, and increased sensitivity to metabolic stress in the presence rotenone, an inhibitor of mitochondrial respiration. FIR exposure was found to protect against these effects. Moreover, FIR improved mitochondrial respiratory function, which was significantly compromised in ataxin-3-78Q and ataxin-3-26Q expressing cells. This was accompanied by decreased levels of mitochondrial fragmentation in FIR treated cells, as observed by fluorescence microscopy and protein expression analysis. Finally, the expression profile LC3-II, Beclin-1 and p62 suggested that FIR prevent the autophagy inhibiting effects observed in ataxin-3-78Q expressing cells. In summary, our results suggest that FIR have rescuing effects in cells expressing mutated pathogenic ataxin-3, through recovery of mitochondrial function and autophagy. PMID:27469193

  17. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome.

    PubMed

    O'Connell, Grant C; Nichols, Cody; Guo, Ge; Croston, Tara L; Thapa, Dharendra; Hollander, John M; Pistilli, Emidio E

    2015-11-01

    Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occurred independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome.

  18. IL-15Rα deficiency in skeletal muscle alters respiratory function and the proteome of mitochondrial subpopulations independent of changes to the mitochondrial genome

    PubMed Central

    O'Connell, Grant C.; Nichols, Cody; Guo, Ge; Croston, Tara L.; Thapa, Dharendra; Hollander, John M.; Pistilli, Emidio E.

    2016-01-01

    Interleukin-15 receptor alpha knockout (IL15RαKO) mice exhibit a greater skeletal muscle mitochondrial density with an altered mitochondrial morphology. However, the mechanism and functional impact of these changes have not been determined. In this study, we characterized the functional, proteomic, and genomic alterations in mitochondrial subpopulations isolated from the skeletal muscles of IL15RαKO mice and B6129 background control mice. State 3 respiration was greater in interfibrillar mitochondria and whole muscle ATP levels were greater in IL15RαKO mice supporting the increases in respiration rate. However, the state 3/state 4 ratio was lower, suggesting some degree of respiratory uncoupling. Proteomic analyses identified several markers independently in mitochondrial subpopulations that are associated with these functional alterations. Next Generation Sequencing of mtDNA revealed a high degree of similarity between the mitochondrial genomes of IL15RαKO mice and controls in terms of copy number, consensus coding and the presence of minor alleles, suggesting that the functional and proteomic alterations we observed occur independent of alterations to the mitochondrial genome. These data provide additional evidence to implicate IL-15Rα as a regulator of skeletal muscle phenotypes through effects on the mitochondrion, and suggest these effects are driven by alterations to the mitochondrial proteome. PMID:26458787

  19. Mitochondria: a kinase anchoring protein 1, a signaling platform for mitochondrial form and function.

    PubMed

    Merrill, Ronald A; Strack, Stefan

    2014-03-01

    Mitochondria are best known for their role as cellular power plants, but they also serve as signaling hubs, regulating cellular proliferation, differentiation, and survival. A kinase anchoring protein 1 (AKAP1) is a scaffold protein that recruits protein kinase A (PKA) and other signaling proteins, as well as RNA, to the outer mitochondrial membrane. AKAP1 thereby integrates several second messenger cascades to modulate mitochondrial function and associated physiological and pathophysiological outcomes. Here, we review what is currently known about AKAP1's macromolecular interactions in health and disease states, including obesity. We also discuss dynamin-related protein 1 (Drp1), the enzyme that catalyzes mitochondrial fission, as one of the key substrates of the PKA/AKAP1 signaling complex in neurons. Recent evidence suggests that AKAP1 has critical roles in neuronal development and survival, which are mediated by inhibitory phosphorylation of Drp1 and maintenance of mitochondrial integrity.

  20. Mitochondria: mitochondrial OXPHOS (dys) function ex vivo--the use of primary fibroblasts.

    PubMed

    Saada, Ann

    2014-03-01

    Mitochondria are intracellular organelles present in all nucleated cells. They perform a number of vital metabolic processes but their main function is to generate energy in the form of ATP by oxidative phosphorylation (OXPHOS), performed by the mitochondrial respiratory chain. Mitochondrial diseases affecting oxidative phosphorylation are a common group of inherited disorders with variable clinical manifestations. They are caused by mutations either in the mitochondrial or the nuclear genome. In order to study this group of heterogeneous diseases, they are often modeled in animal and microbial systems. However, these are complex, time consuming and unavailable for each specific mutation. Conversely, skin fibroblasts derived from patients provide a feasible alternative. The usefulness of fibroblasts in culture to verify and study the pathomechanism of new mitochondrial diseases and to evaluate the efficacy of individual treatment options is summarized in this review.

  1. Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis

    PubMed Central

    Ip, Blanche C.; Habib, Chloe; Ritou, Eleni; Grammatopoulos, Tom N.; Steenkamp, Devin; Dooms, Hans; Apovian, Caroline M.; Lauffenburger, Douglas A.

    2017-01-01

    Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96) analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes. PMID:28178278

  2. Advances in the quantification of mitochondrial function in primary human immune cells through extracellular flux analysis.

    PubMed

    Nicholas, Dequina; Proctor, Elizabeth A; Raval, Forum M; Ip, Blanche C; Habib, Chloe; Ritou, Eleni; Grammatopoulos, Tom N; Steenkamp, Devin; Dooms, Hans; Apovian, Caroline M; Lauffenburger, Douglas A; Nikolajczyk, Barbara S

    2017-01-01

    Numerous studies show that mitochondrial energy generation determines the effectiveness of immune responses. Furthermore, changes in mitochondrial function may regulate lymphocyte function in inflammatory diseases like type 2 diabetes. Analysis of lymphocyte mitochondrial function has been facilitated by introduction of 96-well format extracellular flux (XF96) analyzers, but the technology remains imperfect for analysis of human lymphocytes. Limitations in XF technology include the lack of practical protocols for analysis of archived human cells, and inadequate data analysis tools that require manual quality checks. Current analysis tools for XF outcomes are also unable to automatically assess data quality and delete untenable data from the relatively high number of biological replicates needed to power complex human cell studies. The objectives of work presented herein are to test the impact of common cellular manipulations on XF outcomes, and to develop and validate a new automated tool that objectively analyzes a virtually unlimited number of samples to quantitate mitochondrial function in immune cells. We present significant improvements on previous XF analyses of primary human cells that will be absolutely essential to test the prediction that changes in immune cell mitochondrial function and fuel sources support immune dysfunction in chronic inflammatory diseases like type 2 diabetes.

  3. GASZ and mitofusin-mediated mitochondrial functions are crucial for spermatogenesis.

    PubMed

    Zhang, Jingjing; Wang, Qian; Wang, Mingsong; Jiang, Manxi; Wang, Yongsheng; Sun, Yun; Wang, Junpeng; Xie, Taorong; Tang, Chao; Tang, Nannan; Song, Huili; Cui, Di; Chao, Ruihua; Ding, Shuzhe; Ni, Bing; Chen, Xuejin; Wang, Yuan

    2016-02-01

    Nuage is an electron-dense cytoplasmic structure in germ cells that contains ribonucleoproteins and participates in piRNA biosynthesis. Despite the observation that clustered mitochondria are associated with a specific type of nuage called intermitochondrial cement (pi-body), the importance of mitochondrial functions in nuage formation and spermatogenesis is yet to be determined. We show that a germ cell-specific protein GASZ contains a functional mitochondrial targeting signal and is largely localized at mitochondria both endogenously in germ cells and in somatic cells when ectopically expressed. In addition, GASZ interacts with itself at the outer membrane of mitochondria and promotes mitofusion in a mitofusin/MFN-dependent manner. In mice, deletion of the mitochondrial targeting signal reveals that mitochondrial localization of GASZ is essential for nuage formation, mitochondrial clustering, transposon repression, and spermatogenesis. MFN1 deficiency also leads to defects in mitochondrial activity and male infertility. Our data thus reveal a requirement for GASZ and MFN-mediated mitofusion during spermatogenesis.

  4. An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function.

    PubMed

    Zabezhinsky, Dmitry; Slobodin, Boris; Rapaport, Doron; Gerst, Jeffrey E

    2016-04-19

    Nuclear-encoded mRNAs encoding mitochondrial proteins (mMPs) can localize directly to the mitochondrial surface, yet how mMPs target mitochondria and whether RNA targeting contributes to protein import into mitochondria and cellular metabolism are unknown. Here, we show that the COPI vesicle coat complex is necessary for mMP localization to mitochondria and mitochondrial function. COPI inactivation leads to reduced mMP binding to COPI itself, resulting in the dissociation of mMPs from mitochondria, a reduction in mitochondrial membrane potential, a decrease in protein import in vivo and in vitro, and severe deficiencies in mitochondrial respiration. Using a model mMP (OXA1), we observed that COPI inactivation (or mutation of the potential COPI-interaction site) led to altered mRNA localization and impaired cellular respiration. Overall, COPI-mediated mMP targeting is critical for mitochondrial protein import and function, and transcript delivery to the mitochondria or endoplasmic reticulum is regulated by cis-acting RNA sequences and trans-acting proteins.

  5. Evidence for a Direct Effect of the NAD+ Precursor Acipimox on Muscle Mitochondrial Function in Humans

    PubMed Central

    van de Weijer, Tineke; Phielix, Esther; Bilet, Lena; Williams, Evan G.; Ropelle, Eduardo R.; Bierwagen, Alessandra; Livingstone, Roshan; Nowotny, Peter; Sparks, Lauren M.; Paglialunga, Sabina; Szendroedi, Julia; Havekes, Bas; Moullan, Norman; Pirinen, Eija; Hwang, Jong-Hee; Schrauwen-Hinderling, Vera B.; Hesselink, Matthijs K.C.; Auwerx, Johan

    2015-01-01

    Recent preclinical studies showed the potential of nicotinamide adenine dinucleotide (NAD+) precursors to increase oxidative phosphorylation and improve metabolic health, but human data are lacking. We hypothesize that the nicotinic acid derivative acipimox, an NAD+ precursor, would directly affect mitochondrial function independent of reductions in nonesterified fatty acid (NEFA) concentrations. In a multicenter randomized crossover trial, 21 patients with type 2 diabetes (age 57.7 ± 1.1 years, BMI 33.4 ± 0.8 kg/m2) received either placebo or acipimox 250 mg three times daily dosage for 2 weeks. Acipimox treatment increased plasma NEFA levels (759 ± 44 vs. 1,135 ± 97 μmol/L for placebo vs. acipimox, P < 0.01) owing to a previously described rebound effect. As a result, skeletal muscle lipid content increased and insulin sensitivity decreased. Despite the elevated plasma NEFA levels, ex vivo mitochondrial respiration in skeletal muscle increased. Subsequently, we showed that acipimox treatment resulted in a robust elevation in expression of nuclear-encoded mitochondrial gene sets and a mitonuclear protein imbalance, which may indicate activation of the mitochondrial unfolded protein response. Further studies in C2C12 myotubes confirmed a direct effect of acipimox on NAD+ levels, mitonuclear protein imbalance, and mitochondrial oxidative capacity. To the best of our knowledge, this study is the first to demonstrate that NAD+ boosters can also directly affect skeletal muscle mitochondrial function in humans. PMID:25352640

  6. A novel role of the ferric reductase Cfl1 in cell wall integrity, mitochondrial function, and invasion to host cells in Candida albicans.

    PubMed

    Yu, Qilin; Dong, Yijie; Xu, Ning; Qian, Kefan; Chen, Yulu; Zhang, Biao; Xing, Laijun; Li, Mingchun

    2014-11-01

    Candida albicans is an important opportunistic pathogen, causing both superficial mucosal infections and life-threatening systemic diseases. Iron acquisition is an important factor for pathogen-host interaction and also a significant element for the pathogenicity of this organism. Ferric reductases, which convert ferric iron into ferrous iron, are important components of the high-affinity iron uptake system. Sequence analyses have identified at least 17 putative ferric reductase genes in C. albicans genome. CFL1 was the first ferric reductase identified in C. albicans. However, little is known about its roles in C. albicans physiology and pathogenicity. In this study, we found that disruption of CFL1 led to hypersensitivity to chemical and physical cell wall stresses, activation of the cell wall integrity (CWI) pathway, abnormal cell wall composition, and enhanced secretion, indicating a defect in CWI in this mutant. Moreover, this mutant showed abnormal mitochondrial activity and morphology, suggesting a link between ferric reductases and mitochondrial function. In addition, this mutant displayed decreased ability of adhesion to both the polystyrene microplates and buccal epithelial cells and invasion of host epithelial cells. These findings revealed a novel role of C. albicans Cfl1 in maintenance of CWI, mitochondrial function, and interaction between this pathogen and the host.

  7. The formation and functional consequences of heterogeneous mitochondrial distributions in skeletal muscle

    PubMed Central

    Pathi, B.; Kinsey, S. T.; Howdeshell, M. E.; Priester, C.; McNeill, R. S.; Locke, B. R.

    2012-01-01

    SUMMARY Diffusion plays a prominent role in governing both rates of aerobic metabolic fluxes and mitochondrial organization in muscle fibers. However, there is no mechanism to explain how the non-homogeneous mitochondrial distributions that are prevalent in skeletal muscle arise. We propose that spatially variable degradation with dependence on O2 concentration, and spatially uniform signals for biogenesis, can account for observed distributions of mitochondria in a diversity of skeletal muscle. We used light and transmission electron microscopy and stereology to examine fiber size, capillarity and mitochondrial distribution in fish red and white muscle, fish white muscle that undergoes extreme hypertrophic growth, and four fiber types in mouse muscle. The observed distributions were compared with those generated using a coupled reaction-diffusion/cellular automata (CA) mathematical model of mitochondrial function. Reaction-diffusion analysis of metabolites such as oxygen, ATP, ADP and PCr involved in energy metabolism and mitochondrial function were considered. Coupled to the reaction-diffusion approach was a CA approach governing mitochondrial life cycles in response to the metabolic state of the fiber. The model results were consistent with the experimental observations and showed higher mitochondrial densities near the capillaries because of the sometimes steep gradients in oxygen. The present study found that selective removal of mitochondria in the presence of low prevailing local oxygen concentrations is likely the primary factor dictating the spatial heterogeneity of mitochondria in a diversity of fibers. The model results also suggest decreased diffusional constraints corresponding to the heterogeneous mitochondrial distribution assessed using the effectiveness factor, defined as the ratio of the reaction rate in the system with finite rates of diffusion to that in the absence of any diffusion limitation. Thus, the non-uniform distribution benefits the

  8. Structural and Functional Small Fiber Abnormalities in the Neuropathic Postural Tachycardia Syndrome

    PubMed Central

    Gibbons, Christopher H.; Bonyhay, Istvan; Benson, Adam; Wang, Ningshan; Freeman, Roy

    2013-01-01

    Objective To define the neuropathology, clinical phenotype, autonomic physiology and differentiating features in individuals with neuropathic and non-neuropathic postural tachycardia syndrome (POTS). Methods Twenty-four subjects with POTS and 10 healthy control subjects had skin biopsy analysis of intra-epidermal nerve fiber density (IENFD), quantitative sensory testing (QST) and autonomic testing. Subjects completed quality of life, fatigue and disability questionnaires. Subjects were divided into neuropathic and non-neuropathic POTS, defined by abnormal IENFD and abnormal small fiber and sudomotor function. Results Nine of 24 subjects had neuropathic POTS and had significantly lower resting and tilted heart rates; reduced parasympathetic function; and lower phase 4 valsalva maneuver overshoot compared with those with non-neuropathic POTS (P<0.05). Neuropathic POTS subjects also had less anxiety and depression and greater overall self-perceived health-related quality of life scores than non-neuropathic POTS subjects. A sub-group of POTS patients (cholinergic POTS) had abnormal proximal sudomotor function and symptoms that suggest gastrointestinal and genitourinary parasympathetic nervous system dysfunction. Conclusions and Relevance POTS subtypes may be distinguished using small fiber and autonomic structural and functional criteria. Patients with non-neuropathic POTS have greater anxiety, greater depression and lower health-related quality of life scores compared to those with neuropathic POTS. These findings suggest different pathophysiological processes underlie the postural tachycardia in neuropathic and non-neuropathic POTS patients. The findings have implications for the therapeutic interventions to treat this disorder. PMID:24386408

  9. Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis

    PubMed Central

    Banerjee, Rebecca; Starkov, Anatoly A.; Beal, M. Flint; Thomas, Bobby

    2010-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative movement disorder with unknown etiology. It is marked by widespread neurodegeneration in the brain with profound loss of A9 midbrain dopaminergic neurons in substantia nigra pars compacta. Several theories of biochemical abnormalities have been linked to pathogenesis of PD of which mitochondrial dysfunction due to an impairment of mitochondrial complex I and subsequent oxidative stress seems to take the center stage in experimental models of PD and in postmortem tissues of sporadic forms of illness. Recent identification of specific gene mutations and their influence on mitochondrial functions has further reinforced the relevance of mitochondrial abnormalities in disease pathogenesis. In both sporadic and familial forms of PD abnormal mitochondrial paradigms associated with disease include impaired functioning of the mitochondrial electron transport chain, aging associated damage to mitochondrial DNA, impaired calcium buffering, and anomalies in mitochondrial morphology and dynamics. Here we provide an overview of specific mitochondrial functions affected in sporadic and familial PD that play a role in disease pathogenesis. We propose to utilize these gained insights to further streamline and focus the research to better understand mitochondria's role in disease development and exploit potential mitochondrial targets for therapeutic interventions in PD pathogenesis. PMID:19059336

  10. Insulin Stimulates Mitochondrial Fusion and Function in Cardiomyocytes via the Akt-mTOR-NFκB-Opa-1 Signaling Pathway

    PubMed Central

    Parra, Valentina; Verdejo, Hugo E.; Iglewski, Myriam; del Campo, Andrea; Troncoso, Rodrigo; Jones, Deborah; Zhu, Yi; Kuzmicic, Jovan; Pennanen, Christian; Lopez‑Crisosto, Camila; Jaña, Fabián; Ferreira, Jorge; Noguera, Eduard; Chiong, Mario; Bernlohr, David A.; Klip, Amira; Hill, Joseph A.; Rothermel, Beverly A.; Abel, Evan Dale; Zorzano, Antonio; Lavandero, Sergio

    2014-01-01

    Insulin regulates heart metabolism through the regulation of insulin-stimulated glucose uptake. Studies have indicated that insulin can also regulate mitochondrial function. Relevant to this idea, mitochondrial function is impaired in diabetic individuals. Furthermore, the expression of Opa-1 and mitofusins, proteins of the mitochondrial fusion machinery, is dramatically altered in obese and insulin-resistant patients. Given the role of insulin in the control of cardiac energetics, the goal of this study was to investigate whether insulin affects mitochondrial dynamics in cardiomyocytes. Confocal microscopy and the mitochondrial dye MitoTracker Green were used to obtain three-dimensional images of the mitochondrial network in cardiomyocytes and L6 skeletal muscle cells in culture. Three hours of insulin treatment increased Opa-1 protein levels, promoted mitochondrial fusion, increased mitochondrial membrane potential, and elevated both intracellular ATP levels and oxygen consumption in cardiomyocytes in vitro and in vivo. Consequently, the silencing of Opa-1 or Mfn2 prevented all the metabolic effects triggered by insulin. We also provide evidence indicating that insulin increases mitochondrial function in cardiomyocytes through the Akt-mTOR-NFκB signaling pathway. These data demonstrate for the first time in our knowledge that insulin acutely regulates mitochondrial metabolism in cardiomyocytes through a mechanism that depends on increased mitochondrial fusion, Opa-1, and the Akt-mTOR-NFκB pathway. PMID:24009260

  11. Abnormal functional brain asymmetry in depression: evidence of biologic commonality between major depression and dysthymia.

    PubMed

    Bruder, Gerard E; Stewart, Jonathan W; Hellerstein, David; Alvarenga, Jorge E; Alschuler, Daniel; McGrath, Patrick J

    2012-04-30

    Prior studies have found abnormalities of functional brain asymmetry in patients having a major depressive disorder (MDD). This study aimed to replicate findings of reduced right hemisphere advantage for perceiving dichotic complex tones in depressed patients, and to determine whether patients having "pure" dysthymia show the same abnormality of perceptual asymmetry as MDD. It also examined gender differences in lateralization, and the extent to which abnormalities of perceptual asymmetry in depressed patients are dependent on gender. Unmedicated patients having either a MDD (n=96) or "pure" dysthymic disorder (n=42) and healthy controls (n=114) were tested on dichotic fused-words and complex-tone tests. Patient and control groups differed in right hemisphere advantage for complex tones, but not left hemisphere advantage for words. Reduced right hemisphere advantage for tones was equally present in MDD and dysthymia, but was more evident among depressed men than depressed women. Also, healthy men had greater hemispheric asymmetry than healthy women for both words and tones, whereas this gender difference was not seen for depressed patients. Dysthymia and MDD share a common abnormality of hemispheric asymmetry for dichotic listening.

  12. Mitochondrial tRNA-lookalikes in nuclear chromosomes: could they be functional?

    PubMed

    Telonis, Aristeidis G; Kirino, Yohei; Rigoutsos, Isidore

    2015-01-01

    The presence in human nuclear chromosomes of multiple sequences that are highly similar to human mitochondrial tRNAs (tRNA-lookalikes) raises intriguing questions about the possible functionality of these genomic loci. In this perspective, we explore the significance of the mitochondrial tRNA-lookalikes based on a series of properties that argue for their non-accidental nature. We particularly focus on the possibility of transcription as well as on potential functional roles for these sequences that can range from their acting as DNA regulatory elements to forming functional mature tRNAs or tRNA-derived fragments. Extension of our analysis to other simians (chimp, gorilla, rhesus, and squirrel monkey), 2 rodents (mouse and rat), a marsupial (opossum) and 3 invertebrates (fruit-fly, worm, and sponge) revealed that mitochondrial tRNA-lookalikes are prevalent in primates and the opossum but absent from the other analyzed organisms.

  13. Mitochondrial Dysfunction in Diabetes: From Molecular Mechanisms to Functional Significance and Therapeutic Opportunities

    PubMed Central

    Yorek, Mark A.

    2010-01-01

    Abstract Given their essential function in aerobic metabolism, mitochondria are intuitively of interest in regard to the pathophysiology of diabetes. Qualitative, quantitative, and functional perturbations in mitochondria have been identified and affect the cause and complications of diabetes. Moreover, as a consequence of fuel oxidation, mitochondria generate considerable reactive oxygen species (ROS). Evidence is accumulating that these radicals per se are important in the pathophysiology of diabetes and its complications. In this review, we first present basic concepts underlying mitochondrial physiology. We then address mitochondrial function and ROS as related to diabetes. We consider different forms of diabetes and address both insulin secretion and insulin sensitivity. We also address the role of mitochondrial uncoupling and coenzyme Q. Finally, we address the potential for targeting mitochondria in the therapy of diabetes. Antioxid. Redox Signal. 12, 537–577. PMID:19650713

  14. Mitochondrial aging and age-related dysfunction of mitochondria.

    PubMed

    Chistiakov, Dimitry A; Sobenin, Igor A; Revin, Victor V; Orekhov, Alexander N; Bobryshev, Yuri V

    2014-01-01

    Age-related changes in mitochondria are associated with decline in mitochondrial function. With advanced age, mitochondrial DNA volume, integrity and functionality decrease due to accumulation of mutations and oxidative damage induced by reactive oxygen species (ROS). In aged subjects, mitochondria are characterized by impaired function such as lowered oxidative capacity, reduced oxidative phosphorylation, decreased ATP production, significant increase in ROS generation, and diminished antioxidant defense. Mitochondrial biogenesis declines with age due to alterations in mitochondrial dynamics and inhibition of mitophagy, an autophagy process that removes dysfunctional mitochondria. Age-dependent abnormalities in mitochondrial quality control further weaken and impair mitochondrial function. In aged tissues, enhanced mitochondria-mediated apoptosis contributes to an increase in the percentage of apoptotic cells. However, implementation of strategies such as caloric restriction and regular physical training may delay mitochondrial aging and attenuate the age-related phenotype in humans.

  15. Pharmacological Chaperones and Coenzyme Q10 Treatment Improves Mutant β-Glucocerebrosidase Activity and Mitochondrial Function in Neuronopathic Forms of Gaucher Disease

    PubMed Central

    de la Mata, Mario; Cotán, David; Oropesa-Ávila, Manuel; Garrido-Maraver, Juan; Cordero, Mario D.; Villanueva Paz, Marina; Delgado Pavón, Ana; Alcocer-Gómez, Elizabet; de Lavera, Isabel; Ybot-González, Patricia; Paula Zaderenko, Ana; Ortiz Mellet, Carmen; Fernández, José M. García; Sánchez-Alcázar, José A.

