Sample records for abnormal mitotic figures

  1. Mitotic figure counts are significantly overestimated in resection specimens of invasive breast carcinomas.

    PubMed

    Lehr, Hans-Anton; Rochat, Candice; Schaper, Cornelia; Nobile, Antoine; Shanouda, Sherien; Vijgen, Sandrine; Gauthier, Arnaud; Obermann, Ellen; Leuba, Susana; Schmidt, Marcus; C, Curzio Ruegg; Delaloye, Jean-Francois; Simiantonaki, Nectaria; Schaefer, Stephan C

    2013-03-01

    Several authors have demonstrated an increased number of mitotic figures in breast cancer resection specimen when compared with biopsy material. This has been ascribed to a sampling artifact where biopsies are (i) either too small to allow formal mitotic figure counting or (ii) not necessarily taken form the proliferating tumor periphery. Herein, we propose a different explanation for this phenomenon. Biopsy and resection material of 52 invasive ductal carcinomas was studied. We counted mitotic figures in 10 representative high power fields and quantified MIB-1 immunohistochemistry by visual estimation, counting and image analysis. We found that mitotic figures were elevated by more than three-fold on average in resection specimen over biopsy material from the same tumors (20±6 vs 6±2 mitoses per 10 high power fields, P=0.008), and that this resulted in a relative diminution of post-metaphase figures (anaphase/telophase), which made up 7% of all mitotic figures in biopsies but only 3% in resection specimen (P<0.005). At the same time, the percentages of MIB-1 immunostained tumor cells among total tumor cells were comparable in biopsy and resection material, irrespective of the mode of MIB-1 quantification. Finally, we found no association between the size of the biopsy material and the relative increase of mitotic figures in resection specimen. We propose that the increase in mitotic figures in resection specimen and the significant shift towards metaphase figures is not due to a sampling artifact, but reflects ongoing cell cycle activity in the resected tumor tissue due to fixation delay. The dwindling energy supply will eventually arrest tumor cells in metaphase, where they are readily identified by the diagnostic pathologist. Taken together, we suggest that the rapidly fixed biopsy material better represents true tumor biology and should be privileged as predictive marker of putative response to cytotoxic chemotherapy.

  2. Evaluation of efficacy of 1% Crystal Violet & Nuclear Fast Red stain compared to Haematoxyline & Eosin stain for assessing mitotic figures in oral premalignant and malignant lesions.

    PubMed

    Motiwale, Gauri; Jaiswal, Shradha; Vikey, Ashok; Motiwale, Tejas; Bagulkar, Bhupesh; Bhat, Atul; Kapoor, Prakhar

    2016-07-01

    Various chromosomal arrangements in cells undergoing division are referred to as Mitotic figure (MF). The abnormal excess of mitotic figures is commonly seen in oral epithelial dysplasia (ED) and oral squamous cell carcinoma (OSCC). In present study, we compared the number of mitotic figures in normal oral mucosa, epithelial dysplasia & OSCC sections with haematoxyline & eosine (H&E) and 1%Crystal Violet & Nuclear Fast Red (CV&NFR) stain, also the efficacy of the CV&NFR stain as compared to H & E stain. We investigated the correlation between the number of mitotic figures & grades of OSCC. Study sample comprised of two serial sections of archival blocks of normal oral mucosa & diagnosed cases of epithelial dysplasia & OSCC. One slide stained with H& E & the other one with 1% CV & NFR. Mitotic figures were counted with the grid eyepiece. There was significant increase in number of MFs in oral ED and OSCC in comparison with normal oral mucosa. There was a highly significant increase in number of MFs in CV&NFR stained tissue sections when compared with H & E stain. Metaphase is the most commonly observed phase of mitosis. In summary, our study proposes the use of Crystal violet & Nuclear fast red stain as a selective stain for better contrast & easy identification MFs. © 2016 Old City Publishing, Inc.

  3. Immunodetection of phosphohistone H3 as a surrogate of mitotic figure count and clinical outcome in cutaneous melanoma.

    PubMed

    Tetzlaff, Michael T; Curry, Jonathan L; Ivan, Doina; Wang, Wei-Lien; Torres-Cabala, Carlos A; Bassett, Roland L; Valencia, Karla M; McLemore, Michael S; Ross, Merrick I; Prieto, Victor G

    2013-09-01

    In the American Joint Committee on Cancer (AJCC)-TNM (2009) staging system, the key prognostic factor in cutaneous melanoma is the depth of dermal invasion (Breslow thickness) with further refinement according to the presence of epidermal ulceration or dermal mitoses. Immunodetection of phosphohistone H3 has been shown to facilitate the identification of mitotic figures in various neoplasms. We selected 120 cases of primary cutaneous melanoma with completely annotated histopathologic parameters and clinical outcomes and performed double immunohistochemical staining for MLANA (Mart-1/Melan-A) and phosphohistone H3. One hundred and thirteen cases were amenable to antiphosphohistone H3 staining from 66 men and 47 women, with mean age of 64 years (9-93), including 61 superficial spreading type, 24 nodular, 6 lentigo maligna, 8 acral lentiginous, and 14 unclassified. The mean Breslow thickness was 2.53 mm (0.20-25), ulceration was present in 25/113 (22%) and the mean mitotic count was 3.2/mm(2) (<1-29/mm(2)). In 27/113 (24%) of the cases, antiphosphohistone H3 failed to highlight mitotic figures anywhere in the tissue (normal or tumor cell), whereas in 86/113 (76%) antiphosphohistone H3 detected at least one mitotic figure. Among the latter, antiphosphohistone H3 did not detect mitotic figures in dermal tumor cells in 37/86 cases (43%), whereas anti-PHH3 identified at least one melanocytic mitotic figure in the other 49/86 cases (57%; range: 1-66/mm(2)). The relationship between phosphohistone H3 and manual mitotic count was statistically significant (Pearson correlation=0.59, P<0.0001). Logistic regression analyses demonstrated an association between the development of subsequent metastatic disease and the following variables: mitotic figures (odds ratio (OR)=5.7; P=0.0001); phosphohistone H3-positive mitotic figures (OR=3.0; P=0.008); Breslow thickness (OR=4.0 per mm; P=0.0002); ulceration (OR=3.94; P=0.008). The application of phosphohistone H3

  4. Comparison of staining of mitotic figures by haematoxylin and eosin-and crystal violet stains, in oral epithelial dysplasia and squamous cell carcinoma.

    PubMed

    Ankle, Madhuri R; Kale, Alka D; Charantimath, Seema

    2007-01-01

    Mitosis of cells gives rise to tissue integrity. Defects during mitosis bring about abnormalities. Excessive proliferation of cells due to increased mitosis is one such outcome, which is the hallmark in precancer and cancer. The localization of proliferating cells or their precursors may not be obvious and easy. Establishing an easy way to distinguish these mitotic cells will help in grading and understanding their biological potential. Although immunohistochemistry is an advanced method in use, the cost and time factor makes it less feasible for many laboratories. Selective histochemical stains like toluidine blue, giemsa and crystal violet have been used in tissues including the developing brain, neural tissue and skin. 1) To compare the staining of mitotic cells in haematoxylin and eosin with that in crystal violet. 2) To compare the number of mitotic figures present in normal oral mucosa, epithelial dysplasia and oral squamous cell carcinoma in crystal violet-stained sections with that in H and E-stained sections. Ten tissues of normal oral mucosa and 15 tissues each of oral epithelial dysplasia seen in tobacco-associated leukoplakia and squamous cell carcinoma were studied to evaluate the selectivity of 1% crystal violet for mitotic figures. The staining was compared with standard H and E staining. Statistical analysis was done using Mann-Whitney U test. A statistically significant increase in the mean mitotic count was observed in crystal violet-stained sections of epithelial dysplasia as compared to the H and E-stained sections (p=0.0327). A similar increase in the mitotic counts was noted in crystal violet-stained sections of oral squamous cell carcinoma as compared to the H and E-stained sections.(p=0.0443). No significant difference was found in the mitotic counts determined in dysplasia or carcinoma by either the crystal violet (p=0.4429) or the H and E-staining techniques (p=0.2717). One per cent crystal violet provides a definite advantage over the H

  5. Image analysis assisted study of mitotic figures in oral epithelial dysplasia and squamous cell carcinoma using differential stains.

    PubMed

    Tandon, Ankita; Singh, Narendra Nath; Brave, V R; Sreedhar, Gadiputi

    2016-11-01

    Mitosis is a process of cell division resulting in two genetically equivalent daughter cells. Excessive proliferation of cells due to mitosis is the hallmark in pre cancer and cancer. This study was conducted to count the number of mitotic figures in normal oral mucosa, oral epithelial dysplasia and squamous cell carcinoma in both Hematoxylin and Eosin (H&E) and Crystal Violet stained sections. Also the overall number of mitotic figures with both stains were compared along with the evaluation of staining efficacy of both the stains. The present study was conducted on 20 specimens each of the three categories. These were further divided into two groups for staining with H&E and with 1% Crystal Violet respectively. Images were captured and analyzed using image analysis software Dewinter Biowizard 4.1. Comparison of mitotic figure count in three categories in sections stained with both stains showed statistically significant difference ( p  < 0.001). The mean number of mitotic figures seen in Crystal Violet reagent were significantly higher as seen in H&E stain ( p  < 0.001). The overall diagnostic efficacy of Crystal Violet was 87.6%. Crystal Violet scored over H&E stain and also helped to better appreciate metaphases in Squamous cell carcinoma and telophases in dysplasia. Number of mitotic figures progressively increase with the advancement of the pathology. Use of 1% Crystal Violet provides better appreciation of mitotic figures and can be employed as a selective stain in routine histopathology.

  6. Determining local and contextual features describing appearance of difficult to identify mitotic figures

    NASA Astrophysics Data System (ADS)

    Gandomkar, Ziba; Brennan, Patrick C.; Mello-Thoms, Claudia

    2017-03-01

    Mitotic count is helpful in determining the aggressiveness of breast cancer. In previous studies, it was shown that the agreement among pathologists for grading mitotic index is fairly modest, as mitoses have a large variety of appearances and they could be mistaken for other similar objects. In this study, we determined local and contextual features that differ significantly between easily identifiable mitoses and challenging ones. The images were obtained from the Mitosis-Atypia 2014 challenge. In total, the dataset contained 453 mitotic figures. Two pathologists annotated each mitotic figure. In case of disagreement, an opinion from a third pathologist was requested. The mitoses were grouped into three categories, those recognized as "a true mitosis" by both pathologists ,those labelled as "a true mitosis" by only one of the first two readers and also the third pathologist, and those annotated as "probably a mitosis" by all readers or the majority of them. After color unmixing, the mitoses were segmented from H channel. Shape-based features along with intensity-based and textural features were extracted from H-channel, blue ratio channel and five different color spaces. Holistic features describing each image were also considered. The Kruskal-Wallis H test was used to identify significantly different features. Multiple comparisons were done using the rank-based version of Tukey-Kramer test. The results indicated that there are local and global features which differ significantly among different groups. In addition, variations between mitoses in different groups were captured in the features from HSL and LCH color space more than other ones.

  7. Sensitivity and usefulness of anti-phosphohistone-H3 antibody immunostaining for counting mitotic figures in meningioma cases.

    PubMed

    Fukushima, Shintaro; Terasaki, Mizuhiko; Sakata, Kiyohiko; Miyagi, Naohisa; Kato, Seiya; Sugita, Yasuo; Shigemori, Minoru

    2009-01-01

    According to current World Health Organization (WHO) criteria, counting mitotic figures (MF), which is equal to the mitotic index (MI), on paraffin sections stained with hematoxylin and eosin (HE) is one of the recognized classification methods for meningiomas. However, it is not always easy to find the area of highest mitotic activity, and there are different perspectives among pathologists with regard to differentiating MF from non-MF, i.e., which are apoptotic figures and which are crushed or distorted cells. Moreover, there is an issue of overgrading in meningiomas with preoperative feeder embolization. Recently, anti-phosphohistone-H3 (PHH3) antibody has been reported as a mitosis-specific marker for meningioma grading. In this study, we attempted PHH3 immunostaining for our meningioma cases and verified not only the sensitivity of PHH3 immunostaining but also that of its usefulness in grading meningiomas. Forty-five initial histologically confirmed meningiomas (37 benign, 7 atypical, and 1 anaplastic) were reviewed according to current WHO criteria based on counting MF on HE-stained slides. PHH3-immunostained MF were counted in the same way, and the MIB-1 labeling index (LI) was calculated for each sample. PHH3-labeled MF were easily identified and permitted rapid recognition of the areas of highest mitotic activity. As a result, significant increase of PHH3 mitotic index (PHH3-MI) in comparison with HE mitotic index (HE-MI) and strong correlations with HE-MI to PHH3-MI as well as PHH3-MI to MIB-1 LI were demonstrated. Furthermore, no significant differences of PHH3-MI between cases with and without feeder embolization were demonstrated. As such, PHH3 may be a sensitive and useful marker for meningioma grading as based on the MF.

  8. Arsenite inhibits mitotic division and perturbs spindle dynamics in HeLa S3 cells.

    PubMed

    Huang, S C; Lee, T C

    1998-05-01

    Arsenical compounds, known to be human carcinogens, were shown to disturb cell cycle progression and induce cytogenetic alterations in a variety of cell systems. We report here that a 24 h treatment of arsenite induced mitotic accumulation in human cell lines. HeLa S3 and KB cells were most susceptible: 35% of the total cell population was arrested at the mitotic stage after treatment with 5 microM sodium arsenite in HeLa S3 cells and after 10 microM in KB cells. Under a microscope, we observed abnormal mitotic figures in arsenite-arrested mitotic cells, including deranged chromosome congression, elongated polar distance of mitotic spindle, and enhanced microtubule immunofluorescence. The spindle microtubules of arsenite-arrested mitotic cells were more resistant to nocodazole-induced dissolution than those of control mitotic cells. According to turbidity assay, arsenite at concentrations below 100 microM significantly enhanced polymerization of tubulins. Since spindle dynamics play a crucial role in mitotic progression, our results suggest that arsenite-induced mitotic arrest may be due to arsenite's effects on attenuation of spindle dynamics.

  9. Detection of mitotic figures and G2+ tumor nuclei with histone markers correlates with worse overall survival in patients with Merkel cell carcinoma.

    PubMed

    Henderson, Samuel A; Tetzlaff, Michael T; Pattanaprichakul, Penvadee; Fox, Patricia; Torres-Cabala, Carlos A; Bassett, Roland L; Prieto, Victor G; Richards, Hunter W; Curry, Jonathan L

    2014-11-01

    High mitotic figure count (MFC) correlates with low survival rate in Merkel cell carcinoma (MCC). However, the prognostic impact of histone biomarkers as surrogates of MFC in MCC is unknown. We evaluated the prognostic significance of the immunodetection of mitotic figures and of G2+ tumor nuclei with histone-associated mitotic markers H3K79me3T80ph (H3KT) and phosphohistone H3 (PHH3) in MCC. Immunohistochemical analyses of H3KT and PHH3 and proliferative marker Ki-67 were performed in a series of 21 cases of MCC. The significance of the pathologic data and immunoreactivity with these markers was evaluated with Pearson correlation and paired Student t-test. Univariate Cox proportional hazards regression models were performed to assess the relationships between these markers and survival. H3KT detected a higher number of mitotic figure (p<0.0001) and G2+ tumor nuclei (p<0.0052) than did PHH3. Furthermore, the MFC combined with G2+ tumor nuclei detected with H3KT compared to PHH3 and manual MFC was a significant predictor of impaired survival in patients with MCC (p=0.035; HR=1.0172), corresponding to a 1.72% increased risk of death for each unit increase in H3KT. Biomarker analysis of proliferative rates with histone markers may have relevance in stratifying risk in patients with MCC. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Prognostic value of mitotic counts in breast cancer of Saudi Arabian patients.

    PubMed

    Buhmeida, Abdelbaset; Al-Maghrabi, Jaudah; Merdad, Adnan; Al-Thubaity, Fatima; Chaudhary, Adeel; Gari, Mamdooh; Abuzenadah, Adel; Collan, Yrjö; Syrjänen, Kari; Al-Qahtani, Mohammed

    2011-01-01

    Quantitative methods in combination with other objective prognostic criteria can improve the evaluation of a cancer patient's prognosis, and possibly predict response to therapy. One of the important prognostic and predictive markers is the mitotic count, which has proven valuable in many aspects. In this study, the prognostic value of the mitotic count was assessed in breast cancer (BC) patients in Saudi Arabia. The study comprised a series of 87 patients diagnosed and treated for breast cancer at the Departments of Surgery and Oncology, King Abdul-Aziz University Hospital, between 2000 and 2008. Mitotic counts were carried out using a standard laboratory microscope (objective, × 40; field diameter, 420 μm). The number of mitotic figures in 10 consecutive high-power fields (hpf) from the most cellular area of the sample gave the mitotic activity index (MAI, mitotic figures/10 hpf). The standardized mitotic index (SMI) recorded the mitotic count as the number of mitotic figures by area of the neoplastic tissue in the microscopic field, thus the number of mitoses in 10 consecutive fields was corrected for the volume fraction and field size (mitotic figures/mm²). The means of MAI and SMI of the tumors in the entire series of 87 patients were 15 mitotic figures/10 hpf (range 4-45) and 4 mitotic figures/mm² (range 1-9), respectively. The mitotic counts were higher in advanced stages than in early cancer (p < 0.04). The mitotic counts were significantly larger in patients with high-grade tumor (p < 0.004) and in cases with tumor metastasis (p < 0.004). The mitotic counts were also significantly larger in the recurrent cases than in non-recurrent ones (p < 0.02). The quantitatively measurable mitotic counts of cancer cell nuclei are of significant prognostic value in invasive ductal carcinoma of the breast in Saudi Arabia and the mean cut-off values of MAI and SMI can be applied as objective (quantitative) criteria to distinguish breast cancer patients into groups

  11. Impaired mitotic progression and preimplantation lethality in mice lacking OMCG1, a new evolutionarily conserved nuclear protein.

    PubMed

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-07-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1-/- embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo.

  12. Curcumin-induced mitotic arrest is characterized by spindle abnormalities, defects in chromosomal congression and DNA damage

    PubMed Central

    Manson, Margaret M.

    2013-01-01

    The chemopreventive agent curcumin has anti-proliferative effects in many tumour types, but characterization of cell cycle arrest, particularly with physiologically relevant concentrations, is still incomplete. Following oral ingestion, the highest concentrations of curcumin are achievable in the gut. Although it has been established that curcumin induces arrest at the G2/M stage of the cell cycle in colorectal cancer lines, it is not clear whether arrest occurs at the G2/M transition or in mitosis. To elucidate the precise stage of arrest, we performed a direct comparison of the levels of curcumin-induced G2/M boundary and mitotic arrest in eight colorectal cancer lines (Caco-2, DLD-1, HCA-7, HCT116p53+/+, HCT116p53–/–, HCT116p21–/–, HT-29 and SW480). Flow cytometry confirmed that these lines underwent G2/M arrest following treatment for 12h with clinically relevant concentrations of curcumin (5–10 μM). In all eight lines, the majority of this arrest occurred at the G2/M transition, with a proportion of cells arresting in mitosis. Examination of the mitotic index using fluorescence microscopy showed that the HCT116 and Caco-2 lines exhibited the highest levels of curcumin-induced mitotic arrest. Image analysis revealed impaired mitotic progression in all lines, exemplified by mitotic spindle abnormalities and defects in chromosomal congression. Pre-treatment with inhibitors of the DNA damage signalling pathway abrogated curcumin-induced mitotic arrest, but had little effect at the G2/M boundary. Moreover, pH2A.X staining seen in mitotic, but not interphase, cells suggests that this aberrant mitosis results in DNA damage. PMID:23125222

  13. Impaired Mitotic Progression and Preimplantation Lethality in Mice Lacking OMCG1, a New Evolutionarily Conserved Nuclear Protein†

    PubMed Central

    Artus, Jérôme; Vandormael-Pournin, Sandrine; Frödin, Morten; Nacerddine, Karim; Babinet, Charles; Cohen-Tannoudji, Michel

    2005-01-01

    While highly conserved through evolution, the cell cycle has been extensively modified to adapt to new developmental programs. Recently, analyses of mouse mutants revealed that several important cell cycle regulators are either dispensable for development or have a tissue- or cell-type-specific function, indicating that many aspects of cell cycle regulation during mammalian embryo development remain to be elucidated. Here, we report on the characterization of a new gene, Omcg1, which codes for a nuclear zinc finger protein. Embryos lacking Omcg1 die by the end of preimplantation development. In vitro cultured Omcg1-null blastocysts exhibit a dramatic reduction in the total cell number, a high mitotic index, and the presence of abnormal mitotic figures. Importantly, we found that Omcg1 disruption results in the lengthening of M phase rather than in a mitotic block. We show that the mitotic delay in Omcg1−/− embryos is associated with neither a dysfunction of the spindle checkpoint nor abnormal global histone modifications. Taken together, these results suggest that Omcg1 is an important regulator of the cell cycle in the preimplantation embryo. PMID:15988037

  14. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development

    PubMed Central

    McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.

    2015-01-01

    Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight

  15. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system.

    PubMed Central

    Inoué, S; Fuseler, J; Salmon, E D; Ellis, G W

    1975-01-01

    Equilibrium between mitotic microtubules and tubulin is analyzed, using birefringence of mitotic spindle to measure microtubule concentration in vivo. A newly designed temperature-controlled slide and miniature, thermostated hydrostatic pressure chamber permit rapid alteration of temperature and of pressure. Stress birefringence of the windows is minimized, and a system for rapid recording of compensation is incorporated, so that birefringence can be measured to 0.1 nm retardation every few seconds. Both temperature and pressure data yield thermodynamic values (delta H similar to 35 kcal/mol, delta S similar to 120 entropy units [eu], delta V similar to 400 ml/mol of subunit polymerized) consistent with the explanation that polymerization of tubulin is entropy driven and mediated by hydrophobic interactions. Kinetic data suggest pseudo-zero-order polymerization and depolymerization following rapid temperature shifts, and a pseudo-first-order depolymerization during anaphase at constant temperature. The equilibrium properties of the in vivo mitotic microtubules are compared with properties of isolated brain tubules. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 19 PMID:1139037

  16. Crystal violet stain as a selective stain for the assessment of mitotic figures in oral epithelial dysplasia and oral squamous cell carcinoma.

    PubMed

    Jadhav, Kiran B; Ahmed Mujib, B R; Gupta, Nidhi

    2012-01-01

    Assessment of mitotic figures (MFs) is routinely practiced as prognostic indicator in oral epithelial dysplasia (OED) and oral squamous cell carcinoma (OSCC), but identification of MFs poses a problem in terms of staining characteristics. To evaluate effectiveness of crystal violet stain for staining of MFs and its comparison with hematoxylin and eosin (H and E) stain. Study sample includes archival tissues embedded in paraffin blocks diagnosed as OED (n = 30) and OSCC (n = 30). The control group comprised of tissue specimen from oral mucosa of healthy volunteers (n = 30). Two serial sections of each tissue specimen were stained separately with H and E stain and 1% crystal violet stain. The stained sections were observed under microscope for identification and counting of MFs. Data obtained was statistically analyzed by using the Man-Whitney U test. A significant increase in number of MFs was observed in OED and OSCC in comparison with normal oral mucosa. There was a highly significant increase in number of MFs in crystal violet stained tissue sections when compared with H and E stain. Metaphase is the most commonly observed phase of mitosis in crystal violet stain when compared with H and E stain for all three groups. Crystal violet stain can be considered as selective stain for mitotic figures.

  17. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, B. Frazier; McNeely, Samuel C.; Miller, Heather L.

    2008-07-15

    Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of {alpha}-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of {alpha}-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. {gamma}-tubulin staining showed that cellsmore » treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.« less

  18. Comparison and evaluation of mitotic figures in oral epithelial dysplasia using crystal violet and Feulgen stain.

    PubMed

    Rao, Roopa S; Patil, Shankargouda; Agarwal, Anveeta

    2014-05-01

    Routine staining procedures often pose a problem in differentiating a mitotic cell from an apoptotic cell, deteriorating the reliability of histology grading. Although various new methods have been recommended for identifying mitotic figures (MFs) in tissues, the time factor and cost makes them less feasible. Thus, an attempt was made to evaluate the efficacy of crystal violet and Feulgen reaction in identifying MFs and also to see for any variation in the number of MFs in various grades of Epithelial dysplasia. 1. Using crystal violet and Feulgen stain in the identification and counting of MFs on diagnosed cases of epithelial dysplasia and thereby to evaluate their efficacy. 2. To evaluate the variation in the number of MFs in various grades of epithelial dysplasia. The study sample includes retrieval of 30 formalin fixed paraffin embedded tissue sections diagnosed for different grades of epithelial dysplasia (WHO grading system, 2005) from the archives, Department of Oral Pathology, MSRDC, Bengaluru. Ten tissue sections each of mild, moderate and severe epithelial dysplasia were stained with H&E, Feulgen and 1% crystal violet stains and the number of MFs were counted. Five cases of cervical carcinoma were taken as control. Stained sections were compared, and data obtained was statistically analyzed using the Kruskal-Wallis test. A significant increase in the number of MFs (p = 0.02) was observed in Feulgen stained sections as compared to H&E stain. Feulgen stain can be considered as a simple, reliable, cost-effective and reproducible method of staining MFs.

  19. Preserved local but disrupted contextual figure-ground influences in an individual with abnormal function of intermediate visual areas

    PubMed Central

    Brooks, Joseph L.; Gilaie-Dotan, Sharon; Rees, Geraint; Bentin, Shlomo; Driver, Jon

    2012-01-01

    Visual perception depends not only on local stimulus features but also on their relationship to the surrounding stimulus context, as evident in both local and contextual influences on figure-ground segmentation. Intermediate visual areas may play a role in such contextual influences, as we tested here by examining LG, a rare case of developmental visual agnosia. LG has no evident abnormality of brain structure and functional neuroimaging showed relatively normal V1 function, but his intermediate visual areas (V2/V3) function abnormally. We found that contextual influences on figure-ground organization were selectively disrupted in LG, while local sources of figure-ground influences were preserved. Effects of object knowledge and familiarity on figure-ground organization were also significantly diminished. Our results suggest that the mechanisms mediating contextual and familiarity influences on figure-ground organization are dissociable from those mediating local influences on figure-ground assignment. The disruption of contextual processing in intermediate visual areas may play a role in the substantial object recognition difficulties experienced by LG. PMID:22947116

  20. Role of senescence and mitotic catastrophe in cancer therapy

    PubMed Central

    2010-01-01

    Senescence and mitotic catastrophe (MC) are two distinct crucial non-apoptotic mechanisms, often triggered in cancer cells and tissues in response to anti-cancer drugs. Chemotherapeuticals and myriad other factors induce cell eradication via these routes. While senescence drives the cells to a state of quiescence, MC drives the cells towards death during the course of mitosis. The senescent phenotype distinguishes tumor cells that survived drug exposure but lost the ability to form colonies from those that recover and proliferate after treatment. Although senescent cells do not proliferate, they are metabolically active and may secrete proteins with potential tumor-promoting activities. The other anti-proliferative response of tumor cells is MC that is a form of cell death that results from abnormal mitosis and leads to the formation of interphase cells with multiple micronuclei. Different classes of cytotoxic agents induce MC, but the pathways of abnormal mitosis differ depending on the nature of the inducer and the status of cell-cycle checkpoints. In this review, we compare the two pathways and mention that they are activated to curb the growth of tumors. Altogether, we have highlighted the possibilities of the use of senescence targeting drugs, mitotic kinases and anti-mitotic agents in fabricating novel strategies in cancer control. PMID:20205872

  1. Multi-scale computational study of the mechanical regulation of cell mitotic rounding in epithelia

    PubMed Central

    Xu, Zhiliang; Zartman, Jeremiah J.; Alber, Mark

    2017-01-01

    Mitotic rounding during cell division is critical for preventing daughter cells from inheriting an abnormal number of chromosomes, a condition that occurs frequently in cancer cells. Cells must significantly expand their apical area and transition from a polygonal to circular apical shape to achieve robust mitotic rounding in epithelial tissues, which is where most cancers initiate. However, how cells mechanically regulate robust mitotic rounding within packed tissues is unknown. Here, we analyze mitotic rounding using a newly developed multi-scale subcellular element computational model that is calibrated using experimental data. Novel biologically relevant features of the model include separate representations of the sub-cellular components including the apical membrane and cytoplasm of the cell at the tissue scale level as well as detailed description of cell properties during mitotic rounding. Regression analysis of predictive model simulation results reveals the relative contributions of osmotic pressure, cell-cell adhesion and cortical stiffness to mitotic rounding. Mitotic area expansion is largely driven by regulation of cytoplasmic pressure. Surprisingly, mitotic shape roundness within physiological ranges is most sensitive to variation in cell-cell adhesivity and stiffness. An understanding of how perturbed mechanical properties impact mitotic rounding has important potential implications on, amongst others, how tumors progressively become more genetically unstable due to increased chromosomal aneuploidy and more aggressive. PMID:28531187

  2. Implications of mitotic and meiotic irregularities in common beans (Phaseolus vulgaris L.).

    PubMed

    Lima, D C; Braz, G T; Dos Reis, G B; Techio, V H; Davide, L C; de F B Abreu, A

    2016-05-23

    The common bean has great social and economic importance in Brazil and is the subject of a high number of publications, especially in the fields of genetics and breeding. Breeding programs aim to increase grain yield; however, mitosis and meiosis represent under explored research areas that have a direct impact on grain yield. Therefore, the study of cell division could be another tool available to bean geneticists and breeders. The aim of this study was to investigate irregularities occurring during the cell cycle and meiosis in common bean. The common bean cultivar used was BRSMG Talismã, which owing to its high yield and grain quality is recommended for cultivation in Brazil. We classified the interphase nuclei, estimated the mitotic and meiotic index, grain pollen viability, and percentage of abnormalities in both processes. The mitotic index was 4.1%, the interphase nucleus was non-reticulated, and 19% of dividing somatic cells showed abnormal behavior. Meiosis also presented irregularities resulting in a meiotic index of 44.6%. Viability of pollen grains was 94.3%. These results indicate that the common bean cultivar BRSMG Talismã possesses repair mechanisms that compensate for changes by producing a large number of pollen grains. Another important strategy adopted by bean plants to ensure stability is the elimination of abnormal cells by apoptosis. As the common bean cultivar BRSMG Talismã is recommended for cultivation because of its good agronomic performance, it can be concluded that mitotic and meiotic irregularities have no negative influence on its grain quality and yield.

  3. AN INDIRECT METHOD TO ASSAY FOR MITOTIC CENTERS IN SAND DOLLAR (DENDRASTER EXCENTRICUS) EGGS

    PubMed Central

    Went, Hans A.

    1966-01-01

    It is possible consistently to induce sea urchin and sand dollar eggs to cleave directly from one cell into four cells. This is done by exposing the fertilized eggs to benzimidazole for 20 to 30 min beginning about early metaphase. The mitotic apparatus regresses, the cells do not cleave, and shortly after they are returned to normal sea water an early-prophase-appearing nucleus is present in each cell. Each cell then organizes a tetrapolar tetrahedral mitotic apparatus de novo, instead of transforming a bipolar mitotic apparatus into a tetrapolar figure, and cleaves one-to-four. In another type of experiment, it appears that sand dollar eggs exposed to mercaptoethanol during the first period of mitotic center duplication have only half as many centers by first cleavage metaphase as the normal controls. This is consistent with an earlier report by Mazia et al (1960). Using this same experimental technique, it was demonstrated that benzimidazole, on the contrary, does not interfere with mitotic center duplication in sand dollar eggs. A labeling experiment demonstrated that benzimidazole does not interfere markedly with the normal pattern of incorporation of C14-thymidine into the DNA of sea urchin eggs. The data reported here suggest that judicious treatment of sand dollar eggs (and probably sea urchin eggs, too) with benzimidazole can induce the eggs to cleave into as many cells as there were mitotic centers sometime earlier, for example at early metaphase of the first cleavage division. This provides a very useful tool for studies on the process of mitotic center duplication. PMID:6008198

  4. An indirect method to assay for mitotic centers in sand dollar (Dendraster excentricus) eggs.

    PubMed

    Went, H A

    1966-09-01

    It is possible consistently to induce sea urchin and sand dollar eggs to cleave directly from one cell into four cells. This is done by exposing the fertilized eggs to benzimidazole for 20 to 30 min beginning about early metaphase. The mitotic apparatus regresses, the cells do not cleave, and shortly after they are returned to normal sea water an early-prophase-appearing nucleus is present in each cell. Each cell then organizes a tetrapolar tetrahedral mitotic apparatus de novo, instead of transforming a bipolar mitotic apparatus into a tetrapolar figure, and cleaves one-to-four. In another type of experiment, it appears that sand dollar eggs exposed to mercaptoethanol during the first period of mitotic center duplication have only half as many centers by first cleavage metaphase as the normal controls. This is consistent with an earlier report by Mazia et al (1960). Using this same experimental technique, it was demonstrated that benzimidazole, on the contrary, does not interfere with mitotic center duplication in sand dollar eggs. A labeling experiment demonstrated that benzimidazole does not interfere markedly with the normal pattern of incorporation of C(14)-thymidine into the DNA of sea urchin eggs. The data reported here suggest that judicious treatment of sand dollar eggs (and probably sea urchin eggs, too) with benzimidazole can induce the eggs to cleave into as many cells as there were mitotic centers sometime earlier, for example at early metaphase of the first cleavage division. This provides a very useful tool for studies on the process of mitotic center duplication.

  5. Impact of the 2009 AJCC staging guidelines for melanoma on the number of mitotic figures reported by dermatopathologists at one institution.

    PubMed

    Larson, Allison R; Rothschild, Brian; Walls, Andrew C; Granter, Scott R; Qureshi, Abrar A; Murphy, George F; Laga, Alvaro C

    2015-08-01

    In 2009 the revised seventh staging system for melanoma recommended the use of mitotic count to separate stage T1a from T1b. However, careful scrutiny of cases may lead to an inadvertent selection effect, with consequent increased reporting of mitotic counts. We investigated whether there is a significant increase in mitotic counts reported since 2009 for melanomas with a Breslow thickness of 1.0 mm or less. We conducted a retrospective, case-controlled study examining invasive melanoma cases at a large academic center. Mitotic counts were compared between pathology reports before 2009 (n = 61) and after 2009 (n = 125), with a subset of slides re-examined in a blinded fashion. Before the 2009 staging guidelines, 51% of cases had one or more mitosis reported compared to 38% after 2009 (p = 0.113). Blinded re-counting did not yield a significant difference when compared with the original pathology reports in either group. There was not a significant difference in the number of mitoses reported after the implementation of the new guidelines. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Tumor Environmental Factors Glucose Deprivation and Lactic Acidosis Induce Mitotic Chromosomal Instability – An Implication in Aneuploid Human Tumors

    PubMed Central

    Zhu, Chunpeng; Hu, Xun

    2013-01-01

    Mitotic chromosomal instability (CIN) plays important roles in tumor progression, but what causes CIN is incompletely understood. In general, tumor CIN arises from abnormal mitosis, which is caused by either intrinsic or extrinsic factors. While intrinsic factors such as mitotic checkpoint genes have been intensively studied, the impact of tumor microenvironmental factors on tumor CIN is largely unknown. We investigate if glucose deprivation and lactic acidosis – two tumor microenvironmental factors – could induce cancer cell CIN. We show that glucose deprivation with lactic acidosis significantly increases CIN in 4T1, MCF-7 and HCT116 scored by micronuclei, or aneuploidy, or abnormal mitosis, potentially via damaging DNA, up-regulating mitotic checkpoint genes, and/or amplifying centrosome. Of note, the feature of CIN induced by glucose deprivation with lactic acidosis is similar to that of aneuploid human tumors. We conclude that tumor environmental factors glucose deprivation and lactic acidosis can induce tumor CIN and propose that they are potentially responsible for human tumor aneuploidy. PMID:23675453

  7. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells

    PubMed Central

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118

  8. BRCA1 interaction of centrosomal protein Nlp is required for successful mitotic progression.

    PubMed

    Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin

    2009-08-21

    Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability.

  9. Alzheimer Aβ disrupts the mitotic spindle and directly inhibits mitotic microtubule motors

    PubMed Central

    Borysov, Sergiy I; Granic, Antoneta; Padmanabhan, Jaya; Walczak, Claire E

    2011-01-01

    Chromosome mis-segregation and aneuploidy are greatly induced in Alzheimer disease and models thereof by mutant forms of the APP and PS proteins and by their product, the Aβ peptide. Here we employ human somatic cells and Xenopus egg extracts to show that Aβ impairs the assembly and maintenance of the mitotic spindle. Mechanistically, these defects result from Aβ's inhibition of mitotic motor kinesins, including Eg5, KIF4A and MCAK. In vitro studies show that oligomeric Aβ directly inhibits recombinant MCAK by a noncompetitive mechanism. In contrast, inhibition of Eg5 and KIF4A is competitive with respect to both ATP and microtubules, indicating that Aβ interferes with their interactions with the microtubules of the mitotic spindle. Consistently, increased levels of polymerized microtubules or of the microtubule stabilizing protein Tau significantly decrease the inhibitory effect of Aβ on Eg5 and KIF4A. Together, these results indicate that by disrupting the interaction between specific kinesins and microtubules and by exerting a direct inhibitory effect on the motor activity, excess Aβ deregulates the mechanical forces that govern the spindle and thereby leads to the generation of defective mitotic structures. The resulting defect in neurogenesis can account for the over 30% aneuploid/hyperploid, degeneration-prone neurons observed in Alzheimer disease brain. The finding of mitotic motors including Eg5 in mature post-mitotic neurons implies that their inhibition by Aβ may also disrupt neuronal function and plasticity. PMID:21566458

  10. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu Yichen; Yen Wenyen; Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan

    2009-04-15

    Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90{alpha}/{beta} alsomore » enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.« less

  11. The induction of chromosomal abnormalities by inhalational anaesthetics.

    PubMed

    Grant, C J; Powell, J N; Radford, S G

    1977-06-01

    When Vicia faba root tips are exposed for 2 h to clinically useful concentrations of halothane or methoxyflurane in air, or to halothane in 80% nitrous oxide/20% oxygen, there is a transient increase in mitotic index and then abnormal interphase cells are produced in proportion to the anaesthetic concentrations. After exposure there is a period of mitotic inhibition during which the cells become partially synchronised. When colchicine-metaphase cells collected 28 h after exposure are compared with controls and with metaphases collected only 4 h after exposure, they show a significant increase in the incidence of aneuploidy, tetraploidy and the results of chromosome breakage. It is suggested that all the abnormalities seen can be accounted for by the effects of the anaesthetics on spindle movements, and that at the concentrations used the anaesthetics have no mutagenic effects on chromosomes in interphase.

  12. BRCA1 Interaction of Centrosomal Protein Nlp Is Required for Successful Mitotic Progression*♦

    PubMed Central

    Jin, Shunqian; Gao, Hua; Mazzacurati, Lucia; Wang, Yang; Fan, Wenhong; Chen, Qiang; Yu, Wei; Wang, Mingrong; Zhu, Xueliang; Zhang, Chuanmao; Zhan, Qimin

    2009-01-01

    Breast cancer susceptibility gene BRCA1 is implicated in the control of mitotic progression, although the underlying mechanism(s) remains to be further defined. Deficiency of BRCA1 function leads to disrupted mitotic machinery and genomic instability. Here, we show that BRCA1 physically interacts and colocalizes with Nlp, an important molecule involved in centrosome maturation and spindle formation. Interestingly, Nlp centrosomal localization and its protein stability are regulated by normal cellular BRCA1 function because cells containing BRCA1 mutations or silenced for endogenous BRCA1 exhibit disrupted Nlp colocalization to centrosomes and enhanced Nlp degradation. Its is likely that the BRCA1 regulation of Nlp stability involves Plk1 suppression. Inhibition of endogenous Nlp via the small interfering RNA approach results in aberrant spindle formation, aborted chromosomal segregation, and aneuploidy, which mimic the phenotypes of disrupted BRCA1. Thus, BRCA1 interaction of Nlp might be required for the successful mitotic progression, and abnormalities of Nlp lead to genomic instability. PMID:19509300

  13. ATP depletion during mitotic arrest induces mitotic slippage and APC/CCdh1-dependent cyclin B1 degradation.

    PubMed

    Park, Yun Yeon; Ahn, Ju-Hyun; Cho, Min-Guk; Lee, Jae-Ho

    2018-04-27

    ATP depletion inhibits cell cycle progression, especially during the G1 phase and the G2 to M transition. However, the effect of ATP depletion on mitotic progression remains unclear. We observed that the reduction of ATP after prometaphase by simultaneous treatment with 2-deoxyglucose and NaN 3 did not arrest mitotic progression. Interestingly, ATP depletion during nocodazole-induced prometaphase arrest resulted in mitotic slippage, as indicated by a reduction in mitotic cells, APC/C-dependent degradation of cyclin B1, increased cell attachment, and increased nuclear membrane reassembly. Additionally, cells successfully progressed through the cell cycle after mitotic slippage, as indicated by EdU incorporation and time-lapse imaging. Although degradation of cyclin B during normal mitotic progression is primarily regulated by APC/C Cdc20 , we observed an unexpected decrease in Cdc20 prior to degradation of cyclin B during mitotic slippage. This decrease in Cdc20 was followed by a change in the binding partner preference of APC/C from Cdc20 to Cdh1; consequently, APC/C Cdh1 , but not APC/C Cdc20 , facilitated cyclin B degradation following ATP depletion. Pulse-chase analysis revealed that ATP depletion significantly abrogated global translation, including the translation of Cdc20 and Cdh1. Additionally, the half-life of Cdh1 was much longer than that of Cdc20. These data suggest that ATP depletion during mitotic arrest induces mitotic slippage facilitated by APC/C Cdh1 -dependent cyclin B degradation, which follows a decrease in Cdc20 resulting from reduced global translation and the differences in the half-lives of the Cdc20 and Cdh1 proteins.

  14. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  15. The Yeast Polo Kinase Cdc5 Regulates the Shape of the Mitotic Nucleus

    DOE PAGES

    Walters, Alison D.; May, Christopher K.; Dauster, Emma S.; ...

    2014-11-20

    Abnormal nuclear size and shape are hallmarks of aging and cancer. However, the mechanisms regulating nuclear morphology and nuclear envelope (NE) expansion are poorly understood. In metazoans, the NE disassembles prior to chromosome segregation and reassembles at the end of mitosis. In budding yeast, the NE remains intact. The nucleus elongates as chromosomes segregate and then divides at the end of mitosis to form two daughter nuclei without NE disassembly. The budding yeast nucleus also undergoes remodeling during a mitotic arrest; the NE continues to expand despite the pause in chromosome segregation, forming a nuclear extension, or "flare," that encompassesmore » the nucleolus. The distinct nucleolar localization of the mitotic flare indicates that the NE is compartmentalized and that there is a mechanism by which NE expansion is confined to the region adjacent to the nucleolus. Here we show that mitotic flare formation is dependent on the yeast polo kinase Cdc5. This function of Cdc5 is independent of its known mitotic roles, including rDNA condensation. High-resolution imaging revealed that following Cdc5 inactivation, nuclei expand isometrically rather than forming a flare, indicating that Cdc5 is needed for NE compartmentalization. Lastly, even in an uninterrupted cell cycle, a small NE expansion occurs adjacent to the nucleolus prior to anaphase in a Cdc5-dependent manner. Our data provide the first evidence that polo kinase, a key regulator of mitosis, plays a role in regulating nuclear morphology and NE expansion.« less

  16. Genome co-amplification upregulates a mitotic gene network activity that predicts outcome and response to mitotic protein inhibitors in breast cancer

    DOE PAGES

    Hu, Zhi; Mao, Jian-Hua; Curtis, Christina; ...

    2016-07-01

    Background: High mitotic activity is associated with the genesis and progression of many cancers. Small molecule inhibitors of mitotic apparatus proteins are now being developed and evaluated clinically as anticancer agents. With clinical trials of several of these experimental compounds underway, it is important to understand the molecular mechanisms that determine high mitotic activity, identify tumor subtypes that carry molecular aberrations that confer high mitotic activity, and to develop molecular markers that distinguish which tumors will be most responsive to mitotic apparatus inhibitors. Methods: We identified a coordinately regulated mitotic apparatus network by analyzing gene expression profiles for 53 malignantmore » and non-malignant human breast cancer cell lines and two separate primary breast tumor datasets. We defined the mitotic network activity index (MNAI) as the sum of the transcriptional levels of the 54 coordinately regulated mitotic apparatus genes. The effect of those genes on cell growth was evaluated by small interfering RNA (siRNA). Results: High MNAI was enriched in basal-like breast tumors and was associated with reduced survival duration and preferential sensitivity to i nhibitors of the mitotic apparatus proteins, polo-like kinase, centromere associated protein E and aurora kinase designated GSK462364, GSK923295 and GSK1070916, respectively. Co-amplification of regions of chromosomes 8q24, 10p15-p12, 12p13, and 17q24-q25 was associated with the transcriptional upregulation of this network of 54 mitotic apparatus genes, and we identify transcription factors that localize to these regions and putatively regulate mitotic activity. Knockdown of the mitotic network by siRNA identified 22 genes that might be considered as additional therapeutic targets for this clinically relevant patient subgroup. Conclusions: We define a molecular signature which may guide therapeutic approaches for tumors with high mitotic network activity.« less

  17. Genome co-amplification upregulates a mitotic gene network activity that predicts outcome and response to mitotic protein inhibitors in breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Zhi; Mao, Jian-Hua; Curtis, Christina

    Background: High mitotic activity is associated with the genesis and progression of many cancers. Small molecule inhibitors of mitotic apparatus proteins are now being developed and evaluated clinically as anticancer agents. With clinical trials of several of these experimental compounds underway, it is important to understand the molecular mechanisms that determine high mitotic activity, identify tumor subtypes that carry molecular aberrations that confer high mitotic activity, and to develop molecular markers that distinguish which tumors will be most responsive to mitotic apparatus inhibitors. Methods: We identified a coordinately regulated mitotic apparatus network by analyzing gene expression profiles for 53 malignantmore » and non-malignant human breast cancer cell lines and two separate primary breast tumor datasets. We defined the mitotic network activity index (MNAI) as the sum of the transcriptional levels of the 54 coordinately regulated mitotic apparatus genes. The effect of those genes on cell growth was evaluated by small interfering RNA (siRNA). Results: High MNAI was enriched in basal-like breast tumors and was associated with reduced survival duration and preferential sensitivity to i nhibitors of the mitotic apparatus proteins, polo-like kinase, centromere associated protein E and aurora kinase designated GSK462364, GSK923295 and GSK1070916, respectively. Co-amplification of regions of chromosomes 8q24, 10p15-p12, 12p13, and 17q24-q25 was associated with the transcriptional upregulation of this network of 54 mitotic apparatus genes, and we identify transcription factors that localize to these regions and putatively regulate mitotic activity. Knockdown of the mitotic network by siRNA identified 22 genes that might be considered as additional therapeutic targets for this clinically relevant patient subgroup. Conclusions: We define a molecular signature which may guide therapeutic approaches for tumors with high mitotic network activity.« less

  18. The Aurora kinase A inhibitor TC-A2317 disrupts mitotic progression and inhibits cancer cell proliferation

    PubMed Central

    Min, Yoo Hong; Kim, Wootae; Kim, Ja-Eun

    2016-01-01

    Mitotic progression is crucial for the maintenance of chromosomal stability. A proper progression is ensured by the activities of multiple kinases. One of these enzymes, the serine/threonine kinase Aurora A, is required for proper mitosis through the regulation of centrosome and spindle assembly. In this study, we functionally characterized a newly developed Aurora kinase A inhibitor, TC-A2317. In human lung cancer cells, TC-A2317 slowed proliferation by causing aberrant formation of centrosome and microtubule spindles and prolonging the duration of mitosis. Abnormal mitotic progression led to accumulation of cells containing micronuclei or multinuclei. Furthermore, TC-A2317–treated cells underwent apoptosis, autophagy or senescence depending on cell type. In addition, TC-A2317 inactivated the spindle assembly checkpoint triggered by paclitaxel, thereby exacerbating mitotic catastrophe. Consistent with this, the expression level of Aurora A in tumors was inversely correlated with survival in lung cancer patients. Collectively, these data suggest that inhibition of Aurora kinase A using TC-A2317 is a promising target for anti-cancer therapeutics. PMID:27713168

  19. Disruption of IFT Complex A Causes Cystic Kidneys without Mitotic Spindle Misorientation

    PubMed Central

    Jonassen, Julie A.; SanAgustin, Jovenal; Baker, Stephen P.

    2012-01-01

    Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre–driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression. PMID:22282595

  20. Effect of 2,4-D and isoproturon on chromosomal disturbances during mitotic division in root tip cells of Triticum aestivum L.

    PubMed

    Kumar, Sanjay

    2010-01-01

    The widespread use of the herbicides for weed control and crop productivity in modern agriculture exert a threat on economically important crops by way of cytological damage to the cells of the crop plant or side effects, if any, induced by the herbicides. In the present communication, author describes the effects of 2,4-D and Isoproturon on chromosomal morphology in mitotic cells of Triticum aestivum L. The wheat seedlings were treated with range of concentrations (50-1200 ppm) of 2,4-D and Isoproturon for 72 h at room temperature. In the mitotic cells, twelve distinct chromosome structure abnormalities were observed over control. The observed irregularities were stickiness, c-mitosis, multipolar chromosomes with or without spindles, fragments and bridges, lagging chromosomes, unequal distribution of chromosomes, over contracted chromosomes, unoriented chromosomes, star shaped arrangement of the chromosomes, increased cell size and failure of cell plate formation. The abnormalities like stickiness, fragments, bridges, lagging or dysjunction, unequal distribution and over contracted chromosomes meet frequently.

  1. Micromechanics of human mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F.

    2011-02-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.

  2. Calibrated mitotic oscillator drives motile ciliogenesis.

    PubMed

    Al Jord, Adel; Shihavuddin, Asm; Servignat d'Aout, Raphaël; Faucourt, Marion; Genovesio, Auguste; Karaiskou, Anthi; Sobczak-Thépot, Joëlle; Spassky, Nathalie; Meunier, Alice

    2017-11-10

    Cell division and differentiation depend on massive and rapid organelle remodeling. The mitotic oscillator, centered on the cyclin-dependent kinase 1-anaphase-promoting complex/cyclosome (CDK1-APC/C) axis, spatiotemporally coordinates this reorganization in dividing cells. Here we discovered that nondividing cells could also implement this mitotic clocklike regulatory circuit to orchestrate subcellular reorganization associated with differentiation. We probed centriole amplification in differentiating mouse-brain multiciliated cells. These postmitotic progenitors fine-tuned mitotic oscillator activity to drive the orderly progression of centriole production, maturation, and motile ciliation while avoiding the mitosis commitment threshold. Insufficient CDK1 activity hindered differentiation, whereas excessive activity accelerated differentiation yet drove postmitotic progenitors into mitosis. Thus, postmitotic cells can redeploy and calibrate the mitotic oscillator to uncouple cytoplasmic from nuclear dynamics for organelle remodeling associated with differentiation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Gamma abnormalities during perception of illusory figures in autism.

    PubMed

    Brown, Caroline; Gruber, Thomas; Boucher, Jill; Rippon, Gina; Brock, Jon

    2005-06-01

    This experiment was designed to test the hypothesis that perceptual abnormalities in autism might be associated with alteration of induced gamma activity patterns overlying visual cortical regions. EEG was recorded from six adolescents with autism and eight controls matched on chronological age, and verbal and nonverbal mental age, whilst identifying the presence or absence of an illusory Kanizsa shape. Although there were no reaction time or accuracy differences between the groups there were significant task-related differences in cortical activity. Control participants showed typical gamma-band activity over parietal regions at around 350 msec post onset of shape trials, similar to gamma patterns found in previous studies with non-impaired adults. In contrast, autistic participants showed overall increased activity, including an early 100 msec gamma peak and a late induced peak, 50 to 70 msec earlier than that shown by the control group. We interpret the abnormal gamma activity to reflect decreased "signal to noise" due to decreased inhibitory processing. In this experiment we did not establish a link between altered perception and abnormal gamma, as the autistic participants' behaviour did not differ from the controls. Future work should be designed to replicate this phenomenon and establish the perceptual consequences of altered gamma activity.

  4. Alterations and Abnormal Mitosis of Wheat Chromosomes Induced by Wheat-Rye Monosomic Addition Lines

    PubMed Central

    Fu, Shulan; Yang, Manyu; Fei, Yunyan; Tan, Feiquan; Ren, Zhenglong; Yan, Benju; Zhang, Huaiyu; Tang, Zongxiang

    2013-01-01

    Background Wheat-rye addition lines are an old topic. However, the alterations and abnormal mitotic behaviours of wheat chromosomes caused by wheat-rye monosomic addition lines are seldom reported. Methodology/Principal Findings Octoploid triticale was derived from common wheat T. aestivum L. ‘Mianyang11’×rye S. cereale L. ‘Kustro’ and some progeny were obtained by the controlled backcrossing of triticale with ‘Mianyang11’ followed by self-fertilization. Genomic in situ hybridization (GISH) using rye genomic DNA and fluorescence in situ hybridization (FISH) using repetitive sequences pAs1 and pSc119.2 as probes were used to analyze the mitotic chromosomes of these progeny. Strong pSc119.2 FISH signals could be observed at the telomeric regions of 3DS arms in ‘Mianyang11’. However, the pSc119.2 FISH signals were disappeared from the selfed progeny of 4R monosomic addition line and the changed 3D chromosomes could be transmitted to next generation stably. In one of the selfed progeny of 7R monosomic addition line, one 2D chromosome was broken and three 4A chromosomes were observed. In the selfed progeny of 6R monosomic addition line, structural variation and abnormal mitotic behaviour of 3D chromosome were detected. Additionally, 1A and 4B chromosomes were eliminated from some of the progeny of 6R monosomic addition line. Conclusions/Significance These results indicated that single rye chromosome added to wheat might cause alterations and abnormal mitotic behaviours of wheat chromosomes and it is possible that the stress caused by single alien chromosome might be one of the factors that induced karyotype alteration of wheat. PMID:23936213

  5. The p90 ribosomal S6 kinase 2 specifically affects mitotic progression by regulating the basal level, distribution and stability of mitotic spindles

    PubMed Central

    Park, Yun Yeon; Nam, Hyun-Ja; Do, Mihyang; Lee, Jae-Ho

    2016-01-01

    RSK2, also known as RPS6KA3 (ribosomal protein S6 kinase, 90 kDa, polypeptide 3), is a downstream kinase of the mitogen-activated protein kinase (MAPK) pathway, which is important in regulating survival, transcription, growth and proliferation. However, its biological role in mitotic progression is not well understood. In this study, we examined the potential involvement of RSK2 in the regulation of mitotic progression. Interestingly, depletion of RSK2, but not RSK1, caused the accumulation of mitotic cells. Time-lapse analysis revealed that mitotic duration, particularly the duration for metaphase-to-anaphase transition was prolonged in RSK2-depleted cells, suggesting activation of spindle assembly checkpoint (SAC). Indeed, more BubR1 (Bub1-related kinase) was present on metaphase plate kinetochores in RSK2-depleted cells, and depletion of BubR1 abolished the mitotic accumulation caused by RSK2 depletion, confirming BubR1-dependent SAC activation. Along with the shortening of inter-kinetochore distance, these data suggested that weakening of the tension across sister kinetochores by RSK2 depletion led to the activation of SAC. To test this, we analyzed the RSK2 effects on the stability of kinetochore–microtubule interactions, and found that RSK2-depleted cells formed less kinetochore–microtubule fibers. Moreover, RSK2 depletion resulted in the decrease of basal level of microtubule as well as an irregular distribution of mitotic spindles, which might lead to observed several mitotic progression defects such as increase in unaligned chromosomes, defects in chromosome congression and a decrease in pole-to-pole distance in these cells. Taken together, our data reveal that RSK2 affects mitotic progression by regulating the distribution, basal level and the stability of mitotic spindles. PMID:27491410

  6. Cell Death During Crisis Is Mediated by Mitotic Telomere Deprotection

    PubMed Central

    Hayashi, Makoto T.; Cesare, Anthony J.; Rivera, Teresa; Karlseder, Jan

    2015-01-01

    Tumour formation is blocked by two barriers, replicative senescence and crisis1. Senescence is triggered by short telomeres and is bypassed by disruption of tumour suppressive pathways. After senescence bypass, cells undergo crisis, during which almost all of the cells in the population die. Cells that escape crisis harbor unstable genomes and other parameters of transformation. The mechanism of cell death during crisis remained elusive. We show that cells in crisis undergo spontaneous mitotic arrest, resulting in death during mitosis or in the following cell cycle. The phenotype was induced by loss of p53 function, and suppressed by telomerase overexpression. Telomere fusions triggered mitotic arrest in p53-compromised non-crisis cells, indicating such fusions as the underlying cause. Exacerbation of mitotic telomere deprotection by partial TRF2 knockdown2 increased the ratio of cells that died during mitotic arrest and sensitized cancer cells to mitotic poisons. We propose a crisis pathway wherein chromosome fusions induce mitotic arrest, resulting in mitotic telomere deprotection and cell death, thereby eliminating precancerous cells from the population. PMID:26108857

  7. A Brief History of Research on Mitotic Mechanisms.

    PubMed

    McIntosh, J Richard; Hays, Thomas

    2016-12-21

    This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests.

  8. Mitotic and apoptotic activity in colorectal neoplasia.

    PubMed

    Kohoutova, Darina; Pejchal, Jaroslav; Bures, Jan

    2018-05-18

    Colorectal cancer (CRC) is third most commonly diagnosed cancer worldwide. The aim of the prospective study was to evaluate mitosis and apoptosis of epithelial cells at each stage of colorectal neoplasia. A total of 61 persons were enrolled into the study: 18 patients with non-advanced colorectal adenoma (non-a-A), 13 patients with advanced colorectal adenoma (a-A), 13 patients with CRC and 17 controls: individuals with normal findings on colonoscopy. Biopsy samples were taken from pathology (patients) and healthy mucosa (patients and healthy controls). Samples were formalin-fixed paraffin-embedded and stained with haematoxylin-eosin. Mitotic and apoptotic activity were evaluated in lower and upper part of the crypts and in the superficial compartment. Apoptotic activity was also assessed using detection of activated caspase-3. In controls, mitotic activity was present in lower part of crypts, accompanied with low apoptotic activity. Mitotic and apoptotic activity decreased (to almost zero) in upper part of crypts. In superficial compartment, increase in apoptotic activity was observed. Transformation of healthy mucosa into non-a-A was associated with significant increase of mitotic activity in lower and upper part of the crypts and with significant increase of apoptotic activity in all three compartments; p < 0.05. Transformation of non-a-A into a-A did not lead to any further significant increase in apoptotic activity, but was related to significant increase in mitotic activity in upper part of crypts and superficial compartment. A significant decrease in apoptotic activity was detected in all three comparments of CRC samples compared to a-A; p < 0.05. No differences in mitotic and apoptotic activity between biopsies in healthy controls and biopsy samples from healthy mucosa in patients with colorectal neoplasia were observed. Detection of activated caspase-3 confirmed the above findings in apoptotic activity. Significant dysregulation of mitosis and apoptosis

  9. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suzuki, Toshihide, E-mail: toshi-su@pharm.teikyo-u.ac.j; Miyazaki, Koichi; Kita, Kayoko

    2009-12-15

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvementmore » of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.« less

  10. Human Nek7-interactor RGS2 is required for mitotic spindle organization

    PubMed Central

    de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg

    2015-01-01

    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization. PMID:25664600

  11. Human Nek7-interactor RGS2 is required for mitotic spindle organization.

    PubMed

    de Souza, Edmarcia Elisa; Hehnly, Heidi; Perez, Arina Marina; Meirelles, Gabriela Vaz; Smetana, Juliana Helena Costa; Doxsey, Stephen; Kobarg, Jörg

    2015-01-01

    The mitotic spindle apparatus is composed of microtubule (MT) networks attached to kinetochores organized from 2 centrosomes (a.k.a. spindle poles). In addition to this central spindle apparatus, astral MTs assemble at the mitotic spindle pole and attach to the cell cortex to ensure appropriate spindle orientation. We propose that cell cycle-related kinase, Nek7, and its novel interacting protein RGS2, are involved in mitosis regulation and spindle formation. We found that RGS2 localizes to the mitotic spindle in a Nek7-dependent manner, and along with Nek7 contributes to spindle morphology and mitotic spindle pole integrity. RGS2-depletion leads to a mitotic-delay and severe defects in the chromosomes alignment and congression. Importantly, RGS2 or Nek7 depletion or even overexpression of wild-type or kinase-dead Nek7, reduced γ-tubulin from the mitotic spindle poles. In addition to causing a mitotic delay, RGS2 depletion induced mitotic spindle misorientation coinciding with astral MT-reduction. We propose that these phenotypes directly contribute to a failure in mitotic spindle alignment to the substratum. In conclusion, we suggest a molecular mechanism whereupon Nek7 and RGS2 may act cooperatively to ensure proper mitotic spindle organization.

  12. Micromechanical-biochemical studies of mitotic chromosome elasticity and structure

    NASA Astrophysics Data System (ADS)

    Poirier, Michael Guy

    The structure of mitotic chromosomes was studied by combining micromechanical force measurements with microfluidic biochemical exposures. Our method is to use glass micropipettes attached to either end of a single chromosome to do mechanical experiments in the extracellular buffer. A third pipette can be used to locally 'spray' reactants so as to carry out dynamical mechanical-chemical experiments. The following elastic properties of mitotic chromosomes are found: Young's modulus, Y = 300 Pa; Poisson ratio, sigma = 0.1; Bending rigidity, B = 1 x 10 -22 J·m; Internal viscosity, eta' = 100 kg/m·sec; Volume fraction, ϕ = 0.7; Extensions of less than 3 times the relaxed length are linear and reversible; Extensions beyond 30 fold exhibit a force plateau at 15 nN and convert the chromosome to a disperse ghost-like state with little change in chromatin structure; Mitotic chromosomes are relatively isotropic; dsDNA cuts of at least every 3 kb cause the a mitotic chromosomes to fall apart; dsDNA cuts less frequently than every 50 kb do not affect mitotic chromosome structure. These results lead to the conclusion that mitotic chromosomes are a network crosslinked every 50 kb between which chromatin is fold by chromatin folding proteins, which are likely to be condensins.

  13. Effects of heat stress in the leaf mitotic cell cycle and chromosomes of four wine-producing grapevine varieties.

    PubMed

    Carvalho, Ana; Leal, Fernanda; Matos, Manuela; Lima-Brito, José

    2018-05-22

    Grapevine varieties respond differentially to heat stress (HS). HS ultimately reduces the photosynthesis and respiratory performance. However, the HS effects in the leaf nuclei and mitotic cells of grapevine are barely known. This work intends to evaluate the HS effects in the leaf mitotic cell cycle and chromosomes of four wine-producing varieties: Touriga Franca (TF), Touriga Nacional (TN), Rabigato, and Viosinho. In vitro plants with 11 months were used in a stepwise acclimation and recovery (SAR) experimental setup comprising different phases: heat acclimation period (3 h-32 °C), extreme HS (1 h-42 °C), and two recovery periods (3 h-32 °C and 24 h-25 °C), and compared to control plants (maintained in vitro at 25 °C). At the end of each SAR phase, leaves were collected, fixed, and used for cell suspensions and chromosome preparations. Normal and abnormal interphase and mitotic cells were observed, scored, and statistically analyzed in all varieties and treatments (control and SAR phases). Different types of chromosomal anomalies in all mitotic phases, treatments, and varieties were found. In all varieties, the percentage of dividing cells with anomalies (%DCA) after extreme HS increased relative to control. TF and Viosinho were considered the most tolerant to HS. TF showed a gradual MI reduction from heat acclimation to HS and the lowest %DCA after HS and 24 h of recovery. Only Viosinho reached the control values after the long recovery period. Extrapolating these data to the field, we hypothesize that during consecutive hot summer days, the grapevine plants will not have time or capacity to recover from the mitotic anomalies caused by high temperatures.

  14. A Brief History of Research on Mitotic Mechanisms

    PubMed Central

    McIntosh, J. Richard; Hays, Thomas

    2016-01-01

    This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests. PMID:28009830

  15. Effects of caffeine on mitotic index, mitotic aberrations and bimitosis with and without aeration.

    PubMed

    Röper, W

    1977-07-01

    The effects of 1 to 3 h 0.2% caffeine treatment on mitosis in lateral roots of Vicia faba with and without aeration have been investigated. During the treatment a marked decrease of the mitotic index followed by strong deviations and changing phase indices can be stated. By means of aeration the number of mitotic aberrations increases with time of treatment, while it decreases without aeration until 3 h treatment. Tetraploid cells are supposed to be formed by spindle aberrations at early anaphase. The number of binucleate and tetraploid cells is affected by aeration during caffeine treatment. During division of the binucleate cells tetraploid nuclei are formed by fusions, so the population of binucleate cells may become smaller.

  16. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida.