    2015-01-01

    Gaucher disease (GD) is caused by mutations in the GBA1 gene, which encodes lysosomal β-glucocerebrosidase. Homozygosity for the L444P mutation in GBA1 is associated with high risk of neurological manifestations which are not improved by enzyme replacement therapy. Alternatively, pharmacological chaperones (PCs) capable of restoring the correct folding and trafficking of the mutant enzyme represent promising alternative therapies.Here, we report on how the L444P mutation affects mitochondrial function in primary fibroblast derived from GD patients. Mitochondrial dysfunction was associated with reduced mitochondrial membrane potential, increased reactive oxygen species (ROS), mitophagy activation and impaired autophagic flux.Both abnormalities, mitochondrial dysfunction and deficient β-glucocerebrosidase activity, were partially restored by supplementation with coenzyme Q10 (CoQ) or a L-idonojirimycin derivative, N-[N’-(4-adamantan-1-ylcarboxamidobutyl)thiocarbamoyl]-1,6-anhydro-L-idonojirimycin (NAdBT-AIJ), and more markedly by the combination of both treatments. These data suggest that targeting both mitochondria function by CoQ and protein misfolding by PCs can be promising therapies in neurological forms of GD. PMID:26045184

  16. Sustained Early Disruption of Mitochondrial Function Contributes to Arsenic-Induced Prostate Tumorigenesis.

    PubMed

    Singh, B; Kulawiec, M; Owens, K M; Singh, A; Singh, K K

    2016-10-01

    Arsenic is a well-known human carcinogen that affects millions of people worldwide, but the underlying mechanisms of carcinogenesis are unclear. Several epidemiological studies have suggested increased prostate cancer incidence and mortality due to exposure to arsenic. Due to lack of an animal model of arsenic-induced carcinogenesis, we used a prostate epithelial cell culture model to identify a role for mitochondria in arsenic-induced prostate cancer. Mitochondrial morphology and membrane potential was impacted within a few hours of arsenic exposure of non-neoplastic prostate epithelial cells. Chronic arsenic treatment induced mutations in mitochondrial genes and altered mitochondrial functions. Human non-neoplastic prostate epithelial cells continuously cultured for seven months in the presence of 5 µM arsenite showed tumorigenic properties in vitro and induced tumors in SCID mice, which indicated transformation of these cells. Protein and mRNA expression of subunits of mtOXPHOS complex I were decreased in arsenic-transformed cells. Alterations in complex I, a main site for reactive oxygen species (ROS) production as well as increased expression of ROS-producing NOX4 in arsenic-transformed cells suggested a role of oxidative stress in tumorigenic transformation of prostate epithelial cells. Whole genome cGH array analyses of arsenic-transformed prostate cells identified extensive genomic instability. Our study revealed mitochondrial dysfunction induced oxidative stress and decreased expression of p53 in arsenic-transformed cells as an underlying mechanism of the mitochondrial and nuclear genomic instability. These studies suggest that early changes in mitochondrial functions are sustained during prolong arsenic exposure. Overall, our study provides evidence that arsenic disruption of mitochondrial function is an early and key step in tumorigenic transformation of prostate epithelial cells.

  17. A Trypanosomatid Iron Transporter that Regulates Mitochondrial Function Is Required for Leishmania amazonensis Virulence

    PubMed Central

    Mittra, Bidyottam; Laranjeira-Silva, Maria Fernanda; Perrone Bezerra de Menezes, Juliana; Jensen, Jennifer; Michailowsky, Vladimir; Andrews, Norma W.

    2016-01-01

    Iron, an essential co-factor of respiratory chain proteins, is critical for mitochondrial function and maintenance of its redox balance. We previously reported a role for iron uptake in differentiation of Leishmania amazonensis into virulent amastigotes, by a mechanism that involves reactive oxygen species (ROS) production and is independent of the classical pH and temperature cues. Iron import into mitochondria was proposed to be essential for this process, but evidence supporting this hypothesis was lacking because the Leishmania mitochondrial iron transporter was unknown. Here we describe MIT1, a homolog of the mitochondrial iron importer genes mrs3 (yeast) and mitoferrin-1 (human) that is highly conserved among trypanosomatids. MIT1 expression was essential for the survival of Trypanosoma brucei procyclic but not bloodstream forms, which lack functional respiratory complexes. L. amazonensis LMIT1 null mutants could not be generated, suggesting that this mitochondrial iron importer is essential for promastigote viability. Promastigotes lacking one LMIT1 allele (LMIT1/Δlmit1) showed growth defects and were more susceptible to ROS toxicity, consistent with the role of iron as the essential co-factor of trypanosomatid mitochondrial superoxide dismutases. LMIT1/Δlmit1 metacyclic promastigotes were unable to replicate as intracellular amastigotes after infecting macrophages or cause cutaneous lesions in mice. When induced to differentiate axenically into amastigotes, LMIT1/Δlmit1 showed strong defects in iron content and function of mitochondria, were unable to upregulate the ROS-regulatory enzyme FeSOD, and showed mitochondrial changes suggestive of redox imbalance. Our results demonstrate the importance of mitochondrial iron uptake in trypanosomatid parasites, and highlight the role of LMIT1 in the iron-regulated process that orchestrates differentiation of L. amazonensis into infective amastigotes. PMID:26741360

  18. Loss of Drp1 function alters OPA1 processing and changes mitochondrial membrane organization

    SciTech Connect

    Moepert, Kristin; Hajek, Petr; Frank, Stephan; Chen, Christiane; Kaufmann, Joerg; Santel, Ansgar

    2009-08-01

    RNAi mediated loss of Drp1 function changes mitochondrial morphology in cultured HeLa and HUVEC cells by shifting the balance of mitochondrial fission and fusion towards unopposed fusion. Over time, inhibition of Drp1 expression results in the formation of a highly branched mitochondrial network along with 'bulge'-like structures. These changes in mitochondrial morphology are accompanied by a reduction in levels of Mitofusin 1 (Mfn1) and 2 (Mfn2) and a modified proteolytic processing of OPA1 isoforms, resulting in the inhibition of cell proliferation. In addition, our data imply that bulge formation is driven by Mfn1 action along with particular proteolytic short-OPA1 (s-OPA1) variants: Loss of Mfn2 in the absence of Drp1 results in an increase of Mfn1 levels along with processed s-OPA1-isoforms, thereby enhancing continuous 'fusion' and bulge formation. Moreover, bulge formation might reflect s-OPA1 mitochondrial membrane remodeling activity, resulting in the compartmentalization of cytochrome c deposits. The proteins Yme1L and PHB2 appeared not associated with the observed enhanced OPA1 proteolysis upon RNAi of Drp1, suggesting the existence of other OPA1 processing controlling proteins. Taken together, Drp1 appears to affect the activity of the mitochondrial fusion machinery by unbalancing the protein levels of mitofusins and OPA1.

  19. Survival and mitochondrial function in septic patients according to mitochondrial DNA haplogroup

    PubMed Central

    2012-01-01

    Introduction We recently found that platelet cytochrome c oxidase (COX) activities and quantities in 6-month-survival septic patients are significantly higher than those of patients who died before 6 months. Other studies suggested that the mitochondrial DNA (mtDNA) genotype could play a major role in sepsis survival. Given that COX catalytic subunits are encoded by mtDNA, the objective of the present study was to explore whether mtDNA population genetic variation could affect COX activity and quantity and favors sepsis survival. Methods A prospective, multicenter, observational study was carried out in six Spanish ICUs. We included 96 patients with severe sepsis. We determined the mtDNA haplogroup, the COX specific activity/citrate synthase specific activity (COXa/CSa) ratio and the COX quantity/citrate synthase specific activity (COXq/CSa) ratio in circulating platelets at the time of diagnosis, day 4 and day 8. We used survival at 1 and 6 months as endpoints. Results Patients with the JT mtDNA haplogroup (n = 15) showed higher COXq/CSa ratio at day 4 (P = 0.04) and day 8 (P = 0.02) than those with other haplogroups (n = 81). Logistic regression analysis showed that the JT mtDNA haplogroup (odds ratio = 0.18; 95% confidence interval = 0.04 to 0.94; P = 0.04) and COXq/CSa ratio (odds ratio = 0.53; 95% confidence interval = 0.30 to 0.93; P = 0.03) were associated with 1-month survival after controlling for age and lactic acid levels. Conclusions The novel findings of our study are that 1-month surviving septic patients showed higher COXq/CSa ratio than nonsurviving individuals, that patients from the JT mtDNA haplogroup showed a higher COXq/CSa ratio and that JT patients had a higher 1-month survival than patients from other mtDNA haplogroups. PMID:22251664

  20. Genistein modulates proliferation and mitochondrial functionality in breast cancer cells depending on ERalpha/ERbeta ratio.

    PubMed

    Pons, Daniel Gabriel; Nadal-Serrano, Mercedes; Blanquer-Rossello, M Mar; Sastre-Serra, Jorge; Oliver, Jordi; Roca, Pilar

    2014-05-01

    Breast cancer is the most common malignancy in women of developed countries. The aim of this study was to investigate whether genistein, a soy phytoestrogen, and 17β-estradiol (E2) could have effects on the cell cycle and mitochondrial function and dynamics. Three human breast cancer cell lines with different estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ) ratio were used: MCF-7 (high ERα/ERβ ratio), T47D (low ERα/ERβ ratio) and MDA-MB-231 (ER-negative). Cell proliferation, cell cycle, mitochondrial functionality, and mitochondrial dynamics parameters were analyzed. E2 and genistein treatment induced cell proliferation and apoptosis inhibition in MCF-7, but not in T47D and MDA-MB-231. Moreover, genistein treatment produced an up-regulation of ERβ and a rise in cytochrome c oxidase activity in T47D cells, decreasing the ATP synthase/cytochrome c oxidase ratio. Finally, genistein treatment produced a drop in mitochondrial dynamics only in MCF-7 cells. In summary, the beneficial effects of genistein consumption depend on the ERα/ERβ ratio in breast cells. Therefore, genistein treatment produces cell cycle arrest and an improvement of mitochondrial functionality in T47D cells with a low ERα/ERβ ratio, but not in MCF-7 (high ERα/ERβ ratio) and MDA-MB-231 (ER-negative) ones.

  1. Mzm1 Influences a Labile Pool of Mitochondrial Zinc Important for Respiratory Function*

    PubMed Central

    Atkinson, Aaron; Khalimonchuk, Oleh; Smith, Pamela; Sabic, Hana; Eide, David; Winge, Dennis R.

    2010-01-01

    Zinc is essential for function of mitochondria as a cofactor for several matrix zinc metalloproteins. We demonstrate that a labile cationic zinc component of low molecular mass exists in the yeast mitochondrial matrix. This zinc pool is homeostatically regulated in response to the cellular zinc status. This pool of zinc is functionally important because matrix targeting of a cytosolic zinc-binding protein reduces the level of labile zinc and interferes with mitochondrial respiratory function. We identified a series of proteins that modulate the matrix zinc pool, one of which is a novel conserved mitochondrial protein designated Mzm1. Mutant mzm1Δ cells have reduced total and labile mitochondrial zinc, and these cells are hypersensitive to perturbations of the labile pool. In addition, mzm1Δ cells have a destabilized cytochrome c reductase (Complex III) without any effects on Complexes IV or V. Thus, we have established that a link exists between Complex III integrity and the labile mitochondrial zinc pool. PMID:20404342

  2. Diurnal Changes in Mitochondrial Function Reveal Daily Optimization of Light and Dark Respiratory Metabolism in Arabidopsis*

    PubMed Central

    Lee, Chun Pong; Eubel, Holger; Millar, A. Harvey

    2010-01-01

    Biomass production by plants is often negatively correlated with respiratory rate, but the value of this rate changes dramatically during diurnal cycles, and hence, biomass is the cumulative result of complex environment-dependent metabolic processes. Mitochondria in photosynthetic plant tissues undertake substantially different metabolic roles during light and dark periods that are dictated by substrate availability and the functional capacity of mitochondria defined by their protein composition. We surveyed the heterogeneity of the mitochondrial proteome and its function during a typical night and day cycle in Arabidopsis shoots. This used a staged, quantitative analysis of the proteome across 10 time points covering 24 h of the life of 3-week-old Arabidopsis shoots grown under 12-h dark and 12-h light conditions. Detailed analysis of enzyme capacities and substrate-dependent respiratory processes of isolated mitochondria were also undertaken during the same time course. Together these data reveal a range of dynamic changes in mitochondrial capacity and uncover day- and night-enhanced protein components. Clear diurnal changes were evident in mitochondrial capacities to drive the TCA cycle and to undertake functions associated with nitrogen and sulfur metabolism, redox poise, and mitochondrial antioxidant defense. These data quantify the nature and nuances of a daily rhythm in Arabidopsis mitochondrial respiratory capacity. PMID:20601493

  3. Relationship between coumarin-induced hepatocellular toxicity and mitochondrial function in rats.

    PubMed

    Tanaka, Yasuhiro; Fujii, Wataru; Hori, Hisako; Kitagawa, Yoshinori; Ozaki, Kiyokazu

    2016-04-01

    The manifestation of coumarin-induced hepatocellular toxicity may differ and depends on the frequency of administration to rats. A single coumarin dose induces hepatocellular necrosis while repeated doses induce only hepatocyte degeneration. However, the mechanism underlying these effects remains unclear. Therefore, we investigated the mechanism of coumarin-induced hepatotoxicity in rats. Coumarin was administered to male rats as a single dose or for 4 consecutive days, and samples were obtained 4 or 24 h after a single dose or 24 h after the repeated doses. A single coumarin dose significantly induced hepatocellular necrosis in rats; however, toxicity was attenuated after repeated dosing. With a single dose, hepatocellular necrosis was preceded by increased mitochondrial number and size and decreased mitochondrial function. An increased expression of granular cytochrome P450 (CYP) 2E1 protein was observed in the cytoplasm and mitochondria of coumarin-treated rats compared to the expression in the untreated controls. Nevertheless, repeated dosing showed mitochondrial function that was equivalent to that of the control while enlarged CYP2E1 protein droplets were distributed outside the mitochondria. These results suggest that mitochondrial function and CYP2E1 expression might be involved in coumarin-induced hepatocellular toxicity in rats. A reduction in mitochondrial CYP2E1 might be implicated in the acquisition of coumarin resistance after repeated doses.

  4. Thioredoxin-interacting protein and myocardial mitochondrial function in ischemia-reperfusion injury.

    PubMed

    Yoshioka, Jun; Lee, Richard T

    2014-02-01

    Cellular metabolism and reactive oxygen species (ROS) formation are interrelated processes in mitochondria and are implicated in a variety of human diseases including ischemic heart disease. During ischemia, mitochondrial respiration rates fall. Though seemingly paradoxical, reduced respiration has been observed to be cardioprotective due in part to reduced generation of ROS. Enhanced myocardial glucose uptake is considered beneficial for the myocardium under stress, as glucose is the primary substrate to support anaerobic metabolism. Thus, inhibition of mitochondrial respiration and uncoupling oxidative phosphorylation can protect the myocardium from irreversible ischemic damage. Growing evidence now positions the TXNIP/thioredoxin system at a nodal point linking pathways of antioxidant defense, cell survival, and energy metabolism. This emerging picture reveals TXNIP's function as a regulator of glucose homeostasis and may prove central to regulation of mitochondrial function during ischemia. In this review, we summarize how TXNIP and its binding partner thioredoxin act as regulators of mitochondrial metabolism. While the precise mechanism remains incompletely defined, the TXNIP-thioredoxin interaction has the potential to affect signaling that regulates mitochondrial bioenergetics and respiratory function with potential cardioprotection against ischemic injury.

  5. Microheterogeneity of antithrombin III: effect of single amino acid substitutions and relationship with functional abnormalities.

    PubMed

    De Stefano, V; Leone, G; Mastrangelo, S; Lane, D A; Girolami, A; de Moerloose, P; Sas, G; Abildgaard, U; Blajchman, M; Rodeghiero, F

    1994-02-01

    Microheterogeneity of antithrombin III (AT-III) was investigated by crossed immunoelectrofocusing (CIEF) on eleven molecular variants. A normal pattern was found in five variants while two different abnormal CIEF patterns were found in the other four and two variants, respectively. Point mutations causing a major pI change (exceeding 4.0) of the amino acid substituted lead to alterations in the overall microheterogeneity. The variants thus substituted share a first type of abnormal CIEF pattern with alterations throughout the pH range, regardless of the location of the mutation (reactive site and adjacent regions or heparin binding region). Minor amino acid pI changes in these regions do not alter the AT-III overall microheterogeneity, whatever the resulting functional defect. However, if the mutation is placed in the region around positions 404 or 429, then even minor changes of the amino acid pI seem able to alter the overall charge, leading to a second type of abnormal CIEF pattern with the main alteration at pH 4.8-4.6. Neuraminidase treatment leads to disappearance of microheterogeneity except for the variants with the Arg393 to Cys substitution. Addition of thrombin induces CIEF modifications specifically related to the functional defect. A normal formation of thrombin-antithrombin complexes induces a shift towards the more acid pH range, whereas in the variants substituted at the reactive site the CIEF pattern is substantially unaffected by thrombin; variants substituted at positions 382-384 show a maximal thrombin-induced increase of the isoforms at pI 4.8-4.6. Therefore mutant antithrombins with different functional abnormalities but sharing a common CIEF pattern were well distinguished.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Reversible Inhibition of Mitochondrial Protein Synthesis during Linezolid-Related Hyperlactatemia▿

    PubMed Central

    Garrabou, Glòria; Soriano, Alejandro; López, Sònia; Guallar, Jordi P.; Giralt, Marta; Villarroya, Francesc; Martínez, Jose A.; Casademont, Jordi; Cardellach, Francesc; Mensa, Josep; Miró, Òscar

    2007-01-01

    The objective of the present study was to determine the mitochondrial toxicity mechanisms of linezolid-related hyperlactatemia. Five patients on a long-term schedule of linezolid treatment were studied during the acute phase of hyperlactatemia and after clinical recovery and lactate normalization following linezolid withdrawal. Mitochondrial studies were performed with peripheral blood mononuclear cells and consisted of measurement of mitochondrial mass, mitochondrial protein synthesis homeostasis (cytochrome c oxidase [COX] activity, COX-II subunit expression, COX-II mRNA abundance, and mitochondrial DNA [mtDNA] content), and overall mitochondrial function (mitochondrial membrane potential and intact-cell oxidative capacity). During linezolid-induced hyperlactatemia, we found extremely reduced protein expression (16% of the remaining content compared to control values [100%], P < 0.001) for the mitochondrially coded, transcribed, and translated COX-II subunit. Accordingly, COX activity was also found to be decreased (51% of the remaining activity, P < 0.05). These reductions were observed despite the numbers of COX-II mitochondrial RNA transcripts being abnormally increased (297%, P = 0.10 [not significant]) and the mitochondrial DNA content remaining stable. These abnormalities persisted even after the correction for mitochondrial mass, which was mildly decreased during the hyperlactatemic phase. Most of the mitochondrial abnormalities returned to control ranges after linezolid withdrawal, lactate normalization, and clinical recovery. Linezolid inhibits mitochondrial protein synthesis, leading to decreased mitochondrial enzymatic activity, which causes linezolid-related hyperlactatemia, which resolves upon discontinuation of linezolid treatment. PMID:17194826

  7. Abnormal Profiles of Local Functional Connectivity Proximal to Focal Cortical Dysplasias

    PubMed Central

    Besseling, René M. H.; Jansen, Jacobus F. A.; de Louw, Anton J. A.; Vlooswijk, Mariëlle C. G.; Hoeberigs, M. Christianne; Aldenkamp, Albert P.; Backes, Walter H.

    2016-01-01

    Introduction Focal cortical dysplasia (FCD) is a congenital malformation of cortical development that often leads to medically refractory epilepsy. Focal resection can be an effective treatment, but is challenging as the surgically relevant abnormality may exceed the MR-visible lesion. The aim of the current study is to develop methodology to characterize the profile of functional connectivity around FCDs using resting-state functional MRI and in the individual patient. The detection of aberrant connectivity may provide a means to more completely delineate the clinically relevant lesion. Materials and Methods Fifteen FCD patients (age, mean±SD: 31±11 years; 11 males) and 16 matched healthy controls (35±9 years; 7 males) underwent structural and functional imaging at 3 Tesla. The cortical surface was reconstructed from the T1-weighted scan and the registered functional MRI data was spatially normalized to a common anatomical standard space employing the gyral pattern. Seed-based functional connectivity was determined in all subjects for all dysplasia locations. A single patient was excluded based on an aberrant FCD seed time series. Functional connectivity as a function of geodesic distance (along the cortical surface) was compared between the individual patients and the homotopic normative connectivity profiles derived from the controls. Results In 12/14 patients, aberrant profiles of functional connectivity were found, which demonstrated both hyper- and hypoconnectivity as well as combinations. Abnormal functional connectivity was typically found (also) beyond the lesion visible on structural MRI, while functional connectivity profiles not related to a lesion appeared normal in patients. Conclusion This novel functional MRI technique has potential for delineating functionally aberrant from normal cortex beyond the structural lesion in FCD, which remains to be confirmed in future research. PMID:27861502

  8. DPP4-inhibitor improves neuronal insulin receptor function, brain mitochondrial function and cognitive function in rats with insulin resistance induced by high-fat diet consumption.

    PubMed

    Pipatpiboon, Noppamas; Pintana, Hiranya; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2013-03-01

    High-fat diet (HFD) consumption has been demonstrated to cause peripheral and neuronal insulin resistance, and brain mitochondrial dysfunction in rats. Although the dipeptidyl peptidase-4 inhibitor, vildagliptin, is known to improve peripheral insulin sensitivity, its effects on neuronal insulin resistance and brain mitochondrial dysfunction caused by a HFD are unknown. We tested the hypothesis that vildagliptin prevents neuronal insulin resistance, brain mitochondrial dysfunction, learning and memory deficit caused by HFD. Male rats were divided into two groups to receive either a HFD or normal diet (ND) for 12 weeks, after which rats in each group were fed with either vildagliptin (3 mg/kg/day) or vehicle for 21 days. The cognitive function was tested by the Morris Water Maze prior to brain removal for studying neuronal insulin receptor (IR) and brain mitochondrial function. In HFD rats, neuronal insulin resistance and brain mitochondrial dysfunction were demonstrated, with impaired learning and memory. Vildagliptin prevented neuronal insulin resistance by restoring insulin-induced long-term depression and neuronal IR phosphorylation, IRS-1 phosphorylation and Akt/PKB-ser phosphorylation. It also improved brain mitochondrial dysfunction and cognitive function. Vildagliptin effectively restored neuronal IR function, increased glucagon-like-peptide 1 levels and prevented brain mitochondrial dysfunction, thus attenuating the impaired cognitive function caused by HFD.

  9. Subclinical Cardiac Abnormalities and Kidney Function Decline: The Multi-Ethnic Study of Atherosclerosis

    PubMed Central

    Shlipak, Michael G.; Katz, Ronit; Agarwal, Subhashish; Ix, Joachim H.; Hsu, Chi-yuan; Peralta, Carmen A.

    2012-01-01

    Summary Background and objectives Clinical heart failure (HF) is associated with CKD and faster rates of kidney function decline. Whether subclinical abnormalities of cardiac structure are associated with faster kidney function decline is not known. The association between cardiac concentricity and kidney function decline was evaluated. Design, setting, participants, & measurements This is a longitudinal study of 3866 individuals from the Multi-Ethnic Study of Atherosclerosis (2000–2007) who were free of clinical cardiovascular disease, with an estimated GFR (eGFR) ≥60 ml/min per 1.73 m2 at baseline and 5 years of follow-up. Concentricity, a measurement of abnormal cardiac size, was assessed by magnetic resonance imaging and evaluated as a continuous measurement and in quartiles. GFR was estimated by creatinine (eGFRcr) and cystatin C (eGFRcys). The association of concentricity with annual eGFR decline, incident CKD, and rapid kidney function decline (>5% per year) was investigated using linear mixed models as well as Poisson and logistic regression, respectively. Analyses adjusted for demographics, BP, diabetes, and inflammatory markers. Results Median decline was −0.8 (interquartile range, −3.1, −0.5) by eGFRcr. Compared with the lowest quartile of concentricity, persons in the highest quartile had an additional 21% (9%–32%) decline in mean eGFRcr in fully adjusted models. Concentricity was also associated with incident CKD and with rapid kidney function decline after adjustment. Conclusions Subclinical abnormalities in cardiac structure are associated with longitudinal kidney function decline independent of diabetes and hypertension. Future studies should examine mechanisms to explain these associations. PMID:22580783

  10. Exercise efficiency relates with mitochondrial content and function in older adults

    PubMed Central

    Broskey, Nicholas T; Boss, Andreas; Fares, Elie-Jacques; Greggio, Chiara; Gremion, Gerald; Schlüter, Leo; Hans, Didier; Kreis, Roland; Boesch, Chris; Amati, Francesca

    2015-01-01

    Chronic aerobic exercise has been shown to increase exercise efficiency, thus allowing less energy expenditure for a similar amount of work. The extent to which skeletal muscle mitochondria play a role in this is not fully understood, particularly in an elderly population. The purpose of this study was to determine the relationship of exercise efficiency with mitochondrial content and function. We hypothesized that the greater the mitochondrial content and/or function, the greater would be the efficiencies. Thirty-eight sedentary (S, n = 23, 10F/13M) or athletic (A, n = 15, 6F/9M) older adults (66.8 ± 0.8 years) participated in this cross sectional study. O2peak was measured with a cycle ergometer graded exercise protocol (GXT). Gross efficiency (GE, %) and net efficiency (NE, %) were estimated during a 1-h submaximal test (55% O2peak). Delta efficiency (DE, %) was calculated from the GXT. Mitochondrial function was measured as ATPmax (mmol/L/s) during a PCr recovery protocol with 31P-MR spectroscopy. Muscle biopsies were acquired for determination of mitochondrial volume density (MitoVd, %). Efficiencies were 17% (GE), 14% (NE), and 16% (DE) higher in A than S. MitoVD was 29% higher in A and ATPmax was 24% higher in A than in S. All efficiencies positively correlated with both ATPmax and MitoVd. Chronically trained older individuals had greater mitochondrial content and function, as well as greater exercise efficiencies. GE, NE, and DE were related to both mitochondrial content and function. This suggests a possible role of mitochondria in improving exercise efficiency in elderly athletic populations and allowing conservation of energy at moderate workloads. PMID:26059033

  11. TSPO: functions and applications of a mitochondrial stress response pathway.

    PubMed

    Campanella, Michelangelo; Turkheimer, Federico E

    2015-08-01

    The mitochondrial outer membrane protein TSPO (translocator protein) lies in a privileged position at the interface between mitochondrion and cytosol. Since the initially discovery, nearly forty years ago, it has generated major interest among various disciplines of modern experimental and applied biomedicine. The focused meeting we have organized aimed at summarizing the state of the art knowledge on TSPO and the discipline-based segregated concepts that have made this an exciting and active field of science. The scientists who have generously contributed the event have agreed to generate a special issue here published--stemmed from the discussion of the vent. This consists in a series of contributions via which the know-how is shared aiming to inspire current and future endeavours to validate and accelerate the impact of TSPO science in human pathophysiology and clinical applications.