    PubMed Central

    Guillette, L J; Gross, T S; Masson, G R; Matter, J M; Percival, H F; Woodward, A R

    1994-01-01

    The reproductive development of alligators from a contaminated and a control lake in central Florida was examined. Lake Apopka is adjacent to an EPA Superfund site, listed due to an extensive spill of dicofol and DDT or its metabolites. These compounds can act as estrogens. Contaminants in the lake also have been derived from extensive agricultural activities around the lake that continue today and a sewage treatment facility associated with the city of Winter Garden, Florida. We examined the hypothesis that an estrogenic contaminant has caused the current failure in recruitment of alligators on Lake Apopka. Supporting data include the following: At 6 months of age, female alligators from Lake Apopka had plasma estradiol-17 beta concentrations almost two times greater than normal females from the control lake, Lake Woodruff. The Apopka females exhibited abnormal ovarian morphology with large numbers of polyovular follicles and polynuclear oocytes. Male juvenile alligators had significantly depressed plasma testosterone concentrations comparable to levels observed in normal Lake Woodruff females but more than three times lower than normal Lake Woodruff males. Additionally, males from Lake Apopka had poorly organized testes and abnormally small phalli. The differences between lakes and sexes in plasma hormone concentrations of juvenile alligators remain even after stimulation with luteinizing hormone. Our data suggest that the gonads of juveniles from Lake Apopka have been permanently modified in ovo, so that normal steroidogenesis is not possible, and thus normal sexual maturation is unlikely. Images p680-a Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 3. C Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 5. A Figure 5. B Figure 5. C PMID:7895709

  17. A dynamic mode of mitotic bookmarking by transcription factors

    PubMed Central

    Teves, Sheila S; An, Luye; Hansen, Anders S; Xie, Liangqi; Darzacq, Xavier; Tjian, Robert

    2016-01-01

    During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking. DOI: http://dx.doi.org/10.7554/eLife.22280.001 PMID:27855781

  18. Mechanical control of mitotic progression in single animal cells

    PubMed Central

    Cattin, Cedric J.; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Müller, Daniel J.; Stewart, Martin P.

    2015-01-01

    Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback–controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50–100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement. PMID:26305930

  19. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Feng; Camp, David G.; Gritsenko, Marina A.

    2007-11-16

    The chromosomal passenger complex (CPC) is a critical regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation specific antibody that labels the CPC using liquid chromatography coupled to mass spectrometry. A mitotic phosphorylation motif (PX{G/T/S}{L/M}[pS]P or WGL[pS]P) was identified in 11 proteins including Fzr/Cdh1 and RIC-8, two proteins with potential links to the CPC. Phosphoprotein complexes contained known CPC components INCENP, Aurora-B and TD-60, as well as SMAD2, 14-3-3 proteins, PP2A, and Cdk1, a likely kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins includingmore » SMAD2, Plk3 and INCENP. Mitotic SMAD2 and Plk3 phosphorylation was confirmed using phosphorylation specific antibodies, and in the case of Plk3, phosphorylation correlates with its localization to the mitotic apparatus. A mutagenesis approach was used to show INCENP phosphorylation is required for midbody localization. These results provide evidence for a shared phosphorylation event that regulates localization of critical proteins during mitosis.« less

  20. Clinicopathological Characteristics of Mitotically-active Cellular Fibroma of the Ovary: A Single-institutional Experience.

    PubMed

    Kim, Ji-Ye; Na, Kiyong; Kim, Hyun-Soo

    2017-05-01

    Mitotically-active cellular fibroma (MACF) is a rare form of ovarian fibromatous tumor. Although it is generally acknowledged to have indolent biological behavior, its rarity and overlapping histopathological features with more common and aggressive entities make MACF prone to misdiagnosis and overtreatment. The clinicopathological characteristics of ovarian MACF have not been clearly established. Our 10-year review of cellular fibromatous tumors of the ovary diagnosed at a single institution revealed four cases of cellular fibroma (CF) and three cases of MACF. The mean age of patients with MACF was 46 years (range=20-71 years). Patients presented with symptoms related to pelvic masses, such as abdominal pain and discomfort and flank pain. Serum levels of cancer antigen 125 was increased in two patients with MACF. All cases of MACF were a single unilateral tumor. Magnetic resonance imaging revealed solid or mixed solid and cystic ovarian masses with diameters of 7.3-14.9 cm. The radiological impressions included benign stromal tumor, benign epithelial tumor, and borderline epithelial tumor. Grossly, MACFs exhibited yellow-to-tan fleshy cut surfaces, without necrosis or hemorrhage. Extensive hyaline degeneration, resulting in a fibrotic cut surface, was observed in one case. Histologically, MACF displayed frequent mitotic figures, as well as increased cellularity and mild cytological atypia. The mean mitotic count was 8.7 per 10 high-power fields. MACF is a newly-recognized subtype of ovarian cellular fibromatous tumor. Pathologists and clinicians should be aware of this rare entity to prevent misdiagnosis of MACF as fibrosarcoma or adult granulosa cell tumor and resultant overtreatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Loops determine the mechanical properties of mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter W.

    2013-03-01

    In mitosis, chromosomes undergo a condensation into highly compacted, rod-like objects. Many models have been put forward for the higher-order organization of mitotic chromosomes including radial loop and hierarchical folding models. Additionally, mechanical properties of mitotic chromosomes under different conditions were measured. However, the internal organization of mitotic chromosomes still remains unclear. Here we present a polymer model for mitotic chromosomes and show how chromatin loops play a major role for their mechanical properties. The key assumption of the model is the ability of the chromatin fibre to dynamically form loops with the help of binding proteins. Our results show that looping leads to a tight compaction and significantly increases the bending rigidity of chromosomes. Moreover, our qualitative prediction of the force elongation behaviour is close to experimental findings. This indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre. We also demonstrate how number and size of loops have a strong influence on the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes can be explained by an altered internal loop structure. YZ gratefully appreciates funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes) and support by the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp).

  2. Axin localizes to mitotic spindles and centrosomes in mitotic cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Shi-Mun; Choi, Eun-Jin; Song, Ki-Joon

    2009-04-01

    Wnt signaling plays critical roles in cell proliferation and carcinogenesis. In addition, numerous recent studies have shown that various Wnt signaling components are involved in mitosis and chromosomal instability. However, the role of Axin, a negative regulator of Wnt signaling, in mitosis has remained unclear. Using monoclonal antibodies against Axin, we found that Axin localizes to the centrosome and along mitotic spindles. This localization was suppressed by siRNA specific for Aurora A kinase and by Aurora kinase inhibitor. Interestingly, Axin over-expression altered the subcellular distribution of Plk1 and of phosphorylated glycogen synthase kinase (GSK3{beta}) without producing any notable changes inmore » cellular phenotype. In the presence of Aurora kinase inhibitor, Axin over-expression induced the formation of cleavage furrow-like structures and of prominent astral microtubules lacking midbody formation in a subset of cells. Our results suggest that Axin modulates distribution of Axin-associated proteins such as Plk1 and GSK3{beta} in an expression level-dependent manner and these interactions affect the mitotic process, including cytokinesis under certain conditions, such as in the presence of Aurora kinase inhibitor.« less

  3. Effects of intracellular pH on the mitotic apparatus and mitotic stage in the sand dollar egg.

    PubMed

    Watanabe, K; Hamaguchi, M S; Hamaguchi, Y

    1997-01-01

    The effect of change in intracellular pH (pHi) on mitosis was investigated in the sand dollar egg. The pHi in the fertilized egg of Scaphechinus mirabilis and Clypeaster japonicus, which was 7.34 and 7.31, respectively, changed by means of treating the egg at nuclear envelope breakdown with sea water containing acetate and/or ammonia at various values of pH. The mitotic apparatus at pHi 6.70 became larger than that of normal fertilized eggs; that is, the mitotic spindle had the maximal size, especially in length at pHi 6.70. The spindle length linearly decreased when pHi increased from 6.70 to 7.84. By polarization microscopy, the increase in birefringence retardation was detected at slightly acidic pHi, suggesting that the increase in size of the spindle is caused by the increase in the amount of microtubules in the spindle. At pHi 6.30, the organization of the mitotic apparatus was inhibited. Furthermore, slightly acidic pHi caused cleavage retardation or inhibition. By counting the number of the eggs at various mitotic stages with time after treating them with the media, it is found that metaphase was persistent and most of the S. mirabilis eggs were arrested at metaphase under the condition of pHi 6.70. It is concluded that at slightly acidic pH, the microtubules in the spindle are stabilized and more microtubules assembled than those in the normal eggs.

  4. Automatic Detection of Mitosis and Nuclei From Cytogenetic Images by CellProfiler Software for Mitotic Index Estimation.

    PubMed

    González, Jorge Ernesto; Radl, Analía; Romero, Ivonne; Barquinero, Joan Francesc; García, Omar; Di Giorgio, Marina

    2016-12-01

    Mitotic Index (MI) estimation expressed as percentage of mitosis plays an important role as quality control endpoint. To this end, MI is applied to check the lot of media and reagents to be used throughout the assay and also to check cellular viability after blood sample shipping, indicating satisfactory/unsatisfactory conditions for the progression of cell culture. The objective of this paper was to apply the CellProfiler open-source software for automatic detection of mitotic and nuclei figures from digitized images of cultured human lymphocytes for MI assessment, and to compare its performance to that performed through semi-automatic and visual detection. Lymphocytes were irradiated and cultured for mitosis detection. Sets of images from cultures were analyzed visually and findings were compared with those using CellProfiler software. The CellProfiler pipeline includes the detection of nuclei and mitosis with 80% sensitivity and more than 99% specificity. We conclude that CellProfiler is a reliable tool for counting mitosis and nuclei from cytogenetic images, saves considerable time compared to manual operation and reduces the variability derived from the scoring criteria of different scorers. The CellProfiler automated pipeline achieves good agreement with visual counting workflow, i.e. it allows fully automated mitotic and nuclei scoring in cytogenetic images yielding reliable information with minimal user intervention. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  5. Robust mitotic entry is ensured by a latching switch.

    PubMed

    Tuck, Chloe; Zhang, Tongli; Potapova, Tamara; Malumbres, Marcos; Novák, Béla

    2013-01-01

    Cell cycle events are driven by Cyclin dependent kinases (CDKs) and by their counter-acting phosphatases. Activation of the Cdk1:Cyclin B complex during mitotic entry is controlled by the Wee1/Myt1 inhibitory kinases and by Cdc25 activatory phosphatase, which are themselves regulated by Cdk1:Cyclin B within two positive circuits. Impairing these two feedbacks with chemical inhibitors induces a transient entry into M phase referred to as mitotic collapse. The pathology of mitotic collapse reveals that the positive circuits play a significant role in maintaining the M phase state. To better understand the function of these feedback loops during G2/M transition, we propose a simple model for mitotic entry in mammalian cells including spatial control over Greatwall kinase phosphorylation. After parameter calibration, the model is able to recapture the complex and non-intuitive molecular dynamics reported by Potapova et al. (Potapova et al., 2011). Moreover, it predicts the temporal patterns of other mitotic regulators which have not yet been experimentally tested and suggests a general design principle of cell cycle control: latching switches buffer the cellular stresses which accompany cell cycle processes to ensure that the transitions are smooth and robust.

  6. Regulation of spindle integrity and mitotic fidelity by BCCIP

    PubMed Central

    Huhn, S C; Liu, J; Ye, C; Lu, H; Jiang, X; Feng, X; Ganesan, S; White, E; Shen, Z

    2017-01-01

    Centrosomes together with the mitotic spindle ensure the faithful distribution of chromosomes between daughter cells, and spindle orientation is a major determinant of cell fate during tissue regeneration. Spindle defects are not only an impetus of chromosome instability but are also a cause of developmental disorders involving defective asymmetric cell division. In this work, we demonstrate BCCIP, especially BCCIPα, as a previously unidentified component of the mitotic spindle pole and the centrosome. We demonstrate that BCCIP localizes proximal to the mother centriole and participates in microtubule organization and then redistributes to the spindle pole to ensure faithful spindle architecture. We find that BCCIP depletion leads to morphological defects, disoriented mitotic spindles, chromosome congression defects and delayed mitotic progression. Our study identifies BCCIP as a novel factor critical for microtubule regulation and explicates a mechanism utilized by BCCIP in tumor suppression. PMID:28394342

  7. An automated fluorescence videomicroscopy assay for the detection of mitotic catastrophe

    PubMed Central

    Rello-Varona, S; Kepp, O; Vitale, I; Michaud, M; Senovilla, L; Jemaà, M; Joza, N; Galluzzi, L; Castedo, M; Kroemer, G

    2010-01-01

    Mitotic catastrophe can be defined as a cell death mode that occurs during or shortly after a prolonged/aberrant mitosis, and can show apoptotic or necrotic features. However, conventional procedures for the detection of apoptosis or necrosis, including biochemical bulk assays and cytofluorometric techniques, cannot discriminate among pre-mitotic, mitotic and post-mitotic death, and hence are inappropriate to monitor mitotic catastrophe. To address this issue, we generated isogenic human colon carcinoma cell lines that differ in ploidy and p53 status, yet express similar amounts of fluorescent biosensors that allow for the visualization of chromatin (histone H2B coupled to green fluorescent protein (GFP)) and centrosomes (centrin coupled to the Discosoma striata red fluorescent protein (DsRed)). By combining high-resolution fluorescence videomicroscopy and automated image analysis, we established protocols and settings for the simultaneous assessment of ploidy, mitosis, centrosome number and cell death (which in our model system occurs mainly by apoptosis). Time-lapse videomicroscopy showed that this approach can be used for the high-throughput detection of mitotic catastrophe induced by three mechanistically distinct anti-mitotic agents (dimethylenastron (DIMEN), nocodazole (NDZ) and paclitaxel (PTX)), and – in this context – revealed an important role of p53 in the control of centrosome number. PMID:21364633

  8. Identification of Mitosis-Specific Phosphorylation in Mitotic Chromosome-Associated Proteins.

    PubMed

    Ohta, Shinya; Kimura, Michiko; Takagi, Shunsuke; Toramoto, Iyo; Ishihama, Yasushi

    2016-09-02

    During mitosis, phosphorylation of chromosome-associated proteins is a key regulatory mechanism. Mass spectrometry has been successfully applied to determine the complete protein composition of mitotic chromosomes, but not to identify post-translational modifications. Here, we quantitatively compared the phosphoproteome of isolated mitotic chromosomes with that of chromosomes in nonsynchronized cells. We identified 4274 total phosphorylation sites and 350 mitosis-specific phosphorylation sites in mitotic chromosome-associated proteins. Significant mitosis-specific phosphorylation in centromere/kinetochore proteins was detected, although the chromosomal association of these proteins did not change throughout the cell cycle. This mitosis-specific phosphorylation might play a key role in regulation of mitosis. Further analysis revealed strong dependency of phosphorylation dynamics on kinase consensus patterns, thus linking the identified phosphorylation sites to known key mitotic kinases. Remarkably, chromosomal axial proteins such as non-SMC subunits of condensin, TopoIIα, and Kif4A, together with the chromosomal periphery protein Ki67 involved in the establishment of the mitotic chromosomal structure, demonstrated high phosphorylation during mitosis. These findings suggest a novel mechanism for regulation of chromosome restructuring in mitosis via protein phosphorylation. Our study generated a large quantitative database on protein phosphorylation in mitotic and nonmitotic chromosomes, thus providing insights into the dynamics of chromatin protein phosphorylation at mitosis onset.

  9. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning.

    PubMed

    Howard, Jonathon; Garzon-Coral, Carlos

    2017-11-01

    Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells. © 2017 The Authors. BioEssays published by Wiley Periodicals, Inc.

  10. Modulation of vinblastine cytotoxicity by dilantin (phenytoin) or the protein phosphatase inhibitor okadaic acid involves the potentiation of anti-mitotic effects and induction of apoptosis in human tumour cells.

    PubMed Central

    Kawamura, K. I.; Grabowski, D.; Weizer, K.; Bukowski, R.; Ganapathi, R.

    1996-01-01

    Cellular insensitivity to vinca alkaloids is suggested to be primarily due to drug efflux by P-glycoprotein (P-gp). The anti-epileptic phenytoin (DPH), which does not bind to P-gp, can selectively enhance vincristine (VCR) cytotoxicity in wild-type (WT) or multidrug-resistant (MDR) cells. We now demonstrate that the protein phosphatase inhibitor okadaic acid (OKA) can mimic the effect of DPH by selectively enhancing cytotoxicity of vinblastine (VBL), but not taxol and doxorubicin, in human leukaemia HL-60 cells. Both DPH and OKA potentiate the anti-mitotic effects of VBL by enhanced damage to the mitotic spindle, resulting in prolonged growth arrest. Also, unlike VBL alone, in human leukaemia or non-small-cell lung carcinoma cells treated with VBL plus DPH, recovery from damage to the mitotic spindle is compromised in drug-free medium and cell death by apoptosis in interphase ensues. Since protein phosphatases are involved with the regulation of metaphase to anaphase transit of cells during the mitotic cycle, enhanced VBL cytotoxicity in the presence of DPH or OKA may involve effects during metaphase on the mitotic spindle tubulin leading to growth arrest and apoptosis in interphase. These novel results suggest that DPH or OKA could be powerful tools to study cellular effects of vinca alkaloids and possibly for the development of novel therapeutic strategies. Images Figure 6 PMID:8546904

  11. Mitotic control of human papillomavirus genome-containing cells is regulated by the function of the PDZ-binding motif of the E6 oncoprotein.

    PubMed

    Marsh, Elizabeth K; Delury, Craig P; Davies, Nicholas J; Weston, Christopher J; Miah, Mohammed A L; Banks, Lawrence; Parish, Joanna L; Higgs, Martin R; Roberts, Sally

    2017-03-21

    The function of a conserved PDS95/DLG1/ZO1 (PDZ) binding motif (E6 PBM) at the C-termini of E6 oncoproteins of high-risk human papillomavirus (HPV) types contributes to the development of HPV-associated malignancies. Here, using a primary human keratinocyte-based model of the high-risk HPV18 life cycle, we identify a novel link between the E6 PBM and mitotic stability. In cultures containing a mutant genome in which the E6 PBM was deleted there was an increase in the frequency of abnormal mitoses, including multinucleation, compared to cells harboring the wild type HPV18 genome. The loss of the E6 PBM was associated with a significant increase in the frequency of mitotic spindle defects associated with anaphase and telophase. Furthermore, cells carrying this mutant genome had increased chromosome segregation defects and they also exhibited greater levels of genomic instability, as shown by an elevated level of centromere-positive micronuclei. In wild type HPV18 genome-containing organotypic cultures, the majority of mitotic cells reside in the suprabasal layers, in keeping with the hyperplastic morphology of the structures. However, in mutant genome-containing structures a greater proportion of mitotic cells were retained in the basal layer, which were often of undefined polarity, thus correlating with their reduced thickness. We conclude that the ability of E6 to target cellular PDZ proteins plays a critical role in maintaining mitotic stability of HPV infected cells, ensuring stable episome persistence and vegetative amplification.

  12. Significance and outcome of nuclear anaplasia and mitotic index in prostatic adenocarcinomas.

    PubMed

    Kır, Gozde; Sarbay, Billur Cosan; Gumus, Eyup

    2016-10-01

    The Gleason grading system measures architectural differentiation and disregards nuclear atypia and the cell proliferation index. Several studies have reported that nuclear grade and mitotic index (MI) are prognostically useful. This study included 232 radical prostatectomy specimens. Nuclear anaplasia (NA) was determined on the basis of nucleomegali (at least 20µm); vesicular chromatin; eosinophilic macronucleoli, nuclear lobulation, and irregular thickened nuclear membranei. The proportion of area of NA was recorded in each tumor in 10% increments. The MI was defined as the number of mitotic figures in 10 consecutive high-power fields (HPF). In univariate analysis, significant differences included associations between biochemical prostate-specific antigen recurrence (BCR) and Gleason score, extraprostatic extension, positive surgical margin, the presence of high-pathologic stage, NA≥10% of tumor area, MI≥3/10 HPF, and preoperative prostate-specific antigen. In a stepwise Cox regression model, a positive surgical margin, the presence of a NA≥10% of tumor area, and a MI of≥3/10 HPF were independent predictors of BCR after radical prostatectomy. NA≥10% of tumor area appeared to have a stronger association with outcome than MI≥3/10 HPF, as still associated with BCR when Gleason score was in the model. The results of our study showed that, in addition to the conventional Gleason grading system, NA, and MI are useful prognostic parameters while evaluating long-term prognosis in prostatic adenocarcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit

    PubMed Central

    Onishi, Masayuki; Yeong, Foong May

    2016-01-01

    Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS) formation at the division site to drive acto-myosin ring (AMR) constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p) neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit. PMID:27447488

  14. O-Linked N-Acetylglucosamine Cycling Regulates Mitotic Spindle Organization*

    PubMed Central

    Tan, Ee Phie; Caro, Sarah; Potnis, Anish; Lanza, Christopher; Slawson, Chad

    2013-01-01

    Any defects in the correct formation of the mitotic spindle will lead to chromosomal segregation errors, mitotic arrest, or aneuploidy. We demonstrate that O-linked N-acetylglucosamine (O-GlcNAc), a post-translational modification of serine and threonine residues in nuclear and cytoplasmic proteins, regulates spindle function. In O-GlcNAc transferase or O-GlcNAcase gain of function cells, the mitotic spindle is incorrectly assembled. Chromosome condensation and centrosome assembly is impaired in these cells. The disruption in spindle architecture is due to a reduction in histone H3 phosphorylation by Aurora kinase B. However, gain of function cells treated with the O-GlcNAcase inhibitor Thiamet-G restored the assembly of the spindle and partially rescued histone phosphorylation. Together, these data suggest that the coordinated addition and removal of O-GlcNAc, termed O-GlcNAc cycling, regulates mitotic spindle organization and provides a potential new perspective on how O-GlcNAc regulates cellular events. PMID:23946484

  15. Mitotic trafficking of silicon microparticles†

    PubMed Central

    Serda, Rita E.; Ferrati, Silvia; Godin, Biana; Tasciotti, Ennio; Liu, XueWu

    2010-01-01

    Multistage carriers were recently introduced by our laboratory, with the concurrent objectives of co-localized delivery of multiple therapeutic agents, the “theranostic” integration of bioactive moieties with imaging contrast, and the selective, potentially personalized bypassing of the multiplicity of biological barriers that adversely impact biodistribution of vascularly injected particulates. Mesoporous (“nanoporous”) silicon microparticles were selected as primary carriers in multi-stage devices, with targets including vascular endothelia at pathological lesions. The objective of this study was to evaluate biocompatibility of mesoporous silicon microparticles with endothelial cells using in vitro assays with an emphasis on microparticle compatibility with mitotic events. We observed that vascular endothelial cells, following internalization of silicon microparticles, maintain cellular integrity, as demonstrated by cellular morphology, viability and intact mitotic trafficking of vesicles bearing silicon microparticles. The presence of gold or iron oxide nanoparticles within the porous matrix did not alter the cellular uptake of particles or the viability of endothelial cells subsequent to engulfment of microparticles. Endothelial cells maintained basal levels of IL-6 and IL-8 release in the presence of silicon microparticles. This is the first study that demonstrates polarized, ordered partitioning of endosomes based on tracking microparticles. The finding that mitotic sorting of endosomes is unencumbered by the presence of nanoporous silicon microparticles advocates the use of silicon microparticles for biomedical applications. PMID:20644846

  16. Systems cell biology of the mitotic spindle.

    PubMed

    Saleem, Ramsey A; Aitchison, John D

    2010-01-11

    Cell division depends critically on the temporally controlled assembly of mitotic spindles, which are responsible for the distribution of duplicated chromosomes to each of the two daughter cells. To gain insight into the process, Vizeacoumar et al., in this issue (Vizeacoumar et al. 2010. J. Cell Biol. doi:10.1083/jcb.200909013), have combined systems genetics with high-throughput and high-content imaging to comprehensively identify and classify novel components that contribute to the morphology and function of the mitotic spindle.

  17. Mcl-1 dynamics influence mitotic slippage and death in mitosis.

    PubMed

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-02-02

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.

  18. Phosphohistone-H3 (PHH3) is prognostic relevant in Merkel cell carcinomas but Merkel cell polyomavirus is a more powerful prognostic factor than AJCC clinical stage, PHH3, Ki-67 or mitotic indices.

    PubMed

    Iwasaki, Takeshi; Matsushita, Michiko; Nonaka, Daisuke; Kato, Masako; Nagata, Keiko; Murakami, Ichiro; Hayashi, Kazuhiko

    2015-08-01

    Merkel cell carcinomas (MCCs) associated with Merkel cell polyomavirus (MCPyV) have better prognosis than those without MCPyV. The relationship between mitotic index (MI) and MCC outcome has remained elusive because of the difficulty in differentiating mitotic cells from apoptotic ones. We evaluated the role of phosphohistone-H3 (PHH3) (Ser10), a new mitotic count biomarker, in MCPyV-positive or -negative MCC patients, and assessed its prognostic value in comparison to Ki-67 labeling index or MI using hematoxylin and eosin (HE) staining. We compared the prognostic value of PHH3 mitotic index with that of MI by HE in 19 MCPyV-positive and 9 MCPyV-negative MCC patients. PHH3-positive immunoreactivity was mostly observed in mitotic figures. Multivariate analysis significantly showed that MCPyV status (HR, 0.004; 95% CI 0.0003-0.058) and the American Joint Committee of Cancer (AJCC) stage (HR, 5.02; 95% CI 1.23-20.51) were observed as significantly independent prognostic factors for OS. PHH3-positive cell counts/10 HPF was a slightly significant independent prognostic factor for OS (HR, 4.96; 95% CI 0.93-26.55). PHH3-positive MI and MCPyV status in MCC patients are useful in prognostication, although MCPyV-infection is a more powerful prognostic factor in MCCs than the AJCC scheme on proliferation or mitotic indices. © 2015 Japanese Society of Pathology and Wiley Publishing Asia Pty Ltd.

  19. Abnormal electroretinogram associated with developmental brain anomalies.

    PubMed Central

    Cibis, G W; Fitzgerald, K M

    1995-01-01

    PURPOSE: We have encountered abnormal ERGs associated with optic nerve hypoplasia, macular, optic nerve and chorioretinal colobomata and developmental brain anomalies. Brain anomalies include cortical dysgenesis, lissencephaly, porencephaly, cerebellar and corpus callosum hypoplasia. We describe six exemplar cases. METHODS: Scotopic and photopic ERGs adherent to international standards were performed as well as photopic ERGs to long-duration stimuli. CT or MRI studies were also done. The ERGs were compared to age-matched normal control subjects. RESULTS: ERG changes include reduced amplitude b-waves to blue and red stimuli under scotopic testing conditions. Implicit times were often delayed. The photopic responses also showed reduced amplitude a- and b-waves with implicit time delays. The long-duration photopic ERG done in one case shows attenuation of both ON- and OFF-responses. CONCLUSIONS: Common underlying developmental genetic or environmental unifying casualties are speculated to be at fault in causing these cases of associated retinal and brain abnormalities. No single etiology is expected. Multiple potential causes acting early in embryogenesis effecting neuronal induction, migration and differentiation are theorized. These occur at a time when brain and retinal cells are sufficiently undifferentiated to be similarly effected. We call these cases examples of Brain Retina Neuroembryodysgenesis (BRNED). Homeobox and PAX genes with global neuronal developmental influences are gene candidates to unify the observed disruption of brain and retinal cell development. The ERG can provide a valuable clinical addition in understanding and ultimately classifying these disorders. Images FIGURE 1 FIGURE 4 FIGURE 5 FIGURE 6 FIGURE 7 FIGURE 8 PMID:8719676

  20. Xanthium strumarium extract inhibits mammalian cell proliferation through mitotic spindle disruption mediated by xanthatin.

    PubMed

    Sánchez-Lamar, Angel; Piloto-Ferrer, Janet; Fiore, Mario; Stano, Pasquale; Cozzi, Renata; Tofani, Daniela; Cundari, Enrico; Francisco, Marbelis; Romero, Aylema; González, Maria L; Degrassi, Francesca

    2016-12-24

    Xanthium strumarium L. is a member of the Asteraceae family popularly used with multiple therapeutic purposes. Whole extracts of this plant have shown anti-mitotic activity in vitro suggesting that some components could induce mitotic arrest in proliferating cells. Aim of the present work was to characterize the anti-mitotic properties of the X. strumarium whole extract and to isolate and purify active molecule(s). The capacity of the whole extract to inhibit mitotic progression in mammalian cultured cells was investigated to identify its anti-mitotic activity. Isolation of active component(s) was performed using a bioassay-guided multistep separation procedure in which whole extract was submitted to a progressive process of fractionation and fractions were challenged for their anti-mitotic activity. Our results show for the first time that X. strumarium whole extract inhibits assembly of the mitotic spindle and spindle-pole separation, thereby heavily affecting mitosis, impairing the metaphase to anaphase transition and inducing apoptosis. The purification procedure led to a fraction with an anti-mitotic activity comparable to that of the whole extract. Chemical analysis of this fraction showed that its major component was xanthatin. The present work shows a new activity of X. strumarium extract, i.e. the alteration of the mitotic apparatus in cultured cells that may be responsible for the anti-proliferative activity of the extract. Anti-mitotic activity is shown to be mainly exerted by xanthatin. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. The bipolar assembly domain of the mitotic motor kinesin-5

    PubMed Central

    Acar, Seyda; Carlson, David B.; Budamagunta, Madhu S.; Yarov-Yarovoy, Vladimir; Correia, John J.; Niñonuevo, Milady R.; Jia, Weitao; Tao, Li; Leary, Julie A.; Voss, John C.; Evans, James E.; Scholey, Jonathan M.

    2013-01-01

    An outstanding unresolved question is how does the mitotic spindle utilize microtubules and mitotic motors to coordinate accurate chromosome segregation during mitosis? This process depends upon the mitotic motor, kinesin-5, whose unique bipolar architecture, with pairs of motor domains lying at opposite ends of a central rod, allows it to crosslink microtubules within the mitotic spindle and to coordinate their relative sliding during spindle assembly, maintenance and elongation. The structural basis of kinesin-5’s bipolarity is, however, unknown, as protein asymmetry has so far precluded its crystallization. Here we use electron microscopy of single molecules of kinesin-5 and its subfragments, combined with hydrodynamic analysis plus mass spectrometry, circular dichroism and site-directed spin label electron paramagnetic resonance spectroscopy, to show how a staggered antiparallel coiled-coil ‘BASS’ (bipolar assembly) domain directs the assembly of four kinesin-5 polypeptides into bipolar minifilaments. PMID:23299893

  2. Nuclear Chk1 prevents premature mitotic entry.

    PubMed

    Matsuyama, Makoto; Goto, Hidemasa; Kasahara, Kousuke; Kawakami, Yoshitaka; Nakanishi, Makoto; Kiyono, Tohru; Goshima, Naoki; Inagaki, Masaki

    2011-07-01

    Chk1 inhibits the premature activation of the cyclin-B1-Cdk1. However, it remains controversial whether Chk1 inhibits Cdk1 in the centrosome or in the nucleus before the G2-M transition. In this study, we examined the specificity of the mouse monoclonal anti-Chk1 antibody DCS-310, with which the centrosome was stained. Conditional Chk1 knockout in mouse embryonic fibroblasts reduced nuclear but not centrosomal staining with DCS-310. In Chk1(+/myc) human colon adenocarcinoma (DLD-1) cells, Chk1 was detected in the nucleus but not in the centrosome using an anti-Myc antibody. Through the combination of protein array and RNAi technologies, we identified Ccdc-151 as a protein that crossreacted with DCS-310 on the centrosome. Mitotic entry was delayed by expression of the Chk1 mutant that localized in the nucleus, although forced immobilization of Chk1 to the centrosome had little impact on the timing of mitotic entry. These results suggest that nuclear but not centrosomal Chk1 contributes to correct timing of mitotic entry.

  3. Epigenetic Characteristics of the Mitotic Chromosome in 1D and 3D

    PubMed Central

    Oomen, Marlies E.; Dekker, Job

    2017-01-01

    While chromatin characteristics in interphase are widely studied, characteristics of mitotic chromatin and their inheritance through mitosis are still poorly understood. During mitosis chromatin undergoes dramatic changes: Transcription stalls, chromatin binding factors leave the chromatin, histone modifications change and chromatin becomes highly condensed. Many key insights into mitotic chromosome state and conformation have come from extensive microscopy studies over the last century. Over the last decade the development of 3C-based techniques has enabled the study of higher order chromosome organization during mitosis in a genome-wide manner. During mitosis chromosomes lose their cell type specific and locus-dependent chromatin organization that characterizes interphase chromatin and fold into randomly positioned loop arrays. Upon exit of mitosis cells are capable of quickly rearranging the chromosome conformation to form the cell type specific interphase organization again. The information that enables this rearrangement after mitotic exit is thought to be encoded at least in part in mitotic bookmarks, e.g. histone modifications and variants, histone remodelers, chromatin factors and non-coding RNA. Here we give an overview of the chromosomal organization and epigenetic characteristics of the interphase and mitotic chromatin in vertebrates. Second, we describe different ways in which mitotic bookmarking enables epigenetic memory of the features of the interphase chromatin through mitosis. And third, we explore the role of epigenetic modifications and mitotic bookmarking in cell differentiation. PMID:28228067

  4. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahayu, Retno; Ohsaki, Eriko; Omori, Hiroko

    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy–electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres,more » and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. - Highlights: • This is the first report showing LANA dots on mitotic chromosomes by fluorescent microscopy followed by electron microscopy. • LANA dots localized randomly on condensed chromosomes other than centromere/pericentromere and telomere/peritelomre. • Cellular mitotic checkpoint should not be always involved in the segregation of KSHV genomes in the latency.« less

  5. Inhibition of Bcl-xL sensitizes cells to mitotic blockers, but not mitotic drivers

    PubMed Central

    Bennett, Ailsa; Sloss, Olivia; Topham, Caroline; Nelson, Louisa; Tighe, Anthony

    2016-01-01

    Cell fate in response to an aberrant mitosis is governed by two competing networks: the spindle assembly checkpoint (SAC) and the intrinsic apoptosis pathway. The mechanistic interplay between these two networks is obscured by functional redundancy and the ability of cells to die either in mitosis or in the subsequent interphase. By coupling time-lapse microscopy with selective pharmacological agents, we systematically probe pro-survival Bcl-xL in response to various mitotic perturbations. Concentration matrices show that BH3-mimetic-mediated inhibition of Bcl-xL synergises with perturbations that induce an SAC-mediated mitotic block, including drugs that dampen microtubule dynamics, and inhibitors targeting kinesins and kinases required for spindle assembly. By contrast, Bcl-xL inhibition does not synergize with drugs which drive cells through an aberrant mitosis by overriding the SAC. This differential effect, which is explained by compensatory Mcl-1 function, provides opportunities for patient stratification and combination treatments in the context of cancer chemotherapy. PMID:27512141

  6. Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments

    NASA Astrophysics Data System (ADS)

    Nam, Sungmin; Chaudhuri, Ovijit

    2018-06-01

    During mitosis, or cell division, mammalian cells undergo extensive morphological changes, including elongation along the mitotic axis, which is perpendicular to the plane that bisects the two divided cells. Although much is known about the intracellular dynamics of mitosis, it is unclear how cells are able to divide in tissues, where the changes required for mitosis are mechanically constrained by surrounding cells and extracellular matrix. Here, by confining cells three dimensionally in hydrogels, we show that dividing cells generate substantial protrusive forces that deform their surroundings along the mitotic axis, clearing space for mitotic elongation. When forces are insufficient to create space for mitotic elongation, mitosis fails. We identify one source of protrusive force as the elongation of the interpolar spindle, an assembly of microtubules aligned with the mitotic axis. Another source of protrusive force is shown to be contraction of the cytokinetic ring, the polymeric structure that cleaves a dividing cell at its equator, which drives expansion along the mitotic axis. These findings reveal key functions for the interpolar spindle and cytokinetic ring in protrusive extracellular force generation, and explain how dividing cells overcome mechanical constraints in confining microenvironments, including some types of tumour.

  7. Anti-mitotic agents: Are they emerging molecules for cancer treatment?

    PubMed

    Penna, Larissa Siqueira; Henriques, João Antonio Pêgas; Bonatto, Diego

    2017-05-01

    Mutations in cancer cells frequently result in cell cycle alterations that lead to unrestricted growth compared to normal cells. Considering this phenomenon, many drugs have been developed to inhibit different cell-cycle phases. Mitotic phase targeting disturbs mitosis in tumor cells, triggers the spindle assembly checkpoint and frequently results in cell death. The first anti-mitotics to enter clinical trials aimed to target tubulin. Although these drugs improved the treatment of certain cancers, and many anti-microtubule compounds are already approved for clinical use, severe adverse events such as neuropathies were observed. Since then, efforts have been focused on the development of drugs that also target kinases, motor proteins and multi-protein complexes involved in mitosis. In this review, we summarize the major proteins involved in the mitotic phase that can also be targeted for cancer treatment. Finally, we address the activity of anti-mitotic drugs tested in clinical trials in recent years. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Mitotic rate is associated with positive lymph nodes in patients with thin melanomas.

    PubMed

    Wheless, Lee; Isom, Chelsea A; Hooks, Mary A; Kauffmann, Rondi M

    2018-05-01

    The American Joint Commission on Cancer will remove mitotic rate from its staging guidelines in 2018. Using a large nationally representative cohort, we examined the association between mitotic rate and lymph node positivity among thin melanomas. A total of 149,273 thin melanomas in the National Cancer Database were examined for their association of high-risk features of mitotic rate, ulceration, and Breslow depth with lymph node status. Among 17,204 patients with thin melanomas with data on Breslow depth, ulceration, and mitotic rate who underwent a lymph node biopsy, there was a strong linear relationship between odds of having a positive lymph node and mitotic rate (R 2  = 0.96, P < .0001, β = 3.31). The odds of having a positive node increased by 19% with each 1-point increase in mitotic rate (odds ratio, 1.19; 95% confidence interval, 1.17-1.21). Cases with negative nodes had a mean mitotic rate of 1.54 plus or minus 2.07 mitoses/mm 2 compared with 3.30 plus or minus 3.54 mitoses/mm 2 for those with positive nodes (P < .0001). The data collected do not allow for survival analyses. Mitotic rate was strongly associated with the odds of having a positive lymph node and should continue to be reported on pathology reports. Copyright © 2017 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  9. Mechanisms and Regulation of Mitotic Recombination in Saccharomyces cerevisiae

    PubMed Central

    Symington, Lorraine S.; Rothstein, Rodney; Lisby, Michael

    2014-01-01

    Homology-dependent exchange of genetic information between DNA molecules has a profound impact on the maintenance of genome integrity by facilitating error-free DNA repair, replication, and chromosome segregation during cell division as well as programmed cell developmental events. This chapter will focus on homologous mitotic recombination in budding yeast Saccharomyces cerevisiae. However, there is an important link between mitotic and meiotic recombination (covered in the forthcoming chapter by Hunter et al. 2015) and many of the functions are evolutionarily conserved. Here we will discuss several models that have been proposed to explain the mechanism of mitotic recombination, the genes and proteins involved in various pathways, the genetic and physical assays used to discover and study these genes, and the roles of many of these proteins inside the cell. PMID:25381364

  10. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  11. Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex

    PubMed Central

    Vicente, Juan-Jesus; Cande, W. Zacheus

    2014-01-01

    The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered. PMID:25057014

  12. How do fission yeast cells grow and connect growth to the mitotic cycle?

    PubMed

    Sveiczer, Ákos; Horváth, Anna

    2017-05-01

    To maintain size homeostasis in a unicellular culture, cells should coordinate growth to the division cycle. This is achieved via size control mechanisms (also known as size checkpoints), i.e. some events during the mitotic cycle supervene only if the cell has reached a critical size. Rod-shaped cells like those of fission yeast are ideal model organisms to study these checkpoints via time-lapse microphotography. By applying this method, once we can analyse the growth process between two consecutive divisions at a single (or even at an 'average') cellular level, moreover, we can also position the size checkpoint(s) at the population level. Finally, any of these controls can be abolished in appropriate cell cycle mutants, either in steady-state or in induction synchronised cultures. In the latter case, we produce abnormally oversized cells, and microscopic experiments with them clearly show the existence of a critical size above which the size checkpoint ceases (becomes cryptic). In this review, we delineate the development of our knowledge both on the growth mode of fission yeast and on the operating size control(s) during its mitotic cycle. We finish these historical stories with our recent findings, arguing that three different size checkpoints exist in the fission yeast cell cycle, namely in late G1, in mid G2 and in late G2, which has been concluded by analysing these controls in several cell cycle mutants.

  13. Activation of Meiosis-Specific Genes is Associated with Depolyploidization of Human Tumor Cells Following Radiation-Induced Mitotic Catastrophe

    PubMed Central

    Ianzini, Fiorenza; Kosmacek, Elizabeth A.; Nelson, Elke S.; Napoli, Eleonora; Erenpreisa, Jekaterina; Kalejs, Martins; Mackey, Michael A.

    2009-01-01

    Cancer is frequently characterized histologically by the appearance of large cells that are either aneuploid or polyploid. Aneuploidy and polyploidy are hallmarks of radiation-induced mitotic catastrophe (MC), a common phenomenon occurring in tumor cells with impaired p53 function exposed to various cytotoxic and genotoxic agents. MC is characterized by altered expression of mitotic regulators, untimely and abnormal cell division, delayed DNA damage, and changes in morphology. We report here that cells undergoing radiation-induced MC are more plastic with regards to ploidy and that this plasticity allows them to reorganize their genetic material through reduction divisions to produce smaller cells morphologically indistinguishable from control cells. Experiments conducted with the Large Scale Digital Cell Analysis System (LSDCAS) are discussed that show that a small fraction of polyploid cancer cells formed via radiation-induced MC can survive and start a process of depolyploidization that yields various outcomes. While most multipolar divisions failed and cell fusion occurred; some of these divisions were successful and originated a variety of cell progeny characterized by different ploidy. Among these ploidy phenotypes, a progeny of small mononucleated cells, indistinguishable from the untreated control cells, is often seen. We report here evidence that meiosis-specific genes are expressed in the polyploid cells during depolyploidization. Tumor cells might take advantage of the temporary change from a pro-mitotic to a pro-meiotic division regimen to facilitate depolyploidization and restore the proliferative state of the tumor cell population. These events might be mechanisms by which tumor progression and resistance to treatment occur in vivo. PMID:19258501

  14. Mitotic Recombination and Genetic Changes in Saccharomyces cerevisiae during Wine Fermentation

    PubMed Central

    Puig, Sergi; Querol, Amparo; Barrio, Eladio; Pérez-Ortín, José E.

    2000-01-01

    Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3 homozygotes were detected at a rate of 1 × 10−5 to 3 × 10−5 per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis. PMID:10788381

  15. Inhibition of intra-Golgi transport in vitro by mitotic kinase.

    PubMed

    Stuart, R A; Mackay, D; Adamczewski, J; Warren, G

    1993-02-25

    It has previously been shown that exocytic and endocytic membrane traffic are inhibited in mitotic mammalian cells. Here we have used a cell-free intra-Golgi transport assay supplemented with heterologous cytosols to mimic this effect in vitro. Cytosols with high histone kinase activity, made either from mitotic cells or by cyclin A treatment of interphase cells, inhibited intra-Golgi transport by up to 75%. Inhibition of transport was reversed by the kinase inhibitor staurosporine or by reduction in ATP levels leading to inactivation of histone kinase. The data indicate that cell cycle control of intra-Golgi transport is due to a reversible modification of cytosol, and this assay system may be used to study the molecular mechanism of mitotic transport inhibition in mammalian cells.

  16. The NIMA Kinase Is Required To Execute Stage-Specific Mitotic Functions after Initiation of Mitosis

    PubMed Central

    Govindaraghavan, Meera; Lad, Alisha A.

    2014-01-01

    The G2-M transition in Aspergillus nidulans requires the NIMA kinase, the founding member of the Nek kinase family. Inactivation of NIMA results in a late G2 arrest, while overexpression of NIMA is sufficient to promote mitotic events independently of cell cycle phase. Endogenously tagged NIMA-GFP has dynamic mitotic localizations appearing first at the spindle pole body and then at nuclear pore complexes before transitioning to within nuclei and the mitotic spindle and back at the spindle pole bodies at mitotic exit, suggesting that it functions sequentially at these locations. Since NIMA is indispensable for mitotic entry, it has been difficult to determine the requirement of NIMA for subaspects of mitosis. We show here that when NIMA is partially inactivated, although mitosis can be initiated, a proportion of cells fail to successfully generate two daughter nuclei. We further define the mitotic defects to show that normal NIMA function is required for the formation of a bipolar spindle, nuclear pore complex disassembly, completion of chromatin segregation, and the normal structural rearrangements of the nuclear envelope required to generate two nuclei from one. In the remaining population of cells that enter mitosis with inadequate NIMA, two daughter nuclei are generated in a manner dependent on the spindle assembly checkpoint, indicating highly penetrant defects in mitotic progression without sufficient NIMA activity. This study shows that NIMA is required not only for mitotic entry but also sequentially for successful completion of stage-specific mitotic events. PMID:24186954

  17. Mechanism of APC/CCDC20 activation by mitotic phosphorylation.

    PubMed

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A; Brunner, Michael R; Davidson, Iain F; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A; Peters, Jan-Michael

    2016-05-10

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/C(CDC20) activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/C(CDC20) activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/C(CDC20) activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis.

  18. Mechanism of APC/CCDC20 activation by mitotic phosphorylation

    PubMed Central

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G.; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A.; Brunner, Michael R.; Davidson, Iain F.; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2016-01-01

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  19. Grading system for blood vessel tumor emboli of invasive ductal carcinoma of the breast.

    PubMed

    Sugiyama, Michiko; Hasebe, Takahiro; Shimada, Hiroko; Takeuchi, Hideki; Shimizu, Kyoko; Shimizu, Michio; Yasuda, Masanori; Ueda, Shigeto; Shigekawa, Takashi; Osaki, Akihiko; Saeki, Toshiaki

    2015-06-01

    We previously reported that the number of mitotic and apoptotic figures in tumor cells in blood vessel tumor emboli had the greatest significant power for the accurate prediction of the outcome of patients with invasive ductal carcinoma of the breast. The purpose of the present study was to devise a grading system for blood vessel tumor emboli based on the mitotic and apoptotic figures of tumor cells in blood vessel tumor emboli, enabling accurate prediction of the outcome of patients with invasive ductal carcinoma of the breast. We classified 263 invasive ductal carcinomas into the following 3 grades according to the numbers of mitotic and apoptotic figures in tumor cells located in blood vessels within 1 high-power field: grade 0, no blood vessel invasion; grade 1, absence of mitotic figures and presence of any number of apoptotic figures, or 1 mitotic figure and 0 to 2 apoptotic figures; and grade 2, 1 mitotic figure and 3 or more apoptotic figures, or 2 or more mitotic figures and 1 or more apoptotic figures. Multivariate analyses with well-known prognostic factors demonstrated that grade 2 blood vessel tumor emboli significantly increased the hazard ratios for tumor recurrence independent of the nodal status, pathological TNM stage, hormone receptor status, or HER2 status. The presently reported grading system for blood vessel tumor emboli is the strongest histologic factor for accurate prediction of the outcome of patients with invasive ductal carcinoma of the breast. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Repeated furrow formation from a single mitotic apparatus in cylindrical sand dollar eggs.

    PubMed

    Rappaport, R

    1985-04-01

    The methods used previously to demonstrate the ability of a single mitotic apparatus to elicit multiple furrows involved considerable cell distortion and did not permit the investigator to control the positioning of the parts or to observe satisfactorily the early stages of furrow development. In this investigation, Echinarachnius parma eggs were confined in 82 microns i.d. transparent, silicone rubber-walled capillaries, and the mitotic apparatus was moved by pushing the poles inward with 55-microns-diameter glass balls. When the mitotic apparatus was shifted immediately after the furrow first appeared, a new furrow appeared in the normal relation to the new position in 1-2 minutes. The same mitotic apparatus could elicit up to 13 furrows as it was shifted back and forth by alternately pushing in the poles. The previous furrow regressed as the new furrow developed. The operations protracted the furrow establishment period to as long as 24.5 minutes after establishment of the first furrow. The characteristics of furrow regression were related to the distance the mitotic apparatus was moved. It is unlikely that regression was caused either by stress imposed on the surface or the removal of the mitotic apparatus from the vicinity of the furrow.

  1. Centromeric Barrier Disruption Leads to Mitotic Defects in Schizosaccharomyces pombe

    PubMed Central

    Gaither, Terilyn L.; Merrett, Stephanie L.; Pun, Matthew J.; Scott, Kristin C.

    2014-01-01

    Centromeres are cis-acting chromosomal domains that direct kinetochore formation, enabling faithful chromosome segregation and preserving genome stability. The centromeres of most eukaryotic organisms are structurally complex, composed of nonoverlapping, structurally and functionally distinct chromatin subdomains, including the specialized core chromatin that underlies the kinetochore and pericentromeric heterochromatin. The genomic and epigenetic features that specify and preserve the adjacent chromatin subdomains critical to centromere identity are currently unknown. Here we demonstrate that chromatin barriers regulate this process in Schizosaccharomyces pombe. Reduced fitness and mitotic chromosome segregation defects occur in strains that carry exogenous DNA inserted at centromere 1 chromatin barriers. Abnormal phenotypes are accompanied by changes in the structural integrity of both the centromeric core chromatin domain, containing the conserved CENP-ACnp1 protein, and the flanking pericentric heterochromatin domain. Barrier mutant cells can revert to wild-type growth and centromere structure at a high frequency after the spontaneous excision of integrated exogenous DNA. Our results reveal a previously undemonstrated role for chromatin barriers in chromosome segregation and in the prevention of genome instability. PMID:24531725

  2. Disappearance of nucleosome positioning in mitotic chromatin in vivo.

    PubMed

    Komura, Jun-ichiro; Ono, Tetsuya

    2005-04-15

    During mitosis, transcription is silenced and most transcription factors are displaced from their recognition sequences. By in vivo footprinting analysis, we have confirmed and extended previous studies showing loss of transcription factors from an RNA polymerase II promoter (c-FOS) and, for the first time, an RNA polymerase III promoter (U6) in HeLa cells. Because little was known about nucleosomal organization in mitotic chromosomes, we performed footprinting analysis for nucleosomes on these promoters in interphase and mitotic cells. During interphase, each of the promoters had a positioned nucleosome in the region intervening between proximal promoter elements and distal enhancer elements, but the strong nucleosome positioning disappeared during mitosis. Thus, the nucleosomal organization that appears to facilitate transcription in interphase cells may be lost in mitotic cells, and nucleosome positioning during mitosis does not seem to be a major component of the epigenetic mechanisms to mark genes for rapid reactivation after this phase.

  3. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores.

    PubMed

    Zhang, Xiaojuan; Ling, Youguo; Wang, Wenjun; Zhang, Yanhong; Ma, Qingjun; Tan, Pingping; Song, Ting; Wei, Congwen; Li, Ping; Liu, Xuedong; Ma, Runlin Z; Zhong, Hui; Cao, Cheng; Xu, Quanbin

    2013-04-15

    The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.

  4. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores

    PubMed Central

    Zhang, Xiaojuan; Ling, Youguo; Wang, Wenjun; Zhang, Yanhong; Ma, Qingjun; Tan, Pingping; Song, Ting; Wei, Congwen; Li, Ping; Liu, Xuedong; Ma, Runlin Z.; Zhong, Hui; Cao, Cheng; Xu, Quanbin

    2013-01-01

    The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase. PMID:23531678

  5. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes

    PubMed Central

    Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z.; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A.; Gerlich, Daniel W.

    2016-01-01

    Summary Eukaryotic genomes are partitioned into chromosomes, which during mitosis form compact and spatially well-separated mechanical bodies1–3.This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes4 and the discovery of proteins at the chromosome surface3,5,6, the molecular and biophysical basis of mitotic chromosome individuality have remained unclear. We report that Ki-67, a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of Ki-67 is not confined within a specific protein domain but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrical barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-color labeling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic for polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery and suggests that natural proteins can function as surfactants in intracellular compartmentalization. PMID:27362226

  6. The Notch pathway regulates the Second Mitotic Wave cell cycle independently of bHLH proteins.

    PubMed

    Bhattacharya, Abhishek; Li, Ke; Quiquand, Manon; Rimesso, Gerard; Baker, Nicholas E

    2017-11-15

    Notch regulates both neurogenesis and cell cycle activity to coordinate precursor cell generation in the differentiating Drosophila eye. Mosaic analysis with mitotic clones mutant for Notch components was used to identify the pathway of Notch signaling that regulates the cell cycle in the Second Mitotic Wave. Although S phase entry depends on Notch signaling and on the transcription factor Su(H), the transcriptional co-activator Mam and the bHLH repressor genes of the E(spl)-Complex were not essential, although these are Su(H) coactivators and targets during the regulation of neurogenesis. The Second Mitotic Wave showed little dependence on ubiquitin ligases neuralized or mindbomb, and although the ligand Delta is required non-autonomously, partial cell cycle activity occurred in the absence of known Notch ligands. We found that myc was not essential for the Second Mitotic Wave. The Second Mitotic Wave did not require the HLH protein Extra macrochaetae, and the bHLH protein Daughterless was required only cell-nonautonomously. Similar cell cycle phenotypes for Daughterless and Atonal were consistent with requirement for neuronal differentiation to stimulate Delta expression, affecting Notch activity in the Second Mitotic Wave indirectly. Therefore Notch signaling acts to regulate the Second Mitotic Wave without activating bHLH gene targets. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. A mitotic SKAP isoform regulates spindle positioning at astral microtubule plus ends

    PubMed Central

    Kern, David M.; Nicholls, Peter K.; Page, David C.

    2016-01-01

    The Astrin/SKAP complex plays important roles in mitotic chromosome alignment and centrosome integrity, but previous work found conflicting results for SKAP function. Here, we demonstrate that SKAP is expressed as two distinct isoforms in mammals: a longer, testis-specific isoform that was used for the previous studies in mitotic cells and a novel, shorter mitotic isoform. Unlike the long isoform, short SKAP rescues SKAP depletion in mitosis and displays robust microtubule plus-end tracking, including localization to astral microtubules. Eliminating SKAP microtubule binding results in severe chromosome segregation defects. In contrast, SKAP mutants specifically defective for plus-end tracking facilitate proper chromosome segregation but display spindle positioning defects. Cells lacking SKAP plus-end tracking have reduced Clasp1 localization at microtubule plus ends and display increased lateral microtubule contacts with the cell cortex, which we propose results in unbalanced dynein-dependent cortical pulling forces. Our work reveals an unappreciated role for the Astrin/SKAP complex as an astral microtubule mediator of mitotic spindle positioning. PMID:27138257

  8. Suspension of Mitotic Activity in Dentate Gyrus of the Hibernating Ground Squirrel

    PubMed Central

    Popov, Victor I.; Kraev, Igor V.; Ignat'ev, Dmitri A.; Stewart, Michael G.

    2011-01-01

    Neurogenesis occurs in the adult mammalian hippocampus, a region of the brain important for learning and memory. Hibernation in Siberian ground squirrels provides a natural model to study mitosis as the rapid fall in body temperature in 24 h (from 35-36°C to +4–6°C) permits accumulation of mitotic cells at different stages of the cell cycle. Histological methods used to study adult neurogenesis are limited largely to fixed tissue, and the mitotic state elucidated depends on the specific phase of mitosis at the time of day. However, using an immunohistochemical study of doublecortin (DCX) and BrdU-labelled neurons, we demonstrate that the dentate gyrus of the ground squirrel hippocampus contains a population of immature cells which appear to possess mitotic activity. Our data suggest that doublecortin-labelled immature cells exist in a mitotic state and may represent a renewable pool for generation of new neurons within the dentate gyrus. PMID:21773054

  9. [The effect of pemolin on the mitotic activity of Vicia faba L (author's transl)].

    PubMed

    Brabec, F; Röper, W

    1976-02-01

    The effect of diverse concentrations of 5-phenyl-2-imino-4-oxazolidone (PIO, pemolin, Tradon) on the mitotic activity in lateral roots of Vicia faba L. was studied by aerated and non-aerated hydrocultivation with and without mineral nutrition, respectively. With optimal conditions (aerated nutrient solution) weak PIO-concentrations, most significantly 10(-6) g/ml, effected a marked increase of the mitotic index. Contrarily, strong PIO-concentrations (10(-4) and 3 X 10(-4) g/ml = saturated solution) significantly decreased the mitotic index though simultaneously preserving the mitotic activity in long-term experiments, when on account of nutrient deficiency it had already collapsed in weak PIO-concentrations and the controls. The activating effect of weak PIO-concentrations compared with the controls is more significant in stress situations (nutrient deficiency, O2-deficiency) than under optimal conditions. Furthermore a slight acceleration of mid-mitotic phases (metaphase--anaphase) recognized by a marked decrease in percentage of these phases, can be stated with weak PIO-concentrations, again particularly so with 10(-6) g/ml. In total, dependent on concentration, pemolin presumably may either activate or suppress cell metabolism and particularly the mitotic cycle. The exact site of action of the substance is still unknown.

  10. Caspase 2 in mitotic catastrophe: The terminator of aneuploid and tetraploid cells.

    PubMed

    Vitale, Ilio; Manic, Gwenola; Castedo, Maria; Kroemer, Guido

    2017-01-01

    Mitotic catastrophe is an oncosuppressive mechanism that targets cells experiencing defective mitoses via the activation of specific cell cycle checkpoints, regulated cell death pathways and/or cell senescence. This prevents the accumulation of karyotypic aberrations, which otherwise may drive oncogenesis and tumor progression. Here, we summarize experimental evidence confirming the role of caspase 2 (CASP2) as the main executor of mitotic catastrophe, and we discuss the signals that activate CASP2 in the presence of mitotic aberrations. In addition, we summarize the main p53-dependent and -independent effector pathways through which CASP2 limits chromosomal instability and non-diploidy, hence mediating robust oncosuppressive functions.

  11. Mitotic chromosome condensation in vertebrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vagnarelli, Paola, E-mail: P.Vagnarelli@ed.ac.uk

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in themore » localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different

  12. EGF Induced Centrosome Separation Promotes Mitotic Progression and Cell Survival

    PubMed Central

    Mardin, Balca R.; Isokane, Mayumi; Cosenza, Marco R.; Krämer, Alwin; Ellenberg, Jan; Fry, Andrew M.; Schiebel, Elmar

    2014-01-01

    Summary Timely and accurate assembly of the mitotic spindle is critical for the faithful segregation of chromosomes and centrosome separation is a key step in this process. The timing of centrosome separation varies dramatically between cell types; however, the mechanisms responsible for these differences and its significance are unclear. Here, we show that activation of epidermal growth factor receptor (EGFR) signaling determines the timing of centrosome separation. Premature separation of centrosomes decreases the requirement for the major mitotic kinesin Eg5 for spindle assembly, accelerates mitosis and decreases the rate of chromosome missegregation. Importantly, EGF stimulation impacts upon centrosome separation and mitotic progression to different degrees in different cell lines. Cells with high EGFR levels fail to arrest in mitosis upon Eg5 inhibition. This has important implications for cancer therapy since cells with high centrosomal response to EGF are more susceptible to combinatorial inhibition of EGFR and Eg5. PMID:23643362

  13. Abnormal myocardial fluid retention as an early manifestation of ischemic injury.

    PubMed Central

    Willerson, J. T.; Scales, F.; Mukherjee, A.; Platt, M.; Templeton, G. H.; Fink, G. S.; Buja, L. M.

    1977-01-01

    . Thus, the data indicate that impaired cell volume regulation and interstitial fluid accumulation and focal structural defects in cell membrane integrity are early manifestations of ischemic injury followed by reflow, but fail to establish a major role for the abnormal fluid retention in altering coronary blood flow prior to the development of extensive myocardial necrosis. In contrast, fixed coronary occlusion for 60 minutes results in mild intracellular swelling but no significant interstitial edema and no obvious structural defects in cell membrane integrity. Images Figure 1 Figure 5 Figure 6 Figure 2 Figure 3 Figure 4 PMID:139829

  14. Radmis, a Novel Mitotic Spindle Protein that Functions in Cell Division of Neural Progenitors

    PubMed Central

    Yumoto, Takahito; Nakadate, Kazuhiko; Nakamura, Yuki; Sugitani, Yoshinobu; Sugitani-Yoshida, Reiko; Ueda, Shuichi; Sakakibara, Shin-ichi

    2013-01-01

    Developmental dynamics of neural stem/progenitor cells (NSPCs) are crucial for embryonic and adult neurogenesis, but its regulatory factors are not fully understood. By differential subtractive screening with NSPCs versus their differentiated progenies, we identified the radmis (radial fiber and mitotic spindle)/ckap2l gene, a novel microtubule-associated protein (MAP) enriched in NSPCs. Radmis is a putative substrate for the E3-ubiquitin ligase, anaphase promoting complex/cyclosome (APC/C), and is degraded via the KEN box. Radmis was highly expressed in regions of active neurogenesis throughout life, and its distribution was dynamically regulated during NSPC division. In embryonic and perinatal brains, radmis localized to bipolar mitotic spindles and radial fibers (basal processes) of dividing NSPCs. As central nervous system development proceeded, radmis expression was lost in most brain regions, except for several neurogenic regions. In adult brain, radmis expression persisted in the mitotic spindles of both slowly-dividing stem cells and rapid amplifying progenitors. Overexpression of radmis in vitro induced hyper-stabilization of microtubules, severe defects in mitotic spindle formation, and mitotic arrest. In vivo gain-of-function using in utero electroporation revealed that radmis directed a reduction in NSPC proliferation and a concomitant increase in cell cycle exit, causing a reduction in the Tbr2-positive basal progenitor population and shrinkage of the embryonic subventricular zone. Besides, radmis loss-of-function by shRNAs induced the multipolar mitotic spindle structure, accompanied with the catastrophe of chromosome segregation including the long chromosome bridge between two separating daughter nuclei. These findings uncover the indispensable role of radmis in mitotic spindle formation and cell-cycle progression of NSPCs. PMID:24260314

  15. Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model

    PubMed Central

    Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A.; Cifra, Michal

    2014-01-01

    The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells—a strategy used in novel methods for cancer treatment. PMID:24497952

  16. The structure of the mitotic spindle and nucleolus during mitosis in the amebo-flagellate Naegleria.

    PubMed

    Walsh, Charles J

    2012-01-01

    Mitosis in the amebo-flagellate Naegleria pringsheimi is acentrosomal and closed (the nuclear membrane does not break down). The large central nucleolus, which occupies about 20% of the nuclear volume, persists throughout the cell cycle. At mitosis, the nucleolus divides and moves to the poles in association with the chromosomes. The structure of the mitotic spindle and its relationship to the nucleolus are unknown. To identify the origin and structure of the mitotic spindle, its relationship to the nucleolus and to further understand the influence of persistent nucleoli on cellular division in acentriolar organisms like Naegleria, three-dimensional reconstructions of the mitotic spindle and nucleolus were carried out using confocal microscopy. Monoclonal antibodies against three different nucleolar regions and α-tubulin were used to image the nucleolus and mitotic spindle. Microtubules were restricted to the nucleolus beginning with the earliest prophase spindle microtubules. Early spindle microtubules were seen as short rods on the surface of the nucleolus. Elongation of the spindle microtubules resulted in a rough cage of microtubules surrounding the nucleolus. At metaphase, the mitotic spindle formed a broad band completely embedded within the nucleolus. The nucleolus separated into two discreet masses connected by a dense band of microtubules as the spindle elongated. At telophase, the distal ends of the mitotic spindle were still completely embedded within the daughter nucleoli. Pixel by pixel comparison of tubulin and nucleolar protein fluorescence showed 70% or more of tubulin co-localized with nucleolar proteins by early prophase. These observations suggest a model in which specific nucleolar binding sites for microtubules allow mitotic spindle formation and attachment. The fact that a significant mass of nucleolar material precedes the chromosomes as the mitotic spindle elongates suggests that spindle elongation drives nucleolar division.

  17. Potential contributions of figured wood to the practice of sustainable forestry

    Treesearch

    Don C. Bragg

    2006-01-01

    The birdseye grain of sugar maple (Acer saccharum Marsh.) can showcase the potential of figured wood in sustainable forestry. This poorly understood but valuable grain abnormality commands such a premium that its presence alone can influence timber management. Good forestry and logging practices can help assure that quality birdseye maple logs are not relegated to low-...

  18. The MiAge Calculator: a DNA methylation-based mitotic age calculator of human tissue types.

    PubMed

    Youn, Ahrim; Wang, Shuang

    2018-01-01

    Cell division is important in human aging and cancer. The estimation of the number of cell divisions (mitotic age) of a given tissue type in individuals is of great interest as it allows not only the study of biological aging (using a new molecular aging target) but also the stratification of prospective cancer risk. Here, we introduce the MiAge Calculator, a mitotic age calculator based on a novel statistical framework, the MiAge model. MiAge is designed to quantitatively estimate mitotic age (total number of lifetime cell divisions) of a tissue using the stochastic replication errors accumulated in the epigenetic inheritance process during cell divisions. With the MiAge model, the MiAge Calculator was built using the training data of DNA methylation measures of 4,020 tumor and adjacent normal tissue samples from eight TCGA cancer types and was tested using the testing data of DNA methylation measures of 2,221 tumor and adjacent normal tissue samples of five other TCGA cancer types. We showed that within each of the thirteen cancer types studied, the estimated mitotic age is universally accelerated in tumor tissues compared to adjacent normal tissues. Across the thirteen cancer types, we showed that worse cancer survivals are associated with more accelerated mitotic age in tumor tissues. Importantly, we demonstrated the utility of mitotic age by showing that the integration of mitotic age and clinical information leads to improved survival prediction in six out of the thirteen cancer types studied. The MiAge Calculator is available at http://www.columbia.edu/∼sw2206/softwares.htm .

  19. Microtubule-dependent regulation of mitotic protein degradation

    PubMed Central

    Song, Ling; Craney, Allison; Rape, Michael

    2014-01-01

    Accurate cell division depends on tightly regulated ubiquitylation events catalyzed by the anaphase-promoting complex. Among its many substrates, the APC/C triggers the degradation of proteins that stabilize the mitotic spindle, and loss or accumulation of such spindle assembly factors can result in aneuploidy and cancer. Although critical for cell division, it has remained poorly understood how the timing of spindle assembly factor degradation is established during mitosis. Here, we report that active spindle assembly factors are protected from APC/C-dependent degradation by microtubules. In contrast, those molecules that are not bound to microtubules are highly susceptible to proteolysis and turned over immediately after APC/C-activation. The correct timing of spindle assembly factor degradation, as achieved by this regulatory circuit, is required for accurate spindle structure and function. We propose that the localized stabilization of APC/C-substrates provides a mechanism for the selective disposal of cell cycle regulators that have fulfilled their mitotic roles. PMID:24462202

  20. Automatic Figure Ranking and User Interfacing for Intelligent Figure Search

    PubMed Central

    Yu, Hong; Liu, Feifan; Ramesh, Balaji Polepalli

    2010-01-01

    Background Figures are important experimental results that are typically reported in full-text bioscience articles. Bioscience researchers need to access figures to validate research facts and to formulate or to test novel research hypotheses. On the other hand, the sheer volume of bioscience literature has made it difficult to access figures. Therefore, we are developing an intelligent figure search engine (http://figuresearch.askhermes.org). Existing research in figure search treats each figure equally, but we introduce a novel concept of “figure ranking”: figures appearing in a full-text biomedical article can be ranked by their contribution to the knowledge discovery. Methodology/Findings We empirically validated the hypothesis of figure ranking with over 100 bioscience researchers, and then developed unsupervised natural language processing (NLP) approaches to automatically rank figures. Evaluating on a collection of 202 full-text articles in which authors have ranked the figures based on importance, our best system achieved a weighted error rate of 0.2, which is significantly better than several other baseline systems we explored. We further explored a user interfacing application in which we built novel user interfaces (UIs) incorporating figure ranking, allowing bioscience researchers to efficiently access important figures. Our evaluation results show that 92% of the bioscience researchers prefer as the top two choices the user interfaces in which the most important figures are enlarged. With our automatic figure ranking NLP system, bioscience researchers preferred the UIs in which the most important figures were predicted by our NLP system than the UIs in which the most important figures were randomly assigned. In addition, our results show that there was no statistical difference in bioscience researchers' preference in the UIs generated by automatic figure ranking and UIs by human ranking annotation. Conclusion/Significance The evaluation results

  1. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER

    PubMed Central

    Baker, Bruce S.; Carpenter, Adelaide T. C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts

  2. The Drosophila Microtubule-Associated Protein Mars Stabilizes Mitotic Spindles by Crosslinking Microtubules through Its N-Terminal Region

    PubMed Central

    Zhang, Gang; Beati, Hamze; Nilsson, Jakob; Wodarz, Andreas

    2013-01-01

    Correct segregation of genetic material relies on proper assembly and maintenance of the mitotic spindle. How the highly dynamic microtubules (MTs) are maintained in stable mitotic spindles is a key question to be answered. Motor and non-motor microtubule associated proteins (MAPs) have been reported to stabilize the dynamic spindle through crosslinking adjacent MTs. Mars, a novel MAP, is essential for the early development of Drosophila embryos. Previous studies showed that Mars is required for maintaining an intact mitotic spindle but did not provide a molecular mechanism for this function. Here we show that Mars is able to stabilize the mitotic spindle in vivo. Both in vivo and in vitro data reveal that the N-terminal region of Mars functions in the stabilization of the mitotic spindle by crosslinking adjacent MTs. PMID:23593258

  3. DSP30 and interleukin-2 as a mitotic stimulant in B-cell disorders including those with a low disease burden.

    PubMed

    Dun, Karen A; Riley, Louise A; Diano, Giuseppe; Adams, Leanne B; Chiu, Eleanor; Sharma, Archna

    2018-05-01

    Chromosome abnormalities detected during cytogenetic investigations for B-cell malignancy offer prognostic information that can have wide ranging clinical impacts on patients. These impacts may include monitoring frequency, treatment type, and disease staging level. The use of the synthetic oligonucleotide DSP30 combined with interleukin 2 (IL2) has been described as an effective mitotic stimulant in B-cell disorders, not only in chronic lymphocytic leukemia (CLL) but also in a range of other B-cell malignancies. Here, we describe the comparison of two B-cell mitogens, lipopolysaccharide (LPS), and DSP30 combined with IL2 as mitogens in a range of common B-cell disorders excluding CLL. The results showed that DSP30/IL2 was an effective mitogen in mature B-cell disorders, revealing abnormal cytogenetic results in a range of B-cell malignancies. The abnormality rate increased when compared to the use of LPS to 64% (DSP30/IL2) from 14% (LPS). In a number of cases the disease burden was proportionally very low, less than 10% of white cells. In 37% of these cases, the DSP30 culture revealed abnormal results. Importantly, we also obtained abnormal conventional cytogenetics results in 3 bone marrow cases in which immunophenotyping showed an absence of an abnormal B-cell clone. In these cases, the cytogenetics results correlated with the provisional diagnosis and altered their staging level. The use of DSP30 and IL2 is recommended for use in many B-cell malignancies as an effective mitogen and their use has been shown to enable successful culture of the malignant clone, even at very low levels of disease. © 2018 Wiley Periodicals, Inc.

  4. Exposure of spermatozoa to dibutyl phthalate induces abnormal embryonic development in a marine invertebrate Galeolaria caespitosa (Polychaeta: Serpulidae).

    PubMed

    Lu, Yonggang; Lin, Minjie; Aitken, Robert John

    2017-10-01

    In this study, we have investigated the impact of dibutyl phthalate (DBP) on early embryogenesis in a sessile marine invertebrate, Galeolaria caespitosa. DBP was found to induce sperm dysfunction as well as impaired and defective embryogenesis characterised by a particular pattern of abnormality. Thus, after the first cleavage, one blastomere in these abnormal embryos was able to carry out further mitoses, while the other arrested. Analysis of microtubules, chromosomes and actin filaments demonstrated that the mitotic spindles in the abnormal embryos were irregularly bent, shortened and unable to anchor to the cortex, resulting in the defective segregation of chromosomes. Within the non-dividing blastomeres, karyokinesis was found to continue at a slow pace as indicated by the presence of multiple sets of abnormal mitotic spindles. However, cytokinesis had been disrupted in these arrested cells due to a failure to assemble the contractile actin ring, as a result of which one pole of the embryos remained as one large, undivided cell. DBP was found to suppress the activity of superoxide dismutase in spermatozoa and, in association with this change, DBP-treated cells experienced oxidative stress as indicated by the presence of lipid aldehydes, such as 4-hydroxynonenal (4-HNE) in the sperm acrosome and neck. Adduction of lipid aldehydes at the level of the acrosome would be expected to impede the acrosome reaction and account for the significant decrease in fertilisation rates. 4-HNE generated as a consequence of lipid peroxidation in the sperm neck resulted in alkylation of the sperm centrioles. Such paternally damaged centrioles were inherited by the embryos and disrupted cytoskeletal protein organisation during early cleavage, generating the observed abnormalities in embryonic development. This research emphasises the vulnerability of spermatozoa to oxidative damage and highlights novel potential mechanisms for reproductive toxicity involving the alkylation of

  5. Antiproliferative Fate of the Tetraploid Formed after Mitotic Slippage and Its Promotion; A Novel Target for Cancer Therapy Based on Microtubule Poisons.

    PubMed

    Nakayama, Yuji; Inoue, Toshiaki

    2016-05-19

    Microtubule poisons inhibit spindle function, leading to activation of spindle assembly checkpoint (SAC) and mitotic arrest. Cell death occurring in prolonged mitosis is the first target of microtubule poisons in cancer therapies. However, even in the presence of microtubule poisons, SAC and mitotic arrest are not permanent, and the surviving cells exit the mitosis without cytokinesis (mitotic slippage), becoming tetraploid. Another target of microtubule poisons-based cancer therapy is antiproliferative fate after mitotic slippage. The ultimate goal of both the microtubule poisons-based cancer therapies involves the induction of a mechanism defined as mitotic catastrophe, which is a bona fide intrinsic oncosuppressive mechanism that senses mitotic failure and responds by driving a cell to an irreversible antiproliferative fate of death or senescence. This mechanism of antiproliferative fate after mitotic slippage is not as well understood. We provide an overview of mitotic catastrophe, and explain new insights underscoring a causal association between basal autophagy levels and antiproliferative fate after mitotic slippage, and propose possible improved strategies. Additionally, we discuss nuclear alterations characterizing the mitotic catastrophe (micronuclei, multinuclei) after mitotic slippage, and a possible new type of nuclear alteration (clustered micronuclei).

  6. Proteomic analysis of cell cycle progression in asynchronous cultures, including mitotic subphases, using PRIMMUS

    PubMed Central

    Whigham, Arlene; Clarke, Rosemary; Brenes-Murillo, Alejandro J; Estes, Brett; Madhessian, Diana; Lundberg, Emma; Wadsworth, Patricia

    2017-01-01

    The temporal regulation of protein abundance and post-translational modifications is a key feature of cell division. Recently, we analysed gene expression and protein abundance changes during interphase under minimally perturbed conditions (Ly et al., 2014, 2015). Here, we show that by using specific intracellular immunolabelling protocols, FACS separation of interphase and mitotic cells, including mitotic subphases, can be combined with proteomic analysis by mass spectrometry. Using this PRIMMUS (PRoteomic analysis of Intracellular iMMUnolabelled cell Subsets) approach, we now compare protein abundance and phosphorylation changes in interphase and mitotic fractions from asynchronously growing human cells. We identify a set of 115 phosphorylation sites increased during G2, termed ‘early risers’. This set includes phosphorylation of S738 on TPX2, which we show is important for TPX2 function and mitotic progression. Further, we use PRIMMUS to provide the first a proteome-wide analysis of protein abundance remodeling between prophase, prometaphase and anaphase. PMID:29052541

  7. Regulating positioning and orientation of mitotic spindles via cell size and shape

    NASA Astrophysics Data System (ADS)

    Li, Jingchen; Jiang, Hongyuan

    2018-01-01

    Proper location of the mitotic spindle is critical for chromosome segregation and the selection of the cell division plane. However, how mitotic spindles sense cell size and shape to regulate their own position and orientation is still largely unclear. To investigate this question systematically, we used a general model by considering chromosomes, microtubule dynamics, and forces of various molecular motors. Our results show that in cells of various sizes and shapes, spindles can always be centered and oriented along the long axis robustly in the absence of other specified mechanisms. We found that the characteristic time of positioning and orientation processes increases with cell size. Spindles sense the cell size mainly by the cortical force in small cells and by the cytoplasmic force in large cells. In addition to the cell size, the cell shape mainly influences the orientation process. We found that more slender cells have a faster orientation process, and the final orientation is not necessarily along the longest axis but is determined by the radial profile and the symmetry of the cell shape. Finally, our model also reproduces the separation and repositioning of the spindle poles during the anaphase. Therefore, our work provides a general tool for studying the mitotic spindle across the whole mitotic phase.

  8. Mediator can regulate mitotic entry and direct periodic transcription in fission yeast.

    PubMed

    Banyai, Gabor; Lopez, Marcela Davila; Szilagyi, Zsolt; Gustafsson, Claes M

    2014-11-01

    Cdk8 is required for correct timing of mitotic progression in fission yeast. How the activity of Cdk8 is regulated is unclear, since the kinase is not activated by T-loop phosphorylation and its partner, CycC, does not oscillate. Cdk8 is, however, a component of the multiprotein Mediator complex, a conserved coregulator of eukaryotic transcription that is connected to a number of intracellular signaling pathways. We demonstrate here that other Mediator components regulate the activity of Cdk8 in vivo and thereby direct the timing of mitotic entry. Deletion of Mediator components Med12 and Med13 leads to higher cellular Cdk8 protein levels, premature phosphorylation of the Cdk8 target Fkh2, and earlier entry into mitosis. We also demonstrate that Mediator is recruited to clusters of mitotic genes in a periodic fashion and that the complex is required for the transcription of these genes. We suggest that Mediator functions as a hub for coordinated regulation of mitotic progression and cell cycle-dependent transcription. The many signaling pathways and activator proteins shown to function via Mediator may influence the timing of these cell cycle events. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  9. The FANC pathway and BLM collaborate during mitosis to prevent micro-nucleation and chromosome abnormalities.

    PubMed

    Naim, Valeria; Rosselli, Filippo

    2009-06-01

    Loss-of-function of caretaker genes characterizes a group of cancer predisposition diseases that feature cellular hypersensitivity to DNA damage and chromosome fragility; this group includes Fanconi anaemia and Bloom syndrome. The products of the 13 FANC genes (mutated in Fanconi anaemia), which constitute the 'FANC' pathway, and BLM (the RecQ helicase mutated in Bloom syndrome) are thought to collaborate during the S phase of the cell cycle, preventing chromosome instability. Recently, BLM has been implicated in the completion of sister chromatid separation during mitosis, a complex process in which precise regulation and execution is crucial to preserve genomic stability. Here we show for the first time a role for the FANC pathway in chromosome segregation during mitotic cell division. FANCD2, a key component of the pathway, localizes to discrete spots on mitotic chromosomes. FANCD2 chromosomal localization is responsive to replicative stress and specifically targets aphidicolin (APH)-induced chromatid gaps and breaks. Our data indicate that the FANC pathway is involved in rescuing abnormal anaphase and telophase (ana-telophase) cells, limiting aneuploidy and reducing chromosome instability in daughter cells. We further address a cooperative role for the FANC pathway and BLM in preventing micronucleation, through FANC-dependent targeting of BLM to non-centromeric abnormal structures induced by replicative stress. We reveal new crosstalk between FANC and BLM proteins, extending their interaction beyond the S-phase rescue of damaged DNA to the safeguarding of chromosome stability during mitosis.

  10. [New histological terminology of vulvar intraepithelial neoplasia].

    PubMed

    Bergeron, C

    2008-01-01

    The International Society for the Study of Vulvar Disease (ISSVD) recommends not to use a grading any more and to include in the term vulvar intraepithelial neoplasia (VIN), usual type, the previously called VIN 2 where the nuclear atypia and mitotic figures are confined to the basal half of the epithelium and VIN 3 where nuclear abnormalities and abnormal mitotic figures are present throughout most or all of the thickness of the epithelium. VIN, usual type, is related to a human papillomavirus (HPV) high-risk type infection in most of the cases. The histologic changes previously encompassed within the term VIN 1 will be described as flat condyloma or HPV effect. The less common type of VIN lesion is termed VIN, differentiated type, previously called "high grade" differentiated type or VIN simplex type. This type of VIN is a highly differentiated lesion. The atypia is confined to the basal and parabasal layers of the epithelium, where the cells have abundant cytoplasm and form abortive pearls and the nuclei are relatively uniform in size and contain coarse chromatin and prominent nucleoli. The epithelium does not contain koilocytosis because it is not associated with HPV. It is seen primarily in older women, with a previous history of lichen sclerosus. The diagnosis is often made late in association with keratinising squamous cell carcinomas.

  11. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  12. Salt-inducible kinase 3 is a novel mitotic regulator and a target for enhancing antimitotic therapeutic-mediated cell death

    PubMed Central

    Chen, H; Huang, S; Han, X; Zhang, J; Shan, C; Tsang, Y H; Ma, H T; Poon, R Y C

    2014-01-01

    Many mitotic kinases are both critical for maintaining genome stability and are important targets for anticancer therapies. We provide evidence that SIK3 (salt-inducible kinase 3), an AMP-activated protein kinase-related kinase, is important for mitosis to occur properly in mammalian cells. Downregulation of SIK3 resulted in an extension of mitosis in both mouse and human cells but did not affect the DNA damage checkpoint. Time-lapse microscopy and other approaches indicated that mitotic exit but not mitotic entry was delayed. Although repression of SIK3 alone simply delayed mitotic exit, it was able to sensitize cells to various antimitotic chemicals. Both mitotic arrest and cell death caused by spindle poisons were enhanced after SIK3 depletion. Likewise, the antimitotic effects due to pharmacological inhibition of mitotic kinases including Aurora A, Aurora B, and polo-like kinase 1 were enhanced in the absence of SIK3. Finally, in addition to promoting the sensitivity of a small-molecule inhibitor of the mitotic kinesin Eg5, SIK3 depletion was able to overcome cells that developed drug resistance. These results establish the importance of SIK3 as a mitotic regulator and underscore the potential of SIK3 as a druggable antimitotic target. PMID:24743732

  13. Conditional mutation of Smc5 in mouse embryonic stem cells perturbs condensin localization and mitotic progression.

    PubMed

    Pryzhkova, Marina V; Jordan, Philip W

    2016-04-15

    Correct duplication of stem cell genetic material and its appropriate segregation into daughter cells are requisites for tissue, organ and organism homeostasis. Disruption of stem cell genomic integrity can lead to developmental abnormalities and cancer. Roles of the Smc5/6 structural maintenance of chromosomes complex in pluripotent stem cell genome maintenance have not been investigated, despite its important roles in DNA synthesis, DNA repair and chromosome segregation as evaluated in other model systems. Using mouse embryonic stem cells (mESCs) with a conditional knockout allele of Smc5, we showed that Smc5 protein depletion resulted in destabilization of the Smc5/6 complex, accumulation of cells in G2 phase of the cell cycle and apoptosis. Detailed assessment of mitotic mESCs revealed abnormal condensin distribution and perturbed chromosome segregation, accompanied by irregular spindle morphology, lagging chromosomes and DNA bridges. Mutation of Smc5 resulted in retention of Aurora B kinase and enrichment of condensin on chromosome arms. Furthermore, we observed reduced levels of Polo-like kinase 1 at kinetochores during mitosis. Our study reveals crucial requirements of the Smc5/6 complex during cell cycle progression and for stem cell genome maintenance. © 2016. Published by The Company of Biologists Ltd.

  14. A morphologic study of unfertilized oocytes and abnormal embryos in human in vitro fertilization.

    PubMed

    Bałakier, H; Casper, R F

    1991-04-01

    The morphology of human, unfertilized oocytes and abnormal embryos cultured in vitro for 48-72 hr was examined in an attempt to learn more about oocyte maturation and reproductive failure in in vitro fertilization (IVF). About 21% of the unfertilized oocytes were totally degenerated. The majority (56%) of the remaining oocytes was arrested at the metaphase II stage. They contained coherent chromosomal plates and had extruded the first polar body with nuclear material. About 13% of oocytes underwent spontaneous activation. In most of these cases the second polar body was retained and many subnuclei or one big nucleus was formed. Five percent of metaphase II oocytes penetrated by sperm were not activated, likely as a result of oocyte immaturity. The developmental ability of abnormal embryos was poor. Several one-cell-stage zygotes were arrested at the pronuclear stage or at mitosis of the first mitotic division. Polyspermic embryos, especially those which contained four or more pronuclei, did not divide or formed uneven, multinucleated blastomeres. However, some triploid and tetraploid embryos often appeared normal morphologically despite their lethal chromosomal abnormalities.

  15. Figure-ground assignment in pigeons: evidence for a figural benefit.

    PubMed

    Lazareva, Olga E; Castro, Leyre; Vecera, Shaun P; Wasserman, Edward A

    2006-07-01

    Four pigeons discriminated whether a target spot appeared on a colored figural shape or on a differently colored background by first pecking the target and then reporting its location: on the figure or the background. We recorded three dependent variables: target detection time, choice response time, and choice accuracy. The birds were faster to detect the target, to report its location, and to learn the correct response on figure trials than on background trials. Later tests suggested that the pigeons might have attended to the figural region as a whole rather than using local properties in performing the figure-background discrimination. The location of the figural region did not affect figure-ground assignment. Finally, when 4 other pigeons had to detect and peck the target without making a choice report, no figural advantage emerged in target detection time, suggesting that the birds' attention may not have been automatically summoned to the figural region.

  16. Greatwall is essential to prevent mitotic collapse after nuclear envelope breakdown in mammals.

    PubMed

    Álvarez-Fernández, Mónica; Sánchez-Martínez, Ruth; Sanz-Castillo, Belén; Gan, Pei Pei; Sanz-Flores, María; Trakala, Marianna; Ruiz-Torres, Miguel; Lorca, Thierry; Castro, Anna; Malumbres, Marcos

    2013-10-22

    Greatwall is a protein kinase involved in the inhibition of protein phosphatase 2 (PP2A)-B55 complexes to maintain the mitotic state. Although its biochemical activity has been deeply characterized in Xenopus, its specific relevance during the progression of mitosis is not fully understood. By using a conditional knockout of the mouse ortholog, Mastl, we show here that mammalian Greatwall is essential for mouse embryonic development and cell cycle progression. Yet, Greatwall-null cells enter into mitosis with normal kinetics. However, these cells display mitotic collapse after nuclear envelope breakdown (NEB) characterized by defective chromosome condensation and prometaphase arrest. Intriguingly, Greatwall is exported from the nucleus to the cytoplasm in a CRM1-dependent manner before NEB. This export occurs after the nuclear import of cyclin B-Cdk1 complexes, requires the kinase activity of Greatwall, and is mediated by Cdk-, but not Polo-like kinase 1-dependent phosphorylation. The mitotic collapse observed in Greatwall-deficient cells is partially rescued after concomitant depletion of B55 regulatory subunits, which are mostly cytoplasmic before NEB. These data suggest that Greatwall is an essential protein in mammals required to prevent mitotic collapse after NEB.

  17. Mitotic Arrest in Teratoma Susceptible Fetal Male Germ Cells

    PubMed Central

    Western, Patrick S.; Ralli, Rachael A.; Wakeling, Stephanie I.; Lo, Camden; van den Bergen, Jocelyn A.; Miles, Denise C.; Sinclair, Andrew H.

    2011-01-01

    Formation of germ cell derived teratomas occurs in mice of the 129/SvJ strain, but not in C57Bl/6 inbred or CD1 outbred mice. Despite this, there have been few comparative studies aimed at determining the similarities and differences between teratoma susceptible and non-susceptible mouse strains. This study examines the entry of fetal germ cells into the male pathway and mitotic arrest in 129T2/SvJ mice. We find that although the entry of fetal germ cells into mitotic arrest is similar between 129T2/SvJ, C57Bl/6 and CD1 mice, there were significant differences in the size and germ cell content of the testis cords in these strains. In 129T2/SvJ mice germ cell mitotic arrest involves upregulation of p27KIP1, p15INK4B, activation of RB, the expression of male germ cell differentiation markers NANOS2, DNMT3L and MILI and repression of the pluripotency network. The germ-line markers DPPA2 and DPPA4 show reciprocal repression and upregulation, respectively, while FGFR3 is substantially enriched in the nucleus of differentiating male germ cells. Further understanding of fetal male germ cell differentiation promises to provide insight into disorders of the testis and germ cell lineage, such as testis tumour formation and infertility. PMID:21674058

  18. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    PubMed Central

    Purrington, Kristen S.; Slettedahl, Seth; Bolla, Manjeet K.; Michailidou, Kyriaki; Czene, Kamila; Nevanlinna, Heli; Bojesen, Stig E.; Andrulis, Irene L.; Cox, Angela; Hall, Per; Carpenter, Jane; Yannoukakos, Drakoulis; Haiman, Christopher A.; Fasching, Peter A.; Mannermaa, Arto; Winqvist, Robert; Brenner, Hermann; Lindblom, Annika; Chenevix-Trench, Georgia; Benitez, Javier; Swerdlow, Anthony; Kristensen, Vessela; Guénel, Pascal; Meindl, Alfons; Darabi, Hatef; Eriksson, Mikael; Fagerholm, Rainer; Aittomäki, Kristiina; Blomqvist, Carl; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Wang, Xianshu; Olswold, Curtis; Olson, Janet E.; Mulligan, Anna Marie; Knight, Julia A.; Tchatchou, Sandrine; Reed, Malcolm W.R.; Cross, Simon S.; Liu, Jianjun; Li, Jingmei; Humphreys, Keith; Clarke, Christine; Scott, Rodney; Fostira, Florentia; Fountzilas, George; Konstantopoulou, Irene; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Ekici, Arif B.; Hartmann, Arndt; Beckmann, Matthias W.; Hartikainen, Jaana M.; Kosma, Veli-Matti; Kataja, Vesa; Jukkola-Vuorinen, Arja; Pylkäs, Katri; Kauppila, Saila; Dieffenbach, Aida Karina; Stegmaier, Christa; Arndt, Volker; Margolin, Sara; Balleine, Rosemary; Arias Perez, Jose Ignacio; Pilar Zamora, M.; Menéndez, Primitiva; Ashworth, Alan; Jones, Michael; Orr, Nick; Arveux, Patrick; Kerbrat, Pierre; Truong, Thérèse; Bugert, Peter; Toland, Amanda E.; Ambrosone, Christine B.; Labrèche, France; Goldberg, Mark S.; Dumont, Martine; Ziogas, Argyrios; Lee, Eunjung; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Long, Jirong; Shrubsole, Martha; Deming-Halverson, Sandra; Ficarazzi, Filomena; Barile, Monica; Peterlongo, Paolo; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Brüning, Thomas; Ko, Yon-Dschun; Van Deurzen, Carolien H.M.; Martens, John W.M.; Kriege, Mieke; Figueroa, Jonine D.; Chanock, Stephen J.; Lissowska, Jolanta; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Schneeweiss, Andreas; Tapper, William J.; Gerty, Susan M.; Durcan, Lorraine; Mclean, Catriona; Milne, Roger L.; Baglietto, Laura; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Van'T Veer, Laura J.; Cornelissen, Sten; Försti, Asta; Torres, Diana; Rüdiger, Thomas; Rudolph, Anja; Flesch-Janys, Dieter; Nickels, Stefan; Weltens, Caroline; Floris, Giuseppe; Moisse, Matthieu; Dennis, Joe; Wang, Qin; Dunning, Alison M.; Shah, Mitul; Brown, Judith; Simard, Jacques; Anton-Culver, Hoda; Neuhausen, Susan L.; Hopper, John L.; Bogdanova, Natalia; Dörk, Thilo; Zheng, Wei; Radice, Paolo; Jakubowska, Anna; Lubinski, Jan; Devillee, Peter; Brauch, Hiltrud; Hooning, Maartje; García-Closas, Montserrat; Sawyer, Elinor; Burwinkel, Barbara; Marmee, Frederick; Eccles, Diana M.; Giles, Graham G.; Peto, Julian; Schmidt, Marjanka; Broeks, Annegien; Hamann, Ute; Chang-Claude, Jenny; Lambrechts, Diether; Pharoah, Paul D.P.; Easton, Douglas; Pankratz, V. Shane; Slager, Susan; Vachon, Celine M.; Couch, Fergus J.

    2014-01-01

    Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16–1.33, P = 4.2 × 10−10) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04–1.11, P = 8.7 × 10−6) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07–1.23, P = 7.9 × 10−5) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10−3). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer. PMID:24927736

  19. Saccharomyces cerevisiae Mob1p Is Required for Cytokinesis and Mitotic Exit

    PubMed Central

    Luca, Francis C.; Mody, Manali; Kurischko, Cornelia; Roof, David M.; Giddings, Thomas H.; Winey, Mark

    2001-01-01

    The Saccharomyces cerevisiae mitotic exit network (MEN) is a conserved set of genes that mediate the transition from mitosis to G1 by regulating mitotic cyclin degradation and the inactivation of cyclin-dependent kinase (CDK). Here, we demonstrate that, in addition to mitotic exit, S. cerevisiae MEN gene MOB1 is required for cytokinesis and cell separation. The cytokinesis defect was evident in mob1 mutants under conditions in which there was no mitotic-exit defect. Observation of live cells showed that yeast myosin II, Myo1p, was present in the contractile ring at the bud neck but that the ring failed to contract and disassemble. The cytokinesis defect persisted for several mitotic cycles, resulting in chains of cells with correctly segregated nuclei but with uncontracted actomyosin rings. The cytokinesis proteins Cdc3p (a septin), actin, and Iqg1p/ Cyk1p (an IQGAP-like protein) appeared to correctly localize in mob1 mutants, suggesting that MOB1 functions subsequent to actomyosin ring assembly. We also examined the subcellular distribution of Mob1p during the cell cycle and found that Mob1p first localized to the spindle pole bodies during mid-anaphase and then localized to a ring at the bud neck just before and during cytokinesis. Localization of Mob1p to the bud neck required CDC3, MEN genes CDC5, CDC14, CDC15, and DBF2, and spindle pole body gene NUD1 but was independent of MYO1. The localization of Mob1p to both spindle poles was abolished in cdc15 and nud1 mutants and was perturbed in cdc5 and cdc14 mutants. These results suggest that the MEN functions during the mitosis-to-G1 transition to control cyclin-CDK inactivation and cytokinesis. PMID:11564880

  20. Spatial Reorganization of the Endoplasmic Reticulum during Mitosis Relies on Mitotic Kinase Cyclin A in the Early Drosophila Embryo

    PubMed Central

    Bergman, Zane J.; Mclaurin, Justin D.; Eritano, Anthony S.; Johnson, Brittany M.; Sims, Amanda Q.; Riggs, Blake

    2015-01-01

    Mitotic cyclin-dependent kinase with their cyclin partners (cyclin:Cdks) are the master regulators of cell cycle progression responsible for regulating a host of activities during mitosis. Nuclear mitotic events, including chromosome condensation and segregation have been directly linked to Cdk activity. However, the regulation and timing of cytoplasmic mitotic events by cyclin:Cdks is poorly understood. In order to examine these mitotic cytoplasmic events, we looked at the dramatic changes in the endoplasmic reticulum (ER) during mitosis in the early Drosophila embryo. The dynamic changes of the ER can be arrested in an interphase state by inhibition of either DNA or protein synthesis. Here we show that this block can be alleviated by micro-injection of Cyclin A (CycA) in which defined mitotic ER clusters gathered at the spindle poles. Conversely, micro-injection of Cyclin B (CycB) did not affect spatial reorganization of the ER, suggesting CycA possesses the ability to initiate mitotic ER events in the cytoplasm. Additionally, RNAi-mediated simultaneous inhibition of all 3 mitotic cyclins (A, B and B3) blocked spatial reorganization of the ER. Our results suggest that mitotic ER reorganization events rely on CycA and that control and timing of nuclear and cytoplasmic events during mitosis may be defined by release of CycA from the nucleus as a consequence of breakdown of the nuclear envelope. PMID:25689737

  1. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    PubMed Central

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  2. Deficiency of RITA results in multiple mitotic defects by affecting microtubule dynamics.

    PubMed

    Steinhäuser, K; Klöble, P; Kreis, N-N; Ritter, A; Friemel, A; Roth, S; Reichel, J M; Michaelis, J; Rieger, M A; Louwen, F; Oswald, F; Yuan, J

    2017-04-01

    Deregulation of mitotic microtubule (MT) dynamics results in defective spindle assembly and chromosome missegregation, leading further to chromosome instability, a hallmark of tumor cells. RBP-J interacting and tubulin-associated protein (RITA) has been identified as a negative regulator of the Notch signaling pathway. Intriguingly, deregulated RITA is involved in primary hepatocellular carcinoma and other malignant entities. We were interested in the potential molecular mechanisms behind its involvement. We show here that RITA binds to tubulin and localizes to various mitotic MT structures. RITA coats MTs and affects their structures in vitro as well as in vivo. Tumor cell lines deficient of RITA display increased acetylated α-tubulin, enhanced MT stability and reduced MT dynamics, accompanied by multiple mitotic defects, including chromosome misalignment and segregation errors. Re-expression of wild-type RITA, but not RITA Δtub ineffectively binding to tubulin, restores the phenotypes, suggesting that the role of RITA in MT modulation is mediated via its interaction with tubulin. Mechanistically, RITA interacts with tubulin/histone deacetylase 6 (HDAC6) and its suppression decreases the binding of the deacetylase HDAC6 to tubulin/MTs. Furthermore, the mitotic defects and increased MT stability are also observed in RITA -/- mouse embryonic fibroblasts. RITA has thus a novel role in modulating MT dynamics and its deregulation results in erroneous chromosome segregation, one of the major reasons for chromosome instability in tumor cells.

  3. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes

    PubMed Central

    Zebrowski, David C; Vergarajauregui, Silvia; Wu, Chi-Chung; Piatkowski, Tanja; Becker, Robert; Leone, Marina; Hirth, Sofia; Ricciardi, Filomena; Falk, Nathalie; Giessl, Andreas; Just, Steffen; Braun, Thomas; Weidinger, Gilbert; Engel, Felix B

    2015-01-01

    Mammalian cardiomyocytes become post-mitotic shortly after birth. Understanding how this occurs is highly relevant to cardiac regenerative therapy. Yet, how cardiomyocytes achieve and maintain a post-mitotic state is unknown. Here, we show that cardiomyocyte centrosome integrity is lost shortly after birth. This is coupled with relocalization of various centrosome proteins to the nuclear envelope. Consequently, postnatal cardiomyocytes are unable to undergo ciliogenesis and the nuclear envelope adopts the function as cellular microtubule organizing center. Loss of centrosome integrity is associated with, and can promote, cardiomyocyte G0/G1 cell cycle arrest suggesting that centrosome disassembly is developmentally utilized to achieve the post-mitotic state in mammalian cardiomyocytes. Adult cardiomyocytes of zebrafish and newt, which are able to proliferate, maintain centrosome integrity. Collectively, our data provide a novel mechanism underlying the post-mitotic state of mammalian cardiomyocytes as well as a potential explanation for why zebrafish and newts, but not mammals, can regenerate their heart. DOI: http://dx.doi.org/10.7554/eLife.05563.001 PMID:26247711

  4. Mitotic Recombination in the Heterochromatin of the Sex Chromosomes of DROSOPHILA MELANOGASTER

    PubMed Central

    Ripoll, P.; Garcia-Bellido, A.

    1978-01-01

    The frequency of spontaneous and X-ray-induced mitotic recombination involving the Y chromosome has been studied in individuals with a marked Y chromosome arm and different XY compound chromosomes. The genotypes used include X chromosomes with different amounts of X heterochromatin and either or both arms of the Y chromosome attached to either side of the centromere. Individuals with two Y chromosomes have also been studied. The results show that the bulk of mitotic recombination takes place between homologous regions. PMID:100372

  5. Cellular and molecular etiology of hepatocyte injury in a murine model of environmentally induced liver abnormality

    PubMed Central

    Al-Griw, M.A.; Alghazeer, R.O.; Al-Azreg, S.A.; Bennour, E.M.

    2016-01-01

    Exposures to a wide variety of environmental substances are negatively associated with many biological cell systems both in humans and rodents. Trichloroethane (TCE), a ubiquitous environmental toxicant, is used in large quantities as a dissolvent, metal degreaser, chemical intermediate, and component of consumer products. This increases the likelihood of human exposure to these compounds through dermal, inhalation and oral routes. The present in vivo study was aimed to investigate the possible cellular and molecular etiology of liver abnormality induced by early exposure to TCE using a murine model. The results showed a significant increase in liver weight. Histopathological examination revealed a TCE-induced hepatotoxicity which appeared as heavily congested central vein and blood sinusoids as well as leukocytic infiltration. Mitotic figures and apoptotic changes such as chromatin condensation and nuclear fragments were also identified. Cell death analysis demonstrates hepatocellular apoptosis was evident in the treated mice compared to control. TCE was also found to induce oxidative stress as indicated by an increase in the levels of lipid peroxidation, an oxidative stress marker. There was also a significant decrease in the DNA content of the hepatocytes of the treated groups compared to control. Agarose gel electrophoresis also provided further biochemical evidence of apoptosis by showing internucleosomal DNA fragmentation in the liver cells, indicating oxidative stress as the cause of DNA damage. These results suggest the need for a complete risk assessment of any new chemical prior to its arrival into the consumer market. PMID:27800299

  6. A nontranscriptional role for Oct4 in the regulation of mitotic entry

    PubMed Central

    Zhao, Rui; Deibler, Richard W.; Lerou, Paul H.; Ballabeni, Andrea; Heffner, Garrett C.; Cahan, Patrick; Unternaehrer, Juli J.; Kirschner, Marc W.; Daley, George Q.

    2014-01-01

    Rapid progression through the cell cycle and a very short G1 phase are defining characteristics of embryonic stem cells. This distinct cell cycle is driven by a positive feedback loop involving Rb inactivation and reduced oscillations of cyclins and cyclin-dependent kinase (Cdk) activity. In this setting, we inquired how ES cells avoid the potentially deleterious consequences of premature mitotic entry. We found that the pluripotency transcription factor Oct4 (octamer-binding transcription factor 4) plays an unappreciated role in the ES cell cycle by forming a complex with cyclin–Cdk1 and inhibiting Cdk1 activation. Ectopic expression of Oct4 or a mutant lacking transcriptional activity recapitulated delayed mitotic entry in HeLa cells. Reduction of Oct4 levels in ES cells accelerated G2 progression, which led to increased chromosomal missegregation and apoptosis. Our data demonstrate an unexpected nontranscriptional function of Oct4 in the regulation of mitotic entry. PMID:25324523

  7. Automatic microscopy for mitotic cell location.

    NASA Technical Reports Server (NTRS)

    Herron, J.; Ranshaw, R.; Castle, J.; Wald, N.

    1972-01-01

    Advances are reported in the development of an automatic microscope with which to locate hematologic or other cells in mitosis for subsequent chromosome analysis. The system under development is designed to perform the functions of: slide scanning to locate metaphase cells; conversion of images of selected cells into binary form; and on-line computer analysis of the digitized image for significant cytogenetic data. Cell detection criteria are evaluated using a test sample of 100 mitotic cells and 100 artifacts.

  8. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    PubMed

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. High-Resolution Mapping of Two Types of Spontaneous Mitotic Gene Conversion Events in Saccharomyces cerevisiae

    PubMed Central

    Yim, Eunice; O’Connell, Karen E.; St. Charles, Jordan; Petes, Thomas D.

    2014-01-01

    Gene conversions and crossovers are related products of the repair of double-stranded DNA breaks by homologous recombination. Most previous studies of mitotic gene conversion events have been restricted to measuring conversion tracts that are <5 kb. Using a genetic assay in which the lengths of very long gene conversion tracts can be measured, we detected two types of conversions: those with a median size of ∼6 kb and those with a median size of >50 kb. The unusually long tracts are initiated at a naturally occurring recombination hotspot formed by two inverted Ty elements. We suggest that these long gene conversion events may be generated by a mechanism (break-induced replication or repair of a double-stranded DNA gap) different from the short conversion tracts that likely reflect heteroduplex formation followed by DNA mismatch repair. Both the short and long mitotic conversion tracts are considerably longer than those observed in meiosis. Since mitotic crossovers in a diploid can result in a heterozygous recessive deleterious mutation becoming homozygous, it has been suggested that the repair of DNA breaks by mitotic recombination involves gene conversion events that are unassociated with crossing over. In contrast to this prediction, we found that ∼40% of the conversion tracts are associated with crossovers. Spontaneous mitotic crossover events in yeast are frequent enough to be an important factor in genome evolution. PMID:24990991

  10. PIASy Mediates SUMO-2/3 Conjugation of Poly(ADP-ribose) Polymerase 1 (PARP1) on Mitotic Chromosomes*

    PubMed Central

    Ryu, Hyunju; Al-Ani, Gada; Deckert, Katelyn; Kirkpatrick, Donald; Gygi, Steven P.; Dasso, Mary; Azuma, Yoshiaki

    2010-01-01

    PIASy is a small ubiquitin-related modifier (SUMO) ligase that modifies chromosomal proteins in mitotic Xenopus egg extracts and plays an essential role in mitotic chromosome segregation. We have isolated a novel SUMO-2/3-modified mitotic chromosomal protein and identified it as poly(ADP-ribose) polymerase 1 (PARP1). PARP1 was robustly conjugated to SUMO-2/3 on mitotic chromosomes but not on interphase chromatin. PIASy promotes SUMOylation of PARP1 both in egg extracts and in vitro reconstituted SUMOylation assays. Through tandem mass spectrometry analysis of mitotically SUMOylated PARP1, we identified a residue within the BRCA1 C-terminal domain of PARP1 (lysine 482) as its primary SUMOylation site. Mutation of this residue significantly reduced PARP1 SUMOylation in egg extracts and enhanced the accumulation of species derived from modification of secondary lysine residues in assays using purified components. SUMOylation of PARP1 did not alter in vitro PARP1 enzyme activity, poly-ADP-ribosylation (PARylation), nor did inhibition of SUMOylation of PARP1 alter the accumulation of PARP1 on mitotic chromosomes, suggesting that SUMOylation regulates neither the intrinsic activity of PARP1 nor its localization. However, loss of SUMOylation increased PARP1-dependent PARylation on isolated chromosomes, indicating SUMOylation controls the capacity of PARP1 to modify other chromatin-associated proteins. PMID:20228053

  11. Interkinetic nuclear migration and basal tethering facilitates post-mitotic daughter separation in intestinal organoids

    PubMed Central

    Carroll, Thomas D.; Langlands, Alistair J.; Osborne, James M.; Newton, Ian P.; Appleton, Paul L.

    2017-01-01

    ABSTRACT Homeostasis of renewing tissues requires balanced proliferation, differentiation and movement. This is particularly important in the intestinal epithelium where lineage tracing suggests that stochastic differentiation choices are intricately coupled to the position of a cell relative to a niche. To determine how position is achieved, we followed proliferating cells in intestinal organoids and discovered that the behaviour of mitotic sisters predicted long-term positioning. We found that, normally, 70% of sisters remain neighbours, while 30% lose contact and separate after cytokinesis. These post-mitotic placements predict longer term differences in positions assumed by sisters: adjacent sisters reach similar positions over time; in a pair of separating sisters, one remains close to its birthplace while the other is displaced upward. Computationally modelling crypt dynamics confirmed that post-mitotic separation leads to sisters reaching different compartments. We show that interkinetic nuclear migration, cell size and asymmetric tethering by a process extending from the basal side of cells contribute to separations. These processes are altered in adenomatous polyposis coli (Apc) mutant epithelia where separation is lost. We conclude that post-mitotic placement contributes to stochastic niche exit and, when defective, supports the clonal expansion of Apc mutant cells. PMID:28982714

  12. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea

    PubMed Central

    Li, Wenyan; Chen, Yan; Zhang, Shasha; Tang, Mingliang; Sun, Shan; Chai, Renjie; Li, Huawei

    2016-01-01

    Hair cell (HC) loss is the main cause of permanent hearing loss in mammals. Previous studies have reported that in neonatal mice cochleae, Wnt activation promotes supporting cell (SC) proliferation and Notch inhibition promotes the trans-differentiation of SCs into HCs. However, Wnt activation alone fails to regenerate significant amounts of new HCs, Notch inhibition alone regenerates the HCs at the cost of exhausting the SC population, which leads to the death of the newly regenerated HCs. Mitotic HC regeneration might preserve the SC number while regenerating the HCs, which could be a better approach for long-term HC regeneration. We present a two-step gene manipulation, Wnt activation followed by Notch inhibition, to accomplish mitotic regeneration of HCs while partially preserving the SC number. We show that Wnt activation followed by Notch inhibition strongly promotes the mitotic regeneration of new HCs in both normal and neomycin-damaged cochleae while partially preserving the SC number. Lineage tracing shows that the majority of the mitotically regenerated HCs are derived specifically from the Lgr5+ progenitors with or without HC damage. Our findings suggest that the co-regulation of Wnt and Notch signaling might provide a better approach to mitotically regenerate HCs from Lgr5+ progenitor cells. PMID:27564256

  13. A Case-Study Assignment to Teach Theoretical Perspectives in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Perkins, David V.

    1991-01-01

    Describes an assignment that requires students to organize, prepare, and revise a case study in abnormal behavior. Explains that students employ a single theoretical perspective in preparing a report on a figure from history, literature, the arts, or current events. Discusses the value of the assignment for students. (SG)

  14. Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes

    PubMed Central

    Trinkle-Mulcahy, Laura; Porter, Michael; Jeyaprakash, A. Arockia

    2015-01-01

    Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression. PMID:26124292

  15. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint

    PubMed Central

    Salmela, Anna-Leena; Pouwels, Jeroen; Varis, Asta; Kukkonen, Anu M.; Toivonen, Pauliina; Halonen, Pasi K.; Perälä, Merja; Kallioniemi, Olli; Gorbsky, Gary J.; Kallio, Marko J.

    2009-01-01

    Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2–160 μg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound. PMID:19395653

  16. The influence of serotonin on the mitotic rate in the colonic crypt epithelium and in colonic adenocarcinoma in rats.

    PubMed

    Tutton, P J; Barkla, D H

    1978-01-01

    1. The mitotic rate in the crypts of Lieberkühn of the descending colon and in dimethylhydrazine-induced adenocarcinomata of the descending colon of rat was measured using a stathmokinetic technique. 2. Intraperitoneal injection of a small dose (10 microgram/kg) of serotonin resulted in an increase in the tumour cell mitotic rate. 3. Blockade of serotonin receptors by 2-bromolysergic acid diethylamide and depletion of tissue serotonin levels following injection of DL-6-fluorotryptophan both result in a decrease in the tumour cell mitotic rate. 4. Treatment with serotonin, 2-bromolysergic acid diethylamide and DL-6-fluorotryptophan were all without effect on the colonic crypt cell mitotic rate.

  17. Grounding the figure: surface attachment influences figure-ground organization.

    PubMed

    Vecera, Shaun P; Palmer, Stephen E

    2006-08-01

    We investigated whether the lower region effect on figure-ground organization (Vecera, Vogel, and Woodman, 2002) would generalize to contextual depth planes in vertical orientations, as is predicted by a theoretical analysis based on the ecological statistics of edges arising from objects that are attached to surfaces of support. Observers viewed left/right ambiguous figure-ground displays that occluded middle sections of four types of contextual inducers: two types of attached, receding, vertical planes (walls) that used linear perspective and/or texture gradients to induce perceived depth and two types of similar trapezoidal control figures that used either uniform color or random texture to reduce or eliminate perceived depth. The results showed a reliable bias toward seeing as "figure" the side of the figure-ground display that was attached to the receding depth plane, but no such bias for the corresponding side in either of the control conditions. The results are interpreted as being consistent with the attachment hypothesis that the lower region cue to figure-ground organization results from ecological biases in edge interpretation that arise when objects are attached to supporting surfaces in the terrestrial gravitational field.

  18. Endocycles: a recurrent evolutionary innovation for post-mitotic cell growth.

    PubMed

    Edgar, Bruce A; Zielke, Norman; Gutierrez, Crisanto

    2014-03-01

    In endoreplication cell cycles, known as endocycles, cells successively replicate their genomes without segregating chromosomes during mitosis and thereby become polyploid. Such cycles, for which there are many variants, are widespread in protozoa, plants and animals. Endocycling cells can achieve ploidies of >200,000 C (chromatin-value); this increase in genomic DNA content allows a higher genomic output, which can facilitate the construction of very large cells or enhance macromolecular secretion. These cells execute normal S phases, using a G1-S regulatory apparatus similar to the one used by mitotic cells, but their capability to segregate chromosomes has been suppressed, typically by downregulation of mitotic cyclin-dependent kinase activity. Endocycles probably evolved many times, and the various endocycle mechanisms found in nature highlight the versatility of the cell cycle control machinery.

  19. Infertility in a Ram Associated with a Knobbed Acrosome Abnormality of the Spermatozoa

    PubMed Central

    Savage, N. C.

    1984-01-01

    A yearling Rambouillet ram with an asymmetrical scrotum was examined for potential breeding soundness prior to use in a synchronized mating program in a purebred flock of 20 ewes. Initial sperm cell evaluation revealed 78% knobbed acrosomes associated with few other abnormalities of the head and midpiece. Use of the ram resulted in no conception in one group of ten synchronized ewes. One month later, the proportion of sperm cells with knobbed acrosomes was 80%. ImagesFigure 1.Figure 2. PMID:17422370

  20. Proteasome inhibition enhances the efficacy of volasertib-induced mitotic arrest in AML in vitro and prolongs survival in vivo.

    PubMed

    Schnerch, Dominik; Schüler, Julia; Follo, Marie; Felthaus, Julia; Wider, Dagmar; Klingner, Kathrin; Greil, Christine; Duyster, Justus; Engelhardt, Monika; Wäsch, Ralph

    2017-03-28

    Elderly and frail patients, diagnosed with acute myeloid leukemia (AML) and ineligible to undergo intensive treatment, have a dismal prognosis. The small molecule inhibitor volasertib induces a mitotic block via inhibition of polo-like kinase 1 and has shown remarkable anti-leukemic activity when combined with low-dose cytarabine. We have demonstrated that AML cells are highly vulnerable to cell death in mitosis yet manage to escape a mitotic block through mitotic slippage by sustained proteasome-dependent slow degradation of cyclin B. Therefore, we tested whether interfering with mitotic slippage through proteasome inhibition arrests and kills AML cells more efficiently during mitosis. We show that therapeutic doses of bortezomib block the slow degradation of cyclin B during a volasertib-induced mitotic arrest in AML cell lines and patient-derived primary AML cells. In a xenotransplant mouse model of human AML, mice receiving volasertib in combination with bortezomib showed superior disease control compared to mice receiving volasertib alone, highlighting the potential therapeutic impact of this drug combination.

  1. A molecular mechanism of mitotic centrosome assembly in Drosophila

    PubMed Central

    Conduit, Paul T; Richens, Jennifer H; Wainman, Alan; Holder, James; Vicente, Catarina C; Pratt, Metta B; Dix, Carly I; Novak, Zsofia A; Dobbie, Ian M; Schermelleh, Lothar; Raff, Jordan W

    2014-01-01

    Centrosomes comprise a pair of centrioles surrounded by pericentriolar material (PCM). The PCM expands dramatically as cells enter mitosis, but it is unclear how this occurs. In this study, we show that the centriole protein Asl initiates the recruitment of DSpd-2 and Cnn to mother centrioles; both proteins then assemble into co-dependent scaffold-like structures that spread outwards from the mother centriole and recruit most, if not all, other PCM components. In the absence of either DSpd-2 or Cnn, mitotic PCM assembly is diminished; in the absence of both proteins, it appears to be abolished. We show that DSpd-2 helps incorporate Cnn into the PCM and that Cnn then helps maintain DSpd-2 within the PCM, creating a positive feedback loop that promotes robust PCM expansion around the mother centriole during mitosis. These observations suggest a surprisingly simple mechanism of mitotic PCM assembly in flies. DOI: http://dx.doi.org/10.7554/eLife.03399.001 PMID:25149451

  2. Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.

    PubMed

    Dudok, Jacobus J; Murtaza, Mariyam; Henrique Alves, C; Rashbass, Pen; Wijnholds, Jan

    2016-07-01

    The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. Grounding the figure.

    PubMed

    Calis, G; Leeuwenberg, E

    1981-12-01

    Coding rules can be formulated in which the shortest description of a figure-ground pattern exhibits a hierarchical structure, with the ground playing a primary and the figure a secondary role. We hypothesized that the process of perception involves and assimilation phase followed by a test phase in which the ground is tested before the figure. Experiments are described in which pairs of consecutive, superimposed patterns are presented in rapid succession, resulting in a subjective impression of seeing one pattern only. In these presentations, the second pattern introduces some deliberate distortion of the figure or ground displayed in the first pattern. Maximal distortions of the ground occur at shorter stimulus onset asynchronies than maximal distortions of the figure, suggesting that the ground codes are processed before figure codes. Moreover, patterns presenting the ground first are more likely to be perceived as ground, regardless of the distortions, than patterns presenting the figure first. This quasi masking or microgenetic approach might be relevant to theories on :mediations of immediate, or direct" perception.

  4. The relative effect of citral on mitotic microtubules in wheat roots and BY2 cells.

    PubMed

    Chaimovitsh, D; Rogovoy Stelmakh, O; Altshuler, O; Belausov, E; Abu-Abied, M; Rubin, B; Sadot, E; Dudai, N

    2012-03-01

    The plant volatile monoterpene citral is a highly active compound with suggested allelopathic traits. Seed germination and seedling development are inhibited in the presence of citral, and it disrupts microtubules in both plant and animal cells in interphase. We addressed the following additional questions: can citral interfere with cell division; what is the relative effect of citral on mitotic microtubules compared to interphase cortical microtubules; what is its effect on newly formed cell plates; and how does it affect the association of microtubules with γ-tubulin? In wheat seedlings, citral led to inhibition of root elongation, curvature of newly formed cell walls and deformation of microtubule arrays. Citral's effect on microtubules was both dose- and time-dependent, with mitotic microtubules appearing to be more sensitive to citral than cortical microtubules. Association of γ-tubulin with microtubules was more sensitive to citral than were the microtubules themselves. To reveal the role of disrupted mitotic microtubules in dictating aberrations in cell plates in the presence of citral, we used tobacco BY2 cells expressing GFP-Tua6. Citral disrupted mitotic microtubules, inhibited the cell cycle and increased the frequency of asymmetric cell plates in these cells. The time scale of citral's effect in BY2 cells suggested a direct influence on cell plates during their formation. Taken together, we suggest that at lower concentrations, citral interferes with cell division by disrupting mitotic microtubules and cell plates, and at higher concentrations it inhibits cell elongation by disrupting cortical microtubules. © 2011 German Botanical Society and The Royal Botanical Society of the Netherlands.

  5. Sulforaphane induces reactive oxygen species-mediated mitotic arrest and subsequent apoptosis in human bladder cancer 5637 cells.

    PubMed

    Park, Hyun Soo; Han, Min Ho; Kim, Gi-Young; Moon, Sung-Kwon; Kim, Wun-Jae; Hwang, Hye Jin; Park, Kun Young; Choi, Yung Hyun

    2014-02-01

    The present study was undertaken to determine whether sulforaphane-derived reactive oxygen species (ROS) might cause growth arrest and apoptosis in human bladder cancer 5637 cells. Our results show that the reduced viability of 5637 cells by sulforaphane is due to mitotic arrest, but not the G2 phase. The sulforaphane-induced mitotic arrest correlated with an induction of cyclin B1 and phosphorylation of Cdk1, as well as a concomitant increased complex between cyclin B1 and Cdk1. Sulforaphane-induced apoptosis was associated with the activation of caspase-8 and -9, the initiators caspases of the extrinsic and intrinsic apoptotic pathways, respectively, and activation of effector caspase-3 and cleavage of poly (ADP-ribose) polymerase. However, blockage of caspase activation inhibited apoptosis and abrogated growth inhibition in sulforaphane-treated 5637 cells. This study further investigated the roles of ROS with respect to mitotic arrest and the apoptotic effect of sulforaphane, and the maximum level of ROS accumulation was observed 3h after sulforaphane treatment. However, a ROS scavenger, N-acetyl-L-cysteine, notably attenuated sulforaphane-mediated apoptosis as well as mitotic arrest. Overall, these results suggest that sulforaphane induces mitotic arrest and apoptosis of 5637 cells via a ROS-dependent pathway. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Diverse mitotic functions of the cytoskeletal cross-linking protein Shortstop suggest a role in Dynein/Dynactin activity

    PubMed Central

    Dewey, Evan B.; Johnston, Christopher A.

    2017-01-01

    Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila. Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial–mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation. PMID:28747439

  7. Promotion of chloroplast proliferation upon enhanced post-mitotic cell expansion in leaves.

    PubMed

    Kawade, Kensuke; Horiguchi, Gorou; Ishikawa, Naoko; Hirai, Masami Yokota; Tsukaya, Hirokazu

    2013-09-28

    Leaves are determinate organs; hence, precise control of cell proliferation and post-mitotic cell expansion is essential for their growth. A defect in cell proliferation often triggers enhanced post-mitotic cell expansion in leaves. This phenomenon is referred to as 'compensation'. Several lines of evidence from studies on compensation have shown that cell proliferation and post-mitotic cell expansion are coordinately regulated during leaf development. Therefore, compensation has attracted much attention to the mechanisms for leaf growth. However, our understanding of compensation at the subcellular level remains limited because studies of compensation have focused mainly on cellular-level phenotypes. Proper leaf growth requires quantitative control of subcellular components in association with cellular-level changes. To gain insight into the subcellular aspect of compensation, we investigated the well-known relationship between cell area and chloroplast number per cell in compensation-exhibiting lines, and asked whether chloroplast proliferation is modulated in response to the induction of compensation. We first established a convenient and reliable method for observation of chloroplasts in situ. Using this method, we analyzed Arabidopsis thaliana mutants fugu5 and angustifolia3 (an3), and a transgenic line KIP-RELATED PROTEIN2 overexpressor (KRP2 OE), which are known to exhibit typical features of compensation. We here showed that chloroplast number per cell increased in the subepidermal palisade tissue of these lines. We analyzed tetraploidized wild type, fugu5, an3 and KRP2 OE, and found that cell area itself, but not nuclear ploidy, is a key parameter that determines the activity of chloroplast proliferation. In particular, in the case of an3, we uncovered that promotion of chloroplast proliferation depends on the enhanced post-mitotic cell expansion. The expression levels of chloroplast proliferation-related genes are similar to or lower than that in the wild

  8. Promotion of chloroplast proliferation upon enhanced post-mitotic cell expansion in leaves

    PubMed Central

    2013-01-01

    Background Leaves are determinate organs; hence, precise control of cell proliferation and post-mitotic cell expansion is essential for their growth. A defect in cell proliferation often triggers enhanced post-mitotic cell expansion in leaves. This phenomenon is referred to as ‘compensation’. Several lines of evidence from studies on compensation have shown that cell proliferation and post-mitotic cell expansion are coordinately regulated during leaf development. Therefore, compensation has attracted much attention to the mechanisms for leaf growth. However, our understanding of compensation at the subcellular level remains limited because studies of compensation have focused mainly on cellular-level phenotypes. Proper leaf growth requires quantitative control of subcellular components in association with cellular-level changes. To gain insight into the subcellular aspect of compensation, we investigated the well-known relationship between cell area and chloroplast number per cell in compensation-exhibiting lines, and asked whether chloroplast proliferation is modulated in response to the induction of compensation. Results We first established a convenient and reliable method for observation of chloroplasts in situ. Using this method, we analyzed Arabidopsis thaliana mutants fugu5 and angustifolia3 (an3), and a transgenic line KIP-RELATED PROTEIN2 overexpressor (KRP2 OE), which are known to exhibit typical features of compensation. We here showed that chloroplast number per cell increased in the subepidermal palisade tissue of these lines. We analyzed tetraploidized wild type, fugu5, an3 and KRP2 OE, and found that cell area itself, but not nuclear ploidy, is a key parameter that determines the activity of chloroplast proliferation. In particular, in the case of an3, we uncovered that promotion of chloroplast proliferation depends on the enhanced post-mitotic cell expansion. The expression levels of chloroplast proliferation-related genes are similar to or

  9. Human papillomavirus type 16 E7 oncoprotein engages but does not abrogate the mitotic spindle assembly checkpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Yueyang; Munger, Karl, E-mail: kmunger@rics.bwh.harvard.edu

    2012-10-10

    The mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore-microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as wellmore » as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons.« less

  10. Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension.

    PubMed

    Yu, Hong; Agarwal, Shashank; Johnston, Mark; Cohen, Aaron

    2009-01-06

    Biomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension. Twenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score. Our results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39-68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available, figure comprehension

  11. Are figure legends sufficient? Evaluating the contribution of associated text to biomedical figure comprehension

    PubMed Central

    2009-01-01

    Background Biomedical scientists need to access figures to validate research facts and to formulate or to test novel research hypotheses. However, figures are difficult to comprehend without associated text (e.g., figure legend and other reference text). We are developing automated systems to extract the relevant explanatory information along with figures extracted from full text articles. Such systems could be very useful in improving figure retrieval and in reducing the workload of biomedical scientists, who otherwise have to retrieve and read the entire full-text journal article to determine which figures are relevant to their research. As a crucial step, we studied the importance of associated text in biomedical figure comprehension. Methods Twenty subjects evaluated three figure-text combinations: figure+legend, figure+legend+title+abstract, and figure+full-text. Using a Likert scale, each subject scored each figure+text according to the extent to which the subject thought he/she understood the meaning of the figure and the confidence in providing the assigned score. Additionally, each subject entered a free text summary for each figure-text. We identified missing information using indicator words present within the text summaries. Both the Likert scores and the missing information were statistically analyzed for differences among the figure-text types. We also evaluated the quality of text summaries with the text-summarization evaluation method the ROUGE score. Results Our results showed statistically significant differences in figure comprehension when varying levels of text were provided. When the full-text article is not available, presenting just the figure+legend left biomedical researchers lacking 39–68% of the information about a figure as compared to having complete figure comprehension; adding the title and abstract improved the situation, but still left biomedical researchers missing 30% of the information. When the full-text article is available

  12. CDK-dependent potentiation of MPS1 kinase activity is essential to the mitotic checkpoint.

    PubMed

    Morin, Violeta; Prieto, Susana; Melines, Sabrina; Hem, Sonia; Rossignol, Michel; Lorca, Thierry; Espeut, Julien; Morin, Nathalie; Abrieu, Ariane

    2012-02-21

    Accurate chromosome segregation relies upon a mitotic checkpoint that monitors kinetochore attachment toward opposite spindle poles before enabling chromosome disjunction [1]. The MPS1/TTK protein kinase is a core component of the mitotic checkpoint that lies upstream of MAD2 and BubR1 both at the kinetochore and in the cytoplasm [2, 3]. To gain insight into the mechanisms underlying the regulation of MPS1 kinase, we undertook the identification of Xenopus MPS1 phosphorylation sites by mass spectrometry. We mapped several phosphorylation sites onto MPS1 and we show that phosphorylation of S283 in the noncatalytic region of MPS1 is required for full kinase activity. This phosphorylation potentiates MPS1 catalytic efficiency without impairing its affinity for the substrates. By using Xenopus egg extracts depleted of endogenous MPS1 and reconstituted with single point mutants, we show that phosphorylation of S283 is essential to activate the mitotic checkpoint. This phosphorylation does not regulate the localization of MPS1 to the kinetochore but is required for the recruitment of MAD1/MAD2, demonstrating its role at the kinetochore. Constitutive phosphorylation of S283 lowers the number of kinetochores required to hold the checkpoint, which suggests that CDK-dependent phosphorylation of MPS1 is essential to sustain the mitotic checkpoint when few kinetochores remain unattached. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Temporal Regulation of Lipin Activity Diverged to Account for Differences in Mitotic Programs

    PubMed Central

    Makarova, Maria; Gu, Ying; Chen, Jun-Song; Beckley, Janel Renée; Gould, Kathleen Louise; Oliferenko, Snezhana

    2016-01-01

    Summary Eukaryotes remodel the nucleus during mitosis using a variety of mechanisms that differ in the timing and the extent of nuclear envelope (NE) breakdown. Here, we probe the principles enabling this functional diversity by exploiting the natural divergence in NE management strategies between the related fission yeasts Schizosaccharomyces pombe and Schizosaccharomyces japonicus [1, 2, 3]. We show that inactivation of Ned1, the phosphatidic acid phosphatase of the lipin family, by CDK phosphorylation is both necessary and sufficient to promote NE expansion required for “closed” mitosis in S. pombe. In contrast, Ned1 is not regulated during division in S. japonicus, thus limiting membrane availability and necessitating NE breakage. Interspecies gene swaps result in phenotypically normal divisions with the S. japonicus lipin acquiring an S. pombe-like mitotic phosphorylation pattern. Our results provide experimental evidence for the mitotic regulation of phosphatidic acid flux and suggest that the regulatory networks governing lipin activity diverged in evolution to give rise to strikingly dissimilar mitotic programs. PMID:26774782

  14. Cdk1 phosphorylates SPAT-1/Bora to trigger PLK-1 activation and drive mitotic entry in C. elegans embryos

    PubMed Central

    Tavernier, Nicolas; Noatynska, Anna; Panbianco, Costanza; Martino, Lisa; Van Hove, Lucie; Schwager, Françoise; Léger, Thibaut

    2015-01-01

    The molecular mechanisms governing mitotic entry during animal development are incompletely understood. Here, we show that the mitotic kinase CDK-1 phosphorylates Suppressor of Par-Two 1 (SPAT-1)/Bora to regulate its interaction with PLK-1 and to trigger mitotic entry in early Caenorhabditis elegans embryos. Embryos expressing a SPAT-1 version that is nonphosphorylatable by CDK-1 and that is defective in PLK-1 binding in vitro present delays in mitotic entry, mimicking embryos lacking SPAT-1 or PLK-1 functions. We further show that phospho–SPAT-1 activates PLK-1 by triggering phosphorylation on its activator T loop in vitro by Aurora A. Likewise, we show that phosphorylation of human Bora by Cdk1 promotes phosphorylation of human Plk1 by Aurora A, suggesting that this mechanism is conserved in humans. Our results suggest that CDK-1 activates PLK-1 via SPAT-1 phosphorylation to promote entry into mitosis. We propose the existence of a positive feedback loop that connects Cdk1 and Plk1 activation to ensure a robust control of mitotic entry and cell division timing. PMID:25753036

  15. Effect of HIV-1 Tat on the formation of the mitotic spindle by interaction with ribosomal protein S3.

    PubMed

    Kim, Jiyoung; Kim, Yeon-Soo

    2018-06-06

    Human immunodeficiency virus type 1 (HIV-1) Tat, an important regulator of viral transcription, interacts with diverse cellular proteins and promotes or inhibits cell proliferation. Here, we show that ribosomal protein S3 (RPS3) plays an important role in mitosis through an interaction with α-tubulin and that Tat binds to and inhibits the localization of RPS3 in the mitotic spindle during mitosis. RPS3 colocalized with α-tubulin around chromosomes in the mitotic spindle. Depletion of RPS3 promoted α-tubulin assembly, while overexpression of RPS3 impaired α-tubulin assembly. Depletion of RPS3 resulted in aberrant mitotic spindle formation, segregation failure, and defective abscission. Moreover, ectopic expression of RPS3 rescued the cell proliferation defect in RPS3-knockdown cells. HIV-1 Tat interacted with RPS3 through its basic domain and increased the level of RPS3 in the nucleus. Expression of Tat caused defects in mitotic spindle formation and chromosome assembly in mitosis. Moreover, the localization of RPS3 in the mitotic spindle was disrupted when HIV-1 Tat was expressed in HeLa and Jurkat cells. These results suggest that Tat inhibits cell proliferation via an interaction with RPS3 and thereby disrupts mitotic spindle formation during HIV-1 infection. These results might provide insight into the mechanism underlying lymphocyte pathogenesis during HIV-1 infection.