  12. S-glutathionylation reactions in mitochondrial function and disease

    PubMed Central

    Mailloux, Ryan J.; Willmore, William G.

    2014-01-01

    Mitochondria are highly efficient energy-transforming organelles that convert energy stored in nutrients into ATP. The production of ATP by mitochondria is dependent on oxidation of nutrients and coupling of exergonic electron transfer reactions to the genesis of transmembrane electrochemical potential of protons. Electrons can also prematurely “spin-off” from prosthetic groups in Krebs cycle enzymes and respiratory complexes and univalently reduce di-oxygen to generate reactive oxygen species (ROS) superoxide (O2•−) and hydrogen peroxide (H2O2), important signaling molecules that can be toxic at high concentrations. Production of ATP and ROS are intimately linked by the respiratory chain and the genesis of one or the other inherently depends on the metabolic state of mitochondria. Various control mechanisms converge on mitochondria to adjust ATP and ROS output in response to changing cellular demands. One control mechanism that has gained a high amount of attention recently is S-glutathionylation, a redox sensitive covalent modification that involves formation of a disulfide bridge between glutathione and an available protein cysteine thiol. A number of S-glutathionylation targets have been identified in mitochondria. It has also been established that S-glutathionylation reactions in mitochondria are mediated by the thiol oxidoreductase glutaredoxin-2 (Grx2). In the following review, emerging knowledge on S-glutathionylation reactions and its importance in modulating mitochondrial ATP and ROS production will be discussed. Major focus will be placed on Complex I of the respiratory chain since (1) it is a target for reversible S-glutathionylation by Grx2 and (2) deregulation of Complex I S-glutathionylation is associated with development of various disease states particularly heart disease. Other mitochondrial enzymes and how their S-glutathionylation profile is affected in different disease states will also be discussed. PMID:25453035

  13. Abnormalities in personal space and parietal–frontal function in schizophrenia

    PubMed Central

    Holt, Daphne J.; Boeke, Emily A.; Coombs, Garth; DeCross, Stephanie N.; Cassidy, Brittany S.; Stufflebeam, Steven; Rauch, Scott L.; Tootell, Roger B.H.

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to “keep their distance” from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal–frontal network involved in monitoring the space immediately surrounding the body (“personal space”). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal–frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia. PMID:26484048

  14. Abnormalities in personal space and parietal-frontal function in schizophrenia.

    PubMed

    Holt, Daphne J; Boeke, Emily A; Coombs, Garth; DeCross, Stephanie N; Cassidy, Brittany S; Stufflebeam, Steven; Rauch, Scott L; Tootell, Roger B H

    2015-01-01

    Schizophrenia is associated with subtle abnormalities in day-to-day social behaviors, including a tendency in some patients to "keep their distance" from others in physical space. The neural basis of this abnormality, and related changes in social functioning, is unknown. Here we examined, in schizophrenic patients and healthy control subjects, the functioning of a parietal-frontal network involved in monitoring the space immediately surrounding the body ("personal space"). Using fMRI, we found that one region of this network, the dorsal intraparietal sulcus (DIPS), was hyper-responsive in schizophrenic patients to face stimuli appearing to move towards the subjects, intruding into personal space. This hyper-responsivity was predicted both by the size of personal space (which was abnormally elevated in the schizophrenia group) and the severity of negative symptoms. In contrast, in a second study, the activity of two lower-level visual areas that send information to DIPS (the fusiform face area and middle temporal area) was normal in schizophrenia. Together, these findings suggest that changes in parietal-frontal networks that support the sensory-guided initiation of behavior, including actions occurring in the space surrounding the body, contribute to social dysfunction and negative symptoms in schizophrenia.

  15. Functional abnormalities of the default network during self- and other-reflection in autism

    PubMed Central

    Courchesne, Eric

    2008-01-01

    Recent studies of autism have identified functional abnormalities of the default network during a passive resting state. Since the default network is also typically engaged during social, emotional and introspective processing, dysfunction of this network may underlie some of the difficulties individuals with autism exhibit in these broad domains. In the present experiment, we attempted to further delineate the nature of default network abnormality in autism using experimentally constrained social and introspective tasks. Thirteen autism and 12 control participants were scanned while making true/false judgments for various statements about themselves (SELF condition) or a close other person (OTHER), and pertaining to either psychological personality traits (INTERNAL) or observable characteristics and behaviors (EXTERNAL). In the ventral medial prefrontal cortex/ventral anterior cingulate cortex, activity was reduced in the autism group across all judgment conditions and also during a resting condition, suggestive of task-independent dysfunction of this region. In other default network regions, overall levels of activity were not different between groups. Furthermore, in several of these regions, we found group by condition interactions only for INTERNAL/EXTERNAL judgments, and not SELF/OTHER judgments, suggestive of task-specific dysfunction. Overall, these results provide a more detailed view of default network functionality and abnormality in autism. PMID:19015108

  16. Apoptotic transition of senescent cells accompanied with mitochondrial hyper-function

    PubMed Central

    Wang, Danli; Liu, Yang; Zhang, Rui; Zhang, Fen; Sui, Weihao; Chen, Li; Zheng, Ran; Chen, Xiaowen; Wen, Feiqiu; Ouyang, Hong-Wei; Ji, Junfeng

    2016-01-01

    Defined as stable cell-cycle arrest, cellular senescence plays an important role in diverse biological processes including tumorigenesis, organismal aging, and embryonic development. Although increasing evidence has documented the metabolic changes in senescent cells, mitochondrial function and its potential contribution to the fate of senescent cells remain largely unknown. Here, using two in vitro models of cellular senescence induced by doxorubicin treatment and prolonged passaging of neonatal human foreskin fibroblasts, we report that senescent cells exhibited high ROS level and augmented glucose metabolic rate concomitant with both morphological and quantitative changes of mitochondria. Furthermore, mitochondrial membrane potential depolarized at late stage of senescent cells which eventually led to apoptosis. Our study reveals that mitochondrial hyper-function contributes to the implementation of cellular senescence and we propose a model in which the mitochondrion acts as the key player in promoting fate-determination in senescent cells. PMID:27056883

  17. Protection of mitochondrial and heart function by amino acids after ischemia and cardioplegia.

    PubMed

    Shug, A L; Madsen, D; Dobbie, R; Paulson, D J

    1994-01-01

    The effects of amino acids in protecting against ischemic/reperfusion injury were tested in two experimental models: the isolated perfused rat heart subjected to 21 min of zero flow ischemia (37 degrees) followed by 40 min of reperfusion and the isolated perfused rabbit heart subjected to 300 min of cardioplegic arrest (29 degrees) followed by 60 min of reperfusion. In both cases, the addition of amino acids to the perfusion medium significantly improved the recovery of cardiac contractile function. The protective effects of amino acids were associated with a preservation of mitochondrial respiratory activity. These findings suggest that amino acids by replenishing mitochondrial matrix levels of critical TCA cycle substrates, such as malate, stimulate mitochondrial respiration and thereby enhance the recovery of heart function.

  18. Silencing of the Charcot-Marie-Tooth disease-associated gene GDAP1 induces abnormal mitochondrial distribution and affects Ca2+ homeostasis by reducing store-operated Ca2+ entry.

    PubMed

    Pla-Martín, David; Rueda, Carlos B; Estela, Anna; Sánchez-Piris, Maribel; González-Sánchez, Paloma; Traba, Javier; de la Fuente, Sergio; Scorrano, Luca; Renau-Piqueras, Jaime; Alvarez, Javier; Satrústegui, Jorgina; Palau, Francesc

    2013-07-01

    GDAP1 is an outer mitochondrial membrane protein that acts as a regulator of mitochondrial dynamics. Mutations of the GDAP1 gene cause Charcot-Marie-Tooth (CMT) neuropathy. We show that GDAP1 interacts with the vesicle-organelle trafficking proteins RAB6B and caytaxin, which suggests that GDAP1 may participate in the mitochondrial movement within the cell. GDAP1 silencing in the SH-SY5Y cell line induces abnormal distribution of the mitochondrial network, reduces the contact between mitochondria and endoplasmic reticulum (ER) and alters the mobilization of mitochondria towards plasma membrane upon depletion of ER-Ca(2+) stores. GDAP1 silencing does not affect mitochondrial Ca(2+) uptake, ER-Ca(2+), or Ca(2+) flow from ER to mitochondria, but reduces Ca(2+) inflow through store-operated Ca(2+) entry (SOCE) following mobilization of ER-Ca(2+) and SOCE-driven Ca(2+) entry in mitochondria. Our studies suggest that the pathophysiology of GDAP1-related CMT neuropathies may be associated with abnormal distribution and movement of mitochondria throughout cytoskeleton towards the ER and subplasmalemmal microdomains, resulting in a decrease in SOCE activity and impaired SOCE-driven Ca(2+) uptake in mitochondria.

  19. Effects of cultured Cordyceps mycelia polysaccharide A on tumor neurosis factor-α induced hepatocyte injury with mitochondrial abnormality.

    PubMed

    Tang, Huiling; Wei, Weikun; Wang, Wang; Zha, Zhengqi; Li, Ting; Zhang, Zhijie; Luo, Chen; Yin, Hongping; Huang, Fengjie; Wang, Ying

    2017-05-01

    Cordyceps sinensis mycelia polysaccharide A (CPS-A), was isolated from cultured Cordyceps mycelia by 65% alcohol extraction and ion-exchange column chromatography. The molecular weight of CPS-A was 1.2×10(4)Da and the backbone was mainly composed of (1→2)-linked β-d-mannopyranose, (1→2,4)-linked β-d-mannopyranose and (1→4)-linked α-d-glucopyranose with terminal β-d-mannopyranose and α-d-glucopyranose residues. CPS-A played a protective role against TNF-α induced mitochondria injury in L02 cells via up-regulation of mitofusin 2, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and membrane potential. CPS-A also played a protective role against TNF-α induced L02 cells apoptosis via up-regulation of Bcl-2 and down-regulation of Bid, Bax, cleaved caspase-3, cleaved caspase-9 and ROS production. Moreover, CPS-A attenuated both the normal expression and overexpression of TNF-α receptor 1 (TNFR1) induced by TNF-α administration. In conclusion, CPS-A was involved in TNF-α induced mitochondria abnormality via TNFR1/ROS/Mfn2 pathway.

  20. Regulation of mitochondrial function and endoplasmic reticulum stress by nitric oxide in pluripotent stem cells

    PubMed Central

    Caballano-Infantes, Estefania; Terron-Bautista, José; Beltrán-Povea, Amparo; Cahuana, Gladys M; Soria, Bernat; Nabil, Hajji; Bedoya, Francisco J; Tejedo, Juan R

    2017-01-01

    Mitochondrial dysfunction and endoplasmic reticulum stress (ERS) are global processes that are interrelated and regulated by several stress factors. Nitric oxide (NO) is a multifunctional biomolecule with many varieties of physiological and pathological functions, such as the regulation of cytochrome c inhibition and activation of the immune response, ERS and DNA damage; these actions are dose-dependent. It has been reported that in embryonic stem cells, NO has a dual role, controlling differentiation, survival and pluripotency, but the molecular mechanisms by which it modulates these functions are not yet known. Low levels of NO maintain pluripotency and induce mitochondrial biogenesis. It is well established that NO disrupts the mitochondrial respiratory chain and causes changes in mitochondrial Ca2+ flux that induce ERS. Thus, at high concentrations, NO becomes a potential differentiation agent due to the relationship between ERS and the unfolded protein response in many differentiated cell lines. Nevertheless, many studies have demonstrated the need for physiological levels of NO for a proper ERS response. In this review, we stress the importance of the relationships between NO levels, ERS and mitochondrial dysfunction that control stem cell fate as a new approach to possible cell therapy strategies. PMID:28289506

  1. Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation.

    PubMed

    Tovar, Jorge; León-Avila, Gloria; Sánchez, Lidya B; Sutak, Robert; Tachezy, Jan; van der Giezen, Mark; Hernández, Manuel; Müller, Miklós; Lucocq, John M

    2003-11-13

    Giardia intestinalis (syn. lamblia) is one of the most widespread intestinal protozoan pathogens worldwide, causing hundreds of thousands of cases of diarrhoea each year. Giardia is a member of the diplomonads, often described as an ancient protist group whose primitive nature is suggested by the lack of typical eukaryotic organelles (for example, mitochondria, peroxisomes), the presence of a poorly developed endomembrane system and by their early branching in a number of gene phylogenies. The discovery of nuclear genes of putative mitochondrial ancestry in Giardia and the recent identification of mitochondrial remnant organelles in amitochondrial protists such as Entamoeba histolytica and Trachipleistophora hominis suggest that the eukaryotic amitochondrial state is not a primitive condition but is rather the result of reductive evolution. Using an in vitro protein reconstitution assay and specific antibodies against IscS and IscU--two mitochondrial marker proteins involved in iron-sulphur cluster biosynthesis--here we demonstrate that Giardia contains mitochondrial remnant organelles (mitosomes) bounded by double membranes that function in iron-sulphur protein maturation. Our results indicate that Giardia is not primitively amitochondrial and that it has retained a functional organelle derived from the original mitochondrial endosymbiont.

  2. Nitrotyrosine impairs mitochondrial function in fetal lamb pulmonary artery endothelial cells

    PubMed Central

    Wu, Tzong-Jin; Afolayan, Adeleye J.; Konduri, Girija G.

    2015-01-01

    Nitration of both protein-bound and free tyrosine by reactive nitrogen species results in the formation of nitrotyrosine (NT). We previously reported that free NT impairs microtubule polymerization and uncouples endothelial nitric oxide synthase (eNOS) function in pulmonary artery endothelial cells (PAEC). Because microtubules modulate mitochondrial function, we hypothesized that increased NT levels during inflammation and oxidative stress will lead to mitochondrial dysfunction in PAEC. PAEC isolated from fetal lambs were exposed to varying concentrations of free NT. At low concentrations (1–10 μM), NT increased nitration of mitochondrial electron transport chain (ETC) protein subunit complexes I–V and state III oxygen consumption. Higher concentrations of NT (50 μM) caused decreased microtubule acetylation, impaired eNOS interactions with mitochondria, and decreased ETC protein levels. We also observed increases in heat shock protein-90 nitration, mitochondrial superoxide formation, and fragmentation of mitochondria in PAEC. Our data suggest that free NT accumulation may impair microtubule polymerization and exacerbate reactive oxygen species-induced cell damage by causing mitochondrial dysfunction. PMID:26491046

  3. Carboxyl-terminal modulator protein induces apoptosis by regulating mitochondrial function in lung cancer cells.

    PubMed

    Hwang, Soon-Kyung; Minai-Tehrani, Arash; Yu, Kyeong-Nam; Chang, Seung-Hee; Kim, Ji-Eun; Lee, Kee-Ho; Park, Jongsun; Beck, George R; Cho, Myung-Haing

    2012-05-01

    Serine/threonine protein kinase B (PKB/Akt) is involved in cell survival and growth. Carboxyl-terminal modulator protein (CTMP), a novel Akt binding partner, prevents Akt activation at the plasma membrane in response to various stimuli, and thus possesses a tumor suppressor-like function. In a previous study, we have demonstrated that CTMP inhibits tumor progression by facilitating apoptosis in a mouse lung cancer model. However, the precise mechanism of CTMP-induced apoptosis remains to be elucidated. The present study was performed to examine the role of CTMP in mitochondrial-mediated apoptosis and regulation of mitochondrial function in human lung carcinoma cells. Our results showed that CTMP altered mitochondrial morphology and caused the release of cytochrome c by inhibiting OPA1 expression. Additionally, CTMP facilitated mitochondrial-mediated apoptosis by inhibiting heat-shock protein 27 and preventing cytochrome c interaction with Apaf-1. Our data suggest that CTMP may therefore play a critical role in mitochondrial-mediated apoptosis in lung cancer cells.

  4. Tetracycline antibiotics impair mitochondrial function and its experimental use confounds research.

    PubMed

    Chatzispyrou, Iliana A; Held, Ntsiki M; Mouchiroud, Laurent; Auwerx, Johan; Houtkooper, Riekelt H

    2015-11-01

    Tetracyclines, a class of antibiotics that target bacterial translation, are commonly used in research for inducible gene expression using Tet-ON/Tet-OFF systems. However, such tetracycline-inducible systems carry a risk. Given that mitochondria have a "bacterial" ancestry, these antibiotics also target mitochondrial translation and impair mitochondrial function. Indeed, treatment with doxycycline-a tetracycline derivative-disturbs mitochondrial proteostasis and metabolic activity, and induces widespread gene-expression changes. Together, this affects physiology in well-established model systems ranging from cultured cells to simple organisms and to mice and plants. These changes are observed with doxycycline doses that are widely used to regulate gene expression. In light of these findings, and bearing in mind the conserved role of mitochondria in metabolism and whole organism homeostasis, we caution against the use of tetracyclines in experimental approaches. The use of newly developed tetracycline-based systems that are more sensitive could be an alternative; however, even if no overt mitochondrial toxicity is detected, widespread changes in gene expression may sensitize cells to the intended tetracycline-controlled loss or gain of function, thereby introducing a "two-hit model." This is highly relevant for cancer research, as mitochondrial metabolism holds a central position in the reallocation of nutrients for biomass production known as the Warburg effect.

  5. Abnormalities in large scale functional networks in unmedicated patients with schizophrenia and effects of risperidone

    PubMed Central

    Kraguljac, Nina Vanessa; White, David Matthew; Hadley, Jennifer Ann; Visscher, Kristina; Knight, David; ver Hoef, Lawrence; Falola, Blessing; Lahti, Adrienne Carol

    2015-01-01

    Objective To describe abnormalities in large scale functional networks in unmedicated patients with schizophrenia and to examine effects of risperidone on networks. Material and methods 34 unmedicated patients with schizophrenia and 34 matched healthy controls were enrolled in this longitudinal study. We collected resting state functional MRI data with a 3T scanner at baseline and six weeks after they were started on risperidone. In addition, a group of 19 healthy controls were scanned twice six weeks apart. Four large scale networks, the dorsal attention network, executive control network, salience network, and default mode network were identified with seed based functional connectivity analyses. Group differences in connectivity, as well as changes in connectivity over time, were assessed on the group's participant level functional connectivity maps. Results In unmedicated patients with schizophrenia we found resting state connectivity to be increased in the dorsal attention network, executive control network, and salience network relative to control participants, but not the default mode network. Dysconnectivity was attenuated after six weeks of treatment only in the dorsal attention network. Baseline connectivity in this network was also related to clinical response at six weeks of treatment with risperidone. Conclusions Our results demonstrate abnormalities in large scale functional networks in patients with schizophrenia that are modulated by risperidone only to a certain extent, underscoring the dire need for development of novel antipsychotic medications that have the ability to alleviate symptoms through attenuation of dysconnectivity. PMID:26793436

  6. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.

    PubMed

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-06

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  7. THE MITOCHONDRIAL PARADIGM FOR CARDIOVASCULAR DISEASE SUSCEPTIBILITY AND CELLULAR FUNCTION: A COMPLEMENTARY CONCEPT TO MENDELIAN GENETICS

    PubMed Central

    Kryzwanski, David M.; Moellering, Douglas; Fetterman, Jessica L.; Dunham-Snary, Kimberly J.; Sammy, Melissa J.; Ballinger, Scott W.

    2013-01-01

    While there is general agreement that cardiovascular disease (CVD) development is influenced by a combination of genetic, environmental, and behavioral contributors, the actual mechanistic basis of how these factors initiate or promote CVD development in some individuals while others with identical risk profiles do not, is not clearly understood. This review considers the potential role for mitochondrial genetics and function in determining CVD susceptibility from the standpoint that the original features that molded cellular function were based upon mitochondrial-nuclear relationships established millions of years ago and were likely refined during prehistoric environmental selection events that today, are largely absent. Consequently, contemporary risk factors that influence our susceptibility to a variety of age-related diseases, including CVD were probably not part of the dynamics that defined the processes of mitochondrial – nuclear interaction, and thus, cell function. In this regard, the selective conditions that contributed to cellular functionality and evolution should be given more consideration when interpreting and designing experimental data and strategies. Finally, future studies that probe beyond epidemiologic associations are required. These studies will serve as the initial steps for addressing the provocative concept that contemporary human disease susceptibility is the result of selection events for mitochondrial function that increased chances for prehistoric human survival and reproductive success. PMID:21647091

  8. Targeted expression of catalase to mitochondria prevents age-associated reductions in mitochondrial function and insulin resistance.

    PubMed

    Lee, Hui-Young; Choi, Cheol Soo; Birkenfeld, Andreas L; Alves, Tiago C; Jornayvaz, Francois R; Jurczak, Michael J; Zhang, Dongyan; Woo, Dong Kyun; Shadel, Gerald S; Ladiges, Warren; Rabinovitch, Peter S; Santos, Janine H; Petersen, Kitt F; Samuel, Varman T; Shulman, Gerald I

    2010-12-01

    Aging-associated muscle insulin resistance has been hypothesized to be due to decreased mitochondrial function, secondary to cumulative free radical damage, leading to increased intramyocellular lipid content. To directly test this hypothesis, we examined both in vivo and in vitro mitochondrial function, intramyocellular lipid content, and insulin action in lean healthy mice with targeted overexpression of the human catalase gene to mitochondria (MCAT mice). Here, we show that MCAT mice are protected from age-induced decrease in muscle mitochondrial function (∼30%), energy metabolism (∼7%), and lipid-induced muscle insulin resistance. This protection from age-induced reduction in mitochondrial function was associated with reduced mitochondrial oxidative damage, preserved mitochondrial respiration and muscle ATP synthesis, and AMP-activated protein kinase-induced mitochondrial biogenesis. Taken together, these data suggest that the preserved mitochondrial function maintained by reducing mitochondrial oxidative damage may prevent age-associated whole-body energy imbalance and muscle insulin resistance.

  9. Theophylline treatment improves mitochondrial function after upper cervical spinal cord hemisection.

    PubMed

    Hüttemann, Maik; Nantwi, Kwaku D; Lee, Icksoo; Liu, Jenney; Mohiuddin, Syed; Petrov, Theodor

    2010-06-01

    The importance of mitochondria in spinal cord injury has mainly been attributed to their participation in apoptosis at the site of injury. But another aspect of mitochondrial function is the generation of more than 90% of cellular energy in the form of ATP, mediated by the oxidative phosphorylation (OxPhos) process. Cytochrome c oxidase (CcO) is a central OxPhos component and changes in its activity reflect changes in energy demand. A recent study suggests that respiratory muscle function in chronic obstructive pulmonary disease (COPD) patients is compromised via alterations in mitochondrial function. In an animal model of cervical spinal cord hemisection (C2HS) respiratory dysfunction, we have shown that theophylline improves respiratory function. In the present study, we tested the hypothesis that theophylline improves respiratory function at the cellular level via improved mitochondrial function in the C2HS model. We demonstrate that CcO activity was significantly (33%) increased in the spinal cord adjacent to the site of injury (C3-C5), and that administration of theophylline (20mg/kg 3x daily orally) after C2HS leads to an even more pronounced increase in CcO activity of 62% compared to sham-operated animals. These results are paralleled by a significant increase in cellular ATP levels (51% in the hemidiaphragm ipsilateral to the hemisection). We conclude that C2HS increases energy demand and activates mitochondrial respiration, and that theophylline treatment improves energy levels through activation of the mitochondrial OxPhos process to provide energy for tissue repair and functional recovery after paralysis in the C2HS model.