  16. Inhibition of the Mitotic Exit Network in Response to Damaged Telomeres

    PubMed Central

    Valerio-Santiago, Mauricio; de los Santos-Velázquez, Ana Isabel; Monje-Casas, Fernando

    2013-01-01

    When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN), in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression. PMID:24130507

  17. Mitotic activity in dorsal epidermis of Rana pipiens.

    NASA Technical Reports Server (NTRS)

    Garcia-Arce, H.; Mizell, S.

    1972-01-01

    Study of statistically significant rhythms of mitotic division in dorsal epidermis of frogs, Rana pipiens, exposed to a 12:12 light:dark environment for 14 days. The results include the findings that (1) male animals have a primary period of 22 hr in summer and 18 hr in winter, (2) female animals have an 18 hr period, and (3) parapinealectomy and blinding abolish the rhythm.

  18. Synergistic Blockade of Mitotic Exit by Two Chemical Inhibitors of the APC/C

    PubMed Central

    Sackton, Katharine L.; Dimova, Nevena; Zeng, Xing; Tian, Wei; Zhang, Mengmeng; Sackton, Timothy B.; Meaders, Johnathan; Pfaff, Kathleen L.; Sigoillot, Frederic; Yu, Hongtao; Luo, Xuelian; King, Randall W.

    2014-01-01

    Summary Protein machines are multi-subunit protein complexes that orchestrate highly regulated biochemical tasks. An example is the Anaphase-Promoting Complex/Cyclosome (APC/C), a thirteen-subunit ubiquitin ligase that initiates the metaphase-anaphase transition and mitotic exit by targeting proteins such as securin and cyclin B1 for ubiquitin-dependent destruction by the proteasome1,2. Because blocking mitotic exit is an effective approach for inducing tumor cell death3,4, the APC/C represents a potential novel target for cancer therapy. APC/C activation in mitosis requires binding of Cdc205, which forms a co-receptor with the APC/C to recognize substrates containing a Destruction box (D-box)6-14. Here we demonstrate that we can synergistically inhibit APC/C-dependent proteolysis and mitotic exit by simultaneously disrupting two protein-protein interactions within the APC/C-Cdc20-substrate ternary complex. We identified a small molecule, called apcin (APC inhibitor), which binds to Cdc20 and competitively inhibits the ubiquitylation of D-box-containing substrates. Analysis of the crystal structure of the apcin-Cdc20 complex suggests that apcin occupies the D-box-binding pocket on the side face of the WD40-domain. The ability of apcin to block mitotic exit is synergistically amplified by co-addition of tosyl-L-arginine methyl ester (TAME), a small molecule that blocks the APC/C-Cdc20 interaction15,16. This work suggests that simultaneous disruption of multiple, weak protein-protein interactions is an effective approach for inactivating a protein machine. PMID:25156254

  19. The Echinoid Mitotic Gradient: Effect of Cell Size on the Micromere Cleavage Cycle

    PubMed Central

    Langelan Duncan, Rosalie E.; Whiteley, Arthur H.

    2012-01-01

    SUMMARY Like other euechinoids, the fertilized eggs of the sand dollar Dendraster excentricus proceed through cleavages that produce a pattern of macromeres, mesomeres, and micromeres at the 4th division. The 8 cells of the macro-mesomere lineage proceed through 6 additional cleavages before hatching. At the fifth overall division, the 4 micromeres produce a lineage of large micromeres that will divide 3 additional times, and a lineage of small micromeres that will divide once more before hatching. Irrespective of lineage, the length of the cell cycles is closely related to the size of the blastomere; cells of the same size have the same cell cycle time. A consequence is that at the fourth cleavage, there is a gradient of mitotic activity from the fastest dividers at the animal pole and the slowest cleacing micromeres at the vegetal pole. By the time of hatching, which is the 10th division of meso-macromeres, all cells are the same small size, the metachronic pattern of division gives way to asynchrony, and the mitotic gradient along the polar axis is lost. Experimental pre-exposure to sodium dodecyl sulfate (SDS), however, blocks the appearance of the gradients in cell size, the mitotic gradient, and the differential in cell cycle times. It is proposed that the mitotic gradients, cell cycle times, and attainment of a state of asynchrony are functions of cell size. Developmental consequences of the transition are large, and include coordinated activation of transcriptions, synthesis of new patterns of proteins, alterations of metabolism, and onset of morphogenesis. PMID:22006441

  20. Changes in Ect2 Localization Couple Actomyosin-Dependent Cell Shape Changes to Mitotic Progression

    PubMed Central

    Matthews, Helen K.; Delabre, Ulysse; Rohn, Jennifer L.; Guck, Jochen; Kunda, Patricia; Baum, Buzz

    2012-01-01

    Summary As they enter mitosis, animal cells undergo profound actin-dependent changes in shape to become round. Here we identify the Cdk1 substrate, Ect2, as a central regulator of mitotic rounding, thus uncovering a link between the cell-cycle machinery that drives mitotic entry and its accompanying actin remodeling. Ect2 is a RhoGEF that plays a well-established role in formation of the actomyosin contractile ring at mitotic exit, through the local activation of RhoA. We find that Ect2 first becomes active in prophase, when it is exported from the nucleus into the cytoplasm, activating RhoA to induce the formation of a mechanically stiff and rounded metaphase cortex. Then, at anaphase, binding to RacGAP1 at the spindle midzone repositions Ect2 to induce local actomyosin ring formation. Ect2 localization therefore defines the stage-specific changes in actin cortex organization critical for accurate cell division. PMID:22898780

  1. Cell cycle-regulated proteolysis of mitotic target proteins.

    PubMed

    Bastians, H; Topper, L M; Gorbsky, G L; Ruderman, J V

    1999-11-01

    The ubiquitin-dependent proteolysis of mitotic cyclin B, which is catalyzed by the anaphase-promoting complex/cyclosome (APC/C) and ubiquitin-conjugating enzyme H10 (UbcH10), begins around the time of the metaphase-anaphase transition and continues through G1 phase of the next cell cycle. We have used cell-free systems from mammalian somatic cells collected at different cell cycle stages (G0, G1, S, G2, and M) to investigate the regulated degradation of four targets of the mitotic destruction machinery: cyclins A and B, geminin H (an inhibitor of S phase identified in Xenopus), and Cut2p (an inhibitor of anaphase onset identified in fission yeast). All four are degraded by G1 extracts but not by extracts of S phase cells. Maintenance of destruction during G1 requires the activity of a PP2A-like phosphatase. Destruction of each target is dependent on the presence of an N-terminal destruction box motif, is accelerated by additional wild-type UbcH10 and is blocked by dominant negative UbcH10. Destruction of each is terminated by a dominant activity that appears in nuclei near the start of S phase. Previous work indicates that the APC/C-dependent destruction of anaphase inhibitors is activated after chromosome alignment at the metaphase plate. In support of this, we show that addition of dominant negative UbcH10 to G1 extracts blocks destruction of the yeast anaphase inhibitor Cut2p in vitro, and injection of dominant negative UbcH10 blocks anaphase onset in vivo. Finally, we report that injection of dominant negative Ubc3/Cdc34, whose role in G1-S control is well established and has been implicated in kinetochore function during mitosis in yeast, dramatically interferes with congression of chromosomes to the metaphase plate. These results demonstrate that the regulated ubiquitination and destruction of critical mitotic proteins is highly conserved from yeast to humans.

  2. SON is a spliceosome-associated factor required for mitotic progression.

    PubMed

    Huen, Michael S Y; Sy, Shirley M H; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L; Man, Cornelia; Dong, Shuo; Chen, Junjie

    2010-07-01

    The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division. © 2010 Landes Bioscience

  3. SON is a spliceosome-associated factor required for mitotic progression

    PubMed Central

    Sy, Shirley MH; Leung, Ka Man; Ching, Yick-Pang; Tipoe, George L; Man, Cornelia; Dong, Shuo

    2010-01-01

    The eukaryotic RNA splicing machinery is dedicated to the daunting task of excising intronic sequences on the many nascent RNA transcripts in a cell, and in doing so facilitates proper translation of its transcriptome. Notably, emerging evidence suggests that RNA splicing may also play direct roles in maintaining genome stability. Here we report the identification of the RNA/DNA-binding protein SON as a component of spliceosome that plays pleiotropic roles during mitotic progression. We found that SON is essential for cell proliferation, and that its inactivation triggers a MAD2-dependent mitotic delay. Moreover, SON deficiency is accompanied by defective chromosome congression, compromised chromosome segregation and cytokinesis, which in turn contributes to cellular aneuploidy and cell death. In summary, our study uncovers a specific link between SON and mitosis, and highlights the potential of RNA processing as additional regulatory mechanisms that govern cell proliferation and division. PMID:20581448

  4. Comparative analysis of mitotic aberrations induced by diethyl sulphate (DES) and sodium azide (SA) in Vicia faba L. (Fabaceae).

    PubMed

    Bhat, Tariq Ahmad; Sharma, Monika; Anis, M

    2007-03-01

    The present investigation provides a comparative account of different concentrations (0.01, 0.02, 0.03, 0.04, 0.05 and 0.06%) of diethylsulphate (DES) and Sodium Azide (SA) on mitotic aberrations, seed germination, seedling survival, plant height and mitotic index in Vicia faba L. variety major. The control plants were normal while as treated ones showed significant alterations. The mutagens caused dose dependent decrease in seed germination, seedling survival, plant height and mitotic index. All the parameters were found negatively affected and were positively correlated with mutagenic concentrations. The cytological study revealed various types of mitotic aberrations, among them the dominant were fragments, stickiness, precocious separation, c-metaphase, ring chromosomes, unequal separation, laggards, bridges, micronuclei, disturbed anaphase etc. Stickiness and fragments were more frequent as compared to other types.

  5. Figuring process of potassium dihydrogen phosphate crystal using ion beam figuring technology.

    PubMed

    Li, Furen; Xie, Xuhui; Tie, Guipeng; Hu, Hao; Zhou, Lin

    2017-09-01

    Currently, ion beam figuring (IBF) technology has presented many excellent performances in figuring potassium dihydrogen phosphate (KDP) crystals, such as it is a noncontact figuring process and it does not require polishing fluid. So, it is a very clean figuring process and does not introduce any impurities. However, the ion beam energy deposited on KDP crystal will heat the KDP crystal and may generate cracks on it. So, it is difficult directly using IBF technology to figure KDP crystal, as oblique incident IBF (OI-IBF) has lower heat deposition, higher removal rate, and smoother surface roughness compared to normal incident IBF. This paper studied the process of using OI-IBF to figure KDP crystal. Removal rates and removal functions at different incident angles were first investigated. Then heat depositions on a test work piece were obtained through experiments. To validate the figuring process, a KDP crystal with a size of 200  mm×200  mm×12  mm was figured by OI-IBF. After three iterations using the OI-IBF process, the surface error decreases from the initial values with PV 1.986λ RMS 0.438λ to PV 0.215λ RMS 0.035λ. Experimental results indicate that OI-IBF is feasible and effective to figure KDP crystals.

  6. The Light Intermediate Chain 2 Subpopulation of Dynein Regulates Mitotic Spindle Orientation.

    PubMed

    Mahale, Sagar; Kumar, Megha; Sharma, Amit; Babu, Aswini; Ranjan, Shashi; Sachidanandan, Chetana; Mylavarapu, Sivaram V S

    2016-12-23

    Cytoplasmic dynein 1 is a multi-protein intracellular motor essential for mediating several mitotic functions, including the establishment of proper spindle orientation. The functional relevance and mechanistic distinctions between two discrete dynein subpopulations distinguished only by Light Intermediate Chain (LIC) homologues, LIC1 and LIC2 is unknown during mitosis. Here, we identify LIC2-dynein as the major mediator of proper spindle orientation and uncover its underlying molecular mechanism. Cortically localized dynein, essential for maintaining correct spindle orientation, consists majorly of LIC2-dynein, which interacts with cortical 14-3-3 ε- ζ and Par3, conserved proteins required for orienting the spindle. LIC2-dynein is also responsible for the majority of dynein-mediated asymmetric poleward transport of NuMA, helping focus microtubule minus ends. In addition, LIC2-dynein dominates in equatorially aligning chromosomes at metaphase and in regulating mitotic spindle length. Key mitotic functions of LIC2 were remarkably conserved in and essential for early embryonic divisions and development in zebrafish. Thus LIC2-dynein exclusively engages with two major cortical pathways to govern spindle orientation. Overall, we identify a novel selectivity of molecular interactions between the two LICs in mitosis as the underlying basis for their uneven distribution of labour in ensuring proper spindle orientation.

  7. Selection and Presentation of Imaging Figures in the Medical Literature

    PubMed Central

    Siontis, George C. M.; Patsopoulos, Nikolaos A.; Vlahos, Antonios P.; Ioannidis, John P. A.

    2010-01-01

    Background Images are important for conveying information, but there is no empirical evidence on whether imaging figures are properly selected and presented in the published medical literature. We therefore evaluated the selection and presentation of radiological imaging figures in major medical journals. Methodology/Principal Findings We analyzed articles published in 2005 in 12 major general and specialty medical journals that had radiological imaging figures. For each figure, we recorded information on selection, study population, provision of quantitative measurements, color scales and contrast use. Overall, 417 images from 212 articles were analyzed. Any comment/hint on image selection was made in 44 (11%) images (range 0–50% across the 12 journals) and another 37 (9%) (range 0–60%) showed both a normal and abnormal appearance. In 108 images (26%) (range 0–43%) it was unclear whether the image came from the presented study population. Eighty-three images (20%) (range 0–60%) had any quantitative or ordered categorical value on a measure of interest. Information on the distribution of the measure of interest in the study population was given in 59 cases. For 43 images (range 0–40%), a quantitative measurement was provided for the depicted case and the distribution of values in the study population was also available; in those 43 cases there was no over-representation of extreme than average cases (p = 0.37). Significance The selection and presentation of images in the medical literature is often insufficiently documented; quantitative data are sparse and difficult to place in context. PMID:20526360

  8. Degradation of the human mitotic checkpoint kinase Mps1 is cell cycle-regulated by APC-cCdc20 and APC-cCdh1 ubiquitin ligases.

    PubMed

    Cui, Yongping; Cheng, Xiaolong; Zhang, Ce; Zhang, Yanyan; Li, Shujing; Wang, Chuangui; Guadagno, Thomas M

    2010-10-22

    Mps1 is a dual specificity protein kinase with key roles in regulating the spindle assembly checkpoint and chromosome-microtubule attachments. Consistent with these mitotic functions, Mps1 protein levels fluctuate during the cell cycle, peaking at early mitosis and abruptly declining during mitotic exit and progression into the G(1) phase. Although evidence in budding yeast indicates that Mps1 is targeted for degradation at anaphase by the anaphase-promoting complex (APC)-c(Cdc20) complex, little is known about the regulatory mechanisms that govern Mps1 protein levels in human cells. Here, we provide evidence for the ubiquitin ligase/proteosome pathway in regulating human Mps1 levels during late mitosis through G(1) phase. First, we showed that treatment of HEK 293T cells with the proteosome inhibitor MG132 resulted in an increase in both the polyubiquitination and the accumulation of Mps1 protein levels. Next, Mps1 was shown to co-precipitate with APC and its activators Cdc20 and Cdh1 in a cell cycle-dependent manner. Consistent with this, overexpression of Cdc20 or Cdh1 led to a marked reduction of endogenous Mps1 levels during anaphase or G(1) phase, respectively. In contrast, depletion of Cdc20 or Cdh1 by RNAi treatment both led to the stabilization of Mps1 protein during mitosis or G(1) phase, respectively. Finally, we identified a single D-box motif in human Mps1 that is required for its ubiquitination and degradation. Failure to appropriately degrade Mps1 is sufficient to trigger centrosome amplification and mitotic abnormalities in human cells. Thus, our results suggest that the sequential actions of the APC-c(Cdc20) and APC-c(Cdh1) ubiquitin ligases regulate the clearance of Mps1 levels and are critical for Mps1 functions during the cell cycle in human cells.

  9. Effects of polyamines and polyamine biosynthetic inhibitors on mitotic activity of Allium cepa root tips.

    PubMed

    Unal, Meral; Palavan-Unsal, Narcin; Tufekci, M A

    2008-03-01

    The genotoxic and cytotoxic effects of exogenous polyamines (PAs), putrescine (Put), spermidine (Spd), spermine (Spm) and PA biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO), cyclohexilamine (CHA), methylglioxal bis-(guanylhydrazone) (MGBG) were investigated in the root meristems of Allium cepa L. The reduction of mitotic index and the induction of chromosomal aberrations such as bridges, stickiness, c-mitotic anaphases, micronuclei, endoredupliction by PAs and PA biosynthetic inhibitors were observed and these were used as evidence of genotoxicity and cytotoxicity.

  10. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    NASA Astrophysics Data System (ADS)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  11. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    PubMed Central

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  12. Studying the Role of the Mitotic Exit Network in Cytokinesis.

    PubMed

    Foltman, Magdalena; Sanchez-Diaz, Alberto

    2017-01-01

    In budding yeast cells, cytokinesis is achieved by the successful division of the cytoplasm into two daughter cells, but the precise mechanisms of cell division and its regulation are still rather poorly understood. The Mitotic Exit Network (MEN) is the signaling cascade that is responsible for the release of Cdc14 phosphatase leading to the inactivation of the kinase activity associated to cyclin-dependent kinases (CDK), which drives exit from mitosis and a rapid and efficient cytokinesis. Mitotic CDK impairs the activation of MEN before anaphase, and activation of MEN in anaphase leads to the inactivation of CDK, which presents a challenge to determine the contribution that each pathway makes to the successful onset of cytokinesis. To determine CDK and MEN contribution to cytokinesis irrespectively of each other, here we present methods to induce cytokinesis after the inactivation of CDK activity in temperature sensitive mutants of the MEN pathway. An array of methods to monitor the cellular events associated with the successful cytokinesis is included.

  13. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule

    NASA Technical Reports Server (NTRS)

    Baird, R. A.; Burton, M. D.; Fashena, D. S.; Naeger, R. A.

    2000-01-01

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.

  14. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule.

    PubMed

    Baird, R A; Burton, M D; Lysakowski, A; Fashena, D S; Naeger, R A

    2000-10-24

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event.

  15. The Differential Roles of Budding Yeast Tem1p, Cdc15p, and Bub2p Protein Dynamics in Mitotic ExitD⃞V⃞

    PubMed Central

    Molk, Jeffrey N.; Schuyler, Scott C.; Liu, Jenny Y.; Evans, James G.; Salmon, E. D.; Pellman, David; Bloom, Kerry

    2004-01-01

    In the budding yeast Saccharomyces cerevisiae the mitotic spindle must be positioned along the mother-bud axis to activate the mitotic exit network (MEN) in anaphase. To examine MEN proteins during mitotic exit, we imaged the MEN activators Tem1p and Cdc15p and the MEN regulator Bub2p in vivo. Quantitative live cell fluorescence microscopy demonstrated the spindle pole body that segregated into the daughter cell (dSPB) signaled mitotic exit upon penetration into the bud. Activation of mitotic exit was associated with an increased abundance of Tem1p-GFP and the localization of Cdc15p-GFP on the dSPB. In contrast, Bub2p-GFP fluorescence intensity decreased in mid-to-late anaphase on the dSPB. Therefore, MEN protein localization fluctuates to switch from Bub2p inhibition of mitotic exit to Cdc15p activation of mitotic exit. The mechanism that elevates Tem1p-GFP abundance in anaphase is specific to dSPB penetration into the bud and Dhc1p and Lte1p promote Tem1p-GFP localization. Finally, fluorescence recovery after photobleaching (FRAP) measurements revealed Tem1p-GFP is dynamic at the dSPB in late anaphase. These data suggest spindle pole penetration into the bud activates mitotic exit, resulting in Tem1p and Cdc15p persistence at the dSPB to initiate the MEN signal cascade. PMID:14718561

  16. Targeting Alp7/TACC to the spindle pole body is essential for mitotic spindle assembly in fission yeast

    PubMed Central

    Tang, Ngang Heok; Okada, Naoyuki; Fong, Chii Shyang; Arai, Kunio; Sato, Masamitsu; Toda, Takashi

    2014-01-01

    The conserved TACC protein family localises to the centrosome (the spindle pole body, SPB in fungi) and mitotic spindles, thereby playing a crucial role in bipolar spindle assembly. However, it remains elusive how TACC proteins are recruited to the centrosome/SPB. Here, using fission yeast Alp7/TACC, we have determined clustered five amino acid residues within the TACC domain required for SPB localisation. Critically, these sequences are essential for the functions of Alp7, including proper spindle formation and mitotic progression. Moreover, we have identified pericentrin-like Pcp1 as a loading factor to the mitotic SPB, although Pcp1 is not a sole platform. PMID:24937146

  17. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells.

    PubMed

    Rusin, Scott F; Schlosser, Kate A; Adamo, Mark E; Kettenbach, Arminja N

    2015-10-13

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry-based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c-dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2-dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. Copyright © 2015, American Association for the Advancement of Science.

  18. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells

    PubMed Central

    Rusin, Scott F.; Schlosser, Kate A.; Adamo, Mark E.; Kettenbach, Arminja N.

    2017-01-01

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry–based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c–dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2–dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. PMID:26462736

  19. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    PubMed Central

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  20. Automatic digital image analysis for identification of mitotic cells in synchronous mammalian cell cultures.

    PubMed

    Eccles, B A; Klevecz, R R

    1986-06-01

    Mitotic frequency in a synchronous culture of mammalian cells was determined fully automatically and in real time using low-intensity phase-contrast microscopy and a newvicon video camera connected to an EyeCom III image processor. Image samples, at a frequency of one per minute for 50 hours, were analyzed by first extracting the high-frequency picture components, then thresholding and probing for annular objects indicative of putative mitotic cells. Both the extraction of high-frequency components and the recognition of rings of varying radii and discontinuities employed novel algorithms. Spatial and temporal relationships between annuli were examined to discern the occurrences of mitoses, and such events were recorded in a computer data file. At present, the automatic analysis is suited for random cell proliferation rate measurements or cell cycle studies. The automatic identification of mitotic cells as described here provides a measure of the average proliferative activity of the cell population as a whole and eliminates more than eight hours of manual review per time-lapse video recording.

  1. Novel insights into mitotic chromosome condensation

    PubMed Central

    Piskadlo, Ewa; Oliveira, Raquel A.

    2016-01-01

    The fidelity of mitosis is essential for life, and successful completion of this process relies on drastic changes in chromosome organization at the onset of nuclear division. The mechanisms that govern chromosome compaction at every cell division cycle are still far from full comprehension, yet recent studies provide novel insights into this problem, challenging classical views on mitotic chromosome assembly. Here, we briefly introduce various models for chromosome assembly and known factors involved in the condensation process (e.g. condensin complexes and topoisomerase II). We will then focus on a few selected studies that have recently brought novel insights into the mysterious way chromosomes are condensed during nuclear division. PMID:27508072

  2. LIS1 controls mitosis and mitotic spindle organization via the LIS1–NDEL1–dynein complex

    PubMed Central

    Moon, Hyang Mi; Youn, Yong Ha; Pemble, Hayley; Yingling, Jessica; Wittmann, Torsten; Wynshaw-Boris, Anthony

    2014-01-01

    Heterozygous LIS1 mutations are responsible for the human neuronal migration disorder lissencephaly. Mitotic functions of LIS1 have been suggested from many organisms throughout evolution. However, the cellular functions of LIS1 at distinct intracellular compartments such as the centrosome and the cell cortex have not been well defined especially during mitotic cell division. Here, we used detailed cellular approaches and time-lapse live cell imaging of mitosis from Lis1 mutant mouse embryonic fibroblasts to reveal critical roles of LIS1 in mitotic spindle regulation. We found that LIS1 is required for the tight control of chromosome congression and segregation to dictate kinetochore–microtubule (MT) interactions and anaphase progression. In addition, LIS1 is essential for the establishment of mitotic spindle pole integrity by maintaining normal centrosome number. Moreover, LIS1 plays crucial roles in mitotic spindle orientation by increasing the density of astral MT plus-end movements toward the cell cortex, which enhances cortical targeting of LIS1–dynein complex. Overexpression of NDEL1–dynein and MT stabilization rescues spindle orientation defects in Lis1 mutants, demonstrating that mouse LIS1 acts via the LIS1–NDEL1–dynein complex to regulate astral MT plus-ends dynamics and establish proper contacts of MTs with the cell cortex to ensure precise cell division. PMID:24030547

  3. Ion beam figuring of high-slope surfaces based on figure error compensation algorithm.

    PubMed

    Dai, Yifan; Liao, Wenlin; Zhou, Lin; Chen, Shanyong; Xie, Xuhui

    2010-12-01

    In a deterministic figuring process, it is critical to guarantee high stability of the removal function as well as the accuracy of the dwell time solution, which directly influence the convergence of the figuring process. Hence, when figuring steep optics, the ion beam is required to keep a perpendicular incidence, and a five-axis figuring machine is typically utilized. In this paper, however, a method for high-precision figuring of high-slope optics is proposed with a linear three-axis machine, allowing for inclined beam incidence. First, the changing rule of the removal function and the normal removal rate with the incidence angle is analyzed according to the removal characteristics of ion beam figuring (IBF). Then, we propose to reduce the influence of varying removal function and projection distortion on the dwell time solution by means of figure error compensation. Consequently, the incident ion beam is allowed to keep parallel to the optical axis. Simulations and experiments are given to verify the removal analysis. Finally, a figuring experiment is conducted on a linear three-axis IBF machine, which proves the validity of the method for high-slope surfaces. It takes two iterations and about 9 min to successfully figure a fused silica sample, whose aperture is 21.3 mm and radius of curvature is 16 mm. The root-mean-square figure error of the convex surface is reduced from 13.13 to 5.86 nm.

  4. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    PubMed

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. The pso4-1 mutation reduces spontaneous mitotic gene conversion and reciprocal recombination in Saccharomyces cerevisiae.

    PubMed

    Meira, L B; Fonseca, M B; Averbeck, D; Schenberg, A C; Henriques, J A

    1992-11-01

    Spontaneous mitotic recombination was examined in the haploid pso4-1 mutant of Saccharomyces cerevisiae and in the corresponding wild-type strain. Using a genetic system involving a duplication of the his4 gene it was shown that the pso4-1 mutation decreases at least fourfold the spontaneous rate of mitotic recombination. The frequency of spontaneous recombination was reduced tenfold in pso4-1 strains, as previously observed in the rad52-1 mutant. However, whereas the rad52-1 mutation specifically reduces gene conversion, the pso4-1 mutation reduces both gene conversion and reciprocal recombination. Induced mitotic recombination was also studied in pso4-1 mutant and wild-type strains after treatment with 8-methoxypsoralen plus UVA and 254 nm UV irradiation. Consistent with previous results, the pso4-1 mutation was found strongly to affect recombination induction.

  6. Phosphorylation of histone H3 on Ser-10 by Aurora B is essential for chromosome condensation in porcine embryos during the first mitotic division.

    PubMed

    Chen, Changchao; Zhang, Zixiao; Cui, Panpan; Liao, Yaya; Zhang, Yue; Yao, Lingyun; Rui, Rong; Ju, Shiqiang

    2017-07-01

    Phosphorylation of histone H3 on Ser-10 (H3S10ph) is involved in regulating mitotic chromosome condensation and decondensation, which plays an important regulatory role during mitotic cell cycle progression in mammalian cells. However, whether H3S10ph plays a similar role in early porcine embryos during the first mitotic division remains uncertain. In this study, the subcellular localization and possible roles of H3S10ph were evaluated in the first mitotic cell cycle progression of porcine embryos using western blot, indirect immunofluorescence and barasertib (H3S10ph upstream regulator Aurora-B inhibitor) treatments. H3S10ph exhibited a dynamic localization pattern and was localized to chromosomes from prometaphase to anaphase stages. Treatment of porcine embryos with barasertib inhibited mitotic division at the prophase stage and was associated with a defect in chromosome condensation accompanied by the reduction of H3S10ph. These results indicated that H3S10ph is involved in the first mitotic division in porcine embryos through its regulatory function in chromosome condensation, which further affects porcine embryo cell cycle progression during mitotic division.

  7. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Salmela, Anna-Leena; Turku Graduate School of Biomedical Sciences, Turku; Turku Centre for Biotechnology, P.O. Box 123, University of Turku

    The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3 Prime ,5-dihydroxy-4 Prime ,6,7-trimethoxyflavone) as an anti-mitoticmore » flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.« less

  8. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  9. Developmental Vitamin D (DVD) Deficiency Reduces Nurr1 and TH Expression in Post-mitotic Dopamine Neurons in Rat Mesencephalon.

    PubMed

    Luan, Wei; Hammond, Luke Alexander; Cotter, Edmund; Osborne, Geoffrey William; Alexander, Suzanne Adele; Nink, Virginia; Cui, Xiaoying; Eyles, Darryl Walter

    2018-03-01

    Developmental vitamin D (DVD) deficiency has been proposed as an important risk factor for schizophrenia. Our previous study using Sprague Dawley rats found that DVD deficiency disrupted the ontogeny of mesencephalic dopamine neurons by decreasing the mRNA level of a crucial differentiation factor of dopamine cells, the nuclear receptor related 1 protein (Nurr1). However, it remains unknown whether this reflects a reduction in dopamine cell number or in Nurr1 expression. It is also unclear if any particular subset of developing dopamine neurons in the mesencephalon is selectively affected. In this study, we employed state-of-the-art spinning disk confocal microscopy optimized for the imaging of tissue sections and 3D segmentation to assess post-mitotic dopamine cells on a single-cell basis in the rat mesencephalon at embryonic day 15. Our results showed that DVD deficiency did not alter the number, morphology, or positioning of post-mitotic dopamine cells. However, the ratio of Nurr1+TH+ cells in the substantia nigra pars compacta (SNc) compared with the ventral tegmental area (VTA) was increased in DVD-deficient embryos. In addition, the expression of Nurr1 in immature dopamine cells and mature dopamine neurons in the VTA was decreased in DVD-deficient group. Tyrosine hydroxylase was selectively reduced in SNc of DVD-deficient mesencephalon. We conclude that DVD deficiency induced early alterations in mesencephalic dopamine development may in part explain the abnormal dopamine-related behaviors found in this model. Our findings may have broader implications for how certain environmental risk factors for schizophrenia may shape the ontogeny of dopaminergic systems and by inference increase the risk of schizophrenia.

  10. Diverse mitotic functions of the cytoskeletal cross-linking protein Shortstop suggest a role in Dynein/Dynactin activity.

    PubMed

    Dewey, Evan B; Johnston, Christopher A

    2017-09-15

    Proper assembly and orientation of the bipolar mitotic spindle is critical to the fidelity of cell division. Mitotic precision fundamentally contributes to cell fate specification, tissue development and homeostasis, and chromosome distribution within daughter cells. Defects in these events are thought to contribute to several human diseases. The underlying mechanisms that function in spindle morphogenesis and positioning remain incompletely defined, however. Here we describe diverse roles for the actin-microtubule cross-linker Shortstop (Shot) in mitotic spindle function in Drosophila Shot localizes to mitotic spindle poles, and its knockdown results in an unfocused spindle pole morphology and a disruption of proper spindle orientation. Loss of Shot also leads to chromosome congression defects, cell cycle progression delay, and defective chromosome segregation during anaphase. These mitotic errors trigger apoptosis in Drosophila epithelial tissue, and blocking this apoptotic response results in a marked induction of the epithelial-mesenchymal transition marker MMP-1. The actin-binding domain of Shot directly interacts with Actin-related protein-1 (Arp-1), a key component of the Dynein/Dynactin complex. Knockdown of Arp-1 phenocopies Shot loss universally, whereas chemical disruption of F-actin does so selectively. Our work highlights novel roles for Shot in mitosis and suggests a mechanism involving Dynein/Dynactin activation. © 2017 Dewey and Johnston. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  11. Elucidating cdc25’s Oncogenic Mechanism in Breast Cancer Using Pin1, a Negative Mitotic Regulator

    DTIC Science & Technology

    2000-07-01

    inhibitor aphidicolin. This defect in replication checkpoint function was reversed after addition of recombinant wild type Pin 1, but not an isomerase... inhibitor , aphidicolin. Mock-depleted extracts effectively postponed mitotic entry in response to replication inhibition, while depletion of Pin 1 from...fail to haft mitotic entry in response to the DNA polymerase inhibitor , aphidicolin. The addition of recombinant Pin1 restores the appropriate G2

  12. Inhibition of the Ras-ERK pathway in mitotic COS7 cells is due to the inability of EGFR/Raf to transduce EGF signaling to downstream proteins.

    PubMed

    Shi, Huaiping; Zhang, Tianying; Yi, Yongqing; Ma, Yue

    2016-06-01

    Although previous studies have shown that Ras-ERK signaling in mitosis is closed due to the inhibition of signal transduction, the events involved in the molecular mechanisms are still unclear. In the present study, we investigated the Ras-ERK signaling pathway in mitotic COS7 cells. The results demonstrated that treatment with epidermal growth factor (EGF) failed to increase the endocytosis of EGF-EGFR (EGF receptor) complexes in mitotic COS7 cells, although a large amount of endosomes were found in asynchronous COS7 cells. Clathrin expression levels in mitotic COS7 cells were inhibited whereas caveolin expression levels in mitotic COS7 cells were almost unaffected. Y1068 and Y1086 residues of EGFR in the mitotic COS7 cells were activated. However, Grb2 and Shc in the mitotic COS7 cells did not bind to activated EGFR. Ras activity was inhibited in the mitotic COS7 cells whereas its downstream protein, Raf, was obviously phosphorylated by EGF in mitosis. Treatment with phorbol 12-myristate 13-acetate (PMA) also increased the phosphorylation levels of Raf in the mitotic COS7 cells. Nevertheless, Raf phosphorylation in mitosis was significantly inhibited by AG1478. Lastly, activation of EGF-mediated MEK and ERK in the mitotic COS7 cells was obviously inhibited. In summary, our results suggest that the Ras-ERK pathway is inhibited in mitotic COS7 cells which may be the dual result of the difficulty in the transduction of EGF signaling by EGFR or Raf to downstream proteins.

  13. 16 CFR Figure 3 to Part 1508 - Figure 3 to Part 1508

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Figure 3 to Part 1508 3 Figure 3 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS Pt. 1508, Fig. 3 Figure 3 to Part 1508 EC03OC91.063 [47 FR...

  14. 16 CFR Figure 3 to Part 1509 - Figure 3 to Part 1509

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Figure 3 to Part 1509 3 Figure 3 to Part 1509 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS Pt. 1509, Fig. 3 Figure 3 to Part 1509 EC03OC91.066 [47...

  15. 16 CFR Figure 1 to Part 1509 - Figure 1 to Part 1509

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Figure 1 to Part 1509 1 Figure 1 to Part 1509 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS Pt. 1509, Fig. 1 Figure 1 to Part 1509 EC03OC91.064 [47...

  16. Hair cell recovery in mitotically blocked cultures of the bullfrog saccule

    PubMed Central

    Baird, Richard A.; Burton, Miriam D.; Fashena, David S.; Naeger, Rebecca A.

    2000-01-01

    Hair cells in many nonmammalian vertebrates are regenerated by the mitotic division of supporting cell progenitors and the differentiation of the resulting progeny into new hair cells and supporting cells. Recent studies have shown that nonmitotic hair cell recovery after aminoglycoside-induced damage can also occur in the vestibular organs. Using hair cell and supporting cell immunocytochemical markers, we have used confocal and electron microscopy to examine the fate of damaged hair cells and the origin of immature hair cells after gentamicin treatment in mitotically blocked cultures of the bullfrog saccule. Extruding and fragmenting hair cells, which undergo apoptotic cell death, are replaced by scar formations. After losing their bundles, sublethally damaged hair cells remain in the sensory epithelium for prolonged periods, acquiring supporting cell-like morphology and immunoreactivity. These modes of damage appear to be mutually exclusive, implying that sublethally damaged hair cells repair their bundles. Transitional cells, coexpressing hair cell and supporting cell markers, are seen near scar formations created by the expansion of neighboring supporting cells. Most of these cells have morphology and immunoreactivity similar to that of sublethally damaged hair cells. Ultrastructural analysis also reveals that most immature hair cells had autophagic vacuoles, implying that they originated from damaged hair cells rather than supporting cells. Some transitional cells are supporting cells participating in scar formations. Supporting cells also decrease in number during hair cell recovery, supporting the conclusion that some supporting cells undergo phenotypic conversion into hair cells without an intervening mitotic event. PMID:11050201

  17. Mitotic rate in primary melanoma: interobserver and intraobserver reliability, analyzed using H&E sections and immunohistochemistry.

    PubMed

    Garbe, Claus; Eigentler, Thomas K; Bauer, Jürgen; Blödorn-Schlicht, Norbert; Cerroni, Lorenzo; Fend, Falko; Hantschke, Markus; Kurschat, Peter; Kutzner, Heinz; Metze, Dieter; Mielke, Volker; Preßler, Harald; Reusch, Michael; Reusch, Ursula; Stadler, Rudolf; Tronnier, Michael; Yazdi, Amir; Metzler, Gisela

    2016-09-01

    In 2009, the AJCC issued a revised melanoma staging system. In addition to tumor thickness and ulceration, the mitotic rate was introduced as the third major prognostic parameter for the classification of primary cutaneous melanoma. Given that, according to the 2009 AJCC classification, the detection of one or more dermal tumor mitoses leads to an upstaging - from stage Ia to Ib - of melanomas with a tumor thickness of ≤ 1.0 mm, we set out to investigate the reproducibility of this new parameter. In order to assess interobserver reliability, 17 dermatopathologists und pathologists - all well versed in the diagnosis of cutaneous melanoma - analyzed the mitotic rate in 15 thin primary cutaneous melanomas (mean tumor thickness 0.91 mm) using identical slides. Mitotic rates were determined on H&E and phosphohistone H3 (Ser10)-stained samples. Without knowledge of their previous assessment, five of the aforementioned examiners reevaluated the samples after more than one year in order to ascertain intraobserver reliability. Interobserver reliability of the mitotic rate in thin primary melanomas is disappointing and independent of whether H&E or immunohistochemically stained samples are used (kappa value: 0.088 [H&E], 0.154 [IH], respectively). Kappa values improved to 0.345 (H&E) and 0.403 (IH) when using a cutoff of 0/1 vs. 2+ mitoses. Similarly unsatisfactory, kappa values for intraobserver reliability ranged from 0.18 and 0.348, depending on the individual examiner. Given the unsatisfactory reproducibility and large variations in assessing the mitotic rate, it remains a matter of debate whether this diagnostic parameter should play a role in therapeutic decisions. © 2016 Deutsche Dermatologische Gesellschaft (DDG). Published by John Wiley & Sons Ltd.

  18. Oxidative Damage to Rhesus Macaque Spermatozoa Results in Mitotic Arrest and Transcript Abundance Changes in Early Embryos1

    PubMed Central

    Burruel, Victoria; Klooster, Katie L.; Chitwood, James; Ross, Pablo J.; Meyers, Stuart A.

    2013-01-01

    ABSTRACT Our objective was to determine whether oxidative damage of rhesus macaque sperm induced by reactive oxygen species (ROS) in vitro would affect embryo development following intracytoplasmic sperm injection (ICSI) of metaphase II (MII) oocytes. Fresh rhesus macaque spermatozoa were treated with ROS as follows: 1 mM xanthine and 0.1 U/ml xanthine oxidase (XXO) at 37°C and 5% CO2 in air for 2.25 h. Sperm were then assessed for motility, viability, and lipid peroxidation. Motile ROS-treated and control sperm were used for ICSI of MII oocytes. Embryo culture was evaluated for 3 days for development to the eight-cell stage. Embryos were fixed and stained for signs of cytoplasmic and nuclear abnormalities. Gene expression was analyzed by RNA-Seq in two-cell embryos from control and treated groups. Exposure of sperm to XXO resulted in increased lipid peroxidation and decreased sperm motility. ICSI of MII oocytes with motile sperm induced similar rates of fertilization and cleavage between treatments. Development to four- and eight-cell stage was significantly lower for embryos generated with ROS-treated sperm than for controls. All embryos produced from ROS-treated sperm demonstrated permanent embryonic arrest and varying degrees of degeneration and nuclear fragmentation, changes that are suggestive of prolonged senescence or apoptotic cell death. RNA-Seq analysis of two-cell embryos showed changes in transcript abundance resulting from sperm treatment with ROS. Differentially expressed genes were enriched for processes associated with cytoskeletal organization, cell adhesion, and protein phosphorylation. ROS-induced damage to sperm adversely affects embryo development by contributing to mitotic arrest after ICSI of MII rhesus oocytes. Changes in transcript abundance in embryos destined for mitotic arrest is evident at the two-cell stage of development. PMID:23904511

  19. Functional Characterization of G12, a Gene Required for Mitotic Progression during Gastrulation in Zebrafish

    NASA Technical Reports Server (NTRS)

    Reinsch, Sigrid; Conway, Gregory; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    In a differential RNA display screen we have isolated a zebrafish gene, G12, for which homologs can only be found in DNA databases for vertebrates, but not invertebrates. This suggests that this is a gene required specifically in vertebrates. G12 expression is upregulated at mid-blastula transition (MBT). Morpholino inactivation of this gene by injection into 1-cell embryos results in mitotic defects and apoptosis shortly after MBT. Nuclei in morpholino treated embryos also display segregation defects. We have characterized the localization of this gene as a GFP fusion in live and fixed embryos. Overexpression of G12-GFP is non-toxic. Animals retain GFP expression for at least 7 days with no developmental defects, Interestingly in these animals G12-GFP is never detectable in blood cells though blood is present. In the deep cells of early embryos, G 12GFP is localized to nuclei and cytoskeletal elements in interphase and to the centrosome and spindle apparatus during mitosis. In the EVL, G12-GFP shows additional localization to the cell periphery, especially in mitosis. In the yolk syncytium, G12-GFP again localizes to nuclei and strongly to cytoplasmic microtubules of migrating nuclei at the YSL margin. Morpholinc, injection specifically into the YSL after cellularization blocks epiboly and nuclei of the YSL show mitotic defects while deep cells show no mitotic defects and continue to divide. Rescue experiments in which morpholino and G12-GFP RNA are co-injected indicate partial rescue by the G12-GFP. The rescue is cell autonomous; that is, regions of the embryo with higher G12-GFP expression show fewer mitotic defects. Spot 14, the human bomolog of G12, has been shown to be amplified in aggressive breast tumors. This finding, along with our functional and morphological data suggest that G12 and spot 14 are vertebrate-specific and may function either as mitotic checkpoints or as structural components of the spindle apparatus.

  20. LOX is a novel mitotic spindle-associated protein essential for mitosis.

    PubMed

    Boufraqech, Myriem; Wei, Darmood; Weyemi, Urbain; Zhang, Lisa; Quezado, Martha; Kalab, Petr; Kebebew, Electron

    2016-05-17

    LOX regulates cancer progression in a variety of human malignancies. It is overexpressed in aggressive cancers and higher expression of LOX is associated with higher cancer mortality. Here, we report a new function of LOX in mitosis. We show that LOX co-localizes to mitotic spindles from metaphase to telophase, and p-H3(Ser10)-positive cells harbor strong LOX staining. Further, purification of mitotic spindles from synchronized cells show that LOX fails to bind to microtubules in the presence of nocodazole, whereas paclitaxel treated samples showed enrichment in LOX expression, suggesting that LOX binds to stabilized microtubules. LOX knockdown leads to G2/M phase arrest; reduced p-H3(Ser10), cyclin B1, CDK1, and Aurora B. Moreover, LOX knockdown significantly increased sensitivity of cancer cells to chemotherapeutic agents that target microtubules. Our findings suggest that LOX has a role in cancer cell mitosis and may be targeted to enhance the activity of microtubule inhibitors for cancer therapy.

  1. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy.

    PubMed

    Myers, Stephanie M; Collins, Ian

    2016-01-01

    The kinesin class of microtubule-associated motor proteins present attractive anticancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms and explore the implications for future anticancer drug development against these targets.

  2. Recent findings and future directions for interpolar mitotic kinesin inhibitors in cancer therapy

    PubMed Central

    Myers, Stephanie M.; Collins, Ian

    2016-01-01

    The kinesin class of microtubule-associated motor proteins present attractive anti-cancer targets owing to their roles in key functions in dividing cells. Two interpolar mitotic kinesins Eg5 and HSET have opposing motor functions in mitotic spindle assembly with respect to microtubule movement, but both offer opportunities to develop cancer selective therapeutic agents. Here, we summarize the progress to date in developing inhibitors of Eg5 and HSET, with an emphasis on structural biology insights into the binding modes of allosteric inhibitors, compound selectivity and mechanisms of action of different chemical scaffolds. We discuss translation of preclinical studies to clinical experience with Eg5 inhibitors, recent findings on potential resistance mechanisms, and explore the implications for future anticancer drug development against these targets. PMID:26976726

  3. High throughput screening of natural products for anti-mitotic effects in MDA-MB-231 human breast carcinoma cells

    PubMed Central

    Mazzio, E; Badisa, R; Mack, N; Deiab, S; Soliman, KFA

    2013-01-01

    Some of the most effective anti-mitotic microtubule-binding agents, such as paclitaxel (Taxus brevifolia) were originally discovered through robust NCI botanical screenings. In this study, a high-through microarray format was utilized to screen 897 aqueous extracts of commonly used natural products (0.00015–0.5 mg/ml) relative to paclitaxel for anti-mitotic effects (independent of toxicity) on proliferation of MDA-MB-231 cells. The data obtained showed that less than 1.34 % tested showed inhibitory growth (IG50) properties <0.0183 mg/ml. The most potent anti-mitotics (independent of toxicity) were Mandrake root (Podophyllum peltatum), Truja Twigs (Thuja occidentalis), Colorado desert mistletoe (Phoradendron flavescens), Tou Gu Cao Speranskia Herb (Speranskia tuberculata), Bentonite Clay, Bunge Root (Pulsatilla chinensis), Brucea Fruit (Brucea javanica), Madder Root (Rubia tinctorum), Gallnut of Chinese Sumac (Melaphis chinensis), Elecampane Root (Inula Helenium), Yuan Zhi Root (Polygala tenuifolia), Pagoda Tree Fruit (Melia Toosendan), Stone Root (Collinsonia Canadensis) and others such as American Witchhazel, Arjun and Bladderwrack. The strongest tumoricidal herbs identified from amongst the subset evaluated for anti-mitotic properties were wild yam (Dioscorea villosa), beth-root (Trillium Pendulum) and alkanet-root (Lithospermum canescens). Additional data was obtained on a lesser-recognized herb: (Speranskia tuberculata) which showed growth inhibition on BT-474 (human ductal breast carcinoma) and Ishikawa (human endometrial adenocarcinoma) cells with ability to block replicative DNA synthesis leading to G2 arrest in MDA-MB-231 cells. In conclusion, these findings present relative potency of natural anti-mitotic resources effective against human breast carcinoma MDA-MB-231 cell division. PMID:24105850

  4. The Ndc80 complex targets Bod1 to human mitotic kinetochores

    PubMed Central

    2017-01-01

    Regulation of protein phosphatase activity by endogenous protein inhibitors is an important mechanism to control protein phosphorylation in cells. We recently identified Biorientation defective 1 (Bod1) as a small protein inhibitor of protein phosphatase 2A containing the B56 regulatory subunit (PP2A-B56). This phosphatase controls the amount of phosphorylation of several kinetochore proteins and thus the establishment of load-bearing chromosome-spindle attachments in time for accurate separation of sister chromatids in mitosis. Like PP2A-B56, Bod1 directly localizes to mitotic kinetochores and is required for correct segregation of mitotic chromosomes. In this report, we have probed the spatio-temporal regulation of Bod1 during mitotic progression. Kinetochore localization of Bod1 increases from nuclear envelope breakdown until metaphase. Phosphorylation of Bod1 at threonine 95 (T95), which increases Bod1's binding to and inhibition of PP2A-B56, peaks in prometaphase when PP2A-B56 localization to kinetochores is highest. We demonstrate here that kinetochore targeting of Bod1 depends on the outer kinetochore protein Ndc80 and not PP2A-B56. Crucially, Bod1 depletion functionally affects Ndc80 phosphorylation at the N-terminal serine 55 (S55), as well as a number of other phosphorylation sites within the outer kinetochore, including Knl1 at serine 24 and 60 (S24, S60), and threonine T943 and T1155 (T943, T1155). Therefore, Ndc80 recruits a phosphatase inhibitor to kinetochores which directly feeds forward to regulate Ndc80, and Knl1 phosphorylation, including sites that mediate the attachment of microtubules to kinetochores. PMID:29142109

  5. Evidence for Mitotic Recombination in W(ei)/+ Heterozygous Mice

    PubMed Central

    Panthier, J. J.; Guenet, J. L.; Condamine, H.; Jacob, F.

    1990-01-01

    A number of alleles at coat color loci of the house mouse give rise to areas of wild-type pigmentation on the coats of otherwise mutant animals. Such unstable alleles include both recessive and dominant mutations. Among the latter are several alleles at the W locus. In this report, phenotypic reversions of the W(ei) allele at the W locus were studied Mice heterozygous in repulsion for both W(ei) and buff (bf) [i.e. W(ei)+/+bf] were examined for the occurrence of phenotypic reversion events. Buff (bf) is a recessive mutation, which lies 21 cM from W on the telomeric side of chromosome 5 and is responsible for the khaki colored coat of nonagouti buff homozygotes (a/a; bf/bf). Two kinds of fully pigmented reversion spots were recovered on the coats of a/a; W(ei)+/+bf mice: either solid black or khaki colored. Furthermore phenotypic reversions of W(ei)/+ were enhanced significantly following X-irradiation of 9.25-day-old W(ei)/+ embryos (P < 0.04). These observations are consistent with the suggestion of a role for mitotic recombination in the origin of these phenotypic reversions. In addition these results rise the intriguing possibility that some W mutations may enhance mitotic recombination in the house mouse. PMID:2341029

  6. Live-cell imaging visualizes frequent mitotic skipping during senescence-like growth arrest in mammary carcinoma cells exposed to ionizing radiation.

    PubMed

    Suzuki, Masatoshi; Yamauchi, Motohiro; Oka, Yasuyoshi; Suzuki, Keiji; Yamashita, Shunichi

    2012-06-01

    Senescence-like growth arrest in human solid carcinomas is now recognized as the major outcome of radiotherapy. This study was designed to analyze cell cycle during the process of senescence-like growth arrest in mammary carcinoma cells exposed to X-rays. Fluorescent ubiquitination-based cell cycle indicators were introduced into the human mammary carcinoma cell line MCF-7. Cell cycle was sequentially monitored by live-cell imaging for up to 5 days after exposure to 10 Gy of X-rays. Live-cell imaging revealed that cell cycle transition from G2 to G1 phase without mitosis, so-called mitotic skipping, was observed in 17.1% and 69.8% of G1- and G2-irradiated cells, respectively. Entry to G1 phase was confirmed by the nuclear accumulation of mKO(2)-hCdt1 as well as cyclin E, which was inversely correlated to the accumulation of G2-specific markers such as mAG-hGeminin and CENP-F. More than 90% of cells skipping mitosis were persistently arrested in G1 phase and showed positive staining for the senescent biochemical marker, which is senescence-associated ß-galactosidase, indicating induction of senescence-like growth arrest accompanied by mitotic skipping. While G2 irradiation with higher doses of X-rays induced mitotic skipping in approximately 80% of cells, transduction of short hairpin RNA (shRNA) for p53 significantly suppressed mitotic skipping, suggesting that ionizing radiation-induced mitotic skipping is associated with p53 function. The present study found the pathway of senescence-like growth arrest in G1 phase without mitotic entry following G2-irradiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Microtubule-dependent path to the cell cortex for cytoplasmic dynein in mitotic spindle orientation

    PubMed Central

    Markus, Steven M.; Lee, Wei-Lih

    2011-01-01

    During animal development, microtubules (MTs) play a major role in directing cellular and subcellular patterning, impacting cell polarization and subcellular organization, thereby affecting cell fate determination and tissue architecture. In particular, when progenitor cells divide asymmetrically along an anterior-posterior or apical-basal axis, MTs must coordinate the position of the mitotic spindle with the site of cell division to ensure normal distribution of cell fate determinants and equal sequestration of genetic material into the two daughter cells. Emerging data from diverse model systems have led to the prevailing view that, during mitotic spindle positioning, polarity cues at the cell cortex signal for the recruitment of NuMA and the minus-end directed MT motor cytoplasmic dynein.1 The NuMA/dynein complex is believed to connect, in turn, to the mitotic spindle via astral MTs, thus aligning and tethering the spindle, but how this connection is achieved faithfully is unclear. Do astral MTs need to search for and then capture cortical NuMA/dynein? How does dynein capture the astral MTs emanating from the correct spindle pole? Recently, using the classical model of asymmetric cell division—budding yeast S. cerevisiae—we successfully demonstrated that astral MTs assume an active role in cortical dynein targeting, in that astral MTs utilize their distal plus ends to deliver dynein to the daughter cell cortex, the site where dynein activity is needed to perform its spindle alignment function. This observation introduced the novel idea that, during mitotic spindle orientation processes, polarity cues at the cell cortex may actually signal to prime the cortical receptors for MT-dependent dynein delivery. This model is consistent with the observation that dynein/dynactin accumulate prominently at the astral MT plus ends during metaphase in a wide range of cultured mammalian cells. PMID:22754610

  8. Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype.

    PubMed

    Mosieniak, Grażyna; Sliwinska, Małgorzata A; Przybylska, Dorota; Grabowska, Wioleta; Sunderland, Piotr; Bielak-Zmijewska, Anna; Sikora, Ewa

    2016-05-01

    Cellular senescence is recognized as a potent anticancer mechanism that inhibits carcinogenesis. Cancer cells can also undergo senescence upon chemo- or radiotherapy. Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, shows anticancer properties both in vitro and in vivo. Previously, we have shown that treatment with curcumin leads to senescence of human cancer cells. Now we identified the molecular mechanism underlying this phenomenon. We observed a time-dependent accumulation of mitotic cells upon curcumin treatment. The time-lapse analysis proved that those cells progressed through mitosis for a significantly longer period of time. A fraction of cells managed to divide or undergo mitotic slippage and then enter the next phase of the cell cycle. Cells arrested in mitosis had an improperly formed mitotic spindle and were positive for γH2AX, which shows that they acquired DNA damage during prolonged mitosis. Moreover, the DNA damage response pathway was activated upon curcumin treatment and the components of this pathway remained upregulated while cells were undergoing senescence. Inhibition of the DNA damage response decreased the number of senescent cells. Thus, our studies revealed that the induction of cell senescence upon curcumin treatment resulted from aberrant progression through the cell cycle. Moreover, the DNA damage acquired by cancer cells, due to mitotic disturbances, activates an important molecular mechanism that determines the potential anticancer activity of curcumin. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Assessing the Contributions of Motor Enzymes and Microtubule Dynamics to Mitotic Chromosome Motions.

    PubMed

    McIntosh, J Richard

    2017-10-06

    During my graduate work with Keith Porter, I became fascinated by the mitotic spindle, an interest that has motivated much of my scientific work ever since. I began spindle studies by using electron microscopes, instruments that have made significant contributions to our understanding of spindle organization. Such instruments have helped to elucidate the distributions of spindle microtubules, the interactions among them, their molecular polarity, and their associations with both kinetochores and spindle poles. Our lab has also investigated some processes of spindle physiology: microtubule dynamics, the actions of microtubule-associated proteins (including motor enzymes), the character of forces generated by specific spindle components, and factors that control mitotic progression. Here, I give a personal perspective on some of this intellectual history and on what recent discoveries imply about the mechanisms of chromosome motion.

  10. Polyoma small T antigen triggers cell death via mitotic catastrophe

    PubMed Central

    Fernando, Arun T Pores; Andrabi, Shaida; Cizmecioglu, Onur; Zhu, Cailei; Livingston, David M.; Higgins, Jonathan M.G; Schaffhausen, Brian S; Roberts, Thomas M

    2014-01-01

    Polyoma small T antigen (PyST), an early gene product of the polyoma virus, has been shown to cause cell death in a number of mammalian cells in a protein phosphatase 2A (PP2A)-dependent manner. In the current study, using a cell line featuring regulated expression of PyST, we found that PyST arrests cells in mitosis. Live-cell and immunofluorescence studies showed that the majority of the PyST-expressing cells were arrested in prometaphase with almost no cells progressing beyond metaphase. These cells exhibited defects in chromosomal congression, sister chromatid cohesion and spindle positioning, resulting in the activation of the Spindle Assembly Checkpoint (SAC). Prolonged mitotic arrest then led to cell death via mitotic catastrophe. Cell cycle inhibitors that block cells in G1/S prevented PyST-induced death. PyST-induced cell death that occurs during M is not dependent on p53 status. These data suggested, and our results confirmed that, PP2A inhibition could be used to preferentially kill cancer cells with p53 mutations that proliferate normally in the presence of cell cycle inhibitors. PMID:24998850

  11. Micromanipulation studies of the mitotic apparatus in sand dollar eggs.

    PubMed

    Hiramoto, Y; Nakano, Y

    1988-01-01

    Mechanical properties of the mitotic spindle and the effects of various operations of the mitotic apparatus on the chromosome movement and spindle elongation were investigated in fertilized eggs and blastomeres of the sand dollar, Clypeaster japonicus. On the basis of results with mechanical stretching and compression of the spindle with a pair of microneedles and the behavior of an oil drop microinjected into the spindle, it was concluded that the equatorial region of the spindle is mechanically weaker than the half-spindle region. Anaphase chromosome movement occurred in the spindle from which an aster had been removed or separated with its polar end and in the spindle in which the interzonal region had been removed. This fact indicates that chromosomes move poleward in anaphase by forces generated near the kinetochores in the half-spindle. Because of the effects of separation or removal of an aster from the spindle on the spindle elongation in anaphase and the behavior of the aster, it was concluded that the spindle elongation in anaphase is caused by pulling forces generated by asters attached to the ends of the spindle.

  12. Cytogenetic analysis of CpG-oligonucleotide DSP30 plus Interleukin-2-Stimulated canine B-Cell lymphoma cells reveals the loss of one X Chromosome as the sole abnormality.

    PubMed

    Reimann-Berg, N; Murua Escobar, H; Kiefer, Y; Mischke, R; Willenbrock, S; Eberle, N; Nolte, I; Bullerdiek, J

    2011-01-01

    Human and canine lymphoid neoplasms are characterized by non-random cytogenetic abnormalities. However, due to the low mitotic activity of the B cells, cytogenetic analyses of B-cell lymphoid proliferations are difficult to perform. In the present study we stimulated canine B-cell lymphoma cells with the immunostimulatory CpG-oligonucleotide DSP30 in combination with interleukin-2 (IL-2) and obtained an adequate number of metaphases. Cytogenetic analyses revealed the loss of one X chromosome as the sole cytogenetic aberration. Chromosome analysis of the corresponding blood showed a normal female karyotype. Monosomy X as the sole clonal chromosomal abnormality is found in human hematopoietic malignancies as well, thus the dog may serve as a promising animal model. Copyright © 2011 S. Karger AG, Basel.

  13. How to be good at being bad: centrosome amplification and mitotic propensity drive intratumoral heterogeneity

    PubMed Central

    Rida, Padmashree C. G.; Cantuaria, Guilherme; Reid, Michelle D.; Kucuk, Omer

    2016-01-01

    Cancer is truly an iconic disease—a tour de force whose multiple formidable strengths can be attributed to the bewildering heterogeneity that a tumor can manifest both spatially and temporally. A Darwinian evolutionary process is believed to undergird, at least in part, the generation of this heterogeneity that contributes to poor clinical outcomes. Risk assessment in clinical oncology is currently based on a small number of clinicopathologic factors (like stage, histological grade, receptor status, and serum tumor markers) and offers limited accuracy in predicting disease course as evidenced by the prognostic heterogeneity that persists in risk segments produced by present-day models. We posit that this insufficiency stems from the exclusion of key risk contributors from such models, especially the omission of certain factors implicated in generating intratumoral heterogeneity. The extent of centrosome amplification and the mitotic propensity inherent in a tumor are two such vital factors whose contributions to poor prognosis are presently overlooked in risk prognostication. Supernumerary centrosomes occur widely in tumors and are potent drivers of chromosomal instability that fosters intratumoral heterogeneity. The mitotic propensity of a proliferating population of tumor cells reflects the cell cycling kinetics of that population. Since frequent passage through improperly regulated mitotic divisions accelerates production of diverse genotypes, the mitotic propensity inherent in a tumor serves as a powerful beacon of risk. In this review, we highlight how centrosome amplification and error-prone mitoses contribute to poor clinical outcomes and urge the need to develop these cancer-specific traits as much-needed clinically-facile prognostic biomarkers with immense potential value for individualized cancer treatment in the clinic. PMID:26358854

  14. Figure-ground organization in real and subjective contours: a new ambiguous figure, some novel measures of ambiguity, and apparent distance across regions of figure and ground.

    PubMed

    Shank, M D; Walker, J T

    1989-08-01

    This study was designed to assess the effects of organization, luminance contrast, sector angle, and orientation on a new, highly ambiguous Cs-keyhole figure. Organization and contrast were the most important factors, and sector angle also influenced figure-ground relationships. There was no significant effect of orientation, nor was there any significant interaction between any of the factors. Several new measures of figure-ground organization were developed, such as ambiguity ratios based on reaction times and on ratings of the strength of perceived organizations, providing new quantitative measures of figure-ground relationships. Distances measured across figural regions appeared smaller than equal distances across the ground in the new reversible figure, and also in Rubin's classic vase-face figure presented in real and subjective contours. Inducing a perceptual set to see a particular organization in a reversible figure influenced the apparent distance across that organization. Several possible explanations of the observed effects are considered: (1) an instance of Emmert's law, based on the difference in apparent depth of figure and ground; (2) an aspect of the Müller-Lyer illusion; (3) a feature-detector model of contour attraction; (4) a natural set or predisposition to see a figure as smaller; and (5) framing effects. The first two explanations appear the most promising.

  15. Picropodophyllin causes mitotic arrest and catastrophe by depolymerizing microtubules via Insulin-like growth factor-1 receptor-independent mechanism

    PubMed Central

    Waraky, Ahmed; Akopyan, Karen; Parrow, Vendela; Strömberg, Thomas; Axelson, Magnus; Abrahmsén, Lars; Lindqvist, Arne; Larsson, Olle; Aleem, Eiman

    2014-01-01

    Picropodophyllin (PPP) is an anticancer drug undergoing clinical development in NSCLC. PPP has been shown to suppress IGF-1R signaling and to induce a G2/M cell cycle phase arrest but the exact mechanisms remain to be elucidated. The present study identified an IGF-1-independent mechanism of PPP leading to pro-metaphase arrest. The mitotic block was induced in human cancer cell lines and in an A549 xenograft mouse but did not occur in normal hepatocytes/mouse tissues. Cell cycle arrest by PPP occurred in vitro and in vivo accompanied by prominent CDK1 activation, and was IGF-1R-independent since it occurred also in IGF-1R-depleted and null cells. The tumor cells were not arrested in G2/M but in mitosis. Centrosome separation was prevented during mitotic entry, resulting in a monopolar mitotic spindle with subsequent prometaphase-arrest, independent of Plk1/Aurora A or Eg5, and leading to cell features of mitotic catastrophe. PPP also increased soluble tubulin and decreased spindle-associated tubulin within minutes, indicating that it interfered with microtubule dynamics. These results provide a novel IGF-1R-independent mechanism of antitumor effects of PPP. PMID:25268741

  16. Improved detection rate of cytogenetic abnormalities in chronic lymphocytic leukemia and other mature B-cell neoplasms with use of CpG-oligonucleotide DSP30 and interleukin 2 stimulation.