  10. Developmental regulation of mitochondrial biogenesis and function in the mouse mammary gland during a prolonged lactation cycle

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The regulation of mitochondrial biogenesis and function in the lactating mammary cell is poorly understood. The goal of this study was to use proteomics to relate temporal changes in mammary cell mitochondrial function during lactation to changes in the proteins that make up this organelle. The hypo...

  11. A broken filter: Prefrontal functional connectivity abnormalities in schizophrenia during working memory interference

    PubMed Central

    Anticevic, Alan; Repovs, Grega; Krystal, John H.; Barch, Deanna M.

    2013-01-01

    Characterizing working memory (WM) abnormalities represents a fundamental challenge in schizophrenia research given the impact of cognitive deficits on life outcome in patients. In prior work we demonstrated that dorsolateral prefrontal cortex (DLPFC) activation was related to successful distracter resistance during WM in healthy controls, but not in schizophrenia. Although understanding the impact of regional functional deficits is critical, functional connectivity abnormalities among nodes within WM networks may constitute a final common pathway for WM impairment. Therefore, this study tested the hypothesis that schizophrenia is associated with functional connectivity abnormalities within DLPFC networks during distraction conditions in WM. 28 patients and 24 controls completed a delayed non-verbal WM task that included transient visual distraction during the WM maintenance phase. We computed DLPFC whole-brain task-based functional connectivity (tb-fcMRI) specifically during the maintenance phase in the presence or absence of distraction. Results revealed that patients failed to modulate tb-fcMRI during distracter presentation in both cortical and sub-cortical regions. Specifically, controls demonstrated reductions in tb-fcMRI between DLPFC and the extended amygdala when distraction was present. Conversely, patients failed to demonstrate a change in coupling with the amygdala, but showed greater connectivity with medio-dorsal thalamus. While controls showed more positive coupling between DLPFC and other prefrontal cortical regions during distracter presentation, patients failed to exhibit such a modulation. Taken together, these findings support the notion that observed distracter resistance deficit involves a breakdown in coupling between DLPFC and distributed regions, encompassing both subcortical (thalamic/limbic) and control region connectivity. PMID:22863548

  12. Abnormal functional MRI BOLD contrast in the vegetative state after severe traumatic brain injury.

    PubMed

    Heelmann, Volker; Lippert-Grüner, Marcela; Rommel, Thomas; Wedekind, Christoph

    2010-06-01

    For the rehabilitation process, the treatment of patients surviving brain injury in a vegetative state is still a serious challenge. The aim of this study was to investigate patients exhibiting severely disturbed consciousness using functional magnetic resonance imaging. Five cases of posttraumatic vegetative state and one with minimal consciousness close to the vegetative state were studied clinically, electrophysiologically, and by means of functional magnetic resonance imaging. Visual, sensory, and acoustic paradigms were used for stimulation. In three patients examined less than 2 months after trauma, a consistent decrease in blood oxygen level dependent (BOLD) signal ('negative activation') was observed for visual stimulation; one case even showed a decrease in BOLD activation for all three activation paradigms. In the remaining three cases examined more than 6 months after trauma, visual stimulation yielded positive BOLD contrast or no activation. In all cases, sensory stimulation was followed by a decrease in BOLD signal or no activation, whereas auditory stimulation failed to elicit any activation with the exception of one case. Functional magnetic resonance imaging in the vegetative state indicates retained yet abnormal brain function; this abnormality can be attributed to the impairment of cerebral vascular autoregulation or an increase in the energy consumption of activated neocortex in severe traumatic brain injury.

  13. The role of recovery of mitochondrial structure and function in desiccation tolerance of pea seeds.

    PubMed

    Wang, Wei-Qing; Cheng, Hong-Yan; Møller, Ian M; Song, Song-Quan

    2012-01-01

    Mitochondrial repair is of fundamental importance for seed germination. When mature orthodox seeds are imbibed and germinated, they lose their desiccation tolerance in parallel. To gain a better understanding of this process, we studied the recovery of mitochondrial structure and function in pea (Pisum sativum cv. Jizhuang) seeds with different tolerance to desiccation. Mitochondria were isolated and purified from the embryo axes of control and imbibed-dehydrated pea seeds after (re-)imbibition for various times. Recovery of mitochondrial structure and function occurred both in control and imbibed-dehydrated seed embryo axes, but at different rates and to different maximum levels. The integrity of the outer mitochondrial membrane reached 96% in all treatments. However, only the seeds imbibed for 12 h and then dehydrated recovered the integrity of the inner mitochondrial membrane (IMM) and State 3 (respiratory state in which substrate and ADP are present) respiration (with NADH and succinate as substrate) to the control level after re-imbibition. With increasing imbibition time, the degree to which each parameter recovered decreased in parallel with the decrease in desiccation tolerance. The tolerance of imbibed seeds to desiccation increased and decreased when imbibed in CaCl(2) and methylviologen solution, respectively, and the recovery of the IMM integrity similarly improved and weakened in these two treatments, respectively. Survival of seeds after imbibition-dehydration linearly increased with the increase in ability to recover the integrity of IMM and State 3 respiration, which indicates that recovery of mitochondrial structure and function during germination has an important role in seed desiccation tolerance.

  14. Hyaluronan Upregulates Mitochondrial Biogenesis and Reduces Adenoside Triphosphate Production for Efficient Mitochondrial Function in Slow-Proliferating Human Mesenchymal Stem Cells.

    PubMed

    Solis, Mairim Alexandra; Wei, Yau-Huei; Chang, Chiung-Hsin; Yu, Chen-Hsiang; Kuo, Pao-Lin; Huang, Lynn L H

    2016-10-01

    Hyaluronan-coated surfaces preserve the proliferation and differentiation potential of mesenchymal stem cells by prolonging their G1-phase transit, which maintains cells in a slow-proliferative mode. Mitochondria are known to play a crucial role in stem cell self-renewal and differentiation. In this study, for the first time, the metabolic mechanism underlying the hyaluronan-regulated slow-proliferative maintenance of stem cells was investigated by evaluating mitochondrial functions. Human placenta-derived mesenchymal stem cells (PDMSCs) cultured on hyaluronan-coated surfaces at 0.5, 3.0, 5.0, and 30 µg/cm(2) were found to have an average 58% higher mitochondrial mass and an increase in mitochondrial DNA copy number compared to noncoated tissue culture surfaces (control), as well as a threefold increase in the gene expression of the mitochondrial biogenesis-related gene PGC-1α. Increase in mitochondrial biogenesis led to a hyaluronan dose-dependent increase in mitochondrial membrane potential, ATP content, and oxygen consumption rate, with reactive oxygen species levels shown to be at least three times lower compared to the control. Although hyaluronan seemed to favor mitochondrial function, cell entry into a hyaluronan-regulated slow-proliferative mode led to a fivefold reduction in ATP production and coupling efficiency levels. Together, these results suggest that hyaluronan-coated surfaces influence the metabolic proliferative state of stem cells by upregulating mitochondrial biogenesis and function with controlled ATP production. This more efficiently meets the energy requirements of slow-proliferating PDMSCs. A clear understanding of the metabolic mechanism induced by hyaluronan in stem cells will allow future applications that may overcome the current limitations faced in stem cell culture. Stem Cells 2016;34:2512-2524.

  15. Electrophysiological consequences of KATP Gain-of-function in the heart: Conduction abnormalities in Cantu Syndrome

    PubMed Central

    Levin, Mark D.; Zhang, Haixia; Uchida, Keita; Grange, Dorothy K.; Singh, Gautam K.; Nichols, Colin G.

    2015-01-01

    Background Gain-of-function (GOF) mutations in the KATP channel subunits Kir6.1 and SUR2 cause Cantu syndrome (CS), a disease characterized by multiple cardiovascular abnormalities. Objective To better understand the electrophysiological consequences of such GOF mutations in the heart. Methods We generated transgenic mice (Kir6.1-GOF) expressing ATP-insensitive Kir6.1[G343D] subunits under α-myosin heavy chain (α-MHC) promoter control, to target gene expression specifically in cardiomyocytes, and carried out patch-clamp experiments on isolated ventricular myocytes, invasive electrophysiology on anesthetized mice. Results In Kir6.1-GOF ventricular myocytes, KATP channels show decreased ATP sensitivity, but there is no significant change in current density. Ambulatory ECG recordings on Kir6.1-GOF mice reveal AV nodal conduction abnormalities and junctional rhythm. Invasive electrophysiological analyses reveal slowing of conduction and conduction failure through the AV node, but no increase in susceptibility to atrial or ventricular ectopic activity. Surface electrocardiograms recorded from CS patients also demonstrate first degree AV block, and fascicular block. Conclusions The primary electrophysiological consequence of cardiac KATP GOF is on the conduction system, particularly the AV node, resulting in conduction abnormalities in CS patients, who carry KATP GOF mutations. PMID:26142302

  16. Simulated microgravity enhances oligodendrocyte mitochondrial function and lipid metabolism.

    PubMed

    Espinosa-Jeffrey, Araceli; Nguyen, Kevin; Kumar, Shalini; Toshimasa, Ochiai; Hirose, Ryuji; Reue, Karen; Vergnes, Laurent; Kinchen, Jason; Vellis, Jean de

    2016-12-01

    The primary energy sources of mammalian cells are proteins, fats, and sugars that are processed by well-known biochemical mechanisms that have been discovered and studied in 1G (terrestrial gravity). Here we sought to determine how simulated microgravity (sim-µG) impacts both energy and lipid metabolism in oligodendrocytes (OLs), the myelin-forming cells in the central nervous system. We report increased mitochondrial respiration and increased glycolysis 24 hr after exposure to sim-µG. Moreover, examination of the secretome after 3 days' exposure of OLs to sim-µG increased the Krebs cycle (Krebs and Weitzman, ) flux in sim-µG. The secretome study also revealed a significant increase in the synthesis of fatty acids and complex lipids such as 1,2-dipalmitoyl-GPC (5.67); lysolipids like 1-oleoyl-GPE (4.48) were also increased by microgravity. Although longer-chain lipids were not observed in this study, it is possible that at longer time points OLs would have continued moving forward toward the synthesis of lipids that constitute myelin. For centuries, basic developmental biology research has been the pillar of an array of discoveries that have led to clinical applications; we believe that studies using microgravity will open new avenues to our understanding of the brain in health and disease-in particular, to the discovery of new molecules and mechanisms impossible to unveil while in 1G. © 2016 Wiley Periodicals, Inc.

  17. Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling

    PubMed Central

    Freiberger, Elyse C.; Richards, Alicia L.; Jochem, Adam; Rush, Matthew J. P.; Ulbrich, Arne; Robinson, Kyle P.; Hutchins, Paul D.; Veling, Mike T.; Guo, Xiao; Kemmerer, Zachary A.; Connors, Kyle J.; Trujillo, Edna A.; Sokol, Jacob; Marx, Harald; Westphall, Michael S.; Hebert, Alexander S.; Pagliarini, David J.; Coon, Joshua J.

    2016-01-01

    Mitochondrial dysfunction is associated with many human diseases, including cancer and neurodegeneration, that are often linked to proteins and pathways that are not well-characterized. To begin defining the functions of such poorly characterized proteins, we used mass spectrometry to map the proteomes, lipidomes and metabolomes of 174 yeast strains, each lacking a single gene related to mitochondrial biology. 144 of these genes have human homologs, 60 of which are associated with disease and 39 of which are uncharacterized. We present a multi-omic data analysis and visualization tool that we use to find covariance networks that can predict molecular functions, correlations between profiles of related gene deletions, gene-specific perturbations that reflect protein functions, and a global respiration deficiency response. Using this multi-omic approach, we link seven proteins including Hfd1p and its human homolog ALDH3A1 to mitochondrial coenzyme Q (CoQ) biosynthesis, an essential pathway disrupted in many human diseases. This Resource should provide broad molecular insights into mitochondrial protein functions. PMID:27669165

  18. High fat fed heart failure animals have enhanced mitochondrial function and acyl-coa dehydrogenase activities

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have previously shown that administration of high fat in heart failure (HF) increased mitochondrial respiration and did not alter left ventricular (LV) function. PPARalpha is a nuclear transcription factor that activates expression of genes involved in fatty acid uptake and utilization. We hypoth...

  19. IFPA meeting 2015 workshop report I: placental mitochondrial function, transport systems and epigenetics.

    PubMed

    Bianco-Miotto, T; Blundell, C; Buckberry, S; Chamley, L; Chong, S; Cottrell, E; Dawson, P; Hanna, C; Holland, O; Lewis, R M; Moritz, K; Myatt, L; Perkins, A V; Powell, T; Saffery, R; Sferruzzi-Perri, A; Sibley, C; Simmons, D; O'Tierney-Ginn, P F

    2016-12-01

    Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialized topics. At IFPA meeting 2015 there were twelve themed workshops, three of which are summarized in this report. These workshops covered areas of placental regulation and nutrient handling: 1) placental epigenetics; 2) placental mitochondrial function; 3) placental transport systems.

  20. Coenzyme Q10 restores oocyte mitochondrial function and fertility during reproductive aging

    PubMed Central

    Ben-Meir, Assaf; Burstein, Eliezer; Borrego-Alvarez, Aluet; Chong, Jasmine; Wong, Ellen; Yavorska, Tetyana; Naranian, Taline; Chi, Maggie; Wang, Ying; Bentov, Yaakov; Alexis, Jennifer; Meriano, James; Sung, Hoon-Ki; Gasser, David L; Moley, Kelle H; Hekimi, Siegfried; Casper, Robert F; Jurisicova, Andrea

    2015-01-01

    Female reproductive capacity declines dramatically in the fourth decade of life as a result of an age-related decrease in oocyte quality and quantity. The primary causes of reproductive aging and the molecular factors responsible for decreased oocyte quality remain elusive. Here, we show that aging of the female germ line is accompanied by mitochondrial dysfunction associated with decreased oxidative phosphorylation and reduced Adenosine tri-phosphate (ATP) level. Diminished expression of the enzymes responsible for CoQ production, Pdss2 and Coq6, was observed in oocytes of older females in both mouse and human. The age-related decline in oocyte quality and quantity could be reversed by the administration of CoQ10. Oocyte-specific disruption of Pdss2 recapitulated many of the mitochondrial and reproductive phenotypes observed in the old females including reduced ATP production and increased meiotic spindle abnormalities, resulting in infertility. Ovarian reserve in the oocyte-specific Pdss2-deficient animals was diminished, leading to premature ovarian failure which could be prevented by maternal dietary administration of CoQ10. We conclude that impaired mitochondrial performance created by suboptimal CoQ10 availability can drive age-associated oocyte deficits causing infertility. PMID:26111777

  1. Abnormal function of the corpus luteum in some ewes with phyto-oestrogenic infertility.

    PubMed

    Adams, N R; Hearnshaw, H; Oldham, C M

    1981-01-01

    Ewes with permanent phyto-estrogenic infertility show oestrus less regularly than normal ewes, and the present study examines the extent to which this results from abnormal ovarian function. Forty-nine affected ewes and 53 controls were run with rams fitted with marking crayons and harnesses, and crayon marks were recorded and laparoscopy performed at weekly intervals for 3 weeks. Fewer affected ewes showed oestrus accompanied by ovulation (28 v. 49, P less than 0.001), and four of these affected ewes had a second ovulation during the experiment. More of the ovulations observed in affected ewes were unaccompanied by behavioural oestrus than in controls (8 out of 38 v. 2 out of 50; P less than 0.05). Six affected ewes had no corpus luteum or oestrus, and five of these had adhesions over the genitalia. Hydrops uteri in five other affected ewes was accompanied by prolonged maintenance of the corpus luteum. Some other abnormalities were also observed. In a second study, plasma progesterone concentrations were measured twice daily in 12 affected ewes which were run with rams. Five ewes had oestrous cycles of abnormal duration (two of more than 23 days, two of 21 days, and one of 11 days), and these were accompanied by plasma progesterone patterns different from those of the ewes with an oestrous cycle duration of 16-18 days. It is concluded that the irregular oestrous cycles in affected ewes are due mainly to abnormal life span and progesterone secretion by the corpus luteum, which in turn largely result from changes in the uterus.

  2. Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals

    PubMed Central

    Hu, Chenxia; Huang, Yong; Li, Lanjuan

    2017-01-01

    Current research has demonstrated that mitochondrial morphology, distribution, and function are maintained by the balanced regulation of mitochondrial fission and fusion, and perturbation of the homeostasis between these processes has been related to cell or organ dysfunction and abnormal mitochondrial redistribution. Abnormal mitochondrial fusion induces the fragmentation of mitochondria from a tubular morphology into pieces; in contrast, perturbed mitochondrial fission results in the fusion of adjacent mitochondria. A member of the dynamin family of large GTPases, dynamin-related protein 1 (Drp1), effectively influences cell survival and apoptosis by mediating the mitochondrial fission process in mammals. Drp1-dependent mitochondrial fission is an intricate process regulating both cellular and organ dynamics, including development, apoptosis, acute organ injury, and various diseases. Only after clarification of the regulative mechanisms of this critical protein in vivo and in vitro will it set a milestone for preventing mitochondrial fission related pathological processes and refractory diseases. PMID:28098754

  3. Drp1-Dependent Mitochondrial Fission Plays Critical Roles in Physiological and Pathological Progresses in Mammals.

    PubMed

    Hu, Chenxia; Huang, Yong; Li, Lanjuan

    2017-01-13

    Current research has demonstrated that mitochondrial morphology, distribution, and function are maintained by the balanced regulation of mitochondrial fission and fusion, and perturbation of the homeostasis between these processes has been related to cell or organ dysfunction and abnormal mitochondrial redistribution. Abnormal mitochondrial fusion induces the fragmentation of mitochondria from a tubular morphology into pieces; in contrast, perturbed mitochondrial fission results in the fusion of adjacent mitochondria. A member of the dynamin family of large GTPases, dynamin-related protein 1 (Drp1), effectively influences cell survival and apoptosis by mediating the mitochondrial fission process in mammals. Drp1-dependent mitochondrial fission is an intricate process regulating both cellular and organ dynamics, including development, apoptosis, acute organ injury, and various diseases. Only after clarification of the regulative mechanisms of this critical protein in vivo and in vitro will it set a milestone for preventing mitochondrial fission related pathological processes and refractory diseases.

  4. The mitochondrial uncoupling agent 2,4-dinitrophenol improves mitochondrial function, attenuates oxidative damage, and increases white matter sparing in the contused spinal cord.

    PubMed

    Jin, Ying; McEwen, Melanie L; Nottingham, Stephanie A; Maragos, William F; Dragicevic, Natasha B; Sullivan, Patrick G; Springer, Joe E

    2004-10-01

    The purpose of this study was to investigate the potential neuroprotective efficacy of the mitochondrial uncoupler 2,4-dinitrophenol (DNP) in rats following a mild to moderate spinal cord contusion injury. Animals received intraperitoneal injections of vehicle (DMSO) or 5 mg/mL of DNP prior to injury. Twenty-four hours following surgery, mitochondrial function was assessed in mitochondria isolated from spinal cord synaptosomes. In addition, synaptosomes were used to measure indicators of reactive oxygen species formation, lipid peroxidation, and protein oxidation. Relative to vehicle-treated animals, pretreatment with DNP maintained mitochondrial bioenergetics and significantly decreased reactive oxygen species levels, lipid peroxidation, and protein carbonyl content following spinal cord injury. Furthermore, pretreatment with DNP significantly increased the amount of remaining white matter at the injury epicenter 6 weeks after injury. These results indicate that treatment with mitochondrial uncoupling agents may provide a novel approach for the treatment of secondary injury following spinal cord contusion.

  5. Impaired Autophagy and Defective Mitochondrial Function: Converging Paths on the Road to Motor Neuron Degeneration

    PubMed Central

    Edens, Brittany M.; Miller, Nimrod; Ma, Yong-Chao

    2016-01-01

    Selective motor neuron degeneration is a hallmark of amyotrophic lateral sclerosis (ALS). Around 10% of all cases present as familial ALS (FALS), while sporadic ALS (SALS) accounts for the remaining 90%. Diverse genetic mutations leading to FALS have been identified, but the underlying causes of SALS remain largely unknown. Despite the heterogeneous and incompletely understood etiology, different types of ALS exhibit overlapping pathology and common phenotypes, including protein aggregation and mitochondrial deficiencies. Here, we review the current understanding of mechanisms leading to motor neuron degeneration in ALS as they pertain to disrupted cellular clearance pathways, ATP biogenesis, calcium buffering and mitochondrial dynamics. Through focusing on impaired autophagic and mitochondrial functions, we highlight how the convergence of diverse cellular processes and pathways contributes to common pathology in motor neuron degeneration. PMID:26973461

  6. Impact of dispersed fuel oil on cardiac mitochondrial function in polar cod Boreogadus saida.

    PubMed

    Dussauze, Matthieu; Camus, Lionel; Le Floch, Stéphane; Pichavant-Rafini, Karine; Geraudie, Perrine; Coquillé, Nathalie; Amérand, Aline; Lemaire, Philippe; Theron, Michael

    2014-12-01

    In this study, impact of dispersed oil on cardiac mitochondrial function was assessed in a key species of Arctic marine ecosystem, the polar cod Boreogadus saida. Mature polar cod were exposed during 48 h to dispersed oil (mechanically and chemically) and dispersants alone. The increase observed in ethoxyresorufin-O-deethylase activity and polycyclic aromatic hydrocarbon metabolites in bile indicated no difference in contamination level between fish exposed to chemical or mechanical dispersion of oil. Oil induced alterations of O2 consumption of permeabilised cardiac fibres showing inhibitions of complexes I and IV of the respiratory chain. Oil did not induce any modification of mitochondrial proton leak. Dispersants did not induce alteration of mitochondrial activity and did not increase oil toxicity. These data suggest that oil exposure may limit the fitness of polar cod and consequently could lead to major disruption in the energy flow of polar ecosystem.

  7. Tetracyclines disturb mitochondrial function across eukaryotic models: a call for caution in biomedical research

    PubMed Central

    Moullan, Norman; Mouchiroud, Laurent; Wang, Xu; Ryu, Dongryeol; Williams, Evan G.; Mottis, Adrienne; Jovaisaite, Virginija; Frochaux, Michael V.; Quiros, Pedro M.; Deplancke, Bart; Houtkooper, Riekelt H.; Auwerx, Johan

    2015-01-01

    Summary In recent years, tetracyclines, such as doxycycline, have become broadly used to control gene expression by virtue of the Tet-On/Tet-Off systems. The wide range of direct effects of tetracycline use has, however, not been fully appreciated. We show here that these antibiotics induce a mitonuclear protein imbalance through their effects on mitochondrial translation, an effect that likely reflects the evolutionary relationship between mitochondria and proteobacteria. Tetracyclines, Even at low concentrations, tetracyclines induce mitochondrial proteotoxic stress, leading to changes in nuclear gene expression and altered mitochondrial dynamics and function in commonly used cell types, as well as worms, flies, mice, and plants. Since tetracyclines are so widely applied in research, scientists should be aware of their potentially confounding effects on experimental results. Furthermore, these results caution against extensive use of tetracyclines in livestock due to potential downstream impacts on the environment and human health. PMID:25772356

  8. Evidence of mitochondrial dysfunction in broilers with pulmonary hypertension syndrome (Ascites): effect of t-butyl hydroperoxide on hepatic mitochondrial function, glutathione, and related thiols.

    PubMed

    Cawthon, D; McNew, R; Beers, K W; Bottje, W G

    1999-01-01

    The purpose of this study was to assess mitochondrial function and glutathione (a mitochondrial antioxidant) in response to oxidative stress in mitochondria in vitro obtained from broilers with and without pulmonary hypertension syndrome (PHS). Liver mitochondria from Control and PHS broilers were incubated with 0, 1, and 5-mM tertiary-butyl hydroperoxide (tBH). Indices of mitochondrial function [the respiratory control ratio (RCR) and the adenosine diphosphate to oxygen ratio (ADP:O)], and levels of mitochondrial and extra-mitochondrial reduced (GSH) and oxidized (GSSG) glutathione, cysteine, cystine, glutamate and cysteinyl-glycine were determined following tBH treatment. Lower RCR and ADP:O values were observed in PHS mitochondria than in controls. Whereas control mitochondria remained coupled (RCR > 2.0), only 3 PHS preparations remained coupled after 60 min of incubation with 5 mM tBH, indicating a greater susceptibility to oxidative stress in PHS mitochondria. The lower RCR in PHS mitochondria was due to increased oxygen consumption during State IV respiration. Oxidative stress following tBH treatment (decreased GSH and increased GSSG) was observed, but there were no differences in GSH or GSSG between control and PHS mitochondria. The PHS mitochondria did exhibit elevated mitochondrial and extramitochondrial cystine than controls, however. The results indicate that PHS mitochondria do not lack antioxidant protection from GSH, but lower RCR and ADP:O ratios in PHS mitochondria indicate a dysfunction that may contribute to the pathophysiology of this metabolic disease in broilers.