    PubMed

    Shi, Min; Cipollini, Matthew J; Crowley-Bish, Patricia A; Higgins, Anne W; Yu, Hongbo; Miron, Patricia M

    2013-05-01

    Detection of cytogenetic abnormalities requires successful culture of the clonal population to obtain metaphase chromosomes for study, and as such, has been hampered by low mitotic indices of mature B cells in culture. Our study presents data on the improved abnormality detection rate with the use of a CpG-oligonucleotide/interleukin 2 (OL/IL-2) culture protocol for mature B-cell neoplasms, including chronic lymphocytic leukemia (CLL) and non-CLL specimens. The increased detection rate of abnormalities, compared with unstimulated culture and traditional pokeweed mitogen culture, was statistically significant for both CLL and non-CLL neoplasms. For CLL specimens, our data also showed that for cytogenetically visible aberrations, OL/IL-2 was as, if not more, sensitive than detection with interphase fluorescence in situ hybridization (iFISH). Use of OL/IL-2 allowed a number of abnormalities to be detected, which were not covered by specific iFISH panels, especially balanced translocations. Therefore, OL/IL-2 stimulation improves diagnostic sensitivity and increases discovery rate of novel prognostic findings.

  17. Figure mining for biomedical research.

    PubMed

    Rodriguez-Esteban, Raul; Iossifov, Ivan

    2009-08-15

    Figures from biomedical articles contain valuable information difficult to reach without specialized tools. Currently, there is no search engine that can retrieve specific figure types. This study describes a retrieval method that takes advantage of principles in image understanding, text mining and optical character recognition (OCR) to retrieve figure types defined conceptually. A search engine was developed to retrieve tables and figure types to aid computational and experimental research. http://iossifovlab.cshl.edu/figurome/.

  18. Hunting the mechanisms of self-renewal of immortal cell populations by means of real-time imaging of living cells.

    PubMed

    Kvitko, O V; Koneva, I I; Sheiko, Y I; Anisovich, M V

    2005-12-01

    The causes of the indefinite propagation of immortalized cell populations remain insufficiently understood, that hinders the research of such fundamental processes as ageing and cancer. In this study the interrelations between clonal proliferation and abnormalities of mitotic divisions in the immortalized cell line established from the mouse embryo were investigated with the aid of computerized microscopy of living cells. 3 mitoses with three daughter cells and 7 asymmetric mitoses which generated two daughter cells of conspicuously different sizes were registered among 71 mitotic divisions in the individual cell genealogy. Abnormal mitotic divisions either did not slow the proliferation in cell clones compared with progenies of cells that divided by means of normal mitoses or were followed by the acceleration of divisions in consecutive cell generations. These data suggest that abnormal mitotic divisions may contribute to the maintenance of the immortalized state of cell populations by means of generating chromosomal instability.

  19. Live-cell imaging RNAi screen identifies PP2A–B55α and importin-β1 as key mitotic exit regulators in human cells

    PubMed Central

    Schmitz, Michael H. A.; Held, Michael; Janssens, Veerle; Hutchins, James R. A.; Hudecz, Otto; Ivanova, Elitsa; Goris, Jozef; Trinkle-Mulcahy, Laura; Lamond, Angus I.; Poser, Ina; Hyman, Anthony A.; Mechtler, Karl; Peters, Jan-Michael; Gerlich, Daniel W.

    2013-01-01

    When vertebrate cells exit mitosis various cellular structures are re-organized to build functional interphase cells1. This depends on Cdk1 (cyclin dependent kinase 1) inactivation and subsequent dephosphorylation of its substrates2–4. Members of the protein phosphatase 1 and 2A (PP1 and PP2A) families can dephosphorylate Cdk1 substrates in biochemical extracts during mitotic exit5,6, but how this relates to postmitotic reassembly of interphase structures in intact cells is not known. Here, we use a live-cell imaging assay and RNAi knockdown to screen a genome-wide library of protein phosphatases for mitotic exit functions in human cells. We identify a trimeric PP2A–B55α complex as a key factor in mitotic spindle breakdown and postmitotic reassembly of the nuclear envelope, Golgi apparatus and decondensed chromatin. Using a chemically induced mitotic exit assay, we find that PP2A–B55α functions downstream of Cdk1 inactivation. PP2A–B55α isolated from mitotic cells had reduced phosphatase activity towards the Cdk1 substrate, histone H1, and was hyper-phosphorylated on all subunits. Mitotic PP2A complexes co-purified with the nuclear transport factor importin-β1, and RNAi depletion of importin-β1 delayed mitotic exit synergistically with PP2A–B55α. This demonstrates that PP2A–B55α and importin-β1 cooperate in the regulation of postmitotic assembly mechanisms in human cells. PMID:20711181

  20. [Genetic control of mitotic crossing-over in yeasts. III. Induction by 8-methoxypsoralen and long-wave UV irradiation (lambda=365 nm)].

    PubMed

    Fedorova, I V; Marfin, S V

    1982-02-01

    The lethal effect of 8-methoxypsoralen (8-MOP) plus 365 nm light has been studied in haploid radiosensitive strains of Saccharomyces cerevisiae. The diploid of wild type and the diploid homozygous for the rad2 mutation (this mutation blocks the excision of UV-induced pyrimidine dimers) were more resistant to the lethal effect of 8-MOP plus 365 nm light than the haploid of wild type and rad2 haploid, respectively. The diploid homozygous for rad54 mutation (the mutation blocks the repair of double-strand breaks in DNA) was more sensitive than haploid rad54. The method of repeated irradiation allowed to study the capacity of radiosensitive diploids to remove monoadducts induced by 8-MOP in DNA. This process was very effective in diploids of wild type and in the rad54 rad54 diploid, while the rad2 rad2 diploid was characterized by nearly complete absence of monoadduct excision. The study of mitotic crossing over and mitotic segregation in yeast diploids, containing a pair of complementing alleles of the ade2 gene (red/pink) has shown a very high recombinogenic effect of 8-MOP plus 365 nm light. The rad2 mutation slightly increased the frequency of mitotic segregation and mitotic crossing over. The rad54 mutation decreased the frequency of mitotic segregation and entirely suppressed mitotic crossing over. The method of repeated irradiation showed that the cross-links, but not monoadducts, are the main cause of high recombinogenic effect of 8-MOP plus 365 nm light. The possible participation of different repair systems in recombinational processes induced by 8-MOP in yeast cells is discussed.

  1. Figure Text Extraction in Biomedical Literature

    PubMed Central

    Kim, Daehyun; Yu, Hong

    2011-01-01

    Background Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. Methodology We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. Results/Conclusions The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19

  2. Figure text extraction in biomedical literature.

    PubMed

    Kim, Daehyun; Yu, Hong

    2011-01-13

    Figures are ubiquitous in biomedical full-text articles, and they represent important biomedical knowledge. However, the sheer volume of biomedical publications has made it necessary to develop computational approaches for accessing figures. Therefore, we are developing the Biomedical Figure Search engine (http://figuresearch.askHERMES.org) to allow bioscientists to access figures efficiently. Since text frequently appears in figures, automatically extracting such text may assist the task of mining information from figures. Little research, however, has been conducted exploring text extraction from biomedical figures. We first evaluated an off-the-shelf Optical Character Recognition (OCR) tool on its ability to extract text from figures appearing in biomedical full-text articles. We then developed a Figure Text Extraction Tool (FigTExT) to improve the performance of the OCR tool for figure text extraction through the use of three innovative components: image preprocessing, character recognition, and text correction. We first developed image preprocessing to enhance image quality and to improve text localization. Then we adapted the off-the-shelf OCR tool on the improved text localization for character recognition. Finally, we developed and evaluated a novel text correction framework by taking advantage of figure-specific lexicons. The evaluation on 382 figures (9,643 figure texts in total) randomly selected from PubMed Central full-text articles shows that FigTExT performed with 84% precision, 98% recall, and 90% F1-score for text localization and with 62.5% precision, 51.0% recall and 56.2% F1-score for figure text extraction. When limiting figure texts to those judged by domain experts to be important content, FigTExT performed with 87.3% precision, 68.8% recall, and 77% F1-score. FigTExT significantly improved the performance of the off-the-shelf OCR tool we used, which on its own performed with 36.6% precision, 19.3% recall, and 25.3% F1-score for text

  3. Argonaute-1 functions as a mitotic regulator by controlling Cyclin B during Drosophila early embryogenesis.

    PubMed

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Bag, Indira; Hunt, Clayton R; Ramaiah, M Janaki; Pandita, Tej K; Bhadra, Utpal; Pal-Bhadra, Manika

    2014-02-01

    The role of Ago-1 in microRNA (miRNA) biogenesis has been thoroughly studied, but little is known about its involvement in mitotic cell cycle progression. In this study, we established evidence of the regulatory role of Ago-1 in cell cycle control in association with the G2/M cyclin, cyclin B. Immunostaining of early embryos revealed that the maternal effect gene Ago-1 is essential for proper chromosome segregation, mitotic cell division, and spindle fiber assembly during early embryonic development. Ago-1 mutation resulted in the up-regulation of cyclin B-Cdk1 activity and down-regulation of p53, grp, mei-41, and wee1. The increased expression of cyclin B in Ago-1 mutants caused less stable microtubules and probably does not produce enough force to push the nuclei to the cortex, resulting in a decreased number of pole cells. The role of cyclin B in mitotic defects was further confirmed by suppressing the defects in the presence of one mutant copy of cyclin B. We identified involvement of 2 novel embryonic miRNAs--miR-981 and miR--317-for spatiotemporal regulation of cyclin B. In summary, our results demonstrate that the haploinsufficiency of maternal Ago-1 disrupts mitotic chromosome segregation and spindle fiber assembly via miRNA-guided control during early embryogenesis in Drosophila. The increased expression of cyclin B-Cdk1 and decreased activity of the Cdk1 inhibitor and cell cycle checkpoint proteins (mei-41 and grp) in Ago-1 mutant embryos allow the nuclei to enter into mitosis prematurely, even before completion of DNA replication. Thus, our results have established a novel role of Ago-1 as a regulator of the cell cycle.

  4. Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration

    PubMed Central

    Bernis, Cyril; Swift-Taylor, Beth; Nord, Matthew; Carmona, Sarah; Chook, Yuh Min; Forbes, Douglass J.

    2014-01-01

    The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel. PMID:24478460

  5. Role of BRCA1 in Controlling Mitotic Arrest in Ovarian Cystadenoma Cells

    PubMed Central

    Yu, Vanessa M.; Marion, Christine M.; Austria, Theresa M.; Yeh, Jennifer; Schönthal, Axel H.; Dubeau, Louis

    2011-01-01

    Cancers that develop in BRCA1 mutation carriers are usually near tetraploid/polyploid. This led us to hypothesize that BRCA1 controls the mitotic checkpoint complex, as loss of such control could lead to mitotic errors resulting in tetraploidy/polyploidy with subsequent aneuploidy. We used an in vitro system mimicking pre-malignant conditions, consisting of cell strains derived from the benign counterparts of serous ovarian carcinomas (cystadenomas) and expressing SV40 large T antigen, conferring the equivalent of a p53 mutation. We previously showed that such cells undergo one or several doublings of their DNA content as they age in culture and approach the phenomenon of in vitro crisis. Here we show that such increase in DNA content reflects a cell cycle arrest possibly at the anaphase promoting complex, as evidenced by decreased BrdU incorporation and increased expression of the mitotic checkpoint complex. Down-regulation of BRCA1 in cells undergoing crisis leads to activation of the anaphase promoting complex and resumption of growth kinetics similar to those seen in cells before they reach crisis. Cells recovering from crisis after BRCA1 down-regulation become multinucleated, suggesting that reduced BRCA1 expression may lead to initiation of a new cell cycle without completion of cytokinesis. This is the first demonstration that BRCA1 controls a physiological arrest at the M phase apart from its established role in DNA damage response, a role that could represent an important mechanism for acquisition of aneuploidy during tumor development. This may be particularly relevant to cancers that have a near tetraploid/polyploid number of chromosomes. PMID:21792894

  6. The small molecule inhibitor YK-4-279 disrupts mitotic progression of neuroblastoma cells, overcomes drug resistance and synergizes with inhibitors of mitosis.

    PubMed

    Kollareddy, Madhu; Sherrard, Alice; Park, Ji Hyun; Szemes, Marianna; Gallacher, Kelli; Melegh, Zsombor; Oltean, Sebastian; Michaelis, Martin; Cinatl, Jindrich; Kaidi, Abderrahmane; Malik, Karim

    2017-09-10

    Neuroblastoma is a biologically and clinically heterogeneous pediatric malignancy that includes a high-risk subset for which new therapeutic agents are urgently required. As well as MYCN amplification, activating point mutations of ALK and NRAS are associated with high-risk and relapsing neuroblastoma. As both ALK and RAS signal through the MEK/ERK pathway, we sought to evaluate two previously reported inhibitors of ETS-related transcription factors, which are transcriptional mediators of the Ras-MEK/ERK pathway in other cancers. Here we show that YK-4-279 suppressed growth and triggered apoptosis in nine neuroblastoma cell lines, while BRD32048, another ETV1 inhibitor, was ineffective. These results suggest that YK-4-279 acts independently of ETS-related transcription factors. Further analysis reveals that YK-4-279 induces mitotic arrest in prometaphase, resulting in subsequent cell death. Mechanistically, we show that YK-4-279 inhibits the formation of kinetochore microtubules, with treated cells showing a broad range of abnormalities including multipolar, fragmented and unseparated spindles, together leading to disrupted progression through mitosis. Notably, YK-4-279 does not affect microtubule acetylation, unlike the conventional mitotic poisons paclitaxel and vincristine. Consistent with this, we demonstrate that YK-4-279 overcomes vincristine-induced resistance in two neuroblastoma cell-line models. Furthermore, combinations of YK-4-279 with vincristine, paclitaxel or the Aurora kinase A inhibitor MLN8237/Alisertib show strong synergy, particularly at low doses. Thus, YK-4-279 could potentially be used as a single-agent or in combination therapies for the treatment of high-risk and relapsing neuroblastoma, as well as other cancers. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  7. Exogenous spatial attention influences figure-ground assignment.

    PubMed

    Vecera, Shaun P; Flevaris, Anastasia V; Filapek, Joseph C

    2004-01-01

    In a hierarchical stage account of vision, figure-ground assignment is thought to be completed before the operation of focal spatial attention. Results of previous studies have supported this account by showing that unpredictive, exogenous spatial precues do not influence figure-ground assignment, although voluntary attention can influence figure-ground assignment. However, in these studies, attention was not summoned directly to a region in a figure-ground display. In three experiments, we addressed the relationship between figure-ground assignment and visuospatial attention. In Experiment 1, we replicated the finding that exogenous precues do not influence figure-ground assignment when they direct attention outside of a figure-ground stimulus. In Experiment 2, we demonstrated that exogenous attention can influence figure-ground assignment if it is directed to one of the regions in a figure-ground stimulus. In Experiment 3, we demonstrated that exogenous attention can influence figure-ground assignment in displays that contain a Gestalt figure-ground cue; this result suggests that figure-ground processes are not entirely completed prior to the operation of focal spatial attention. Exogenous spatial attention acts as a cue for figure-ground assignment and can affect the outcome of figure-ground processes.

  8. The magic of numbers: malignant melanoma between science and pseudoscience.

    PubMed

    Weyers, Wolfgang

    2011-06-01

    In 2009, a new system for staging and classification of malignant melanoma has been proposed by the American Joint Committee on Cancer (AJCC). The AJCC recommends that staging of primary melanoma be based on 3 criteria, namely, thickness, ulceration, and mitotic rate, the latter substituting Clark levels in the previous classification. In melanomas measuring ≤1 mm in thickness, ulceration or finding of single mitotic figure in the dermis defines stage T1b. According to the AJCC, sentinel lymph node dissection should be considered for those melanomas because of a significantly impaired prognosis. As with other prognostic parameters, however, assessment of mitotic rate, with one mitotic figure being the cutoff point, is highly unreliable, and statistics based on such data lack validity. Despite the large database being employed, they may be pseudoscience rather than science.

  9. Physical limits on kinesin-5–mediated chromosome congression in the smallest mitotic spindles

    PubMed Central

    McCoy, Kelsey M.; Tubman, Emily S.; Claas, Allison; Tank, Damien; Clancy, Shelly Applen; O’Toole, Eileen T.; Berman, Judith; Odde, David J.

    2015-01-01

    A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro­tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to

  10. Cyclin K dependent regulation of Aurora B affects apoptosis and proliferation by induction of mitotic catastrophe in prostate cancer.

    PubMed

    Schecher, Sabrina; Walter, Britta; Falkenstein, Michael; Macher-Goeppinger, Stephan; Stenzel, Philipp; Krümpelmann, Kristina; Hadaschik, Boris; Perner, Sven; Kristiansen, Glen; Duensing, Stefan; Roth, Wilfried; Tagscherer, Katrin E

    2017-10-15

    Cyclin K plays a critical role in transcriptional regulation as well as cell development. However, the role of Cyclin K in prostate cancer is unknown. Here, we describe the impact of Cyclin K on prostate cancer cells and examine the clinical relevance of Cyclin K as a biomarker for patients with prostate cancer. We show that Cyclin K depletion in prostate cancer cells induces apoptosis and inhibits proliferation accompanied by an accumulation of cells in the G2/M phase. Moreover, knockdown of Cyclin K causes mitotic catastrophe displayed by multinucleation and spindle multipolarity. Furthermore, we demonstrate a Cyclin K dependent regulation of the mitotic kinase Aurora B and provide evidence for an Aurora B dependent induction of mitotic catastrophe. In addition, we show that Cyclin K expression is associated with poor biochemical recurrence-free survival in patients with prostate cancer treated with an adjuvant therapy. In conclusion, targeting Cyclin K represents a novel, promising anti-cancer strategy to induce cell cycle arrest and apoptotic cell death through induction of mitotic catastrophe in prostate cancer cells. Moreover, our results indicate that Cyclin K is a putative predictive biomarker for clinical outcome and therapy response for patients with prostate cancer. © 2017 UICC.

  11. Minimizing Significant Figure Fuzziness.

    ERIC Educational Resources Information Center

    Fields, Lawrence D.; Hawkes, Stephen J.

    1986-01-01

    Addresses the principles and problems associated with the use of significant figures. Explains uncertainty, the meaning of significant figures, the Simple Rule, the Three Rule, and the 1-5 Rule. Also provides examples of the Rules. (ML)

  12. Effects of Taxol plus radiation on the apoptotic and mitotic indices of mouse intestinal crypt cells.

    PubMed

    Ozkan, L; Ozuysal, S; Egeli, U; Adim, S B; Tunca, B; Aydemir, N; Ceçener, G; Ergül, E; Akpinar, G; Cimen, C; Engin, K; Ahmed, M M

    2001-07-01

    In this study we investigated the effect of Taxol, radiation, or Taxol plus radiation on highly proliferative normal tissue--the intestinal crypt cells of Swiss albino mice. Swiss-albino mice, 3-4 months old, were used in this study. Taxol was administered by bolus intravenously through the tail vein. Radiation was given using a linear accelerator. There were four treatment categories, which comprised a total of 34 groups. Each group consisted of five animals. The first category was a control category which comprised one group (n = 5). The second treatment category was Taxol alone which comprised three groups (n = 15). The third treatment category was radiation alone which comprised three groups (n = 15). The fourth treatment category was Taxol plus radiation which comprised 27 groups (n = 135). Mice were killed 24 h after Taxol or radiation or combined administration using ether anesthesia. Using a light microscope, apoptotic and mitotic indices were counted on jejunal crypt cells of mice that were stained with hematoxylin-eosin. Differences between groups were statistically evaluated with Student's t-test. Taxol caused a dose-dependent increase in apoptosis (P = 0.045) and decreased the mitotic index (P = 0.006) at high doses. Similarly, radiation caused a dose-dependent increase in apoptosis (P = 0.046) and decreased the mitotic index (P = 0.299) at higher radiation doses. Compared to radiation alone, Taxol caused a significant induction of apoptosis (P = 0.010). In combination, no significant radiosensitizing effect of Taxol was observed (enhancement ratio < 1), when compared to radiation alone. However, an increase in apoptosis was observed after 24 h of Taxol exposure when compared to 12 or 48 h of Taxol exposure (P = 0.0001 and P = 0.0001). These findings suggest that Taxol did not cause a radiosensitizing effect in intestinal crypt cells. However, a 24-hour pretreatment of Taxol exposure followed by radiation caused significant induction of apoptosis and

  13. SIRT6 deacetylates H3K18Ac at pericentric chromatin to prevent mitotic errors and cell senescence

    PubMed Central

    Tasselli, Luisa; Xi, Yuanxin; Zheng, Wei; Tennen, Ruth I.; Odrowaz, Zaneta; Simeoni, Federica; Li, Wei; Chua, Katrin F.

    2018-01-01

    Pericentric heterochromatin silencing at mammalian centromeres is essential for mitotic fidelity and genomic stability. Defective pericentric silencing is observed in senescent cells, aging tissues, and mammalian tumors, but the underlying mechanisms and functional consequences of these defects are unclear. Here, we uncover a pivotal role of the human SIRT6 enzyme in pericentric transcriptional silencing, and show that this function protects against mitotic defects, genomic instability, and cellular senescence. At pericentric heterochromatin, SIRT6 promotes deacetylation of a new substrate, histone H3 lysine K18 (H3K18), and inactivation of SIRT6 in cells leads to H3K18 hyperacetylation and aberrant accumulation of pericentric transcripts. Strikingly, RNAi-depletion of these transcripts rescues the mitotic and senescence phenotypes of SIRT6-deficient cells. Together, our findings reveal a new function for SIRT6 and H3K18Ac regulation at heterochromatin, and demonstrate the pathogenic role of de-regulated pericentric transcription in aging- and cancer- related cellular dysfunction. PMID:27043296

  14. 50 CFR Figure 1 to Part 640 - Figure 1 to Part 640

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Figure 1 to Part 640 1 Figure 1 to Part 640 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Pt. 640...

  15. 50 CFR Figure 1 to Part 640 - Figure 1 to Part 640

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Figure 1 to Part 640 1 Figure 1 to Part 640 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Pt. 640...

  16. Figure5

    EPA Pesticide Factsheets

    This is an R statistics package script that allows the reproduction of Figure 5. The script includes the links to large NetCDF files that the figures access for O3, CO, wind speed, radiation and PBL height. It pulls the timeseries for each variable at a number of cities (lat-lon specified). This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).

  17. Mathematical modeling and numerical simulation of the mitotic spindle orientation system.

    PubMed

    Ibrahim, Bashar

    2018-05-21

    The mitotic spindle orientation and position is crucial for the fidelity of chromosome segregation during asymmetric cell division to generate daughter cells with different sizes or fates. This mechanism is best understood in the budding yeast Saccharomyces cerevisiae, named the spindle position checkpoint (SPOC). The SPOC inhibits cells from exiting mitosis until the mitotic spindle is properly oriented along the mother-daughter polarity axis. Despite many experimental studies, the mechanisms underlying SPOC regulation remains elusive and unexplored theoretically. Here, a minimal mathematical is developed to describe SPOC activation and silencing having autocatalytic feedback-loop. Numerical simulations of the nonlinear ordinary differential equations (ODEs) model accurately reproduce the phenotype of SPOC mechanism. Bifurcation analysis of the nonlinear ODEs reveals the orientation dependency on spindle pole bodies, and how this dependence is altered by parameter values. These results provide for systems understanding on the molecular organization of spindle orientation system via mathematical modeling. The presented mathematical model is easy to understand and, within the above mentioned context, can be used as a base for further development of quantitative models in asymmetric cell-division. Copyright © 2018. Published by Elsevier Inc.

  18. Amphiastral Mitotic Spindle Assembly in Vertebrate Cells Lacking Centrosomes

    PubMed Central

    Hornick, Jessica E.; Mader, Christopher C.; Tribble, Emily K.; Bagne, Cydney C.; Vaughan, Kevin T.; Shaw, Sidney L.; Hinchcliffe, Edward H.

    2011-01-01

    Summary The role of centrosomes/centrioles during mitotic spindle assembly in vertebrates remains controversial. In cell-free extracts and experimentally derived acentrosomal cells, randomly oriented microtubules (MTs) self-organize around mitotic chromosomes and assemble anastral spindles [1, 2, 3]. However, vertebrate somatic cells normally assemble a connected pair of polarized, astral MT arrays – termed an amphiaster (“a star on both sides” [4]) – that is formed by the splitting and separation of the microtubule-organizing center (MTOC) well before nuclear envelope breakdown (NEB) [5]. Whether amphiaster formation requires splitting of duplicated centrosomes is not known. We found that when centrosomes were removed from living vertebrate cells early in their cell cycle, an acentriolar MTOC re-assembled, and prior to NEB, a functional amphiastral spindle formed. Cytoplasmic dynein, dynactin, and pericentrin are all recruited to the interphase aMTOC, and the activity of kinesin-5 is needed for amphiaster formation. Mitosis proceeded on time and these karyoplasts divided in two. However, ~35% of aMTOCs failed to split/separate before NEB, and these entered mitosis with persistent monastral spindles. The chromatin-mediated RAN-GTP pathway could not restore bipolarity to monastral spindles, and these cells exited mitosis as single daughters. Our data reveal the novel finding that MTOC separation and amphiaster formation does not absolutely require the centrosome, but in its absence, the fidelity of bipolar spindle assembly is highly compromised. PMID:21439826

  19. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  20. The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems of Allium cepa.

    PubMed

    Żabka, Aneta; Trzaskoma, Paweł; Winnicki, Konrad; Polit, Justyna Teresa; Chmielnicka, Agnieszka; Maszewski, Janusz

    2015-02-01

    Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. Dynamic autophosphorylation of mps1 kinase is required for faithful mitotic progression.

    PubMed

    Wang, Xinghui; Yu, Huijuan; Xu, Leilei; Zhu, Tongge; Zheng, Fan; Fu, Chuanhai; Wang, Zhiyong; Dou, Zhen

    2014-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression.

  2. Dynamic Autophosphorylation of Mps1 Kinase Is Required for Faithful Mitotic Progression

    PubMed Central

    Wang, Xinghui; Yu, Huijuan; Xu, Leilei; Zhu, Tongge; Zheng, Fan; Fu, Chuanhai; Wang, Zhiyong; Dou, Zhen

    2014-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism monitoring cell cycle progression, thus ensuring accurate chromosome segregation. The conserved mitotic kinase Mps1 is a key component of the SAC. The human Mps1 exhibits comprehensive phosphorylation during mitosis. However, the related biological relevance is largely unknown. Here, we demonstrate that 8 autophosphorylation sites within the N-terminus of Mps1, outside of the catalytic domain, are involved in regulating Mps1 kinetochore localization. The phospho-mimicking mutant of the 8 autophosphorylation sites impairs Mps1 localization to kinetochore and also affects the kinetochore recruitment of BubR1 and Mad2, two key SAC effectors, subsequently leading to chromosome segregation errors. Interestingly, the non-phosphorylatable mutant of the 8 autophosphorylation sites enhances Mps1 kinetochore localization and delays anaphase onset. We further show that the Mps1 phospho-mimicking and non-phosphorylatable mutants do not affect metaphase chromosome congression. Thus, our results highlight the importance of dynamic autophosphorylation of Mps1 in regulating accurate chromosome segregation and ensuring proper mitotic progression. PMID:25265012

  3. Enhanced spatial resolution on figures versus grounds

    PubMed Central

    Hecht, Lauren N.; Cosman, Joshua D.; Vecera, Shaun P.

    2016-01-01

    Much is known about the cues that determine figure-ground assignment, but less is known about the consequences of figure-ground assignment on later visual processing. Previous work has demonstrated that regions assigned figural status are subjectively more shape-like and salient than background regions. The increase in subjective salience of figural regions could be caused by a number of processes, one of which may be enhanced perceptual processing (e.g., an enhanced neural representation) of figures relative to grounds. We explored this hypothesis by having observers perform a perceptually demanding spatial resolution task in which targets appeared either on figure or ground regions. To rule out a purely attentional account of figural salience, observers discriminated targets on the basis of a region’s color (red or green), which was equally likely to define the figure or the ground. The results of our experiments show that targets appearing on figures were discriminated more accurately than those appearing in ground regions. In addition, targets appearing on figures were discriminated better than those presented in regions considered figurally neutral, but targets appearing within ground regions were discriminated more poorly than those appearing in figurally neutral regions. Taken together, our findings suggest that when two regions share a contour, regions assigned as figure are perceptually enhanced, whereas regions assigned as grounds are perceptually suppressed. PMID:27048441

  4. Enhanced spatial resolution on figures versus grounds.

    PubMed

    Hecht, Lauren N; Cosman, Joshua D; Vecera, Shaun P

    2016-07-01

    Much is known about the cues that determine figure-ground assignment, but less is known about the consequences of figure-ground assignment on later visual processing. Previous work has demonstrated that regions assigned figural status are subjectively more shape-like and salient than background regions. The increase in subjective salience of figural regions could be caused by a number of processes, one of which may be enhanced perceptual processing (e.g., an enhanced neural representation) of figures relative to grounds. We explored this hypothesis by having observers perform a perceptually demanding spatial resolution task in which targets appeared on either figure or ground regions. To rule out a purely attentional account of figural salience, observers discriminated targets on the basis of a region's color (red or green), which was equally likely to define the figure or the ground. The results of our experiments showed that targets appearing on figures were discriminated more accurately than those appearing in ground regions. In addition, targets appearing on figures were discriminated better than those presented in regions considered figurally neutral, but targets appearing within ground regions were discriminated more poorly than those appearing in figurally neutral regions. Taken together, our findings suggest that when two regions share a contour, regions assigned as figure are perceptually enhanced, whereas regions assigned as ground are perceptually suppressed.

  5. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sickles, Dale W.; Sperry, Ann O.; Testino, Angie

    The microtubule (MT) motor protein kinesin is a vital component of cells and organs expressing acrylamide (ACR) toxicity. As a mechanism of its potential carcinogenicity, we determined whether kinesins involved in cell division are inhibited by ACR similar to neuronal kinesin [Sickles, D.W., Brady, S.T., Testino, A.R., Friedman, M.A., and Wrenn, R.A. (1996). Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. Journal of Neuroscience Research 46, 7-17.] Kinesin-related genes were isolated from rat testes [Navolanic, P.M., and Sperry, A.O. (2000). Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biology of Reproduction 62, 1360-1369.], their kinesin-like proteinsmore » expressed in bacteria using recombinant DNA techniques and the effects of ACR, glycidamide (GLY) and propionamide (a non-neurotoxic metabolite) on the function of two of the identified kinesin motors were tested. KIFC5A MT bundling activity, required for mitotic spindle formation, was measured in an MT-binding assay. Both ACR and GLY caused a similar concentration-dependent reduction in the binding of MT; concentrations of 100 {mu}M ACR or GLY reduced its activity by 60%. KRP2 MT disassembling activity was assayed using the quantity of tubulin disassembled from taxol-stabilized MT. Both ACR and GLY inhibited KRP2-induced MT disassembly. GLY was substantially more potent; significant reductions of 60% were achieved by 500 {mu}M, a comparable inhibition by ACR required a 5 mM concentration. Propionamide had no significant effect on either kinesin, except KRP2 at 10 mM. This is the first report of ACR inhibition of a mitotic/meiotic motor protein. ACR (or GLY) inhibition of kinesin may be an alternative mechanism to DNA adduction in the production of cell division defects and potential carcinogenicity. We conclude that ACR may act on multiple kinesin family members and produce toxicities in organs highly dependent on microtubule-based functions.« less

  6. Figure-associated text summarization and evaluation.

    PubMed

    Polepalli Ramesh, Balaji; Sethi, Ricky J; Yu, Hong

    2015-01-01

    Biomedical literature incorporates millions of figures, which are a rich and important knowledge resource for biomedical researchers. Scientists need access to the figures and the knowledge they represent in order to validate research findings and to generate new hypotheses. By themselves, these figures are nearly always incomprehensible to both humans and machines and their associated texts are therefore essential for full comprehension. The associated text of a figure, however, is scattered throughout its full-text article and contains redundant information content. In this paper, we report the continued development and evaluation of several figure summarization systems, the FigSum+ systems, that automatically identify associated texts, remove redundant information, and generate a text summary for every figure in an article. Using a set of 94 annotated figures selected from 19 different journals, we conducted an intrinsic evaluation of FigSum+. We evaluate the performance by precision, recall, F1, and ROUGE scores. The best FigSum+ system is based on an unsupervised method, achieving F1 score of 0.66 and ROUGE-1 score of 0.97. The annotated data is available at figshare.com (http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903).

  7. Figure-Associated Text Summarization and Evaluation

    PubMed Central

    Polepalli Ramesh, Balaji; Sethi, Ricky J.; Yu, Hong

    2015-01-01

    Biomedical literature incorporates millions of figures, which are a rich and important knowledge resource for biomedical researchers. Scientists need access to the figures and the knowledge they represent in order to validate research findings and to generate new hypotheses. By themselves, these figures are nearly always incomprehensible to both humans and machines and their associated texts are therefore essential for full comprehension. The associated text of a figure, however, is scattered throughout its full-text article and contains redundant information content. In this paper, we report the continued development and evaluation of several figure summarization systems, the FigSum+ systems, that automatically identify associated texts, remove redundant information, and generate a text summary for every figure in an article. Using a set of 94 annotated figures selected from 19 different journals, we conducted an intrinsic evaluation of FigSum+. We evaluate the performance by precision, recall, F1, and ROUGE scores. The best FigSum+ system is based on an unsupervised method, achieving F1 score of 0.66 and ROUGE-1 score of 0.97. The annotated data is available at figshare.com (http://figshare.com/articles/Figure_Associated_Text_Summarization_and_Evaluation/858903). PMID:25643357

  8. Structural maintenance of chromosome complexes differentially compact mitotic chromosomes according to genomic context

    PubMed Central

    Schalbetter, S. A.; Goloborodko, A.; Fudenberg, G.; Belton, J.-M.; Miles, C.; Yu, M.; Dekker, J.; Mirny, L.; Baxter, J.

    2017-01-01

    Structural Maintenance of Chromosomes (SMC) protein complexes are key determinants of chromosome conformation. Using Hi-C and polymer modeling, we study how cohesin and condensin, two deeply conserved SMC complexes, organize chromosomes in the budding yeast Saccharomyces cerevisiae. The canonical role of cohesin is to co-align sister chromatids whilst condensin generally compacts mitotic chromosomes. We find strikingly different roles for the two complexes in budding yeast mitosis. First, cohesin is responsible for compacting mitotic chromosome arms, independently of sister chromatid cohesion. Polymer simulations demonstrate this role can be fully accounted for through cis-looping of chromatin. Second, condensin is generally dispensable for compaction along chromosome arms. Instead it plays a targeted role compacting the rDNA proximal regions and promoting resolution of peri-centromeric regions. Our results argue that the conserved mechanism of SMC complexes is to form chromatin loops and that distinct SMC-dependent looping activities are selectively deployed to appropriately compact chromosomes. PMID:28825700

  9. Mitotic Cortical Waves Predict Future Division Sites by Encoding Positional and Size Information.

    PubMed

    Xiao, Shengping; Tong, Cheesan; Yang, Yang; Wu, Min

    2017-11-20

    Dynamic spatial patterns such as traveling waves could theoretically encode spatial information, but little is known about whether or how they are employed by biological systems, especially higher eukaryotes. Here, we show that concentric target or spiral waves of active Cdc42 and the F-BAR protein FBP17 are invoked in adherent cells at the onset of mitosis. These waves predict the future sites of cell divisions and represent the earliest known spatial cues for furrow assembly. Unlike interphase waves, the frequencies and wavelengths of the mitotic waves display size-dependent scaling properties. While the positioning role of the metaphase waves requires microtubule dynamics, spindle and microtubule-independent inhibitory signals are propagated by the mitotic waves to ensure the singularity of furrow formation. Taken together, we propose that metaphase cortical waves integrate positional and cell size information for division-plane specification in adhesion-dependent cytokinesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Figures and First Years: Examining first-year Calculus I student ability to incorporate figures into technical reports

    NASA Astrophysics Data System (ADS)

    Antonacci, Nathan; Rogers, Michael; Pfaff, Thomas

    This three-year study focused on first-year Calculus I students and their abilities to incorporate figures into technical reports. Students were handed guidelines as part of their Multidisciplinary Sustainability Education Module meant to aid them in crafting effective figures. Figure-specific questionnaires were added in the class to gain insight into the quantitative literacy skills students possessed both before starting their course and after its completion. Reviews of the figures in 78 technical reports written by 106 students showed repeated failure to refer to figures in discussion sections and use them in evidence-based arguments. Analysis of quantitative literacy skills revealed that the students could both read and interpret figures, suggesting that issues with literacy were not the main contributor to the sub-par graphs.

  11. The reference frame of figure-ground assignment.

    PubMed

    Vecera, Shaun P

    2004-10-01

    Figure-ground assignment involves determining which visual regions are foreground figures and which are backgrounds. Although figure-ground processes provide important inputs to high-level vision, little is known about the reference frame in which the figure's features and parts are defined. Computational approaches have suggested a retinally based, viewer-centered reference frame for figure-ground assignment, but figural assignment could also be computed on the basis of environmental regularities in an environmental reference frame. The present research used a newly discovered cue, lower region, to examine the reference frame of figure-ground assignment. Possible reference frames were misaligned by changing the orientation of viewers by having them tilt their heads (Experiments 1 and 2) or turn them upside down (Experiment 3). The results of these experiments indicated that figure-ground perception followed the orientation of the viewer, suggesting a viewer-centered reference frame for figure-ground assignment.

  12. Chromosome Association of Minichromosome Maintenance Proteins in Drosophila Mitotic Cycles

    PubMed Central

    Su, Tin Tin; O'Farrell, Patrick H.

    1997-01-01

    Minichromosome maintenance (MCM) proteins are essential DNA replication factors conserved among eukaryotes. MCMs cycle between chromatin bound and dissociated states during each cell cycle. Their absence on chromatin is thought to contribute to the inability of a G2 nucleus to replicate DNA. Passage through mitosis restores the ability of MCMs to bind chromatin and the ability to replicate DNA. In Drosophila early embryonic cell cycles, which lack a G1 phase, MCMs reassociate with condensed chromosomes toward the end of mitosis. To explore the coupling between mitosis and MCM–chromatin interaction, we tested whether this reassociation requires mitotic degradation of cyclins. Arrest of mitosis by induced expression of nondegradable forms of cyclins A and/or B showed that reassociation of MCMs to chromatin requires cyclin A destruction but not cyclin B destruction. In contrast to the earlier mitoses, mitosis 16 (M16) is followed by G1, and MCMs do not reassociate with chromatin at the end of M16. dacapo mutant embryos lack an inhibitor of cyclin E, do not enter G1 quiescence after M16, and show mitotic reassociation of MCM proteins. We propose that cyclin E, inhibited by Dacapo in M16, promotes chromosome binding of MCMs. We suggest that cyclins have both positive and negative roles in controlling MCM–chromatin association. PMID:9314525

  13. The Host Range of Gammaretroviruses and Gammaretroviral Vectors Includes Post-Mitotic Neural Cells

    PubMed Central

    Liu, Xiu-Huai; Xu, Wenqin; Russ, Jill; Eiden, Lee E.; Eiden, Maribeth V.

    2011-01-01

    Background Gammaretroviruses and gammaretroviral vectors, in contrast to lentiviruses and lentiviral vectors, are reported to be restricted in their ability to infect growth-arrested cells. The block to this restriction has never been clearly defined. The original assessment of the inability of gammaretroviruses and gammaretroviral vectors to infect growth-arrested cells was carried out using established cell lines that had been growth-arrested by chemical means, and has been generalized to neurons, which are post-mitotic. We re-examined the capability of gammaretroviruses and their derived vectors to efficiently infect terminally differentiated neuroendocrine cells and primary cortical neurons, a target of both experimental and therapeutic interest. Methodology/Principal Findings Using GFP expression as a marker for infection, we determined that both growth-arrested (NGF-differentiated) rat pheochromocytoma cells (PC12 cells) and primary rat cortical neurons could be efficiently transduced, and maintained long-term protein expression, after exposure to murine leukemia virus (MLV) and MLV-based retroviral vectors. Terminally differentiated PC12 cells transduced with a gammaretroviral vector encoding the anti-apoptotic protein Bcl-xL were protected from cell death induced by withdrawal of nerve growth factor (NGF), demonstrating gammaretroviral vector-mediated delivery and expression of genes at levels sufficient for therapeutic effect in non-dividing cells. Post-mitotic rat cortical neurons were also shown to be susceptible to transduction by murine replication-competent gammaretroviruses and gammaretroviral vectors. Conclusions/Significance These findings suggest that the host range of gammaretroviruses includes post-mitotic and other growth-arrested cells in mammals, and have implications for re-direction of gammaretroviral gene therapy to neurological disease. PMID:21464894

  14. The Spo12 protein of Saccharomyces cerevisiae: a regulator of mitotic exit whose cell cycle-dependent degradation is mediated by the anaphase-promoting complex.

    PubMed Central

    Shah, R; Jensen, S; Frenz, L M; Johnson, A L; Johnston, L H

    2001-01-01

    The Spo12 protein plays a regulatory role in two of the most fundamental processes of biology, mitosis and meiosis, and yet its biochemical function remains elusive. In this study we concentrate on the genetic and biochemical analysis of its mitotic function. Since high-copy SPO12 is able to suppress a wide variety of mitotic exit mutants, all of which arrest with high Clb-Cdc28 activity, we speculated whether SPO12 is able to facilitate exit from mitosis when overexpressed by antagonizing mitotic kinase activity. We show, however, that Spo12 is not a potent regulator of Clb-Cdc28 activity and can function independently of either the cyclin-dependent kinase inhibitor (CDKi), Sic1, or the anaphase-promoting complex (APC) regulator, Hct1. Spo12 protein level is regulated by the APC and the protein is degraded in G1 by an Hct1-dependent mechanism. We also demonstrate that in addition to localizing to the nucleus Spo12 is a nucleolar protein. We propose a model where overexpression of Spo12 may lead to the delocalization of a small amount of Cdc14 from the nucleolus, resulting in a sufficient lowering of mitotic kinase levels to facilitate mitotic exit. Finally, site-directed mutagenesis of highly conserved residues in the Spo12 protein sequence abolishes both its mitotic suppressor activity as well as its meiotic function. This result is the first indication that Spo12 may carry out the same biochemical function in mitosis as it does in meiosis. PMID:11729145

  15. Mitotic Vulnerability in Triple-Negative Breast Cancer Associated with LIN9 Is Targetable with BET Inhibitors.

    PubMed

    Sahni, Jennifer M; Gayle, Sylvia S; Webb, Bryan M; Weber-Bonk, Kristen L; Seachrist, Darcie D; Singh, Salendra; Sizemore, Steven T; Restrepo, Nicole A; Bebek, Gurkan; Scacheri, Peter C; Varadan, Vinay; Summers, Matthew K; Keri, Ruth A

    2017-10-01

    Triple-negative breast cancers (TNBC) are highly aggressive, lack FDA-approved targeted therapies, and frequently recur, making the discovery of novel therapeutic targets for this disease imperative. Our previous analysis of the molecular mechanisms of action of bromodomain and extraterminal protein inhibitors (BETi) in TNBC revealed these drugs cause multinucleation, indicating BET proteins are essential for efficient mitosis and cytokinesis. Here, using live cell imaging, we show that BET inhibition prolonged mitotic progression and induced mitotic cell death, both of which are indicative of mitotic catastrophe. Mechanistically, the mitosis regulator LIN9 was a direct target of BET proteins that mediated the effects of BET proteins on mitosis in TNBC. Although BETi have been proposed to function by dismantling super-enhancers (SE), the LIN9 gene lacks an SE but was amplified or overexpressed in the majority of TNBCs. In addition, its mRNA expression predicted poor outcome across breast cancer subtypes. Together, these results provide a mechanism for cancer selectivity of BETi that extends beyond modulation of SE-associated genes and suggest that cancers dependent upon LIN9 overexpression may be particularly vulnerable to BETi. Cancer Res; 77(19); 5395-408. ©2017 AACR . ©2017 American Association for Cancer Research.

  16. Effect of 60-Hz magnetic fields on ultraviolet light-induced mutation and mitotic recombination in Saccharomyces cerevisiae.

    PubMed

    Ager, D D; Radul, J A

    1992-12-01

    The purpose of this study was to examine the effect of extremely low frequency (ELF) magnetic fields on the induction of genetic damage. In general, mutational studies involving ELF magnetic fields have proven negative. However, studies examining sister-chromatid exchange and chromosome aberrations have yielded conflicting results. In this study, we have examined whether 60-Hz magnetic fields are capable of inducing mutation or mitotic recombination in the yeast Saccharomyces cerevisiae. In addition we determined whether magnetic fields were capable of altering the genetic response of S. cerevisiae to UV (254 nm). We measured the frequencies of induced mutation, gene conversion and reciprocal mitotic crossing-over for exposures to magnetic fields alone (1 mT) or in combination with various UV exposures (2-50 J/m2). These experiments were performed using a repair-proficient strain (RAD+), as well as a strain of yeast (rad3) which is incapable of excising UV-induced thymine dimers. Magnetic field exposures did not induce mutation, gene conversion or reciprocal mitotic crossing-over in either of these strains, nor did the fields influence the frequencies of UV-induced genetic events.

  17. Figure 3

    EPA Pesticide Factsheets

    The Figure.tar.gz contains a directory for each WRF ensemble run. In these directories are *.csv files for each meteorology variable examined. These are comma delimited text files that contain statistics for each observation site. Also provided is an R script that reads these files (user would need to change directory pointers) and computes the variability of error and bias of the ensemble at each site and plots these for reproduction of figure 3.This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).

  18. Significant figures.

    PubMed

    Badrick, Tony; Hickman, Peter E

    2008-08-01

    * For consistency of reporting the same number of significant figures should be used for results and reference intervals. * The choice of the reporting interval should be based on analytical imprecision (measurement uncertainty).

  19. Value of counting positive PHH3 cells in the diagnosis of uterine smooth muscle tumors

    PubMed Central

    Pang, Shu-Jie; Li, Cheng-Cheng; Shen, Yan; Liu, Yian-Zhu; Shi, Yi-Quan; Liu, Yi-Xin

    2015-01-01

    The diagnosis of uterine smooth muscle tumors including leiomyosarcomas (LMS), smooth muscle tumors of uncertain malignant potential (STUMP), bizarre (atypical) leiomyoma (BLM), mitotically active leiomyoma (MAL) and leiomyoma (LM) depends on a combination of microscopic features, such as mitoses, cytologic atypia, and coagulative tumor cell necrosis. However, a small number of these tumors still pose difficult diagnostic challenges. The assessment of accurate mitotic figures (MF) is one of the major parameters in the proper classification of uterine smooth muscle tumors. This assessment can be hampered by the presence of increased number of apoptotic bodies or pyknotic nuclei, which frequently mimic mitoses. Phospho-histone H3 (PHH3) is a recently described immunomarker specific for cells undergoing mitoses. In our study, we collected 132 cases of uterine smooth muscle tumors, including 26 LMSs, 16 STUMPs, 30 BLMs, 30 MALs and 30 LMs. We used mitosis specific marker PHH3 to count mitotic indexes (MI) of uterine smooth muscle tumors and compared with the mitotic indexes of hematoxylin and eosin (H&E). There is a positive correlation with the number of mitotic figures in H&E-stained sections and PHH3-stained sections (r=0.944, P<0.05). The ratio of PHH3-MI to H&E-MI has no statistically significant difference in each group except for LMs (P>0.05). The counting value of PHH3 in LMSs have significantly higher than STUMPs, BLMs, MALs and LMs (P<0.001) and the counting value of PHH3 is 1.5±0.5 times of the number of mitotic indexes in H&E. To conclude, our results show that counting PHH3 is a useful index in the diagnosis of uterine smooth muscle tumors and it can provide a more accurate index instead of the time-honored mitotic figure counts at a certain ratio. PMID:26191133

  20. The GPER agonist G-1 induces mitotic arrest and apoptosis in human vascular smooth muscle cells independent of GPER.

    PubMed

    Gui, Yu; Shi, Zhan; Wang, ZengYong; Li, Jing-Jing; Xu, Can; Tian, RuiJuan; Song, XinXing; Walsh, Michael P; Li, Dong; Gao, Jie; Zheng, Xi-Long

    2015-04-01

    The G protein-coupled estrogen receptor (GPER) has been implicated in the regulation of smooth muscle cell (SMC) proliferation. The GPER selective agonist G-1 has been a useful tool for exploring the biological roles of GPER in a variety of experimental settings, including SMC proliferation. The present study, originally designed to investigate cellular and signaling mechanisms underlying the regulatory role of GPER in vascular SMC proliferation using G-1, unexpectedly revealed off-target effects of G-1. G-1(1-10 μM) inhibited bromodeoxyuridine (BrdU) incorporation of human SMCs and caused G2/M cell accumulation. G-1 treatment also increased mitotic index concurrent with a decrease in phosphorylation of Cdk1 (Tyr 15) and an increase in phosphorylation of the mitotic checkpoint protein BuBR1. Furthermore, G-1 caused microtubule disruption, mitotic spindle damage, and tubulin depolymerization. G-1 induced cell apoptosis as indicated by the appearance of TUNEL-positive and annexin V-positive cells with enhanced cleavage of caspases 3 and 9. However, neither the GPER antagonist G-15 nor the MAPK kinase inhibitor PD98059 prevented these G-1 effects. Down-regulation of GPER or p44/42 MAPK with siRNA transfection also did not affect the G-1-induced apoptosis. We conclude that G-1 inhibits proliferation of SMCs through mechanisms involving mitotic arrest and apoptosis, independent of GPER and the MAPK pathway. © 2014 Wiley Periodicals, Inc.

  1. Localization of phosphorylated forms of Bcl-2 in mitosis: co-localization with Ki-67 and nucleolin in nuclear structures and on mitotic chromosomes.

    PubMed

    Barboule, Nadia; Truchet, Isabelle; Valette, Annie

    2005-04-01

    Bcl-2 phosphorylation is a normal physiological process occurring at mitosis or during mitotic arrest induced by microtubule damaging agents. The consequences of Bcl-2 phosphorylation on its function are still controversial. To better understand the role of Bcl-2 phosphorylation in mitosis, we studied the subcellular localization of phosphorylated forms of Bcl-2. Immunofluorescence experiments performed in synchronized HeLa cells indicate for the first time that mitotic phosphorylated forms of Bcl-2 can be detected in nuclear structures in prophase cells together with nucleolin and Ki-67. In later mitotic stages, as previously described, phosphorylated forms of Bcl-2 are localized on mitotic chromosomes. In addition, we demonstrate that Bcl-2 in these structures is at least in part phosphorylated on the T56 residue. Then, coimmunoprecipitation experiments reveal that, in cells synchronized at the onset of mitosis, Bcl-2 is present in a complex with nucleolin, cdc2 kinase and PP1 phosphatase. Taken together, these data further support the idea that Bcl-2 could have a new function at mitosis.

  2. Conceptual clusters in figurative language production.

    PubMed

    Corts, Daniel P; Meyers, Kristina

    2002-07-01

    Although most prior research on figurative language examines comprehension, several recent studies on the production of such language have proved to be informative. One of the most noticeable traits of figurative language production is that it is produced at a somewhat random rate with occasional bursts of highly figurative speech (e.g., Corts & Pollio, 1999). The present article seeks to extend these findings by observing production during speech that involves a very high base rate of figurative language, making statistically defined bursts difficult to detect. In an analysis of three Baptist sermons, burst-like clusters of figurative language were identified. Further study indicated that these clusters largely involve a central root metaphor that represents the topic under consideration. An interaction of the coherence, along with a conceptual understanding of a topic and the relative importance of the topic to the purpose of the speech, is offered as the most likely explanation for the clustering of figurative language in natural speech.

  3. Defects in chromosome congression and mitotic progression in KIF18A-deficient cells are partly mediated through impaired functions of CENP-E.

    PubMed

    Huang, Ying; Yao, Yixin; Xu, Han-Zhang; Wang, Zhu-Gang; Lu, Luo; Dai, Wei

    2009-08-15

    KIF18A, a molecular motor, is an essential component in the regulation of orderly chromosome congression by attenuation of the kinetochore oscillation amplitude at the midzone during mitosis in vertebrate cells. Here we report that KIF18A depletion resulted in mitotic arrest which was accompanied by the presence of unaligned chromosomes in HeLa cells. This resembles the phenotype induced by an impaired function of CENP-E, also a mitotic kinesin essential for the formation of the mitotic spindles. Our further analysis showed that KIF18A depletion caused specific downregulation of CENP-E. Downregulation of CENP-E as the result of KIF18A silencing was not due to reduced transcription but primarily due to the enhanced protein degradation. Co-immunoprecipitation revealed that KIF18A physically interacted with CENP-E and BubR1 during mitosis. Ectopic expression of the wild-type tail domain of CENP-E, but not a corresponding mutant, significantly suppressed chromosome congression defects in mitotic cells. Together, our studies strongly suggest that chromosome congression defects as the result of KIF18A depletion is at least in part mediated through destabilizing kinetochore CENP-E.

  4. Michigan transportation facts & figures : highways

    DOT National Transportation Integrated Search

    2002-08-16

    This on-line document is part of a series, Transportation Facts & Figures, by the Michigan Department of Transportation (MDOT). The Highways section of Transportation Facts & Figures cover such topics as population changes, vehicle registrations, fue...

  5. Michigan transportation facts & figures : marine

    DOT National Transportation Integrated Search

    2002-08-17

    This on-line document is part of a series, Transportation Facts & Figures, by the Michigan Department of Transportation (MDOT). The Marine section of Transportation Facts & Figures cover such topics as commercial ports, commodities carried, and ferry...

  6. Michigan transportation facts & figures : finance

    DOT National Transportation Integrated Search

    2002-08-16

    This on-line document is part of a series, Transportation Facts & Figures, by the Michigan Department of Transportation (MDOT). The Finance section of Transportation Facts & Figures cover such topics as Michigan Transportation Fund, fuel taxes, fuel ...

  7. Lunar Regolith Figures of Merit

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Scjrader. Cjrostoam; Jpe (zer. Jams); Fourroux, Kathy

    2009-01-01

    This viewgraph presentation reviews the lunar regolith figures of merit. The contents include: 1) A quick review of Figures-of-Merit (FoM); 2) Software Implementation of FoM Algorithms; and 3) Demonstration of the Software.

  8. Oocyte formation by mitotically-active germ cells purified from ovaries of reproductive age women

    PubMed Central

    White, Yvonne A. R.; Woods, Dori C.; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L.

    2012-01-01

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a FACS-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically-active cells that exhibit a gene expression profile consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and spontaneously generate 35–50 µm oocytes, as determined by morphology, gene expression and attainment of haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1–2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, like adult mice, possess rare mitotically-active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo. PMID:22366948

  9. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women.

    PubMed

    White, Yvonne A R; Woods, Dori C; Takai, Yasushi; Ishihara, Osamu; Seki, Hiroyuki; Tilly, Jonathan L

    2012-02-26

    Germline stem cells that produce oocytes in vitro and fertilization-competent eggs in vivo have been identified in and isolated from adult mouse ovaries. Here we describe and validate a fluorescence-activated cell sorting-based protocol that can be used with adult mouse ovaries and human ovarian cortical tissue to purify rare mitotically active cells that have a gene expression profile that is consistent with primitive germ cells. Once established in vitro, these cells can be expanded for months and can spontaneously generate 35- to 50-μm oocytes, as determined by morphology, gene expression and haploid (1n) status. Injection of the human germline cells, engineered to stably express GFP, into human ovarian cortical biopsies leads to formation of follicles containing GFP-positive oocytes 1-2 weeks after xenotransplantation into immunodeficient female mice. Thus, ovaries of reproductive-age women, similar to adult mice, possess rare mitotically active germ cells that can be propagated in vitro as well as generate oocytes in vitro and in vivo.

  10. PLK1 regulation of PCNT cleavage ensures fidelity of centriole separation during mitotic exit.

    PubMed

    Kim, Jaeyoun; Lee, Kwanwoo; Rhee, Kunsoo

    2015-12-09

    Centrioles are duplicated and segregated in close link to the cell cycle. During mitosis, daughter centrioles are disengaged and eventually separated from mother centrioles. New daughter centrioles may be generated only after centriole separation. Therefore, centriole separation is considered a licensing step for centriole duplication. It was previously known that separase specifically cleaves pericentrin (PCNT) during mitotic exit. Here we report that PCNT has to be phosphorylated by PLK1 to be a suitable substrate of separase. Phospho-resistant mutants of PCNT are not cleaved by separase and eventually inhibit centriole separation. Furthermore, phospho-mimetic PCNT mutants rescue centriole separation even in the presence of a PLK1 inhibitor. On the basis on these results, we propose that PLK1 phosphorylation is a priming step for separase-mediated cleavage of PCNT and eventually for centriole separation. PLK1 phosphorylation of PCNT provides an additional layer of regulatory mechanism to ensure the fidelity of centriole separation during mitotic exit.

  11. DNA Strand Breaks in Mitotic Germ Cells of Caenorhabditis elegans Evaluated by Comet Assay

    PubMed Central

    Park, Sojin; Choi, Seoyun; Ahn, Byungchan

    2016-01-01

    DNA damage responses are important for the maintenance of genome stability and the survival of organisms. Such responses are activated in the presence of DNA damage and lead to cell cycle arrest, apoptosis, and DNA repair. In Caenorhabditis elegans, double-strand breaks induced by DNA damaging agents have been detected indirectly by antibodies against DSB recognizing proteins. In this study we used a comet assay to detect DNA strand breaks and to measure the elimination of DNA strand breaks in mitotic germline nuclei of C. elegans. We found that C. elegans brc-1 mutants were more sensitive to ionizing radiation and camptothecin than the N2 wild-type strain and repaired DNA strand breaks less efficiently than N2. This study is the first demonstration of direct measurement of DNA strand breaks in mitotic germline nuclei of C. elegans. This newly developed assay can be applied to detect DNA strand breaks in different C. elegans mutants that are sensitive to DNA damaging agents. PMID:26903030

  12. Michigan transportation facts & figures : railroads

    DOT National Transportation Integrated Search

    2002-08-16

    This on-line document is part of a series, Transportation Facts & Figures, by the Michigan Department of Transportation (MDOT). The Railroad section of Transportation Facts & Figures cover such topics as miles of track owned by companies in Michigan,...

  13. Redistribution of fluorescently labeled tubulin in the mitotic apparatus of sand dollar eggs and the effects of taxol.

    PubMed

    Hamaguchi, Y; Toriyama, M; Sakai, H; Hiramoto, Y

    1987-02-01

    Fluorescently labeled tubulin was quickly incorporated into the mitotic apparatus when injected into a live sand dollar egg. After a rectangular area (1.6 X 16 microns) of the mitotic spindle was photobleached at metaphase or anaphase by the irradiation of a laser microbeam, redistribution of fluorescence was almost complete within 30 sec. The photobleached area did not change in shape during the redistribution. During the period of redistribution, the bleached area moved slightly toward the near pole at metaphase and anaphase (means: 1.6 and 1.8 micron/min, respectively). These results indicate that redistribution was not due to the exchange of tubulin subunits only at the ends of microtubules but to their rapid exchange at sites along the microtubules in the bleached region. Furthermore, treadmilling of tubulin molecules along with the spindle microtubules possibly occurred at the rate of 1.6 micron/min at metaphase. Birefringence of the mitotic apparatus increased with a large increase in both the number and length of astral rays shortly after taxol was injected. However, the microtubules did not all seem to elongate at the same rate but appeared to become equalized in length. Chromosome movement stopped within 60 sec after the injection. Centrospheres became large and the labeled tubulin already incorporated into the centrospheres was excluded from the enlarged centrospheres. Shortly after the labeled tubulin was injected following the injection of taxol, it accumulated in the peripheral region of the centrospheres, suggesting that microtubules first assembled at this region. Fluorescently labeled tubulin in the mitotic apparatus in the egg after injection of taxol was redistributed much more slowly after photobleaching than in uninjected eggs.

  14. Figure4

    EPA Pesticide Factsheets

    NetCDF files of PBL height (m), Shortwave Radiation, 10 m wind speed from WRF and Ozone from CMAQ. The data is the standard deviation of these variables for each hour of the 4 day simulation. Figure 4 is only one of the time periods: June 8, 2100 UTC. The NetCDF files have a time stamp (Times) that can be used to find this time in order to reproduce the Figure 4. Also included is a data dictionary that describes the domain and all other attributes of the model simulation.This dataset is associated with the following publication:Gilliam , R., C. Hogrefe , J. Godowitch, S. Napelenok , R. Mathur , and S.T. Rao. Impact of inherent meteorology uncertainty on air quality model predictions. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES. American Geophysical Union, Washington, DC, USA, 120(23): 12,259–12,280, (2015).

  15. Misato Controls Mitotic Microtubule Generation by Stabilizing the TCP-1 Tubulin Chaperone Complex [corrected].

    PubMed

    Palumbo, Valeria; Pellacani, Claudia; Heesom, Kate J; Rogala, Kacper B; Deane, Charlotte M; Mottier-Pavie, Violaine; Gatti, Maurizio; Bonaccorsi, Silvia; Wakefield, James G

    2015-06-29

    Mitotic spindles are primarily composed of microtubules (MTs), generated by polymerization of α- and β-Tubulin hetero-dimers. Tubulins undergo a series of protein folding and post-translational modifications in order to fulfill their functions. Defects in Tubulin polymerization dramatically affect spindle formation and disrupt chromosome segregation. We recently described a role for the product of the conserved misato (mst) gene in regulating mitotic MT generation in flies, but the molecular function of Mst remains unknown. Here, we use affinity purification mass spectrometry (AP-MS) to identify interacting partners of Mst in the Drosophila embryo. We demonstrate that Mst associates stoichiometrically with the hetero-octameric Tubulin Chaperone Protein-1 (TCP-1) complex, with the hetero-hexameric Tubulin Prefoldin complex, and with proteins having conserved roles in generating MT-competent Tubulin. We show that RNAi-mediated in vivo depletion of any TCP-1 subunit phenocopies the effects of mutations in mst or the Prefoldin-encoding gene merry-go-round (mgr), leading to monopolar and disorganized mitotic spindles containing few MTs. Crucially, we demonstrate that Mst, but not Mgr, is required for TCP-1 complex stability and that both the efficiency of Tubulin polymerization and Tubulin stability are drastically compromised in mst mutants. Moreover, our structural bioinformatic analyses indicate that Mst resembles the three-dimensional structure of Tubulin monomers and might therefore occupy the TCP-1 complex central cavity. Collectively, our results suggest that Mst acts as a co-factor of the TCP-1 complex, playing an essential role in the Tubulin-folding processes required for proper assembly of spindle MTs. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The timing of synthesis of proteins required for mitotic spindle and phragmoplast in partially synchronized root meristems of Vicia faba L.

    PubMed

    Olszewska, M J; Marciniak, K; Kuran, H

    1990-10-01

    After cycloheximide treatment (1 h, 2.5 micrograms/ml) protein synthesis was decreased by 70% and was partially restored after 7 h of postincubation (still 20% decrease). In partially synchronized root meristems of Vicia faba L. treated with cycloheximide at middle G2, a strong decrease of the mitotic index was observed. Exposure to the drug at late G2 did not modify the mitotic index; the changes in the phase indices suggested that the course of mitosis was blocked at prophase-metaphase/anaphase-telophase transitions. The use of indirect immunocytochemical staining of tubulin (second antibody labeled with peroxidase) made it possible to show a decreased number of cells with preprophase bands in cycloheximide-treated meristems and the mitotic spindles and phragmoplasts containing a reduced number of shortened bands of microtubules. As a result of these structural and functional disturbances, binucleate cells and polyploid nuclei were observed.

  17. Stimulatory Effects of Gamma Irradiation on Phytochemical Properties, Mitotic Behaviour, and Nutritional Composition of Sainfoin (Onobrychis viciifolia Scop.)