  9. Morphological and functional abnormalities of salience network in the early-stage of paranoid schizophrenia.

    PubMed

    Pu, Weidan; Li, Li; Zhang, Huiran; Ouyang, Xuan; Liu, Haihong; Zhao, Jingping; Li, Lingjiang; Xue, Zhimin; Xu, Ke; Tang, Haibo; Shan, Baoci; Liu, Zhening; Wang, Fei

    2012-10-01

    A salience network (SN), mainly composed of the anterior insula (AI) and anterior cingulate cortex (ACC), has been suggested to play an important role in salience attribution which has been proposed as central to the pathology of paranoid schizophrenia. The role of this SN in the pathophysiology of paranoid schizophrenia, however, still remains unclear. In the present study, voxel-based morphometry and resting-state functional connectivity analyses were combined to identify morphological and functional abnormalities in the proposed SN in the early-stage of paranoid schizophrenia (ESPS). Voxel-based morphometry and resting-state functional connectivity analyses were applied to 90 ESPS patients and 90 age- and sex-matched healthy controls (HC). Correlation analyses were performed to examine the relationships between various clinical variables and both gray matter morphology and functional connectivity within the SN in ESPS. Compared to the HC group, the ESPS group showed significantly reduced gray matter volume (GMV) in both bilateral AI and ACC. Moreover, significantly reduced functional connectivity within the SN sub-networks was identified in the ESPS group. These convergent morphological and functional deficits in SN were significantly associated with hallucinations. Additionally, illness duration correlated with reduced GMV in the left AI in ESPS. In conclusion, these findings provide convergent evidence for the morphological and functional abnormalities of the SN in ESPS. Moreover, the association of illness duration with the reduced GMV in the left AI suggests that the SN and the AI, in particular, may manifest progressive morphological changes that are especially important in the emergence of ESPS.

  10. Distinct Functional Roles of Cardiac Mitochondrial Subpopulations Revealed by a 3D Simulation Model

    PubMed Central

    Hatano, Asuka; Okada, Jun-ichi; Washio, Takumi; Hisada, Toshiaki; Sugiura, Seiryo

    2015-01-01

    Experimental characterization of two cardiac mitochondrial subpopulations, namely, subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM), has been hampered by technical difficulties, and an alternative approach is eagerly awaited. We previously developed a three-dimensional computational cardiomyocyte model that integrates electrophysiology, metabolism, and mechanics with subcellular structure. In this study, we further developed our model to include intracellular oxygen diffusion, and determined whether mitochondrial localization or intrinsic properties cause functional variations. For this purpose, we created two models: one with equal SSM and IFM properties and one with IFM having higher activity levels. Using these two models to compare the SSM and IFM responses of [Ca2+], tricarboxylic acid cycle activity, [NADH], and mitochondrial inner membrane potential to abrupt changes in pacing frequency (0.25–2 Hz), we found that the reported functional differences between these subpopulations appear to be mostly related to local [Ca2+] heterogeneity, and variations in intrinsic properties only serve to augment these differences. We also examined the effect of hypoxia on mitochondrial function. Under normoxic conditions, intracellular oxygen is much higher throughout the cell than the half-saturation concentration for oxidative phosphorylation. However, under limited oxygen supply, oxygen is mostly exhausted in SSM, leaving the core region in an anoxic condition. Reflecting this heterogeneous oxygen environment, the inner membrane potential continues to decrease in IFM, whereas it is maintained to nearly normal levels in SSM, thereby ensuring ATP supply to this region. Our simulation results provide clues to understanding the origin of functional variations in two cardiac mitochondrial subpopulations and their differential roles in maintaining cardiomyocyte function as a whole. PMID:26039174

  11. Abnormal GABAergic function and face processing in schizophrenia: A pharmacologic-fMRI study.

    PubMed

    Tso, Ivy F; Fang, Yu; Phan, K Luan; Welsh, Robert C; Taylor, Stephan F

    2015-10-01

    The involvement of the gamma-aminobutyric acid (GABA) system in schizophrenia is suggested by postmortem studies and the common use of GABA receptor-potentiating agents in treatment. In a recent study, we used a benzodiazepine challenge to demonstrate abnormal GABAergic function during processing of negative visual stimuli in schizophrenia. This study extended this investigation by mapping GABAergic mechanisms associated with face processing and social appraisal in schizophrenia using a benzodiazepine challenge. Fourteen stable, medicated schizophrenia/schizoaffective patients (SZ) and 13 healthy controls (HC) underwent functional MRI using the blood oxygenation level-dependent (BOLD) technique while they performed the Socio-emotional Preference Task (SePT) on emotional face stimuli ("Do you like this face?"). Participants received single-blinded intravenous saline and lorazepam (LRZ) in two separate sessions separated by 1-3weeks. Both SZ and HC recruited medial prefrontal cortex/anterior cingulate during the SePT, relative to gender identification. A significant drug by group interaction was observed in the medial occipital cortex, such that SZ showed increased BOLD signal to LRZ challenge, while HC showed an expected decrease of signal; the interaction did not vary by task. The altered BOLD response to LRZ challenge in SZ was significantly correlated with increased negative affect across multiple measures. The altered response to LRZ challenge suggests that abnormal face processing and negative affect in SZ are associated with altered GABAergic function in the visual cortex, underscoring the role of impaired visual processing in socio-emotional deficits in schizophrenia.

  12. Abnormal functional connectivity in focal hand dystonia: mutual information analysis in EEG.

    PubMed

    Jin, Seung-Hyun; Lin, Peter; Auh, Sungyoung; Hallett, Mark

    2011-06-01

    The aim of the present study was to investigate functional connectivity in focal hand dystonia patients to understand the pathophysiology underlying their abnormality in movement. We recorded EEGs from 58 electrodes in 15 focal hand dystonia patients and 15 healthy volunteers during rest and a simple finger-tapping task that did not induce any dystonic symptoms. We investigated mutual information, which provides a quantitative measure of linear and nonlinear coupling, in the alpha, beta, and gamma bands. Mean mutual information of all 58 channels and mean of the channels of interest representative of regional functional connectivity over sensorimotor areas (C3, CP3, C4, CP4, FCz, and Cz) were evaluated. For both groups, we found enhanced mutual information during the task compared with the rest condition, specifically in the beta and gamma bands for mean mutual information of all channels, and in all bands for mean mutual information of channels of interest. Comparing the focal hand dystonia patients with the healthy volunteers for both rest and task, there was reduced mutual information in the beta band for both mean mutual information of all channels and mean mutual information of channels of interest. Regarding the properties of the connectivity in the beta band, we found that the majority of the mutual information differences were from linear connectivity. The abnormal beta-band functional connectivity in focal hand dystonia patients suggests deficient brain connectivity.

  13. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms

    PubMed Central

    Szabo, Csaba; Ransy, Céline; Módis, Katalin; Andriamihaja, Mireille; Murghes, Baptiste; Coletta, Ciro; Olah, Gabor; Yanagi, Kazunori; Bouillaud, Frédéric

    2014-01-01

    Until recently, hydrogen sulfide (H2S) was exclusively viewed a toxic gas and an environmental hazard, with its toxicity primarily attributed to the inhibition of mitochondrial Complex IV, resulting in a shutdown of mitochondrial electron transport and cellular ATP generation. Work over the last decade established multiple biological regulatory roles of H2S, as an endogenous gaseous transmitter. H2S is produced by cystathionine γ-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). In striking contrast to its inhibitory effect on Complex IV, recent studies showed that at lower concentrations, H2S serves as a stimulator of electron transport in mammalian cells, by acting as a mitochondrial electron donor. Endogenous H2S, produced by mitochondrially localized 3-MST, supports basal, physiological cellular bioenergetic functions; the activity of this metabolic support declines with physiological aging. In specialized conditions (calcium overload in vascular smooth muscle, colon cancer cells), CSE and CBS can also associate with the mitochondria; H2S produced by these enzymes, serves as an endogenous stimulator of cellular bioenergetics. The current article overviews the biochemical mechanisms underlying the stimulatory and inhibitory effects of H2S on mitochondrial function and cellular bioenergetics and discusses the implication of these processes for normal cellular physiology. The relevance of H2S biology is also discussed in the context of colonic epithelial cell physiology: colonocytes are exposed to high levels of sulfide produced by enteric bacteria, and serve as a metabolic barrier to limit their entry into the mammalian host, while, at the same time, utilizing it as a metabolic ‘fuel’. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:23991830

  14. Mitochondrial oxidative function in human saponin-skinned muscle fibres: effects of prolonged exercise

    PubMed Central

    Tonkonogi, Michail; Harris, Beorn; Sahlin, Kent

    1998-01-01

    The influence of prolonged exhaustive exercise on mitochondrial oxidative function was investigated in ten men. Muscle biopsies were taken before and after exercise and mitochondrial respiration investigated in fibre bundles made permeable by pretreatment with saponin. After exercise, respiration in the absence of ADP increased by 18 % (P < 0.01), but respiration at suboptimal ADP concentration (0.1 mM) and maximal ADP-stimulated respiration (1 mM ADP) remained unchanged. In the presence of creatine (20 mM), mitochondrial affinity for ADP increased markedly and respiration at suboptimal ADP concentration (0.1 mM) was similar (pre-exercise) or higher (post-exercise; P < 0.05) than with 1 mM ADP alone. The increase in respiratory rate with creatine was correlated to the relative type I fibre area (r = 0.84). Creatine-stimulated respiration increased after prolonged exercise (P < 0.01). The respiratory control index (6.8 ± 0.4, mean ± s.e.m.) and the ratio between respiration at 0.1 and 1 mM ADP (ADP sensitivity index, 0.63 ± 0.03) were not changed after exercise. The sensitivity index was negatively correlated to the relative type I fibre area (r = −0.86). The influence of exercise on muscle oxidative function has for the first time been investigated with the skinned-fibre technique. It is concluded that maximal mitochondrial oxidative power is intact or improved after prolonged exercise, while uncoupled respiration is increased. The latter finding may contribute to the elevated post-exercise oxygen consumption. The finding that the sensitivity of mitochondrial respiration for ADP and creatine are related to fibre-type composition indicates intrinsic differences in the control of mitochondrial respiration between fibres. PMID:9625884

  15. Chronic Exercise Training Improved Aortic Endothelial and Mitochondrial Function via an AMPKα2-Dependent Manner

    PubMed Central

    Chen, Xiaohui; An, Xiangbo; Chen, Dongrui; Ye, Maoqing; Shen, Weili; Han, Weiqing; Zhang, Youyi; Gao, Pingjin

    2016-01-01

    Chronic exercise training is known to protect the vasculature; however, the underlying mechanisms remain obscure. The present study hypothesized that exercise may improve aortic endothelial and mitochondrial function through an adenosine monophosphate-activated protein kinase α2 (AMPKα2)-dependent manner. Ten-week-old AMPKα2 knockout (AMPKα2−/−) mice and age-matched wild-type (WT) mice were subjected to daily treadmill running for 6 weeks, and the thoracic aorta from these mice were used for further examination. Our results showed that exercise significantly promoted vasodilatation and increased expression and phosphorylation of endothelial nitric oxide synthase (eNOS), concomitant with increased AMPKα2 expression in WT mice. These effects were not observed in AMPKα2−/− mice. Furthermore, exercise training increased thoracic aortic mitochondrial content as indicated by increased Complex I and mitochondrial DNA (mtDNA) in WT mice but not in AMPKα2−/− mice. This may be caused by decreased mitochondrial autophagy since the expression of BH3 domain-containing BCL2 family members BNIP3-like (BNIP3L) and LC3B were decreased in WT mice with exercise. And these changes were absent with AMPKα2 deletion in mice. Importantly, exercise increased the expression of manganous superoxide dismutase (MnSOD) and catalase, suggesting that mitochondrial antioxidative capacity was increased. Notably, the improved antioxidative capacity was lost in AMPKα2−/− mice with exercise. In conclusion, this study illustrated that AMPKα2 plays a critical role in exercise-related vascular protection via increasing endothelial and mitochondrial function in the artery. PMID:28066264

  16. Age, Obesity, and Sex Effects on Insulin Sensitivity and Skeletal Muscle Mitochondrial Function

    PubMed Central

    Karakelides, Helen; Irving, Brian A.; Short, Kevin R.; O'Brien, Peter; Nair, K. Sreekumaran

    2010-01-01

    OBJECTIVE Reductions in insulin sensitivity in conjunction with muscle mitochondrial dysfunction have been reported to occur in many conditions including aging. The objective was to determine whether insulin resistance and mitochondrial dysfunction are directly related to chronological age or are related to age-related changes in body composition. RESEARCH DESIGN AND METHODS Twelve young lean, 12 young obese, 12 elderly lean, and 12 elderly obese sedentary adults were studied. Insulin sensitivity was measured by a hyperinsulinemic-euglycemic clamp, and skeletal muscle mitochondrial ATP production rates (MAPRs) were measured in freshly isolated mitochondria obtained from vastus lateralis biopsy samples using the luciferase reaction. RESULTS Obese participants, independent of age, had reduced insulin sensitivity based on lower rates of glucose infusion during a hyperinsulinemic-euglycemic clamp. In contrast, age had no independent effect on insulin sensitivity. However, the elderly participants had lower muscle MAPRs than the young participants, independent of obesity. Elderly participants also had higher levels inflammatory cytokines and total adiponectin. In addition, higher muscle MAPRs were also noted in men than in women, whereas glucose infusion rates were higher in women. CONCLUSIONS The results demonstrate that age-related reductions in insulin sensitivity are likely due to an age-related increase in adiposity rather than a consequence of advanced chronological age. The results also indicate that an age-related decrease in muscle mitochondrial function is neither related to adiposity nor insulin sensitivity. Of interest, a higher mitochondrial ATP production capacity was noted in the men, whereas the women were more insulin sensitive, demonstrating further dissociation between insulin sensitivity and muscle mitochondrial function. PMID:19833885

  17. Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy.

    PubMed

    Urban, Michael J; Pan, Pan; Farmer, Kevin L; Zhao, Huiping; Blagg, Brian S J; Dobrowsky, Rick T

    2012-05-01

    Quantification of intra-epidermal nerve fibers (iENFs) is an important approach to stage diabetic peripheral neuropathy (DPN) and is a promising clinical endpoint for identifying beneficial therapeutics. Mechanistically, diabetes decreases neuronal mitochondrial function and enhancing mitochondrial respiratory capacity may aid neuronal recovery from glucotoxic insults. We have proposed that modulating the activity and expression of heat shock proteins (Hsp) may be of benefit in treating DPN. KU-32 is a C-terminal Hsp90 inhibitor that improved thermal hypoalgesia in diabetic C57Bl/6 mice but it was not determined if this was associated with an increase in iENF density and mitochondrial function. After 16 weeks of diabetes, Swiss Webster mice showed decreased electrophysiological and psychosensory responses and a >30% loss of iENFs. Treatment of the mice with ten weekly doses of 20mg/kg KU-32 significantly reversed pre-existing deficits in nerve conduction velocity and responses to mechanical and thermal stimuli. KU-32 therapy significantly reversed the pre-existing loss of iENFs despite the identification of a sub-group of drug-treated diabetic mice that showed improved thermal sensitivity but no increase in iENF density. To determine if the improved clinical indices correlated with enhanced mitochondrial activity, sensory neurons were isolated and mitochondrial bioenergetics assessed ex vivo using extracellular flux technology. Diabetes decreased maximal respiratory capacity in sensory neurons and this deficit was improved following KU-32 treatment. In conclusion, KU-32 improved physiological and morphologic markers of degenerative neuropathy and drug efficacy may be related to enhanced mitochondrial bioenergetics in sensory neurons.

  18. Modulating molecular chaperones improves sensory fiber recovery and mitochondrial function in diabetic peripheral neuropathy

    PubMed Central

    Urban, Michael J.; Pan, Pan; Farmer, Kevin L.; Zhao, Huiping; Blagg, Brian S.J.; Dobrowsky, Rick T.

    2012-01-01

    Quantification of intra-epidermal nerve fibers (iENFs) is an important approach to stage diabetic peripheral neuropathy (DPN) and is a promising clinical endpoint for identifying beneficial therapeutics. Mechanistically, diabetes decreases neuronal mitochondrial function and enhancing mitochondrial respiratory capacity may aid neuronal recovery from glucotoxic insults. We have proposed that modulating the activity and expression of heat shock proteins (Hsp) may be of benefit in treating DPN. KU-32 is a C-terminal Hsp90 inhibitor that improved thermal hypoalgesia in diabetic C57Bl/6 mice but it was not determined if this was associated with an increase in iENF density and mitochondrial function. After 16 weeks of diabetes, Swiss Webster mice showed decreased electrophysiological and psychosensory responses and a >30% loss of iENFs. Treatment of the mice with ten weekly doses of 20 mg/kg KU-32 significantly reversed pre-existing deficits in nerve conduction velocity and responses to mechanical and thermal stimuli. KU-32 therapy significantly reversed the pre-existing loss of iENFs despite the identification of a sub-group of drug-treated diabetic mice that showed improved thermal sensitivity but no increase in iENF density. To determine if the improved clinical indices correlated with enhanced mitochondrial activity, sensory neurons were isolated and mitochondrial bioenergetics assessed ex vivo using extracellular flux technology. Diabetes decreased maximal respiratory capacity in sensory neurons and this deficit was improved following KU-32 treatment. In conclusion, KU-32 improved physiological and morphologic markers of degenerative neuropathy and drug efficacy may be related to enhanced mitochondrial bioenergetics in sensory neurons. PMID:22465570

  19. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function

    PubMed Central

    Hey-Mogensen, Martin; Gram, Martin; Jensen, Martin Borch; Lund, Michael Taulo; Hansen, Christina Neigaard; Scheibye-Knudsen, Morten; Bohr, Vilhelm A; Dela, Flemming

    2015-01-01

    Abstract Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60–70 or 20–30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I–V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell. Key points The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross

  20. Silencing the KCNK9 potassium channel (TASK-3) gene disturbs mitochondrial function, causes mitochondrial depolarization, and induces apoptosis of human melanoma cells.

    PubMed

    Nagy, Dénes; Gönczi, Mónika; Dienes, Beatrix; Szöőr, Árpád; Fodor, János; Nagy, Zsuzsanna; Tóth, Adrienn; Fodor, Tamás; Bai, Péter; Szücs, Géza; Rusznák, Zoltán; Csernoch, László

    2014-12-01

    TASK-3 (KCNK9 or K2P9.1) channels are thought to promote proliferation and/or survival of malignantly transformed cells, most likely by increasing their hypoxia tolerance. Based on our previous results that suggested mitochondrial expression of TASK-3 channels, we hypothesized that TASK-3 channels have roles in maintaining mitochondrial activity. In the present work we studied the effect of reduced TASK-3 expression on the mitochondrial function and survival of WM35 and A2058 melanoma cells. TASK-3 knockdown cells had depolarized mitochondrial membrane potential and contained a reduced amount of mitochondrial DNA. Compared to their scrambled shRNA-transfected counterparts, they demonstrated diminished responsiveness to the application of the mitochondrial uncoupler [(3-chlorophenyl)hydrazono]malononitrile (CCCP). These observations indicate impaired mitochondrial function. Further, TASK-3 knockdown cells presented reduced viability, decreased total DNA content, altered cell morphology, and reduced surface area. In contrast to non- and scrambled shRNA-transfected melanoma cell lines, which did not present noteworthy apoptotic activity, almost 50 % of the TASK-3 knockdown cells exhibited strong Annexin-V-specific immunofluorescence signal. Sequestration of cytochrome c from the mitochondria to the cytosol, increased caspase 3 activity, and translocation of the apoptosis-inducing factor from mitochondria to cell nuclei were also demonstrated in TASK-3 knockdown cells. Interference with TASK-3 channel expression, therefore, induces caspase-dependent and -independent apoptosis of melanoma cells, most likely via causing mitochondrial depolarization. Consequently, TASK-3 channels may be legitimate targets of future melanoma therapies.

  1. Dietary choline deprivation impairs rat brain mitochondrial function and behavioral phenotype.

    PubMed

    Pacelli, Consiglia; Coluccia, Addolorata; Grattagliano, Ignazio; Cocco, Tiziana; Petrosillo, Giuseppe; Paradies, Giuseppe; De Nitto, Emanuele; Massaro, Antonio; Persichella, Michele; Borracci, Pietro; Portincasa, Piero; Carratù, Maria Rosaria

    2010-06-01

    Dietary choline deprivation (CD) is associated with behavioral changes, but mechanisms underlying these detrimental effects are not well characterized. For instance, no literature data are available concerning the CD effects on brain mitochondrial function related to impairment in cognition. Therefore, we investigated brain mitochondrial function and redox status in male Wistar rats fed a CD diet for 28 d. Moreover, the CD behavioral phenotype was characterized. Compared with rats fed a control diet (CTRL), CD rats showed lower NAD-dependent mitochondrial state III and state IV respiration, 40% lower complex I activity, and significantly higher reactive oxygen species production. Total glutathione was oxidatively consumed more in CD than in CTRL rats and the rate of protein oxidation was 40% higher in CD than in CTRL rats, reflecting an oxidative stress condition. The mitochondrial concentrations of cardiolipin, a phospholipid required for optimal activity of complex I, was 20% lower in CD rats than in CTRL rats. Compared with CTRL rats, the behavioral phenotype of CD rats was characterized by impairment in motor coordination and motor learning assessed with the rotarod/accelerod test. Furthermore, compared with CTRL rats, CD rats were less capable of learning the active avoidance task and the number of attempts they made to avoid foot shock was fewer. The results suggest that CD-induced dysfunction in brain mitochondria may be responsible for impairment in cognition and underline that, similar to the liver, the brain also needs an adequate choline supply for its normal functioning.

  2. Age-related changes in mitochondrial function and antioxidative enzyme activity in fischer 344 rats.

    PubMed

    Meng, Qingying; Wong, Yee Ting; Chen, Jie; Ruan, Runsheng

    2007-03-01

    We have previously reported the changes of mitochondrial function and/or antioxidative enzyme efficiency in a few organs of rats as a result of aging. However, there is a further need to reach a conclusion about their interactions in biological functions based on other evaluation tips like the usage of advanced methods and the exploring of crucial biochemical parameters. Therefore, we investigated the mitochondrial inner membrane functional integrity by the analysis of respiration control ratio and membrane potential in the liver and brain of young (8 months) and old (26 months) Fischer 344 rats. The disintegration of mitochondrial membrane integrity was determined higher in the liver of old rats than that of young rats. This was well correlated with the decrease of total superoxide dismutase (SOD), Cu/Zn-SOD, Mn-SOD and glutathione peroxidase activities in most of the organs, except for the increase of catalase activity in heart of old rats. Similarly, the protein expressions of these enzymes were down regulated in the liver and kidney of old rats. Taken together, we suggest that the mitochondrial malfunction in old rats is associated with the decrease of antioxidative enzyme efficiency. And the data are also discussed with changes in the results from inter-laboratories.

  3. Mfn2 modulates the UPR and mitochondrial function via repression of PERK.

    PubMed

    Muñoz, Juan Pablo; Ivanova, Saška; Sánchez-Wandelmer, Jana; Martínez-Cristóbal, Paula; Noguera, Eduard; Sancho, Ana; Díaz-Ramos, Angels; Hernández-Alvarez, María Isabel; Sebastián, David; Mauvezin, Caroline; Palacín, Manuel; Zorzano, Antonio

    2013-08-28

    Mitofusin 2 (Mfn2) is a key protein in mitochondrial fusion and it participates in the bridging of mitochondria to the endoplasmic reticulum (ER). Recent data indicate that Mfn2 ablation leads to ER stress. Here we report on the mechanisms by which Mfn2 modulates cellular responses to ER stress. Induction of ER stress in Mfn2-deficient cells caused massive ER expansion and excessive activation of all three Unfolded Protein Response (UPR) branches (PERK, XBP-1, and ATF6). In spite of an enhanced UPR, these cells showed reduced activation of apoptosis and autophagy during ER stress. Silencing of PERK increased the apoptosis of Mfn2-ablated cells in response to ER stress. XBP-1 loss-of-function ameliorated autophagic activity of these cells upon ER stress. Mfn2 physically interacts with PERK, and Mfn2-ablated cells showed sustained activation of this protein kinase under basal conditions. Unexpectedly, PERK silencing in these cells reduced ROS production, normalized mitochondrial calcium, and improved mitochondrial morphology. In summary, our data indicate that Mfn2 is an upstream modulator of PERK. Furthermore, Mfn2 loss-of-function reveals that PERK is a key regulator of mitochondrial morphology and function.