    PubMed Central

    Mat Taha, Rosna; Lay, Ma Ma; Khalili, Mahsa

    2014-01-01

    Sainfoin (Onobrychis viciifolia Scop. Syn. Onobrychis sativa L.) is a bloat-safe forage crop with high levels of tannins, which is renowned for its medicinal qualities in grazing animals. Mutagenesis technique was applied to investigate the influence of gamma irradiation at 30, 60, 90, and 120 Gy on mitotic behavior, in vitro growth factors, phytochemical and nutritional constituents of sainfoin. Although a percentage of plant necrosis and non-growing seed were enhanced by irradiation increment, the germination speed was significantly decreased. It was observed that gamma irradiated seeds had higher value of crude protein and dry matter digestibility compared to control seeds. Toxicity of copper was reduced in sainfoin irradiated seeds at different doses of gamma rays. Anthocyanin content also decreased in inverse proportion to irradiation intensity. Accumulation of phenolic and flavonoid compounds was enhanced by gamma irradiation exposure in leaf cells. HPLC profiles differed in peak areas of the two important alkaloids, Berberine and Sanguinarine, in 120 Gy irradiated seeds compared to control seeds. There were positive correlations between irradiation dose and some abnormality divisions such as laggard chromosome, micronucleus, binucleated cells, chromosome bridge, and cytomixis. In reality, radiocytological evaluation was proven to be essential in deducing the effectiveness of gamma irradiation to induce somaclonal variation in sainfoin. PMID:25147870

  18. Adventures with Lissajous Figures

    NASA Astrophysics Data System (ADS)

    Greenslade, Thomas B., Jr.

    2018-06-01

    Lissajous Figures are produced by combining two oscillations at right angles to each other. The figures, drawn by mechanical devices called harmonographs, have scientific uses, but are also enjoyed for their own beauty. The author has been working with harmonographs since his undergraduate days, building several of them, lecturing on them and has written articles about them. This book is intended for people who enjoy physics or art or both.

  19. Anti-mitotic potential of 7-diethylamino-3(2 Prime -benzoxazolyl)-coumarin in 5-fluorouracil-resistant human gastric cancer cell line SNU620/5-FU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam Hyun; Kim, Su-Nam; Oh, Joa Sub

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer DBC exerts antiproliferative potential against 5FU-resistant human gastric cancer cells. Black-Right-Pointing-Pointer This effect is mediated by destabilization of microtubules and subsequent mitotic arrest. Black-Right-Pointing-Pointer DBC enhances apoptosis via caspase activation and downregulation of antiapoptotic genes. -- Abstract: In this study, we investigate an anti-mitotic potential of the novel synthetic coumarin-based compound, 7-diethylamino-3(2 Prime -benzoxazolyl)-coumarin, in 5-fluorouracil-resistant human gastric cancer cell line SNU-620-5FU and its parental cell SNU-620. It exerts the anti-proliferative effects with similar potencies against both cancer cells, which is mediated by destabilization of microtubules and subsequent mitotic arrest. Furthermore, this compound enhances caspase-dependent apoptotic cell deathmore » via decreased expression of anti-apoptotic genes. Taken together, our data strongly support anti-mitotic potential of 7-diethylamino-3(2 Prime -benzoxazolyl)-coumarin against drug-resistant cancer cells which will prompt us to further develop as a novel microtubule inhibitor for drug-resistant cancer chemotherapy.« less

  20. Figure-ground modulation in awake primate thalamus.

    PubMed

    Jones, Helen E; Andolina, Ian M; Shipp, Stewart D; Adams, Daniel L; Cudeiro, Javier; Salt, Thomas E; Sillito, Adam M

    2015-06-02

    Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the evolving representation of the figure is imprinted on the input driving it in an iterative process.

  1. Figure-ground segmentation can occur without attention.

    PubMed

    Kimchi, Ruth; Peterson, Mary A

    2008-07-01

    The question of whether or not figure-ground segmentation can occur without attention is unresolved. Early theorists assumed it can, but the evidence is scant and open to alternative interpretations. Recent research indicating that attention can influence figure-ground segmentation raises the question anew. We examined this issue by asking participants to perform a demanding change-detection task on a small matrix presented on a task-irrelevant scene of alternating regions organized into figures and grounds by convexity. Independently of any change in the matrix, the figure-ground organization of the scene changed or remained the same. Changes in scene organization produced congruency effects on target-change judgments, even though, when probed with surprise questions, participants could report neither the figure-ground status of the region on which the matrix appeared nor any change in that status. When attending to the scene, participants reported figure-ground status and changes to it highly accurately. These results clearly demonstrate that figure-ground segmentation can occur without focal attention.

  2. Figure-ground modulation in awake primate thalamus

    PubMed Central

    Jones, Helen E.; Andolina, Ian M.; Shipp, Stewart D.; Adams, Daniel L.; Cudeiro, Javier; Salt, Thomas E.; Sillito, Adam M.

    2015-01-01

    Figure-ground discrimination refers to the perception of an object, the figure, against a nondescript background. Neural mechanisms of figure-ground detection have been associated with feedback interactions between higher centers and primary visual cortex and have been held to index the effect of global analysis on local feature encoding. Here, in recordings from visual thalamus of alert primates, we demonstrate a robust enhancement of neuronal firing when the figure, as opposed to the ground, component of a motion-defined figure-ground stimulus is located over the receptive field. In this paradigm, visual stimulation of the receptive field and its near environs is identical across both conditions, suggesting the response enhancement reflects higher integrative mechanisms. It thus appears that cortical activity generating the higher-order percept of the figure is simultaneously reentered into the lowest level that is anatomically possible (the thalamus), so that the signature of the evolving representation of the figure is imprinted on the input driving it in an iterative process. PMID:25901330

  3. Primary mesenchymal (nonangiomatous/nonlymphomatous) neoplasms occurring in the canine spleen: anatomic classification, immunohistochemistry, and mitotic activity correlated with patient survival.

    PubMed

    Spangler, W L; Culbertson, M R; Kass, P H

    1994-01-01

    Surgical submissions from canine splenectomy cases spanning a 3-year period (1988-1990) were evaluated. Eighty seven neoplasms of the spleen considered to be of nonangiomatous and nonlymphomatous origin were selected for morphologic classification, mitotic index determination, immunohistochemical analysis, and patient survival determination. In 76/87 cases, patient survival information was available, and the mitotic index was determined in 83/87 cases. Immunohistochemistry for selected antigens (vimentin, desmin, smooth muscle actin, myosin, and factor VIII-related antigen) was performed in 58/87 of the cases. Morphologic classification of these lesions in standard HE preparations yielded the following neoplastic groups: fibrosarcoma (19/87), undifferentiated sarcoma (19/87), leiomyosarcoma (14/87), osteosarcoma (8/87), mesenchymoma (7/87), myxosarcoma (6/87), histiocytic sarcoma (6/87), leiomyoma (3/87), lipoma-myelolipoma (2/87), liposarcoma (2/87), and malignant fibrous histiocytoma (1/87). A lack of distinct morphologic characteristics among many of the neoplasms that were classified as either fibrosarcoma, leiomyosarcoma, or undifferentiated sarcoma contrasted these groups with the relatively unambiguous features that distinguished the other sarcoma groups. Using immunohistochemical staining for muscle-specific antigens (desmin, smooth muscle actin, and myosin), specific staining often overlapped extensively within the neoplastic groups of fibrosarcomas, leiomyosarcomas, and undifferentiated sarcomas, suggesting either ambiguous morphologic findings or the possibility of a common histogenesis from smooth muscle trabeculae or a distinct population of splenic myofibroblasts. The biological behavior of all tumors examined could be placed into three categories of patient survival: (1) benign, noninvasive tumors (leiomyoma, lipoma) with prolonged survival intervals; (2) malignant tumors (fibrosarcoma, undifferentiated sarcoma, leiomyosarcoma, osteosarcoma

  4. The Endocrine Dyscrasia that Accompanies Menopause and Andropause Induces Aberrant Cell Cycle Signaling that Triggers Cell Cycle Reentry of Post-mitotic Neurons, Neurodysfunction, Neurodegeneration and Cognitive Disease

    PubMed Central

    Atwood, Craig S.; Bowen, Richard L.

    2016-01-01

    Sex hormones are the physiological factors that regulate neurogenesis during embryogenesis and continuing through adulthood. These hormones support the formation of brain structures such as dendritic spines, axons and synapses required for the capture of information (memories). Intriguingly, a recent animal study has demonstrated that induction of neurogenesis results in the loss of previously encoded memories in animals (e.g. infantile amnesia). In this connection, much evidence now indicates that Alzheimer’s disease (AD) also involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Since sex hormones control when and how neurons proliferate and differentiate, the endocrine dyscrasia that accompanies menopause and andropause is a key signaling event that impacts neurogenesis and the acquisition, processing, storage and recall of memories. Here we review the biochemical, epidemiological and clinical evidence that alterations in endocrine signaling with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle with neurite retraction that leads to neuron dysfunction and death. When the reproductive axis is in balance, luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the ratio of LH:sex steroids as driving aberrant mitotic events mediated by the upregulation of tumor necrosis factor, amyloid-β precursor protein processing towards the production of mitogenic Aβ, and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and

  5. NUP98 fusion oncoproteins interact with the APC/C(Cdc20) as a pseudosubstrate and prevent mitotic checkpoint complex binding.

    PubMed

    Salsi, Valentina; Fantini, Sebastian; Zappavigna, Vincenzo

    2016-09-01

    NUP98 is a recurrent partner gene in translocations causing acute myeloid leukemias and myelodisplastic syndrome. The expression of NUP98 fusion oncoproteins has been shown to induce mitotic spindle defects and chromosome missegregation, which correlate with the capability of NUP98 fusions to cause mitotic checkpoint attenuation. We show that NUP98 oncoproteins physically interact with the APC/C(Cdc20) in the absence of the NUP98 partner protein RAE1, and prevent the binding of the mitotic checkpoint complex to the APC/C(Cdc20). NUP98 oncoproteins require the GLEBS-like domain present in their NUP98 moiety to bind the APC/C(Cdc20). We found that NUP98 wild-type is a substrate of APC/C(Cdc20) prior to mitotic entry, and that its binding to APC/C(Cdc20) is controlled via phosphorylation of a PEST sequence located within its C-terminal portion. We identify S606, within the PEST sequence, as a key target site, whose phosphorylation modulates the capability of NUP98 to interact with APC/C(Cdc20). We finally provide evidence for an involvement of the peptidyl-prolyl isomerase PIN1 in modulating the possible conformational changes within NUP98 that lead to its dissociation from the APC/C(Cdc20) during mitosis. Our results provide novel insight into the mechanisms underlying the aberrant capability of NUP98 oncoproteins to interact with APC/C(Cdc20) and to interfere with its function.

  6. 2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1) induces G2/M arrest and mitotic catastrophe in human leukemia HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, Mei-Hua; Liu, Chin-Yu; Lin, Chiao-Min

    2012-03-01

    2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1), a 2-phenyl-1,8-naphthyridin-4-one (2-PN) derivative, was synthesized and evaluated as an effective antimitotic agent in our laboratory. However, the molecular mechanisms are uncertain. In this study, HKL-1 was demonstrated to induce multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human leukemia HL-60 cells. Western blotting showed that HKL-1 induces mitotic catastrophe in HL-60 cells through regulating mitotic phase-specific kinases (down-regulating CDK1, cyclin B1, CENP-E, and aurora B) and regulating the expression of Bcl-2 family proteins (down-regulating Bcl-2 and up-regulating Bax and Bak), followed by caspase-9/-3 cleavage. These findings suggest that HKL-1more » appears to exert its cytotoxicity toward HL-60 cells in culture by inducing mitotic catastrophe. Highlights: ► HKL-1 is a potential antimitotic agent against HL-60 cells. ► HKL-1 induces spindle disruption and sustained resulted in mitotic catastrophe. ► CENP-E and aurora B protein expressions significantly reduced. ► Bcl-2 family protein expressions altered and caspase-9/-3 activation. ► HKL-1 is an attractive candidate for possible use as a novel antimitotic agent.« less

  7. CpG Oligonucleotide and Interleukin 2 stimulation enables higher cytogenetic abnormality detection rates than 12-o-tetradecanolyphorbol-13-acetate in Asian patients with B-cell chronic lymphocytic leukemia (B-CLL).

    PubMed

    Liaw, Fiona Pui San; Lau, Lai Ching; Lim, Alvin Soon Tiong; Lim, Tse Hui; Lee, Geok Yee; Tien, Sim Leng

    2014-12-01

    The present study was designed to compare abnormality detection rates using DSP30 + IL2 and 12-O-Tetradecanoylphorbol-13-acetate (TPA) in Asian patients with B-CLL. Hematological specimens from 47 patients (29 newly diagnosed, 18 relapsed) were established as 72 h-DSP30 + IL2 and TPA cultures. Standard methods were employed to identify clonal aberrations by conventional cytogenetics (CC). The B-CLL fluorescence in situ hybridization (FISH) panel comprised ATM, CEP12, D13S25, and TP53 probes. DSP30 + IL2 cultures had a higher chromosomal abnormality detection rate (67 %) compared to TPA (44 %, p < 0.001). The mean number of analyzable metaphases and abnormal metaphases per slide was also higher (p < 0.005, p < 0.001, respectively). Culture success rate, percentage of complex karyotype, and percentage of non-clonal abnormal cell were not significantly different (p > 0.05). Thirteen cases with abnormalities were found exclusively in DSP30 + IL2 cultures compared to one found solely in TPA cultures. DSP30 + IL2 cultures were comparable to the FISH panel in detecting 11q-, +12 and 17p- but not 13q-. It also has a predilection for 11q- bearing leukemic cells compared to TPA. FISH had a higher abnormality detection rate (84.1 %) compared to CC (66.0 %) with borderline significance (p = 0.051), albeit limited by its coverage. In conclusion, DSP30 + IL2 showed a higher abnormality detection rate. However, FISH is indispensable to circumvent low mitotic indices and detect subtle abnormalities.

  8. Cytotoxic effects of cylindrospermopsin in mitotic and non-mitotic Vicia faba cells.

    PubMed

    Garda, Tamás; Riba, Milán; Vasas, Gábor; Beyer, Dániel; M-Hamvas, Márta; Hajdu, Gréta; Tándor, Ildikó; Máthé, Csaba

    2015-02-01

    Cylindrospermopsin (CYN) is a cyanobacterial toxin known as a eukaryotic protein synthesis inhibitor. We aimed to study its effects on growth, stress responses and mitosis of a eukaryotic model, Vicia faba (broad bean). Growth responses depended on exposure time (3 or 6d), cyanotoxin concentration, culture conditions (dark or continuous light) and V. faba cultivar ("Standard" or "ARC Egypt Cross"). At 6d of exposure, CYN had a transient stimulatory effect on root system growth, roots being possibly capable of detoxification. The toxin induced nucleus fragmentation, blebbing and chromosomal breaks indicating double stranded DNA breaks and programmed cell death. Root necrotic tissue was observed at 0.1-20 μg mL(-1) CYN that probably impeded toxin uptake into vascular tissue. Growth and cell death processes observed were general stress responses. In lateral root tip meristems, lower CYN concentrations (0.01-0.1 μg mL(-1)) induced the stimulation of mitosis and distinct mitotic phases, irrespective of culture conditions or the cultivar used. Higher cyanotoxin concentrations inhibited mitosis. Short-term exposure of hydroxylurea-synchronized roots to 5 μg mL(-1) CYN induced delay of mitosis that might have been related to a delay of de novo protein synthesis. CYN induced the formation of double, split and asymmetric preprophase bands (PPBs), in parallel with the alteration of cell division planes, related to the interference of cyanotoxin with protein synthesis, thus it was a plant- and CYN specific alteration. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Figure-ground segregation: A fully nonlocal approach.

    PubMed

    Dimiccoli, Mariella

    2016-09-01

    We present a computational model that computes and integrates in a nonlocal fashion several configural cues for automatic figure-ground segregation. Our working hypothesis is that the figural status of each pixel is a nonlocal function of several geometric shape properties and it can be estimated without explicitly relying on object boundaries. The methodology is grounded on two elements: multi-directional linear voting and nonlinear diffusion. A first estimation of the figural status of each pixel is obtained as a result of a voting process, in which several differently oriented line-shaped neighborhoods vote to express their belief about the figural status of the pixel. A nonlinear diffusion process is then applied to enforce the coherence of figural status estimates among perceptually homogeneous regions. Computer simulations fit human perception and match the experimental evidence that several cues cooperate in defining figure-ground segregation. The results of this work suggest that figure-ground segregation involves feedback from cells with larger receptive fields in higher visual cortical areas. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Figurate Numbers in the Classroom.

    ERIC Educational Resources Information Center

    Norman, F. Alexander

    1991-01-01

    A series of activities involving figurate numbers that allow students at various levels to integrate numerical, geometric, arithmetic, patterning, measuring, and problem-solving skills are presented. A discussion of the geometric and numerical aspects of figurate numbers is included. Appended are IBM Logo procedures that will create pentagonal…

  11. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast

    PubMed Central

    Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R.; O’Toole, Eileen; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.

    2017-01-01

    Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly—the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy. PMID:28116355

  12. Go Figure.

    ERIC Educational Resources Information Center

    Greenman, Geri

    2000-01-01

    Describes the first assignment for an intermediate oil painting class in which the students painted the human figure. Explains that the assignment involved three techniques: (1) abstract application of acrylic paint; (2) oil "Paintstiks" from Shiva; and (3) a final layer of actual oil paint. (CMK)

  13. Purely temporal figure-ground segregation.

    PubMed

    Kandil, F I; Fahle, M

    2001-05-01

    Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.

  14. Mitotic Defects Lead to Pervasive Aneuploidy and Accompany Loss of RB1 Activity in Mouse LmnaDhe Dermal Fibroblasts

    PubMed Central

    Pratt, C. Herbert; Curtain, Michelle; Donahue, Leah Rae; Shopland, Lindsay S.

    2011-01-01

    Background Lamin A (LMNA) is a component of the nuclear lamina and is mutated in several human diseases, including Emery-Dreifuss muscular dystrophy (EDMD; OMIM ID# 181350) and the premature aging syndrome Hutchinson-Gilford progeria syndrome (HGPS; OMIM ID# 176670). Cells from progeria patients exhibit cell cycle defects in both interphase and mitosis. Mouse models with loss of LMNA function have reduced Retinoblastoma protein (RB1) activity, leading to aberrant cell cycle control in interphase, but how mitosis is affected by LMNA is not well understood. Results We examined the cell cycle and structural phenotypes of cells from mice with the Lmna allele, Disheveled hair and ears (LmnaDhe). We found that dermal fibroblasts from heterozygous LmnaDhe (LmnaDhe/+) mice exhibit many phenotypes of human laminopathy cells. These include severe perturbations to the nuclear shape and lamina, increased DNA damage, and slow growth rates due to mitotic delay. Interestingly, LmnaDhe/+ fibroblasts also had reduced levels of hypophosphorylated RB1 and the non-SMC condensin II-subunit D3 (NCAP-D3), a mitosis specific centromere condensin subunit that depends on RB1 activity. Mitotic check point control by mitotic arrest deficient-like 1 (MAD2L1) also was perturbed in LmnaDhe /+ cells. LmnaDhe /+ fibroblasts were consistently aneuploid and had higher levels of micronuclei and anaphase bridges than normal fibroblasts, consistent with chromosome segregation defects. Conclusions These data indicate that RB1 may be a key regulator of cellular phenotype in laminopathy-related cells, and suggest that the effects of LMNA on RB1 include both interphase and mitotic cell cycle control. PMID:21464947

  15. Identification and purification of a soluble region of BubR1: a critical component of the mitotic checkpoint complex.

    PubMed

    Yoon, Jongchul; Kang, Yup; Kim, Kyunggon; Park, Jungeun; Kim, Youngsoo

    2005-11-01

    The mitotic checkpoint complex (MCC) ensures the fidelity of chromosomal segregation, by delaying the onset of anaphase until all sister chromatids have been properly attached to the mitotic spindle. In essence, this MCC-induced delay is achieved via the inhibition of the anaphase-promoting complex (APC). Among the components of the MCC, BubR1 plays two major roles in the functions of the mitotic checkpoint. First, BubR1 is able to inhibit APC activity, either by itself or as a component of the MCC, by sequestering a APC coactivator, known as Cdc20. Second, BubR1 activates mitotic checkpoint signaling cascades by binding to the centromere-associated protein E, a microtubule motor protein. Obtaining highly soluble BubR1 is a prerequisite for the study of its structure. BubR1 is a multi-domain protein, which includes a KEN box motif, a mad3-like region, a Bub3 binding domain, and a kinase domain. We obtained a soluble BubR1 construct using a three-step expression strategy. First, we obtained two constructs from BLAST sequence homology searches, both of which were expressed abundantly in the inclusion bodies. We then adjusted the lengths of the two constructs by secondary structure prediction, thereby generating partially soluble constructs. Third, we optimized the solubility of the two constructs by either chopping or adding a few residues at the C-terminus. Finally, we obtained a highly soluble BubR1 construct via the Escherichia coli expression system, which allowed for a yield of 10.8 mg/L culture. This report may provide insight into the design of highly soluble constructs of insoluble multi-domain proteins.

  16. 'Petite' mutagenesis and mitotic crossing-over in yeast by DNA-targeted alkylating agents.

    PubMed

    Ferguson, L R; Turner, P M; Gourdie, T A; Valu, K K; Denny, W A

    1989-12-01

    Although the biological properties (cytotoxicity, mutagenicity and carcinogenicity) of alkylating agents result from their bonding interactions with DNA, such compounds generally do not show any special binding affinity for DNA. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity have been designed as DNA-directed alkylating agents. We have considered whether such DNA targeting has an effect on mutagenic properties by evaluating this series of drugs in comparison with their untargeted counterparts for toxic, recombinogenic and mutagenic properties in Saccharomyces cerevisiae strain D5. The simple untargeted aniline mustards are effective inducers of mitotic crossing-over in this strain, but resemble other reported alkylators in being rather inefficient inducers of the "petite" or mitochondrial mutation in yeast. However, the majority of the DNA-targeted mustards were very efficient petite mutagens, while showing little evidence of mitotic crossing-over or other nuclear events. The 100% conversion of cells into petites and the lack of a differential between growing and non-growing cells are similar to the effects of the well characterised mitochondrial mutagen ethidium bromide. These data suggest very different modes of action between the DNA-targeted alkylators and their non-targeted counterparts.

  17. The role of centrosomal Nlp in the control of mitotic progression and tumourigenesis.

    PubMed

    Li, J; Zhan, Q

    2011-05-10

    The human centrosomal ninein-like protein (Nlp) is a new member of the γ-tubulin complexes binding proteins (GTBPs) that is essential for proper execution of various mitotic events. The primary function of Nlp is to promote microtubule nucleation that contributes to centrosome maturation, spindle formation and chromosome segregation. Its subcellular localisation and protein stability are regulated by several crucial mitotic kinases, such as Plk1, Nek2, Cdc2 and Aurora B. Several lines of evidence have linked Nlp to human cancer. Deregulation of Nlp in cell models results in aberrant spindle, chromosomal missegregation and multinulei, and induces chromosomal instability and renders cells tumourigenic. Overexpression of Nlp induces anchorage-independent growth and immortalised primary cell transformation. In addition, we first demonstrate that the expression of Nlp is elevated primarily due to NLP gene amplification in human breast cancer and lung carcinoma. Consistently, transgenic mice overexpressing Nlp display spontaneous tumours in breast, ovary and testicle, and show rapid onset of radiation-induced lymphoma, indicating that Nlp is involved in tumourigenesis. This review summarises our current knowledge of physiological roles of Nlp, with an emphasis on its potentials in tumourigenesis.

  18. The role of centrosomal Nlp in the control of mitotic progression and tumourigenesis

    PubMed Central

    Li, J; Zhan, Q

    2011-01-01

    The human centrosomal ninein-like protein (Nlp) is a new member of the γ-tubulin complexes binding proteins (GTBPs) that is essential for proper execution of various mitotic events. The primary function of Nlp is to promote microtubule nucleation that contributes to centrosome maturation, spindle formation and chromosome segregation. Its subcellular localisation and protein stability are regulated by several crucial mitotic kinases, such as Plk1, Nek2, Cdc2 and Aurora B. Several lines of evidence have linked Nlp to human cancer. Deregulation of Nlp in cell models results in aberrant spindle, chromosomal missegregation and multinulei, and induces chromosomal instability and renders cells tumourigenic. Overexpression of Nlp induces anchorage-independent growth and immortalised primary cell transformation. In addition, we first demonstrate that the expression of Nlp is elevated primarily due to NLP gene amplification in human breast cancer and lung carcinoma. Consistently, transgenic mice overexpressing Nlp display spontaneous tumours in breast, ovary and testicle, and show rapid onset of radiation-induced lymphoma, indicating that Nlp is involved in tumourigenesis. This review summarises our current knowledge of physiological roles of Nlp, with an emphasis on its potentials in tumourigenesis. PMID:21505454

  19. Stellar figure sensor

    NASA Technical Reports Server (NTRS)

    Peters, W. N.

    1973-01-01

    A compilation of analytical and experimental data is presented concerning the stellar figure sensor. The sensor is an interferometric device which is located in the focal plane of an orbiting large space telescope (LST). The device was designed to perform interferometry on the optical wavefront of a single star after it has propagated through the LST. An analytical model of the device was developed and its accuracy was verified by an operating laboratory breadboard. A series of linear independent control equations were derived which define the operations required for utilizing a focal plane figure sensor in the control loop for the secondary mirror position and for active control of the primary mirror.

  20. Aurora-A-Dependent Control of TACC3 Influences the Rate of Mitotic Spindle Assembly

    PubMed Central

    Joseph, Nimesh; Cavazza, Tommaso; Vernos, Isabelle; Pfuhl, Mark; Gergely, Fanni; Bayliss, Richard

    2015-01-01

    The essential mammalian gene TACC3 is frequently mutated and amplified in cancers and its fusion products exhibit oncogenic activity in glioblastomas. TACC3 functions in mitotic spindle assembly and chromosome segregation. In particular, phosphorylation on S558 by the mitotic kinase, Aurora-A, promotes spindle recruitment of TACC3 and triggers the formation of a complex with ch-TOG-clathrin that crosslinks and stabilises kinetochore microtubules. Here we map the Aurora-A-binding interface in TACC3 and show that TACC3 potently activates Aurora-A through a domain centered on F525. Vertebrate cells carrying homozygous F525A mutation in the endogenous TACC3 loci exhibit defects in TACC3 function, namely perturbed localization, reduced phosphorylation and weakened interaction with clathrin. The most striking feature of the F525A cells however is a marked shortening of mitosis, at least in part due to rapid spindle assembly. F525A cells do not exhibit chromosome missegregation, indicating that they undergo fast yet apparently faithful mitosis. By contrast, mutating the phosphorylation site S558 to alanine in TACC3 causes aneuploidy without a significant change in mitotic duration. Our work has therefore defined a regulatory role for the Aurora-A-TACC3 interaction beyond the act of phosphorylation at S558. We propose that the regulatory relationship between Aurora-A and TACC3 enables the transition from the microtubule-polymerase activity of TACC3-ch-TOG to the microtubule-crosslinking activity of TACC3-ch-TOG-clathrin complexes as mitosis progresses. Aurora-A-dependent control of TACC3 could determine the balance between these activities, thereby influencing not only spindle length and stability but also the speed of spindle formation with vital consequences for chromosome alignment and segregation. PMID:26134678

  1. Phosphatidylserine colocalizes with epichromatin in interphase nuclei and mitotic chromosomes

    PubMed Central

    Prudovsky, Igor; Vary, Calvin P.H.; Markaki, Yolanda; Olins, Ada L.; Olins, Donald E.

    2012-01-01

    Cycling eukaryotic cells rapidly re-establish the nuclear envelope and internal architecture following mitosis. Studies with a specific anti-nucleosome antibody recently demonstrated that the surface (“epichromatin”) of interphase and mitotic chromatin possesses a unique and conserved conformation, suggesting a role in postmitotic nuclear reformation. Here we present evidence showing that the anionic glycerophospholipid phosphatidylserine is specifically located in epichromatin throughout the cell cycle and is associated with nucleosome core histones. This suggests that chromatin bound phosphatidylserine may function as a nucleation site for the binding of ER and re-establishment of the nuclear envelope. PMID:22555604

  2. Comparison of cytotoxic and genotoxic effects of plutonium-239 alpha particles and mobile phone GSM 900 radiation in the Allium cepa test.

    PubMed

    Pesnya, Dmitry S; Romanovsky, Anton V

    2013-01-20

    The goal of this study was to compare the cytotoxic and genotoxic effects of plutonium-239 alpha particles and GSM 900 modulated mobile phone (model Sony Ericsson K550i) radiation in the Allium cepa test. Three groups of bulbs were exposed to mobile phone radiation during 0 (sham), 3 and 9h. A positive control group was treated during 20min with plutonium-239 alpha-radiation. Mitotic abnormalities, chromosome aberrations, micronuclei and mitotic index were analyzed. Exposure to alpha-radiation from plutonium-239 and exposure to modulated radiation from mobile phone during 3 and 9h significantly increased the mitotic index. GSM 900 mobile phone radiation as well as alpha-radiation from plutonium-239 induced both clastogenic and aneugenic effects. However, the aneugenic activity of mobile phone radiation was more pronounced. After 9h of exposure to mobile phone radiation, polyploid cells, three-groups metaphases, amitoses and some unspecified abnormalities were detected, which were not registered in the other experimental groups. Importantly, GSM 900 mobile phone radiation increased the mitotic index, the frequency of mitotic and chromosome abnormalities, and the micronucleus frequency in a time-dependent manner. Due to its sensitivity, the A. cepa test can be recommended as a useful cytogenetic assay to assess cytotoxic and genotoxic effects of radiofrequency electromagnetic fields. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers

    PubMed Central

    Lemmens, Bennie; van Schendel, Robin; Tijsterman, Marcel

    2015-01-01

    Faithful DNA replication is vital to prevent disease-causing mutations, chromosomal aberrations and malignant transformation. However, accuracy conflicts with pace and flexibility and cells rely on specialized polymerases and helicases to ensure effective and timely replication of genomes that contain DNA lesions or secondary structures. If and how cells can tolerate a permanent barrier to replication is, however, unknown. Here we show that a single unresolved G-quadruplexed DNA structure can persist through multiple mitotic divisions without changing conformation. Failed replication across a G-quadruplex causes single-strand DNA gaps that give rise to DNA double-strand breaks in subsequent cell divisions, which are processed by polymerase theta (POLQ)-mediated alternative end joining. Lineage tracing experiments further reveal that persistent G-quadruplexes cause genetic heterogeneity during organ development. Our data demonstrate that a single lesion can cause multiple unique genomic rearrangements, and that alternative end joining enables cells to proliferate in the presence of mitotically inherited replication blocks. PMID:26563448

  4. Mutagenic consequences of a single G-quadruplex demonstrate mitotic inheritance of DNA replication fork barriers.

    PubMed

    Lemmens, Bennie; van Schendel, Robin; Tijsterman, Marcel

    2015-11-13

    Faithful DNA replication is vital to prevent disease-causing mutations, chromosomal aberrations and malignant transformation. However, accuracy conflicts with pace and flexibility and cells rely on specialized polymerases and helicases to ensure effective and timely replication of genomes that contain DNA lesions or secondary structures. If and how cells can tolerate a permanent barrier to replication is, however, unknown. Here we show that a single unresolved G-quadruplexed DNA structure can persist through multiple mitotic divisions without changing conformation. Failed replication across a G-quadruplex causes single-strand DNA gaps that give rise to DNA double-strand breaks in subsequent cell divisions, which are processed by polymerase theta (POLQ)-mediated alternative end joining. Lineage tracing experiments further reveal that persistent G-quadruplexes cause genetic heterogeneity during organ development. Our data demonstrate that a single lesion can cause multiple unique genomic rearrangements, and that alternative end joining enables cells to proliferate in the presence of mitotically inherited replication blocks.

  5. Plasma surface figuring of large optical components

    NASA Astrophysics Data System (ADS)

    Jourdain, R.; Castelli, M.; Morantz, P.; Shore, P.

    2012-04-01

    Fast figuring of large optical components is well known as a highly challenging manufacturing issue. Different manufacturing technologies including: magnetorheological finishing, loose abrasive polishing, ion beam figuring are presently employed. Yet, these technologies are slow and lead to expensive optics. This explains why plasma-based processes operating at atmospheric pressure have been researched as a cost effective means for figure correction of metre scale optical surfaces. In this paper, fast figure correction of a large optical surface is reported using the Reactive Atom Plasma (RAP) process. Achievements are shown following the scaling-up of the RAP figuring process to a 400 mm diameter area of a substrate made of Corning ULE®. The pre-processing spherical surface is characterized by a 3 metres radius of curvature, 2.3 μm PVr (373nm RMS), and 1.2 nm Sq nanometre roughness. The nanometre scale correction figuring system used for this research work is named the HELIOS 1200, and it is equipped with a unique plasma torch which is driven by a dedicated tool path algorithm. Topography map measurements were carried out using a vertical work station instrumented by a Zygo DynaFiz interferometer. Figuring results, together with the processing times, convergence levels and number of iterations, are reported. The results illustrate the significant potential and advantage of plasma processing for figuring correction of large silicon based optical components.

  6. Figure-ground mechanisms provide structure for selective attention.

    PubMed

    Qiu, Fangtu T; Sugihara, Tadashi; von der Heydt, Rüdiger

    2007-11-01

    Attention depends on figure-ground organization: figures draw attention, whereas shapes of the ground tend to be ignored. Recent research has revealed mechanisms for figure-ground organization in the visual cortex, but how these mechanisms relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2 in Macaca mulatta. Although we found assignment of border ownership for attended and for ignored figures, attentional modulation was stronger when the attended figure was located on the neuron's preferred side of border ownership. When the border between two overlapping figures was placed in the receptive field, responses depended on the side of attention, and enhancement was generally found on the neuron's preferred side of border ownership. This correlation suggests that the neural network that creates figure-ground organization also provides the interface for the top-down selection process.

  7. Figure-ground mechanisms provide structure for selective attention

    PubMed Central

    Qiu, Fangtu T.; Sugihara, Tadashi; von der Heydt, Rüdiger

    2009-01-01

    Attention depends on figure-ground organization: figures draw attention, while shapes of the ground tend to be ignored. Recent research has demonstrated mechanisms of figure-ground organization in the visual cortex, but how they relate to the attention process remains unclear. Here we show that the influences of figure-ground organization and volitional (top-down) attention converge in single neurons of area V2. While assignment of border ownership was found for attended as well as for ignored figures, attentional modulation was stronger when the attended figure was located on the neuron’s preferred side of border ownership. When the border between two overlapping figures was placed in the receptive field, responses depended on the side of attention, and enhancement was generally found on the neuron’s preferred side of border ownership. This correlation suggests that the neural network that creates figure-ground organization also provides the interface for the top-down selection process. PMID:17922006

  8. Attachment Figures in Middle Childhood

    ERIC Educational Resources Information Center

    Seibert, Ashley C.; Kerns, Kathryn A.

    2009-01-01

    Previous research has focused on who the primary attachment figures are for children in middle childhood, but there has been relatively little research on other important people who may fulfill attachment needs. The goal of the study was to identify who children use as non-parental attachment figures and to examine whether children's use varies…

  9. Detection of mitotic nuclei in breast histopathology images using localized ACM and Random Kitchen Sink based classifier.

    PubMed

    Beevi, K Sabeena; Nair, Madhu S; Bindu, G R

    2016-08-01

    The exact measure of mitotic nuclei is a crucial parameter in breast cancer grading and prognosis. This can be achieved by improving the mitotic detection accuracy by careful design of segmentation and classification techniques. In this paper, segmentation of nuclei from breast histopathology images are carried out by Localized Active Contour Model (LACM) utilizing bio-inspired optimization techniques in the detection stage, in order to handle diffused intensities present along object boundaries. Further, the application of a new optimal machine learning algorithm capable of classifying strong non-linear data such as Random Kitchen Sink (RKS), shows improved classification performance. The proposed method has been tested on Mitosis detection in breast cancer histological images (MITOS) dataset provided for MITOS-ATYPIA CONTEST 2014. The proposed framework achieved 95% recall, 98% precision and 96% F-score.

  10. Figure Analysis: An Implementation Dialogue

    ERIC Educational Resources Information Center

    Wiles, Amy M.

    2016-01-01

    Figure analysis is a novel active learning teaching technique that reinforces visual literacy. Small groups of students discuss diagrams in class in order to learn content. The instructor then gives a brief introduction and later summarizes the content of the figure. This teaching technique can be used in place of lecture as a mechanism to deliver…

  11. Changes in area affect figure-ground assignment in pigeons.

    PubMed

    Castro, Leyre; Lazareva, Olga F; Vecera, Shaun P; Wasserman, Edward A

    2010-03-05

    A critical cue for figure-ground assignment in humans is area: smaller regions are more likely to be perceived as figures than are larger regions. To see if pigeons are similarly sensitive to this cue, we trained birds to report whether a target appeared on a colored figure or on a differently colored background. The initial training figure was either smaller than (Experiments 1 and 2) or the same area as (Experiment 2) the background. After training, we increased or decreased the size of the figure. When the original training shape was smaller than the background, pigeons' performance improved with smaller figures (and worsened with larger figures); when the original training shape was the same area as the background, pigeons' performance worsened when they were tested with smaller figures. A smaller figural region appeared to improve the figure-ground discrimination only when size was a relevant cue in the initial discrimination.

  12. Ion Figuring of Replicated X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Cantey, Thomas M.; Gregory, Don A.

    1997-01-01

    This investigation included experiments to demonstrate ion beam figuring effects on electroless nickel with the expressed desire to figure X-ray optic mandrels. It was important to establish that ion beam figuring did not induce any adverse effects to the nickel surface. The ion beam has consistently been shown to be an excellent indicator of the quality of the subsurface. Polishing is not the only cause for failure in the ion beam final figuring process, the material composition is equally important. Only by careful consideration of both these factors can the ion beam final figuring process achieve its greatest potential. The secondary goal was to construct a model for representing the ion beam material removal rate. Representing the ion beam removal rate is only an approximation and has a number of limiting factors. The resolution of the metrology apparatus limits the modeling of the beam function as well. As the surface error corrections demand more precision in the final figuring, the model representing beam function must be equally precise. The precision to which the beam function can be represented is not only determined by the model but also by the measurements producing that model. The method developed for determining the beam function has broad application to any material destined to be ion beam figured.

  13. Changes in Area Affect Figure-Ground Assignment in Pigeons

    PubMed Central

    Castro, Leyre; Lazareva, Olga F.; Vecera, Shaun P.; Wasserman, Edward A.

    2010-01-01

    A critical cue for figure-ground assignment in humans is area: Smaller regions are more likely to be perceived as figures than are larger regions. To see if pigeons are similarly sensitive to this cue, we trained birds to report whether a target appeared on a colored figure or on a differently colored background. The initial training figure was either smaller than (Experiments 1 and 2) or the same area as (Experiment 2) the background. After training, we increased or decreased the size of the figure. When the original training shape was smaller than the background, pigeons’ performance improved with smaller figures (and worsened with larger figures); when the original training shape was the same area as the background, pigeons’ performance worsened when they were tested with smaller figures. A smaller figural region appeared to improve the figure-ground discrimination only when size was a relevant cue in the initial discrimination. PMID:20060406

  14. Preferential invasion of mitotic cells by Salmonella reveals that cell surface cholesterol is maximal during metaphase.

    PubMed

    Santos, António J M; Meinecke, Michael; Fessler, Michael B; Holden, David W; Boucrot, Emmanuel

    2013-07-15

    Cell surface-exposed cholesterol is crucial for cell attachment and invasion of many viruses and bacteria, including the bacterium Salmonella, which causes typhoid fever and gastroenteritis. Using flow cytometry and 3D confocal fluorescence microscopy, we found that mitotic cells, although representing only 1-4% of an exponentially growing population, were much more efficiently targeted for invasion by Salmonella. This targeting was not dependent on the spherical shape of mitotic cells, but was instead SipB and cholesterol dependent. Thus, we measured the levels of plasma membrane and cell surface cholesterol throughout the cell cycle using, respectively, brief staining with filipin and a fluorescent ester of polyethylene glycol-cholesterol that cannot flip through the plasma membrane, and found that both were maximal during mitosis. This increase was due not only to the rise in global cell cholesterol levels along the cell cycle but also to a transient loss in cholesterol asymmetry at the plasma membrane during mitosis. We measured that cholesterol, but not phosphatidylserine, changed from a ∼2080 outerinner leaflet repartition during interphase to ∼5050 during metaphase, suggesting this was specific to cholesterol and not due to a broad change of lipid asymmetry during metaphase. This explains the increase in outer surface levels that make dividing cells more susceptible to Salmonella invasion and perhaps to other viruses and bacteria entering cells in a cholesterol-dependent manner. The change in cholesterol partitioning also favoured the recruitment of activated ERM (Ezrin, Radixin, Moesin) proteins at the plasma membrane and thus supported mitotic cell rounding.

  15. Leukomyelitis in the Goat: A Report of Three Cases

    PubMed Central

    Wilkie, I. W.

    1980-01-01

    Three cases of focal myelitis in the spinal cords of young goats are described. The clinical findings and pathological changes were similar to those reported for viral leukoencephalomyelitis of goats. There were granular structures in a few cells in malacic areas, which on electron micrographs appear to be clumps of chromatin in the nuclei of gemistocytic astrocytes. They may represent mitotic figures. ImagesFigure 1.Figure 2.Figure 3.Figure 4. PMID:7427848

  16. Factors associated with escalation and problematic approaches toward public figures.

    PubMed

    Meloy, J Reid; James, David V; Mullen, Paul E; Pathé, Michele T; Farnham, Frank R; Preston, Lulu F; Darnley, Brian J

    2011-01-01

    Detailed comparison of factors associated with abnormal approach to the prominent and with escalation from communication to approach has not hitherto been undertaken. This partially reflects the failure of individual studies to adopt compatible terminologies. This study involves a careful dissection of six public figure studies, three involving U.S. politicians, two Hollywood celebrities, and one the British Royal Family. Common findings were unearthed across six headings. Approachers were significantly more likely to exhibit serious mental illness, engage in multiple means of communication, involve multiple contacts/targets, and to incorporate into their communication requests for help. They were significantly less likely to use threatening or antagonistic language in their communications, except in those cases involving security breaches. These results emphasize the importance of integrating mental health findings and preventive measures into risk management. Approach should not be regarded as a single behavioral category and has multiple motivations. Future studies should adopt standard terminology, preferably taken from the general stalking research. © 2010 American Academy of Forensic Sciences.

  17. Michigan transportation facts & figures : public transportation

    DOT National Transportation Integrated Search

    2002-08-16

    This on-line document is part of a series, Transportation Facts & Figures, by the Michigan Department of Transportation (MDOT). The Public Transit section of Transportation Facts & Figures cover such topics as intercity bus service, intercity rail se...

  18. Figural properties are prioritized for search under conditions of uncertainty: Setting boundary conditions on claims that figures automatically attract attention.

    PubMed

    Peterson, Mary A; Mojica, Andrew J; Salvagio, Elizabeth; Kimchi, Ruth

    2017-01-01

    Nelson and Palmer (2007) concluded that figures/figural properties automatically attract attention, after they found that participants were faster to detect/discriminate targets appearing where a portion of a familiar object was suggested in an otherwise ambiguous display. We investigated whether these effects are truly automatic and whether they generalize to another figural property-convexity. We found that Nelson and Palmer's results do generalize to convexity, but only when participants are uncertain regarding when and where the target will appear. Dependence on uncertainty regarding target location/timing was also observed for familiarity. Thus, although we could replicate and extend Nelson and Palmer's results, our experiments showed that figures do not automatically draw attention. In addition, our research went beyond Nelson and Palmer's, in that we were able to separate figural properties from perceived figures. Because figural properties are regularities that predict where objects lie in the visual field, our results join other evidence that regularities in the environment can attract attention. More generally, our results are consistent with Bayesian theories in which priors are given more weight under conditions of uncertainty.

  19. Progress in ion figuring large optics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, L.N.

    1995-12-31

    Ion figuring is an optical fabrication method that provides deterministic surface figure error correction of previously polished surfaces by using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Considerable process development has been completed and numerous large optical elements have been successfully final figured using this process. The process has been demonstrated to be highly deterministic, capable of completing complex-shaped optical element configurations in only a few process iterations, and capable of achieving high-quality surface figure accuracy`s. A review of the neutral ion beam figuring process will be provided, along with discussion ofmore » processing results for several large optics. Most notably, processing of Keck 10 meter telescope primary mirror segments and correction of one other large optic where a convergence ratio greater than 50 was demonstrated during the past year will be discussed. Also, the process has been demonstrated on various optical materials, including fused silica, ULE, zerodur, silicon and chemically vapor deposited (CVD) silicon carbide. Where available, results of surface finish changes caused by the ion bombardment process will be discussed. Most data have shown only limited degradation of the optic surface finish, and that it is generally a function of the quality of mechanical polishing prior to ion figuring. Removals of from 5 to 10 {mu}m on some materials are acceptable without adversely altering the surface finish specularity.« less

  20. 49 CFR Appendix - Figures to Part 38

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 1 2012-10-01 2012-10-01 false Figures to Part 38 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems Trams, and similar vehicles, and systems Pt. 38, Figures Figures to Part 38 ER28SE98.000 EC02FE91.194...

  1. 49 CFR Appendix - Figures to Part 38

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 1 2011-10-01 2011-10-01 false Figures to Part 38 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems Trams, and similar vehicles, and systems Pt. 38, Figures Figures to Part 38 ER28SE98.000 EC02FE91.194...

  2. 49 CFR Appendix - Figures to Part 38

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 1 2013-10-01 2013-10-01 false Figures to Part 38 Transportation Office of the Secretary of Transportation AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY SPECIFICATIONS FOR TRANSPORTATION VEHICLES Other Vehicles and Systems Trams, and similar vehicles, and systems Pt. 38, Figures Figures to Part 38 ER28SE98.000 EC02FE91.194...

  3. Effective killing of the human pathogen Candida albicans by a specific inhibitor of non-essential mitotic kinesin Kip1p

    PubMed Central

    Chua, Penelope R; Roof, David M; Lee, Yan; Sakowicz, Roman; Clarke, David; Pierce, Dan; Stephens, Thoryn; Hamilton, Matthew; Morgan, Brad; Morgans, David; Nakai, Takashi; Tomasi, Adam; Maxon, Mary E

    2007-01-01

    Kinesins from the bipolar (Kinesin-5) family are conserved in eukaryotic organisms and play critical roles during the earliest stages of mitosis to mediate spindle pole body separation and formation of a bipolar mitotic spindle. To date, genes encoding bipolar kinesins have been reported to be essential in all organisms studied. We report the characterization of CaKip1p, the sole member of this family in the human pathogenic yeast Candida albicans. C. albicans Kip1p appears to localize to the mitotic spindle and loss of CaKip1p function interferes with normal progression through mitosis. Inducible excision of CaKIP1 revealed phenotypes unique to C. albicans, including viable homozygous Cakip1 mutants and an aberrant spindle morphology in which multiple spindle poles accumulate in close proximity to each other. Expression of the C. albicans Kip1 motor domain in Escherichia coli produced a protein with microtubule-stimulated ATPase activity that was inhibited by an aminobenzothiazole (ABT) compound in an ATP-competitive fashion. This inhibition results in ‘rigor-like’, tight association with microtubules in vitro. Upon treatment of C. albicans cells with the ABT compound, cells were killed, and terminal phenotype analysis revealed an aberrant spindle morphology similar to that induced by loss of the CaKIP1 gene. The ABT compound discovered is the first example of a fungal spindle inhibitor targeted to a mitotic kinesin. Our results also show that the non-essential nature and implementation of the bipolar motor in C. albicans differs from that seen in other organisms, and suggest that inhibitors of a non-essential mitotic kinesin may offer promise as cidal agents for antifungal drug discovery. PMID:17573815

  4. Induction of Mitotic Cell Death by Overriding G2/M Checkpoint in Endometrial Cancer Cells with Non-functional p53

    PubMed Central

    Meng, Xiangbing; Laidler, Laura L.; Kosmacek, Elizabeth A.; Yang, Shujie; Xiong, Zhi; Zhu, Danlin; Wang, Xinjun; Dai, Donghai; Zhang, Yuping; Wang, Xiaofang; Brachova, Pavla; Albitar, Lina; Liu, Dawei; Ianzini, Fiorenza; Mackey, Michael A.; Leslie, Kimberly K.

    2012-01-01

    Objective Endometrial tumors with non-functional p53, such as serous uterine endometrial carcinomas, are aggressive malignancies with a poor outcome, yet they have an Achilles’ heel: due to loss of p53 function, these tumors may be sensitive to treatments which abrogate the G2/M checkpoint. Our objective was to exploit this weakness to induce mitotic cell death using two strategies: (1) EGFR inhibitor gefitinib combined with paclitaxel to arrest cells at mitosis, or (2) BI2536, an inhibitor of polo-like kinase 1 (PLK1), to block PLK1 activity. Methods We examined the impact of combining gefitinib and paclitaxel or PLK1 inhibitor on expression of G2/M checkpoint controllers, cell viability, and cell cycle progression in endometrial cancer cells with mutant p53. Results In cells lacking normal p53 activity, each treatment activated CDC25C and inactivated Wee1, which in turn activated cdc2 and sent cells rapidly through the G2/M checkpoint and into mitosis. Live cell imaging demonstrated irreversible mitotic arrest and eventual cell death. Combinatorial therapy with paclitaxel and gefitinib was highly synergistic and resulted in a 10-fold reduction in the IC50 for paclitaxel, from 14 nM as a single agent to 1.3 nM in the presence of gefitinib. However, BI2536 alone at low concentrations (5 nM) was the most effective treatment and resulted in massive mitotic cell death. In a xenograft mouse model with p53-deficient cells, low dose BI2536 significantly inhibited tumor growth. Conclusions These findings reveal induction of mitotic cell death as a therapeutic strategy for endometrial tumors lacking functional p53. PMID:23146687

  5. A Computer Graphics Human Figure Application Of Biostereometrics

    NASA Astrophysics Data System (ADS)

    Fetter, William A.

    1980-07-01

    A study of improved computer graphic representation of the human figure is being conducted under a National Science Foundation grant. Special emphasis is given biostereometrics as a primary data base from which applications requiring a variety of levels of detail may be prepared. For example, a human figure represented by a single point can be very useful in overview plots of a population. A crude ten point figure can be adequate for queuing theory studies and simulated movement of groups. A one hundred point figure can usefully be animated to achieve different overall body activities including male and female figures. A one thousand point figure si-milarly animated, begins to be useful in anthropometrics and kinesiology gross body movements. Extrapolations of this order-of-magnitude approach ultimately should achieve very complex data bases and a program which automatically selects the correct level of detail for the task at hand. See Summary Figure 1.

  6. "Hidden Figures" Tour KSC

    NASA Image and Video Library

    2016-12-12

    During a tour for cast and crew members of the upcoming motion picture "Hidden Figures," Kennedy Space Center Director Bob Cabana poses with the group on the roof of the Vehicle Assembly Building. Among those participating are Kelvin Manning, associate center director; Meredith Lipsky, vice president of Field Marketing for 20th Century Fox; Ted Melfi, writer and director of “Hidden Figures;” Michelle Ryan, executive producer of the film; Pharrell Williams, musician and producer of “Hidden Figures;" Octavia Spencer, who portrays Dorothy Vaughan; Taraji P. Henson, who portrays Katherine Johnson in the film; Janet Petro, deputy center director; and Cabana. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  7. Mitotic Dysfunction Associated with Aging Hallmarks.

    PubMed

    Macedo, Joana Catarina; Vaz, Sara; Logarinho, Elsa

    2017-01-01

    Aging is a biological process characterized by the progressive deterioration of physiological functions known to be the main risk factor for chronic diseases and declining health. There has been an emerging connection between aging and aneuploidy, an aberrant number of chromosomes, even though the molecular mechanisms behind age-associated aneuploidy remain largely unknown. In recent years, several genetic pathways and biochemical processes controlling the rate of aging have been identified and proposed as aging hallmarks. Primary hallmarks that cause the accumulation of cellular damage include genomic instability, telomere attrition, epigenetic alterations and loss of proteostasis (López-Otín et al., Cell 153:1194-1217, 2013). Here we review the provocative link between these aging hallmarks and the loss of chromosome segregation fidelity during cell division, which could support the correlation between aging and aneuploidy seen over the past decades. Secondly, we review the systemic impacts of aneuploidy in cell physiology and emphasize how these include some of the primary hallmarks of aging. Based on the evidence, we propose a mutual causality between aging and aneuploidy, and suggest modulation of mitotic fidelity as a potential means to ameliorate healthy lifespan.

  8. Dynactin Function in Mitotic Spindle Positioning

    PubMed Central

    Moore, Jeffrey K.; Li, Jun; Cooper, John A.

    2008-01-01

    Dynactin is a multisubunit protein complex necessary for dynein function. Here, we investigated the function of dynactin in budding yeast. Loss of dynactin impaired movement and positioning of the mitotic spindle, similar to loss of dynein. Dynactin subunits required for function included p150Glued, dynamitin, actin-related protein (Arp) 1 and p24. Arp10 and capping protein were dispensable, even in combination. All dynactin subunits tested localized to dynamic plus ends of cytoplasmic microtubules, to stationary foci on the cell cortex and to spindle pole bodies. The number of molecules of dynactin in those locations was small, less than five. In the absence of dynactin, dynein accumulated at plus ends and did not appear at the cell cortex, consistent with a role for dynactin in offloading dynein from the plus end to the cortex. Dynein at the plus end was necessary for dynactin plus-end targeting. p150Glued was the only dynactin subunit sufficient for plus-end targeting. Interactions among the subunits support a molecular model that resembles the current model for brain dynactin in many respects; however, three subunits at the pointed end of brain dynactin appear to be absent from yeast. PMID:18221362

  9. Growth rate and mitotic index analysis of Vicia faba L. roots exposed to 60-Hz electric fields.

    PubMed

    Inoue, M; Miller, M W; Cox, C; Carstesen, E L

    1985-01-01

    Growth, mitotic index, and growth rate recovery were determined for Vicia faba L. roots exposed to 60-Hz electric fields of 200, 290, and 360 V/m in an aqueous inorganic nutrient medium (conductivity 0.07-0.09 S/m). Root growth rate decreased in proportion to the increasing strength; the electric field threshold for a growth rate effect was about 230 V/m. The induced transmembrane potential at the threshold exposure was about 4-7 mV. The mitotic index was not affected by an electric field exposure sufficient to reduce root growth rate to about 35% of control. Root growth rate recovery from 31-96% of control occurred in 4 days after cessation of the 360 V/m exposure. The results support the postulate that the site of action of the applied electric fields is the cell membrane.

  10. Figuring Out Food Labels (For Kids)

    MedlinePlus

    ... First Aid & Safety Doctors & Hospitals Videos Recipes for Kids Kids site Sitio para niños How the Body Works ... English Español Figuring Out Food Labels KidsHealth / For Kids / Figuring Out Food Labels What's in this article? ...

  11. GAK, a regulator of clathrin-mediated membrane traffic, also controls centrosome integrity and chromosome congression.

    PubMed

    Shimizu, Hiroyuki; Nagamori, Ippei; Yabuta, Norikazu; Nojima, Hiroshi

    2009-09-01

    Cyclin G-associated kinase (GAK) is an association partner of clathrin heavy chain (CHC) and is essential for clathrin-mediated membrane trafficking. Here, we report two novel functions of GAK: maintenance of proper centrosome maturation and of mitotic chromosome congression. Indeed, GAK knockdown by siRNA caused cell-cycle arrest at metaphase, which indicates that GAK is required for proper mitotic progression. We found that this impaired mitotic progression was due to activation of the spindle-assembly checkpoint, which senses protruded, misaligned or abnormally condensed chromosomes in GAK-siRNA-treated cells. GAK knockdown also caused multi-aster formation, which was due to abnormal fragmentation of pericentriolar material, but not of the centrioles. Moreover, GAK and CHC cooperated in the same pathway and interacted in mitosis to regulate the formation of a functional spindle. Taken together, we conclude that GAK and clathrin function cooperatively not only in endocytosis, but also in mitotic progression.

  12. Precommitment low-level Neurog3 expression defines a long-lived mitotic endocrine-biased progenitor pool that drives production of endocrine-committed cells

    PubMed Central

    Bechard, Matthew E.; Bankaitis, Eric D.; Hipkens, Susan B.; Ustione, Alessandro; Piston, David W.; Yang, Yu-Ping; Magnuson, Mark A.; Wright, Christopher V.E.

    2016-01-01

    The current model for endocrine cell specification in the pancreas invokes high-level production of the transcription factor Neurogenin 3 (Neurog3) in Sox9+ bipotent epithelial cells as the trigger for endocrine commitment, cell cycle exit, and rapid delamination toward proto-islet clusters. This model posits a transient Neurog3 expression state and short epithelial residence period. We show, however, that a Neurog3TA.LO cell population, defined as Neurog3 transcriptionally active and Sox9+ and often containing nonimmunodetectable Neurog3 protein, has a relatively high mitotic index and prolonged epithelial residency. We propose that this endocrine-biased mitotic progenitor state is functionally separated from a pro-ductal pool and endows them with long-term capacity to make endocrine fate-directed progeny. A novel BAC transgenic Neurog3 reporter detected two types of mitotic behavior in Sox9+ Neurog3TA.LO progenitors, associated with progenitor pool maintenance or derivation of endocrine-committed Neurog3HI cells, respectively. Moreover, limiting Neurog3 expression dramatically increased the proportional representation of Sox9+ Neurog3TA.LO progenitors, with a doubling of its mitotic index relative to normal Neurog3 expression, suggesting that low Neurog3 expression is a defining feature of this cycling endocrine-biased state. We propose that Sox9+ Neurog3TA.LO endocrine-biased progenitors feed production of Neurog3HI endocrine-committed cells during pancreas organogenesis. PMID:27585590

  13. A link between mitotic entry and membrane growth suggests a novel model for cell size control

    PubMed Central

    Anastasia, Steph D.; Nguyen, Duy Linh; Thai, Vu; Meloy, Melissa; MacDonough, Tracy

    2012-01-01

    Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2ACdc55). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function. PMID:22451696

  14. Sorting nexin 9 recruits clathrin heavy chain to the mitotic spindle for chromosome alignment and segregation.

    PubMed

    Ma, Maggie P C; Robinson, Phillip J; Chircop, Megan

    2013-01-01

    Sorting nexin 9 (SNX9) and clathrin heavy chain (CHC) each have roles in mitosis during metaphase. Since the two proteins directly interact for their other cellular function in endocytosis we investigated whether they also interact for metaphase and operate on the same pathway. We report that SNX9 and CHC functionally interact during metaphase in a specific molecular pathway that contributes to stabilization of mitotic spindle kinetochore (K)-fibres for chromosome alignment and segregation. This function is independent of their endocytic role. SNX9 residues in the clathrin-binding low complexity domain are required for CHC association and for targeting both CHC and transforming acidic coiled-coil protein 3 (TACC3) to the mitotic spindle. Mutation of these sites to serine increases the metaphase plate width, indicating inefficient chromosome congression. Therefore SNX9 and CHC function in the same molecular pathway for chromosome alignment and segregation, which is dependent on their direct association.

  15. Sorting Nexin 9 Recruits Clathrin Heavy Chain to the Mitotic Spindle for Chromosome Alignment and Segregation

    PubMed Central

    Ma, Maggie P. C.; Robinson, Phillip J.; Chircop, Megan

    2013-01-01

    Sorting nexin 9 (SNX9) and clathrin heavy chain (CHC) each have roles in mitosis during metaphase. Since the two proteins directly interact for their other cellular function in endocytosis we investigated whether they also interact for metaphase and operate on the same pathway. We report that SNX9 and CHC functionally interact during metaphase in a specific molecular pathway that contributes to stabilization of mitotic spindle kinetochore (K)-fibres for chromosome alignment and segregation. This function is independent of their endocytic role. SNX9 residues in the clathrin-binding low complexity domain are required for CHC association and for targeting both CHC and transforming acidic coiled-coil protein 3 (TACC3) to the mitotic spindle. Mutation of these sites to serine increases the metaphase plate width, indicating inefficient chromosome congression. Therefore SNX9 and CHC function in the same molecular pathway for chromosome alignment and segregation, which is dependent on their direct association. PMID:23861900

  16. A link between mitotic entry and membrane growth suggests a novel model for cell size control.

    PubMed

    Anastasia, Steph D; Nguyen, Duy Linh; Thai, Vu; Meloy, Melissa; MacDonough, Tracy; Kellogg, Douglas R

    2012-04-02

    Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2A(Cdc55)). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function.

  17. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  18. The Multiplicity of the Mitotic Centers and the Time-Course of Their Duplication and Separation

    PubMed Central

    Mazia, Daniel; Harris, Patricia J.; Bibring, Thomas

    1960-01-01

    In this study, the reproduction of the mitotic centers in the eggs of a sea urchin, Strongylocentrotus purpuratus and a sand dollar Dendraster excentricus has been studied by means of experimental designs that do not depend on the actual visualization of centrioles. The centers are defined in operational terms as potential poles. Blockage of mitosis by mercaptoethanol, it was found, inhibits the duplication of the centers, but does not inhibit the splitting and separation of centers that have already duplicated and thus potential poles could be realized as actual poles in multipolar divisions. At all times, the center is at least a duplex structure; that is, it contains two potential poles. The actual duplication process is the earliest event in a given mitotic cycle, taking place at very early interphase or in late telophase of the previous division. The splitting of the centers following duplication is a distinct process, dissociable from the duplication as such. Duplication and splitting normally occur at about the same time in the mitotic cycle, with a precession of the former. That is, as the two members of a pair of "old" centers split, each one gives rise to a new one, which remains associated with it until the next phase of splitting and duplication occurs. The results are consistent with what is termed a "generative" model of the self-reproduction of an intracellular body. According to this, the body does not immediately produce a full-fledged copy of itself, with simultaneous fission, but the primary duplication event involves only a part of the parent structure. This gives rise to a "germ" or "seed" which then grows to be equivalent to the parent body, and finally splits from it. PMID:19866563

  19. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes

    PubMed Central

    He, Jie; Wu, Jiangbin; Xu, Naihan; Xie, Weidong; Li, Mengnan; Li, Jianna; Jiang, Yuyang; Yang, Burton B.; Zhang, Yaou

    2013-01-01

    MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly mitosis. Hypoxia-induced up-regulation of miR-210 was highly correlated with the down-regulation of a group of mitosis-related genes, including Plk1, Cdc25B, Cyclin F, Bub1B and Fam83D. MiR-210 suppressed the expression of these genes by directly targeting their 3′-UTRs. Over-expression of exogenous miR-210 disturbed mitotic progression and caused aberrant mitosis. Furthermore, miR-210 mimic with pharmacological doses reduced tumor formation in a mouse metastatic tumor model. Taken together, these results implicate that miR-210 disturbs mitosis through targeting multi-genes involved in mitotic progression, which may contribute to its inhibitory role on tumor formation. PMID:23125370

  20. MiR-210 disturbs mitotic progression through regulating a group of mitosis-related genes.

    PubMed

    He, Jie; Wu, Jiangbin; Xu, Naihan; Xie, Weidong; Li, Mengnan; Li, Jianna; Jiang, Yuyang; Yang, Burton B; Zhang, Yaou

    2013-01-07

    MiR-210 is up-regulated in multiple cancer types but its function is disputable and further investigation is necessary. Using a bioinformatics approach, we identified the putative target genes of miR-210 in hypoxia-induced CNE cells from genome-wide scale. Two functional gene groups related to cell cycle and RNA processing were recognized as the major targets of miR-210. Here, we investigated the molecular mechanism and biological consequence of miR-210 in cell cycle regulation, particularly mitosis. Hypoxia-induced up-regulation of miR-210 was highly correlated with the down-regulation of a group of mitosis-related genes, including Plk1, Cdc25B, Cyclin F, Bub1B and Fam83D. MiR-210 suppressed the expression of these genes by directly targeting their 3'-UTRs. Over-expression of exogenous miR-210 disturbed mitotic progression and caused aberrant mitosis. Furthermore, miR-210 mimic with pharmacological doses reduced tumor formation in a mouse metastatic tumor model. Taken together, these results implicate that miR-210 disturbs mitosis through targeting multi-genes involved in mitotic progression, which may contribute to its inhibitory role on tumor formation.

  1. The effects of pilocarpine nitrate upon the mitotic index of mouse bone marrow cells.

    PubMed

    Prabhu, M P; Hegde, M J

    1991-11-01

    Aneuploidies are the most common chromosomal causes for spontaneous abortions and constitute a major part of genetic disorders among the neonates. Aneuploidy producing agents (aneugens) pose serious genetic hazards to the human population. Therefore, testing for aneuploidy induction should be part of the requirement in drug safety guidelines. The aneugenic potential of pilocarpine nitrate, an alkaloid drug used as an ophthalmic solution was screened by chromosome analysis studies in the bone marrow cells of mice. Using the technique developed by Miller and Adler (1989) we evaluated changes in the mitotic index (MI), induction of chromatid contraction and spreading (C-mitoses) and decrease of anaphase frequencies as indicators of the aneuploidy inducing potency of the drug. Concentrations of pilocarpine nitrate of 4, 8 and 12 mg/kg body weight were administered intraperitoneally to mice. Colchicine-treated and water-treated animals formed the positive and negative controls. The data obtained in the cytogenetic analysis of both dose-response and time-response studies showed a significant induction of C-mitotic effects in the mouse bone marrow. The positive results indicated that the drug is a potential aneugen and should be further evaluated.