  4. Melatonin Improves Mitochondrial Function by Promoting MT1/SIRT1/PGC-1 Alpha-Dependent Mitochondrial Biogenesis in Cadmium-Induced Hepatotoxicity In Vitro

    PubMed Central

    Guo, Pan; Pi, Huifeng; Xu, Shangcheng; Zhang, Lei; Li, Yuming; Li, Min; Cao, Zhengwang; Tian, Li; Xie, Jia; Li, Renyan; He, Mindi; Lu, Yonghui; Liu, Chuan; Duan, Weixia; Yu, Zhengping; Zhou, Zhou

    2014-01-01

    Melatonin is an indolamine synthesized in the pineal gland that has a wide range of physiological functions, and it has been under clinical investigation for expanded applications. Increasing evidence demonstrates that melatonin can ameliorate cadmium-induced hepatotoxicity. However, the potentially protective effects of melatonin against cadmium-induced hepatotoxicity and the underlying mechanisms of this protection remain unclear. This study investigates the protective effects of melatonin pretreatment on cadmium-induced hepatotoxicity and elucidates the potential mechanism of melatonin-mediated protection. We exposed HepG2 cells to different concentrations of cadmium chloride (2.5, 5, and 10μM) for 12 h. We found that Cd stimulated cytotoxicity, disrupted the mitochondrial membrane potential, increased reactive oxygen species production, and decreased mitochondrial mass and mitochondrial DNA content. Consistent with this finding, Cd exposure was associated with decreased Sirtuin 1 (SIRT1) protein expression and activity, thus promoted acetylation of PGC-1 alpha, a key enzyme involved in mitochondrial biogenesis and function, although Cd did not disrupt the interaction between SIRT1 and PGC-1 alpha. However, all cadmium-induced mitochondrial oxidative injuries were efficiently attenuated by melatonin pretreatment. Moreover, Sirtinol and SIRT1 siRNA each blocked the melatonin-mediated elevation in mitochondrial function by inhibiting SIRT1/ PGC-1 alpha signaling. Luzindole, a melatonin receptor antagonist, was found to partially block the ability of melatonin to promote SIRT1/ PGC-1 alpha signaling. In summary, our results indicate that SIRT1 plays an essential role in the ability of moderate melatonin to stimulate PGC-1 alpha and improve mitochondrial biogenesis and function at least partially through melatonin receptors in cadmium-induced hepatotoxicity. PMID:25159133

  5. High-mobility group box 1 is dispensable for autophagy, mitochondrial quality control, and organ function in vivo.

    PubMed

    Huebener, Peter; Gwak, Geum-Youn; Pradere, Jean-Philippe; Quinzii, Catarina M; Friedman, Richard; Lin, Chyuan-Sheng; Trent, Chad M; Mederacke, Ingmar; Zhao, Enpeng; Dapito, Dianne H; Lin, Yuxi; Goldberg, Ira J; Czaja, Mark J; Schwabe, Robert F

    2014-03-04

    In vitro studies have demonstrated a critical role for high-mobility group box 1 (HMGB1) in autophagy and the autophagic clearance of dysfunctional mitochondria, resulting in severe mitochondrial fragmentation and profound disturbances of mitochondrial respiration in HMGB1-deficient cells. Here, we investigated the effects of HMGB1 deficiency on autophagy and mitochondrial function in vivo, using conditional Hmgb1 ablation in the liver and heart. Unexpectedly, deletion of Hmgb1 in hepatocytes or cardiomyocytes, two cell types with abundant mitochondria, did not alter mitochondrial structure or function, organ function, or long-term survival. Moreover, hepatic autophagy and mitophagy occurred normally in the absence of Hmgb1, and absence of Hmgb1 did not significantly affect baseline and glucocorticoid-induced hepatic gene expression. Collectively, our findings suggest that HMGB1 is dispensable for autophagy, mitochondrial quality control, the regulation of gene expression, and organ function in the adult organism.

  6. Insulin and IGF-1 improve mitochondrial function in a PI-3K/Akt-dependent manner and reduce mitochondrial generation of reactive oxygen species in Huntington's disease knock-in striatal cells.

    PubMed

    Ribeiro, Márcio; Rosenstock, Tatiana R; Oliveira, Ana M; Oliveira, Catarina R; Rego, A Cristina

    2014-09-01

    Oxidative stress and mitochondrial dysfunction have been described in Huntington's disease, a disorder caused by expression of mutant huntingtin (mHtt). IGF-1 was previously shown to protect HD cells, whereas insulin prevented neuronal oxidative stress. In this work we analyzed the role of insulin and IGF-1 in striatal cells derived from HD knock-in mice on mitochondrial production of reactive oxygen species (ROS) and related antioxidant and signaling pathways influencing mitochondrial function. Insulin and IGF-1 decreased mitochondrial ROS induced by mHtt and normalized mitochondrial SOD activity, without affecting intracellular glutathione levels. IGF-1 and insulin promoted Akt phosphorylation without changing the nuclear levels of phosphorylated Nrf2 or Nrf2/ARE activity. Insulin and IGF-1 treatment also decreased mitochondrial Drp1 phosphorylation, suggesting reduced mitochondrial fragmentation, and ameliorated mitochondrial function in HD cells in a PI-3K/Akt-dependent manner. This was accompanied by increased total and phosphorylated Akt, Tfam, and mitochondrial-encoded cytochrome c oxidase II, as well as Tom20 and Tom40 in mitochondria of insulin- and IGF-1-treated mutant striatal cells. Concomitantly, insulin/IGF-1-treated mutant cells showed reduced apoptotic features. Hence, insulin and IGF-1 improve mitochondrial function and reduce mitochondrial ROS caused by mHtt by activating the PI-3K/Akt signaling pathway, in a process independent of Nrf2 transcriptional activity, but involving enhanced mitochondrial levels of Akt and mitochondrial-encoded complex IV subunit.

  7. Structural and functional brain abnormalities place phenocopy frontotemporal dementia (FTD) in the FTD spectrum

    PubMed Central

    Steketee, Rebecca M.E.; Meijboom, Rozanna; Bron, Esther E.; Osse, Robert Jan; de Koning, Inge; Jiskoot, Lize C.; Klein, Stefan; de Jong, Frank Jan; van der Lugt, Aad; van Swieten, John C.; Smits, Marion

    2016-01-01

    Purpose ‘Phenocopy’ frontotemporal dementia (phFTD) patients may clinically mimic the behavioral variant of FTD (bvFTD), but do not show functional decline or abnormalities upon visual inspection of routine neuroimaging. We aimed to identify abnormalities in gray matter (GM) volume and perfusion in phFTD and to assess whether phFTD belongs to the FTD spectrum. We compared phFTD patients with both healthy controls and bvFTD patients. Materials & methods Seven phFTD and 11 bvFTD patients, and 20 age-matched controls underwent structural T1-weighted magnetic resonance imaging (MRI) and 3D pseudo-continuous arterial spin labeling (pCASL) at 3T. Normalized GM (nGM) volumes and perfusion, corrected for partial volume effects, were quantified regionally as well as in the entire supratentorial cortex, and compared between groups taking into account potential confounding effects of gender and scanner. Results PhFTD patients showed cortical atrophy, most prominently in the right temporal lobe. Apart from this regional atrophy, GM volume was generally not different from either controls or from bvFTD. BvFTD however showed extensive frontotemporal atrophy. Perfusion was increased in the left prefrontal cortex compared to bvFTD and to a lesser extent to controls. Conclusion PhFTD and bvFTD show overlapping cortical structural abnormalities indicating a continuum of changes especially in the frontotemporal regions. Together with functional changes suggestive of a compensatory response to incipient pathology in the left prefrontal regions, these findings are the first to support a possible neuropathological etiology of phFTD and suggest that phFTD may be a neurodegenerative disease on the FTD spectrum. PMID:27222795

  8. Defective mitochondrial fusion, altered respiratory function, and distorted cristae structure in skin fibroblasts with heterozygous OPA1 mutations.

    PubMed

    Agier, Virginie; Oliviero, Patricia; Lainé, Jeanne; L'Hermitte-Stead, Caroline; Girard, Samantha; Fillaut, Sandrine; Jardel, Claude; Bouillaud, Frédéric; Bulteau, Anne Laure; Lombès, Anne

    2012-10-01

    Deleterious consequences of heterozygous OPA1 mutations responsible for autosomal dominant optic atrophy remain a matter of debate. Primary skin fibroblasts derived from patients have shown diverse mitochondrial alterations that were however difficult to resolve in a unifying scheme. To address the potential use of these cells as disease model, we undertook parallel and quantitative analyses of the diverse reported alterations in four fibroblast lines harboring different OPA1 mutations, nonsense or missense, in the guanosine triphosphatase or the C-terminal coiled-coil domains. We tackled several factors potentially underlying discordant reports and showed that fibroblasts with heterozygous OPA1 mutations present with several mitochondrial alterations. These included defective mitochondrial fusion during pharmacological challenge with the protonophore carbonyl cyanide m-chlorophenyl hydrazone, significant mitochondrial elongation with decreased OPA1 and DRP1 proteins, and abnormal mitochondrial fragmentation during glycolysis shortage or exogenous oxidative stress. Respiratory complex IV activity and subunits steady-state were decreased without alteration of the mitochondrial deoxyribonucleic acid size, amount or transcription. Physical link between OPA1 protein and oxidative phosphorylation was shown by reciprocal immunoprecipitation. Altered cristae structure coexisted with normal response to pro-apoptotic stimuli and expression of Bax or Bcl2 proteins. Skin fibroblasts with heterozygous OPA1 mutations thus share significant mitochondrial remodeling, and may therefore be useful for analyzing disease pathophysiology. Identifying whether the observed alterations are also present in ganglion retinal cells, and which of them underlies their degeneration process remains however an essential goal for therapeutic strategy.

  9. Functional evaluation of an inherited abnormal fibrinogen: fibrinogen “Baltimore”

    PubMed Central

    Beck, Eugene A.; Shainoff, John R.; Vogel, Alfred; Jackson, Dudley P.

    1971-01-01

    The rate of clotting and the rate of development and degree of turbidity after addition of thrombin to plasma or purified fibrinogen from a patient with fibrinogen Baltimore was delayed when compared with normal, especially in the presence of low concentrations of thrombin. Optimal coagulation and development of translucent, rather than opaque, clots occurred at a lower pH with the abnormal fibrinogen than with normal. Development of turbidity during clotting of the abnormal plasma or fibrinogen was less than normal at each pH tested, but was maximal in both at approximately pH 6.4. The physical quality of clots formed from fibrinogen Baltimore was abnormal, as demonstrated by a decreased amplitude on thromboelastography. The morphologic appearance of fibrin strands formed from fibrinogen Baltimore by thrombin at pH 7.4 was abnormal when examined by phase contrast or electron microscopy, but those formed by thrombin at pH 6.4 or by thrombin and calcium chloride were similar to, though less compact, than normal fibrin. The periodicity of fibrin formed from fibrinogen Baltimore was similar to normal and was 231-233 Å. A study of the release of the fibrinopeptides from the patient's fibrinogen and its chromatographic subfractions verified the existence of both a normally behaving and a defective form of fibrinogen in the patient's plasma. The defective form differed from normal in three functionally different ways: (a) the rate of release of fibrinopeptides A and AP was slower than normal; (b) no visible clot formation accompanied either partial or complete release of the fibrinopeptides from the defective form in 0.3 M NaCl at pH 7.4; and (c) the defective component possessed a high proportion of phosphorylated, relative to nonphosphorylated, fibrinopeptide A, while the coagulable component contained very little of the phosphorylated peptide (AP). The high phosphate content of the defective component did not appear to be the cause of the abnormality, but may be the

  10. Exercise tolerance, lung function abnormalities, anemia, and cardiothoracic ratio in sickle cell patients.

    PubMed

    van Beers, Eduard J; van der Plas, Mart N; Nur, Erfan; Bogaard, Harm-Jan; van Steenwijk, Reindert P; Biemond, Bart J; Bresser, Paul

    2014-08-01

    Many patients with sickle cell disease (SCD) have a reduced exercise capacity and abnormal lung function. Cardiopulmonary exercise testing (CPET) can identify causes of exercise limitation. Forty-four consecutive SCD patients (27 HbSS, 11 HbSC, and 6 HbS-beta thalassemia) with a median age (interquartile range) of 26 (21-41) years underwent pulmonary function tests, CPET, chest x-ray, and echocardiography to further characterize exercise limitation in SCD. Peak oxygen uptake (V'O2 -peak), expressing maximum exercise capacity, was decreased in 83% of the studied patients. V'O2 -peak correlated with hemoglobin levels (R = 0.440, P = 0.005), forced vital capacity (FVC) (R = 0.717, P < 0.0001). Cardiothoracic ratio on chest x-ray inversely correlated with FVC (R = -0.637, P < 0.001). According to criteria for exercise limitation, the patients were limited in exercise capacity due to anemia (n = 17), cardiovascular dysfunction (n = 2), musculoskeletal function (n = 10), pulmonary ventilatory abnormalities (n = 1), pulmonary vascular exercise limitation (n = 1), and poor effort (n = 3). In the present study we demonstrate that anemia is the most important determinant of reduced exercise tolerance observed in SCD patients without signs of pulmonary hypertension. We found a strong correlation between various parameters of lung volume and cardiothoracic ratio and we hypothesize that cardiomegaly and relative small chest size may be important causes of the impairment in pulmonary function, that is, reduced long volumes and diffusion capacity, in SCD. Taking into account anthropomorphic differences between SCD patients and controls could help to interpret lung function studies in SCD better.

  11. Presynaptic Inhibitory Terminals Are Functionally Abnormal in a Rat Model of Posttraumatic Epilepsy

    PubMed Central

    Faria, Leonardo C.

    2010-01-01

    Partially isolated “undercut” neocortex with intact pial circulation is a well-established model of posttraumatic epileptogenesis. Results of previous experiments showed a decreased frequency of miniature inhibitory postsynaptic currents (mIPSCs) in layer V pyramidal (Pyr) neurons of undercuts. We further examined possible functional abnormalities in GABAergic inhibition in rat epileptogenic neocortical slices in vitro by recording whole cell monosynaptic IPSCs in layer V Pyr cells and fast-spiking (FS) GABAergic interneurons using a paired pulse paradigm. Compared with controls, IPSCs in Pyr neurons of injured slices showed increased threshold and decreased peak amplitude at threshold, decreased input/output slopes, increased failure rates, and a shift from paired pulse depression toward paired pulse facilitation (increased paired pulse ratio or PPR). Increasing [Ca2+]o from 2 to 4 mM partially reversed these abnormalities in Pyr cells of the epileptogenic tissue. IPSCs onto FS cells also had an increased PPR and failures. Blockade of GABAB receptors did not affect the paired results. These findings suggest that there are functional alterations in GABAergic presynaptic terminals onto both Pyr and FS cells in this model of posttraumatic epileptogenesis. PMID:20484536

  12. Abnormalities in itch sensation and skin barrier function in atopic NC/Tnd mice.

    PubMed

    Amagai, Yosuke; Matsuda, Hiroshi; Tanaka, Akane

    2013-01-01

    Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by dryness and itchy skin. Genetic factors as well as other factors, including abnormality in skin barrier function, hypersensitivity of itch sensory nerves, and dysfunction of the immune system, strongly affect the onset and exacerbation of AD. Recently, it has become clear that itch sensation is closely related to pain sensation. By using NC/Tnd mice, a unique spontaneous animal model for human AD, we found abnormalities in sensitivity against external stimuli as compared to two standard strains, BALB/c and B6 mice. Particularly, in conventional NC/Tnd mice with AD, stimulation against transient receptor potential (TRP) V1 reduced the scratching behavior, suggesting the possibility of a TRPV1 modulator in the treatment of atopic itch. The review outlines observations regarding itch sensation and skin barrier function in NC/Tnd mice by using a novel itch quantification system for the laboratory animals, which may bring great progress in the future study of itch.

  13. Micromolar changes in lysophosphatidylcholine concentration cause minor effects on mitochondrial permeability but major alterations in function.

    PubMed

    Hollie, Norris I; Cash, James G; Matlib, M Abdul; Wortman, Matthew; Basford, Joshua E; Abplanalp, William; Hui, David Y

    2014-06-01

    Mice deficient in group 1b phospholipase A2 have decreased plasma lysophosphatidylcholine and increased hepatic oxidation that is inhibited by intraperitoneal lysophosphatidylcholine injection. This study sought to identify a mechanism for lysophosphatidylcholine-mediated inhibition of hepatic oxidative function. Results showed that in vitro incubation of isolated mitochondria with 40-200μM lysophosphatidylcholine caused cyclosporine A-resistant swelling in a concentration-dependent manner. However, when mitochondria were challenged with 220μM CaCl2, cyclosporine A protected against permeability transition induced by 40μM, but not 80μM lysophosphatidylcholine. Incubation with 40-120μM lysophosphatidylcholine also increased mitochondrial permeability to 75μM CaCl2 in a concentration-dependent manner. Interestingly, despite incubation with 80μM lysophosphatidylcholine, the mitochondrial membrane potential was steady in the presence of succinate, and oxidation rates and respiratory control indices were similar to controls in the presence of succinate, glutamate/malate, and palmitoyl-carnitine. However, mitochondrial oxidation rates were inhibited by 30-50% at 100μM lysophosphatidylcholine. Finally, while 40μM lysophosphatidylcholine has no effect on fatty acid oxidation and mitochondria remained impermeable in intact hepatocytes, 100μM lysophosphatidylcholine inhibited fatty acid stimulated oxidation and caused intracellular mitochondrial permeability. Taken together, these present data demonstrated that LPC concentration dependently modulates mitochondrial microenvironment, with low micromolar concentrations of lysophosphatidylcholine sufficient to change hepatic oxidation rate whereas higher concentrations are required to disrupt mitochondrial integrity.

  14. Organochloride pesticides impaired mitochondrial function in hepatocytes and aggravated disorders of fatty acid metabolism

    PubMed Central

    Liu, Qian; Wang, Qihan; Xu, Cheng; Shao, Wentao; Zhang, Chunlan; Liu, Hui; Jiang, Zhaoyan; Gu, Aihua

    2017-01-01

    p,p’-dichlorodiphenyldichloroethylene (p, p’-DDE) and β-hexachlorocyclohexane (β-HCH) were two predominant organochlorine pesticides (OCPs) metabolites in human body associated with disorders of fatty acid metabolism. However, the underlying mechanisms have not been fully clarified. In this study, adult male C57BL/6 mice were exposed to low dose of p, p’-DDE and β-HCH for 8 wk. OCPs accumulation in organs, hepatic fatty acid composition, tricarboxylic acid cycle (TCA) metabolites and other metabolite profiles were analyzed. Expression levels of genes involved in hepatic lipogenesis and β-oxidation were measured. Mitochondrial function was evaluated in HepG2 cells exposed to OCPs. High accumulation of p, p’-DDE and β-HCH was found in liver and damaged mitochondria was observed under electron microscopy. Expression of genes in fatty acid synthesis increased and that in mitochondrial fatty acid β-oxidation decreased in OCPs treatment groups. OCPs changed metabolite profiles in liver tissues, varied hepatic fatty acid compositions and levels of several TCA cycle metabolites. Furthermore, MitoTracker Green fluorescence, ATP levels, mitochondrial membrane potential and OCR decreased in HepG2 cells exposed to OCPs. In conclusion, chronic exposure to OCPs at doses equivalent to internal exposures in humans impaired mitochondrial function, decreased fatty acid β-oxidation and aggravated disorders of fatty acid metabolism.

  15. Mitochondrial function in diaphragm of emphysematous hamsters after treatment with nandrolone

    PubMed Central

    Wijnhoven, Hanneke JH; Ennen, Leo; Rodenburg, Richard JT; Dekhuijzen, PN Richard

    2006-01-01

    Respiratory failure in patients with COPD may be caused by insufficient force production or insufficient endurance capacity of the respiratory muscles. Anabolic steroids may improve respiratory muscle function in COPD. The effect of anabolic steroids on mitochondrial function in the diaphragm in emphysema is unknown. In an emphysematous male hamster model, we investigated whether administration of the anabolic steroid nandrolone decanoate (ND) altered the activity of mitochondrial respiratory chain complexes in the diaphragm. The bodyweight of hamsters treated with ND was decreased after treatment compared with initial values, and serum testosterone levels were significantly lower in hamsters treated with ND than in control hamsters. No difference in the activity of mitochondrial respiratory chain complexes in the diaphragm between normal and emphysematous hamsters was observed. Treatment with ND did not change the activity of mitochondrial respiratory chain complexes in the diaphragm of both normal and emphysematous hamsters. In emphysematous hamsters, administration of ND decreased the activity of succinate:cytochrome c oxidoreductase compared with ND treatment in normal hamsters. We conclude that anabolic steroids have negative effects on the activity of succinate:cytochrome c oxidoreductase and anabolic status in this emphysematous hamster model. PMID:18046906

  16. Estradiol affects liver mitochondrial function in ovariectomized and tamoxifen-treated ovariectomized female rats

    SciTech Connect

    Moreira, Paula I.; Custodio, Jose B.A.; Nunes, Elsa; Moreno, Antonio; Seica, Raquel; Oliveira, Catarina R.; Santos, Maria S. . E-mail: mssantos@ci.uc.pt

    2007-05-15

    Given the tremendous importance of mitochondria to basic cellular functions as well as the critical role of mitochondrial impairment in a vast number of disorders, a compelling question is whether 17{beta}-estradiol (E2) modulates mitochondrial function. To answer this question we exposed isolated liver mitochondria to E2. Three groups of rat females were used: control, ovariectomized and ovariectomized treated with tamoxifen. Tamoxifen has antiestrogenic effects in the breast tissue and is the standard endocrine treatment for women with breast cancer. However, under certain circumstances and in certain tissues, tamoxifen can also exert estrogenic agonist properties. We observed that at basal conditions, ovariectomy and tamoxifen treatment do not induce any statistical alteration in oxidative phosphorylation system and respiratory chain parameters. Furthermore, tamoxifen treatment increases the capacity of mitochondria to accumulate Ca{sup 2+} delaying the opening of the permeability transition pore. The presence of 25 {mu}M E2 impairs respiration and oxidative phosphorylation system these effects being similar in all groups of animals studied. Curiously, E2 protects against lipid peroxidation and increases the production of H{sub 2}O{sub 2} in energized mitochondria of control females. Our results indicate that E2 has in general deleterious effects that lead to mitochondrial impairment. Since mitochondrial dysfunction is a triggering event of cell degeneration and death, the use of exogenous E2 must be carefully considered.

  17. Lipopolysaccharide markedly changes glucose metabolism and mitochondrial function in the longissimus muscle of pigs.

    PubMed

    Sun, H; Huang, Y; Yin, C; Guo, J; Zhao, R; Yang, X

    2016-07-01

    Most previous studies on the effects of lipopolysaccharide (LPS) in pigs focused on the body's immune response, and few reports paid attention to body metabolism changes. To better understand the glucose metabolism changes in skeletal muscle following LPS challenge and to clarify the possible mechanism, 12 growing pigs were employed. Animals were treated with either 2 ml of saline or 15 µg/kg BW LPS, and samples were collected 6 h later. The glycolysis status and mitochondrial function in the longissimus dorsi (LD) muscle of pigs were analyzed. The results showed that serum lactate content and NADH content in LD muscle significantly increased compared with the control group. Most glycolysis-related genes expression, as well as hexokinase, pyruvate kinase and lactic dehydrogenase activity, in LD muscle was significantly higher compared with the control group. Mitochondrial complexes I and IV significantly increased, while mitochondrial ATP concentration markedly decreased. Significantly increased calcium content in the mitochondria was observed, and endoplasm reticulum (ER) stress has been demonstrated in the present study. The results showed that LPS treatment markedly changes glucose metabolism and mitochondrial function in the LD muscle of pigs, and increased calcium content induced by ER stress was possibly involved. The results provide new clues for clarifying metabolic diseases in muscle induced by LPS.

  18. Redox State and Mitochondrial Respiratory Chain Function in Skeletal Muscle of LGMD2A Patients

    PubMed Central

    Nilsson, Mats I.; Macneil, Lauren G.; Kitaoka, Yu; Alqarni, Fatimah; Suri, Rahul; Akhtar, Mahmood; Haikalis, Maria E.; Dhaliwal, Pavneet; Saeed, Munim; Tarnopolsky, Mark A.

    2014-01-01

    Background Calpain-3 deficiency causes oxidative and nitrosative stress-induced damage in skeletal muscle of LGMD2A patients, but mitochondrial respiratory chain function and anti-oxidant levels have not been systematically assessed in this clinical population previously. Methods We identified 14 patients with phenotypes consistent with LGMD2A and performed CAPN3 gene sequencing, CAPN3 expression/autolysis measurements, and in silico predictions of pathogenicity. Oxidative damage, anti-oxidant capacity, and mitochondrial enzyme activities were determined in a subset of muscle biopsies. Results Twenty-one disease-causing variants were detected along the entire CAPN3 gene, five of which were novel (c.338 T>C, c.500 T>C, c.1525-1 G>T, c.2115+4 T>G, c.2366 T>A). Protein- and mRNA-based tests confirmed in silico predictions and the clinical diagnosis in 75% of patients. Reductions in antioxidant defense mechanisms (SOD-1 and NRF-2, but not SOD-2), coupled with increased lipid peroxidation and protein ubiquitination, were observed in calpain-3 deficient muscle, indicating a redox imbalance primarily affecting non-mitochondrial compartments. Although ATP synthase levels were significantly lower in LGMD2A patients, citrate synthase, cytochrome c oxidase, and complex I+III activities were not different from controls. Conclusions Despite significant oxidative damage and redox imbalance in cytosolic/myofibrillar compartments, mitochondrial respiratory chain function is largely maintained in skeletal muscle of LGMD2A patients. PMID:25079074

  19. Mitochondrial function in murine skin epithelium is crucial for hair follicle morphogenesis and epithelial-mesenchymal interactions.

    PubMed

    Kloepper, Jennifer E; Baris, Olivier R; Reuter, Karen; Kobayashi, Ken; Weiland, Daniela; Vidali, Silvia; Tobin, Desmond J; Niemann, Catherin; Wiesner, Rudolf J; Paus, Ralf

    2015-03-01

    Here, we studied how epithelial energy metabolism impacts overall skin development by selectively deleting intraepithelial mtDNA in mice by ablating a key maintenance factor (Tfam(EKO)), which induces loss of function of the electron transport chain (ETC). Quantitative (immuno)histomorphometry demonstrated that Tfam(EKO) mice showed significantly reduced hair follicle (HF) density and morphogenesis, fewer intrafollicular keratin15+ epithelial progenitor cells, increased apoptosis, and reduced proliferation. Tfam(EKO) mice also displayed premature entry into (aborted) HF cycling by apoptosis-driven HF regression (catagen). Ultrastructurally, Tfam(EKO) mice exhibited severe HF dystrophy, pigmentary abnormalities, and telogen-like condensed dermal papillae. Epithelial HF progenitor cell differentiation (Plet1, Lrig1 Lef1, and β-catenin), sebaceous gland development (adipophilin, Scd1, and oil red), and key mediators/markers of epithelial-mesenchymal interactions during skin morphogenesis (NCAM, versican, and alkaline phosphatase) were all severely altered in Tfam(EKO) mice. Moreover, the number of mast cells, major histocompatibility complex class II+, or CD11b+ immunocytes in the skin mesenchyme was increased, and essentially no subcutis developed. Therefore, in contrast to their epidermal counterparts, pilosebaceous unit stem cells depend on a functional ETC. Most importantly, our findings point toward a frontier in skin biology: the coupling of HF keratinocyte mitochondrial function with the epithelial-mesenchymal interactions that drive overall development of the skin and its appendages.

  20. The IMMUTANS variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis.

    PubMed Central

    Wu, D; Wright, D A; Wetzel, C; Voytas, D F; Rodermel, S

    1999-01-01

    Nuclear gene-induced variegation mutants provide a powerful system to dissect interactions between the genetic systems of the nucleus-cytoplasm, the chloroplast, and the mitochondrion. The immutans (im) variegation mutation of Arabidopsis is nuclear and recessive and results in the production of green- and white-sectored leaves. The green sectors contain cells with normal chloroplasts, whereas the white sectors are heteroplastidic and contain cells with abnormal, pigment-deficient plastids as well as some normal chloroplasts. White sector formation can be promoted by enhanced light intensities, but sectoring becomes irreversible early in leaf development. The white sectors accumulate the carotenoid precursor phytoene. We have positionally cloned IM and found that the gene encodes a 40.5-kD protein with sequence motifs characteristic of alternative oxidase, a mitochondrial protein that functions as a terminal oxidase in the respiratory chains of all plants. However, phylogenetic analyses revealed that the IM protein is only distantly related to these other alternative oxidases, suggesting that IM is a novel member of this protein class. We sequenced three alleles of im, and all are predicted to be null. Our data suggest a model of variegation in which the IM protein functions early in chloroplast biogenesis as a component of a redox chain responsible for phytoene desaturation but that a redundant electron transfer function is capable of compensating for IM activity in some plastids and cells. PMID:9878631

  1. Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes.

    PubMed

    Natarajan, Vaishaali; Wilson, Christina L; Hayward, Stephen L; Kidambi, Srivatsan

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function.

  2. Titanium Dioxide Nanoparticles Trigger Loss of Function and Perturbation of Mitochondrial Dynamics in Primary Hepatocytes

    PubMed Central

    Natarajan, Vaishaali; Wilson, Christina L.; Hayward, Stephen L.; Kidambi, Srivatsan

    2015-01-01

    Titanium dioxide (TiO2) nanoparticles are one of the most highly manufactured and employed nanomaterials in the world with applications in copious industrial and consumer products. The liver is a major accumulation site for many nanoparticles, including TiO2, directly through intentional exposure or indirectly through unintentional ingestion via water, food or animals and increased environmental contamination. Growing concerns over the current usage of TiO2 coupled with the lack of mechanistic understanding of its potential health risk is the motivation for this study. Here we determined the toxic effect of three different TiO2 nanoparticles (commercially available rutile, anatase and P25) on primary rat hepatocytes. Specifically, we evaluated events related to hepatocyte functions and mitochondrial dynamics: (1) urea and albumin synthesis using colorimetric and ELISA assays, respectively; (2) redox signaling mechanisms by measuring reactive oxygen species (ROS) production, manganese superoxide dismutase (MnSOD) activity and mitochondrial membrane potential (MMP); (3) OPA1 and Mfn-1 expression that mediates the mitochondrial dynamics by PCR; and (4) mitochondrial morphology by MitoTracker Green FM staining. All three TiO2 nanoparticles induced a significant loss (p < 0.05) in hepatocyte functions even at concentrations as low as 50 ppm with commercially used P25 causing maximum damage. TiO2 nanoparticles induced a strong oxidative stress in primary hepatocytes. TiO2 nanoparticles exposure also resulted in morphological changes in mitochondria and substantial loss in the fusion process, thus impairing the mitochondrial dynamics. Although this study demonstrated that TiO2 nanoparticles exposure resulted in substantial damage to primary hepatocytes, more in vitro and in vivo studies are required to determine the complete toxicological mechanism in primary hepatocytes and subsequently liver function. PMID:26247363

  3. Structural and functional alterations in mitochondrial membrane in picrotoxin-induced epileptic rat brain.

    PubMed

    Acharya, Munjal M; Katyare, Surendra S

    2005-03-01

    Mitochondrial function is a key determinant of both excitability and viability of neurons. Present studies were carried out to decipher cerebral mitochondrial oxidative energy metabolism and membrane function in the chronic condition of generalized seizures induced by picrotoxin (PTX) in rats. PTX-induced convulsions resulted in decreased respiration rates (14-41%) with glutamate, pyruvate + malate, and succinate as substrate. The ADP phosphorylation rates were drastically reduced by 44-65%. An opposite trend was observed with ascorbate + N,N,N',N'-tetramethyl-p-phenylenediamine [corrected] (TMPD) as substrate. In general, uncoupling of the mitochondrial electron transport was observed after PTX treatment. Malate dehydrogenase (MDH) and succinate dehydrogenase (SDH) activities were decreased by 20-80%; also, there was significant reduction in cytochrome b content after PTX treatment, while the F(o)F(1) ATPase (complex V) activity increased in basal and 2,4-dinitrophenol (DNP)-stimulated condition, indicating increased membrane fragility. The substrate kinetics analysis had shown that K(m) and V(max) of the higher affinity kinetic component of ATPase increased significantly by 1.2- to 1.4-fold in epileptic condition. Temperature kinetic analysis revealed 1.2-fold increase in energies of activation with decreased transition temperature. The total phospholipid (TPL) and cholesterol (CHL) contents decreased significantly with lowering of diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS), while lysophospholipid (lyso), sphingomyelin (SPM), and phosphatidylcholine components were found to be elevated. Brain mitochondrial membrane was somewhat more fluidized in epileptic animals. Possible consequences of mitochondrial respiratory chain (MRC) dysfunction are discussed. In conclusion, impairment of MRC function along with structural alterations suggests novel pathophysiological mechanisms important for

  4. Abnormalities of sodium excretion and other disorders of renal function in fulminant hepatic failure.

    PubMed Central

    Wilkinson, S P; Arroyo, V A; Moodie, H; Blendis, L M; Williams, R

    1976-01-01

    Renal function was evaluated in 40 patients with fulminant hepatic failure, They were divided into two groups on the basis of glomerular filtration rates greater than 40 ml/min or less than 25 ml/min. A number of patients in group 1 had markedly abnormal renal retention of sodium together with a reduced free water clearance and low potassium excretion which could be explained by increased proximal tubular reabsorption of sodium. The patients in group 2 had evidence that renal tubular integrity was maintained when the glomerular filtration rate was greater than or equal ml/min (functional renal failure), but evidence of tubular damage was present when this was less than 3 ml/min (acute tubular necrosis). PMID:964682

  5. Enhanced Neuroplasticity by the Metabolic Enhancer Piracetam Associated with Improved Mitochondrial Dynamics and Altered Permeability Transition Pore Function

    PubMed Central

    Stockburger, Carola; Miano, Davide; Pallas, Thea; Müller, Walter E.

    2016-01-01

    The mitochondrial cascade hypothesis of dementia assumes mitochondrial dysfunction leading to reduced energy supply, impaired neuroplasticity, and finally cell death as one major pathomechanism underlying the continuum from brain aging over mild cognitive impairment to initial and advanced late onset Alzheimer's disease. Accordingly, improving mitochondrial function has become an important strategy to treat the early stages of this continuum. The metabolic enhancer piracetam has been proposed as possible prototype for those compounds by increasing impaired mitochondrial function and related aspects like mechanisms of neuroplasticity. We here report that piracetam at therapeutically relevant concentrations improves neuritogenesis in the human cell line SH-SY5Y over conditions mirroring the whole spectrum of age-associated cognitive decline. These effects go parallel with improvement of impaired mitochondrial dynamics shifting back fission and fusion balance to the energetically more favorable fusion site. Impaired fission and fusion balance can also be induced by a reduction of the mitochondrial permeability transition pore (mPTP) function as atractyloside which indicates the mPTP has similar effects on mitochondrial dynamics. These changes are also reduced by piracetam. These findings suggest the mPTP as an important target for the beneficial effects of piracetam on mitochondrial function. PMID:27747106

  6. The Aspergillus nidulans ATM Kinase Regulates Mitochondrial Function, Glucose Uptake and the Carbon Starvation Response

    PubMed Central

    Krohn, Nadia Graciele; Brown, Neil Andrew; Colabardini, Ana Cristina; Reis, Thaila; Savoldi, Marcela; Dinamarco, Taísa Magnani; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2013-01-01

    Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic

  7. The Aspergillus nidulans ATM kinase regulates mitochondrial function, glucose uptake and the carbon starvation response.

    PubMed

    Krohn, Nadia Graciele; Brown, Neil Andrew; Colabardini, Ana Cristina; Reis, Thaila; Savoldi, Marcela; Dinamarco, Taísa Magnani; Goldman, Maria Helena S; Goldman, Gustavo Henrique

    2014-01-10

    Mitochondria supply cellular energy and also perform a role in the adaptation to metabolic stress. In mammals, the ataxia-telangiectasia mutated (ATM) kinase acts as a redox sensor controlling mitochondrial function. Subsequently, transcriptomic and genetic studies were utilized to elucidate the role played by a fungal ATM homolog during carbon starvation. In Aspergillus nidulans, AtmA was shown to control mitochondrial function and glucose uptake. Carbon starvation responses that are regulated by target of rapamycin (TOR) were shown to be AtmA-dependent, including autophagy and hydrolytic enzyme secretion. AtmA also regulated a p53-like transcription factor, XprG, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Thus, AtmA possibly represents a direct or indirect link between mitochondrial stress, metabolism, and growth through the influence of TOR and XprG function. The coordination of cell growth and division with nutrient availability is crucial for all microorganisms to successfully proliferate in a heterogeneous environment. Mitochondria supply cellular energy but also perform a role in the adaptation to metabolic stress and the cross-talk between prosurvival and prodeath pathways. The present study of Aspergillus nidulans demonstrated that AtmA also controlled mitochondrial mass, function, and oxidative phosphorylation, which directly or indirectly influenced glucose uptake. Carbon starvation responses, including autophagy, shifting metabolism to the glyoxylate cycle, and the secretion of carbon scavenging enzymes were AtmA-dependent. Transcriptomic profiling of the carbon starvation response demonstrated how TOR signaling and the retrograde response, which signals mitochondrial dysfunction, were directly or indirectly influenced by AtmA. The AtmA kinase was also shown to influence a p53-like transcription factor, inhibiting starvation-induced XprG-dependent protease secretion and cell death. Therefore, in response to metabolic

  8. Stimulation of adenosine A2A receptors reduces intracellular cholesterol accumulation and rescues mitochondrial abnormalities in human neural cell models of Niemann-Pick C1.

    PubMed

    Ferrante, A; De Nuccio, C; Pepponi, R; Visentin, S; Martire, A; Bernardo, A; Minghetti, L; Popoli, P

    2016-04-01

    Niemann Pick C 1 (NPC1) disease is an incurable, devastating lysosomal-lipid storage disorder characterized by hepatosplenomegaly, progressive neurological impairment and early death. Current treatments are very limited and the research of new therapeutic targets is thus mandatory. We recently showed that the stimulation of adenosine A2A receptors (A2ARs) rescues the abnormal phenotype of fibroblasts from NPC1 patients suggesting that A2AR agonists could represent a therapeutic option for this disease. However, since all NPC1 patients develop severe neurological symptoms which can be ascribed to the complex pathology occurring in both neurons and oligodendrocytes, in the present paper we tested the effects of the A2AR agonist CGS21680 in human neuronal and oligodendroglial NPC1 cell lines (i.e. neuroblastoma SH-SY5Y and oligodendroglial MO3.13 transiently transfected with NPC1 small interfering RNA). The down-regulation of the NPC1 protein effectively resulted in intracellular cholesterol accumulation and altered mitochondrial membrane potential. Both effects were significantly attenuated by CGS21680 (500 nM). The protective effects of CGS were prevented by the selective A2AR antagonist ZM241385 (500 nM). The involvement of calcium modulation was demonstrated by the ability of Bapta-AM (5-7 μM) in reverting the effect of CGS. The A2A-dependent activity was prevented by the PKA-inhibitor KT5720, thus showing the involvement of the cAMP/PKA signaling. These findings provide a clear in vitro proof of concept that A2AR agonists are promising potential drugs for NPC disease.

  9. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    PubMed Central

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  10. Identification of new surfaces of cofilin that link mitochondrial function to the control of multi-drug resistance

    PubMed Central

    Kotiadis, Vassilios N.; Leadsham, Jane E.; Bastow, Emma L.; Gheeraert, Aline; Whybrew, Jennafer M.; Bard, Martin; Lappalainen, Pekka; Gourlay, Campbell W.

    2012-01-01

    ADF/cofilin family proteins are essential regulators of actin cytoskeletal dynamics. Recent evidence also implicates cofilin in the regulation of mitochondrial function. Here, we identify new functional surfaces of cofilin that are linked with mitochondrial function and stress responses in the budding yeast Saccharomyces cerevisiae. Our data link surfaces of cofilin that are involved in separable activities of actin filament disassembly or stabilisation, to the regulation of mitochondrial morphology and the activation status of Ras, respectively. Importantly, charge alterations to conserved surfaces of cofilin that do not interfere with its actin regulatory activity lead to a dramatic increase in respiratory function that triggers a retrograde signal to upregulate a battery of ABC transporters and concurrent metabolic changes that support multi-drug resistance. We hypothesise that cofilin functions within a bio-sensing system that connects the cytoskeleton and mitochondrial function to environmental challenge. PMID:22344251

  11. Identification of new surfaces of cofilin that link mitochondrial function to the control of multi-drug resistance.

    PubMed

    Kotiadis, Vassilios N; Leadsham, Jane E; Bastow, Emma L; Gheeraert, Aline; Whybrew, Jennafer M; Bard, Martin; Lappalainen, Pekka; Gourlay, Campbell W

    2012-05-01

    ADF/cofilin family proteins are essential regulators of actin cytoskeletal dynamics. Recent evidence also implicates cofilin in the regulation of mitochondrial function. Here, we identify new functional surfaces of cofilin that are linked with mitochondrial function and stress responses in the budding yeast Saccharomyces cerevisiae. Our data link surfaces of cofilin that are involved in separable activities of actin filament disassembly or stabilisation, to the regulation of mitochondrial morphology and the activation status of Ras, respectively. Importantly, charge alterations to conserved surfaces of cofilin that do not interfere with its actin regulatory activity lead to a dramatic increase in respiratory function that triggers a retrograde signal to upregulate a battery of ABC transporters and concurrent metabolic changes that support multi-drug resistance. We hypothesise that cofilin functions within a bio-sensing system that connects the cytoskeleton and mitochondrial function to environmental challenge.

  12. Impaired mitochondrial function is abrogated by dexrazoxane in doxorubicin-treated childhood acute lymphoblastic leukemia survivors

    PubMed Central

    Lipshultz, Steven E.; Anderson, Lynn M.; Miller, Tracie L.; Gerschenson, Mariana; Stevenson, Kristen E.; Neuberg, Donna S.; Franco, Vivian I.; LiButti, Daniel E.; Silverman, Lewis B.; Vrooman, Lynda M.; Sallan, Stephen E.

    2015-01-01

    BACKGROUND Impaired cardiac function in doxorubicin-treated childhood cancer survivors is partly mediated by disruption of mitochondrial energy production. Doxorubicin intercalates into mitochondrial DNA (mtDNA) disrupting genes encoding for polypeptides that make ATP. METHODS This cross-sectional study examined mtDNA copy numbers/cell and oxidative phosphorylation (OXPHOS) in peripheral blood mononuclear cells (PBMCs) in 64 childhood survivors of high-risk acute lymphoblastic leukemia (ALL) treated on Dana-Farber Cancer Institute Childhood ALL protocols who had received doxorubicin alone (42%) or with dexrazoxane (58%), a cardioprotectant. Mitochondrial DNA copies per cell and OXPHOS enzyme activities of nicotinamide adenine dinucleotide (NADH) dehydrogenase (Complex I, CI) and cytochrome c oxidase (Complex IV, CIV) were measured by quantitative real time-polymerase chain reaction (qRT-PCR) immunoassay and thin layer chromatography, respectively. RESULTS At a median follow-up of 7.8 years after treatment, the median number of mtDNA copies per cell for patients treated with doxorubicin alone was significantly higher than for those who also received dexrazoxane (medians, 1106.3 and 310.5; P=0.001). No significant differences were detected between groups for CI or CIV activities. CONCLUSIONS Doxorubicin-treated survivors had increased PBMC mtDNA copies/cell and concomitant use of dexrazoxane was associated with lower mtDNA copies/cell. Due to a possible compensatory increase in mtDNA copies/cell to maintain mitochondrial function in the setting of mitochondrial dysfunction, overall OXPHOS activity was not different between groups. The long-term sustainability of this compensatory response in these survivors at risk for cardiac dysfunction over their lifespan is concerning. PMID:26762648

  13. Medroxyprogesterone Acetate Antagonizes Estrogen Up-Regulation of Brain Mitochondrial Function

    PubMed Central

    Irwin, Ronald W.; Yao, Jia; Ahmed, Syeda S.; Hamilton, Ryan T.; Cadenas, Enrique

    2011-01-01

    The impact of clinical progestins used in contraception and hormone therapies on the metabolic capacity of the brain has long-term implications for neurological health in pre- and postmenopausal women. Previous analyses indicated that progesterone and 17β-estradiol (E2) sustain and enhance brain mitochondrial energy-transducing capacity. Herein we determined the impact of the clinical progestin, medroxyprogesterone acetate (MPA), on glycolysis, oxidative stress, and mitochondrial function in brain. Ovariectomized female rats were treated with MPA, E2, E2+MPA, or vehicle with ovary-intact rats serving as a positive control. MPA alone and MPA plus E2 resulted in diminished mitochondrial protein levels for pyruvate dehydrogenase, cytochrome oxidase, ATP synthase, manganese-superoxide dismutase, and peroxiredoxin V. MPA alone did not rescue the ovariectomy-induced decrease in mitochondrial bioenergetic function, whereas the coadministration of E2 and MPA exhibited moderate efficacy. However, the coadministration of MPA was detrimental to antioxidant defense, including manganese-superoxide dismutase activity/expression and peroxiredoxin V expression. Accumulated lipid peroxides were cleared by E2 treatment alone but not in combination with MPA. Furthermore, MPA abolished E2-induced enhancement of mitochondrial respiration in primary cultures of the hippocampal neurons and glia. Collectively these findings indicate that the effects of MPA differ significantly from the bioenergetic profile induced by progesterone and that, overall, MPA induced a decline in glycolytic and oxidative phosphorylation protein and activity. These preclinical findings on the basis of acute exposure to MPA raise concerns regarding neurological health after chronic use of MPA in contraceptive and hormone therapy. PMID:21159850

  14. Mitochondrial function in human skeletal muscle is not impaired by high intensity exercise.

    PubMed

    Tonkonogi, M; Walsh, B; Tiivel, T; Saks, V; Sahlin, K

    1999-03-01

    The hypothesis that high-intensity (HI) intermittent exercise impairs mitochondrial function was investigated with different microtechniques in human muscle samples. Ten male students performed three bouts of cycling at 130% of peak O2 consumption (V.O2,peak). Muscle biopsies were taken from the vastus lateralis muscle at rest, at fatigue and after 110 min recovery. Mitochondrial function was measured both in isolated mitochondria and in muscle fibre bundles made permeable with saponin (skinned fibres). In isolated mitochondria there was no change in maximal respiration, rate of adenosine 5'-triphosphate (ATP) production (measured with bioluminescence) and respiratory control index after exercise or after recovery. The ATP production per consumed oxygen (P/O ratio) also remained unchanged at fatigue but decreased by 4% (P<0.05) after recovery. In skinned fibres, maximal adenosine 5'-diphosphate (ADP)-stimulated respiration increased by 23% from rest to exhaustion (P<0.05) and remained elevated after recovery, whereas the respiratory rates in the absence of ADP and at 0.1 mM ADP (submaximal respiration) were unchanged. The ratio between respiration at 0.1 and 1 mM ADP (ADP sensitivity index) decreased at fatigue (P<0.05) but after the recovery period was not significantly different from that at rest. It is concluded that mitochondrial oxidative potential is maintained or improved during exhaustive HI exercise. The finding that the sensitivity of mitochondrial respiration to ADP is reversibly decreased after strenuous exercise may indicate that the control of mitochondrial respiration is altered.

  15. Characterization of mitochondrial bioenergetic functions between two forms of Leishmania donovani - a comparative analysis.

    PubMed

    Mondal, Subhasish; Roy, Jay Jyoti; Bera, Tanmoy

    2014-10-01

    Leishmaniasis is a growing health problem in many parts of the world partly due to drug resistance of the parasite. This study reports on the fisibility of studying mitochondrial properties of two forms of wild-type L. donovani through the use of selective inhibitors. Amastigote forms of L. donovani exhibited a wide range of sensitivities to these inhibitors. Mitochondrial complex II inhibitor thenoyltrifluoroacetone and FoF1-ATP synthase inhibitors oligomycin and dicyclohexylcarbodiimide were refractory to growth inhibition of amastigote forms, whereas they strongly inhibited the growth of promastigote forms. This result indicated that complex II and FoF1-ATP synthase were not functional in amastigote forms suggesting the presence of attenuated oxidative phosphorylation in the mitochondria of amastigote forms. In contrast, mitochondrial complex I inhibitor rotenone and complex III inhibitor antimycin A inhibited cellular multiplication and substrate level phosphorylation in amastigote forms, suggesting the role of complex I and complex III for the survival of amastigote forms. Further we studied the mitochondrial activities of both forms by measuring oxygen consumption and ATP production. In amastigote form, substantial ATP formation by substrate level phosphorylation was observed in NADPH-fumarate, NADH-fumarate, NADPH-pyruvate and NADH-pyruvate redox couples. None of the redox couple generated ATP formation was inhibited by FoF1-ATP synthase inhibitor oligomycin. Therefore, we may conclude that there are significant differences between these two forms of L. donovani in respect of mitochondrial bioenergetics. Our results demonstrated bioenergetic disfunction of amastigote mitochondria. Therefore, these alterations of metabolic functions might be a potential chemotherapeutic target.