  2. Mitotic MELK-eIF4B signaling controls protein synthesis and tumor cell survival

    PubMed Central

    Wang, Yubao; Begley, Michael; Li, Qing; Huang, Hai-Tsang; Lako, Ana; Eck, Michael J.; Gray, Nathanael S.; Mitchison, Timothy J.; Cantley, Lewis C.; Zhao, Jean J.

    2016-01-01

    The protein kinase maternal and embryonic leucine zipper kinase (MELK) is critical for mitotic progression of cancer cells; however, its mechanisms of action remain largely unknown. By combined approaches of immunoprecipitation/mass spectrometry and peptide library profiling, we identified the eukaryotic translation initiation factor 4B (eIF4B) as a MELK-interacting protein during mitosis and a bona fide substrate of MELK. MELK phosphorylates eIF4B at Ser406, a modification found to be most robust in the mitotic phase of the cell cycle. We further show that the MELK–eIF4B signaling axis regulates protein synthesis during mitosis. Specifically, synthesis of myeloid cell leukemia 1 (MCL1), an antiapoptotic protein known to play a role in cancer cell survival during cell division, depends on the function of MELK-elF4B. Inactivation of MELK or eIF4B results in reduced protein synthesis of MCL1, which, in turn, induces apoptotic cell death of cancer cells. Our study thus defines a MELK–eIF4B signaling axis that regulates protein synthesis during mitosis, and consequently influences cancer cell survival. PMID:27528663

  3. Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes

    PubMed Central

    Min, Jaewon; Wright, Woodring E.

    2017-01-01

    ABSTRACT Alternative lengthening of telomeres (ALT) is a telomerase-independent telomere maintenance mechanism that occurs in a subset of cancers. By analyzing telomerase-positive cells and their human TERC knockout-derived ALT human cell lines, we show that ALT cells harbor more fragile telomeres representing telomere replication problems. ALT-associated replication defects trigger mitotic DNA synthesis (MiDAS) at telomeres in a RAD52-dependent, but RAD51-independent, manner. Telomeric MiDAS is a conservative DNA synthesis process, potentially mediated by break-induced replication, similar to type II ALT survivors in Saccharomyces cerevisiae. Replication stresses induced by ectopic oncogenic expression of cyclin E, G-quadruplexes, or R-loop formation facilitate the ALT pathway and lead to telomere clustering, a hallmark of ALT cancers. The TIMELESS/TIPIN complex suppresses telomere clustering and telomeric MiDAS, whereas the SMC5/6 complex promotes them. In summary, ALT cells exhibit more telomere replication defects that result in persistent DNA damage responses at telomeres, leading to the engagement of telomeric MiDAS (spontaneous mitotic telomere synthesis) that is triggered by DNA replication stress, a potential driver of genomic duplications in cancer. PMID:28760773

  4. A PP2A-B55 recognition signal controls substrate dephosphorylation kinetics during mitotic exit

    PubMed Central

    Cundell, Michael J.; Holder, James

    2016-01-01

    PP2A-B55 is one of the major phosphatases regulating cell division. Despite its importance for temporal control during mitotic exit, how B55 substrates are recognized and differentially dephosphorylated is unclear. Using phosphoproteomics combined with kinetic modeling to extract B55-dependent rate constants, we have systematically identified B55 substrates and assigned their temporal order in mitotic exit. These substrates share a bipartite polybasic recognition determinant (BPR) flanking a Cdk1 phosphorylation site. Experiments and modeling show that dephosphorylation rate is encoded into B55 substrates, including its inhibitor ENSA, by cooperative action of basic residues within the BPR. A complementary acidic surface on B55 decodes this signal, supporting a cooperative electrostatic mechanism for substrate selection. A further level of specificity is encoded into B55 substrates because B55 displays selectivity for phosphothreonine. These simple biochemical properties, combined with feedback control of B55 activity by the phosphoserine-containing substrate/inhibitor ENSA, can help explain the temporal sequence of events during exit from mitosis. PMID:27551054

  5. Familiar shapes attract attention in figure-ground displays.

    PubMed

    Nelson, Rolf A; Palmer, Stephen E

    2007-04-01

    We report five experiments that explore the effect of figure-ground factors on attention. We hypothesized that figural cues, such as familiar shape, would draw attention to the figural side in an attentional cuing task using bipartite figure-ground displays. The first two experiments used faces in profile as the familiar shape and found a perceptual advantage for targets presented on the meaningful side of the central contour in detection speed (Experiment 1) and discrimination accuracy (Experiment 2). The third experiment demonstrated the figural advantage in response time (RT) with nine other familiar shapes (including a sea horse, a guitar, a fir tree, etc.), but only when targets appeared in close proximity to the contour. A fourth experiment obtained a figural advantage in a discrimination task with the larger set of familiar shapes. The final experiment ruled out eye movements as a possible confounding factor by replicating the RT advantage for targets on the figural side of face displays when all trials containing eye movements were eliminated. The results are discussed in terms of ecological influences on attention, and are cast within the framework of Yantis and Jonides's hypothesis that attention is exogenously drawn to the onset of new perceptual objects. We argue that the figural side constitutes an "object" whereas the ground side does not, and that figural cues such as shape familiarity are effective in determining which areas represent objects.

  6. Figure summarizer browser extensions for PubMed Central

    PubMed Central

    Agarwal, Shashank; Yu, Hong

    2011-01-01

    Summary: Figures in biomedical articles present visual evidence for research facts and help readers understand the article better. However, when figures are taken out of context, it is difficult to understand their content. We developed a summarization algorithm to summarize the content of figures and used it in our figure search engine (http://figuresearch.askhermes.org/). In this article, we report on the development of web browser extensions for Mozilla Firefox, Google Chrome and Apple Safari to display summaries for figures in PubMed Central and NCBI Images. Availability: The extensions can be downloaded from http://figuresearch.askhermes.org/articlesearch/extensions.php. Contact: agarwal@uwm.edu PMID:21493658

  7. Figure-ground representation and its decay in primary visual cortex.

    PubMed

    Strother, Lars; Lavell, Cheryl; Vilis, Tutis

    2012-04-01

    We used fMRI to study figure-ground representation and its decay in primary visual cortex (V1). Human observers viewed a motion-defined figure that gradually became camouflaged by a cluttered background after it stopped moving. V1 showed positive fMRI responses corresponding to the moving figure and negative fMRI responses corresponding to the static background. This positive-negative delineation of V1 "figure" and "background" fMRI responses defined a retinotopically organized figure-ground representation that persisted after the figure stopped moving but eventually decayed. The temporal dynamics of V1 "figure" and "background" fMRI responses differed substantially. Positive "figure" responses continued to increase for several seconds after the figure stopped moving and remained elevated after the figure had disappeared. We propose that the sustained positive V1 "figure" fMRI responses reflected both persistent figure-ground representation and sustained attention to the location of the figure after its disappearance, as did subjects' reports of persistence. The decreasing "background" fMRI responses were relatively shorter-lived and less biased by spatial attention. Our results show that the transition from a vivid figure-ground percept to its disappearance corresponds to the concurrent decay of figure enhancement and background suppression in V1, both of which play a role in form-based perceptual memory.

  8. Comparison of the Medical College of Georgia Complex Figures and the Rey-Osterrieth Complex Figure tests in a normal sample of Japanese university students.

    PubMed

    Yamashita, Hikari; Yasugi, Mina

    2008-08-01

    Comparability of copy and recall performance on the four figures of the Medical College of Georgia Complex Figures and the Rey-Osterrieth Complex Figure were examined using an incidental learning paradigm with 60 men and 60 women, healthy volunteers between the ages of 18 and 24 years (M = 21.5 yr., SD = 1.5) at a Japanese university. A between-subjects design was used in which each group of participants (n = 24) responded to five figures. The interrater reliability of each Georgia figure was excellent. While the five figures yielded equivalent copy scores, the Rey-Osterrieth figure had significantly lower scores than the Georgia figures at recall after 3 min. There were no significant differences between the four Georgia figures. These results are consistent with the findings of the original studies in the USA.

  9. The Vernier Caliper and Significant Figures.

    ERIC Educational Resources Information Center

    Oberhofer, E. S.

    1985-01-01

    Misconceptions occur because the caliper is often read with the same significant figures as a meter stick; however, the precision of the vernier caliper is greater than the precision of a meter stick. Clarification of scale reading, precision of both tools, and significant figures are discussed. (JN)

  10. Biotite percussion figures in naturally deformed mylonites

    NASA Astrophysics Data System (ADS)

    Xu, Shutong; Ji, Shouyuan

    1991-05-01

    Under experimental conditions, characteristic fracture patterns can be produced on cleavage plates on mica by using a blunt tool. If stress is applied rapidly by striking the surface in a controlled way, a pattern known as the "percussion figure" is produced. When the stress is applied by steady pressure on the tool, a different but complementary pattern of fracture is formed. In sum, these induced fractures constitute the "pressure figure". The orientation of each of these two sets of fractures with respect to the optical axial plane (OAP) of mica is different and therefore diagnostic of the manner in which they are produced. These patterns are distinct from those formed as a result of exsolution of Fe-Ti oxides which are commonly visible in sections of biotite cut parallel to the basal plane (001). A description is given of percussion figures produced by natural deformation in biotites from mylonite belts cutting the Proterozoic metasediments of the Feidong Group in eastern Anhui Province and another from Yunnan Province, China. The principal fracture of the natural percussion figure evidently is parallel to the (OAP) of the biotite and the other two sets are quite distinct as well, thus identifying it really as a percussion figure. Microscopic inclusions of sphene also are located along the crystallographically controlled fracture planes of the percussion figures. The data indicate that high strain rates would be required to form these natural percussion figures and that a special history of deformation must have affected the mylonites in which they occur. It is proposed that the homogeneous deformation of the mylonite in a ductile regime was complicated by strain hardening which led to episodes of abrupt stress itself relief (stick-slip) at rates of strain high enough to induce the formation of percussion figures in the biotites.

  11. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy

    PubMed Central

    Zhou, Jibin; Ahmad, Firdos; Parikh, Shan; Hoffman, Nichole E.; Rajan, Sudarsan; Verma, Vipin K.; Song, Jianliang; Yuan, Ancai; Shanmughapriya, Santhanam; Guo, Yuanjun; Gao, Erhe; Koch, Walter; Woodgett, James R.; Muniswamy, Madesh; Kishore, Raj; Lal, Hind; Force, Thomas

    2016-01-01

    Rationale Cardiac myocyte-specific deletion of either Glycogen Synthase Kinase (GSK)3A or GSK3B leads to cardiac protection following myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration due to the fact that all GSK-3–targeted drugs including the drugs already in clinical trial target both isoforms of GSK-3 and none are isoform specific. Objective To identify the consequences of combined deletion of cardiac myocyte GSK3A and GSK3B in heart function. Methods and Results We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout, DKO). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, DKO hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from DKO implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. DKO cardiac myocytes showed cell cycle progression resulting in increased DNA content and multi-nucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. Conclusion Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis and its loss is incompatible with life due to cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy. PMID:26976650

  12. Loss of Adult Cardiac Myocyte GSK-3 Leads to Mitotic Catastrophe Resulting in Fatal Dilated Cardiomyopathy.

    PubMed

    Zhou, Jibin; Ahmad, Firdos; Parikh, Shan; Hoffman, Nichole E; Rajan, Sudarsan; Verma, Vipin K; Song, Jianliang; Yuan, Ancai; Shanmughapriya, Santhanam; Guo, Yuanjun; Gao, Erhe; Koch, Walter; Woodgett, James R; Madesh, Muniswamy; Kishore, Raj; Lal, Hind; Force, Thomas

    2016-04-15

    Cardiac myocyte-specific deletion of either glycogen synthase kinase (GSK)-3α and GSK-3β leads to cardiac protection after myocardial infarction, suggesting that deletion of both isoforms may provide synergistic protection. This is an important consideration because of the fact that all GSK-3-targeted drugs, including the drugs already in clinical trial target both isoforms of GSK-3, and none are isoform specific. To identify the consequences of combined deletion of cardiac myocyte GSK-3α and GSK-3β in heart function. We generated tamoxifen-inducible cardiac myocyte-specific mice lacking both GSK-3 isoforms (double knockout). We unexpectedly found that cardiac myocyte GSK-3 is essential for cardiac homeostasis and overall survival. Serial echocardiographic analysis reveals that within 2 weeks of tamoxifen treatment, double-knockout hearts leads to excessive dilatative remodeling and ventricular dysfunction. Further experimentation with isolated adult cardiac myocytes and fibroblasts from double-knockout implicated cardiac myocytes intrinsic factors responsible for observed phenotype. Mechanistically, loss of GSK-3 in adult cardiac myocytes resulted in induction of mitotic catastrophe, a previously unreported event in cardiac myocytes. Double-knockout cardiac myocytes showed cell cycle progression resulting in increased DNA content and multinucleation. However, increased cell cycle activity was rivaled by marked activation of DNA damage, cell cycle checkpoint activation, and mitotic catastrophe-induced apoptotic cell death. Importantly, mitotic catastrophe was also confirmed in isolated adult cardiac myocytes. Together, our findings suggest that cardiac myocyte GSK-3 is required to maintain normal cardiac homeostasis, and its loss is incompatible with life because of cell cycle dysregulation that ultimately results in a severe fatal dilated cardiomyopathy. © 2016 American Heart Association, Inc.

  13. Sorting by COP I-coated vesicles under interphase and mitotic conditions

    PubMed Central

    1996-01-01

    COP I-coated vesicles were analyzed for their content of resident Golgi enzymes (N-acetylgalactosaminyltransferase; N- acetylglucosaminyltransferase I; mannosidase II; galactosyltransferase), cargo (rat serum albumin; polyimmunoglobulin receptor), and recycling proteins (-KDEL receptor; ERGIC-53/p58) using biochemical and morphological techniques. The levels of these proteins were similar when the vesicles were prepared under interphase or mitotic conditions showing that sorting was unaffected. The average density relative to starting membranes for resident enzymes (14-30%), cargo (16-23%), and recycling proteins (81-125%) provides clues to the function of COP I vesicles in transport through the Golgi apparatus. PMID:8830771

  14. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  15. Evoked potential correlates of figure and ground.

    PubMed

    Landis, T; Lehmann, D; Mita, T; Skrandies, W

    1984-06-01

    Brain potentials averaged during the viewing of an alternating, positive and negative "hidden man" puzzle picture were averaged from 8 subjects before and after they learned to recognize the figure. After figure recognition in comparison to before recognition, there was significantly more evoked positivity at 64/96 ms latency, and more negativity at 224/256 ms and at 352-480 ms latency over parietal areas during the viewing of the positive picture (recognizable as face) referred to the values obtained during viewing of the negative picture (not recognizable as face). It is hypothesized that separate physiological changes might reflect learned meaningfulness of the figure (which entails increased attention) and figure extraction from ground.

  16. A THERMODYNAMIC ANALYSIS OF MITOTIC SPINDLE EQUILIBRIUM AT ACTIVE METAPHASE

    PubMed Central

    Stephens, R. E.

    1973-01-01

    The mitotic apparatus of first-division metaphase eggs of the sea urchin Strongylocentrotus drobachiensis was observed by means of polarization microscopy under controlled temperature conditions. Eggs were fertilized and grown at two temperature extremes in order to produce two different sizes of available spindle pool. Slow division time allowed successive samples of such cells to be observed at the same point in metaphase but at different equilibrium temperatures, yielding curves of metaphase equilibrium birefringence vs. observational temperature. Using the plateau value of birefringence at higher temperatures as a measure of total available spindle pool and the observed birefringence at lower temperatures as a measure of polymerized material at equilibrium, the spindle protein association was evaluated according to the method of Inoué. Both pool conditions produced linear van't Hoff functions. Analysis of these functions yielded enthalpy and entropy changes of +55–65 kcal/mol and +197–233 entropy units (eu), respectively. These values for active mitotic metaphase are quite comparable to those obtained by Inoué and co-workers for arrested meiotic metaphase cells. When other equilibrium treatments were considered, the best fit to the experimental data was still that of Inoué, a treatment which theoretically involves first-order polymerization and dissociation kinetics. Treatment of metaphase cells with D2O by direct immersion drove the equilibrium to completion regardless of temperature, attaining or exceeding a birefringence value equal to the cell's characteristic pool size; perfusion with D2O appeared to erase the original temperature-determined pool size differences for the two growth conditions, attaining a maximum value characteristic of the larger pool condition. These data confirm Inoué's earlier contention that D2O treatment can modify the available spindle pool. PMID:4734864

  17. Abnormal Uterine Bleeding

    MedlinePlus

    ... abnormal uterine bleeding? Abnormal uterine bleeding is any heavy or unusual bleeding from the uterus (through your ... one symptom of abnormal uterine bleeding. Having extremely heavy bleeding during your period can also be considered ...

  18. The kinetochore proteins CENP-E and CENP-F directly and specifically interact with distinct BUB mitotic checkpoint Ser/Thr kinases.

    PubMed

    Ciossani, Giuseppe; Overlack, Katharina; Petrovic, Arsen; Huis In 't Veld, Pim J; Koerner, Carolin; Wohlgemuth, Sabine; Maffini, Stefano; Musacchio, Andrea

    2018-05-10

    The segregation of chromosomes during cell division relies on the function of the kinetochores, protein complexes that physically connect chromosomes with microtubules of the spindle. The metazoan proteins, centromere protein E (CENP-E) and CENP-F, are components of a fibrous layer of mitotic kinetochores named the corona. Several of their features suggest that CENP-E and CENP-F are paralogs: they are very large (comprising approximately 2700 and 3200 residues, respectively), contain abundant predicted coiled-coil structures, are C-terminally prenylated, and are endowed with microtubule-binding sites at their termini. Moreover, CENP-E contains an ATP-hydrolyzing motor domain that promotes microtubule plus end-directed motion. Here, we show that both CENP-E and CENP-F are recruited to mitotic kinetochores independently of the main corona constituent, the Rod-Zwilch-ZW10 (RZZ) complex. We identified specific interactions of CENP-F and CENP-E with budding uninhibited by benzimidazole 1 (BUB1) and BUB1-related (BUBR1) mitotic checkpoint Ser/Thr kinases, respectively, paralogous proteins involved in mitotic checkpoint control and chromosome alignment. Whereas BUBR1 was dispensable for kinetochore localization of CENP-E, BUB1 was stringently required for CENP-F localization. Through biochemical reconstitution, we demonstrated that the CENP-E-BUBR1 and CENP-F-BUB1 interactions are direct and require similar determinants, a dimeric coiled-coil in CENP-E or CENP-F and a kinase domain in BUBR1 or BUB1. Our findings are consistent with the existence of structurally similar BUB1-CENP-F and BUBR1-CENP-E complexes, supporting the notion that CENP-E and CENP-F are evolutionarily related. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The precision segmented reflectors: Moderate mission figure control subsystem

    NASA Technical Reports Server (NTRS)

    Sevaston, G.; Redding, D.; Lau, K.; Breckenridge, W.; Levine, B.; Nerheim, N.; Sirlin, S.; Kadogawa, H.

    1991-01-01

    A system concept for a space based segmented reflector telescope figure control subsystem is described. The concept employs a two phase architecture in which figure initialization and figure maintenance are independent functions. Figure initialization is accomplished by image sharpening using natural reference targets. Figure maintenance is performed by monitoring the relative positions and alignments of the telescope components using an optical truss. Actuation is achieved using precision positioners. Computer simulation results of figure initialization by pairwise segment coalignment/cophasing and simulated annealing are presented along with figure maintenance results using a wavefront error regulation algorithm. Both functions are shown to perform at acceptable levels for the class of submillimeter telescopes that are serving as the focus of this technology development effort. Component breadboard work as well as plans for a system testbed are discussed.

  20. EEG signatures accompanying auditory figure-ground segregation

    PubMed Central

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P.; Szerafin, Ágnes; Shinn-Cunningham, Barbara; Winkler, István

    2017-01-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased – i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. PMID:27421185

  1. EEG signatures accompanying auditory figure-ground segregation.

    PubMed

    Tóth, Brigitta; Kocsis, Zsuzsanna; Háden, Gábor P; Szerafin, Ágnes; Shinn-Cunningham, Barbara G; Winkler, István

    2016-11-01

    In everyday acoustic scenes, figure-ground segregation typically requires one to group together sound elements over both time and frequency. Electroencephalogram was recorded while listeners detected repeating tonal complexes composed of a random set of pure tones within stimuli consisting of randomly varying tonal elements. The repeating pattern was perceived as a figure over the randomly changing background. It was found that detection performance improved both as the number of pure tones making up each repeated complex (figure coherence) increased, and as the number of repeated complexes (duration) increased - i.e., detection was easier when either the spectral or temporal structure of the figure was enhanced. Figure detection was accompanied by the elicitation of the object related negativity (ORN) and the P400 event-related potentials (ERPs), which have been previously shown to be evoked by the presence of two concurrent sounds. Both ERP components had generators within and outside of auditory cortex. The amplitudes of the ORN and the P400 increased with both figure coherence and figure duration. However, only the P400 amplitude correlated with detection performance. These results suggest that 1) the ORN and P400 reflect processes involved in detecting the emergence of a new auditory object in the presence of other concurrent auditory objects; 2) the ORN corresponds to the likelihood of the presence of two or more concurrent sound objects, whereas the P400 reflects the perceptual recognition of the presence of multiple auditory objects and/or preparation for reporting the detection of a target object. Copyright © 2016. Published by Elsevier Inc.

  2. The Development of Ambiguous Figure Perception

    ERIC Educational Resources Information Center

    Wimmer, Marina C.; Doherty, Martin J.

    2011-01-01

    Ambiguous figures have fascinated researchers for almost 200 years. The physical properties of these figures remain constant, yet two distinct interpretations are possible; these reverse (switch) from one percept to the other. The consensus is that reversal requires complex interaction of perceptual bottom-up and cognitive top-down elements. The…

  3. Human Figure Drawings: Abusing the Abused.

    ERIC Educational Resources Information Center

    Bardos, Achilles N.

    1993-01-01

    Responds to previous article (Motta, Little, and Tobin, this issue) which reviewed data-based studies on figure drawings and found little support for their validity or use in assessing personality, behavior, emotion, or intellectual functioning. Notes recent approaches to interpretation of human figure drawings and cites flaws in argument against…

  4. Deficit in figure-ground segmentation following closed head injury.

    PubMed

    Baylis, G C; Baylis, L L

    1997-08-01

    Patient CB showed a severe impairment in figure-ground segmentation following a closed head injury. Unlike normal subjects, CB was unable to parse smaller and brighter parts of stimuli as figure. Moreover, she did not show the normal effect that symmetrical regions are seen as figure, although she was able to make overt judgments of symmetry. Since she was able to attend normally to isolated objects, CB demonstrates a dissociation between figure ground segmentation and subsequent processes of attention. Despite her severe impairment in figure-ground segmentation, CB showed normal 'parallel' single feature visual search. This suggests that figure-ground segmentation is dissociable from 'preattentive' processes such as visual search.

  5. Allyl Isothiocyanate Arrests Cancer Cells in Mitosis, and Mitotic Arrest in Turn Leads to Apoptosis via Bcl-2 Protein Phosphorylation*

    PubMed Central

    Geng, Feng; Tang, Li; Li, Yun; Yang, Lu; Choi, Kyoung-Soo; Kazim, A. Latif; Zhang, Yuesheng

    2011-01-01

    Allyl isothiocyanate (AITC) occurs in many commonly consumed cruciferous vegetables and exhibits significant anti-cancer activities. Available data suggest that it is particularly promising for bladder cancer prevention and/or treatment. Here, we show that AITC arrests human bladder cancer cells in mitosis and also induces apoptosis. Mitotic arrest by AITC was associated with increased ubiquitination and degradation of α- and β-tubulin. AITC directly binds to multiple cysteine residues of the tubulins. AITC induced mitochondrion-mediated apoptosis, as shown by cytochrome c release from mitochondria to cytoplasm, activation of caspase-9 and caspase-3, and formation of TUNEL-positive cells. Inhibition of caspase-9 blocked AITC-induced apoptosis. Moreover, we found that apoptosis induction by AITC depended entirely on mitotic arrest and was mediated via Bcl-2 phosphorylation at Ser-70. Pre-arresting cells in G1 phase by hydroxyurea abrogated both AITC-induced mitotic arrest and Bcl-2 phosphorylation. Overexpression of a Bcl-2 mutant prevented AITC from inducing apoptosis. We further showed that AITC-induced Bcl-2 phosphorylation was caused by c-Jun N-terminal kinase (JNK), and AITC activates JNK. Taken together, this study has revealed a novel anticancer mechanism of a phytochemical that is commonly present in human diet. PMID:21778226

  6. Figures in clinical trial reports: current practice & scope for improvement

    PubMed Central

    Pocock, Stuart J; Travison, Thomas G; Wruck, Lisa M

    2007-01-01

    Background Most clinical trial publications include figures, but there is little guidance on what results should be displayed as figures and how. Purpose To evaluate the current use of figures in Trial reports, and to make constructive suggestions for future practice. Methods We surveyed all 77 reports of randomised controlled trials in five general medical journals during November 2006 to January 2007. The numbers and types of figures were determined, and then each Figure was assessed for its style, content, clarity and suitability. As a consequence, guidelines are developed for presenting figures, both in general and for each specific common type of Figure. Results Most trial reports contained one to three figures, mean 2.3 per article. The four main types were flow diagram, Kaplan Meier plot, Forest plot (for subgroup analyses) and repeated measures over time: these accounted for 92% of all figures published. For each type of figure there is a considerable diversity of practice in both style and content which we illustrate with selected examples of both good and bad practice. Some pointers on what to do, and what to avoid, are derived from our critical evaluation of these articles' use of figures. Conclusion There is considerable scope for authors to improve their use of figures in clinical trial reports, as regards which figures to choose, their style of presentation and labelling, and their specific content. Particular improvements are needed for the four main types of figures commonly used. PMID:18021449

  7. Figures in clinical trial reports: current practice & scope for improvement.

    PubMed

    Pocock, Stuart J; Travison, Thomas G; Wruck, Lisa M

    2007-11-19

    Most clinical trial publications include figures, but there is little guidance on what results should be displayed as figures and how. To evaluate the current use of figures in Trial reports, and to make constructive suggestions for future practice. We surveyed all 77 reports of randomised controlled trials in five general medical journals during November 2006 to January 2007. The numbers and types of figures were determined, and then each Figure was assessed for its style, content, clarity and suitability. As a consequence, guidelines are developed for presenting figures, both in general and for each specific common type of Figure. Most trial reports contained one to three figures, mean 2.3 per article. The four main types were flow diagram, Kaplan Meier plot, Forest plot (for subgroup analyses) and repeated measures over time: these accounted for 92% of all figures published. For each type of figure there is a considerable diversity of practice in both style and content which we illustrate with selected examples of both good and bad practice. Some pointers on what to do, and what to avoid, are derived from our critical evaluation of these articles' use of figures. There is considerable scope for authors to improve their use of figures in clinical trial reports, as regards which figures to choose, their style of presentation and labelling, and their specific content. Particular improvements are needed for the four main types of figures commonly used.

  8. Recommended reference figures for geophysics and geodesy

    NASA Technical Reports Server (NTRS)

    Khan, M. A.; Okeefe, J. A.

    1973-01-01

    Specific reference figures are recommended for consistent use in geophysics and geodesy. The selection of appropriate reference figure for geophysical studies suggests a relationship between the Antarctic negative gravity anomaly and the great shrinkage of the Antarctic ice cap about 4-5 million years ago. The depression of the south polar regions relative to the north polar regions makes the Southern Hemisphere flatter than the Northern Hemisphere, thus producing the third harmonic (pear-shaped) contribution to the earth's figure.

  9. EFHC1, a protein mutated in juvenile myoclonic epilepsy, associates with the mitotic spindle through its N-terminus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nijs, Laurence de; Lakaye, Bernard; Coumans, Bernard

    2006-09-10

    A novel gene, EFHC1, mutated in juvenile myoclonic epilepsy (JME) encodes a protein with three DM10 domains of unknown function and one putative EF-hand motif. To study the properties of EFHC1, we expressed EGFP-tagged protein in various cell lines. In interphase cells, the fusion protein was present in the cytoplasm and in the nucleus with specific accumulation at the centrosome. During mitosis EGFP-EFHC1 colocalized with the mitotic spindle, especially at spindle poles and with the midbody during cytokinesis. Using a specific antibody, we demonstrated the same distribution of the endogenous protein. Deletion analyses revealed that the N-terminal region of EFHC1more » is crucial for the association with the mitotic spindle and the midbody. Our results suggest that EFHC1 could play an important role during cell division.« less

  10. [Non-linear canonical correlation analysis between anthropometric indicators and multiple metabolic abnormalities].

    PubMed

    Fu, Xiaoli; Liu, Li; Ping, Zhiguang; Li, Linlin

    2013-09-01

    older men and older women in primary prevention. (3) Overweight and abdominal obesity can be considered the sensitive predictive indicator of multiple metabolic abnormalities. (4) Nonlinear canonical correlation and center of gravity Figure had the advantage of analyze the correlation between multiple sets of variables.

  11. Evolution of the Significant Figure Rules

    ERIC Educational Resources Information Center

    Carter, Ashley R.

    2013-01-01

    Today, almost all introductory physics textbooks include standardized "rules" on how to find the number of significant figures in a calculated value. And yet, 30 years ago these rules were almost nonexistent. Why have we increased the role of significant figures in introductory classes, and should we continue this trend? A look back at…

  12. "Blessed": Musical Talent, Smartness, & Figured Identities

    ERIC Educational Resources Information Center

    Hoffman, Adria R.

    2015-01-01

    The purpose of this study is to explore smartness and talent as social constructs. Drawing on Holland et al.'s (1998) figured identities, this article explores the figuring of abilities by elucidating the voices of African American high school chorus students. Critical Race Theory (CRT) helps to unpack normalized language and practices that…

  13. Attention and competition in figure-ground perception.

    PubMed

    Peterson, Mary A; Salvagio, Elizabeth

    2009-01-01

    What are the roles of attention and competition in determining where objects lie in the visual field, a phenomenon known as figure-ground perception? In this chapter, we review evidence that attention and other high-level factors such as familiarity affect figure-ground perception, and we discuss models that implement these effects. Next, we consider the Biased Competition Model of Attention in which attention is used to resolve the competition for neural representation between two nearby stimuli; in this model the response to the stimulus that loses the competition is suppressed. In the remainder of the chapter we discuss recent behavioral evidence that figure-ground perception entails between-object competition in which the response to the shape of the losing competitor is suppressed. We also describe two experiments testing whether more attention is drawn to resolve greater figure-ground competition, as would be expected if the Biased Competition Model of Attention extends to figure-ground perception. In these experiments we find that responses to targets on the location of a losing strong competitor are slowed, consistent with the idea that the location of the losing competitor is suppressed, but responses to targets on the winning competitor are not speeded, which is inconsistent with the hypothesis that attention is used to resolve figure-ground competition. In closing, we discuss evidence that attention can operate by suppression as well as by facilitation.

  14. Validation study of human figure drawing test in a Colombian school children population.

    PubMed

    Vélez van Meerbeke, Alberto; Sandoval-Garcia, Carolina; Ibáñez, Milciades; Talero-Gutiérrez, Claudia; Fiallo, Dolly; Halliday, Karen

    2011-05-01

    The aim of this article was to assess the validity of the emotional and developmental components of the Koppitz human figure drawing test. 2420 children's drawings available in a database resulting from a previous cross sectional study designed to determine the prevalence of neurological diseases in children between 0 and 12 years old in Bogota schools were evaluated. They were scored using the criteria proposed by Koppitz, and classified into 16 groups according to age, gender, and presence/absence of learning or attention problems. The overall results were then compared with the normative study to assess whether descriptive parameters of the two populations were significantly different. There were no significant differences associated with presence/absence of learning and attention disorders or school attended within the overall sample. An Interrater reliability test has been made to assure the homogeneity of scoring by the evaluator team. There were significant differences between this population and that of the original study. New scoring tables contextualized for our population based on the frequency of appearance in this sample are presented. We can conclude that various ethnic, social, and cultural factors can influence the way children draw the human figure. It is thus important to establish local reference values to adequately distinguish between normality and abnormality. The new scoring tables proposed here should be followed up with a clinical study to corroborate their validity.

  15. A new cue to figure-ground coding: top-bottom polarity.

    PubMed

    Hulleman, Johan; Humphreys, Glyn W

    2004-11-01

    We present evidence for a new figure-ground cue: top-bottom polarity. In an explicit reporting task, participants were more likely to interpret stimuli with a wide base and a narrow top as a figure. A similar advantage for wide-based stimuli also occurred in a visual short-term memory task, where the stimuli had ambiguous figure-ground relations. Further support comes from a figural search task. Figural search is a discrimination task in which participants are set to search for a symmetric target in a display with ambiguous figure-ground organization. We show that figural search was easier when stimuli with a top-bottom polarity were placed in an orientation where they had a wide base and a narrow top, relative to when this orientation was inverted. This polarity effect was present when participants were set to use color to parse figure from ground, and it was magnified when the participants did not have any foreknowledge of the color of the symmetric target. Taken together the results suggest that top-bottom polarity influences figure-ground assignment, with wide base stimuli being preferred as a figure. In addition, the figural search task can serve as a useful procedure to examine figure-ground assignment.

  16. Propagating figured wood in black walnut

    Treesearch

    James R. McKenna; Wayne A. Geyer; Keith E. Woeste; Daniel L. Cassens

    2015-01-01

    Figured black walnut lumber is a specialty wood product that commands a high price for manufacturing fine furniture and interior paneling. Two common figured grain patterns occur in walnut; they are known as "fiddle-back" or "curly" grain, depending on the number of horizontal lines visible in the grain of the finished wood. The occurrence of...

  17. A Decrease in Ambient Temperature Induces Post-Mitotic Enlargement of Palisade Cells in North American Lake Cress.

    PubMed

    Amano, Rumi; Nakayama, Hokuto; Morohoshi, Yurika; Kawakatsu, Yaichi; Ferjani, Ali; Kimura, Seisuke

    2015-01-01

    In order to maintain organs and structures at their appropriate sizes, multicellular organisms orchestrate cell proliferation and post-mitotic cell expansion during morphogenesis. Recent studies using Arabidopsis leaves have shown that compensation, which is defined as post-mitotic cell expansion induced by a decrease in the number of cells during lateral organ development, is one example of such orchestration. Some of the basic molecular mechanisms underlying compensation have been revealed by genetic and chimeric analyses. However, to date, compensation had been observed only in mutants, transgenics, and γ-ray-treated plants, and it was unclear whether it occurs in plants under natural conditions. Here, we illustrate that a shift in ambient temperature could induce compensation in Rorippa aquatica (Brassicaceae), a semi-aquatic plant found in North America. The results suggest that compensation is a universal phenomenon among angiosperms and that the mechanism underlying compensation is shared, in part, between Arabidopsis and R. aquatica.

  18. A Decrease in Ambient Temperature Induces Post-Mitotic Enlargement of Palisade Cells in North American Lake Cress

    PubMed Central

    Morohoshi, Yurika; Kawakatsu, Yaichi; Ferjani, Ali; Kimura, Seisuke

    2015-01-01

    In order to maintain organs and structures at their appropriate sizes, multicellular organisms orchestrate cell proliferation and post-mitotic cell expansion during morphogenesis. Recent studies using Arabidopsis leaves have shown that compensation, which is defined as post-mitotic cell expansion induced by a decrease in the number of cells during lateral organ development, is one example of such orchestration. Some of the basic molecular mechanisms underlying compensation have been revealed by genetic and chimeric analyses. However, to date, compensation had been observed only in mutants, transgenics, and γ-ray–treated plants, and it was unclear whether it occurs in plants under natural conditions. Here, we illustrate that a shift in ambient temperature could induce compensation in Rorippa aquatica (Brassicaceae), a semi-aquatic plant found in North America. The results suggest that compensation is a universal phenomenon among angiosperms and that the mechanism underlying compensation is shared, in part, between Arabidopsis and R. aquatica. PMID:26569502

  19. Proteomic Analysis of Mitotic RNA Polymerase II Reveals Novel Interactors and Association With Proteins Dysfunctional in Disease*

    PubMed Central

    Möller, André; Xie, Sheila Q.; Hosp, Fabian; Lang, Benjamin; Phatnani, Hemali P.; James, Sonya; Ramirez, Francisco; Collin, Gayle B.; Naggert, Jürgen K.; Babu, M. Madan; Greenleaf, Arno L.; Selbach, Matthias; Pombo, Ana

    2012-01-01

    RNA polymerase II (RNAPII) transcribes protein-coding genes in eukaryotes and interacts with factors involved in chromatin remodeling, transcriptional activation, elongation, and RNA processing. Here, we present the isolation of native RNAPII complexes using mild extraction conditions and immunoaffinity purification. RNAPII complexes were extracted from mitotic cells, where they exist dissociated from chromatin. The proteomic content of native complexes in total and size-fractionated extracts was determined using highly sensitive LC-MS/MS. Protein associations with RNAPII were validated by high-resolution immunolocalization experiments in both mitotic cells and in interphase nuclei. Functional assays of transcriptional activity were performed after siRNA-mediated knockdown. We identify >400 RNAPII associated proteins in mitosis, among these previously uncharacterized proteins for which we show roles in transcriptional elongation. We also identify, as novel functional RNAPII interactors, two proteins involved in human disease, ALMS1 and TFG, emphasizing the importance of gene regulation for normal development and physiology. PMID:22199231

  20. Figure_2_data

    EPA Pesticide Factsheets

    Data for Figure 2This dataset is associated with the following publication:Sarwar, G., D. Kang, K. Foley, D. Schwede, B. Gantt, and R. Mathur. Technical note: Examining ozone deposition over seawater. ATMOSPHERIC ENVIRONMENT. Elsevier Science Ltd, New York, NY, USA, 141: 255–262, (2016).

  1. Alternative mode of presentation of Kanizsa figures sheds new light on the chronometry of the mechanisms underlying the perception of illusory figures.

    PubMed

    Brodeur, M; Lepore, F; Lepage, M; Bacon, B A; Jemel, B; Debruille, J B

    2008-01-31

    The mechanisms responsible for the perception of illusory modal figures are usually studied by presenting entire Kanizsa figures at stimulus onset. However, with this mode of presentation, the brain activity generated by the inducers (the 'pacmen') is difficult to differentiate from the activity underlying the perception of the illusory figure. Therefore, in addition to this usual presentation mode, we used an alternative presentation mode. Inducer disks remained permanently on the screen and the illusory figure was induced by just removing the notches from the disks. The results support the heuristic value of this alternative mode of presentation. The P1 deflection of the visual evoked potentials (VEPs) was found to be greater for the illusory modal figure than for its control and for an amodal figure. This modulation is one of the earliest direct evidences for a low-level processing of illusory forms in the human brain. Meanwhile, larger N1s were obtained for the control figures than for the illusory figures in the notch mode of presentation. While this new type of N1 modulation could shed some light on the stage of processing indexed by this deflection, several propositions are put forward to account for the P1 and N1 variations found.

  2. Equilibrium figures in geodesy and geophysics.

    NASA Astrophysics Data System (ADS)

    Moritz, H.

    There is an enormous literature on geodetic equilibrium figures, but the various works have not always been interrelated, also for linguistic reasons (English, French, German, Italian, Russian). The author attempts to systematize the various approaches and to use the standard second-order theory for a study of the deviation of the actual earth and of the equipotential reference ellipsoid from an equilibrium figure.

  3. Diverse Mitotic and Interphase Functions of Condensins in Drosophila

    PubMed Central

    Cobbe, Neville; Savvidou, Ellada; Heck, Margarete M. S.

    2006-01-01

    The condensin complex has been implicated in the higher-order organization of mitotic chromosomes in a host of model eukaryotes from yeasts to flies and vertebrates. Although chromosomes paradoxically appear to condense in condensin mutants, chromatids are not properly resolved, resulting in chromosome segregation defects during anaphase. We have examined the role of different condensin complex components in interphase chromatin function by examining the effects of various condensin mutations on position-effect variegation in Drosophila melanogaster. Surprisingly, most mutations affecting condensin proteins were often found to result in strong enhancement of variegation in contrast to what might be expected for proteins believed to compact the genome. This suggests either that the role of condensin proteins in interphase differs from their expected role in mitosis or that the way we envision condensin's activity needs to be modified to accommodate alternative possibilities. PMID:16272408

  4. Mitotic wavefronts mediated by mechanical signaling in early Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Kang, Louis; Idema, Timon; Liu, Andrea; Lubensky, Tom

    2013-03-01

    Mitosis in the early Drosophila embryo demonstrates spatial and temporal correlations in the form of wavefronts that travel across the embryo in each cell cycle. This coordinated phenomenon requires a signaling mechanism, which we suggest is mechanical in origin. We have constructed a theoretical model that supports nonlinear wavefront propagation in a mechanically-excitable medium. Previously, we have shown that this model captures quantitatively the wavefront speed as it varies with cell cycle number, for reasonable values of the elastic moduli and damping coefficient of the medium. Now we show that our model also captures the displacements of cell nuclei in the embryo in response to the traveling wavefront. This new result further supports that mechanical signaling may play an important role in mediating mitotic wavefronts.

  5. Advanced figure sensor operations and maintenance manual

    NASA Technical Reports Server (NTRS)

    Robertson, H. J.

    1972-01-01

    This manual contains procedures for installing, operating, and maintaining the optical figure sensor and its associated electronic controls. The optical figure sensor, a system of integrated components, comprises: (1) a phase measuring modified interferometer employing a single frequency 6328 A laser, and a Vidissector; (2) a two-axis automatic thermal compensation control mount; (3) a five degree of freedom manual adjustment stand; and (4) a control console. This instrument provides real time output data of optical figure errors for spherical mirrors, and is also capable of measuring aspherical mirrors if a null corrector is added.

  6. Meiotic abnormalities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  7. XMAP310: A Xenopus Rescue-promoting Factor Localized to the Mitotic Spindle

    PubMed Central

    Andersen, Søren S.L.; Karsenti, Eric

    1997-01-01

    To understand the role of microtubule-associated proteins (MAPs) in the regulation of microtubule (MT) dynamics we have characterized MAPs prepared from Xenopus laevis eggs (Andersen, S.S.L., B. Buendia, J.E. Domínguez, A. Sawyer, and E. Karsenti. 1994. J. Cell Biol. 127:1289–1299). Here we report on the purification and characterization of a 310-kD MAP (XMAP310) that localizes to the nucleus in interphase and to mitotic spindle MTs in mitosis. XMAP310 is present in eggs, oocytes, a Xenopus tissue culture cell line, testis, and brain. We have purified XMAP310 to homogeneity from egg extracts. The purified protein cross-links pure MTs. Analysis of the effect of this protein on MT dynamics by time-lapse video microscopy has shown that it increases the rescue frequency 5–10-fold and decreases the shrinkage rate twofold. It has no effect on the growth rate or the catastrophe frequency. Microsequencing data suggest that XMAP230 and XMAP310 are novel MAPs. Although the three Xenopus MAPs characterized so far, XMAP215 (Vasquez, R.J., D.L. Gard, and L. Cassimeris. 1994. J. Cell Biol. 127:985–993), XMAP230, and XMAP310 are localized to the mitotic spindle, they have distinct effects on MT dynamics. While XMAP215 promotes rapid MT growth, XMAP230 decreases the catastrophe frequency and XMAP310 increases the rescue frequency. This may have important implications for the regulation of MT dynamics during spindle morphogenesis and chromosome segregation. PMID:9362515

  8. Common contextual influences in ambiguous and rivalrous figures

    PubMed Central

    Jennings, Ben J.; Kingdom, Frederick A. A.

    2017-01-01

    Images that resist binocular fusion undergo alternating periods of dominance and suppression, similarly to ambiguous figures whose percepts alternate between two interpretations. It has been well documented that the perceptual interpretations of both rivalrous and ambiguous figures are influenced by their spatio-temporal context. Here we consider whether an identical spatial context similarly influences the interpretation of a similar rivalrous and ambiguous figure. We developed a binocularly rivalrous stimulus whose perceptual experience mirrors that of a Necker cube. We employed a paradigm similar to that of Ouhnana and Kingdom (2016) to correlate the magnitude of influence of context between the rivalrous and ambiguous target. Our results showed that the magnitude of contextual influence is significantly correlated within observers between both binocularly rivalrous and ambiguous target figures. This points to a similar contextual-influence mechanism operating on a common mechanism underlying the perceptual instability in both ambiguous and rivalrous figures. PMID:28459854

  9. Aero-space plane figures of merit

    NASA Technical Reports Server (NTRS)

    Hunt, James L.; Martin, John G.

    1992-01-01

    The design environment of the aerospace plane is variable rich, intricately networked and sensitivity intensive. To achieve a viable design necessitates addressing three principal elements: knowledge of the 'figures of merit' and their relationships, the synthesis procedure, and the synergistic integration of advanced technologies across the discipline spectrum. This paper focuses on the 'figures of merit' that create the design of an aerospace plane.

  10. Surface reconstruction, figure-ground modulation, and border-ownership.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2013-01-01

    The Differentiation-Integration for Surface Completion (DISC) model aims to explain the reconstruction of visual surfaces. We find the model a valuable contribution to our understanding of figure-ground organization. We point out that, next to border-ownership, neurons in visual cortex code whether surface elements belong to a figure or the background and that this is influenced by attention. We furthermore suggest that there must be strong links between object recognition and figure-ground assignment in order to resolve the status of interior contours. Incorporation of these factors in neurocomputational models will further improve our understanding of surface reconstruction, figure-ground organization, and border-ownership.

  11. Abnormal branching and regression of the notochord and its relationship to foregut abnormalities.

    PubMed

    Vleesch Dubois, V N; Quan Qi, B; Beasley, S W; Williams, A

    2002-04-01

    An abnormally positioned notochord has been reported in embryos that develop foregut abnormalities, vertebral defects and other abnormalities of the VATER association. This study examines the patterns of regression of the abnormal notochord in the rat model of the VATER association and investigates the relationship between developmental abnormalities of the notochord and those of the vertebra and foregut. Timed-pregnant Sprague-Dawley rats were given daily intraperitoneal injections of 1.75 mg/kg adriamycin on gestational days 6 - 9 inclusive. Rats were sacrificed between days 14 and 20 and their embryos harvested, histologically sectioned and stained and examined serially. The location and appearance of the degenerating notochord and its relationship to regional structural defects were analysed. All 26 embryos exposed to adriamycin developed foregut abnormalities and had an abnormal notochord. The notochord disappeared by a process of apoptotic degeneration that lagged behind that of the normal embryo: the notochord persisted in the abnormal embryo beyond day 17, whereas in the normal rat it had already disappeared. Similarly, formation of the nucleus pulposus was delayed. Vertebral abnormalities occurred when the notochord was ventrally-positioned. The notochord disappears during day 16 in the normal embryo whereas abnormal branches of the notochord persist until day 19 in the adriamycin-treated embryo. Degeneration of the notochord is dominated by apoptosis. An excessively ventrally-placed notochord is closely associated with abnormalities of the vertebral column, especially hemivertebrae.

  12. γH2AX foci formation in the absence of DNA damage: mitotic H2AX phosphorylation is mediated by the DNA-PKcs/CHK2 pathway.

    PubMed

    Tu, Wen-Zhi; Li, Bing; Huang, Bo; Wang, Yu; Liu, Xiao-Dan; Guan, Hua; Zhang, Shi-Meng; Tang, Yan; Rang, Wei-Qing; Zhou, Ping-Kun

    2013-11-01

    Phosphorylated H2AX is considered to be a biomarker for DNA double-strand breaks (DSB), but recent evidence suggests that γH2AX does not always indicate the presence of DSB. Here we demonstrate the bimodal dynamic of H2AX phosphorylation induced by ionizing radiation, with the second peak appearing when G2/M arrest is induced. An increased level of γH2AX occurred in mitotic cells, and this increase was attenuated by DNA-PKcs inactivation or Chk2 depletion, but not by ATM inhibition. The phosphorylation-mimic CHK2-T68D abrogated the attenuation of mitotic γH2AX induced by DNA-PKcs inactivation. Thus, the DNA-PKcs/CHK2 pathway mediates the mitotic phosphorylation of H2AX in the absence of DNA damage. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Teaching Significant Figures Using a Learning Cycle.

    ERIC Educational Resources Information Center

    Guymon, E. Park; And Others

    1986-01-01

    Describes an instructional strategy based on the learning cycle for teaching the use of significant figures. Provides explanations of teaching activities for each phase of the learning cycle (exploration, invention, application). Compares this approach to teaching significant figures with the traditional textbook approach. (TW)

  14. Radiation-induced mitotic and meiotic aneuploidy in the yeast Saccharomyces cerevisiae.

    PubMed

    Parry, J M; Sharp, D; Tippins, R S; Parry, E M

    1979-06-01

    A number of genetic systems are described which in yeast may be used to monitor the induction of chromosome aneuploidy during both mitotic and meiotic cell division. Using these systems we have been able to demonstrate the induction of both monosomic and trisomic cells in mitotically dividing cells and disomic spores in meiotically dividing cells after both UV light and X-ray exposure. The frequency of UV-light-induced monosomic colonies were reduced by post-treatment with photoreactivity light and both UV-light- and X-ray-induced monosomic colonies were reduced by liquid holding post-treatment under non-nutrient conditions. Both responses indicate an involvement of DNA-repair mechanisms in the removal of lesions which may lead to monosomy in yeast. This was further confirmed by the response of an excision-defective yeast strain which showed considerably increased sensitivity to the induction of monosomic colonies by UV-light treatment at low doses. Yeast cultures irradiated at different stages of growth showed variation in their responses to both UV-light and X-rays, cells at the exponential phase of growth show maximum sensitivity to the induction of monosomic colonies at low doses whereas stationary phase cultures showed maximum induction of monosomic colonies at high does. The frequencies of X-ray-induced chromosome aneuploidy during meiosis leading to the production of disomic spores was shown to be dependent upon the stage of meiosis at which the yeast cells were exposed to radiation. Cells which had proceeded beyond the DNA synthetic stage of meiosis were shown to produce disomic spores at considerably lower radiation doses than those cells which had only recently been inoculated into sporulation medium. The results obtained suggest that the yeast sustem may be suitable for the study of sensitivities of the various stages of meiotic cell division to the induction of chromosome aneuploidy after radiation exposure.

  15. Effects of tretinoin pretreatment on TCA chemical peel in guinea pig skin.

    PubMed Central

    Kim, I. H.; Kim, H. K.; Kye, Y. C.

    1996-01-01

    This study was done to characterize the structural changes in the tretinoin pretreatment on trichloroacetic acid(TCA) chemical peel. In guinea pigs, the right halves pretreated with tretinoin and the left halves treated nothing were compared in their structural changes after TCA chemical peel. Epidermal thickness in the tretinoin pretreated group was almost the same in the first and second week. But epidermis of the TCA group increased continuously. In the first week, mitotic figures in the epidermis were more increased in the TCA group, but those in hair follicles were more increased in the tretinoin pretreated group. In the second week, mitotic figures in the epidermis were almost same in both group, but in hair follicles of the tretinoin pretreated group, mitotic figures were much more increased. In alcian blue staining, glycosaminoglycan was stained much more strongly in dermis of the TCA group in first week, but was more strongly stained in the tretinoin pretreated group in second week. On electron microscopic findings, the fibroblasts in upper dermis were larger and had plentier cytoplasm with more organelles in the tretinoin pretreated group. Conclusively, tretinoin pretreatment on TCA chemical peel sustained the effects of TCA longer and showed synergistic effects of TCA and induced enhanced wound healing. PMID:8878803

  16. "Hidden Figures" Panel Discussion

    NASA Image and Video Library

    2016-12-12

    In the Press Site auditorium at the Kennedy Space Center in Florida, members of the media participate in a news conference with key individuals involved in the upcoming motion picture "Hidden Figures." From the left are: Janelle Monáe, who portrays Mary Jackson; Pharrell Williams, musician and producer of “Hidden Figures;" and Bill Barry, NASA's chief historian. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  17. Post-mitotic human dermal fibroblasts efficiently support the growth of human follicular keratinocytes.

    PubMed

    Limat, A; Hunziker, T; Boillat, C; Bayreuther, K; Noser, F

    1989-05-01

    For growth at low seeding densities, keratinocytes isolated from human tissues like epidermis or hair follicles are dependent on mesenchyme-derived feeder cells such as the 3T3-cell employed so far. As an alternative method, the present study describes the use of post-mitotic human dermal fibroblasts sublethally irradiated or mitomycin C-treated. Special emphasis was put on efficient growth of primary keratinocyte cultures plated at very low seeding densities. Thus, outer root sheath cells isolated from two anagen human hair follicles and plated in a 35-mm culture dish (3 - 6 X 10(2) attached cells) grew to confluence within 3 weeks (6 - 8 X 10(5) cells). Similar results were obtained for interfollicular keratinocytes. A crucial point for the function of these fibroblast feeder cells is plating at appropriate densities, considering their tremendous increase in cell size at the post-mitotic state. Plating densities of 4 - 5 X 10(3/cm2 allow full spreading of the feeder cells and do not impede the settling and expansion of the keratinocytes. Major advantages of this system include easier handling and better reproducibility than using 3T3-cells. Moreover, homologous fibroblast feeders mimic more closely the physiologic situation and therefore might provide a valuable tool for studying interactions between human mesenchymal and epithelial cells. Finally, potential hazards of using transformed feeder cells from a different species in keratinocyte cultures raised for wound covering in humans could be thus avoided.

  18. Proliferative and morphologic changes in rat colon following bypass surgery.

    PubMed Central

    Barkla, D. H.; Tutton, P. J.

    1985-01-01

    In this study the proliferative and morphologic changes that occur in the colon of normal and dimethylhydrazine-treated rats following surgical bypass of the middle third of the colon are reported. Proliferative changes were measured by estimating accumulated mitotic indexes following vinblastine treatment and morphologic changes were observed with the use of light microscopy and scanning electron microscopy. Data were collected on Days 0, 7, 14, 30, and 72 after surgery. The results show that surgical bypass produces contrasting effects in the segments proximal to and distal to the suture line. In the proximal segment there was morphologic evidence of hyperplasia, although proliferative activity was unchanged except for an increase at 7 days in normal rats. In the distal segment there was a long-lived increase in the mitotic index, although morphologic changes were not seen. The results for DMH-treated rats were similar to those in normal rats. Groups of isolated dysplastic epithelial cells were often seen in the submucosa adjacent to sutures up to 72 days after surgery. Increased lymphoid infiltration was seen in segments proximal to but not distal to the suture line. It is hypothesized that the different responses of the proximal and distal segments may be related to the different embryologic origins of those segments. It is also hypothesized that the seeding of the submucosa with epithelial cells during suturing may be a factor in tumor recurrence. Images Figure 19 Figure 20 Figure 21 Figure 22 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 PMID:4014432

  19. Micromechanical study of mitotic chromosome structure

    NASA Astrophysics Data System (ADS)

    Marko, John

    2011-03-01

    Our group has developed micromanipulation techniques for study of the highly compacted mitotic form of chromosome found in eukaryote cells during cell division. Each metaphase chromosome contains two duplicate centimeter-long DNA molecules, folded up by proteins into cylindrical structures several microns in length. Native chromosomes display linear and reversible stretching behavior over a wide range of extensions (up to 5x native length for amphibian chromosomes), described by a Young modulus of about 300 Pa. Studies using DNA-cutting and protein-cutting enzymes have revealed that metaphase chromosomes behave as a network of chromatin fibers held together by protein-based isolated crosslinks. Our results are not consistent with the more classical model of loops of chromatin attached to a protein-based structural organizer or ``scaffold". In short, our experiments indicate that metaphase chromosomes can be considered to be ``gels" of chromatin; the stretching modulus of a whole chromosome is consistent with stretching of the chromatin fibers contained within it. Experiments using topoisomerases suggest that topological constraints may play an appreciable role in confining chromatin in the metaphase chromosome. Finally, recent experiments on human chromosomes will be reviewed, including results of experiments where chromosome-folding proteins are specifically depleted using siRNA methods. Supported by NSF-MCB-1022117, DMR-0715099, PHY-0852130, DMR-0520513, NCI 1U54CA143869-01 (NU-PS-OC), and the American Heart Association.

  20. Brain bases for auditory stimulus-driven figure-ground segregation.

    PubMed

    Teki, Sundeep; Chait, Maria; Kumar, Sukhbinder; von Kriegstein, Katharina; Griffiths, Timothy D

    2011-01-05

    Auditory figure-ground segregation, listeners' ability to selectively hear out a sound of interest from a background of competing sounds, is a fundamental aspect of scene analysis. In contrast to the disordered acoustic environment we experience during everyday listening, most studies of auditory segregation have used relatively simple, temporally regular signals. We developed a new figure-ground stimulus that incorporates stochastic variation of the figure and background that captures the rich spectrotemporal complexity of natural acoustic scenes. Figure and background signals overlap in spectrotemporal space, but vary in the statistics of fluctuation, such that the only way to extract the figure is by integrating the patterns over time and frequency. Our behavioral results demonstrate that human listeners are remarkably sensitive to the appearance of such figures. In a functional magnetic resonance imaging experiment, aimed at investigating preattentive, stimulus-driven, auditory segregation mechanisms, naive subjects listened to these stimuli while performing an irrelevant task. Results demonstrate significant activations in the intraparietal sulcus (IPS) and the superior temporal sulcus related to bottom-up, stimulus-driven figure-ground decomposition. We did not observe any significant activation in the primary auditory cortex. Our results support a role for automatic, bottom-up mechanisms in the IPS in mediating stimulus-driven, auditory figure-ground segregation, which is consistent with accumulating evidence implicating the IPS in structuring sensory input and perceptual organization.

  1. Shape recognition contributions to figure-ground reversal: which route counts?

    PubMed

    Peterson, M A; Harvey, E M; Weidenbacher, H J

    1991-11-01

    Observers viewed upright and inverted versions of figure-ground stimuli, in which Gestalt variables specified that the center was figure. In upright versions, the surround was high in denotivity, in that most viewers agreed it depicted the same shape; in inverted versions, the surround was low in denotivity. The surround was maintained as figure longer and was more likely to be obtained as figure when the stimuli were upright rather than inverted. In four experiments, these effects reflected inputs to figure-ground computations from orientation-specific shape representations only. To account for these findings, a nonratiomorphic mechanism is proposed that enables shape recognition processes before figure-ground relationships are determined.

  2. Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time.

    PubMed

    Harder, Nathalie; Mora-Bermúdez, Felipe; Godinez, William J; Wünsche, Annelie; Eils, Roland; Ellenberg, Jan; Rohr, Karl

    2009-11-01

    Live-cell imaging allows detailed dynamic cellular phenotyping for cell biology and, in combination with small molecule or drug libraries, for high-content screening. Fully automated analysis of live cell movies has been hampered by the lack of computational approaches that allow tracking and recognition of individual cell fates over time in a precise manner. Here, we present a fully automated approach to analyze time-lapse movies of dividing cells. Our method dynamically categorizes cells into seven phases of the cell cycle and five aberrant morphological phenotypes over time. It reliably tracks cells and their progeny and can thus measure the length of mitotic phases and detect cause and effect if mitosis goes awry. We applied our computational scheme to annotate mitotic phenotypes induced by RNAi gene knockdown of CKAP5 (also known as ch-TOG) or by treatment with the drug nocodazole. Our approach can be readily applied to comparable assays aiming at uncovering the dynamic cause of cell division phenotypes.

  3. Structure-activity relationship of S-trityl-L-cysteine analogues as inhibitors of the human mitotic kinesin Eg5.

    PubMed

    Debonis, Salvatore; Skoufias, Dimitrios A; Indorato, Rose-Laure; Liger, François; Marquet, Bernard; Laggner, Christian; Joseph, Benoît; Kozielski, Frank

    2008-03-13

    The human kinesin Eg5 is a potential drug target for cancer chemotherapy. Eg5 specific inhibitors cause cells to block in mitosis with a characteristic monoastral spindle phenotype. Prolonged metaphase block eventually leads to apoptotic cell death. S-trityl-L-cysteine (STLC) is a tight-binding inhibitor of Eg5 that prevents mitotic progression. It has proven antitumor activity as shown in the NCI 60 tumor cell line screen. It is of considerable interest to define the minimum chemical structure that is essential for Eg5 inhibition and to develop more potent STLC analogues. An initial structure-activity relationship study on a series of STLC analogues reveals the minimal skeleton necessary for Eg5 inhibition as well as indications of how to obtain more potent analogues. The most effective compounds investigated with substitutions at the para-position of one phenyl ring have an estimated K i (app) of 100 nM in vitro and induce mitotic arrest with an EC 50 of 200 nM.

  4. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease.

    PubMed

    Atwood, Craig S; Bowen, Richard L

    2015-11-01

    This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and

  5. The Set1/COMPASS histone H3 methyltransferase helps regulate mitosis with the CDK1 and NIMA mitotic kinases in Aspergillus nidulans.

    PubMed

    Govindaraghavan, Meera; Anglin, Sarah Lea; Osmani, Aysha H; Osmani, Stephen A

    2014-08-01

    Mitosis is promoted and regulated by reversible protein phosphorylation catalyzed by the essential NIMA and CDK1 kinases in the model filamentous fungus Aspergillus nidulans. Protein methylation mediated by the Set1/COMPASS methyltransferase complex has also been shown to regulate mitosis in budding yeast with the Aurora mitotic kinase. We uncover a genetic interaction between An-swd1, which encodes a subunit of the Set1 protein methyltransferase complex, with NIMA as partial inactivation of nimA is poorly tolerated in the absence of swd1. This genetic interaction is additionally seen without the Set1 methyltransferase catalytic subunit. Importantly partial inactivation of NIMT, a mitotic activator of the CDK1 kinase, also causes lethality in the absence of Set1 function, revealing a functional relationship between the Set1 complex and two pivotal mitotic kinases. The main target for Set1-mediated methylation is histone H3K4. Mutational analysis of histone H3 revealed that modifying the H3K4 target residue of Set1 methyltransferase activity phenocopied the lethality seen when either NIMA or CDK1 are partially functional. We probed the mechanistic basis of these genetic interactions and find that the Set1 complex performs functions with CDK1 for initiating mitosis and with NIMA during progression through mitosis. The studies uncover a joint requirement for the Set1 methyltransferase complex with the CDK1 and NIMA kinases for successful mitosis. The findings extend the roles of the Set1 complex to include the initiation of mitosis with CDK1 and mitotic progression with NIMA in addition to its previously identified interactions with Aurora and type 1 phosphatase in budding yeast. Copyright © 2014 by the Genetics Society of America.

  6. Local figure-ground cues are valid for natural images.

    PubMed

    Fowlkes, Charless C; Martin, David R; Malik, Jitendra

    2007-06-08

    Figure-ground organization refers to the visual perception that a contour separating two regions belongs to one of the regions. Recent studies have found neural correlates of figure-ground assignment in V2 as early as 10-25 ms after response onset, providing strong support for the role of local bottom-up processing. How much information about figure-ground assignment is available from locally computed cues? Using a large collection of natural images, in which neighboring regions were assigned a figure-ground relation by human observers, we quantified the extent to which figural regions locally tend to be smaller, more convex, and lie below ground regions. Our results suggest that these Gestalt cues are ecologically valid, and we quantify their relative power. We have also developed a simple bottom-up computational model of figure-ground assignment that takes image contours as input. Using parameters fit to natural image statistics, the model is capable of matching human-level performance when scene context limited.

  7. Chromosome movement in lysed mitotic cells is inhibited by vanadate

    PubMed Central

    1978-01-01

    Mitotic PtK1 cells, lysed at anaphase into a carbowax 20 M Brij 58 solution, continue to move chromosomes toward the spindle poles and to move the spindle poles apart at 50% in vivo rates for 10 min. Chromosome movements can be blocked by adding metabolic inhibitors to the lysis medium and inhibition of movement can be reversed by adding ATP to the medium. Vanadate at micromolar levels reversibly inhibits dynein ATPase activity and movement of demembranated flagella and cilia. It does not affect glycerinated myofibril contraction or myosin ATPase activty at less than millimolar concentrations. Vanadate at 10-- 100 micron reversibly inhibits anaphase movement of chromosomes and spindle elongation. After lysis in vanadate, spindles lose their fusiform appearance and become more barrel shaped. In vitro microtubule polymerization is insensitive to vanadate. PMID:152767

  8. Lower region: a new cue for figure-ground assignment.

    PubMed

    Vecera, Shaun P; Vogel, Edward K; Woodman, Geoffrey F

    2002-06-01

    Figure-ground assignment is an important visual process; humans recognize, attend to, and act on figures, not backgrounds. There are many visual cues for figure-ground assignment. A new cue to figure-ground assignment, called lower region, is presented: Regions in the lower portion of a stimulus array appear more figurelike than regions in the upper portion of the display. This phenomenon was explored, and it was demonstrated that the lower-region preference is not influenced by contrast, eye movements, or voluntary spatial attention. It was found that the lower region is defined relative to the stimulus display, linking the lower-region preference to pictorial depth perception cues. The results are discussed in terms of the environmental regularities that this new figure-ground cue may reflect.

  9. Human figure drawings by children with Duchenne's muscular dystrophy.

    PubMed

    Pope-Grattan, M M; Burnett, C N; Wolfe, C V

    1976-02-01

    Seventy-two human figure drawings by forty-three patients who had a diagnosis of Duchenne's muscular dystrophy were examined. The study includes a description of these human figure drawings according to eleven emotional indicators and according to directionality quadrants. When the human figure drawings were used as a projective tool, four personality traits of some of the children were identified: physical inadequacy, immaturity, body anxiety, and insecurity. Both the emotional indicators and the quadrant in which the figures appeared were examined in relation to stages of the disease process to see if the human figure drawings of the children might reflect more stress and anxiety at a particular stage of the disease. Suggestions for improvements and recommendations for future study are given.

  10. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly.

    PubMed

    Schlaitz, Anne-Lore; Srayko, Martin; Dammermann, Alexander; Quintin, Sophie; Wielsch, Natalie; MacLeod, Ian; de Robillard, Quentin; Zinke, Andrea; Yates, John R; Müller-Reichert, Thomas; Shevchenko, Andrei; Oegema, Karen; Hyman, Anthony A

    2007-01-12

    Microtubule behavior changes during the cell cycle and during spindle assembly. However, it remains unclear how these changes are regulated and coordinated. We describe a complex that targets the Protein Phosphatase 2A holoenzyme (PP2A) to centrosomes in C. elegans embryos. This complex includes Regulator of Spindle Assembly 1 (RSA-1), a targeting subunit for PP2A, and RSA-2, a protein that binds and recruits RSA-1 to centrosomes. In contrast to the multiple functions of the PP2A catalytic subunit, RSA-1 and RSA-2 are specifically required for microtubule outgrowth from centrosomes and for spindle assembly. The centrosomally localized RSA-PP2A complex mediates these functions in part by regulating two critical mitotic effectors: the microtubule destabilizer KLP-7 and the C. elegans regulator of spindle assembly TPXL-1. By regulating a subset of PP2A functions at the centrosome, the RSA complex could therefore provide a means of coordinating microtubule outgrowth from centrosomes and kinetochore microtubule stability during mitotic spindle assembly.

  11. Feature Assignment in Perception of Auditory Figure

    ERIC Educational Resources Information Center

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  12. Classification of visual signs in abdominal CT image figures in biomedical literature

    NASA Astrophysics Data System (ADS)

    Xue, Zhiyun; You, Daekeun; Antani, Sameer; Long, L. Rodney; Demner-Fushman, Dina; Thoma, George R.

    2014-03-01

    "Imaging signs" are a critical part of radiology's language. They not only are important for conveying diagnosis, but may also aid in indexing radiology literature and retrieving relevant cases and images. Here we report our work towards representing and categorizing imaging signs of abdominal abnormalities in figures in the radiology literature. Given a region-of-interest (ROI) from a figure, our goal was to assign a correct imaging sign label to that ROI from the following seven: accordion, comb, ring, sandwich, small bowel feces, target, or whirl. As training and test data, we created our own "gold standard" dataset of regions containing imaging signs. We computed 2997 feature attributes to represent imaging sign characteristics for each ROI in training and test sets. Following feature selection they were reduced to 70 attributes and were input to a Support Vector Machine classifier. We applied image-enhancement methods to compensate for variable quality of the images in radiology articles. In particular we developed a method for automatic detection and removal of pointers/markers (arrows, arrowheads, and asterisk symbols) on the images. These pointers/markers are valuable for approximately locating ROIs; however, they degrade the classification because they are often (partially) included in the training ROIs. On a test set of 283 ROIs, our method achieved an overall accuracy of 70% in labeling the seven signs, which we believe is a promising result for using imaging signs to search/retrieve radiology literature. This work is also potentially valuable for the creation of a visual ontology of biomedical imaging entities.

  13. Learning to rank figures within a biomedical article.

    PubMed

    Liu, Feifan; Yu, Hong

    2014-01-01

    Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. This ever-increasing sheer volume has made it difficult for scientists to effectively and accurately access figures of their interest, the process of which is crucial for validating research facts and for formulating or testing novel research hypotheses. Current figure search applications can't fully meet this challenge as the "bag of figures" assumption doesn't take into account the relationship among figures. In our previous study, hundreds of biomedical researchers have annotated articles in which they serve as corresponding authors. They ranked each figure in their paper based on a figure's importance at their discretion, referred to as "figure ranking". Using this collection of annotated data, we investigated computational approaches to automatically rank figures. We exploited and extended the state-of-the-art listwise learning-to-rank algorithms and developed a new supervised-learning model BioFigRank. The cross-validation results show that BioFigRank yielded the best performance compared with other state-of-the-art computational models, and the greedy feature selection can further boost the ranking performance significantly. Furthermore, we carry out the evaluation by comparing BioFigRank with three-level competitive domain-specific human experts: (1) First Author, (2) Non-Author-In-Domain-Expert who is not the author nor co-author of an article but who works in the same field of the corresponding author of the article, and (3) Non-Author-Out-Domain-Expert who is not the author nor co-author of an article and who may or may not work in the same field of the corresponding author of an article. Our results show that BioFigRank outperforms Non-Author-Out-Domain-Expert and performs as well as Non-Author-In-Domain-Expert. Although BioFigRank underperforms First Author, since most biomedical researchers are either in- or out

  14. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    PubMed Central

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  15. R-X Modeling Figures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goda, Joetta Marie; Miller, Thomas; Grogan, Brandon

    2016-10-26

    This document contains figures that will be included in an ORNL final report that details computational efforts to model an irradiation experiment performed on the Godiva IV critical assembly. This experiment was a collaboration between LANL and ORNL.

  16. Control of the mitotic exit network during meiosis

    PubMed Central

    Attner, Michelle A.; Amon, Angelika

    2012-01-01

    The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division. PMID:22718910

  17. Paclitaxel sensitivity of breast cancer cells requires efficient mitotic arrest and disruption of Bcl-xL/Bak interaction.

    PubMed

    Flores, M Luz; Castilla, Carolina; Ávila, Rainiero; Ruiz-Borrego, Manuel; Sáez, Carmen; Japón, Miguel A

    2012-06-01

    Taxanes are being used for the treatment of breast cancer. However, cancer cells frequently develop resistance to these drugs with the subsequent recurrence of the tumor. MDA-MB-231 and T-47D breast cancer cell lines were used to assess the effect of paclitaxel treatment on apoptosis and cell cycle, the possible mechanisms of paclitaxel resistance as well as the enhancement of paclitaxel-induced apoptosis based on its combination with phenylethyl isothiocyanate (PEITC). T-47D cells undergo apoptosis in response to paclitaxel treatment. The induction of apoptosis was associated with a robust mitotic arrest and the disruption of Bcl-xL/Bak interaction. By contrary, MDA-MB-231 cells were insensitive to paclitaxel-induced apoptosis and this was associated with a high percentage of cells that slip out of paclitaxel-imposed mitotic arrest and also with the maintenance of Bcl-xL/Bak interaction. The sequential treatment of MDA-MB-231 cells with PEITC followed by paclitaxel inhibited the slippage induced by paclitaxel and increased the apoptosis induction achieved with any of the drugs alone. In breast cancer tissues, high Bcl-xL expression was correlated with a shorter time of disease-free survival in patients treated with a chemotherapeutic regimen that contains paclitaxel, in a statistically significant way. Thus, resistance to paclitaxel in MDA-MB-231 cells is related to the inability to disrupt the Bcl-xL/Bak interaction and increased slippage. In this context, the combination of a drug that induces a strong mitotic arrest, such as paclitaxel, with another that inhibits slippage, such as PEITC, translates into increased apoptotic induction.

  18. "Hidden Figures" Tour KSC

    NASA Image and Video Library

    2016-12-12

    During a tour for cast and crew members of the upcoming motion picture "Hidden Figures," Kennedy Space Center Director Bob Cabana points to Launch Pads 39A and 39B from the roof of the Vehicle Assembly Building. From the left are Octavia Spencer, who portrays Dorothy Vaughan in the film, Cabana, Taraji P. Henson, who portrays Katherine Johnson, and Pharrell Williams, musician and producer of “Hidden Figures." The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  19. "Hidden Figures" Tour KSC

    NASA Image and Video Library

    2016-12-12

    Kennedy Space Center Director Bob Cabana provides a tour for cast and crew members of the upcoming motion picture "Hidden Figures." From the left are Cabana, Pharrell Williams, musician and producer of “Hidden Figures," Taraji P. Henson, who portrays Katherine Johnson in the film, and Octavia Spencer, who portrays Dorothy Vaughan. The group is walking thought the transfer aisle of the Vehicle Assembly Building. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  20. Running the figure to the ground: figure-ground segmentation during visual search.

    PubMed

    Ralph, Brandon C W; Seli, Paul; Cheng, Vivian O Y; Solman, Grayden J F; Smilek, Daniel

    2014-04-01

    We examined how figure-ground segmentation occurs across multiple regions of a visual array during a visual search task. Stimuli consisted of arrays of black-and-white figure-ground images in which roughly half of each image depicted a meaningful object, whereas the other half constituted a less meaningful shape. The colours of the meaningful regions of the targets and distractors were either the same (congruent) or different (incongruent). We found that incongruent targets took longer to locate than congruent targets (Experiments 1, 2, and 3) and that this segmentation-congruency effect decreased when the number of search items was reduced (Experiment 2). Furthermore, an analysis of eye movements revealed that participants spent more time scrutinising the target before confirming its identity on incongruent trials than on congruent trials (Experiment 3). These findings suggest that the distractor context influences target segmentation and detection during visual search. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  2. Feedback enhances feedforward figure-ground segmentation by changing firing mode.

    PubMed

    Supèr, Hans; Romeo, August

    2011-01-01

    In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforward spiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses with the responses to a homogenous texture. We propose that feedback controls figure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons.

  3. A figure control sensor for the Large Deployable Reflector (LDR)

    NASA Technical Reports Server (NTRS)

    Bartman, R.; Dubovitsky, S.

    1988-01-01

    A sensing and control system is required to maintain high optical figure quality in a segmented reflector. Upon detecting a deviation of the segmented surface from its ideal form, the system drives segment mounted actuators to realign the individual segments and thereby return the surface to its intended figure. When the reflector is in use, a set of figure sensors will determine positions of a number of points on the back surface of each of the reflector's segments, each sensor being assigned to a single point. By measuring the positional deviations of these points from previously established nominal values, the figure sensors provide the control system with the information required to maintain the reflector's optical figure. The optical lever, multiple wavelength interferometer, and electronic capacitive sensor, the most promising technologies for the development of the figure sensor, are illustrated. It is concluded that to select a particular implementation of the figure sensors, performance requirement will be refined and relevant technologies investigated further.

  4. Episodic but not semantic order memory difficulties in autism spectrum disorder: evidence from the Historical Figures Task.

    PubMed

    Gaigg, Sebastian B; Bowler, Dermot M; Gardiner, John M

    2014-01-01

    Considerable evidence suggests that the episodic memory system operates abnormally in autism spectrum disorder (ASD) whereas the functions of the semantic memory system are relatively preserved. Here we show that the same dissociation also applies to the domain of order memory. We asked adult participants to order the names of famous historical figures either according to their chronological order in history (probing semantic memory) or according to a random sequence shown once on a screen (probing episodic memory). As predicted, adults with ASD performed less well than age- and IQ-matched comparison individuals only on the episodic task. This observation is of considerable importance in the context of developmental theory because semantic and episodic order memory abilities can be dissociated in typically developing infants before they reach the age at which the behavioural markers associated with ASD are first apparent. This raises the possibility that early emerging memory abnormalities play a role in shaping the developmental trajectory of the disorder. We discuss the broader implications of this possibility and highlight the urgent need for greater scrutiny of memory competences in ASD early in development.

  5. Beyond Captions: Linking Figures with Abstract Sentences in Biomedical Articles

    PubMed Central

    Bockhorst, Joseph P.; Conroy, John M.; Agarwal, Shashank; O’Leary, Dianne P.; Yu, Hong

    2012-01-01

    Although figures in scientific articles have high information content and concisely communicate many key research findings, they are currently under utilized by literature search and retrieval systems. Many systems ignore figures, and those that do not typically only consider caption text. This study describes and evaluates a fully automated approach for associating figures in the body of a biomedical article with sentences in its abstract. We use supervised methods to learn probabilistic language models, hidden Markov models, and conditional random fields for predicting associations between abstract sentences and figures. Three kinds of evidence are used: text in abstract sentences and figures, relative positions of sentences and figures, and the patterns of sentence/figure associations across an article. Each information source is shown to have predictive value, and models that use all kinds of evidence are more accurate than models that do not. Our most accurate method has an -score of 69% on a cross-validation experiment, is competitive with the accuracy of human experts, has significantly better predictive accuracy than state-of-the-art methods and enables users to access figures associated with an abstract sentence with an average of 1.82 fewer mouse clicks. A user evaluation shows that human users find our system beneficial. The system is available at http://FigureItOut.askHERMES.org. PMID:22815711

  6. Advancing Sustainable Materials Management: Facts and Figures Report

    EPA Pesticide Factsheets

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  7. Figure-ground segregation can rely on differences in motion direction.

    PubMed

    Kandil, Farid I; Fahle, Manfred

    2004-12-01

    If the elements within a figure move synchronously while those in the surround move at a different time, the figure is easily segregated from the surround and thus perceived. Lee and Blake (1999) [Visual form created solely from temporal structure. Science, 284, 1165-1168] demonstrated that this figure-ground separation may be based not only on time differences between motion onsets, but also on the differences between reversals of motion direction. However, Farid and Adelson (2001) [Synchrony does not promote grouping in temporally structured displays. Nature Neuroscience, 4, 875-876] argued that figure-ground segregation in the motion-reversal experiment might have been based on a contrast artefact and concluded that (a)synchrony as such was 'not responsible for the perception of form in these or earlier displays'. Here, we present experiments that avoid contrast artefacts but still produce figure-ground segregation based on purely temporal cues. Our results show that subjects can segregate figure from ground even though being unable to use motion reversals as such. Subjects detect the figure when either (i) motion stops (leading to contrast artefacts), or (ii) motion directions differ between figure and ground. Segregation requires minimum delays of about 15 ms. We argue that whatever the underlying cues and mechanisms, a second stage beyond motion detection is required to globally compare the outputs of local motion detectors and to segregate figure from ground. Since analogous changes take place in both figure and ground in rapid succession, this second stage has to detect the asynchrony with high temporal precision.

  8. Abnormal neural precursor cell regulation in the early postnatal Fragile X mouse hippocampus.

    PubMed

    Sourial, Mary; Doering, Laurie C

    2017-07-01

    The regulation of neural precursor cells (NPCs) is indispensable for a properly functioning brain. Abnormalities in NPC proliferation, differentiation, survival, or integration have been linked to various neurological diseases including Fragile X syndrome. Yet, no studies have examined NPCs from the early postnatal Fragile X mouse hippocampus despite the importance of this developmental time point, which marks the highest expression level of FMRP, the protein missing in Fragile X, in the rodent hippocampus and is when hippocampal NPCs have migrated to the dentate gyrus (DG) to give rise to lifelong neurogenesis. In this study, we examined NPCs from the early postnatal hippocampus and DG of Fragile X mice (Fmr1-KO). Immunocytochemistry on neurospheres showed increased Nestin expression and decreased Ki67 expression, which collectively indicated aberrant NPC biology. Intriguingly, flow cytometric analysis of the expression of the antigens CD15, CD24, CD133, GLAST, and PSA-NCAM showed a decreased proportion of neural stem cells (GLAST + CD15 + CD133 + ) and an increased proportion of neuroblasts (PSA-NCAM + CD15 + ) in the DG of P7 Fmr1-KO mice. This was mirrored by lower expression levels of Nestin and the mitotic marker phospho-histone H3 in vivo in the P9 hippocampus, as well as a decreased proportion of cells in the G 2 /M phases of the P7 DG. Thus, the absence of FMRP leads to fewer actively cycling NPCs, coinciding with a decrease in neural stem cells and an increase in neuroblasts. Together, these results show the importance of FMRP in the developing hippocampal formation and suggest abnormalities in cell cycle regulation in Fragile X. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  9. V1 mechanisms and some figure-ground and border effects.

    PubMed

    Li, Zhaoping

    2003-01-01

    V1 neurons have been observed to respond more strongly to figure than background regions. Within a figure region, the responses are usually stronger near figure boundaries (the border effect), than further inside the boundaries. Sometimes the medial axes of the figures (e.g., the vertical midline of a vertical figure strip) induce secondary, intermediate, response peaks (the medial axis effect). Related is the physiologically elusive "cross-orientation facilitation", the observation that a cell's response to a grating patch can be facilitated by an orthogonally oriented grating in the surround. Higher center feedbacks have been suggested to cause these figure-ground effects. It has been shown, using a V1 model, that the causes could be intra-cortical interactions within V1 that serve pre-attentive visual segmentation, particularly, object boundary detection. Furthermore, whereas the border effect is robust, the figure-ground effects in the interior of a figure, in particular, the medial axis effect, are by-products of the border effect and are predicted to diminish to zero for larger figures. This model prediction (of the figure size dependence) was subsequently confirmed physiologically, and supported by findings that the response modulations by texture surround do not depend on feedbacks from V2. In addition, the model explains the "cross-orientation facilitation" as caused by a dis-inhibition, to the cell responding to the center of the central grating, by the background grating. Furthermore, the elusiveness of this phenomena was accounted for by the insight that it depends critically on the size of the figure grating. The model is applied to understand some figure-ground effects and segmentation in psychophysics: in particular, that contrast discrimination threshold is lower within and at the center of a closed contour than that in the background, and that a very briefly presented vernier target can perceptually shine through a subsequently presented large

  10. Two critical periods in early visual cortex during figure-ground segregation.

    PubMed

    Wokke, Martijn E; Sligte, Ilja G; Steven Scholte, H; Lamme, Victor A F

    2012-11-01

    The ability to distinguish a figure from its background is crucial for visual perception. To date, it remains unresolved where and how in the visual system different stages of figure-ground segregation emerge. Neural correlates of figure border detection have consistently been found in early visual cortex (V1/V2). However, areas V1/V2 have also been frequently associated with later stages of figure-ground segregation (such as border ownership or surface segregation). To causally link activity in early visual cortex to different stages of figure-ground segregation, we briefly disrupted activity in areas V1/V2 at various moments in time using transcranial magnetic stimulation (TMS). Prior to stimulation we presented stimuli that made it possible to differentiate between figure border detection and surface segregation. We concurrently recorded electroencephalographic (EEG) signals to examine how neural correlates of figure-ground segregation were affected by TMS. Results show that disruption of V1/V2 in an early time window (96-119 msec) affected detection of figure stimuli and affected neural correlates of figure border detection, border ownership, and surface segregation. TMS applied in a relatively late time window (236-259 msec) selectively deteriorated performance associated with surface segregation. We conclude that areas V1/V2 are not only essential in an early stage of figure-ground segregation when figure borders are detected, but subsequently causally contribute to more sophisticated stages of figure-ground segregation such as surface segregation.

  11. A robust and tunable mitotic oscillator in artificial cells

    PubMed Central

    Wang, Shiyuan; Barnes, Patrick M; Liu, Xuwen; Xu, Haotian; Jin, Minjun; Liu, Allen P

    2018-01-01

    Single-cell analysis is pivotal to deciphering complex phenomena like heterogeneity, bistability, and asynchronous oscillations, where a population ensemble cannot represent individual behaviors. Bulk cell-free systems, despite having unique advantages of manipulation and characterization of biochemical networks, lack the essential single-cell information to understand a class of out-of-steady-state dynamics including cell cycles. Here, by encapsulating Xenopus egg extracts in water-in-oil microemulsions, we developed artificial cells that are adjustable in sizes and periods, sustain mitotic oscillations for over 30 cycles, and function in forms from the simplest cytoplasmic-only to the more complicated ones involving nuclear dynamics, mimicking real cells. Such innate flexibility and robustness make it key to studying clock properties like tunability and stochasticity. Our results also highlight energy as an important regulator of cell cycles. We demonstrate a simple, powerful, and likely generalizable strategy of integrating strengths of single-cell approaches into conventional in vitro systems to study complex clock functions. PMID:29620527

  12. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  13. Figure-Ground Processing: A Reassessment of Gelb and Granit.

    PubMed

    Nelson, Rolf; Hebda, Nicholas

    2018-03-01

    In 1923, Adhemar Gelb and Ragnar Granit, two prominent researchers in early Gestalt perceptual theory, reported a lower threshold for detection of a target (a small colored dot) on the ground region of an image than on an adjacent figural region. Although their results had a wide influence on the understanding of figure-ground perception, they are at odds with more recent investigations in which figural regions appear to have a processing advantage over ground regions. The two present studies replicated Gelb and Granit's experiment using a similar figure-ground stimulus albeit with a two-alternative forced choice procedure rather than their original method of adjustment. Experiment 1 found that, contrary to Gelb and Granit's findings, a detection advantage was found for the figural over the ground region. Experiment 2 indicated that explicit contours might have played a role in detection.

  14. Software systems for modeling articulated figures

    NASA Technical Reports Server (NTRS)

    Phillips, Cary B.

    1989-01-01

    Research in computer animation and simulation of human task performance requires sophisticated geometric modeling and user interface tools. The software for a research environment should present the programmer with a powerful but flexible substrate of facilities for displaying and manipulating geometric objects, yet insure that future tools have a consistent and friendly user interface. Jack is a system which provides a flexible and extensible programmer and user interface for displaying and manipulating complex geometric figures, particularly human figures in a 3D working environment. It is a basic software framework for high-performance Silicon Graphics IRIS workstations for modeling and manipulating geometric objects in a general but powerful way. It provides a consistent and user-friendly interface across various applications in computer animation and simulation of human task performance. Currently, Jack provides input and control for applications including lighting specification and image rendering, anthropometric modeling, figure positioning, inverse kinematics, dynamic simulation, and keyframe animation.

  15. Bioaccumulation and effects of lanthanum on growth and mitotic index in soybean plants.

    PubMed

    de Oliveira, Cynthia; Ramos, Sílvio J; Siqueira, José O; Faquin, Valdemar; de Castro, Evaristo M; Amaral, Douglas C; Techio, Vânia H; Coelho, Lívia C; e Silva, Pedro H P; Schnug, Ewald; Guilherme, Luiz R G

    2015-12-01

    Rare earth elements such as lanthanum (La) have been used as agricultural inputs in some countries in order to enhance yield and improve crop quality. However, little is known about the effect of La on the growth and structure of soybean, which is an important food and feed crop worldwide. In this study, bioaccumulation of La and its effects on the growth and mitotic index of soybean was evaluated. Soybean plants were exposed to increasing concentrations of La (0, 5, 10, 20, 40, 80, and 160 µM) in nutrient solution for 28 days. Plant response to La was evaluated in terms of plant growth, nutritional characteristics, photosynthetic rate, chlorophyll content, mitotic index, modifications in the ultrastructure of roots and leaves, and La mapping in root and shoot tissues. The results showed that the roots of soybean plants can accumulate sixty-fold more La than shoots. La deposition occurred mainly in cell walls and in crystals dispersed in the root cortex and in the mesophyll. When La was applied, it resulted in increased contents of some essential nutrients (i.e., Ca, P, K, and Mn), while Cu and Fe levels decreased. Moreover, low La concentrations stimulated the photosynthetic rate and total chlorophyll content and lead to a higher incidence of binucleate cells, resulting in a slight increase in roots and shoot biomass. At higher La levels, soybean growth was reduced. This was caused by ultrastructural modifications in the cell wall, thylakoids and chloroplasts, and the appearance of c-metaphases. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Prostate cancer cell response to paclitaxel is affected by abnormally expressed securin PTTG1.

    PubMed

    Castilla, Carolina; Flores, M Luz; Medina, Rafael; Pérez-Valderrama, Begoña; Romero, Francisco; Tortolero, María; Japón, Miguel A; Sáez, Carmen

    2014-10-01

    PTTG1 protein, the human securin, has a central role in sister chromatid separation during mitosis, and its altered expression has been reported in many tumor types. Paclitaxel is a widely used chemotherapeutic drug, whose mechanism of action is related to its ability to arrest cells in mitosis and the subsequent induction of the intrinsic apoptotic pathway. By using two prostate cancer cell lines with different responses to paclitaxel treatment, we have identified two situations in which PTTG1 influences cell fate differentially. In slippage-prone PC3 cells, both PTTG1 downregulation and overexpression induce an increase in mitotic cells that is associated with diminished apoptosis after paclitaxel treatment. In LNCaP cells, however, PTTG1 downregulation prevents mitotic entry and, subsequently, inhibits mitosis-associated, paclitaxel-induced apoptosis. In contrast, PTTG1 overexpression induces an increase in mitotic cells and apoptosis after paclitaxel treatment. We have also identified a role for Mcl-1 protein in preventing apoptosis during mitosis in PC3 cells, as simultaneous PTTG1 and Mcl-1 silencing enhances mitosis-associated apoptosis after paclitaxel treatment. The finding that a more efficient mitotic arrest alone in PC3 cells is not enough to increase apoptosis was also confirmed with the observation that a selected paclitaxel-resistant PC3 cell line showed an apoptosis-resistant phenotype associated with increased mitosis upon paclitaxel treatment. These findings could contribute to identify putative responsive and nonresponsive cells and help us to approach incomplete responses to paclitaxel in the clinical setting. ©2014 American Association for Cancer Research.

  17. The threshold signal:noise ratio in the perception of fragmented figures.

    PubMed

    Merkul'ev, A V; Pronin, S V; Semenov, L A; Foreman, N; Chikhman, V N; Shelepin, Yu E

    2006-01-01

    Perception thresholds were measured for fragmented outline figures (the Gollin test). A new approach to the question of the perception of incomplete images was developed. In this approach, figure fragmentation consisted of masking with multiplicative texture-like noise--this interference was termed "invisible" masking. The first series of studies established that the "similarity" between the amplitude-frequency spectra of test figures and "invisible" masks, expressed as a linear correlation coefficient, had significant effects on the recognition thresholds of these figures. The second series of experiments showed that progressing formation of the figures was accompanied by increases in the correlation between their spatial-frequency characteristics and the corresponding characteristics of the incomplete figure, while the correlation with the "invisible" mask decreased. It is suggested that the ratio of the correlation coefficients, characterizing the "similarity" of the fragmented figure with the intact figure and the "invisible" mask, corresponds to the signal:noise ratio. The psychophysical recognition threshold for figures for naive subjects not familiar with the test image alphabet was reached after the particular level of fragmentation at which this ratio was unity.

  18. [Stability in association of the peripheral material with mitotic chromosomes].

    PubMed

    Kosykh, M I; Chentsov, Iu S

    2002-01-01

    The localization of nucleolar proteins (fibrillarin and B-23), and of the protein of interphase nuclear matrix (NMP-65) was studied in the perichromosomal material (CM) after of short hypotonic treatment (15% solution of Henks medium) on cultured pig embryonic kidney cells, followed by restoration of isotonic conditions. It is shown that during hypotonic shock the mitotic chromosomes demonstrate reversible swelling, but their periphery is bounded with a rim of PCM, containing antibodies to fibrillarin and NMP-65, but not to B-23. After returning the cells to the initial isotonic medium, all the three proteins can be detected again on the periphery of chromosomes. It suggests the existence of different stability in the association of free proteins with chromosome bodies. Besides, B-23 and fibrillarin could be visualized in residual nucleoli after a complete extraction of histones and DNA from nuclei.

  19. Mitotic position and morphology of committed precursor cells in the zebrafish retina adapt to architectural changes upon tissue maturation.

    PubMed

    Weber, Isabell P; Ramos, Ana P; Strzyz, Paulina J; Leung, Louis C; Young, Stephen; Norden, Caren

    2014-04-24

    The development of complex neuronal tissues like the vertebrate retina requires the tight orchestration of cell proliferation and differentiation. Although the complexity of transcription factors and signaling pathways involved in retinogenesis has been studied extensively, the influence of tissue maturation itself has not yet been systematically explored. Here, we present a quantitative analysis of mitotic events during zebrafish retinogenesis that reveals three types of committed neuronal precursors in addition to the previously known apical progenitors. The identified precursor types present at distinct developmental stages and exhibit different mitotic location (apical versus nonapical), cleavage plane orientation, and morphology. Interestingly, the emergence of nonapically dividing committed bipolar cell precursors can be linked to an increase in apical crowding caused by the developing photoreceptor cell layer. Furthermore, genetic interference with neuronal subset specification induces ectopic divisions of committed precursors, underlining the finding that progressing morphogenesis can effect precursor division position. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  20. The role of shape recognition in figure/ground perception in infancy.

    PubMed

    White, Hannah; Jubran, Rachel; Heck, Alison; Chroust, Alyson; Bhatt, Ramesh S

    2018-04-30

    In this study we sought to determine whether infants, like adults, utilize previous experience to guide figure/ground processing. After familiarization to a shape, 5-month-olds preferentially attended to the side of an ambiguous figure/ground test stimulus corresponding to that shape, suggesting that they were viewing that portion as the figure. Infants' failure to exhibit this preference in a control condition in which both sides of the test stimulus were displayed as figures indicated that the results in the experimental condition were not due to a preference between two figure shapes. These findings demonstrate for the first time that figure/ground processing in infancy is sensitive to top-down influence. Thus, a critical aspect of figure/ground processing is functional early in life.

  1. Propagation of Significant Figures.

    ERIC Educational Resources Information Center

    Schwartz, Lowell M.

    1985-01-01

    Shows that the rules of thumb for propagating significant figures through arithmetic calculations frequently yield misleading results. Also describes two procedures for performing this propagation more reliably than the rules of thumb. However, both require considerably more calculational effort than do the rules. (JN)

  2. Figure-ground segregation modulates apparent motion.

    PubMed

    Ramachandran, V S; Anstis, S

    1986-01-01

    We explored the relationship between figure-ground segmentation and apparent motion. Results suggest that: static elements in the surround can eliminate apparent motion of a cluster of dots in the centre, but only if the cluster and surround have similar "grain" or texture; outlines that define occluding surfaces are taken into account by the motion mechanism; the brain uses a hierarchy of precedence rules in attributing motion to different segments of the visual scene. Being designated as "figure" confers a high rank in this scheme of priorities.

  3. Lighting, backlighting and watercolor illusions and the laws of figurality.

    PubMed

    Pinna, Baingio; Reeves, Adam

    2006-01-01

    We report some novel 'lighting' and 'backlighting' effects in plane figures similar to those which induce the 'watercolor illusion', that is, figures made with outlines composed of juxtaposed parallel lines varying in brightness and chromatic color. These new effects show 'illumination' as an emergent percept, and show how arrangements of 'dark and light' along the boundaries of various plane figures model the volume and strengthen the illusion of depth. To account for these various effects we propose several phenomenological 'laws of figurality' to add to the Gestalt laws of organization and figure-ground segregation. We offer a set of meta-laws which are speculative but which serve to integrate and organize the phenomenological laws. These laws indicate how luminance gradient profiles across boundary contours define both the 3D appearance of figures and the properties of the light reflected from their volumetric shapes.

  4. The effect of recognizability on figure-ground processing: does it affect parsing or only figure selection?

    PubMed

    Navon, David

    2011-03-01

    Though figure-ground assignment has been shown to be probably affected by recognizability, it appears sensible that object recognition must follow at least the earlier process of figure-ground segregation. To examine whether or not rudimentary object recognition could, counterintuitively, start even before the completion of the stage of parsing in which figure-ground segregation is done, participants were asked to respond, in a go/no-go fashion, whenever any out of 16 alternative connected patterns (that constituted familiar stimuli in the upright orientation) appeared. The white figure of the to-be-attended stimulus-target or foil-could be segregated from the white ambient ground only by means of a frame surrounding it. Such a frame was absent until the onset of target display. Then, to manipulate organizational quality, the greyness of the frame was either gradually increased from zero (in Experiment 1) or changed abruptly to a stationary level whose greyness was varied between trials (in Experiments 2 and 3). Stimulus recognizability was manipulated by orientation angle. In all three experiments the effect of recognizability was found to be considerably larger when organizational quality was minimal due to an extremely faint frame. This result is argued to be incompatible with any version of a serial thesis suggesting that processing aimed at object recognition starts only with a good enough level of organizational quality. The experiments rather provide some support to the claim, termed here "early interaction hypothesis", positing interaction between early recognition processing and preassignment parsing processes.

  5. Stochastic correlative firing for figure-ground segregation.

    PubMed

    Chen, Zhe

    2005-03-01

    Segregation of sensory inputs into separate objects is a central aspect of perception and arises in all sensory modalities. The figure-ground segregation problem requires identifying an object of interest in a complex scene, in many cases given binaural auditory or binocular visual observations. The computations required for visual and auditory figure-ground segregation share many common features and can be cast within a unified framework. Sensory perception can be viewed as a problem of optimizing information transmission. Here we suggest a stochastic correlative firing mechanism and an associative learning rule for figure-ground segregation in several classic sensory perception tasks, including the cocktail party problem in binaural hearing, binocular fusion of stereo images, and Gestalt grouping in motion perception.

  6. Human figure drawing distinguishes Alzheimer's patients: a cognitive screening test study.

    PubMed

    Stanzani Maserati, Michelangelo; D'Onofrio, Renato; Matacena, Corrado; Sambati, Luisa; Oppi, Federico; Poda, Roberto; De Matteis, Maddalena; Naldi, Ilaria; Liguori, Rocco; Capellari, Sabina

    2018-05-01

    To study human figure drawing in a group of Alzheimer's disease (AD) patients and compare it with a group of patients with mild cognitive impairment (MCI) and controls. We evaluated consecutive outpatients over a one-year period. Patients were classified as affected by AD or by MCI. All patients and controls underwent a simplified version of the human-figure drawing test and MMSE. A qualitative and quantitative analysis of all human figures was obtained. 112 AD, 100 MCI patients and 104 controls were enrolled. AD patients drew human figures poor in details and globally smaller than MCI patients and controls. Human figures drawn by MCI patients are intermediate in body height between those of the AD patients and the healthy subjects. The head-to-body ratio of human figures drawn by AD patients is greater than controls and MCI patients, while the human figure size-relative-to-page space index is significantly smaller. Body height is an independent predictor of cognitive impairment correlating with its severity and with the number of the figure's details. Human figures drawn by AD patients are different from those drawn by healthy subjects and MCI patients. Human figure drawing test is a useful tool for orienting cognitive impairment's diagnosis.

  7. Inhibitory competition between shape properties in figure-ground perception.

    PubMed

    Peterson, Mary A; Skow, Emily

    2008-04-01

    Theories of figure-ground perception entail inhibitory competition between either low-level units (edge or feature units) or high-level shape properties. Extant computational models instantiate the 1st type of theory. The authors investigated a prediction of the 2nd type of theory: that shape properties suggested on the ground side of an edge are suppressed when they lose the figure-ground competition. In Experiment 1, the authors present behavioral evidence of the predicted suppression: Object decisions were slower for line drawings that followed silhouettes suggesting portions of objects from the same rather than a different category on their ground sides. In Experiment 2, the authors reversed the silhouette's figure-ground relationships and obtained speeding rather than slowing in the same category condition, thereby demonstrating that the Experiment 1 results reflect suppression of those shape properties that lose the figure-ground competition. These experiments provide the first clear empirical evidence that figure-ground perception entails inhibitory competition between high-level shape properties and demonstrate the need for amendments to existing computational models. Furthermore, these results suggest that figure-ground perception may itself be an instance of biased competition in shape perception. (Copyright) 2008 APA, all rights reserved.

  8. A Spatial and Temporal Frequency Based Figure-Ground Processor

    NASA Astrophysics Data System (ADS)

    Weisstein, Namoi; Wong, Eva

    1990-03-01

    Recent findings in visual psychophysics have shown that figure-ground perception can be specified by the spatial and temporal response characteristics of the visual system. Higher spatial frequency regions of the visual field are perceived as figure and lower spatial frequency regions are perceived as background/ (Klymenko and Weisstein, 1986, Wong and Weisstein, 1989). Higher temporal frequency regions are seen as background and lower temporal frequency regions are seen as figure (Wong and Weisstein, 1987, Klymenko, Weisstein, Topolski, and Hsieh, 1988). Thus, high spatial and low temporal frequencies appear to be associated with figure and low spatial and high temporal frequencies appear to be associated with background.

  9. The edge complex: implicit memory for figure assignment in shape perception.

    PubMed

    Peterson, Mary A; Enns, James T

    2005-05-01

    Viewing a stepped edge is likely to prompt the perceptual assignment of one side of the edge as figure. This study demonstrates that even a single brief glance at a novel edge gives rise to an implicit memory regarding which side was seen as figure; this edge complex enters into the figure assignment process the next time the edge is encountered, both speeding same-different judgments when the figural side is repeated and slowing these judgments when the new figural side is identical to the former ground side (Experiments 1A and 1B). These results were obtained even when the facing direction of the repeated edge was mirror reversed (Experiment 2). This study shows that implicit measures can reveal the effects of past experience on figure assignment, following a single prior exposure to a novel shape, and supports a competitive model of figure assignment in which past experience serves as one of many figural cues.

  10. Learning to Rank Figures within a Biomedical Article

    PubMed Central

    Liu, Feifan; Yu, Hong

    2014-01-01

    Hundreds of millions of figures are available in biomedical literature, representing important biomedical experimental evidence. This ever-increasing sheer volume has made it difficult for scientists to effectively and accurately access figures of their interest, the process of which is crucial for validating research facts and for formulating or testing novel research hypotheses. Current figure search applications can't fully meet this challenge as the “bag of figures” assumption doesn't take into account the relationship among figures. In our previous study, hundreds of biomedical researchers have annotated articles in which they serve as corresponding authors. They ranked each figure in their paper based on a figure's importance at their discretion, referred to as “figure ranking”. Using this collection of annotated data, we investigated computational approaches to automatically rank figures. We exploited and extended the state-of-the-art listwise learning-to-rank algorithms and developed a new supervised-learning model BioFigRank. The cross-validation results show that BioFigRank yielded the best performance compared with other state-of-the-art computational models, and the greedy feature selection can further boost the ranking performance significantly. Furthermore, we carry out the evaluation by comparing BioFigRank with three-level competitive domain-specific human experts: (1) First Author, (2) Non-Author-In-Domain-Expert who is not the author nor co-author of an article but who works in the same field of the corresponding author of the article, and (3) Non-Author-Out-Domain-Expert who is not the author nor co-author of an article and who may or may not work in the same field of the corresponding author of an article. Our results show that BioFigRank outperforms Non-Author-Out-Domain-Expert and performs as well as Non-Author-In-Domain-Expert. Although BioFigRank underperforms First Author, since most biomedical researchers are either in- or out

  11. "Hidden Figures" Panel Discussion

    NASA Image and Video Library

    2016-12-12

    In the Press Site auditorium at the Kennedy Space Center in Florida, members of the media participate in a news conference with key individuals from the upcoming motion picture "Hidden Figures." From the left are: Ted Melfi (partially visible), writer and director of “Hidden Figures”; Octavia Spencer, who portrays Dorothy Vaughan; Taraji P. Henson, who portrays Katherine Johnson in the film; Janelle Monáe, who portrays Mary Jackson; Pharrell Williams, musician and producer of “Hidden Figures"; and Bill Barry, NASA's chief historian. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  12. "Hidden Figures" Panel Discussion

    NASA Image and Video Library

    2016-12-12

    In the Press Site auditorium at the Kennedy Space Center in Florida, members of the media participate in a news conference with key individuals from the upcoming motion picture "Hidden Figures." From the left are: former CNN space correspondent John Zarrella, serving as moderator; Ted Melfi, writer and director of “Hidden Figures”; Octavia Spencer, who portrays Dorothy Vaughan; Taraji P. Henson, who portrays Katherine Johnson in the film; Janelle Monáe, who portrays Mary Jackson; Pharrell Williams, musician and producer of “Hidden Figures"; and Bill Barry, NASA's chief historian. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  13. "Hidden Figures" Panel Discussion

    NASA Image and Video Library

    2016-12-12

    In the Press Site auditorium at the Kennedy Space Center in Florida, members of the media participate in a news conference with key individuals from the upcoming motion picture "Hidden Figures." From the left are: Ted Melfi, writer and director of “Hidden Figures”; Octavia Spencer, who portrays Dorothy Vaughan; Taraji P. Henson, who portrays Katherine Johnson in the film; Janelle Monáe, who portrays Mary Jackson; Pharrell Williams, musician and producer of “Hidden Figures"; and Bill Barry, NASA's chief historian. The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including John Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  14. "Hidden Figures" Tour KSC

    NASA Image and Video Library

    2016-12-12

    In the blockhouse at Cape Canaveral Air Force Station's Launch Pad 14, cast and crew members of the upcoming motion picture "Hidden Figures" listen to a briefing on the pad which was the location of the launch of John Glenn and three other astronauts who flew orbital missions during Project Mercury. In the foreground, from the left, are Octavia Spencer, who portrays Dorothy Vaughan, Taraji P. Henson, who portrays Katherine Johnson in the film, Janelle Monáe, who portrays Mary Jackson, and Pharrell Williams, musician and producer of “Hidden Figures." The movie is based on the book of the same title, by Margot Lee Shetterly. It chronicles the lives of Katherine Johnson, Dorothy Vaughan and Mary Jackson, three African-American women who worked for NASA as human "computers.” Their mathematical calculations were crucial to the success of Project Mercury missions including Glenn’s orbital flight aboard Friendship 7 in 1962. The film is due in theaters in January 2017.

  15. A search asymmetry reversed by figure-ground assignment.

    PubMed

    Humphreys, G W; Müller, H

    2000-05-01

    We report evidence demonstrating that a search asymmetry favoring concave over convex targets can be reversed by altering the figure-ground assignment of edges in shapes. Visual search for a concave target among convex distractors is faster than search for a convex target among concave distractors (a search asymmetry). By using shapes with ambiguous local figure-ground relations, we demonstrated that search can be efficient (with search slopes around 10 ms/item) or inefficient (with search slopes around 30-40 ms/item) with the same stimuli, depending on whether edges are assigned to concave or convex "figures." This assignment process can operate in a top-down manner, according to the task set. The results suggest that attention is allocated to spatial regions following the computation of figure-ground relations in parallel across the elements present. This computation can also be modulated by top-down processes.

  16. Neurons forming optic glomeruli compute figure-ground discriminations in Drosophila.

    PubMed

    Aptekar, Jacob W; Keleş, Mehmet F; Lu, Patrick M; Zolotova, Nadezhda M; Frye, Mark A

    2015-05-13

    Many animals rely on visual figure-ground discrimination to aid in navigation, and to draw attention to salient features like conspecifics or predators. Even figures that are similar in pattern and luminance to the visual surroundings can be distinguished by the optical disparity generated by their relative motion against the ground, and yet the neural mechanisms underlying these visual discriminations are not well understood. We show in flies that a diverse array of figure-ground stimuli containing a motion-defined edge elicit statistically similar behavioral responses to one another, and statistically distinct behavioral responses from ground motion alone. From studies in larger flies and other insect species, we hypothesized that the circuitry of the lobula--one of the four, primary neuropiles of the fly optic lobe--performs this visual discrimination. Using calcium imaging of input dendrites, we then show that information encoded in cells projecting from the lobula to discrete optic glomeruli in the central brain group these sets of figure-ground stimuli in a homologous manner to the behavior; "figure-like" stimuli are coded similar to one another and "ground-like" stimuli are encoded differently. One cell class responds to the leading edge of a figure and is suppressed by ground motion. Two other classes cluster any figure-like stimuli, including a figure moving opposite the ground, distinctly from ground alone. This evidence demonstrates that lobula outputs provide a diverse basis set encoding visual features necessary for figure detection. Copyright © 2015 the authors 0270-6474/15/357587-13$15.00/0.

  17. NUCLEIC ACID AND PROTEIN METABOLISM DURING THE MITOTIC CYCLE IN VICIA FABA

    PubMed Central

    Woodard, John; Rasch, Ellen; Swift, Hewson

    1961-01-01

    In order to investigate some of the cytochemical processes involved in interphase growth and culminating in cell division, a combined autoradiographic and microphotometric study of nucleic acids and proteins was undertaken on statistically seriated cells of Vicia faba root meristems. Adenine-8-C14 and uridine-H3 were used as ribonucleic acid (RNA) precursors, thymidine-H3 as a deoxyribonucleic acid (DNA) precursor, and phenylalanine-3-C14 as a protein precursor. Stains used in microphotometry were Feulgen (DNA), azure B (RNA), pH 2.0 fast green (total protein), and pH 8.1 fast green (histone). The autoradiographic data (representing rate of incorporation per organelle) and the microphotometric data (representing changes in amounts of the various components) indicate that the mitotic cycle may be divided into several metabolic phases, three predominantly anabolic (net increase), and a fourth phase predominantly catabolic (net decrease). The anabolic periods are: 1. Telophase to post-telophase during which there are high rates of accumulation of cytoplasmic and nucleolar RNA and nucleolar and chromosomal total protein. 2. Post-telophase to preprophase characterized by histone synthesis and a diphasic synthesis of DNA with the peak of synthesis at mid-interphase and a minor peak just preceding prophase. The minor peak is coincident with a relatively localized DNA synthesis in several chromosomal regions. This period is also characterized by minimal accumulations of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. 3. Preprophase to prophase in which there are again high rates of accumulation of cytoplasmic RNA, and nucleolar and chromosomal total protein and RNA. The catabolic phase is: 4. The mitotic division during which there are marked losses of cytoplasmic RNA and chromosomal and nucleolar total protein and RNA. PMID:13786522

  18. Competition-strength-dependent ground suppression in figure-ground perception.

    PubMed

    Salvagio, Elizabeth; Cacciamani, Laura; Peterson, Mary A

    2012-07-01

    Figure-ground segregation is modeled as inhibitory competition between objects that might be perceived on opposite sides of borders. The winner is the figure; the loser is suppressed, and its location is perceived as shapeless ground. Evidence of ground suppression would support inhibitory competition models and would contribute to explaining why grounds are shapeless near borders shared with figures, yet such evidence is scarce. We manipulated whether competition from potential objects on the ground side of figures was high (i.e., portions of familiar objects were potentially present there) or low (novel objects were potentially present). We predicted that greater competition would produce more ground suppression. The results of two experiments in which suppression was assessed via judgments of the orientation of target bars confirmed this prediction; a third experiment showed that ground suppression is short-lived. Our findings support inhibitory competition models of figure assignment, in particular, and models of visual perception entailing feedback, in general.

  19. Effects of Extremely Low Frequency Electric and Magnetic Fields on Roots of ’Vicia faba’.

    DTIC Science & Technology

    those near the Sanguine transmitter: growth rate, mitotic index , chromosomal abnormalities in dividing meristematic cells. The choice of Vicia faba ...Roots of Vicia faba were exposed to electric and magnetic fields comparable to but at levels higher than those associated with Project Sanguine...There were no differences among control and exposed roots for growth or mitotic index . Also, there were no chromosomal anomalies. Three indices are

  20. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  1. North American transportation in figures

    DOT National Transportation Integrated Search

    2000-01-01

    North American Transportation in Figures examines transportation and transportation-related passenger, freight, economic, safety, energy, environmental and demographic statistics relating to Canada, Mexico and the United States. This publication serv...

  2. Globally inconsistent figure/ground relations induced by a negative part.

    PubMed

    Kim, Sung-Ho; Feldman, Jacob

    2009-09-10

    Figure/ground interpretation is a dynamic and complex process involving the cooperation and competition of a number of perceptual factors. Most research has assumed that figure/ground assignment is globally consistent along the entire contour of a single figure, meaning that the one side of each boundary is interpreted as figure along the entire length of the boundary, and the other side interpreted as ground. We investigated a situation that challenges this assumption, because local cues to figure/ground conflict with global cues: a "negative part," a contour region that appears locally convex but that the global form requires be concave. To measure figure/ground assignment, we use a new task based on local contour motion attribution that allows us to measure border ownership locally at points along the contour. The results from two experiments showed that the more salient a negative part is, the more border ownership tended to locally reverse within it, creating an inconsistency in figure/ground assignments along the contour. This suggests that border ownership assignment is not an all-or-none process, but rather a locally autonomous process that is not strictly constrained by global cues.

  3. Biased figure-ground assignment affects conscious object recognition in spatial neglect.

    PubMed

    Eramudugolla, Ranmalee; Driver, Jon; Mattingley, Jason B

    2010-09-01

    Unilateral spatial neglect is a disorder of attention and spatial representation, in which early visual processes such as figure-ground segmentation have been assumed to be largely intact. There is evidence, however, that the spatial attention bias underlying neglect can bias the segmentation of a figural region from its background. Relatively few studies have explicitly examined the effect of spatial neglect on processing the figures that result from such scene segmentation. Here, we show that a neglect patient's bias in figure-ground segmentation directly influences his conscious recognition of these figures. By varying the relative salience of figural and background regions in static, two-dimensional displays, we show that competition between elements in such displays can modulate a neglect patient's ability to recognise parsed figures in a scene. The findings provide insight into the interaction between scene segmentation, explicit object recognition, and attention.

  4. Psychological distress, social withdrawal, and coping following receipt of an abnormal mammogram among different ethnicities: a mediation model.

    PubMed

    Molina, Yamile; Beresford, Shirley A A; Espinoza, Noah; Thompson, Beti

    2014-09-01

    To explore ethnic differences in psychological distress and social withdrawal after receiving an abnormal mammogram result and to assess if coping strategies mediate ethnic differences. Descriptive correlational. Two urban mobile mammography units and a rural community hospital in the state of Washington. 41 Latina and 41 non-Latina Caucasian (NLC) women who had received an abnormal mammogram result. Women completed standard sociodemographic questions, Impact of Event Scale-Revised, the social dimension of the Psychological Consequences Questionnaire, and the Brief COPE. Ethnicity, psychological distress, social withdrawal, and coping. Latinas experienced greater psychological distress and social withdrawal compared to NLC counterparts. Denial as a coping strategy mediated ethnic differences in psychological distress. Religious coping mediated ethnic differences in social withdrawal. Larger population-based studies are necessary to understand how ethnic differences in coping strategies can influence psychological outcomes. This is an important finding that warrants additional study among women who are and are not diagnosed with breast cancer following an abnormal mammogram. Nurses may be able to work with Latina patients to diminish denial coping and consequent distress. Nurses may be particularly effective, given cultural values concerning strong interpersonal relationships and respect for authority figures.

  5. Figure Structure, Figure Action, and Framing in Drawings by American and Egyptian Children.

    ERIC Educational Resources Information Center

    Wilson, Brent; Wilson, Marjorie

    1979-01-01

    The purpose of this study is to investigate the interaction of biological unfolding and culturally related factors on sequences of narrative figure drawings by American and Egyptian elementary students. Findings support hypotheses relating to the interaction of natural and nurtural influences on children's drawings. (Author/SJL)

  6. Feedback Enhances Feedforward Figure-Ground Segmentation by Changing Firing Mode

    PubMed Central

    Supèr, Hans; Romeo, August

    2011-01-01

    In the visual cortex, feedback projections are conjectured to be crucial in figure-ground segregation. However, the precise function of feedback herein is unclear. Here we tested a hypothetical model of reentrant feedback. We used a previous developed 2-layered feedforwardspiking network that is able to segregate figure from ground and included feedback connections. Our computer model data show that without feedback, neurons respond with regular low-frequency (∼9 Hz) bursting to a figure-ground stimulus. After including feedback the firing pattern changed into a regular (tonic) spiking pattern. In this state, we found an extra enhancement of figure responses and a further suppression of background responses resulting in a stronger figure-ground signal. Such push-pull effect was confirmed by comparing the figure-ground responses withthe responses to a homogenous texture. We propose that feedback controlsfigure-ground segregation by influencing the neural firing patterns of feedforward projecting neurons. PMID:21738747

  7. 50 CFR Figure 11 to Part 223 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false [Reserved] 11 Figure 11 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Figure 11 to Part 223...

  8. Figure-ground effects on shape memory for objects versus holes.

    PubMed

    Palmer, Stephen; Davis, Janet; Nelson, Rolf; Rock, Irvin

    2008-01-01

    The circumstances under which the shapes of figure-versus-ground regions are perceived and remembered were investigated in three experiments that replicate, extend, and clarify Rubin's [1921 Visuell wahrgenommene Figuren (Copenhagen: Gyldendals)] classic study on this topic. In experiment 1, observers reported which of two regions they perceived as figure within ambiguous, bipartite, 2-D displays. In a later shape-recognition test, the shapes of regions previously seen as figures were remembered well, but the shapes of regions previously seen as grounds were remembered no better than novel distractor regions. In experiment 2 we examined the same question about memory for the shape of figure-versus-ground regions in nested displays in which the central region could be perceived either as a closer figure surrounded by a farther ground (ie as a solid object) or as a farther ground surrounded by a closer figure (ie as an empty hole). Unlike experiment 1, the shapes of regions initially perceived as grounds (holes) were remembered as well as those of regions initially perceived as figures (solid objects), and much better than those of novel distractor regions. In experiment 3 we further demonstrated that this outcome did not depend on the figure-ground instructions employed in experiment 2, because the same result was obtained with unambiguous 3-D cardboard displays of objects versus holes with no figure ground instructions at all. The present findings support an account of hole perception in which the shape of an intrinsic hole is encoded as a shaped, immaterial (or virtual) surface where the absence of matter is coded by a functional 'missing' symbol (analogous to a minus sign in mathematics) to represent its non-material status.

  9. Aspheric figure generation using feedback from an infrared phase-shifting interferometer

    NASA Astrophysics Data System (ADS)

    Stahl, H. P.; Ketelsen, D.

    An infrared phase-shifting interferometric system has been integrated with a novel optical figure generator at the University of Arizona Optical Sciences Center. This unique generator facility can produce generalized axially symmetric surface figures in a timely and cost-effective manner. The success of this facility depends on both its ability to efficiently remove material while forming the surface figure, and its ability to monitor the surface figure during the generation process to provide feedback to the optician. The facility has been used on several occasions to custom-generate off-axis parabolic segments. Figures to within 0.30 microns rms of the desired figure have been obtained. This paper discusses the usefulness of the infrared phase-shifting interferometric system for providing figure correcting feedback to the optician during the generation of the off-axis parabolic segments, and how it is affected by the surface roughness produced by each generator tool.

  10. A framework for biomedical figure segmentation towards image-based document retrieval

    PubMed Central

    2013-01-01

    The figures included in many of the biomedical publications play an important role in understanding the biological experiments and facts described within. Recent studies have shown that it is possible to integrate the information that is extracted from figures in classical document classification and retrieval tasks in order to improve their accuracy. One important observation about the figures included in biomedical publications is that they are often composed of multiple subfigures or panels, each describing different methodologies or results. The use of these multimodal figures is a common practice in bioscience, as experimental results are graphically validated via multiple methodologies or procedures. Thus, for a better use of multimodal figures in document classification or retrieval tasks, as well as for providing the evidence source for derived assertions, it is important to automatically segment multimodal figures into subfigures and panels. This is a challenging task, however, as different panels can contain similar objects (i.e., barcharts and linecharts) with multiple layouts. Also, certain types of biomedical figures are text-heavy (e.g., DNA sequences and protein sequences images) and they differ from traditional images. As a result, classical image segmentation techniques based on low-level image features, such as edges or color, are not directly applicable to robustly partition multimodal figures into single modal panels. In this paper, we describe a robust solution for automatically identifying and segmenting unimodal panels from a multimodal figure. Our framework starts by robustly harvesting figure-caption pairs from biomedical articles. We base our approach on the observation that the document layout can be used to identify encoded figures and figure boundaries within PDF files. Taking into consideration the document layout allows us to correctly extract figures from the PDF document and associate their corresponding caption. We combine pixel

  11. The Fraser illusion: complex figures.

    PubMed

    Stuart, G W; Day, R H

    1991-05-01

    The cause of the Fraser illusion, which occurs when a line made up of tilted segments itself appears tilted, is examined further. In this series of experiments, we used figures that resembled the original Fraser illusion; they were more complex than those reported on in our previous paper (Stuart & Day, 1988). The figures were used to explore two theories of the Fraser illusion further: that it is the result of interactions between orientation selective units, and that it is a consequence of the local, distributed processing of orientation. The presence of background elements like those used in the original illusion led to an increase in the strength of the illusion, but the shape of these elements had no differential effect on illusion strength. There was a differential effect of the background on the assimilative and contrast illusions, owing respectively to small and large tilts of the inducing elements. The illusion was markedly reduced at small visual angles when the background was absent, but it was only slightly affected when the background was present. All these findings are difficult to explain in terms of interactions between single units, either at the same or at different scales in the image. The effects of luminance contrast and isoluminance on the illusion were not consistent with either theory, but they indicated that researchers need to consider the role of figure-ground organization in this illusion.

  12. THE MITOTIC APPARATUS

    PubMed Central

    Stephens, R. E.

    1967-01-01

    The major 22S protein of the hexylene glycol-isolated mitotic apparatus has been characterized from spindle isolates and extracts of whole eggs and acetone powders of eggs from the sea urchins Strongylocentrotus purpuratus, Strongylocentrotus droebachiensis, and Arbacia punctulata. The protein is free of nucleotide, lipid, and ATPase activity. Essentially identical in amino acid composition, proteins from these species show a relatively high content of glutamic and aspartic acids and are fairly rich in hydrophobic amino acids. Optical rotatory dispersion studies indicate a helical content of about 20%, a value consistent with the proline content of the protein. The purified proteins have sedimentation rates in the range of 22–24S, diffusion constants of 2.4–2.5F, intrinsic viscosities of 3.7–4.3 ml/g, a partial specific volume of 0.74, and an average molecular weight of 880,000. Electron microscopy indicates a globular molecule with dimensions of approximately 150 by 200 A; such size and symmetry are consistent with hydrodynamic measurements. The 22S protein yields 6–7S, 9–10S, and 13–14S subunits below pH 4 or above pH 11. The 13–14S component has an estimated molecular weight of 600,000–700,000. A 5–6S particle is formed in 8 M urea or 5 M guanidine hydrochloride, while at pH 12 the 6–7S subunit is seen; each particle has a molecular weight of 230,000–240,000. In 8 M urea plus 2% mercaptoethanol or at pH 13, the molecular weight becomes 105,000–120,000; under these conditions the particle sediments at 2.5–3S and 4S, respectively. On the basis of these molecular weights, the 6–7S, 9–10S, 13–14S, and the parent 22S particle should be dimer, tetramer, hexamer, and octamer, respectively, of the 105,000–120,000 molecular weight subunit. The various subunits will reform the 22S particle when returned to neutral buffer, with the exception of the mercaptoethanol-treated urea subunit where breakage of disulfide bonds results in a

  13. Young Children's Human Figure Drawing: Cross-Sectional and Longitudinal Studies.

    ERIC Educational Resources Information Center

    Cox, M. V.; Parkin, C. E.

    1986-01-01

    This cross-sectional and longitudinal study investigated the development of human figure drawing in 42 children aged two to four years and eleven months. Drawings were categorized as scribbles, distinct forms, tadpoles, transitional, or conventional figures. Results suggest that young children draw the human figure in a tadpole form before they…

  14. Evaluation of allelopathic, decomposition and cytogenetic activities of Jasminum officinale L. f. var. grandiflorum (L.) Kob. on bioassay plants.

    PubMed

    Teerarak, Montinee; Laosinwattana, Chamroon; Charoenying, Patchanee

    2010-07-01

    Methanolic extracts prepared from dried leaves of Jasminum officinale f. var. grandiflorum (L.) Kob. (Spanish jasmine) inhibited seed germination and stunted both root and shoot length of the weeds Echinochloa crus-galli (L.) Beauv. and Phaseolus lathyroides L. The main active compound was isolated and determined by spectral data as a secoiridoid glucoside named oleuropein. In addition, a decrease in allelopathic efficacy appeared as the decomposition periods increased. The mitotic index in treated onion root tips decreased with increasing concentrations of the extracts and longer periods of treatment. Likewise, the mitotic phase index was altered in onion incubated with crude extract. Furthermore, crude extract produced mitotic abnormalities resulting from its action on chromatin organization and mitotic spindle. Copyright (c)2010 Elsevier Ltd. All rights reserved.

  15. Parvovirus-Induced Depletion of Cyclin B1 Prevents Mitotic Entry of Infected Cells

    PubMed Central

    Adeyemi, Richard O.; Pintel, David J.

    2014-01-01

    Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication. PMID:24415942

  16. Parvovirus-induced depletion of cyclin B1 prevents mitotic entry of infected cells.

    PubMed

    Adeyemi, Richard O; Pintel, David J

    2014-01-01

    Parvoviruses halt cell cycle progression following initiation of their replication during S-phase and continue to replicate their genomes for extended periods of time in arrested cells. The parvovirus minute virus of mice (MVM) induces a DNA damage response that is required for viral replication and induction of the S/G2 cell cycle block. However, p21 and Chk1, major effectors typically associated with S-phase and G2-phase cell cycle arrest in response to diverse DNA damage stimuli, are either down-regulated, or inactivated, respectively, during MVM infection. This suggested that parvoviruses can modulate cell cycle progression by another mechanism. In this work we show that the MVM-induced, p21- and Chk1-independent, cell cycle block proceeds via a two-step process unlike that seen in response to other DNA-damaging agents or virus infections. MVM infection induced Chk2 activation early in infection which led to a transient S-phase block associated with proteasome-mediated CDC25A degradation. This step was necessary for efficient viral replication; however, Chk2 activation and CDC25A loss were not sufficient to keep infected cells in the sustained G2-arrested state which characterizes this infection. Rather, although the phosphorylation of CDK1 that normally inhibits entry into mitosis was lost, the MVM induced DDR resulted first in a targeted mis-localization and then significant depletion of cyclin B1, thus directly inhibiting cyclin B1-CDK1 complex function and preventing mitotic entry. MVM infection thus uses a novel strategy to ensure a pseudo S-phase, pre-mitotic, nuclear environment for sustained viral replication.

  17. Extremal edges versus other principles of figure-ground organization.

    PubMed

    Ghose, Tandra; Palmer, Stephen E

    2010-07-01

    Identifying the visual cues that determine relative depth across an image contour (i.e., figure-ground organization) is a central problem of vision science. In this paper, we compare flat cues to figure-ground organization with the recently discovered cue of extremal edges (EEs), which arise when opaque convex surfaces smoothly curve to partly occlude themselves. The present results show that EEs are very powerful pictorial cues to relative depth across an edge, almost entirely dominating the well-known figure-ground cues of relative size, convexity, shape familiarity, and surroundedness. These results demonstrate that natural shading and texture gradients in an image provide important information about figure-ground organization that has largely been overlooked in the past 75 years of research on this topic.

  18. Temporal dynamics of figure-ground segregation in human vision.

    PubMed

    Neri, Peter; Levi, Dennis M

    2007-01-01

    The segregation of figure from ground is arguably one of the most fundamental operations in human vision. Neural signals reflecting this operation appear in cortex as early as 50 ms and as late as 300 ms after presentation of a visual stimulus, but it is not known when these signals are used by the brain to construct the percepts of figure and ground. We used psychophysical reverse correlation to identify the temporal window for figure-ground signals in human perception and found it to lie within the range of 100-160 ms. Figure enhancement within this narrow temporal window was transient rather than sustained as may be expected from measurements in single neurons. These psychophysical results prompt and guide further electrophysiological studies.

  19. The concave cusp as a determiner of figure-ground.

    PubMed

    Stevens, K A; Brookes, A

    1988-01-01

    The tendency to interpret as figure, relative to background, those regions that are lighter, smaller, and, especially, more convex is well known. Wherever convex opaque objects abut or partially occlude one another in an image, the points of contact between the silhouettes form concave cusps, each indicating the local assignment of figure versus ground across the contour segments. It is proposed that this local geometric feature is a preattentive determiner of figure-ground perception and that it contributes to the previously observed tendency for convexity preference. Evidence is presented that figure-ground assignment can be determined solely on the basis of the concave cusp feature, and that the salience of the cusp derives from local geometry and not from adjacent contour convexity.

  20. A feedback model of figure-ground assignment.

    PubMed

    Domijan, Drazen; Setić, Mia

    2008-05-30

    A computational model is proposed in order to explain how bottom-up and top-down signals are combined into a unified perception of figure and background. The model is based on the interaction between the ventral and the dorsal stream. The dorsal stream computes saliency based on boundary signals provided by the simple and the complex cortical cells. Output from the dorsal stream is projected to the surface network which serves as a blackboard on which the surface representation is formed. The surface network is a recurrent network which segregates different surfaces by assigning different firing rates to them. The figure is labeled by the maximal firing rate. Computer simulations showed that the model correctly assigns figural status to the surface with a smaller size, a greater contrast, convexity, surroundedness, horizontal-vertical orientation and a higher spatial frequency content. The simple gradient of activity in the dorsal stream enables the simulation of the new principles of the lower region and the top-bottom polarity. The model also explains how the exogenous attention and the endogenous attention may reverse the figural assignment. Due to the local excitation in the surface network, neural activity at the cued region will spread over the whole surface representation. Therefore, the model implements the object-based attentional selection.