  16. Mutational analysis of Mdm1p function in nuclear and mitochondrial inheritance.

    PubMed

    Fisk, H A; Yaffe, M P

    1997-08-11

    Nuclear and mitochondrial transmission to daughter buds of Saccharomyces cerevisiae depends on Mdm1p, an intermediate filament-like protein localized to numerous punctate structures distributed throughout the yeast cell cytoplasm. These structures disappear and organelle inheritance is disrupted when mdm1 mutant cells are incubated at the restrictive temperature. To characterize further the function of Mdm1p, new mutant mdm1 alleles that confer temperature-sensitive growth and defects in organelle inheritance but produce stable Mdm1p structures were isolated. Microscopic analysis of the new mdm1 mutants revealed three phenotypic classes: Class I mutants showed defects in both mitochondrial and nuclear transmission; Class II alleles displayed defective mitochondrial inheritance but had no effect on nuclear movement; and Class III mutants showed aberrant nuclear inheritance but normal mitochondrial distribution. Class I and II mutants also exhibited altered mitochondrial morphology, possessing primarily small, round mitochondria instead of the extended tubular structures found in wild-type cells. Mutant mdm1 alleles affecting nuclear transmission were of two types: Class Ia and IIIa mutants were deficient for nuclear movement into daughter buds, while Class Ib and IIIb mutants displayed a complete transfer of all nuclear DNA into buds. The mutations defining all three allelic classes mapped to two distinct domains within the Mdm1p protein. Genetic crosses of yeast strains containing different mdm1 alleles revealed complex genetic interactions including intragenic suppression, synthetic phenotypes, and intragenic complementation. These results support a model of Mdm1p function in which a network comprised of multimeric assemblies of the protein mediates two distinct cellular processes.

  17. Temporal lobe abnormalities in semantic processing by criminal psychopaths as revealed by functional magnetic resonance imaging.

    PubMed

    Kiehl, Kent A; Smith, Andra M; Mendrek, Adrianna; Forster, Bruce B; Hare, Robert D; Liddle, Peter F

    2004-04-30

    We tested the hypothesis that psychopathy is associated with abnormalities in semantic processing of linguistic information. Functional magnetic resonance imaging (fMRI) was used to elucidate and characterize the neural architecture underlying lexico-semantic processes in criminal psychopathic individuals and in a group of matched control participants. Participants performed a lexical decision task in which blocks of linguistic stimuli alternated with a resting baseline condition. In each lexical decision block, the stimuli were either concrete words and pseudowords or abstract words and pseudowords. Consistent with our hypothesis, psychopathic individuals, relative to controls, showed poorer behavioral performance for processing abstract words. Analysis of the fMRI data for both groups indicated that processing of word stimuli, compared with the resting baseline condition, was associated with neural activation in bilateral fusiform gyrus, anterior cingulate, left middle temporal gyrus, right posterior superior temporal gyrus, and left and right inferior frontal gyrus. Analyses confirmed our prediction that psychopathic individuals would fail to show the appropriate neural differentiation between abstract and concrete stimuli in the right anterior temporal gyrus and surrounding cortex. The results are consistent with other studies of semantic processing in psychopathy and support the theory that psychopathy is associated with right hemisphere abnormalities for processing conceptually abstract material.

  18. Temporal lobe abnormalities in semantic processing by criminal psychopaths as revealed by functional magnetic resonance imaging.

    PubMed

    Kiehl, Kent A; Smith, Andra M; Mendrek, Adrianna; Forster, Bruce B; Hare, Robert D; Liddle, Peter F

    2004-01-15

    We tested the hypothesis that psychopathy is associated with abnormalities in semantic processing of linguistic information. Functional magnetic resonance imaging (fMRI) was used to elucidate and characterize the neural architecture underlying lexico-semantic processes in criminal psychopathic individuals and in a group of matched control participants. Participants performed a lexical decision task in which blocks of linguistic stimuli alternated with a resting baseline condition. In each lexical decision block, the stimuli were either concrete words and pseudowords or abstract words and pseudowords. Consistent with our hypothesis, psychopathic individuals, relative to controls, showed poorer behavioral performance for processing abstract words. Analysis of the fMRI data for both groups indicated that processing of word stimuli, compared with the resting baseline condition, was associated with neural activation in bilateral fusiform gyrus, anterior cingulate, left middle temporal gyrus, right posterior superior temporal gyrus, and left and right inferior frontal gyrus. Analyses confirmed our prediction that psychopathic individuals would fail to show the appropriate neural differentiation between abstract and concrete stimuli in the right anterior temporal gyrus and surrounding cortex. The results are consistent with other studies of semantic processing in psychopathy and support the theory that psychopathy is associated with right hemisphere abnormalities for processing conceptually abstract material.

  19. Interhemispheric functional disconnection because of abnormal corpus callosum integrity in bipolar disorder type II

    PubMed Central

    Kudo, Takashi; Matsuoka, Kiwamu; Yamamoto, Akihide; Takahashi, Masato; Nakagawara, Jyoji; Nagatsuka, Kazuyuki; Iida, Hidehiro; Kishimoto, Toshifumi

    2016-01-01

    Background A significantly lower fractional anisotropy (FA) value has been shown in anterior parts of the corpus callosum in patients with bipolar disorder. Aims We investigated the association between abnormal corpus callosum integrity and interhemispheric functional connectivity (IFC) in patients with bipolar disorder. Methods We examined the association between FA values in the corpus callosum (CC-FA) and the IFC between homotopic regions in the anterior cortical structures of bipolar disorder (n=16) and major depressive disorder (n=22) patients with depressed or euthymic states. Results We found a positive correlation between the CC-FA and IFC values between homotopic regions of the ventral prefrontal cortex and insula cortex, and significantly lower IFC between these regions in bipolar disorder patients. Conclusions The abnormal corpus callosum integrity in bipolar disorder patients is relevant to the IFC between homotopic regions, possibly disturbing the exchange of emotional information between the cerebral hemispheres resulting in emotional dysregulation. Declaration of interest None. Copyright and usage © The Royal College of Psychiatrists 2016. This is an open access article distributed under the terms of the Creative Commons Non-Commercial, No Derivatives (CC BY-NC-ND) license. PMID:27847590

  20. Mitochondrial dysfunction: a neglected component of skin diseases.

    PubMed

    Feichtinger, René G; Sperl, Wolfgang; Bauer, Johann W; Kofler, Barbara

    2014-09-01

    Aberrant mitochondrial structure and function influence tissue homeostasis and thereby contribute to multiple human disorders and ageing. Ten per cent of patients with primary mitochondrial disorders present skin manifestations that can be categorized into hair abnormalities, rashes, pigmentation abnormalities and acrocyanosis. Less attention has been paid to the fact that several disorders of the skin are linked to alterations of mitochondrial energy metabolism. This review article summarizes the contribution of mitochondrial pathology to both common and rare skin diseases. We explore the intriguing observation that a wide array of skin disorders presents with primary or secondary mitochondrial pathology and that a variety of molecular defects can cause dysfunctional mitochondria. Among them are mutations in mitochondrial- and nuclear DNA-encoded subunits and assembly factors of oxidative phosphorylation (OXPHOS) complexes; mutations in intermediate filament proteins involved in linking, moving and shaping of mitochondria; and disorders of mitochondrial DNA metabolism, fatty acid metabolism and heme synthesis. Thus, we assume that mitochondrial involvement is the rule rather than the exception in skin diseases. We conclude the article by discussing how improving mitochondrial function can be beneficial for aged skin and can be used as an adjunct therapy for certain skin disorders. Consideration of mitochondrial energy metabolism in the skin creates a new perspective for both dermatologists and experts in metabolic disease.

  1. Neurological Gait Abnormalities Moderate the Functional Brain Signature of the Posture First Hypothesis

    PubMed Central

    Verghese, Joe; Allali, Gilles; Izzetoglu, Meltem; Wang, Cuiling; Mahoney, Jeannette R.

    2015-01-01

    The posture first hypothesis suggests that under dual-task walking conditions older adults prioritize gait over cognitive task performance. Functional neural confirmation of this hypothesis, however, is lacking. Herein, we determined the functional neural correlates of the posture first hypothesis and hypothesized that the presence of neurological gait abnormalities (NGA) would moderate associations between brain activations, gait and cognitive performance. Using functional near-infrared spectroscopy we assessed changes in oxygenated hemoglobin levels in the pre-frontal cortex (PFC) during normal walk and walk while talk (WWT) conditions in a large cohort of non-demented older adults (n = 236; age = 75.5 ± 6.49 years; female = 51.7 %). NGA were defined as central (due to brain diseases) or peripheral (neuropathic gait) following a standardized neurological examination protocol. Double dissociations between brain activations and behavior emerged as a function of NGA. Higher oxygenation levels during WWT were related to better cognitive performance (estimate = 0.145; p < 0.001) but slower gait velocity (estimate = −6.336, p <0.05) among normals. In contrast, higher oxygenation levels during WWT among individuals with peripheral NGA were associated with worse cognitive performance (estimate = −0.355; p <0.001) but faster gait velocity (estimate = 14.855; p <0.05). Increased activation in the PFC during locomotion may have a compensatory function that is designed to support gait among individuals with peripheral NGA. PMID:26613725

  2. Positron Emission Tomography Reveals Abnormal Topological Organization in Functional Brain Network in Diabetic Patients

    PubMed Central

    Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang

    2016-01-01

    Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259

  3. Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula

    PubMed Central

    Avery, Jason; Drevets, Wayne C.; Moseman, Scott; Bodurka, Jerzy; Barcalow, Joel; Simmons, W. Kyle

    2014-01-01

    Background Somatic complaints and altered interoceptive awareness are common features in the clinical presentation of major depressive disorder (MDD). Recently, neurobiological evidence has accumulated demonstrating that the insula is one of the primary cortical structures underlying interoceptive awareness. Abnormal interoceptive representation within the insula may thus contribute to the pathophysiology and symptomatology of MDD. Methods We compared fMRI blood oxygenation level-dependent (BOLD) responses between twenty unmedicated adults with MDD and twenty healthy control participants during a task requiring attention to visceral interoceptive sensations and also assessed the relationship of this BOLD response to depression severity, as rated using the Hamilton Depression Rating Scale (HDRS). Additionally, we examined between-group differences in insula resting-state functional connectivity, and its relationship to HDRS ratings of depression severity. Results Relative to the healthy controls, unmedicated MDD subjects exhibited decreased activity bilaterally in the dorsal mid-insula cortex (dmIC) during interoception, as well as within a network of brain regions implicated previously in emotion and visceral control. Activity within the insula during the interoceptive attention task was negatively correlated with both depression severity and somatic symptom severity in depressed subjects. MDD also was associated with greater resting-state functional connectivity between the dmIC and limbic brain regions implicated previously in MDD, including the amygdala, subgenual prefrontal cortex, and orbitofrontal cortex. Moreover, functional connectivity between these regions and the dmIC was positively correlated with depression severity. Conclusions MDD and the somatic symptoms of depression are associated with abnormal interoceptive representation within the insula. PMID:24387823

  4. Prokaryotic Chaperonins as Experimental Models for Elucidating Structure-Function Abnormalities of Human Pathogenic Mutant Counterparts

    PubMed Central

    Conway de Macario, Everly; Robb, Frank T.; Macario, Alberto J. L.

    2017-01-01

    All archaea have a chaperonin of Group II (thermosome) in their cytoplasm and some have also a chaperonin of Group I (GroEL; Cpn60; Hsp60). Conversely, all bacteria have GroEL, some in various copies, but only a few have, in addition, a chaperonin (tentatively designated Group III chaperonin) very similar to that occurring in all archaea, i.e., the thermosome subunit, and in the cytosol of eukaryotic cells, named CCT. Thus, nature offers a range of prokaryotic organisms that are potentially useful as experimental models to study the human CCT and its abnormalities. This is important because many diseases, the chaperonopathies, have been identified in which abnormal chaperones, including mutant CCT, are determinant etiologic-pathogenic factors and, therefore, research is needed to elucidate their pathologic features at the molecular level. Such research should lead to the clarification of the molecular mechanisms underlying the pathologic lesions observed in the tissues and organs of patients with chaperonopathies. Information on these key issues is necessary to make progress in diagnosis and treatment. Some of the archaeal organisms as well as some of the bacterial models suitable for studying molecular aspects pertinent to human mutant chaperones are discussed here, focusing on CCT. Results obtained with the archaeon Pyrococcus furiosus model to investigate the impact of a pathogenic CCT5 mutation on molecular properties and chaperoning functions are reviewed. The pathogenic mutation examined weakens the ability of the chaperonin subunit to form stable hexadecamers and as a consequence, the chaperoning functions of the complex are impaired. The future prospect is to find means for stabilizing the hexadecamer, which should lead to a recovering of chaperone function and the improving of lesions and clinical condition. PMID:28119916

  5. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function

    PubMed Central

    Jiang, Li; Tam, Beatrice M.; Ying, Guoxing; Wu, Sen; Hauswirth, William W.; Frederick, Jeanne M.; Moritz, Orson L.; Baehr, Wolfgang

    2015-01-01

    In Caenorhabditis elegans, homodimeric [kinesin family (KIF) 17, osmotic avoidance abnormal-3 (OSM-3)] and heterotrimeric (KIF3) kinesin-2 motors are required to establish sensory cilia by intraflagellar transport (IFT) where KIF3 and KIF17 cooperate to build the axoneme core and KIF17 builds the distal segments. However, the function of KIF17 in vertebrates is unresolved. We expressed full-length and motorless KIF17 constructs in mouse rod photoreceptors using adeno-associated virus in Xenopus laevis rod photoreceptors using a transgene and in ciliated IMCD3 cells. We found that tagged KIF17 localized along the rod outer segment axoneme when expressed in mouse and X. laevis photoreceptors, whereas KIF3A was restricted to the proximal axoneme. Motorless KIF3A and KIF17 mutants caused photoreceptor degeneration, likely through dominant negative effects on IFT. KIF17 mutant lacking the motor domain translocated to nuclei after exposure of a C-terminal nuclear localization signal. Germ-line deletion of Kif17 in mouse did not affect photoreceptor function. A rod-specific Kif3/Kif17 double knockout mouse demonstrated that KIF17 and KIF3 do not act synergistically and did not prevent rhodopsin trafficking to rod outer segments. In summary, the nematode model of KIF3/KIF17 cooperation apparently does not apply to mouse photoreceptors in which the photosensory cilium is built exclusively by KIF3.—Jiang, L., Tam, B. M., Ying, G., Wu, S., Hauswirth, W. W., Frederick, J. M., Moritz, O. L., Baehr, W. Kinesin family 17 (osmotic avoidance abnormal-3) is dispensable for photoreceptor morphology and function. PMID:26229057

  6. Changes in mitochondrial function and mitochondria associated protein expression in response to 2-weeks of high intensity interval training

    PubMed Central

    Vincent, Grace; Lamon, Séverine; Gant, Nicholas; Vincent, Peter J.; MacDonald, Julia R.; Markworth, James F.; Edge, Johann A.; Hickey, Anthony J. R.

    2015-01-01

    Purpose: High-intensity short-duration interval training (HIT) stimulates functional and metabolic adaptation in skeletal muscle, but the influence of HIT on mitochondrial function remains poorly studied in humans. Mitochondrial metabolism as well as mitochondrial-associated protein expression were tested in untrained participants performing HIT over a 2-week period. Methods: Eight males performed a single-leg cycling protocol (12 × 1 min intervals at 120% peak power output, 90 s recovery, 4 days/week). Muscle biopsies (vastus lateralis) were taken pre- and post-HIT. Mitochondrial respiration in permeabilized fibers, citrate synthase (CS) activity and protein expression of peroxisome proliferator-activated receptor gamma coactivator (PGC-1α) and respiratory complex components were measured. Results: HIT training improved peak power and time to fatigue. Increases in absolute oxidative phosphorylation (OXPHOS) capacities and CS activity were observed, but not in the ratio of CCO to the electron transport system (CCO/ETS), the respiratory control ratios (RCR-1 and RCR-2) or mitochondrial-associated protein expression. Specific increases in OXPHOS flux were not apparent after normalization to CS, indicating that gross changes mainly resulted from increased mitochondrial mass. Conclusion: Over only 2 weeks HIT significantly increased mitochondrial function in skeletal muscle independently of detectable changes in mitochondrial-associated and mitogenic protein expression. PMID:25759671

  7. Screening SIRT1 Activators from Medicinal Plants as Bioactive Compounds against Oxidative Damage in Mitochondrial Function

    PubMed Central

    Wang, Yi; Liang, Xinying; Chen, Yaqi; Zhao, Xiaoping

    2016-01-01

    Sirtuin type 1 (SIRT1) belongs to the family of NAD+ dependent histone deacetylases and plays a critical role in cellular metabolism and response to oxidative stress. Traditional Chinese medicines (TCMs), as an important part of natural products, have been reported to exert protective effect against oxidative stress in mitochondria. In this study, we screened SIRT1 activators from TCMs and investigated their activities against mitochondrial damage. 19 activators were found in total by in vitro SIRT1 activity assay. Among those active compounds, four compounds, ginsenoside Rb2, ginsenoside F1, ginsenoside Rc, and schisandrin A, were further studied to validate the SIRT1-activation effects by liquid chromatography-mass spectrometry and confirm their activities against oxidative damage in H9c2 cardiomyocytes exposed to tert-butyl hydroperoxide (t-BHP). The results showed that those compounds enhanced the deacetylated activity of SIRT1, increased ATP content, and inhibited intracellular ROS formation as well as regulating the activity of Mn-SOD. These SIRT1 activators also showed moderate protective effects on mitochondrial function in t-BHP cells by recovering oxygen consumption and increasing mitochondrial DNA content. Our results suggested that those compounds from TCMs attenuated oxidative stress-induced mitochondrial damage in cardiomyocytes through activation of SIRT1. PMID:26981165

  8. The arginine metabolite agmatine protects mitochondrial function and confers resistance to cellular apoptosis.

    PubMed

    Arndt, Mary Ann; Battaglia, Valentina; Parisi, Eva; Lortie, Mark J; Isome, Masato; Baskerville, Christopher; Pizzo, Donald P; Ientile, Riccardo; Colombatto, Sebastiano; Toninello, Antonio; Satriano, Joseph

    2009-06-01

    Agmatine, an endogenous metabolite of arginine, selectively suppresses growth in cells with high proliferative kinetics, such as transformed cells, through depletion of intracellular polyamine levels. In the present study, we depleted intracellular polyamine content with agmatine to determine if attrition by cell death contributes to the growth-suppressive effects. We did not observe an increase in necrosis, DNA fragmentation, or chromatin condensation in Ha-Ras-transformed NIH-3T3 cells administered agmatine. In response to Ca(2+)-induced oxidative stress in kidney mitochondrial preparations, agmatine demonstrated attributes of a free radical scavenger by protecting against the oxidation of sulfhydryl groups and decreasing hydrogen peroxide content. The functional outcome was a protective effect against Ca(2+)-induced mitochondrial swelling and mitochondrial membrane potential collapse. We also observed decreased expression of proapoptotic Bcl-2 family members and of execution caspase-3, implying antiapoptotic potential. Indeed, we found that apoptosis induced by camptothecin or 5-fluorourocil was attenuated in cells administered agmatine. Agmatine may offer an alternative to the ornithine decarboxylase inhibitor difluoromethyl ornithine for depletion of intracellular polyamine content while avoiding the complications of increasing polyamine import and reducing the intracellular free radical scavenger capacity of polyamines. Depletion of intracellular polyamine content with agmatine suppressed cell growth, yet its antioxidant capacity afforded protection from mitochondrial insult and resistance to cellular apoptosis. These results could explain the beneficial outcomes observed with agmatine in models of injury and disease.

  9. Dual function MITO-Porter, a nano carrier integrating both efficient cytoplasmic delivery and mitochondrial macromolecule delivery.

    PubMed

    Yamada, Yuma; Furukawa, Ryo; Yasuzaki, Yukari; Harashima, Hideyoshi

    2011-08-01

    Mitochondrial dysfunction is associated with a variety of human diseases including inherited mitochondrial diseases, neurodegenerative disorders, diabetes mellitus, and cancer. Effective medical therapies for mitochondrial diseases will ultimately require an optimal drug delivery system, which will likely be achieved through innovations in the nanotechnology of intracellular trafficking. To achieve efficient mitochondrial drug delivery, two independent processes, i.e., "cytoplasmic delivery through the cell membrane" and "mitochondrial delivery through the mitochondrial membrane" are required. In previous studies, we developed an octaarginine (R8) modified nano carrier for efficient cytoplasmic delivery, showing that R8-modified liposomes were internalized into cells efficiently. On the other hand, we also constructed MITO-Porter for the mitochondrial delivery of macromolecules, a liposome-based carrier that delivers cargos to mitochondria via membrane fusion. Here, we report the development of a dual function MITO-Porter (DF-MITO-Porter), based on the concept of integrating both R8-modified liposomes and MITO-Porter. We show that the DF-MITO-Porter effectively delivers exogenous macro-biomolecules into the mitochondrial matrix, and provide a demonstration of its potential use in therapies aimed at mitochondrial DNA.

  10. Early Infantile Epileptic Encephalopathy in an STXBP1 Patient with Lactic Acidemia and Normal Mitochondrial Respiratory Chain Function

    PubMed Central

    Li, Dong; Bhoj, Elizabeth; McCormick, Elizabeth; Wang, Fengxiang; Snyder, James; Wang, Tiancheng; Zhao, Yan; Kim, Cecilia; Chiavacci, Rosetta; Tian, Lifeng; Falk, Marni J.; Hakonarson, Hakon

    2016-01-01

    A wide range of clinical findings have been associated with mutations in Syntaxin Binding Protein 1 (STXBP1), including multiple forms of epilepsy, nonsyndromic intellectual disability, and movement disorders. STXBP1 mutations have recently been associated with mitochondrial pathology, although it remains unclear if this phenotype is a part of the core feature for this gene disorder. We report a 7-year-old boy who presented for diagnostic evaluation of intractable epilepsy, episodic ataxia, resting tremor, and speech regression following a period of apparently normal early development. Mild lactic acidemia was detected on one occasion at the time of an intercurrent illness. Due to the concern for mitochondrial disease, ophthalmologic evaluation was performed that revealed bilateral midperiphery pigmentary mottling. Optical coherence tomography (OCT) testing demonstrated a bilaterally thickened ganglion cell layer in the perifovea. Skeletal muscle biopsy analysis showed no mitochondrial abnormalities or respiratory chain dysfunction. Exome sequencing identified a de novo c.1651C>T (p.R551C) mutation in STXBP1. Although mitochondrial dysfunction has been reported in some individuals, our proband had only mild lactic acidemia and no skeletal muscle tissue evidence of mitochondrial disease pathology. Thus, mitochondrial dysfunction is not an obligate feature of STXBP1 disease. PMID:27069701

  11. ABNORMAL STRIATAL RESTING-STATE FUNCTIONAL CONNECTIVITY IN ADOLESCENTS WITH OBSESSIVE-COMPULSIVE DISORDER

    PubMed Central

    Bernstein, Gail A.; Mueller, Bryon A.; Schreiner, Melinda Westlund; Campbell, Sarah M.; Regan, Emily K.; Nelson, Peter M.; Houri, Alaa K.; Lee, Susanne S.; Zagoloff, Alexandra D.; Lim, Kelvin O.; Yacoub, Essa S.; Cullen, Kathryn R.

    2015-01-01

    Neuroimaging research has implicated abnormalities in cortico-striatal-thalamic-cortical (CSTC) circuitry in pediatric obsessive-compulsive disorder (OCD). In this study, resting-state functional magnetic resonance imaging (R-fMRI) was used to investigate functional connectivity in the CSTC in adolescents with OCD. Imaging was obtained with the Human Connectome Project (HCP) scanner using newly developed pulse sequences which allow for higher spatial and temporal resolution. Fifteen adolescents with OCD and 13 age- and gender-matched healthy controls (ages 12-19) underwent R-fMRI on the 3T HCP scanner. Twenty-four minutes of resting-state scans (two consecutive 12-minute scans) were acquired. We investigated functional connectivity of the striatum using a seed-based, whole brain approach with anatomically-defined seeds placed in the bilateral caudate, putamen, and nucleus accumbens. Adolescents with OCD compared with controls exhibited significantly lower functional connectivity between the left putamen and a single cluster of right-sided cortical areas including the orbitofrontal cortex, inferior frontal gyrus, insula, and operculum. Preliminary findings suggest that impaired striatal connectivity in adolescents with OCD in part falls within the predicted CSTC network, and also involves impaired connections between a key CSTC network region (i.e., putamen) and key regions in the salience network (i.e., insula/operculum). The relevance of impaired putamen-insula/operculum connectivity in OCD is discussed. PMID:26674413

  12. Resting state functional MRI reveals abnormal network connectivity in Neurofibromatosis 1

    PubMed Central

    Tomson, S.N.; Schreiner, M.; Narayan, M.; Rosser, Tena; Enrique, Nicole; Silva, Alcino J.; Allen, G.I.; Bookheimer, S.Y.; Bearden, C.E.

    2015-01-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits and autism spectrum disorders. As a single gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity MRI (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain c