Science.gov

Sample records for abnormal mitotic figures

  1. Mitotic figure counts are significantly overestimated in resection specimens of invasive breast carcinomas.

    PubMed

    Lehr, Hans-Anton; Rochat, Candice; Schaper, Cornelia; Nobile, Antoine; Shanouda, Sherien; Vijgen, Sandrine; Gauthier, Arnaud; Obermann, Ellen; Leuba, Susana; Schmidt, Marcus; C, Curzio Ruegg; Delaloye, Jean-Francois; Simiantonaki, Nectaria; Schaefer, Stephan C

    2013-03-01

    Several authors have demonstrated an increased number of mitotic figures in breast cancer resection specimen when compared with biopsy material. This has been ascribed to a sampling artifact where biopsies are (i) either too small to allow formal mitotic figure counting or (ii) not necessarily taken form the proliferating tumor periphery. Herein, we propose a different explanation for this phenomenon. Biopsy and resection material of 52 invasive ductal carcinomas was studied. We counted mitotic figures in 10 representative high power fields and quantified MIB-1 immunohistochemistry by visual estimation, counting and image analysis. We found that mitotic figures were elevated by more than three-fold on average in resection specimen over biopsy material from the same tumors (20±6 vs 6±2 mitoses per 10 high power fields, P=0.008), and that this resulted in a relative diminution of post-metaphase figures (anaphase/telophase), which made up 7% of all mitotic figures in biopsies but only 3% in resection specimen (P<0.005). At the same time, the percentages of MIB-1 immunostained tumor cells among total tumor cells were comparable in biopsy and resection material, irrespective of the mode of MIB-1 quantification. Finally, we found no association between the size of the biopsy material and the relative increase of mitotic figures in resection specimen. We propose that the increase in mitotic figures in resection specimen and the significant shift towards metaphase figures is not due to a sampling artifact, but reflects ongoing cell cycle activity in the resected tumor tissue due to fixation delay. The dwindling energy supply will eventually arrest tumor cells in metaphase, where they are readily identified by the diagnostic pathologist. Taken together, we suggest that the rapidly fixed biopsy material better represents true tumor biology and should be privileged as predictive marker of putative response to cytotoxic chemotherapy.

  2. Immunodetection of phosphohistone H3 as a surrogate of mitotic figure count and clinical outcome in cutaneous melanoma.

    PubMed

    Tetzlaff, Michael T; Curry, Jonathan L; Ivan, Doina; Wang, Wei-Lien; Torres-Cabala, Carlos A; Bassett, Roland L; Valencia, Karla M; McLemore, Michael S; Ross, Merrick I; Prieto, Victor G

    2013-09-01

    In the American Joint Committee on Cancer (AJCC)-TNM (2009) staging system, the key prognostic factor in cutaneous melanoma is the depth of dermal invasion (Breslow thickness) with further refinement according to the presence of epidermal ulceration or dermal mitoses. Immunodetection of phosphohistone H3 has been shown to facilitate the identification of mitotic figures in various neoplasms. We selected 120 cases of primary cutaneous melanoma with completely annotated histopathologic parameters and clinical outcomes and performed double immunohistochemical staining for MLANA (Mart-1/Melan-A) and phosphohistone H3. One hundred and thirteen cases were amenable to antiphosphohistone H3 staining from 66 men and 47 women, with mean age of 64 years (9-93), including 61 superficial spreading type, 24 nodular, 6 lentigo maligna, 8 acral lentiginous, and 14 unclassified. The mean Breslow thickness was 2.53 mm (0.20-25), ulceration was present in 25/113 (22%) and the mean mitotic count was 3.2/mm(2) (<1-29/mm(2)). In 27/113 (24%) of the cases, antiphosphohistone H3 failed to highlight mitotic figures anywhere in the tissue (normal or tumor cell), whereas in 86/113 (76%) antiphosphohistone H3 detected at least one mitotic figure. Among the latter, antiphosphohistone H3 did not detect mitotic figures in dermal tumor cells in 37/86 cases (43%), whereas anti-PHH3 identified at least one melanocytic mitotic figure in the other 49/86 cases (57%; range: 1-66/mm(2)). The relationship between phosphohistone H3 and manual mitotic count was statistically significant (Pearson correlation=0.59, P<0.0001). Logistic regression analyses demonstrated an association between the development of subsequent metastatic disease and the following variables: mitotic figures (odds ratio (OR)=5.7; P=0.0001); phosphohistone H3-positive mitotic figures (OR=3.0; P=0.008); Breslow thickness (OR=4.0 per mm; P=0.0002); ulceration (OR=3.94; P=0.008). The application of phosphohistone H3

  3. Mitotic abnormalities leading to cancer predisposition and progression.

    PubMed

    Cavenee, W K

    1989-01-01

    The development of human cancer is generally thought to entail a series of events that cause a progressively more malignant phenotype. Such a hypothesis predicts that tumor cells of the ultimate stage will carry each of the events, cells of the penultimate stage will carry each of the events less the last one, and so on. That is to say a dissection of the pathway from a normal cell to a fully malignant tumor may be viewed as the unraveling of a nested set of aberrations. In experiments designed to elucidate these events, we have compared genotypic combinations at genomic loci defined by restriction endonuclease recognition site variation in normal and tumor tissues from patients with various forms and stages of cancer. The first step, inherited predisposition, is best described for retinoblastoma in which a recessive mutation of a locus residing in the 13q14 region of the genome is unmasked by aberrant, but specific, mitotic chromosomal segregation. A similar mechanism involving the distal short arm of chromosome 17 is apparent in astrocytic tumors and the event is shared by cells in each malignancy stage. This is distinct from a loss of heterozygosity for loci on chromosome 10 which is restricted to the ultimate stage, glioblastoma multiforme. These results suggest a genetic approach to defining degrees of tumor progression and means for determining the genomic locations of genes involved in the pathway as a prelude to their molecular isolation and characterization.

  4. [Biologic mechanisms of mitotic abnormalities and chromosome number changes in malignant tumors].

    PubMed

    Hegyi, Katalin

    2015-12-01

    induction of aneuploid cell populations. These parallel effects finally increase the complexity of mitotic abnormalities and generate aneuploid cell populations.

  5. Salt-induced abnormalities on root tip mitotic cells of Allium cepa: prevention by inositol pretreatment.

    PubMed

    Chatterjee, Jolly; Majumder, Arun Lahiri

    2010-09-01

    Salt-induced growth reduction of plants is a well-known phenomenon which poses major problem in crop productivity in places where vast majority of land plants are affected by salt. In this report, studies were carried out to reveal the effect of salt injury on the cell division pattern in roots and the role of myo-inositol in preventing the salt-induced ion disequilibrium on the chromosome and DNA degradation in roots. Present study revealed induction of various chromosomal abnormalities on the root tip mitotic cells of Allium cepa by treatment with different concentrations of NaCl (0-500 mM) for 24 h as also the amelioration of such effect by prior treatment of the roots with different concentration of myo-inositol (0-300 mM). Results showed that a narrow albeit definite range of extracellular myo-inositol (100-150 mM) is effective in preventing internucleosomal fragmentation which is the early response in roots under salt stress. Transgenic tobacco plants overexpressing Oryza (OsINO1) as well as Porteresia (PcINO1) cytosolic L: -myo-inositol-1-phosphate synthase coding genes can withstand and retain their chromosomal and DNA integrity in 100 mM NaCl solution and can subsequently prevent DNA fragmentation, caused by intracellular endonuclease activity at this salt concentration.

  6. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality

    SciTech Connect

    Hitomi, Toshiaki; Habu, Toshiyuki; Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H.; Osafune, Kenji; Taura, Daisuke; Sone, Masakatsu; Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko; Hashikata, Hirokuni; Takagi, Yasushi; Morito, Daisuke; Miyamoto, Susumu; Nakao, Kazuwa; Koizumi, Akio

    2013-10-04

    Highlights: •Overexpression of RNF213 R4810K inhibited cell proliferation. •Overexpression of RNF213 R4810K had the time of mitosis 4-fold and mitotic failure. •R4810K formed a complex with MAD2 more readily than wild-type. •iPSECs from the MMD patients had elevated mitotic failure compared from the control. •RNF213 R4810K induced mitotic abnormality and increased risk of aneuploidy. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n = 3, 61.0 ± 8.2%) compared with wild-type subjects (n = 6, 13.1 ± 7.7%; p < 0.01). Aneuploidy was observed more frequently in fibroblasts (p < 0.01) and induced pluripotent stem cells (iPSCs) (p < 0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p < 0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p < 0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability.

  7. Adaptive face space coding in congenital prosopagnosia: typical figural aftereffects but abnormal identity aftereffects.

    PubMed

    Palermo, Romina; Rivolta, Davide; Wilson, C Ellie; Jeffery, Linda

    2011-12-01

    People with congenital prosopagnosia (CP) report difficulty recognising faces in everyday life and perform poorly on face recognition tests. Here, we investigate whether impaired adaptive face space coding might contribute to poor face recognition in CP. To pinpoint how adaptation may affect face processing, a group of CPs and matched controls completed two complementary face adaptation tasks: the figural aftereffect, which reflects adaptation to general distortions of shape, and the identity aftereffect, which directly taps the mechanisms involved in the discrimination of different face identities. CPs displayed a typical figural aftereffect, consistent with evidence that they are able to process some shape-based information from faces, e.g., cues to discriminate sex. CPs also demonstrated a significant identity aftereffect. However, unlike controls, CPs impression of the identity of the neutral average face was not significantly shifted by adaptation, suggesting that adaptive coding of identity is abnormal in CP. In sum, CPs show reduced aftereffects but only when the task directly taps the use of face norms used to code individual identity. This finding of a reduced face identity aftereffect in individuals with severe face recognition problems is consistent with suggestions that adaptive coding may have a functional role in face recognition.

  8. Diagnostic cellular abnormalities in neoplastic and non-neoplastic lesions of the epidermis: a morphological and statistical study

    PubMed Central

    Malhotra, Saurabh; Kazlouskaya, Viktoryia; Andres, Christian; Gui, Jiang; Elston, Dirk

    2013-01-01

    Background Distinguishing cellular abnormalities in reactive and malignant lesions is challenging. We compared the incidence and severity of cytological abnormalities in malignant/premalignant and benign epidermal lesions. Methods One hundred fifty-two biopsies representing 69 malignant/premalignant squamous lesions and 83 benign conditions were studied. Cytological features, including nuclear hyperchromasia, nuclear overlap (crowding), irregular nuclei, high nuclear/cytoplasmic (N/C) ratio, conspicuous nucleoli, delicate inconspicuous nucleoli, clumped chromatin, pleomorphic parakeratosis, normal and abnormal mitotic figures and necrotic keratinocytes, were evaluated and graded. Statistical analysis was performed. Results Irregular nuclei, increased N/C ratio, conspicuous single prominent nucleoli, nuclear overlap (crowding), pleomorphic parakeratosis, nuclear hyperchromasia, necrotic keratinocytes, normal and abnormal mitotic figures and coarse chromatin were seen more frequently in malignant neoplasms (p < 0.05). Abnormal mitotic figures, although uncommon (20.3%), were only noted in the malignant/premalignant group. Certain cytological features were common among both malignant and benign lesions, suggesting that they are of little value. Conclusion In the setting of an atypical cutaneous squamous proliferation, nuclear irregularity, increased N/C ratio, conspicuous nucleoli, crowding and hyperchromasia are the most useful indicators of malignancy. In contrast, mitotic figures, necrotic cells and coarse chromatin are less useful. The presence of abnormal mitotic figures is very helpful when present; however, their overall rarity limits their utility. PMID:23398548

  9. rough deal: a gene required for proper mitotic segregation in Drosophila

    PubMed Central

    1989-01-01

    We describe a genetic locus rough deal (rod) in Drosophila melanogaster, identified by mutations that interfere with the faithful transmission of chromosomes to daughter cells during mitosis. Five mutant alleles were isolated, each associated with a similar set of mitotic abnormalities in the dividing neuroblasts of homozygous mutant larvae: high frequencies of aneuploid cells and abnormal anaphase figures, in which chromatids may lag, form bridges, or completely fail to separate. Surviving homozygous adults are sterile, and show cuticular defects associated with cell death, i.e., roughened eyes, sparse abdominal bristles, and notched wing margins. The morphological process of spermatogenesis is largely unaffected and motile sperm are produced, but meiocyte aneuploidy is common. The nature of the observed abnormalities in mitotic cells suggests that the reduced fidelity of chromosome transmission to the daughter cells is due to a failure in a mechanism involved in assuring the proper release of sister chromatids. PMID:2512302

  10. Myosin-10 independently influences mitotic spindle structure and mitotic progression.

    PubMed

    Sandquist, Joshua C; Larson, Matthew E; Hine, Ken J

    2016-06-01

    The iconic bipolar structure of the mitotic spindle is of extreme importance to proper spindle function. At best, spindle abnormalities result in a delayed mitosis, while worse outcomes include cell death or disease. Recent work has uncovered an important role for the actin-based motor protein myosin-10 in the regulation of spindle structure and function. Here we examine the contribution of the myosin tail homology 4 (MyTH4) domain of the myosin-10 tail to the protein's spindle functions. The MyTH4 domain is known to mediate binding to microtubules and we verify the suspicion that this domain contributes to myosin-10's close association with the spindle. More surprisingly, our data demonstrate that some but not all of myosin-10's spindle functions require microtubule binding. In particular, myosin-10's contribution to spindle pole integrity requires microtubule binding, whereas its contribution to normal mitotic progression does not. This is demonstrated by the observation that dominant negative expression of the wild-type MyTH4 domain produces multipolar spindles and an increased mitotic index, whereas overexpression of a version of the MyTH4 domain harboring point mutations that abrogate microtubule binding results in only the mitotic index phenotype. Our data suggest that myosin-10 helps to control the metaphase to anaphase transition in cells independent of microtubule binding. © 2016 Wiley Periodicals, Inc.

  11. Variations of mitotic index in normal and dysplastic squamous epithelium of the uterine cervix as a function of endometrial maturation.

    PubMed

    Fadare, Oluwole; Yi, Xiaofang; Liang, Sharon X; Ma, Yanling; Zheng, Wenxin

    2007-09-01

    Cervical intraepithelial neoplasia is a premalignant (dysplastic) lesion that is characterized by abnormal cellular proliferation, maturation and nuclear atypia. The intraepithelial distribution, density, and nature (typical or atypical) of mitotic figures are routinely utilized diagnostic criteria to grade dysplasia and to distinguish high-grade dysplasia from potential histologic mimics such as transitional metaplasia, atrophy or immature squamous metaplasia. In this study, we evaluated the total mitotic indices of the cervical epithelia in hysterectomy specimens from patients with and without dysplastic lesions and investigated a possible relationship between mitotic index and hormonal status, using the endometrial maturation phase as a surrogate indicator of the latter. Two hundred seventy-four cervices from hysterectomy specimens (135 cases without dysplasia, 33, 35 and 71 cases with grades 1, 2 and 3 cervical intraepithelial neoplasia, respectively) were analyzed. A cervical mitotic index (total mitotic figures/10 high-power fields in the most proliferative area) was determined for each case. The endometrium in each case was classified into atrophic, early proliferative, late proliferative and secretory. For all three dysplasia grades, cases in the proliferative endometrium group always had a higher average mitotic index than those in the secretory and atrophic endometrium groups; this observation also held true for the benign cases. Furthermore, in all three dysplasia grades, the average mitotic index was always lowest in the atrophic endometrium group. Although the mitotic index showed expected patterns of increases with increasing dysplasia grades for most of the endometrial phases, this was not a universal finding. Notably, the average mitotic index for our cervical intraepithelial neoplasia 1 cases with late proliferative endometrium was higher than our cervical intraepithelial neoplasia 2 cases with secretory and atrophic endometrium. It is concluded

  12. Profiling DNA damage response following mitotic perturbations

    PubMed Central

    S. Pedersen, Ronni; Karemore, Gopal; Gudjonsson, Thorkell; Rask, Maj-Britt; Neumann, Beate; Hériché, Jean-Karim; Pepperkok, Rainer; Ellenberg, Jan; Gerlich, Daniel W.; Lukas, Jiri; Lukas, Claudia

    2016-01-01

    Genome integrity relies on precise coordination between DNA replication and chromosome segregation. Whereas replication stress attracted much attention, the consequences of mitotic perturbations for genome integrity are less understood. Here, we knockdown 47 validated mitotic regulators to show that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed phenotypes. To demonstrate the potential of this resource, we show that DNA breakage after cytokinesis failure is preceded by replication stress, which mounts during consecutive cell cycles and coincides with decreased proliferation. Together, our results provide a resource to gauge the magnitude and dynamics of DNA breakage associated with mitotic aberrations and suggest that replication stress might limit propagation of cells with abnormal karyotypes. PMID:27976684

  13. Assessment of Mitotic Activity in Pituitary Adenomas and Carcinomas.

    PubMed

    Thapar, Kamal; Yamada, Yukio; Scheithauer, Bernd; Kovacs, Kalman; Yamada, Shozo; Stefaneanu, Lucia

    1996-01-01

    Assessment of mitotic activity represents one of the oldest and most routinely used histopathologic methods of evaluating the biological aggressiveness of human tumors. In the case of pituitary tumors, however, the relevance of this approach as a means of gauging tumor behavior remains ill-defined. In this article, the relationship between the mitotic index and biological aggressiveness of pituitary tumors was evaluated in a series of 54 pituitary adenomas and 6 primary pituitary carcinomas. All tumors were fully classified by immunohistochemistry and electron microscopy; adenomas were further stratified on the basis of their invasion status, the latter being defined as gross, operatively, or radiologically apparent infiltration of dura or bone. Mitotic figures were present in 11 tumors, 10 being either invasive adenomas or pituitary carcinomas. A significant association between the presence of mitotic figures and tumor behavior was noted, as evidenced by progressive increments in the proportion of cases expressing mitotic figures in the categories of noninvasive adenoma, invasive adenoma, and pituitary carcinoma (3.9, 21.4, and 66.7%, respectively; Fisher's exact test, two-tailed, p < 0.001). The mitotic index, however, appeared to be a less informative parameter, being extremely low in all cases (mean = 0.016% +/- 0.005 [+/- SEMI). Although the mean mitotic index in pituitary carcinomas (0.09% +/- 0.035) was significantly higher than the mean mitotic index of either noninvasive adenomas (0.002% +/- 0.002) or invasive adenomas (0.013% +/- 0.005), no practical threshold value capable of distinguishing these three groups was evident. Comparison of the mitotic index with Ki-67 derived growth fractions in these tumors revealed a significant but weak linear correlation (r = 0.41, p < 0.01). These data suggest that when, mitotic figures are present, they do provide some indication of the behavior and invasive potential of pituitary tumors. For routine diagnostic

  14. Mitotic Index is an Independent Predictor of Recurrence-Free Survival in Meningioma.

    PubMed

    Olar, Adriana; Wani, Khalida M; Sulman, Erik P; Mansouri, Alireza; Zadeh, Gelareh; Wilson, Charmaine D; DeMonte, Franco; Fuller, Gregory N; Aldape, Kenneth D

    2015-05-01

    While World Health Organization (WHO) grading of meningioma stratifies patients according to recurrence risk overall, there is substantial within-grade heterogeneity with respect to recurrence-free survival (RFS). Most meningiomas are graded according to mitotic counts per unit area on hematoxylin and eosin sections, a method potentially confounded by tumor cellularity, as well as potential limitations of accurate mitotic figure detection on routine histology. To refine mitotic figure assessment, we evaluated 363 meningiomas with phospho-histone H3 (Ser10) and determined the mitotic index (number of mitoses per 1000 tumor cells). The median mitotic indices among WHO grade I (n = 268), grade II (n = 84) and grade III (n = 11) tumors were 1, 4 and 12. Classification and regression tree analysis to categorize cut-offs identified three subgroups defined by mitotic indices of 0-2, 3-4 and ≥5, which on univariate analysis were associated with RFS (P < 0.01). In multivariate analysis, mitotic index subgrouped in this manner was significantly associated with RFS (P < 0.01) after adjustment for Simpson grade, WHO grade and MIB-1 index. Mitotic index was then examined within individual WHO grade, showing that for grade I and grade II meningiomas, mitotic index can add additional information to RFS risk. The results suggest that the use of a robust mitotic marker in meningioma could refine risk stratification.

  15. Go Figure.

    ERIC Educational Resources Information Center

    Greenman, Geri

    2000-01-01

    Describes the first assignment for an intermediate oil painting class in which the students painted the human figure. Explains that the assignment involved three techniques: (1) abstract application of acrylic paint; (2) oil "Paintstiks" from Shiva; and (3) a final layer of actual oil paint. (CMK)

  16. Mitotic Spindle Disruption by Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells

    PubMed Central

    Giladi, Moshe; Schneiderman, Rosa S; Voloshin, Tali; Porat, Yaara; Munster, Mijal; Blat, Roni; Sherbo, Shay; Bomzon, Zeev; Urman, Noa; Itzhaki, Aviran; Cahal, Shay; Shteingauz, Anna; Chaudhry, Aafia; Kirson, Eilon D; Weinberg, Uri; Palti, Yoram

    2015-01-01

    Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells. PMID:26658786

  17. Micromechanics of human mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F.

    2011-02-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.

  18. Variation in sensitivity to. gamma. -ray-induced chromosomal aberrations during the mitotic cycle of the sea urchin egg

    SciTech Connect

    Ejima, Y.; Nakamura, I.; Shiroya, T.

    1982-11-01

    Sea urchin eggs were irradiated with /sup 137/Cs ..gamma.. rays at various stages of the mitotic cycle, and chromosomal aberrations at the first postirradiation mitosis and embryonic abnormalities at later developmental stages were examined. The radiosensitivity of the eggs to both endpoints varied in parallel with the mitotic stage at the time of irradiation, suggesting a possible relationship between chromosomal damage and embryonic abnormalities.

  19. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development

    PubMed Central

    McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.

    2015-01-01

    Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight

  20. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system.

    PubMed Central

    Inoué, S; Fuseler, J; Salmon, E D; Ellis, G W

    1975-01-01

    Equilibrium between mitotic microtubules and tubulin is analyzed, using birefringence of mitotic spindle to measure microtubule concentration in vivo. A newly designed temperature-controlled slide and miniature, thermostated hydrostatic pressure chamber permit rapid alteration of temperature and of pressure. Stress birefringence of the windows is minimized, and a system for rapid recording of compensation is incorporated, so that birefringence can be measured to 0.1 nm retardation every few seconds. Both temperature and pressure data yield thermodynamic values (delta H similar to 35 kcal/mol, delta S similar to 120 entropy units [eu], delta V similar to 400 ml/mol of subunit polymerized) consistent with the explanation that polymerization of tubulin is entropy driven and mediated by hydrophobic interactions. Kinetic data suggest pseudo-zero-order polymerization and depolymerization following rapid temperature shifts, and a pseudo-first-order depolymerization during anaphase at constant temperature. The equilibrium properties of the in vivo mitotic microtubules are compared with properties of isolated brain tubules. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 19 PMID:1139037

  1. Okadaic acid induced cyclin B1 expression and mitotic catastrophe in rat cortex.

    PubMed

    Chen, Bo; Cheng, Min; Hong, Dao-Jun; Sun, Feng-Yan; Zhu, Cui-Qing

    2006-10-09

    Accumulating evidence indicates that the aberrant re-entry of post-mitotic neurons into the G2/M phase of cell cycle and the resulting mitotic catastrophe may contribute to the pathogenesis of Alzheimer's disease. However, the cellular event that drives the differentiated neurons to abnormally enter G2/M phase remains elusive. Similarly, whether mitotic catastrophe is indeed one of the death pathways for differentiated neurons is not clear. Previous studies revealed that okadaic acid (OA), a phosphatase inhibitor that induces AD like pathological changes, evokes mitotic changes in neuroblastoma cells. In this study, we examined the in vivo effects of OA on cyclin B1 expression, the induction of mitosis, and subsequent mitotic catastrophe. We found that cyclin B1 expression in adult neurons was significantly increased after injecting OA into rat frontal cortex, which also increased tau protein phosphorylation. Interestingly, cyclin B1 and phosphorylated tau were well co-localized around the OA injection site, but were only partially co-localized in other brain regions. Staining with toluidine blue, Giemsa dye or propidium iodide revealed typical mitotic and mitotic catastrophe-like morphological changes with irregular arrangement of condensed chromatin and chromosome fibers in a few cells. Furthermore, the strong cyclin B1 staining in these cells suggests that cyclin B1 promoted G2 to M phase transition is required for the mitotic catastrophe. The detection of neuron-specific enolase in a portion of these cells demonstrated that at least part them are neuron. All together, our results suggest that the disturbance of the protein kinase-phosphatase system caused by OA is sufficient to induce neuronal cyclin B1 expression, force neurons into the mitotic phase of cell cycle, and cause mitotic catastrophe.

  2. Congenital Abnormalities

    MedlinePlus

    ... Listen Español Text Size Email Print Share Congenital Abnormalities Page Content Article Body About 3% to 4% ... of congenital abnormalities earlier. 5 Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic ...

  3. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization

    SciTech Connect

    Taylor, B. Frazier; McNeely, Samuel C.; Miller, Heather L.; States, J. Christopher

    2008-07-15

    Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of {alpha}-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of {alpha}-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. {gamma}-tubulin staining showed that cells treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.

  4. Adenovirus Replaces Mitotic Checkpoint Controls

    PubMed Central

    Turner, Roberta L.; Groitl, Peter; Dobner, Thomas

    2015-01-01

    ABSTRACT Infection with adenovirus triggers the cellular DNA damage response, elements of which include cell death and cell cycle arrest. Early adenoviral proteins, including the E1B-55K and E4orf3 proteins, inhibit signaling in response to DNA damage. A fraction of cells infected with an adenovirus mutant unable to express the E1B-55K and E4orf3 genes appeared to arrest in a mitotic-like state. Cells infected early in G1 of the cell cycle were predisposed to arrest in this state at late times of infection. This arrested state, which displays hallmarks of mitotic catastrophe, was prevented by expression of either the E1B-55K or the E4orf3 genes. However, E1B-55K mutant virus-infected cells became trapped in a mitotic-like state in the presence of the microtubule poison colcemid, suggesting that the two viral proteins restrict entry into mitosis or facilitate exit from mitosis in order to prevent infected cells from arresting in mitosis. The E1B-55K protein appeared to prevent inappropriate entry into mitosis through its interaction with the cellular tumor suppressor protein p53. The E4orf3 protein facilitated exit from mitosis by possibly mislocalizing and functionally inactivating cyclin B1. When expressed in noninfected cells, E4orf3 overcame the mitotic arrest caused by the degradation-resistant R42A cyclin B1 variant. IMPORTANCE Cells that are infected with adenovirus type 5 early in G1 of the cell cycle are predisposed to arrest in a mitotic-like state in a p53-dependent manner. The adenoviral E1B-55K protein prevents entry into mitosis. This newly described activity for the E1B-55K protein appears to depend on the interaction between the E1B-55K protein and the tumor suppressor p53. The adenoviral E4orf3 protein facilitates exit from mitosis, possibly by altering the intracellular distribution of cyclin B1. By preventing entry into mitosis and by promoting exit from mitosis, these adenoviral proteins act to prevent the infected cell from arresting in a

  5. All about Lissajous Figures.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B.

    1993-01-01

    Uses diagrams and text to illustrate the use of Lissajous figures (the figures that are traced out when two simple harmonic motions are combined at right angles to each other) in teaching basic physics concepts. Covers the mathematics of the Lissajous Figure; demonstrating Lissajous Figures; and a typical class. (ZWH)

  6. Spindle checkpoint protein Bub1 corrects mitotic aberrancy induced by human T-cell leukemia virus type I Tax.

    PubMed

    Sasaki, M; Sugimoto, K; Tamayose, K; Ando, M; Tanaka, Y; Oshimi, K

    2006-06-22

    Bub1 is a component of the mitotic spindle checkpoint apparatus. Abnormality of this apparatus is known to cause multinuclei formation, a hallmark of chromosomal instability (CIN). A549, aneuploid cell line, aberrantly passed through the mitotic phase and became multinuclei morphology in the presence of nocodazole. Time-lapse videomicroscopy showed unreported bizarre morphology, which we named 'mitotic lobulation' in A549 cells just before the exit from mitosis and multinuclei formation. External expression of wild-type Bub1-EGFP clearly suppressed the multinuclei formation by retaining A549 cells at the mitotic phase during 48 h of time-lapse observation. This suppressive effect on mitotic aberrancy should not be mere restoration of normal Bub1 function, because A549 cells express proper amount of Bub1, which distributed cytoplasm during interphase and concentrated at kinetochore in metaphase. Furthermore, external expression of wild-type Bub1-EGFP suppressed multinuclei formation induced by Tax both in A549 and HeLa cells. Tax is known to induce mitotic abnormality by binding and inactivating Mad1. These observations, therefore, suggest functional redundancy between Bub1 and other mitotic checkpoint protein(s) and a possibility of correction of mitotic aberrancy by external Bub1 expression.

  7. Mechanisms of Mitotic Spindle Assembly

    PubMed Central

    Petry, Sabine

    2016-01-01

    Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ~200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes. PMID:27145846

  8. Chromosomal abnormalities associated with cyclopia and synophthalmia.

    PubMed Central

    Howard, R O

    1977-01-01

    At the present time, essentially all known facts concerning cyclopia are consistent with some chromosomal disease, including clinical features of the pregnancy (fetal wastage, prematurity, intrauterine growth retardation, maternal age factor, complications of pregnancy), the generalized developmental abnormalities, specific ocular dysgenesis, by the high incidence of chromosomal abnormality already demonstrated, and the possibility of error in those cases of cyclopia with normal chromosomes. Even if chromosomal aberrations represent only one group of several different etiologic factors leading to cyclopia, at the present time chromosomal errors would seem to be the most common cause of cyclopia now recognized. Further studies will establish or disprove a chromosomal error in those instances which are now considered to be the result of an environmental factor alone or those with apparent familial patterns of inheritance. This apparent diverse origin of cyclopia can be clarified if future cyclopic specimens are carefully investigated. The evaluation should include a careful gross and microscopic examination of all organs, including the eye, and chromosome banding studies of all organs, including the eye, and chromosome banding studies of at least two cyclopic tissues. Then the presence or absence of multiple causative factors can be better evaluated. Images FIGURE 2 A FIGURE 2 B FIGURE 1 A FIGURE 1 B FIGURE 1 C FIGURE 1 D FIGURE 1 E FIGURE 1 F FIGURE 3 A FIGURE 3 B FIGURE 4 A FIGURE 4 B FIGURE 4 C FIGURE 4 D FIGURE 5 FIGURE 6 FIGURE 7 A FIGURE 7 B PMID:418547

  9. Influence of centriole number on mitotic spindle length and symmetry

    PubMed Central

    Keller, Lani C.; Wemmer, Kimberly A.; Marshall, Wallace F.

    2010-01-01

    The functional role of centrioles or basal bodies in mitotic spindle assembly and function is currently unclear. Although supernumerary centrioles have been associated with multipolar spindles in cancer cells, suggesting centriole number might dictate spindle polarity, bipolar spindles are able to assembly in the complete absence of centrioles, suggesting a level of centriole-independence in the spindle assembly pathway. In this report we perturb centriole number using mutations in Chlamydomonas reinhardtii, and measure the response of the mitotic spindle to these perturbations in centriole number. Although altered centriole number increased the frequency of monopolar and multipolar spindles, the majority of spindles remained bipolar regardless of the centriole number. But even when spindles were bipolar, abnormal centriole numbers led to asymmetries in tubulin distribution, half-spindle length and spindle pole focus. Half spindle length correlated directly with number of centrioles at a pole, such that an imbalance in centriole number between the two poles of a bipolar spindle correlated with increased asymmetry between half spindle lengths. These results are consistent with centrioles playing an active role in regulating mitotic spindle length. Mutants with centriole number alteration also show increased cytokinesis defects, but these do not correlate with centriole number in the dividing cell and may therefore reflect downstream consequences of defects in preceding cell divisions. PMID:20540087

  10. Microelasticity of Single Mitotic Chromosomes

    NASA Astrophysics Data System (ADS)

    Poirier, Michael; Eroglu, Sertac; Chatenay, Didier; Marko, John F.; Hirano, Tatsuya

    2000-03-01

    The force-extension behavior of mitotic chromosomes from the newt TVI tumor cell line was studied using micropipette manipulation and force measuring techniques. Reversible, linear elastic response was observed for extensions up to 5 times the native length; the force required to double chromosome length was 1 nanonewton (nN). For further elongations, the linear response teminates at a force plateau of 15 nN and at an extension of 20x. Beyond this extension, the chromosome breaks at elongations between 20x and 70x. These results will be compared to the similar behavior of mitotic chromosomes from explanted newt cells (Poirier, Eroglu, Chatenay and Marko, Mol. Biol. Cell, in press). Also, the effect of biochemical modifications on the elasticity was studied. Ethidium Bromide, which binds to DNA, induces up to a 10 times increase in the Young's modulus. Anti-XCAP-E, which binds to a putative chromosome folding protein, induces up to a 2 times increase in the Young's modulus. Preliminary results on the dynamical relaxation of chromosomes will also be presented. Support of this research through a Biomedical Engineering Research Grant from The Whitaker Foundation is gratefully acknowledged.

  11. Chromatin shapes the mitotic spindle.

    PubMed

    Dinarina, Ana; Pugieux, Céline; Corral, Maria Mora; Loose, Martin; Spatz, Joachim; Karsenti, Eric; Nédélec, François

    2009-08-07

    In animal and plant cells, mitotic chromatin locally generates microtubules that self-organize into a mitotic spindle, and its dimensions and bipolar symmetry are essential for accurate chromosome segregation. By immobilizing microscopic chromatin-coated beads on slide surfaces using a microprinting technique, we have examined the effect of chromatin on the dimensions and symmetry of spindles in Xenopus laevis cytoplasmic extracts. While circular spots with diameters around 14-18 microm trigger bipolar spindle formation, larger spots generate an incorrect number of poles. We also examined lines of chromatin with various dimensions. Their length determined the number of poles that formed, with a 6 x 18 microm rectangular patch generating normal spindle morphology. Around longer lines, multiple poles formed and the structures were disorganized. While lines thinner than 10 mum generated symmetric structures, thicker lines induced the formation of asymmetric structures where all microtubules are on the same side of the line. Our results show that chromatin defines spindle shape and orientation. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.

  12. Regulation of Mitotic Exit in Saccharomyces cerevisiae.

    PubMed

    Baro, Bàrbara; Queralt, Ethel; Monje-Casas, Fernando

    2017-01-01

    The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.

  13. Mitotic chromosome condensation in vertebrates

    SciTech Connect

    Vagnarelli, Paola

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes of

  14. Cell biology of mitotic recombination.

    PubMed

    Lisby, Michael; Rothstein, Rodney

    2015-03-02

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination.

  15. Cell Biology of Mitotic Recombination

    PubMed Central

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination. PMID:25731763

  16. Living in CIN: Mitotic Infidelity and Its Consequences for Tumor Promotion and Suppression.

    PubMed

    Funk, Laura C; Zasadil, Lauren M; Weaver, Beth A

    2016-12-19

    Errors in chromosome segregation during mitosis have been recognized as a hallmark of tumor cells since the late 1800s, resulting in the long-standing hypothesis that mitotic abnormalities drive tumorigenesis. Recent work has shown that mitotic defects can promote tumors, suppress them, or do neither, depending on the rate of chromosome missegregation. Here we discuss the causes of chromosome missegregation, their effects on tumor initiation and progression, and the evidence that increasing the rate of chromosome missegregation may be an effective chemotherapeutic strategy.

  17. Alveolar abnormalities

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...

  18. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... 2012:chap 71. Zaiac MN, Walker A. Nail abnormalities associated with systemic pathologies. Clin Dermatol . 2013;31: ...

  19. Comparative diagnostic and prognostic performances of the hematoxylin-eosin and phospho-histone H3 mitotic count and Ki-67 index in adrenocortical carcinoma.

    PubMed

    Duregon, Eleonora; Molinaro, Luca; Volante, Marco; Ventura, Laura; Righi, Luisella; Bolla, Stefania; Terzolo, Massimo; Sapino, Anna; Papotti, Mauro G

    2014-09-01

    Mitotic count on hematoxylin and eosin slides is a fundamental morphological criterion in the diagnosis and grading of adrenocortical carcinoma in any scoring system employed. Moreover, it is the unique term strongly associated with patient's prognosis. Phospho-histone H3 is a mitosis-specific antibody, which was already proven to facilitate mitotic count in melanoma and other tumors. Therefore, a study was designed to assess the diagnostic and prognostic role of phospho-histone H3 in 52 adrenocortical carcinomas, comparing manual and computerized count to standard manual hematoxylin- and eosin-based method and Ki-67 index. Manual hematoxylin and eosin and phospho-histone H3 mitotic counts were highly correlated (r=0.9077, P<0.0001), better than computer-assisted phospho-histone H3 evaluations, and had an excellent inter-observer reproducibility at Bland-Altman analysis. Three of 15 cases having <5 mitotic figures per 50 high-power fields by standard count on hematoxylin and eosin gained the mitotic figure point of Weiss Score after a manual count on phospho-histone H3 slides. Traditional mitotic count confirmed to be a strong predictor of overall survival (P=0.0043), better than phospho-histone H3-based evaluation (P=0.051), but not as strong as the Ki-67 index (P<0.0001). The latter further segregated adrenocortical carcinomas into three prognostic groups, stratifying cases by low (<20%), intermediate (20-50%), and high (>50%) Ki-67 values. We conclude that (a) phospho-histone H3 staining is a useful diagnostic complementary tool to standard hematoxylin and eosin mitotic count, enabling optimal mitotic figure evaluation (including atypical mitotic figures) even in adrenocortical carcinomas with a low mitotic index and with a very high reproducibility; (b) Ki-67 proved to be the best prognostic indicator of overall survival, being superior to the mitotic index, irrespective of the method (standard on hematoxylin and eosin or phospho-histone H3-based) used to count

  20. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest

    PubMed Central

    Dikovskaya, Dina; Cole, John J.; Mason, Susan M.; Nixon, Colin; Karim, Saadia A.; McGarry, Lynn; Clark, William; Hewitt, Rachael N.; Sammons, Morgan A.; Zhu, Jiajun; Athineos, Dimitris; Leach, Joshua D.G.; Marchesi, Francesco; van Tuyn, John; Tait, Stephen W.; Brock, Claire; Morton, Jennifer P.; Wu, Hong; Berger, Shelley L.; Blyth, Karen; Adams, Peter D.

    2015-01-01

    Summary Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells. PMID:26299965

  1. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest.

    PubMed

    Dikovskaya, Dina; Cole, John J; Mason, Susan M; Nixon, Colin; Karim, Saadia A; McGarry, Lynn; Clark, William; Hewitt, Rachael N; Sammons, Morgan A; Zhu, Jiajun; Athineos, Dimitris; Leach, Joshua D G; Marchesi, Francesco; van Tuyn, John; Tait, Stephen W; Brock, Claire; Morton, Jennifer P; Wu, Hong; Berger, Shelley L; Blyth, Karen; Adams, Peter D

    2015-09-01

    Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.

  2. Facts and Figures

    MedlinePlus

    ... Saves Lives Facts & Figures My Blood, Your Blood Blood Donation Types Did you know there is more than one type of blood donation? Learn more about blood donation types here. Blood Safety and Testing The blood supply ...

  3. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells

    PubMed Central

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118

  4. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis

    SciTech Connect

    Wu Yichen; Yen Wenyen; Lee, T.-C. Yih, L.-H.

    2009-04-15

    Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90{alpha}/{beta} also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.

  5. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    PubMed

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-09-25

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division.

  6. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  7. Regulation of mitotic spindle orientation during epidermal stratification.

    PubMed

    Xie, Wei; Zhou, Jun

    2016-12-20

    The epidermis is a stratified epithelium that serves as a barrier to infection from environmental pathogens and prevents water loss. Epidermal stratification is tightly controlled during embryogenesis. Progenitor cells in the developing epidermis undergo both symmetric and asymmetric cell divisions to balance the growth of the skin surface area against the generation of differentiated cell layers. Therefore, understanding the relationship between oriented divisions of progenitor cells and the development and stratification of the epidermis is of paramount importance in the field of skin biology and pathology. We provide here an integrated view of recent studies implicating that improper orientation of the mitotic spindle contributes to disorders associated with abnormal epidermal stratification and suggesting that spindle orientation could serve as a potential therapeutic target in skin diseases.

  8. Figurative Language Awards Ceremony.

    ERIC Educational Resources Information Center

    Fink, Lisa

    Figurative language enlivens a text, providing visuals in the minds of readers. This lesson will have students listening to and reading selected texts as they seek out their favorite literary devices. During the five to seven 50-minute sessions, grade three through five students will: acquire a clear understanding of the concept of figurative…

  9. OECD in Figures, 2008

    ERIC Educational Resources Information Center

    OECD Publishing (NJ1), 2008

    2008-01-01

    "OECD in Figures" is a primary statistical source for key data on OECD countries, ranging from economic growth and employment to inflation, trade and environment. Information is presented in tabular form for: (1) Demography and Health; (2) Economy; (3) Energy; (4) Labour; (5) Science and Technology; (6) Environment; (7) Education; (8)…

  10. Epigenetic countermarks in mitotic chromosome condensation.

    PubMed

    van Wely, Karel H M; Mora Gallardo, Carmen; Vann, Kendra R; Kutateladze, Tatiana G

    2017-01-03

    Mitosis in metazoans is characterized by abundant phosphorylation of histone H3 and involves the recruitment of condensin complexes to chromatin. The relationship between the 2 phenomena and their respective contributions to chromosome condensation in vivo remain poorly understood. Recent studies have shown that H3T3 phosphorylation decreases binding of histone readers to methylated H3K4 in vitro and is essential to displace the corresponding proteins from mitotic chromatin in vivo. Together with previous observations, these data provide further evidence for a role of mitotic histone H3 phosphorylation in blocking transcriptional programs or preserving the 'memory' PTMs. Mitotic protein exclusion can also have a role in depopulating the chromatin template for subsequent condensin loading. H3 phosphorylation thus serves as an integral step in the condensation of chromosome arms.

  11. Disruption of a conserved CAP-D3 threonine alters condensin loading on mitotic chromosomes leading to chromosome hypercondensation.

    PubMed

    Bakhrebah, Muhammed; Zhang, Tao; Mann, Jeff R; Kalitsis, Paul; Hudson, Damien F

    2015-03-06

    The condensin complex plays a key role in organizing mitotic chromosomes. In vertebrates, there are two condensin complexes that have independent and cooperative roles in folding mitotic chromosomes. In this study, we dissect the role of a putative Cdk1 site on the condensin II subunit CAP-D3 in chicken DT40 cells. This conserved site has been shown to activate condensin II during prophase in human cells, and facilitate further phosphorylation by polo-like kinase I. We examined the functional significance of this phosphorylation mark by mutating the orthologous site of CAP-D3 (CAP-D3(T1403A)) in chicken DT40 cells. We show that this mutation is a gain of function mutant in chicken cells; it disrupts prophase, results in a dramatic shortening of the mitotic chromosome axis, and leads to abnormal INCENP localization. Our results imply phosphorylation of CAP-D3 acts to limit condensin II binding onto mitotic chromosomes. We present the first in vivo example that alters the ratio of condensin I:II on mitotic chromosomes. Our results demonstrate this ratio is a critical determinant in shaping mitotic chromosomes.

  12. Quantitative assessment of chromosome instability induced through chemical disruption of mitotic progression

    PubMed Central

    Markossian, Sarine; Arnaoutov, Alexei; Saba, Nakhle S.; Larionov, Vladimir; Dasso, Mary

    2016-01-01

    ABSTRACT Most solid tumors are aneuploid, carrying an abnormal number of chromosomes, and they frequently missegregate whole chromosomes in a phenomenon termed chromosome instability (CIN). While CIN can be provoked through disruption of numerous mitotic pathways, it is not clear which of these mechanisms are most critical, or whether alternative mechanisms could also contribute significantly in vivo. One difficulty in determining the relative importance of candidate CIN regulators has been the lack of a straightforward, quantitative assay for CIN in live human cells: While gross mitotic abnormalities can be detected visually, moderate levels of CIN may not be obvious, and are thus problematic to measure. To address this issue, we have developed the first Human Artificial Chromosome (HAC)-based quantitative live-cell assay for mitotic chromosome segregation in human cells. We have produced U2OS-Phoenix cells carrying the alphoidtetO-HAC encoding copies of eGFP fused to the destruction box (DB) of anaphase promoting complex/cyclosome (APC/C) substrate hSecurin and sequences encoding the tetracycline repressor fused to mCherry (TetR-mCherry). Upon HAC missegregation, daughter cells that do not obtain a copy of the HAC are GFP negative in the subsequent interphase. The HAC can also be monitored live following the TetR-mCherry signal. U2OS-Phoenix cells show low inherent levels of CIN, which can be enhanced by agents that target mitotic progression through distinct mechanisms. This assay allows direct detection of CIN induced by clinically important agents without conspicuous mitotic defects, allowing us to score increased levels of CIN that fall below the threshold required for discernable morphological disruption. PMID:27104376

  13. Effects of ovariectomy on estrogen uptake capacity, mitotic index and morphology of immunocytochemically-identified gonadotropes

    SciTech Connect

    Smith, P.F.

    1985-01-01

    The primary objective of these studies was to examine the effects of ovariectomy on the pituitary gonadotrope population in the rat. Several parameters were examined including morphology, mitotic index and ability of individual cells to concentrate estrogen. Adult, female rats which had been ovariectomized 3, 14, or 50 previously, were injected with /sup 3/H-estradiol (i.v.) and killed 1 hour later. Pituitaries were excised and immediately hemisected (mid-sagittal cut). Trunk blood was collected for subsequent radioimmunoassay of serum LH levels to assess the activity of the pituitary gonadotropes. Frozen pituitaries were sectioned and processed for dry-mount autoradiography. Estrogen uptake capacity of gonadotropes increased with time after ovariectomy. This increase was not seen in male rats after castration. Hemi-pituitaries were sectioned (1 ..mu..m) and analyzed for the number of mitotic figures per mm/sup 2/ and dividing cells were characterized as to their hormonal content. Ovariectomy induced an increase in the mitotic index of the pituitary gland. Furthermore, a majority of the mitotic futures seen in the ovariectomized rat were found in cells containing LH-immunoreactivity. Electron microscopic examination of dividing gonadotropes revealed that these cells contained large amounts of vesiculated endoplasmic reticumum typical of post-castration gonadotropes.

  14. Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol.

    PubMed

    Luo, Yan; Ji, Xinmiao; Liu, Juanjuan; Li, Zhiyuan; Wang, Wenchao; Chen, Wei; Wang, Junfeng; Liu, Qingsong; Zhang, Xin

    2016-06-01

    Microtubules are the fundamental components in mitotic spindle, which plays essential roles in cell division. It was well known that purified microtubules could be affected by static magnetic fields (SMFs) in vitro because of the diamagnetic anisotropy of tubulin. However, whether these effects lead to cell division defects was unknown. Here we find that 1T SMFs induce abnormal mitotic spindles and increase mitotic index. Synchronization experiments show that SMFs delay cell exit from mitosis and cause mitotic arrest. These mimic the cellular effects of a microtubule-targeting drug Paclitaxel (Taxol), which is frequently used in combination with 5-Fluorouracil (5-FU) and Cisplatin in cancer treatment. Using four different human cancer cell lines, HeLa, HCT116, CNE-2Z and MCF7, we find that SMFs increase the antitumor efficacy of 5-FU or 5-FU/Taxol, but not Cisplatin, which indicates that the SMF-induced combinational effects with chemodrugs are drug-specific. Our study not only reveals the effect of SMFs on microtubules to cause abnormal mitotic spindles and delay cells exit from mitosis, but also implies the potential applications of SMFs in combination with chemotherapy drugs 5-FU or 5-FU/Taxol, but not with Cisplatin in cancer treatment.

  15. The mitotic spindle and actin tails.

    PubMed

    Karsenti, Eric; Nédélec, François

    2004-04-01

    To segregate their chromosomes, eukaryotic cells rely on a dynamic structure made of microtubules: the mitotic spindle. This structure can form in cells lacking centrosomes, because their chromosomes also nucleate microtubules. This second assembly pathway is observed even in some cells that naturally have centrosomes, for example when the centrosomes are ablated by laser surgery. Recent results have started to address the complementary question of whether centrosome-nucleated microtubules alone could sustain the formation of a functional mitotic spindle. We wonder in this respect whether lower eukaryotes such as yeasts are different from higher eukaryotes such as vertebrates.

  16. THE DIRECT ISOLATION OF THE MITOTIC APPARATUS

    PubMed Central

    Mazia, Daniel; Mitchison, J. M.; Medina, Heitor; Harris, Patricia

    1961-01-01

    A method for isolating the mitotic apparatus from dividing sea urchin eggs without the use of ethyl alcohol or of detergents is described. In the present method, the eggs are dispersed directly in a medium containing 1 M (to 1.15 M) sucrose, 0.15 M dithiodiglycol, and 0.001 M Versene at pH 6, releasing the visibly intact mitotic apparatus. The method is designed for studies of enzyme activities, lipid components, and the variables affecting the stability of the apparatus. PMID:13768661

  17. Rapid measurement of mitotic spindle orientation in cultured mammalian cells

    PubMed Central

    Decarreau, Justin; Driver, Jonathan; Asbury, Charles; Wordeman, Linda

    2014-01-01

    Summary Factors that influence the orientation of the mitotic spindle are important for the maintenance of stem cell populations and in cancer development. However, screening for these factors requires rapid quantification of alterations of the angle of the mitotic spindle in cultured cell lines. Here we describe a method to image mitotic cells and rapidly score the angle of the mitotic spindle using a simple MATLAB application to analyze a stack of Z-images. PMID:24633791

  18. SELECTIVE EXTRACTION OF ISOLATED MITOTIC APPARATUS

    PubMed Central

    Bibring, Thomas; Baxandall, Jane

    1971-01-01

    Mitotic apparatus isolated from sea urchin eggs has been treated with meralluride sodium under conditions otherwise resembling those of its isolation. The treatment causes a selective morphological disappearance of microtubules while extracting a major protein fraction, probably consisting of two closely related proteins, which constitutes about 10% of mitotic apparatus protein. Extraction of other cell particulates under similar conditions yields much less of this protein. The extracted protein closely resembles outer doublet microtubule protein from sea urchin sperm tail in properties considered typical of microtubule proteins: precipitation by calcium ion and vinblastine, electrophoretic mobility in both acid and basic polyacrylamide gels, sedimentation coefficient, molecular weight, and, according to a preliminary determination, amino acid composition. An antiserum against a preparation of sperm tail outer doublet microtubules cross-reacts with the extract from mitotic apparatus. On the basis of these findings it appears that microtubule protein is selectively extracted from isolated mitotic apparatus by treatment with meralluride, and is a typical microtubule protein. PMID:5543404

  19. Leukocyte abnormalities.

    PubMed

    Gabig, T G

    1980-07-01

    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  20. Proteomic profiling revealed the functional networks associated with mitotic catastrophe of HepG2 hepatoma cells induced by 6-bromine-5-hydroxy-4-methoxybenzaldehyde

    SciTech Connect

    Zhang Bo; Huang Bo; Guan Hua; Zhang Shimeng; Xu Qinzhi; He Xingpeng; Liu Xiaodan; Wang Yu; Shang Zengfu; Zhou Pingkun

    2011-05-01

    Mitotic catastrophe, a form of cell death resulting from abnormal mitosis, is a cytotoxic death pathway as well as an appealing mechanistic strategy for the development of anti-cancer drugs. In this study, 6-bromine-5-hydroxy-4-methoxybenzaldehyde was demonstrated to induce DNA double-strand break, multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human hepatoma HepG2 cells. We used proteomic profiling to identify the differentially expressed proteins underlying mitotic catastrophe. A total of 137 differentially expressed proteins (76 upregulated and 61 downregulated proteins) were identified. Some of the changed proteins have previously been associated with mitotic catastrophe, such as DNA-PKcs, FoxM1, RCC1, cyclin E, PLK1-pT210, 14-3-3{sigma} and HSP70. Multiple isoforms of 14-3-3, heat-shock proteins and tubulin were upregulated. Analysis of functional significance revealed that the 14-3-3-mediated signaling network was the most significantly enriched for the differentially expressed proteins. The modulated proteins were found to be involved in macromolecule complex assembly, cell death, cell cycle, chromatin remodeling and DNA repair, tubulin and cytoskeletal organization. These findings revealed the overall molecular events and functional signaling networks associated with spindle disruption and mitotic catastrophe. - Graphical abstract: Display Omitted Research highlights: > 6-bromoisovanillin induced spindle disruption and sustained mitotic arrest, consequently resulted in mitotic catastrophe. > Proteomic profiling identified 137 differentially expressed proteins associated mitotic catastrophe. > The 14-3-3-mediated signaling network was the most significantly enriched for the altered proteins. > The macromolecule complex assembly, cell cycle, chromatin remodeling and DNA repair, tubulin organization were also shown involved in mitotic catastrophe.

  1. The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy.

    PubMed

    Asteriti, Italia Anna; Di Cesare, Erica; De Mattia, Fabiola; Hilsenstein, Volker; Neumann, Beate; Cundari, Enrico; Lavia, Patrizia; Guarguaglini, Giulia

    2014-08-15

    Inhibition of Aurora kinase activity by small molecules is being actively investigated as a potential anti-cancer strategy. A successful therapeutic use of Aurora inhibitors relies on a comprehensive understanding of the effects of inactivating Aurora kinases on cell division, a challenging aim given the pleiotropic roles of those kinases during mitosis. Here we have used the Aurora-A inhibitor MLN8237, currently under phase-I/III clinical trials, in dose-response assays in U2OS human cancer cells synchronously proceeding towards mitosis. By following the behaviour and fate of single Aurora-inhibited cells in mitosis by live microscopy, we show that MLN8237 treatment affects multiple processes that are differentially sensitive to the loss of Aurora-A function. A role of Aurora-A in controlling the orientation of cell division emerges. MLN8237 treatment, even in high doses, fails to induce efficient elimination of dividing cells, or of their progeny, while inducing significant aneuploidy in daughter cells. The results of single-cell analyses show a complex cellular response to MLN8237 and evidence that its effects are strongly dose-dependent: these issues deserve consideration in the light of the design of strategies to kill cancer cells via inhibition of Aurora kinases.

  2. The Aurora-A inhibitor MLN8237 affects multiple mitotic processes and induces dose-dependent mitotic abnormalities and aneuploidy

    PubMed Central

    Asteriti, Italia Anna; Cesare, Erica Di; Mattia, Fabiola De; Hilsenstein, Volker; Neumann, Beate; Cundari, Enrico; Lavia, Patrizia; Guarguaglini, Giulia

    2014-01-01

    Inhibition of Aurora kinase activity by small molecules is being actively investigated as a potential anti-cancer strategy. A successful therapeutic use of Aurora inhibitors relies on a comprehensive understanding of the effects of inactivating Aurora kinases on cell division, a challenging aim given the pleiotropic roles of those kinases during mitosis. Here we have used the Aurora-A inhibitor MLN8237, currently under phase-I/III clinical trials, in dose-response assays in U2OS human cancer cells synchronously proceeding towards mitosis. By following the behaviour and fate of single Aurora-inhibited cells in mitosis by live microscopy, we show that MLN8237 treatment affects multiple processes that are differentially sensitive to the loss of Aurora-A function. A role of Aurora-A in controlling the orientation of cell division emerges. MLN8237 treatment, even in high doses, fails to induce efficient elimination of dividing cells, or of their progeny, while inducing significant aneuploidy in daughter cells. The results of single-cell analyses show a complex cellular response to MLN8237 and evidence that its effects are strongly dose-dependent: these issues deserve consideration in the light of the design of strategies to kill cancer cells via inhibition of Aurora kinases. PMID:25153724

  3. Prognostic significance of the mitotic index using the mitosis marker anti-phosphohistone H3 in meningiomas.

    PubMed

    Kim, Yoo-Jin; Ketter, Ralf; Steudel, Wolf-Ingo; Feiden, Wolfgang

    2007-07-01

    Mitotic activity is one of the most reliable prognostic factors in meningiomas. The identification of mitotic figures (MFs) and the areas of highest mitotic activity in H&E-stained slides is a tedious and subjective task. Therefore, we compared the results from immunostaining for the mitosis-specific antibody anti-phosphohistone H3 (PHH3 mitotic index [MI]) with standard MF counts (H&E MI) and the Ki-67 labeling index (LI). The relationship between these proliferation indices and prognosis was investigated in a retrospective series of 265 meningiomas. The PHH3 staining method yielded greater sensitivity in the detection of MFs and facilitated MF counting. Mitotic thresholds of H&E MI of 4 or more per 10 high-power fields (HPF) and PHH3 MI of 6 or more per 10 HPF were found as the most appropriate prognostic cutoff values for the prediction of recurrence-free survival. All 3 proliferation indices were univariately associated with recurrences and deaths. In contrast with the Ki-67 LI, H&E MI and PHH3 MI also remained as independent predictors in the multivariate Cox hazards modeling (P = .0007 and P = .0004, respectively).

  4. Lunar Regolith Figures of Merit

    NASA Technical Reports Server (NTRS)

    Rickman, Doug; Scjrader. Cjrostoam; Jpe (zer. Jams); Fourroux, Kathy

    2009-01-01

    This viewgraph presentation reviews the lunar regolith figures of merit. The contents include: 1) A quick review of Figures-of-Merit (FoM); 2) Software Implementation of FoM Algorithms; and 3) Demonstration of the Software.

  5. Making better scientific figures

    NASA Astrophysics Data System (ADS)

    Hawkins, Ed; McNeall, Doug

    2016-04-01

    In the words of the UK government chief scientific adviser "Science is not finished until it's communicated" (Walport 2013). The tools to produce good visual communication have never been so easily accessible to scientists as at the present. Correspondingly, it has never been easier to produce and disseminate poor graphics. In this presentation, we highlight some good practice and offer some practical advice in preparing scientific figures for presentation to peers or to the public. We identify common mistakes in visualisation, including some made by the authors, and offer some good reasons not to trust defaults in graphics software. In particular, we discuss the use of colour scales and share our experiences in running a social media campaign (http://tiny.cc/endrainbow) to replace the "rainbow" (also "jet", or "spectral") colour scale as the default in (climate) scientific visualisation.

  6. The Theory of Figural Concepts.

    ERIC Educational Resources Information Center

    Fischbein, Efraim

    1993-01-01

    The main thesis of the paper is that geometry deals with mental entities (the so-called geometrical figures) which possess simultaneously conceptual and figural characters. The paper analyzes the internal tensions which may arise in figural concepts because of their double nature, developmental aspects, and didactical implications. (Author/MDH)

  7. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  8. Mitotic Spindle Positioning in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tirnauer, Jennifer S. M.D. 5d. PROJECT NUMBER Email: tirnauer@uchc.edu 5e. TASK...SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project was to determine whether mitotic spindle position differs in benign versus malignant...postdoc working on the project has left, I want to re-visit the experiments with MCF-10A cells using serum free media. 15. SUBJECT TERMS breast

  9. Automatic microscopy for mitotic cell location.

    NASA Technical Reports Server (NTRS)

    Herron, J.; Ranshaw, R.; Castle, J.; Wald, N.

    1972-01-01

    Advances are reported in the development of an automatic microscope with which to locate hematologic or other cells in mitosis for subsequent chromosome analysis. The system under development is designed to perform the functions of: slide scanning to locate metaphase cells; conversion of images of selected cells into binary form; and on-line computer analysis of the digitized image for significant cytogenetic data. Cell detection criteria are evaluated using a test sample of 100 mitotic cells and 100 artifacts.

  10. Plk1 Inhibition Causes Post-Mitotic DNA Damage and Senescence in a Range of Human Tumor Cell Lines

    PubMed Central

    Bowman, Doug; Shinde, Vaishali; Lasky, Kerri; Shi, Judy; Vos, Tricia; Stringer, Bradley; Amidon, Ben; D'Amore, Natalie; Hyer, Marc L.

    2014-01-01

    Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX), which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens. PMID:25365521

  11. Mitotic spindle studied using picosecond laser scissors

    NASA Astrophysics Data System (ADS)

    Baker, N. M.; Botvinick, E. L.; Shi, Linda; Berns, M. B.; Wu, George

    2006-08-01

    In previous studies we have shown that the second harmonic 532 nm, from a picosecond frequency doubled Nd:YAG laser, can cleanly and selectively disrupt spindle fiber microtubules in live cells (Botvinick et al 2004, Biophys. J. 87:4303-4212). In the present study we have ablated different locations and amounts of the metaphase mitotic spindle, and followed the cells in order to observe the fate of the irradiated spindle and the ability of the cell to continue through mitosis. Cells of the rat kangaroo line (PTK2) were stably transfected by ECFP-tubulin and, using fluorescent microscopy and the automated RoboLase microscope, (Botvinick and Berns, 2005, Micros. Res. Tech. 68:65-74) brightly fluorescent individual cells in metaphase were irradiated with 0.2447 nJ/micropulse corresponding to an irradiance of 1.4496*10^7 J/(ps*cm^2) . Upon irradiation the exposed part of the mitotic spindle immediately lost fluorescence and the following events were observed in the cells over time: (1) immediate contraction of the spindle pole towards the cut, (2) recovery of connection between pole and cut microtubule, (3) completion of mitosis. This system should be very useful in studying internal cellular dynamics of the mitotic spindle.

  12. Pb-inhibited mitotic activity in onion roots involves DNA damage and disruption of oxidative metabolism.

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2014-09-01

    Plant responses to abiotic stress significantly affect the development of cells, tissues and organs. However, no studies correlating Pb-induced mitotic inhibition and DNA damage and the alterations in redox homeostasis during root division per se were found in the literature. Therefore, an experiment was conducted to evaluate the impact of Pb on mitotic activity and the associated changes in the oxidative metabolism in onion roots. The cytotoxic effect of Pb on cell division was assessed in the root meristems of Allium cepa (onion). The mitotic index (MI) was calculated and chromosomal abnormalities were sought. Pb-treatment induced a dose-dependent decrease in MI in the onion root tips and caused mitotic abnormalities such as distorted metaphase, fragments, sticky chromosomes, laggards, vagrant chromosomes and bridges. Single Cell Gel Electrophoresis was also performed to evaluate Pb induced genotoxicity. It was accompanied by altered oxidative metabolism in the onion root tips suggesting the interference of Pb with the redox homeostasis during cell division. There was a higher accumulation of malondialdehyde, conjugated dienes and hydrogen peroxide, and a significant increase in the activities of superoxide dismutases, ascorbate peroxidases, guaiacol peroxidases and glutathione reductases in Pb-treated onion roots, whereas catalases activity exhibited a decreasing pattern upon Pb exposure. The study concludes that Pb-induced cytotoxicity and genotoxicity in the onion roots is mediated through ROS and is also tightly linked to the cell cycle. The exposure to higher concentrations arrested cell cycle leading to cell death, whereas different repair responses are generated at lower concentrations, thereby allowing the cell to complete the cell cycle.

  13. Chemically diverse microtubule stabilizing agents initiate distinct mitotic defects and dysregulated expression of key mitotic kinases.

    PubMed

    Rohena, Cristina C; Peng, Jiangnan; Johnson, Tyler A; Crews, Phillip; Mooberry, Susan L

    2013-04-15

    Microtubule stabilizers are some of the most successful drugs used in the treatment of adult solid tumors and yet the molecular events responsible for their antimitotic actions are not well defined. The mitotic events initiated by three structurally and biologically diverse microtubule stabilizers; taccalonolide AJ, laulimalide/fijianolide B and paclitaxel were studied. These microtubule stabilizers cause the formation of aberrant, but structurally distinct mitotic spindles leading to the hypothesis that they differentially affect mitotic signaling. Each microtubule stabilizer initiated different patterns of expression of key mitotic signaling proteins. Taccalonolide AJ causes centrosome separation and disjunction failure to a much greater extent than paclitaxel or laulimalide, which is consistent with the distinct defects in expression and activation of Plk1 and Eg5 caused by each stabilizer. Localization studies revealed that TPX2 and Aurora A are associated with each spindle aster formed by each stabilizer. This suggests a common mechanism of aster formation. However, taccalonolide AJ also causes pericentrin accumulation on every spindle aster. The presence of pericentrin at every spindle aster initiated by taccalonolide AJ might facilitate the maintenance and stability of the highly focused asters formed by this stabilizer. Laulimalide and paclitaxel cause completely different patterns of expression and activation of these proteins, as well as phenotypically different spindle phenotypes. Delineating how diverse microtubule stabilizers affect mitotic signaling pathways could identify key proteins involved in modulating sensitivity and resistance to the antimitotic actions of these compounds.

  14. Chemically Diverse Microtubule Stabilizing Agents Initiate Distinct Mitotic Defects and Dysregulated Expression of Key Mitotic Kinases

    PubMed Central

    Rohena, Cristina C.; Peng, Jiangnan; Johnson, Tyler A.; Crews, Phillip; Mooberry, Susan L.

    2013-01-01

    Microtubule stabilizers are some of the most successful drugs used in the treatment of adult solid tumors and yet the molecular events responsible for their antimitotic actions are not well defined. The mitotic events initiated by three structurally and biologically diverse microtubule stabilizers; taccalonolide AJ, laulimalide/fijianolide B and paclitaxel were studied. These microtubule stabilizers cause the formation of aberrant, but structurally distinct mitotic spindles leading to the hypothesis that they differentially affect mitotic signaling. Each microtubule stabilizer initiated different patterns of expression of key mitotic signaling proteins. Taccalonolide AJ causes centrosome separation and disjunction failure to a much greater extent than paclitaxel or laulimalide, which is consistent with the distinct defects in expression and activation of Plk1 and Eg5 caused by each stabilizer. Localization studies revealed that TPX2 and Aurora A are associated with each spindle aster formed by each stabilizer. This suggests a common mechanism of aster formation. However, taccalonolide AJ also causes pericentrin accumulation on every spindle aster. The presence of pericentrin at every spindle aster initiated by taccalonolide AJ might facilitate the maintenance and stability of the highly focused asters formed by this stabilizer. Laulimalide and paclitaxel cause completely different patterns of expression and activation of these proteins, as well as phenotypically different spindle phenotypes. Delineating how diverse microtubule stabilizers affect mitotic signaling pathways could identify key proteins involved in modulating sensitivity and resistance to the antimitotic actions of these compounds. PMID:23399639

  15. Sequential induction of mitotic catastrophe followed by apoptosis in human leukemia MOLT4 cells by imidazoacridinone C-1311.

    PubMed

    Skwarska, Anna; Augustin, Ewa; Konopa, Jerzy

    2007-12-01

    Imidazoacridinone C-1311 is a DNA-targeting antitumor intercalator/alkylator currently undergoing Phase II clinical trials. Here, we elucidated the sequence of death responses to C-1311 in human leukemia MOLT4 cells using drug concentration (30 nM) that causes near complete cell growth inhibition at 48 h. Early (6-12 h) responses included transient accumulation of cells at the G2/M border followed by also transient rise in several mitotic markers. Mitotic attempts were largely abnormal, resulting in numerous multinucleated cells (peaking at 24-39 h and declining markedly at later times). These events, indicative of mitotic catastrophe, were not associated with immediate cell death. The fraction of necrotic cells did not exceed 3%. Also, the classical manifestations of apoptosis were marginal at 24 h and their progression clearly followed the decline in the fraction of mitotic and multinucleated cells. Quantification of several apoptotic markers (including phosphatidylserine externalization, apoptotic DNA breaks, mitochondrial dysfunction, caspase activation, and cell membrane integrity) showed a considerable progression and the shift from early to late apoptosis at later times. At 72 h, >80% of cells were apoptotic. Collectively, these findings show that C-1311-induced mitotic catastrophe is not the ultimate death event but rather a step precipitating delayed, albeit massive, apoptotic responses.

  16. Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate.

    PubMed

    McCall, Chad M; Shi, Chanjuan; Cornish, Toby C; Klimstra, David S; Tang, Laura H; Basturk, Olca; Mun, Liew Jun; Ellison, Trevor A; Wolfgang, Christopher L; Choti, Michael A; Schulick, Richard D; Edil, Barish H; Hruban, Ralph H

    2013-11-01

    The grading system for pancreatic neuroendocrine tumors (PanNETs) adopted in 2010 by the World Health Organization (WHO) mandates the use of both mitotic rate and Ki67/MIB-1 index in defining the proliferative rate and assigning the grade. In cases when these measures are not concordant for grade, it is recommended to assign the higher grade, but specific data justifying this approach do not exist. Thus, we counted mitotic figures and immunolabeled, using the Ki67 antibody, 297 WHO mitotic grade 1 and 2 PanNETs surgically resected at a single institution. We quantified the Ki67 proliferative index by marking at least 500 cells in "hot spots" and by using digital image analysis software to count each marked positive/negative cell and then compared the results with histologic features and overall survival. Of 264 WHO mitotic grade 1 PanNETs, 33% were WHO grade 2 by Ki67 proliferative index. Compared with concordant grade 1 tumors, grade-discordant tumors were more likely to have metastases to lymph node (56% vs. 34%) (P<0.01) and to distant sites (46% vs. 12%) (P<0.01). Discordant mitotic grade 1 PanNETs also showed statistically significantly more infiltrative growth patterns, perineural invasion, and small vessel invasion. Overall survival was significantly different (P<0.01), with discordant mitotic grade 1 tumors showing a median survival of 12 years compared with 16.7 years for concordant grade 1 tumors. Conversely, mitotic grade 1/Ki67 grade 2 PanNETs showed few significant differences from tumors that were mitotic grade 2 and either Ki67 grade 1 or 2. Our data demonstrate that mitotic rate and Ki67-based grades of PanNETs are often discordant, and when the Ki67 grade is greater than the mitotic grade, clinical outcomes and histopathologic features are significantly worse than concordant grade 1 tumors. Patients with discordant mitotic grade 1/Ki67 grade 2 tumors have shorter overall survival and larger tumors with more metastases and more aggressive histologic

  17. Implications of mitotic and meiotic irregularities in common beans (Phaseolus vulgaris L.).

    PubMed

    Lima, D C; Braz, G T; Dos Reis, G B; Techio, V H; Davide, L C; de F B Abreu, A

    2016-05-23

    The common bean has great social and economic importance in Brazil and is the subject of a high number of publications, especially in the fields of genetics and breeding. Breeding programs aim to increase grain yield; however, mitosis and meiosis represent under explored research areas that have a direct impact on grain yield. Therefore, the study of cell division could be another tool available to bean geneticists and breeders. The aim of this study was to investigate irregularities occurring during the cell cycle and meiosis in common bean. The common bean cultivar used was BRSMG Talismã, which owing to its high yield and grain quality is recommended for cultivation in Brazil. We classified the interphase nuclei, estimated the mitotic and meiotic index, grain pollen viability, and percentage of abnormalities in both processes. The mitotic index was 4.1%, the interphase nucleus was non-reticulated, and 19% of dividing somatic cells showed abnormal behavior. Meiosis also presented irregularities resulting in a meiotic index of 44.6%. Viability of pollen grains was 94.3%. These results indicate that the common bean cultivar BRSMG Talismã possesses repair mechanisms that compensate for changes by producing a large number of pollen grains. Another important strategy adopted by bean plants to ensure stability is the elimination of abnormal cells by apoptosis. As the common bean cultivar BRSMG Talismã is recommended for cultivation because of its good agronomic performance, it can be concluded that mitotic and meiotic irregularities have no negative influence on its grain quality and yield.

  18. Meiotic and mitotic recombination in meiosis.

    PubMed

    Kohl, Kathryn P; Sekelsky, Jeff

    2013-06-01

    Meiotic crossovers facilitate the segregation of homologous chromosomes and increase genetic diversity. The formation of meiotic crossovers was previously posited to occur via two pathways, with the relative use of each pathway varying between organisms; however, this paradigm could not explain all crossovers, and many of the key proteins involved were unidentified. Recent studies that identify some of these proteins reinforce and expand the model of two meiotic crossover pathways. The results provide novel insights into the evolutionary origins of the pathways, suggesting that one is similar to a mitotic DNA repair pathway and the other evolved to incorporate special features unique to meiosis.

  19. Mos oncogene product associates with kinetochores in mammalian somatic cells and disrupts mitotic progression.

    PubMed Central

    Wang, X M; Yew, N; Peloquin, J G; Vande Woude, G F; Borisy, G G

    1994-01-01

    The mos protooncogene has opposing effects on cell cycle progression. It is required for reinitiation of meiotic maturation and for meiotic progression through metaphase II, yet it is an active component of cytostatic factor. mos is a potent oncogene in fibroblasts, but high levels of expression are lethal. The lethality of mos gene expression in mammalian cells could be a consequence of a blockage induced by its cytostatic factor-related activity, which may appear at high dosage in mitotic cells. We have directly tested whether expression of the Mos protein can block mitosis in mammalian cells by microinjecting a fusion protein between Escherichia coli maltose-binding protein and Xenopus c-Mos into PtK1 epithelial cells and analyzing the cells by video time-lapse and immunofluorescence microscopy. Time-course analyses showed that Mos blocked mitosis by preventing progression to a normal metaphase. Chromosomes frequently failed to attain a bipolar orientation and were found near one pole. Injection of a kinase-deficient mutant Mos had no effect on mitosis, indicating that the blockage of mitotic progression required Mos kinase activity. Antitubulin immunostaining of cells blocked by Mos showed that microtubules were present but that spindle morphology was abnormal. Immunostaining for the Mos fusion protein showed that both wild-type and kinase mutant proteins localized at the kinetochores. Our results suggest that mitotic blockage by Mos may result from an action of the Mos kinase on the kinetochores, thus increasing chromosome instability and preventing normal congression. Images PMID:8078882

  20. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation.

    PubMed

    Jonassen, Julie A; SanAgustin, Jovenal; Baker, Stephen P; Pazour, Gregory J

    2012-04-01

    Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre-driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression.

  1. Figure Analysis: An Implementation Dialogue

    ERIC Educational Resources Information Center

    Wiles, Amy M.

    2016-01-01

    Figure analysis is a novel active learning teaching technique that reinforces visual literacy. Small groups of students discuss diagrams in class in order to learn content. The instructor then gives a brief introduction and later summarizes the content of the figure. This teaching technique can be used in place of lecture as a mechanism to deliver…

  2. Three-Dimensional Lissajous Figures.

    ERIC Educational Resources Information Center

    D'Mura, John M.

    1989-01-01

    Described is a mechanically driven device for generating three-dimensional harmonic space figures with different frequencies and phase angles on the X, Y, and Z axes. Discussed are apparatus, viewing stereo pairs, equations of motion, and using space figures in classroom. (YP)

  3. Mitotic recombination of chromosome 17 in astrocytomas

    SciTech Connect

    James, C.D.; Carlbom, E.; Nordenskjold, M.; Collins, V.P.; Cavenee, W.K. )

    1989-04-01

    Allelic combinations at seven loci on human chromosome 17 defined by restriction fragment length polymorphisms were determined in tumor and normal tissues from 35 patients with gliomas. Loss of constitutional heterozygosity at one or more of these loci was observed in 8 of the 24 tumors displaying astrocytic differentiation and in the single primitive neuroectodermal tumor examined. The astrocytomas showing these losses included examples of each adult malignancy grade of the disease, including glioblastoma (malignancy grade IV), and seven of them demonstrated concurrent maintenance of heterozygosity for at least one chromosome 17 locus. Determination of allele dosage together with the genotypic data indicated that the tumor chromosomes 17 were derived by mitotic recombination in 7 of the 9 cases with shared homozygosity of the region 17p11.2-ptr in all cases. In contrast, tumors of oligodendrocytic, ependymal, or mixed cellular differentiation did not exhibit loss of alleles at any of the loci examined. These data suggest that the somatic attainment of homozygosity for loci on chromosome 17p is frequently associated with the oncogenesis of central nervous system tumors, particularly those showing solely astrocytic differentiation, and that mitotic recombination mapping is a useful approach towards the subregional localization of a locus whose rearrangement is involved in this disease.

  4. Divergence of mitotic strategies in fission yeasts

    PubMed Central

    Gu, Ying; Yam, Candice; Oliferenko, Snezhana

    2012-01-01

    The aim of mitosis is to produce two daughter nuclei, each containing a chromosome complement identical to that of the mother nucleus. This can be accomplished through a variety of strategies, with “open” and “closed” modes of mitosis positioned at the opposite ends of the spectrum and a range of intermediate patterns in between. In the “closed” mitosis, the nuclear envelope remains intact throughout the nuclear division. In the “open” division type, the envelope of the original nucleus breaks down early in mitosis and reassembles around the segregated daughter genomes. In any case, the nuclear membrane has to remodel to accommodate the mitotic spindle assembly, chromosome segregation and formation of the daughter nuclei. We have recently shown that within the fission yeast clade, the mitotic control of the nuclear surface area may determine the choice between the nuclear envelope breakdown and a fully “closed” division. Here we discuss our data and argue that comparative cell biology studies using two fission yeast species, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, could provide unprecedented insights into physiology and evolution of mitosis. PMID:22572960

  5. CHK2-BRCA1 tumor-suppressor axis restrains oncogenic Aurora-A kinase to ensure proper mitotic microtubule assembly.

    PubMed

    Ertych, Norman; Stolz, Ailine; Valerius, Oliver; Braus, Gerhard H; Bastians, Holger

    2016-02-16

    BRCA1 (breast cancer type 1 susceptibility protein) is a multifunctional tumor suppressor involved in DNA damage response, DNA repair, chromatin regulation, and mitotic chromosome segregation. Although the nuclear functions of BRCA1 have been investigated in detail, its role during mitosis is little understood. It is clear, however, that loss of BRCA1 in human cancer cells leads to chromosomal instability (CIN), which is defined as a perpetual gain or loss of whole chromosomes during mitosis. Moreover, our recent work has revealed that the mitotic function of BRCA1 depends on its phosphorylation by the tumor-suppressor kinase Chk2 (checkpoint kinase 2) and that this regulation is required to ensure normal microtubule plus end assembly rates within mitotic spindles. Intriguingly, loss of the positive regulation of BRCA1 leads to increased oncogenic Aurora-A activity, which acts as a mediator for abnormal mitotic microtubule assembly resulting in chromosome missegregation and CIN. However, how the CHK2-BRCA1 tumor suppressor axis restrains oncogenic Aurora-A during mitosis to ensure karyotype stability remained an open question. Here we uncover a dual molecular mechanism by which the CHK2-BRCA1 axis restrains oncogenic Aurora-A activity during mitosis and identify BRCA1 itself as a target for Aurora-A relevant for CIN. In fact, Chk2-mediated phosphorylation of BRCA1 is required to recruit the PP6C-SAPS3 phosphatase, which acts as a T-loop phosphatase inhibiting Aurora-A bound to BRCA1. Consequently, loss of CHK2 or PP6C-SAPS3 promotes Aurora-A activity associated with BRCA1 in mitosis. Aurora-A, in turn, then phosphorylates BRCA1 itself, thereby inhibiting the mitotic function of BRCA1 and promoting mitotic microtubule assembly, chromosome missegregation, and CIN.

  6. R-X Modeling Figures

    SciTech Connect

    Goda, Joetta Marie; Miller, Thomas; Grogan, Brandon

    2016-10-26

    This document contains figures that will be included in an ORNL final report that details computational efforts to model an irradiation experiment performed on the Godiva IV critical assembly. This experiment was a collaboration between LANL and ORNL.

  7. Facts and Figures on Pain

    MedlinePlus

    ... Room Position Statements AAPM Facts and Figures on Pain Overview What is Chronic Pain? Incidence of Pain, ... of them. Back to Top What is Chronic Pain? While acute pain is a normal sensation triggered ...

  8. Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus

    SciTech Connect

    Yang, Feng; Camp, David G.; Gritsenko, Marina A.; Luo, Quanzhou; Kelly, Ryan T.; Clauss, Therese RW; Brinkley, William R.; Smith, Richard D.; Stenoien, David L.

    2007-11-16

    The chromosomal passenger complex (CPC) is a critical regulator of chromosome, cytoskeleton and membrane dynamics during mitosis. Here, we identified phosphopeptides and phosphoprotein complexes recognized by a phosphorylation specific antibody that labels the CPC using liquid chromatography coupled to mass spectrometry. A mitotic phosphorylation motif (PX{G/T/S}{L/M}[pS]P or WGL[pS]P) was identified in 11 proteins including Fzr/Cdh1 and RIC-8, two proteins with potential links to the CPC. Phosphoprotein complexes contained known CPC components INCENP, Aurora-B and TD-60, as well as SMAD2, 14-3-3 proteins, PP2A, and Cdk1, a likely kinase for this motif. Protein sequence analysis identified phosphorylation motifs in additional proteins including SMAD2, Plk3 and INCENP. Mitotic SMAD2 and Plk3 phosphorylation was confirmed using phosphorylation specific antibodies, and in the case of Plk3, phosphorylation correlates with its localization to the mitotic apparatus. A mutagenesis approach was used to show INCENP phosphorylation is required for midbody localization. These results provide evidence for a shared phosphorylation event that regulates localization of critical proteins during mitosis.

  9. Growth rate and mitotic index analysis of Vicia faba L. roots exposed to 60-Hz electric fields

    SciTech Connect

    Inoue, M.; Miller, M.W.; Cox, C.; Carstesen, E.L.

    1985-01-01

    Growth, mitotic index, and growth rate recovery were determined for Vicia faba L. roots exposed to 60-Hz electric fields of 200, 290, and 360 V/m in an aqueous inorganic nutrient medium (conductivity 0.07-0.09 S/m). Root growth rate decreased in proportion to the increasing strength; the electric field threshold for a growth rate effect was about 230 V/m. The induced transmembrane potential at the threshold exposure was about 4-7 mV. The mitotic index was not affected by an electric field exposure sufficient to reduce root growth rate to about 35% of control. Root growth rate recovery from 31-96% of control occurred in 4 days after cessation of the 360 V/m exposure. The results support the postulate that the site of action of the applied electric fields is the cell membrane. 10 references, 4 figures, 4 tables.

  10. Ki-67 proliferation index but not mitotic thresholds integrates the molecular prognostic stratification of lower grade gliomas.

    PubMed

    Duregon, Eleonora; Bertero, Luca; Pittaro, Alessandra; Soffietti, Riccardo; Rudà, Roberta; Trevisan, Morena; Papotti, Mauro; Ventura, Laura; Senetta, Rebecca; Cassoni, Paola

    2016-04-19

    Despite several molecular signatures for "lower grade diffuse gliomas" (LGG) have been identified, WHO grade still remains a cornerstone of treatment guidelines. Mitotic count bears a crucial role in its definition, although limited by the poor reproducibility of standard Hematoxylin & Eosin (H&E) evaluation. Phospho-histone-H3 (PHH3) and Ki-67 have been proposed as alternative assays of cellular proliferation. Therefore in the present series of 141 LGG, the molecular characterization (namely IDH status, 1p/19q co-deletion and MGMT promoter methylation) was integrated with the tumor "proliferative trait" (conventional H&E or PHH3-guided mitotic count and Ki-67 index) in term of prognosis definition. Exclusively high PHH3 and Ki-67 values were predictor of poor prognosis (log rank test, P = 0.0281 for PHH3 and P = 0.032 for Ki-67), unlike standard mitotic count. Based on Cox proportional hazard regression analyses, among all clinical (age), pathological (PHH3 and Ki-67) and molecular variables (IDH, 1p/19q codeletion and MGMT methylation) with a prognostic relevance at univariate survival analysis, only IDH expression (P = 0.001) and Ki-67 proliferation index (P = 0.027) proved to be independent prognostic factors. In addition, stratifying by IDH expression status, high Ki-67 retained its prognostic relevance uniquely in the IDH negative patient (P = 0.029) doubling their risk of death (hazard ratio = 2.27). Overall, PHH3 immunostaining is the sole reliable method with a prognostic value to highlight mitotic figures in LGG. Ki-67 proliferation index exceeds PHH3 mitotic count as a predictor of patient's prognosis, and should be integrated with molecular markers in a comprehensive grading system for LGG.

  11. Abnormal sebaceous gland differentiation in 10 kittens ('sebaceous gland dysplasia') associated with generalized hypotrichosis and scaling.

    PubMed

    Yager, Julie A; Gross, Thelma Lee; Shearer, David; Rothstein, Emily; Power, Helen; Sinke, Jacqueline D; Kraus, Hans; Gram, Dunbar; Cowper, Ellie; Foster, Aiden; Welle, Monika

    2012-04-01

    A rare congenital dermatosis, characterized by progressive hypotrichosis with variable scaling and crusting, occurred in 10 short-haired kittens in North America and Europe. Lesions appeared at between 4 and 12 weeks of age, commencing on the head and becoming generalized. The tail was spared in two kittens. Generalized scaling was mild to moderate, often with prominent follicular casts. Periocular, perioral, pinnal and ear canal crusting was occasionally severe. The skin was thick and wrinkled in two kittens. Histologically, the main lesion was abnormal sebaceous gland morphology. Instead of regular differentiation from basal cells to mature sebocytes, the glands were composed of a haphazard collection of undifferentiated basaloid cells, some partly vacuolated and a few containing eosinophilic globules. Mitotic figures and apoptotic cells were present in an irregularly thickened follicular isthmus. Lymphocytic mural folliculitis and mild sebaceous adenitis were rare. Orthokeratotic hyperkeratosis and follicular casts were present. Hair follicles were of normal density and were mostly in anagen, but some contained malacic hair shafts. Perforating folliculitis, leading to dermal trichogranuloma formation, occurred occasionally. Further biopsy samples taken at 2 years and at 3 and 4 years, respectively, from two kittens revealed similar but often more severe sebaceous gland lesions. Hair follicles were smaller, with many in telogen. The young age of onset suggests a genetic defect interfering with sebaceous and, possibly, follicular development. These lesions are discussed with reference to studies of mouse mutants in which genetic defects in sebaceous differentiation cause a similar phenotype of hyperkeratosis and progressive alopecia.

  12. Cellular and molecular etiology of hepatocyte injury in a murine model of environmentally induced liver abnormality

    PubMed Central

    Al-Griw, M.A.; Alghazeer, R.O.; Al-Azreg, S.A.; Bennour, E.M.

    2016-01-01

    Exposures to a wide variety of environmental substances are negatively associated with many biological cell systems both in humans and rodents. Trichloroethane (TCE), a ubiquitous environmental toxicant, is used in large quantities as a dissolvent, metal degreaser, chemical intermediate, and component of consumer products. This increases the likelihood of human exposure to these compounds through dermal, inhalation and oral routes. The present in vivo study was aimed to investigate the possible cellular and molecular etiology of liver abnormality induced by early exposure to TCE using a murine model. The results showed a significant increase in liver weight. Histopathological examination revealed a TCE-induced hepatotoxicity which appeared as heavily congested central vein and blood sinusoids as well as leukocytic infiltration. Mitotic figures and apoptotic changes such as chromatin condensation and nuclear fragments were also identified. Cell death analysis demonstrates hepatocellular apoptosis was evident in the treated mice compared to control. TCE was also found to induce oxidative stress as indicated by an increase in the levels of lipid peroxidation, an oxidative stress marker. There was also a significant decrease in the DNA content of the hepatocytes of the treated groups compared to control. Agarose gel electrophoresis also provided further biochemical evidence of apoptosis by showing internucleosomal DNA fragmentation in the liver cells, indicating oxidative stress as the cause of DNA damage. These results suggest the need for a complete risk assessment of any new chemical prior to its arrival into the consumer market. PMID:27800299

  13. Activation of JNK triggers release of Brd4 from mitotic chromosomes and mediates protection from drug-induced mitotic stress.

    PubMed

    Nishiyama, Akira; Dey, Anup; Tamura, Tomohiko; Ko, Minoru; Ozato, Keiko

    2012-01-01

    Some anti-cancer drugs, including those that alter microtubule dynamics target mitotic cells and induce apoptosis in some cell types. However, such drugs elicit protective responses in other cell types allowing cells to escape from drug-induced mitotic inhibition. Cells with a faulty protective mechanism undergo defective mitosis, leading to genome instability. Brd4 is a double bromodomain protein that remains on chromosomes during mitosis. However, Brd4 is released from mitotic chromosomes when cells are exposed to anti-mitotic drugs including nocodazole. Neither the mechanisms, nor the biological significance of drug-induced Brd4 release has been fully understood. We found that deletion of the internal C-terminal region abolished nocodazole induced Brd4 release from mouse P19 cells. Furthermore, cells expressing truncated Brd4, unable to dissociate from chromosomes were blocked from mitotic progression and failed to complete cell division. We also found that pharmacological and peptide inhibitors of the c-jun-N-terminal kinases (JNK) pathway, but not inhibitors of other MAP kinases, prevented release of Brd4 from chromosomes. The JNK inhibitor that blocked Brd4 release also blocked mitotic progression. Further supporting the role of JNK in Brd4 release, JNK2-/- embryonic fibroblasts were defective in Brd4 release and sustained greater inhibition of cell growth after nocodazole treatment. In sum, activation of JNK pathway triggers release of Brd4 from chromosomes upon nocodazole treatment, which mediates a protective response designed to minimize drug-induced mitotic stress.

  14. Figure analysis: An implementation dialogue.

    PubMed

    Wiles, Amy M

    2016-07-08

    Figure analysis is a novel active learning teaching technique that reinforces visual literacy. Small groups of students discuss diagrams in class in order to learn content. The instructor then gives a brief introduction and later summarizes the content of the figure. This teaching technique can be used in place of lecture as a mechanism to deliver information to students. Here, a "how to" guide is presented in the form of an in-class dialogue, displaying the difficulties in visual interpretation that some students may experience while figure analysis is being implemented in an upper-level, cell biology course. Additionally, the dialogue serves as a guide for instructors who may implement the active learning technique as they consider how to respond to students' concerns in class. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):345-348, 2016.

  15. The Nuclear Matrix Protein Megator Regulates Stem Cell Asymmetric Division through the Mitotic Checkpoint Complex in Drosophila Testes.

    PubMed

    Liu, Ying; Singh, Shree Ram; Zeng, Xiankun; Zhao, Jiangsha; Hou, Steven X

    2015-12-01

    In adult Drosophila testis, asymmetric division of germline stem cells (GSCs) is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2). However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor), a nuclear matrix protein, which regulates GSC maintenance and asymmetric division through the spindle assembly checkpoint (SAC) complex. Loss of Mtor function results in Apc2 mis-localization, incorrect centrosome orientation, defective mitotic spindle formation, and abnormal chromosome segregation that lead to the eventual GSC loss. Expression of mitotic arrest-deficient-2 (Mad2) and monopolar spindle 1 (Mps1) of the SAC complex effectively rescued the GSC loss phenotype associated with loss of Mtor function. Collectively our results define a new role of the nuclear matrix-SAC axis in regulating stem cell maintenance and asymmetric division.

  16. Concepts and Figures in Geometric Reasoning.

    ERIC Educational Resources Information Center

    Fischbein, Efraim; Nachlieli, Talli

    1998-01-01

    Opens with the theoretical construct of figural concepts. Argues that geometrical figures are characterized by both conceptual and sensorial properties. Investigates the effects of interaction between conceptual and figural components. Contains 19 references. (DDR)

  17. Immunochemical studies of 22S protein from isolated mitotic apparatus.

    PubMed

    Bibring, T; Baxandall, J

    1969-05-01

    Evidence is presented that the "22S protein" of mitotic apparatus isolated from sea urchin eggs is not microtubule protein. An antibody preparation active against 22S protein is described, and immunochemical studies of the distribution of 22S protein in various cellular fractions and among morphological features of mitotic apparatus are reported. The protein is ubiquitous in the metaphase egg fractions that were tested but is not found in sperm flagella. It is immunologically distinct from proposed microtubule protein isolated from mitotic apparatus by the method of Sakai, and from proposed microtubule protein obtained after extraction with mild acid. It exists in nontubule material of isolated mitotic apparatus but is not detectable in microtubules.

  18. IMMUNOCHEMICAL STUDIES OF 22S PROTEIN FROM ISOLATED MITOTIC APPARATUS

    PubMed Central

    Bibring, Thomas; Baxandall, Jane

    1969-01-01

    Evidence is presented that the "22S protein" of mitotic apparatus isolated from sea urchin eggs is not microtubule protein. An antibody preparation active against 22S protein is described, and immunochemical studies of the distribution of 22S protein in various cellular fractions and among morphological features of mitotic apparatus are reported. The protein is ubiquitous in the metaphase egg fractions that were tested but is not found in sperm flagella. It is immunologically distinct from proposed microtubule protein isolated from mitotic apparatus by the method of Sakai, and from proposed microtubule protein obtained after extraction with mild acid. It exists in nontubule material of isolated mitotic apparatus but is not detectable in microtubules. PMID:4977446

  19. Micromechanical study of mitotic chromosome structure

    NASA Astrophysics Data System (ADS)

    Marko, John

    2011-03-01

    Our group has developed micromanipulation techniques for study of the highly compacted mitotic form of chromosome found in eukaryote cells during cell division. Each metaphase chromosome contains two duplicate centimeter-long DNA molecules, folded up by proteins into cylindrical structures several microns in length. Native chromosomes display linear and reversible stretching behavior over a wide range of extensions (up to 5x native length for amphibian chromosomes), described by a Young modulus of about 300 Pa. Studies using DNA-cutting and protein-cutting enzymes have revealed that metaphase chromosomes behave as a network of chromatin fibers held together by protein-based isolated crosslinks. Our results are not consistent with the more classical model of loops of chromatin attached to a protein-based structural organizer or ``scaffold". In short, our experiments indicate that metaphase chromosomes can be considered to be ``gels" of chromatin; the stretching modulus of a whole chromosome is consistent with stretching of the chromatin fibers contained within it. Experiments using topoisomerases suggest that topological constraints may play an appreciable role in confining chromatin in the metaphase chromosome. Finally, recent experiments on human chromosomes will be reviewed, including results of experiments where chromosome-folding proteins are specifically depleted using siRNA methods. Supported by NSF-MCB-1022117, DMR-0715099, PHY-0852130, DMR-0520513, NCI 1U54CA143869-01 (NU-PS-OC), and the American Heart Association.

  20. SEROLOGICAL SIMILARITY OF FLAGELLAR AND MITOTIC MICROTUBULES

    PubMed Central

    Fulton, Chandler; Kane, R. E.; Stephens, R. E.

    1971-01-01

    An antiserum to flagellar axonemes from sperm of Arbacia punctulata contains antibodies which react both with intact flagellar outer fibers and with purified tubulin from the outer fibers. Immunodiffusion tests indicate the presence of similar antigenic determinants on outer-fiber tubulins from sperm flagella of five species of sea urchins and a sand dollar, but not a starfish. The antibodies also react with extracts containing tubulins from different classes of microtubules, including central-pair fibers and both A- and B-subfibers from outer fibers of sperm flagella, an extract from unfertilized eggs, mitotic apparatuses from first cleavage embryos, and cilia from later embryos. Though most tubulins tested share similar antigenic determinants, some clear differences have been detected, even, in Pseudoboletia indiana, between the outer-fiber tubulins of sperm flagella and blastular cilia. Though tubulins are "actin-like" proteins, antitubulin serum does not react with actin from sea urchin lantern muscle. On the basis of these observations, we suggest that various echinoid microtubules are built of similar, but not identical, tubulins. PMID:4106543

  1. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe.

    PubMed

    Martinez-Castillo, Macario; Bonilla-Moreno, Raul; Aleman-Lazarini, Leticia; Meraz-Rios, Marco Antonio; Orozco, Lorena; Cedillo-Barron, Leticia; Cordova, Emilio J; Villegas-Sepulveda, Nicolas

    2016-01-01

    Curcumin is extensively investigated as a good chemo-preventive agent in the development of many cancers and particularly in leukemia, including treatment of chronic myelogenous leukemia and it has been proposed as an adjuvant for leukemia therapies. Human chronic myeloid leukemia cells (K562), were treated with 20 μM of curcumin, and we found that a subpopulation of these cells were arrested and accumulate in the G2/M phase of the cell cycle. Characterization of this cell subpopulation showed that the arrested cells presented nuclear morphology changes resembling those described for mitotic catastrophe. Mitotic cells displayed abnormal chromatin organization, collapse of the mitotic spindle and abnormal chromosome segregation. Then, these cells died in an apoptosis dependent manner and showed diminution in the protein levels of BCL-2 and XIAP. Moreover, our results shown that a transient activation of the nuclear factor κB (NFκB) occurred early in these cells, but decreased after 6 h of the treatment, explaining in part the diminution of the anti-apoptotic proteins. Additionally, P73 was translocated to the cell nuclei, because the expression of the C/EBPα, a cognate repressor of the P73 gene, was decreased, suggesting that apoptosis is trigger by elevation of P73 protein levels acting in concert with the diminution of the two anti-apoptotic molecules. In summary, curcumin treatment might produce a P73-dependent apoptotic cell death in chronic myelogenous leukemia cells (K562), which was triggered by mitotic catastrophe, due to sustained BAX and survivin expression and impairment of the anti-apoptotic proteins BCL-2 and XIAP.

  2. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe

    PubMed Central

    Martinez-Castillo, Macario; Bonilla-Moreno, Raul; Aleman-Lazarini, Leticia; Meraz-Rios, Marco Antonio; Orozco, Lorena; Cedillo-Barron, Leticia; Cordova, Emilio J.

    2016-01-01

    Curcumin is extensively investigated as a good chemo-preventive agent in the development of many cancers and particularly in leukemia, including treatment of chronic myelogenous leukemia and it has been proposed as an adjuvant for leukemia therapies. Human chronic myeloid leukemia cells (K562), were treated with 20 μM of curcumin, and we found that a subpopulation of these cells were arrested and accumulate in the G2/M phase of the cell cycle. Characterization of this cell subpopulation showed that the arrested cells presented nuclear morphology changes resembling those described for mitotic catastrophe. Mitotic cells displayed abnormal chromatin organization, collapse of the mitotic spindle and abnormal chromosome segregation. Then, these cells died in an apoptosis dependent manner and showed diminution in the protein levels of BCL-2 and XIAP. Moreover, our results shown that a transient activation of the nuclear factor κB (NFκB) occurred early in these cells, but decreased after 6 h of the treatment, explaining in part the diminution of the anti-apoptotic proteins. Additionally, P73 was translocated to the cell nuclei, because the expression of the C/EBPα, a cognate repressor of the P73 gene, was decreased, suggesting that apoptosis is trigger by elevation of P73 protein levels acting in concert with the diminution of the two anti-apoptotic molecules. In summary, curcumin treatment might produce a P73-dependent apoptotic cell death in chronic myelogenous leukemia cells (K562), which was triggered by mitotic catastrophe, due to sustained BAX and survivin expression and impairment of the anti-apoptotic proteins BCL-2 and XIAP. PMID:27832139

  3. Mitotic apparatus: the selective extraction of protein with mild acid.

    PubMed

    Bibring, T; Baxandall, J

    1968-07-26

    The treatment of isolated mitotic apparatus with mild (pH 3) hydrochloric acid results in the extraction of less than 10 percent of its protein, accompanied by the selective morphological disappearance of the microtubules. The same extraction can be shown to dissolve outer doublet microtubules from sperm flagella. A protein with points of similarity to the flagellar microtubule protein is the major component of the extract from mitotic apparatus.

  4. Micromechanical-biochemical studies of mitotic chromosome elasticity and structure

    NASA Astrophysics Data System (ADS)

    Poirier, Michael Guy

    The structure of mitotic chromosomes was studied by combining micromechanical force measurements with microfluidic biochemical exposures. Our method is to use glass micropipettes attached to either end of a single chromosome to do mechanical experiments in the extracellular buffer. A third pipette can be used to locally 'spray' reactants so as to carry out dynamical mechanical-chemical experiments. The following elastic properties of mitotic chromosomes are found: Young's modulus, Y = 300 Pa; Poisson ratio, sigma = 0.1; Bending rigidity, B = 1 x 10 -22 J·m; Internal viscosity, eta' = 100 kg/m·sec; Volume fraction, ϕ = 0.7; Extensions of less than 3 times the relaxed length are linear and reversible; Extensions beyond 30 fold exhibit a force plateau at 15 nN and convert the chromosome to a disperse ghost-like state with little change in chromatin structure; Mitotic chromosomes are relatively isotropic; dsDNA cuts of at least every 3 kb cause the a mitotic chromosomes to fall apart; dsDNA cuts less frequently than every 50 kb do not affect mitotic chromosome structure. These results lead to the conclusion that mitotic chromosomes are a network crosslinked every 50 kb between which chromatin is fold by chromatin folding proteins, which are likely to be condensins.

  5. Timeless links replication termination to mitotic kinase activation.

    PubMed

    Dheekollu, Jayaraju; Wiedmer, Andreas; Hayden, James; Speicher, David; Gotter, Anthony L; Yen, Tim; Lieberman, Paul M

    2011-05-06

    The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.

  6. Choreography Styles in Figure Skating

    ERIC Educational Resources Information Center

    Moormann, Peter Paul

    2006-01-01

    Fifty-eight figure skating trainers from fifteen different countries acted as volunteers in this study on choreography styles. The styles were based on reports of artistic-creative strategies in composing music, drawing, writing poems or novels, and in making dances. The prevalence of the Mozartian (at the onset the choreographer already has a…

  7. Storytelling Figures: A Pueblo Tradition.

    ERIC Educational Resources Information Center

    Kraus, Nancy

    1997-01-01

    In a collaborative unit on pueblo storytelling figures involving art, music, language arts, and physical education, a teacher describes how she helped second graders understand the Pueblo pottery tradition by reading aloud literature covering the past and present. Lists folklore, fiction, poetry, nonfiction, professional resources, videos, CDs,…

  8. [Y chromosome structural abnormalities and Turner's syndrome].

    PubMed

    Ravel, C; Siffroi, J-P

    2009-06-01

    Although specifically male, the human Y chromosome may be observed in female karyotypes, mostly in women with Turner syndrome stigmata. In women with isolated gonadal dysgenesis but otherwise normal stature, the testis determining factor or SRY gene may have been removed from the Y chromosome or may be mutated. In other women with Turner syndrome, the karyotype is usually abnormal and shows a frequent 45,X/46,XY mosaicism. In these cases, the phenotype depends on the ratio between Y positive and 45,X cell lines in the body. When in mosaicism, Y chromosomes are likely to carry structural abnormalities which explain mitotic instability, such as the existence of two centromeres. Dicentric Y isochromosomes for the short arm (idic[Yp]) or ring Y chromosomes (r[Y]) are the most frequent abnormal Y chromosomes found in infertile patients and in Turner syndrome in mosaic with 45,X cells. Although monocentric, deleted Y chromosomes for the long arm and those carrying microdeletions in the AZF region are also instable and are frequently associated with a 45,X cell line. Management of infertile patients carrying such abnormal Y chromosomes must take into account the risk and the consequences of a mosaicism in the offspring.

  9. Imaging genome abnormalities in cancer research.

    PubMed

    Heng, Henry HQ; Stevens, Joshua B; Liu, Guo; Bremer, Steven W; Ye, Christine J

    2004-01-13

    Increasing attention is focusing on chromosomal and genome structure in cancer research due to the fact that genomic instability plays a principal role in cancer initiation, progression and response to chemotherapeutic agents. The integrity of the genome (including structural, behavioral and functional aspects) of normal and cancer cells can be monitored with direct visualization by using a variety of cutting edge molecular cytogenetic technologies that are now available in the field of cancer research. Examples are presented in this review by grouping these methodologies into four categories visualizing different yet closely related major levels of genome structures. An integrated discussion is also presented on several ongoing projects involving the illustration of mitotic and meiotic chromatin loops; the identification of defective mitotic figures (DMF), a new type of chromosomal aberration capable of monitoring condensation defects in cancer; the establishment of a method that uses Non-Clonal Chromosomal Aberrations (NCCAs) as an index to monitor genomic instability; and the characterization of apoptosis related chromosomal fragmentations caused by drug treatments.

  10. Theory in Biology: Figure 1 or Figure 7?

    PubMed Central

    2015-01-01

    The pace of modern science is staggering. The quantities of data now flowing from DNA sequencers, fluorescence and electron microscopes, mass spectrometers and other mind-blowing instruments leave us faced with information overload. This explosion in data has brought on its heels a concomitant need for efforts at the kinds of synthesis and unification we see in theoretical physics. Often in cell biology, when theoretical modeling takes place, it is as a figure 7 reflection on experiments that have already been done, with data fitting providing a metric of success. Figure 1 theory, by way of contrast, is about living dangerously by turning our thinking into formal mathematical predictions and confronting that math with experiments that have not yet been done. PMID:26584768

  11. Theory in Biology: Figure 1 or Figure 7?

    PubMed

    Phillips, Rob

    2015-12-01

    The pace of modern science is staggering. The quantities of data now flowing from DNA sequencers, fluorescence and electron microscopes, mass spectrometers, and other mind-blowing instruments leave us faced with information overload. This explosion in data has brought on its heels a concomitant need for efforts at the kinds of synthesis and unification we see in theoretical physics. Often in cell biology, when theoretical modeling takes place, it is as a figure 7 reflection on experiments that have already been done, with data fitting providing a metric of success. Figure 1 theory, by way of contrast, is about living dangerously by turning our thinking into formal mathematical predictions and confronting that math with experiments that have not yet been done.

  12. Dynamic Positioning of Mitotic Spindles in Yeast:

    PubMed Central

    Yeh, Elaine; Yang, Charlie; Chin, Elaine; Maddox, Paul; Salmon, E. D.; Lew, Daniel J.; Bloom, Kerry

    2000-01-01

    In the budding yeast Saccharomyces cerevisiae, movement of the mitotic spindle to a predetermined cleavage plane at the bud neck is essential for partitioning chromosomes into the mother and daughter cells. Astral microtubule dynamics are critical to the mechanism that ensures nuclear migration to the bud neck. The nucleus moves in the opposite direction of astral microtubule growth in the mother cell, apparently being “pushed” by microtubule contacts at the cortex. In contrast, microtubules growing toward the neck and within the bud promote nuclear movement in the same direction of microtubule growth, thus “pulling” the nucleus toward the bud neck. Failure of “pulling” is evident in cells lacking Bud6p, Bni1p, Kar9p, or the kinesin homolog, Kip3p. As a consequence, there is a loss of asymmetry in spindle pole body segregation into the bud. The cytoplasmic motor protein, dynein, is not required for nuclear movement to the neck; rather, it has been postulated to contribute to spindle elongation through the neck. In the absence of KAR9, dynein-dependent spindle oscillations are evident before anaphase onset, as are postanaphase dynein-dependent pulling forces that exceed the velocity of wild-type spindle elongation threefold. In addition, dynein-mediated forces on astral microtubules are sufficient to segregate a 2N chromosome set through the neck in the absence of spindle elongation, but cytoplasmic kinesins are not. These observations support a model in which spindle polarity determinants (BUD6, BNI1, KAR9) and cytoplasmic kinesin (KIP3) provide directional cues for spindle orientation to the bud while restraining the spindle to the neck. Cytoplasmic dynein is attenuated by these spindle polarity determinants and kinesin until anaphase onset, when dynein directs spindle elongation to distal points in the mother and bud. PMID:11071919

  13. Automatic Detection of Mitosis and Nuclei From Cytogenetic Images by CellProfiler Software for Mitotic Index Estimation.

    PubMed

    González, Jorge Ernesto; Radl, Analía; Romero, Ivonne; Barquinero, Joan Francesc; García, Omar; Di Giorgio, Marina

    2016-12-01

    Mitotic Index (MI) estimation expressed as percentage of mitosis plays an important role as quality control endpoint. To this end, MI is applied to check the lot of media and reagents to be used throughout the assay and also to check cellular viability after blood sample shipping, indicating satisfactory/unsatisfactory conditions for the progression of cell culture. The objective of this paper was to apply the CellProfiler open-source software for automatic detection of mitotic and nuclei figures from digitized images of cultured human lymphocytes for MI assessment, and to compare its performance to that performed through semi-automatic and visual detection. Lymphocytes were irradiated and cultured for mitosis detection. Sets of images from cultures were analyzed visually and findings were compared with those using CellProfiler software. The CellProfiler pipeline includes the detection of nuclei and mitosis with 80% sensitivity and more than 99% specificity. We conclude that CellProfiler is a reliable tool for counting mitosis and nuclei from cytogenetic images, saves considerable time compared to manual operation and reduces the variability derived from the scoring criteria of different scorers. The CellProfiler automated pipeline achieves good agreement with visual counting workflow, i.e. it allows fully automated mitotic and nuclei scoring in cytogenetic images yielding reliable information with minimal user intervention.

  14. Prognostic differences of World Health Organization-assessed mitotic activity index and mitotic impression by quick scanning in invasive ductal breast cancer patients younger than 55 years.

    PubMed

    Skaland, Ivar; van Diest, Paul J; Janssen, Emiel A M; Gudlaugsson, Einar; Baak, Jan P A

    2008-04-01

    The proliferation marker mitotic activity index is the strongest prognostic indicator in lymph node-negative breast cancer. The World Health Organization (WHO) 2003-defined procedure for determining WHO-mitotic activity index is often replaced by a quick scan mitotic impression. We evaluated the prognostic consequences of this practice in 433 T(1-3)N(0)M(0) lymph node-negative invasive ductal type breast cancers with long-term follow-up (median, 112 months; range, 12-187 months). Twenty-seven percent of the studied cases developed distant metastases, and 25% died of disease. Agreement between WHO-mitotic activity index (0-5 = 1, 6-10 = 2, >10 = 3) and mitotic impression (1, 2, 3) categories was 66% (kappa = 0.41), including 85% for category 1, 26% for category 2, and 52% for category 3. The WHO-mitotic activity index was a much stronger prognosticator than the mitotic impression, and the 10-year survival rates of the same categories (eg, mitotic activity index and mitotic impression category both 2) differed greatly. When grade was assessed by combining WHO-mitotic activity index or mitotic impression with the same values for tubular formation and nuclear atypia, grades disagreed in 18% of the cases. Deviation from the formal WHO-mitotic activity index assessment guidelines in breast cancer often results in erroneous prognosis estimations with therapeutic consequences and may explain why the prognostic value of proliferative activity in breast cancer is not always confirmed.

  15. Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A.

    PubMed

    Kobayashi, Akiko; Hashizume, Chieko; Dowaki, Takayuki; Wong, Richard W

    2015-01-01

    Spindle poles are defined by centrosomes; therefore, an abnormal number or defective structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. Previously, we showed that Tpr (translocated promoter region), a component of the nuclear pore complex (NPC), interacts with Mad1 and dynein to promote proper chromosome segregation during mitosis. Tpr also associates with p53 to induce autophagy. Here, we report that Tpr depletion induces mitotic catastrophe and enhances the rate of tetraploidy and polyploidy. Mechanistically, Tpr interacts, via its central domain, with Aurora A but not Aurora B kinase. In Tpr-depleted cells, the expression levels, centrosomal localization and phosphorylation of Aurora A were all reduced. Surprisingly, an Aurora A inhibitor, Alisertib (MLN8237), also disrupted centrosomal localization of Tpr and induced mitotic catastrophe and cell death in a time- and dose-dependent manner. Strikingly, over-expression of Aurora A disrupted Tpr centrosomal localization only in cells with supernumerary centrosomes but not in bipolar cells. Our results highlight the mutual regulation between Tpr and Aurora A and further confirm the importance of nucleoporin function in spindle pole organization, bipolar spindle assembly, and mitosis; functions that are beyond the conventional nucleocytoplasmic transport and NPC structural roles of nucleoporins. Furthermore, the central coiled-coil domain of Tpr binds to and sequesters extra Aurora A to safeguard bipolarity. This Tpr domain merits further investigation for its ability to inhibit Aurora kinase and as a potential therapeutic agent in cancer treatment.

  16. Figural symbolism in Chinese ideographs.

    PubMed

    Koriat, A; Levy, I

    1979-07-01

    Hebrew-speaking subjects were presented with 42 pairs of Chinese characters designating antonymic concepts and were required to match them with their corresponding Hebrew words. Correct translation was significant and was related to foreign language study and academic experience. Highest success was found for the activity domain of the semantic differential and for attributes judged to afford a diagrammatic representation. Examination of the character-referent relationships suggested that translation success was due to principles of figural symbolism rather than to pictographic representation of the attributes in question. The results are seen as suggestive of the effects of figural symbolization on the invention and/or evolution of natural scripts and are discussed in terms of the manner in which the graphic medium has been fashioned to convey abstract concepts.

  17. Mcl-1 dynamics influence mitotic slippage and death in mitosis.

    PubMed

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-02-02

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.

  18. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma

    PubMed Central

    Restall, Ian J; Parolin, Doris A E; Daneshmand, Manijeh; Hanson, Jennifer E L; Simard, Manon A; Fitzpatrick, Megan E; Kumar, Ritesh; Lavictoire, Sylvie J; Lorimer, Ian A J

    2015-01-01

    Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated β-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence. PMID:26208522

  19. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma.

    PubMed

    Restall, Ian J; Parolin, Doris A E; Daneshmand, Manijeh; Hanson, Jennifer E L; Simard, Manon A; Fitzpatrick, Megan E; Kumar, Ritesh; Lavictoire, Sylvie J; Lorimer, Ian A J

    2015-01-01

    Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated β-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence.

  20. Phosphohistone-H3 (PHH3) is prognostic relevant in Merkel cell carcinomas but Merkel cell polyomavirus is a more powerful prognostic factor than AJCC clinical stage, PHH3, Ki-67 or mitotic indices.

    PubMed

    Iwasaki, Takeshi; Matsushita, Michiko; Nonaka, Daisuke; Kato, Masako; Nagata, Keiko; Murakami, Ichiro; Hayashi, Kazuhiko

    2015-08-01

    Merkel cell carcinomas (MCCs) associated with Merkel cell polyomavirus (MCPyV) have better prognosis than those without MCPyV. The relationship between mitotic index (MI) and MCC outcome has remained elusive because of the difficulty in differentiating mitotic cells from apoptotic ones. We evaluated the role of phosphohistone-H3 (PHH3) (Ser10), a new mitotic count biomarker, in MCPyV-positive or -negative MCC patients, and assessed its prognostic value in comparison to Ki-67 labeling index or MI using hematoxylin and eosin (HE) staining. We compared the prognostic value of PHH3 mitotic index with that of MI by HE in 19 MCPyV-positive and 9 MCPyV-negative MCC patients. PHH3-positive immunoreactivity was mostly observed in mitotic figures. Multivariate analysis significantly showed that MCPyV status (HR, 0.004; 95% CI 0.0003-0.058) and the American Joint Committee of Cancer (AJCC) stage (HR, 5.02; 95% CI 1.23-20.51) were observed as significantly independent prognostic factors for OS. PHH3-positive cell counts/10 HPF was a slightly significant independent prognostic factor for OS (HR, 4.96; 95% CI 0.93-26.55). PHH3-positive MI and MCPyV status in MCC patients are useful in prognostication, although MCPyV-infection is a more powerful prognostic factor in MCCs than the AJCC scheme on proliferation or mitotic indices.

  1. Mice produced by mitotic reprogramming of sperm injected into haploid parthenogenotes

    PubMed Central

    Suzuki, Toru; Asami, Maki; Hoffmann, Martin; Lu, Xin; Gužvić, Miodrag; Klein, Christoph A.; Perry, Anthony C. F.

    2016-01-01

    Sperm are highly differentiated and the activities that reprogram them for embryonic development during fertilization have historically been considered unique to the oocyte. We here challenge this view and demonstrate that mouse embryos in the mitotic cell cycle can also directly reprogram sperm for full-term development. Developmentally incompetent haploid embryos (parthenogenotes) injected with sperm developed to produce healthy offspring at up to 24% of control rates, depending when in the embryonic cell cycle injection took place. This implies that most of the first embryonic cell cycle can be bypassed in sperm genome reprogramming for full development. Remodelling of histones and genomic 5′-methylcytosine and 5′-hydroxymethylcytosine following embryo injection were distinct from remodelling in fertilization and the resulting 2-cell embryos consistently possessed abnormal transcriptomes. These studies demonstrate plasticity in the reprogramming of terminally differentiated sperm nuclei and suggest that different epigenetic pathways or kinetics can establish totipotency. PMID:27623537

  2. Toucan protein is essential for the assembly of syncytial mitotic spindles in Drosophila melanogaster.

    PubMed

    Debec, A; Grammont, M; Berson, G; Dastugue, B; Sullivan, W; Couderc, J L

    2001-12-01

    The toc gene of Drosophila melanogaster encodes a 235-kD polypeptide with a coiled-coil domain, which is highly expressed during oogenesis (Grammont et al., 1997, 2000). We now report the localization of the Toucan protein during early embryonic development. The Toucan protein is present only during the syncytial stages and is associated with the nuclear envelope and the cytoskeletal structures of the syncytial embryo. In anaphase A, Toucan is concentrated at the spindle poles near the minus end of microtubules. This microtubule association is very dynamic during the nuclear cell cycle. Mutant embryos lacking the Toucan protein are blocked in a metaphase-like state. They display abnormal and nonfunctional spindles, characterized by broad poles, detachment of the centrosomes, and failure of migration of the chromosomes. These results strongly suggest that Toucan represents a factor essential for the assembly and the function of the syncytial mitotic spindles.

  3. A dynamic mode of mitotic bookmarking by transcription factors

    PubMed Central

    Teves, Sheila S; An, Luye; Hansen, Anders S; Xie, Liangqi; Darzacq, Xavier; Tjian, Robert

    2016-01-01

    During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking. DOI: http://dx.doi.org/10.7554/eLife.22280.001 PMID:27855781

  4. A Brief History of Research on Mitotic Mechanisms

    PubMed Central

    McIntosh, J. Richard; Hays, Thomas

    2016-01-01

    This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests. PMID:28009830

  5. Loops determine the mechanical properties of mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Heermann, Dieter W.

    2013-03-01

    In mitosis, chromosomes undergo a condensation into highly compacted, rod-like objects. Many models have been put forward for the higher-order organization of mitotic chromosomes including radial loop and hierarchical folding models. Additionally, mechanical properties of mitotic chromosomes under different conditions were measured. However, the internal organization of mitotic chromosomes still remains unclear. Here we present a polymer model for mitotic chromosomes and show how chromatin loops play a major role for their mechanical properties. The key assumption of the model is the ability of the chromatin fibre to dynamically form loops with the help of binding proteins. Our results show that looping leads to a tight compaction and significantly increases the bending rigidity of chromosomes. Moreover, our qualitative prediction of the force elongation behaviour is close to experimental findings. This indicates that the internal structure of mitotic chromosomes is based on self-organization of the chromatin fibre. We also demonstrate how number and size of loops have a strong influence on the mechanical properties. We suggest that changes in the mechanical characteristics of chromosomes can be explained by an altered internal loop structure. YZ gratefully appreciates funding by the German National Academic Foundation (Studienstiftung des deutschen Volkes) and support by the Heidelberg Graduate School for Mathematical and Computational Methods in the Sciences (HGS MathComp).

  6. Mechanical control of mitotic progression in single animal cells.

    PubMed

    Cattin, Cedric J; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Müller, Daniel J; Stewart, Martin P

    2015-09-08

    Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback-controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50-100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement.

  7. Mitotic Exit Control as an Evolved Complex System

    SciTech Connect

    Bosl, W; Li, R

    2005-04-25

    The exit from mitosis is the last critical decision a cell has to make during a division cycle. A complex regulatory system has evolved to evaluate the success of mitotic events and control this decision. Whereas outstanding genetic work in yeast has led to rapid discovery of a large number of interacting genes involved in the control of mitotic exit, it has also become increasingly difficult to comprehend the logic and mechanistic features embedded in the complex molecular network. Our view is that this difficulty stems in part from the attempt to explain mitotic exit control using concepts from traditional top-down engineering design, and that exciting new results from evolutionary engineering design applied to networks and electronic circuits may lend better insights. We focus on four particularly intriguing features of the mitotic exit control system: the two-stepped release of Cdc14; the self-activating nature of Tem1 GTPase; the spatial sensor associated with the spindle pole body; and the extensive redundancy in the mitotic exit network. We attempt to examine these design features from the perspective of evolutionary design and complex system engineering.

  8. Mitotic Chromosome Loss in a Disomic Haploid of SACCHAROMYCES CEREVISIAE

    PubMed Central

    Campbell, D. A.; Fogel, S.; Lusnak, K.

    1975-01-01

    Experiments designed to characterize the incidence of mitotic chromosome loss in a yeast disomic haploid were performed. The selective methods employed utilize the non-mating property of strains disomic for linkage group III and heterozygous at the mating type locus. The principal findings are: (1) The frequency of spontaneous chromosome loss in the disome is of the order 10-4 per cell; this value approximates the frequency in the same population of spontaneous mitotic exchange resulting in homozygosity at the mating type locus. (2) The recovered diploids are pure clones, and thus represent unique events in the disomic haploid. (3) Of the euploid chromosomes recovered after events leading to chromosome loss, approximately 90% retain the parental marker configuration expected from segregation alone; however, the remainder are recombinant for marker genes, and are the result of mitotic exchanges in the disome, especially in regions near the centromere. The recombinant proportion significantly exceeds that expected if chromosome loss and mitotic exchange in the disome were independent events. The data are consistent with a model proposing mitotic nondisjunction as the event responsible for chromosome loss in the disomic haploid. PMID:1092597

  9. The Aurora kinase A inhibitor TC-A2317 disrupts mitotic progression and inhibits cancer cell proliferation.

    PubMed

    Min, Yoo Hong; Kim, Wootae; Kim, Ja-Eun

    2016-12-20

    Mitotic progression is crucial for the maintenance of chromosomal stability. A proper progression is ensured by the activities of multiple kinases. One of these enzymes, the serine/threonine kinase Aurora A, is required for proper mitosis through the regulation of centrosome and spindle assembly. In this study, we functionally characterized a newly developed Aurora kinase A inhibitor, TC-A2317. In human lung cancer cells, TC-A2317 slowed proliferation by causing aberrant formation of centrosome and microtubule spindles and prolonging the duration of mitosis. Abnormal mitotic progression led to accumulation of cells containing micronuclei or multinuclei. Furthermore, TC-A2317-treated cells underwent apoptosis, autophagy or senescence depending on cell type. In addition, TC-A2317 inactivated the spindle assembly checkpoint triggered by paclitaxel, thereby exacerbating mitotic catastrophe. Consistent with this, the expression level of Aurora A in tumors was inversely correlated with survival in lung cancer patients. Collectively, these data suggest that inhibition of Aurora kinase A using TC-A2317 is a promising target for anti-cancer therapeutics.

  10. [Pulmonary arterial hypertension and BMP system abnormality].

    PubMed

    Otsuka, Fumio

    2008-11-01

    Genetic analysis has uncovered that familial and idiopathic pulmonary arterial hypertension (PAH) is linked to germline mutations in BMP type II receptor (BMPRII). PAH is characterized by enhanced remodeling of pulmonary arteries due to arterial smooth muscle cell proliferation. BMPRII mutations contribute to abnormal mitotic responses to BMP ligands in pulmonary artery smooth muscle cells. Unbalanced Smad signaling induced by BMP and TGFbeta is functionally involved in the pathogenesis of PAH. BMPRII mutations also increase the susceptibility of endothelial cell apoptosis. The combination of increased endothelial injury and impaired suppression of smooth muscle cell proliferation is critical for the cellular pathogenesis of PAH. However, the detailed molecular mechanism leading to severe vascular remodeling caused by BMPRII mutations has yet to be elucidated.

  11. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  12. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  13. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  14. Skeletal limb abnormalities

    MedlinePlus

    ... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...

  15. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms

    PubMed Central

    Kschonsak, Marc; Haering, Christian H

    2015-01-01

    How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss – in light of these recent insights – the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles. PMID:25988527

  16. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms.

    PubMed

    Kschonsak, Marc; Haering, Christian H

    2015-07-01

    How eukaryotic genomes are packaged into compact cylindrical chromosomes in preparation for cell divisions has remained one of the major unsolved questions of cell biology. Novel approaches to study the topology of DNA helices inside the nuclei of intact cells, paired with computational modeling and precise biomechanical measurements of isolated chromosomes, have advanced our understanding of mitotic chromosome architecture. In this Review Essay, we discuss - in light of these recent insights - the role of chromatin architecture and the functions and possible mechanisms of SMC protein complexes and other molecular machines in the formation of mitotic chromosomes. Based on the information available, we propose a stepwise model of mitotic chromosome condensation that envisions the sequential generation of intra-chromosomal linkages by condensin complexes in the context of cohesin-mediated inter-chromosomal linkages, assisted by topoisomerase II. The described scenario results in rod-shaped metaphase chromosomes ready for their segregation to the cell poles.

  17. Plk2 regulates mitotic spindle orientation and mammary gland development.

    PubMed

    Villegas, Elizabeth; Kabotyanski, Elena B; Shore, Amy N; Creighton, Chad J; Westbrook, Thomas F; Rosen, Jeffrey M

    2014-04-01

    Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here, we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and that this might account for its suggested role as a tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally, a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development.

  18. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... PROBLEMS Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... treat abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  19. Cell death by mitotic catastrophe: a molecular definition.

    PubMed

    Castedo, Maria; Perfettini, Jean-Luc; Roumier, Thomas; Andreau, Karine; Medema, Rene; Kroemer, Guido

    2004-04-12

    The current literature is devoid of a clearcut definition of mitotic catastrophe, a type of cell death that occurs during mitosis. Here, we propose that mitotic catastrophe results from a combination of deficient cell-cycle checkpoints (in particular the DNA structure checkpoints and the spindle assembly checkpoint) and cellular damage. Failure to arrest the cell cycle before or at mitosis triggers an attempt of aberrant chromosome segregation, which culminates in the activation of the apoptotic default pathway and cellular demise. Cell death occurring during the metaphase/anaphase transition is characterized by the activation of caspase-2 (which can be activated in response to DNA damage) and/or mitochondrial membrane permeabilization with the release of cell death effectors such as apoptosis-inducing factor and the caspase-9 and-3 activator cytochrome c. Although the morphological aspect of apoptosis may be incomplete, these alterations constitute the biochemical hallmarks of apoptosis. Cells that fail to execute an apoptotic program in response to mitotic failure are likely to divide asymmetrically in the next round of cell division, with the consequent generation of aneuploid cells. This implies that disabling of the apoptotic program may actually favor chromosomal instability, through the suppression of mitotic catastrophe. Mitotic catastrophe thus may be conceived as a molecular device that prevents aneuploidization, which may participate in oncogenesis. Mitotic catastrophe is controlled by numerous molecular players, in particular, cell-cycle-specific kinases (such as the cyclin B1-dependent kinase Cdk1, polo-like kinases and Aurora kinases), cell-cycle checkpoint proteins, survivin, p53, caspases and members of the Bcl-2 family.

  20. Force and the spindle: Mechanical cues in mitotic spindle orientation

    PubMed Central

    Nestor-Bergmann, Alexander; Goddard, Georgina; Woolner, Sarah

    2014-01-01

    The mechanical environment of a cell has a profound effect on its behaviour, from dictating cell shape to driving the transcription of specific genes. Recent studies have demonstrated that mechanical forces play a key role in orienting the mitotic spindle, and therefore cell division, in both single cells and tissues. Whilst the molecular machinery that mediates the link between external force and the mitotic spindle remains largely unknown, it is becoming increasingly clear that this is a widely used mechanism which could prove vital for coordinating cell division orientation across tissues in a variety of contexts. PMID:25080021

  1. Hooke's figurations: a figural drawing attributed to Robert Hooke.

    PubMed

    Hunter, Matthew C

    2010-09-20

    The experimental philosopher Robert Hooke (1635-1703) is known to have apprenticed to the leading painter Peter Lely on his first arrival in London in the late 1640s. Yet the relevance of Hooke's artistic training to his mature draughtsmanship and identity has remained unclear. Shedding light on that larger interpretive problem, this article argues for the attribution to Hooke of a figural drawing now in Tate Britain (T10678). This attributed drawing is especially interesting because it depicts human subjects and bears Hooke's name functioning as an artistic signature, both highly unusual features for his draughtsmanship. From evidence of how this drawing was collected and physically placed alongside images by leading artists in the early eighteenth century, I suggest how it can offer new insight into the reception of Hooke and his graphic work in the early Enlightenment.

  2. Assessment and prognostic significance of mitotic index using the mitosis marker phospho-histone H3 in low and intermediate-grade infiltrating astrocytomas.

    PubMed

    Colman, Howard; Giannini, Caterina; Huang, Li; Gonzalez, Javier; Hess, Kenneth; Bruner, Janet; Fuller, Gregory; Langford, Lauren; Pelloski, Christopher; Aaron, Joann; Burger, Peter; Aldape, Ken

    2006-05-01

    Distinguishing between grade II and grade III diffuse astrocytomas is important both for prognosis and for treatment decision-making. However, current methods for distinguishing between grades based on proliferative potential are suboptimal, making identification of clear cutoffs difficult. In this study, we compared the results from immunohistochemical staining for phospho-histone H3 (pHH3), a specific marker of cells undergoing mitosis, with standard mitotic counts (number of mitoses/10 high-power fields) and MIB-1 labeling index values for assessing proliferative activity. We tested the relationship between pHH3 staining and tumor grade and prognosis in a retrospective series of grade II and III infiltrating astrocytomas from a single institution. The pHH3 index (per 1000 cells), MIB-1 index (per 1000 cells), and number of mitoses per 10 high-power fields were determined for each of 103 cases of grade II and III diffuse astrocytomas from patients with clinical follow-up. pHH3 staining was found to be a simple and reliable method for identifying mitotic figures, allowing a true mitotic index to be determined. The pHH3 mitotic index was significantly associated both with the standard mitotic count and with the MIB-1 index. Univariate analyses revealed that all 3 measurements of proliferation were significantly associated with survival. However, the pHH3 mitotic index accounted for a larger proportion of variability in survival than standard mitotic count or MIB-1/Ki-67 labeling index. After adjusting for age, extent of resection, and performance score, the pHH3 mitotic index remained an independent predictor of survival. Thus, pHH3 staining provides a simple and reliable method for quantifying proliferative potential and for the stratification of patients with diffuse astrocytomas into typical grade II and III groups. These results also suggest that pHH3 staining may be a useful method in other neoplasms in which accurate determination of proliferation potential

  3. Developmental abnormalities of the gonad and abnormal sex hormone concentrations in juvenile alligators from contaminated and control lakes in Florida.

    PubMed Central

    Guillette, L J; Gross, T S; Masson, G R; Matter, J M; Percival, H F; Woodward, A R

    1994-01-01

    The reproductive development of alligators from a contaminated and a control lake in central Florida was examined. Lake Apopka is adjacent to an EPA Superfund site, listed due to an extensive spill of dicofol and DDT or its metabolites. These compounds can act as estrogens. Contaminants in the lake also have been derived from extensive agricultural activities around the lake that continue today and a sewage treatment facility associated with the city of Winter Garden, Florida. We examined the hypothesis that an estrogenic contaminant has caused the current failure in recruitment of alligators on Lake Apopka. Supporting data include the following: At 6 months of age, female alligators from Lake Apopka had plasma estradiol-17 beta concentrations almost two times greater than normal females from the control lake, Lake Woodruff. The Apopka females exhibited abnormal ovarian morphology with large numbers of polyovular follicles and polynuclear oocytes. Male juvenile alligators had significantly depressed plasma testosterone concentrations comparable to levels observed in normal Lake Woodruff females but more than three times lower than normal Lake Woodruff males. Additionally, males from Lake Apopka had poorly organized testes and abnormally small phalli. The differences between lakes and sexes in plasma hormone concentrations of juvenile alligators remain even after stimulation with luteinizing hormone. Our data suggest that the gonads of juveniles from Lake Apopka have been permanently modified in ovo, so that normal steroidogenesis is not possible, and thus normal sexual maturation is unlikely. Images p680-a Figure 1. Figure 2. Figure 3. A Figure 3. B Figure 3. C Figure 4. A Figure 4. B Figure 4. C Figure 4. D Figure 5. A Figure 5. B Figure 5. C PMID:7895709

  4. PHOBOS Experiment: Figures and Data

    DOE Data Explorer

    The PHOBOS Collaboration

    PHOBOS consists of many silicon detectors surrounding the interaction region. With these detectors physicists can count the total number of produced particles and study the angular distributions of all the products. Physicists know from other branches of physics that a characteristic of phase transitions are fluctuations in physical observables. With the PHOBOS array they look for unusual events or fluctuations in the number of particles and angular distribution. The articles that have appeared in refereed science journals are listed here with separate links to the supporting data plots, figures, and tables of numeric data.  See also supporting data for articles in technical journals at http://www.phobos.bnl.gov/Publications/Technical/phobos_technical_publications.htm and from conference proceedings at http://www.phobos.bnl.gov/Publications/Proceedings/phobos_proceedings_publications.htm

  5. Finding Figurative Language in "The Phantom Tollbooth."

    ERIC Educational Resources Information Center

    Hinton, Lisa

    This lesson is an exploration of figurative language using the novel "The Phantom Tollbooth" and various Web resources. Students examine figurative language in the story and create a chart representing the literal and figurative meanings of words and phrases. During the four to eight 40-minute class sessions, middle school students will: read the…

  6. Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy.

    PubMed

    Giovinazzi, Serena; Bellapu, Dhruv; Morozov, Viacheslav M; Ishov, Alexander M

    2013-08-15

    Microtubule-poisoning drugs, such as Paclitaxel (or Taxol, PTX), are powerful and commonly used anti-neoplastic agents for the treatment of several malignancies. PTX triggers cell death, mainly through a mitotic arrest following the activation of the spindle assembly checkpoint (SAC). Cells treated with PTX slowly slip from this mitotic block and die by mitotic catastrophe. However, cancer cells can acquire or are intrinsically resistant to this drug, posing one of the main obstacles for PTX clinical effectiveness. In order to override PTX resistance and increase its efficacy, we investigated both the enhancement of mitotic slippage and the block of mitotic exit. To test these opposing strategies, we used physiological hyperthermia (HT) to force exit from PTX-induced mitotic block and the anaphase-promoting complex/cyclosome (APC/C) inhibitor, proTAME, to block mitotic exit. We observed that application of HT on PTX-treated cells forced mitotic slippage, as shown by the rapid decline of cyclin B levels and by microscopy analysis. Similarly, HT induced mitotic exit in cells blocked in mitosis by other antimitotic drugs, such as Nocodazole and the Aurora A inhibitor MLN8054, indicating a common effect of HT on mitotic cells. On the other hand, proTAME prevented mitotic exit of PTX and MLN8054 arrested cells, prolonged mitosis, and induced apoptosis. In addition, we showed that proTAME prevented HT-mediated mitotic exit, indicating that stress-induced APC/C activation is necessary for HT-induced mitotic slippage. Finally, HT significantly increased PTX cytotoxicity, regardless of cancer cells' sensitivity to PTX, and this activity was superior to the combination of PTX with pro-TAME. Our data suggested that forced mitotic exit of cells arrested in mitosis by anti-mitotic drugs, such as PTX, can be a more successful anticancer strategy than blocking mitotic exit by inactivation of the APC/C.

  7. Regulation of Aurora-A kinase on the mitotic spindle.

    PubMed

    Kufer, Thomas A; Nigg, Erich A; Silljé, Herman H W

    2003-12-01

    The error-free segregation of duplicated chromosomes during cell division is essential for the maintenance of an intact genome. This process is brought about by a highly dynamic bipolar array of microtubules, the mitotic spindle. The formation and function of the mitotic spindle during M-phase of the cell cycle is regulated by protein phosphorylation, involving multiple protein kinases and phosphatases. Prominent among the enzymes implicated in spindle assembly is the serine/threonine-specific protein kinase Aurora-A. In several common human tumors, Aurora-A is overexpressed, and deregulation of this kinase was shown to result in mitotic defects and aneuploidy. Moreover, recent genetic evidence directly links the human Aurora-A gene to cancer susceptibility. Several of the physiological substrates of Aurora-A presumably await identification, but recent studies are beginning to shed light on the regulation of this critical mitotic kinase. Here, we review these findings with particular emphasis on the role of TPX2, a prominent spindle component implicated in a Ran-GTP-mediated spindle assembly pathway.

  8. Cortical neurons gradually attain a post-mitotic state.

    PubMed

    Anda, Froylan Calderon de; Madabhushi, Ram; Rei, Damien; Meng, Jia; Gräff, Johannes; Durak, Omer; Meletis, Konstantinos; Richter, Melanie; Schwanke, Birgit; Mungenast, Alison; Tsai, Li-Huei

    2016-09-01

    Once generated, neurons are thought to permanently exit the cell cycle and become irreversibly differentiated. However, neither the precise point at which this post-mitotic state is attained nor the extent of its irreversibility is clearly defined. Here we report that newly born neurons from the upper layers of the mouse cortex, despite initiating axon and dendrite elongation, continue to drive gene expression from the neural progenitor tubulin α1 promoter (Tα1p). These observations suggest an ambiguous post-mitotic neuronal state. Whole transcriptome analysis of sorted upper cortical neurons further revealed that neurons continue to express genes related to cell cycle progression long after mitotic exit until at least post-natal day 3 (P3). These genes are however down-regulated thereafter, associated with a concomitant up-regulation of tumor suppressors at P5. Interestingly, newly born neurons located in the cortical plate (CP) at embryonic day 18-19 (E18-E19) and P3 challenged with calcium influx are found in S/G2/M phases of the cell cycle, and still able to undergo division at E18-E19 but not at P3. At P5 however, calcium influx becomes neurotoxic and leads instead to neuronal loss. Our data delineate an unexpected flexibility of cell cycle control in early born neurons, and describe how neurons transit to a post-mitotic state.

  9. GSK3 Regulates Mitotic Chromosomal Alignment through CRMP4

    PubMed Central

    Ong Tone, Stephan; Dayanandan, Bama

    2010-01-01

    Background Glycogen Synthase Kinase 3 (GSK3) has been implicated in regulating chromosomal alignment and mitotic progression but the physiological substrates mediating these GSK3-dependent effects have not been identified. Collapsin Response Mediator Protein 4 (CRMP4) is a cytosolic phosphoprotein known to regulate cytoskeletal dynamics and is a known physiological substrate of GSK3. In this study, we investigate the role of CRMP4 during mitosis. Methodology and Principal Findings Here we demonstrate that during mitosis CRMP4 phosphorylation is regulated in a GSK3-dependent manner. We show that CRMP4 localizes to spindle microtubules during mitosis and loss of CRMP4 disrupts chromosomal alignment and mitotic progression. The effect of CRMP4 on chromosomal alignment is dependent on phosphorylation by GSK3 identifying CRMP4 as a critical GSK3 substrate during mitotic progression. We also provide mechanistic data demonstrating that CRMP4 regulates spindle microtubules consistent with its known role in the regulation of the microtubule cytoskeleton. Conclusion and Significance Our findings identify CRMP4 as a key physiological substrate of GSK3 in regulating chromosomal alignment and mitotic progression through its effect on spindle microtubules. PMID:21179545

  10. LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs.

    PubMed

    Po'uha, S T; Shum, M S Y; Goebel, A; Bernard, O; Kavallaris, M

    2010-01-28

    LIM-kinase 2 (LIMK2) belongs to the LIMK family of proteins, which comprises LIMK1 and LIMK2. Both proteins regulate actin polymerization through phosphorylation and inactivation of the actin depolymerizing factor cofilin. In this study, we show that the level of LIMK2 protein is increased in neuroblastoma, BE(2)-C cells, selected for resistance to microtubule-destabilizing agents, vincristine and colchicine. However, the level of phosphorylated LIMK1 and LIMK2 was similar in the resistant and parental BE(2)-C cells. In contrast, the level of phospho-cofilin was greatly increased in the drug-resistant cells. Downregulation of LIMK2 expression increases sensitivity of neuroblastoma SH-EP cells to vincristine and vinblastine but not to microtubule-stabilizing agents, while it's overexpression increased its resistance to vincristine. Its vincristine-induced mitotic arrest was moderately inhibited in the LIMK2 knockdown cells, suggesting that the increased drug sensitivity is through an alternative mechanism other then mitotic arrest and apoptosis. Moreover, downregulation of LIMK2 expression induces formation of abnormal mitotic spindles, an effect enhanced in the presence of microtubule-destabilizing agents. LIMK2 is important for normal mitotic spindle formation and altered LIMK2 expression mediates sensitivity to microtubule destabilizing agents. These findings suggest that inhibition of LIMK2 activity may be used for the treatment of tumors resistant to microtubule-destabilizing drugs.

  11. Cytotoxic effects of cylindrospermopsin in mitotic and non-mitotic Vicia faba cells.

    PubMed

    Garda, Tamás; Riba, Milán; Vasas, Gábor; Beyer, Dániel; M-Hamvas, Márta; Hajdu, Gréta; Tándor, Ildikó; Máthé, Csaba

    2015-02-01

    Cylindrospermopsin (CYN) is a cyanobacterial toxin known as a eukaryotic protein synthesis inhibitor. We aimed to study its effects on growth, stress responses and mitosis of a eukaryotic model, Vicia faba (broad bean). Growth responses depended on exposure time (3 or 6d), cyanotoxin concentration, culture conditions (dark or continuous light) and V. faba cultivar ("Standard" or "ARC Egypt Cross"). At 6d of exposure, CYN had a transient stimulatory effect on root system growth, roots being possibly capable of detoxification. The toxin induced nucleus fragmentation, blebbing and chromosomal breaks indicating double stranded DNA breaks and programmed cell death. Root necrotic tissue was observed at 0.1-20 μg mL(-1) CYN that probably impeded toxin uptake into vascular tissue. Growth and cell death processes observed were general stress responses. In lateral root tip meristems, lower CYN concentrations (0.01-0.1 μg mL(-1)) induced the stimulation of mitosis and distinct mitotic phases, irrespective of culture conditions or the cultivar used. Higher cyanotoxin concentrations inhibited mitosis. Short-term exposure of hydroxylurea-synchronized roots to 5 μg mL(-1) CYN induced delay of mitosis that might have been related to a delay of de novo protein synthesis. CYN induced the formation of double, split and asymmetric preprophase bands (PPBs), in parallel with the alteration of cell division planes, related to the interference of cyanotoxin with protein synthesis, thus it was a plant- and CYN specific alteration.

  12. Mechanism of APC/CCDC20 activation by mitotic phosphorylation

    PubMed Central

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G.; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A.; Brunner, Michael R.; Davidson, Iain F.; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2016-01-01

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  13. Modelling the mitotic apparatus. From the discovery of the bipolar spindle to modern concepts.

    PubMed

    Gourret, J P

    1995-06-01

    This bibliographical review of the modelling of the mitotic apparatus covers a period of one hundred and twenty years, from the discovery of the bipolar mitotic spindle up to the present day. Without attempting to be fully comprehensive, it will describe the evolution of the main ideas that have left their mark on a century of experimental and theoretical research. Fol and Bütschli's first writings date back to 1873, at a time when Schleiden and Schwann's cell theory was rapidly gaining ground throughout Germany. Both mitosis and chromosomes were to be discovered within the space of thirty years, along with the two key events in the animal and plant reproductive cycle, namely fecondation and meiosis. The mitotic pole, a term still in use to this day, was employed to describe a morphological fact which was noted as early as 1876, namely that the lines and the dots of the karyokinetic figure, with its spindle and asters, looks remarkably like the lines of force around a bar magnet. This was to lead to models designed to explain the movements of chromosomes which take place when the cell nucleus appears to cease to exist as an organelle during mitosis. The nature of those mechanisms and the origin of the forces behind the chromosomes' ordered movements were central to the debate. Auguste Prenant, in a remarkable bibliographical synthesis published in 1910, summed up the opposing viewpoints of the 'vitalists', on the one hand, who favoured the theory of contractility or extensility in spindle fibres, and of those who believed in models based on physical phenomena, on the other. The latter subdivided into two groups: some, like Bütschli, Rhumbler or Leduc, referred to diffusion, osmosis and superficial tension, whilst the others, led by Gallardo and Hartog, focussed on the laws of electromagnetism. Lillie, Kuwada and Darlington followed up this line of research. The mid-20th century was a major turning point. Most of the modelling mentioned above was criticized and

  14. Mitotic Index Determined by Phosphohistone H3 Immunohistochemistry for Precise Grading in Follicular Lymphoma.

    PubMed

    Bedekovics, Judit; Irsai, Gábor; Hegyi, Katalin; Beke, Lívia; Krenács, László; Gergely, Lajos; Méhes, Gábor

    2016-12-16

    The World Health Organization classification recommends follicular lymphoma (FL) grading (G1-3) by considering centroblast number, while also suggesting its influence on disease outcome. As centroblast counting and other proliferation markers have limitations, we looked for more specific measures of cellular activity in FL. Phosphorylated histone H3 (pHH3) was widely applied for the objective detection of mitotic activity in different tumors. The aim was to evaluate the utility of pHH3 protein in FL grading and compare its value with the classical features of cell proliferation. Representative samples from 48 FL patients and 9 samples with follicular hyperplasia were examined. Hematoxylin-eosin-based mitosis index (HE-MI), number of mitotic figures based on anti-pHH3 immunohistochemical staining (pHH3-MI), and percentage of Ki-67-positive cells [proliferation index (PI)] were determined and compared with centroblast-based histologic grade. PHH3-MI showed significant correlation with HE-MI (r=0.85, P<0.0001) and PI (r=0.84, P<0.0001). All 3 cell proliferation parameters showed significant correlation with histologic grade: HE-MI versus grade, r=0.85 (P<0.0001); PI versus grade, r=0.74 (P<0.0001); pHH3-MI versus grade, r=0.80 (P<0.0001). PHH3-MI showed continuous increase with the histologic grade. The pHH3-MI value was distinctive between the G2 and the G1 FL groups (P<0.0001) and was increased in G3 FL compared with that in the G2 FL group (P=0.0020). In conclusion, easy-to-perform mitotic counting following phosphohistone H3 immunohistochemistry (pHH3-MI) correlates well with centroblast-based grading. PHH3 immunohistochemistry offers a reliable quantification tool supporting lymphoma grading and can be recommended as an additional parameter for the precise subcategorization of FL cases.

  15. Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage.

    PubMed

    Tao, Weikang; South, Victoria J; Zhang, Yun; Davide, Joseph P; Farrell, Linda; Kohl, Nancy E; Sepp-Lorenzino, Laura; Lobell, Robert B

    2005-07-01

    The inhibition of KSP causes mitotic arrest by activating the spindle assembly checkpoint. While transient inhibition of KSP leads to reversible mitotic arrest, prolonged exposure to a KSP inhibitor induces apoptosis. Induction of apoptosis by the KSP inhibitor couples with mitotic slippage. Slippage-refractory cells show resistance to KSP inhibitor-mediated lethality, whereas promotion of slippage after mitotic arrest enhances apoptosis. However, attenuation of the spindle checkpoint confers resistance to KSP inhibitor-induced apoptosis. Furthermore, sustained KSP inhibition activates the proapoptotic protein, Bax, and both activation of the spindle checkpoint and subsequent mitotic slippage are required for Bax activation. These studies indicate that in response to KSP inhibition, activation of the spindle checkpoint followed by mitotic slippage initiates apoptosis by activating Bax.

  16. Pharicin A, a novel natural ent-kaurene diterpenoid, induces mitotic arrest and mitotic catastrophe of cancer cells by interfering with BubR1 function.

    PubMed

    Xu, Han-Zhang; Huang, Ying; Wu, Ying-Li; Zhao, Yong; Xiao, Wei-Lie; Lin, Qi-Shan; Sun, Han-Dong; Dai, Wei; Chen, Guo-Qiang

    2010-07-15

    In this study, we report the functional characterization of a new ent-kaurene diterpenoid termed pharicin A, which was originally isolated from Isodon, a perennial shrub frequently used in Chinese folk medicine for tumor treatment. Pharicin A induces mitotic arrest in leukemia and solid tumor-derived cells identified by their morphology, DNA content and mitotic marker analyses. Pharicin A-induced mitotic arrest is associated with unaligned chromosomes, aberrant BubR1 localization and deregulated spindle checkpoint activation. Pharicin A directly binds to BubR1 in vitro, which is correlated with premature sister chromatid separation in vivo. Pharicin A also induces mitotic arrest in paclitaxel-resistant Jurkat and U2OS cells. Combined, our study strongly suggests that pharicin A represents a novel class of small molecule compounds capable of perturbing mitotic progression and initiating mitotic catastrophe, which merits further preclinical and clinical investigations for cancer drug development.

  17. Control of Mitotic Spindle Position by the Saccharomyces cerevisiae Formin Bni1p

    PubMed Central

    Lee, Laifong; Klee, Saskia K.; Evangelista, Marie; Boone, Charles; Pellman, David

    1999-01-01

    Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Δ cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Δ cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation. PMID:10085293

  18. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  19. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  20. Curcumin affects components of the chromosomal passenger complex and induces mitotic catastrophe in apoptosis-resistant Bcr-Abl-expressing cells.

    PubMed

    Wolanin, Kamila; Magalska, Adriana; Mosieniak, Grazyna; Klinger, Rut; McKenna, Sharon; Vejda, Susanne; Sikora, Ewa; Piwocka, Katarzyna

    2006-07-01

    The Bcr-Abl oncoprotein plays a major role in the development and progression of chronic myeloid leukemia and is a determinant of chemotherapy resistance occurring during the blast crisis phase of the disease. The aim of this article was to investigate the possibility of combating the resistance to apoptosis caused by Bcr-Abl by inducing an alternative cell death process. As a model of chronic myeloid leukemia, we employed Bcr-Abl-transfected mouse progenitor 32D cells with low and high Bcr-Abl expression levels corresponding to drug-sensitive and drug-resistant cells, respectively. The drug curcumin (diferuloylmethane), a known potent inducer of cell death in many cancer cells, was investigated for efficacy with Bcr-Abl-expressing cells. Curcumin strongly inhibited cell proliferation and affected cell viability by inducing apoptotic symptoms in all tested cells; however, apoptosis was a relatively late event. G(2)-M cell cycle arrest, together with increased mitotic index and cellular and nuclear morphology resembling those described for mitotic catastrophe, was observed and preceded caspase-3 activation and DNA fragmentation. Mitosis-arrested cells displayed abnormal chromatin organization, multipolar chromosome segregation, aberrant cytokinesis, and multinucleated cells-morphologic changes typical of mitotic catastrophe. We found that the mitotic cell death symptoms correlated with attenuated expression of survivin, a member of the chromosomal passenger complex, and mislocalization of Aurora B, the partner of survivin in the chromosomal passenger complex. Inhibition of survivin expression with small interfering RNA exhibited similar mitotic disturbances, thus implicating survivin as a major, albeit not the only, target for curcumin action. This study shows that curcumin can overcome the broad resistance to cell death caused by expression of Bcr-Abl and suggests that curcumin may be a promising agent for new combination regimens for drug-resistant chronic myeloid

  1. Recommended reference figures for geophysics and geodesy

    NASA Technical Reports Server (NTRS)

    Khan, M. A.; Okeefe, J. A.

    1973-01-01

    Specific reference figures are recommended for consistent use in geophysics and geodesy. The selection of appropriate reference figure for geophysical studies suggests a relationship between the Antarctic negative gravity anomaly and the great shrinkage of the Antarctic ice cap about 4-5 million years ago. The depression of the south polar regions relative to the north polar regions makes the Southern Hemisphere flatter than the Northern Hemisphere, thus producing the third harmonic (pear-shaped) contribution to the earth's figure.

  2. Incomplete figure perception and invisible masking.

    PubMed

    Chikhman, Valery; Shelepin, Yuri; Foreman, Nigel; Merkuljev, Aleksey; Pronin, Sergey

    2006-01-01

    The Gollin test (measuring recognition thresholds for fragmented line drawings of everyday objects and animals) has traditionally been regarded as a test of incomplete figure perception or 'closure', though there is a debate about how such closure is achieved. Here, figural incompleteness is considered to be the result of masking, such that absence of contour elements of a fragmented figure is the result of the influence of an 'invisible' mask. It is as though the figure is partly obscured by a mask having parameters identical to those of the background. This mask is 'invisible' only consciously, but for the early stages of visual processing it is real and has properties of multiplicative noise. Incomplete Gollin figures were modeled as the figure covered by the mask with randomly distributed transparent and opaque patches. We adjusted the statistical characteristics of the contour image and empty noise patches and processed those using spatial and spatial-frequency measures. Across 73 figures, despite inter-subject variability, mean recognition threshold was always approximately 15% of total contour in naive observers. Recognition worsened with increasing spectral similarity between the figure and the 'invisible' mask. Near threshold, the spectrum of the fragmented image was equally similar to that of the 'invisible' mask and complete image. The correlation between spectral parameters of figures at threshold and complete figures was greatest for figures that were most easily recognised. Across test sessions, thresholds reduced when either figure or mask parameters were familiar. We argue that recognition thresholds for Gollin stimuli in part reflect the extraction of signal from noise.

  3. Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms

    PubMed Central

    Yamada, Moé; Goshima, Gohta

    2017-01-01

    In textbooks, the mitotic spindles of plants are often described separately from those of animals. How do they differ at the molecular and mechanistic levels? In this chapter, we first outline the process of mitotic spindle assembly in animals and land plants. We next discuss the conservation of spindle assembly factors based on database searches. Searches of >100 animal spindle assembly factors showed that the genes involved in this process are well conserved in plants, with the exception of two major missing elements: centrosomal components and subunits/regulators of the cytoplasmic dynein complex. We then describe the spindle and phragmoplast assembly mechanisms based on the data obtained from robust gene loss-of-function analyses using RNA interference (RNAi) or mutant plants. Finally, we discuss future research prospects of plant spindles. PMID:28125061

  4. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  5. Analysis of the Functionality of the Mitotic Checkpoints.

    PubMed

    Fraschini, Roberta

    2017-01-01

    During cell division the main goal of the cell is to produce two daughter cells with the same genome as the mother, i.e., maintain its genetic stability. Since this issue is essential to preserve the cell ability to proliferate properly, all eukaryotic cells have developed several pathways, called mitotic checkpoints, that regulate mitotic entry, progression, and exit in response to different cellular signals. Given the evolutive conservation of mechanisms and proteins involved in the cell cycle control from yeast to humans, the budding yeast S. cerevisiae has been very helpful to gain insight in these complex regulations. Here, we describe how the checkpoint can be activated and which cellular phenotypes can be used as markers of checkpoint activation.

  6. A comprehensive model to predict mitotic division in budding yeasts

    PubMed Central

    Sutradhar, Sabyasachi; Yadav, Vikas; Sridhar, Shreyas; Sreekumar, Lakshmi; Bhattacharyya, Dibyendu; Ghosh, Santanu Kumar; Paul, Raja; Sanyal, Kaustuv

    2015-01-01

    High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division. PMID:26310442

  7. Mitotic exit: Determining the PP2A dephosphorylation program.

    PubMed

    Pereira, Gislene; Schiebel, Elmar

    2016-08-29

    In mitotic exit, proteins that were highly phosphorylated are sequentially targeted by the phosphatase PP2A-B55, but what underlies substrate selection is unclear. In this issue, Cundell et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201606033) identify the determinants of PP2A-B55's dephosphorylation program, thereby influencing spindle disassembly, nuclear envelope reformation, and cytokinesis.

  8. Mitotic exit: Determining the PP2A dephosphorylation program

    PubMed Central

    2016-01-01

    In mitotic exit, proteins that were highly phosphorylated are sequentially targeted by the phosphatase PP2A-B55, but what underlies substrate selection is unclear. In this issue, Cundell et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201606033) identify the determinants of PP2A-B55’s dephosphorylation program, thereby influencing spindle disassembly, nuclear envelope reformation, and cytokinesis. PMID:27551057

  9. Mitotic activity in dorsal epidermis of Rana pipiens.

    NASA Technical Reports Server (NTRS)

    Garcia-Arce, H.; Mizell, S.

    1972-01-01

    Study of statistically significant rhythms of mitotic division in dorsal epidermis of frogs, Rana pipiens, exposed to a 12:12 light:dark environment for 14 days. The results include the findings that (1) male animals have a primary period of 22 hr in summer and 18 hr in winter, (2) female animals have an 18 hr period, and (3) parapinealectomy and blinding abolish the rhythm.

  10. Cyto-3D-print to attach mitotic cells.

    PubMed

    Castroagudin, Michelle R; Zhai, Yujia; Li, Zhi; Marnell, Michael G; Glavy, Joseph S

    2016-08-01

    The Cyto-3D-print is an adapter that adds cytospin capability to a standard centrifuge. Like standard cytospinning, Cyto-3D-print increases the surface attachment of mitotic cells while giving a higher degree of adaptability to other slide chambers than available commercial devices. The use of Cyto-3D-print is cost effective, safe, and applicable to many slide designs. It is durable enough for repeated use and made of biodegradable materials for environment-friendly disposal.

  11. Pattern formation in stochastic systems: Magnetized billiards and mitotic spindles

    NASA Astrophysics Data System (ADS)

    Schaffner, Stuart C.

    Physical systems that exhibit chaotic behavior or are subject to thermal noise are treated as random processes, especially if the state of the system cannot be measured precisely. Here we examine two such systems. The first is a single electron confined to a wedge-shaped section of a disk, called a billiard, in the presence of a uniform transverse magnetic field. The system exhibits a mixture of chaotic and nonchaotic behavior at different values of the magnetic field strength. If the size of the billiard is on the order of micrometers, as in a quantum dot, both quantum and classical analyses are necessary. The second system is a collection of stiff fibers, called microtubules, suspended in a fluid called the cytoplasm, and lying over chromosomes in a cell. The cytoplasm supplies molecular motors and fuel for the motors. The chromosomes supply motor attachment points. The combination causes the microtubules to self-assemble into a coherent structure called the mitotic spindle. This structure is vital to cell division in plants and animals. Elements of the mitotic spindle have sizes ranging from nanometers to micrometers, and all are subject to considerable thermal agitation. Mitotic spindle self-assembly occurs despite the randomizing effect of this thermal motion. We studied both systems by constructing physical models described by mathematical equations. From these we were able to perform computer simulations. For the billiard problem, we made innovative use of geometric symmetries. These symmetries allowed us to construct efficient representations of both classical and quantum systems. We found a new region of integrable trajectories for a magnetic field above that required to produce completely chaotic orbits. For the mitotic spindle, we were the first to demonstrate spindle self-assembly in a model that matches conditions reported by experimental biologists. Our simulations have shed significant light on which of the many elements in this complex system are

  12. Figure-ground assignment in pigeons: evidence for a figural benefit.

    PubMed

    Lazareva, Olga E; Castro, Leyre; Vecera, Shaun P; Wasserman, Edward A

    2006-07-01

    Four pigeons discriminated whether a target spot appeared on a colored figural shape or on a differently colored background by first pecking the target and then reporting its location: on the figure or the background. We recorded three dependent variables: target detection time, choice response time, and choice accuracy. The birds were faster to detect the target, to report its location, and to learn the correct response on figure trials than on background trials. Later tests suggested that the pigeons might have attended to the figural region as a whole rather than using local properties in performing the figure-background discrimination. The location of the figural region did not affect figure-ground assignment. Finally, when 4 other pigeons had to detect and peck the target without making a choice report, no figural advantage emerged in target detection time, suggesting that the birds' attention may not have been automatically summoned to the figural region.

  13. A roller coaster ride with the mitotic cyclins.

    PubMed

    Fung, Tsz Kan; Poon, Randy Y C

    2005-06-01

    Cyclins are discovered as proteins that accumulate progressively through interphase and disappear abruptly at mitosis during each cell cycle. In mammalian cells, cyclin A accumulates from late G1 phase and is destroyed before metaphase, and cyclin B is destroyed slightly later at anaphase. The abundance of the mitotic cyclins is mainly regulated at the levels of transcription and proteolysis. Transcription is stimulated and repressed by several transcription factors, including B-MYB, E2F, FOXM1, and NF-Y. Elements in the promoter, including CCRE/CDE and CHR, are in part responsible for the cell cycle oscillation of transcription. Destruction of the mitotic cyclins is carried out by the ubiquitin ligases APC/C(CDC20) and APC/C(CDH1). Central to our knowledge is the understanding of how APC/C is turned on from anaphase to early G1 phase, and turned off from late G1 till the spindle-assembly checkpoint is deactivated in metaphase. Reciprocal actions of cyclin-dependent kinases (CDKs) on APC/C, as well as on the SCF complexes ensure that the mitotic cyclins are destroyed only at the proper time.

  14. Distinct Kinesin-14 mitotic mechanisms in spindle bipolarity.

    PubMed

    Simeonov, Dimitre R; Kenny, Katelyn; Seo, Lan; Moyer, Amanda; Allen, Jessica; Paluh, Janet L

    2009-11-01

    Kinesin-like proteins are integral to formation and function of a conserved mitotic spindle apparatus that directs chromosome segregation and precedes cell division. Ubiquitous to the mechanism of spindle assembly and stability are balanced Kinesin-5 promoting and Kinesin-14 opposing forces. Distinct Kinesin-14 roles in bipolarity in eukaryotes have not been shown, but are suggested by gamma-tubulin-based pole interactions that affect establishment and by microtubule cross-linking and sliding that maintain bipolarity and spindle length. Distinct roles also imply specialized functional domains. By cross-species analysis of compatible mechanisms in establishing mitotic bipolarity we demonstrate that Kinesin-14 human HSET (HsHSET) functionally replaces Schizosaccharomyces pombe Pkl1 and its action is similarly blocked by mutation in a Kinesin-14 binding site on gamma-tubulin. Drosophila DmNcd localizes preferentially to bundled interpolar microtubules in fission yeast and does not replace SpPkl1. Analysis of twenty-six Kinesin-14 derivatives, including Tail, Stalk or Neck-Motor chimeras, for spindle localization, spindle assembly and mitotic progression defined critical domains. The Tail of SpPkl1 contains functional elements enabling its role in spindle assembly that are distinct from but transferable to DmNcd, whereas HsHSET function utilizes both Tail and Stalk features. Our analysis is the first to demonstrate distinct mechanisms between SpPkl1 and DmNcd, and reveal that HsHSET shares functional overlap in spindle pole mechanisms.

  15. On the molecular mechanisms of mitotic kinase activation

    PubMed Central

    Bayliss, Richard; Fry, Andrew; Haq, Tamanna; Yeoh, Sharon

    2012-01-01

    During mitosis, human cells exhibit a peak of protein phosphorylation that alters the behaviour of a significant proportion of proteins, driving a dramatic transformation in the cell's shape, intracellular structures and biochemistry. These mitotic phosphorylation events are catalysed by several families of protein kinases, including Auroras, Cdks, Plks, Neks, Bubs, Haspin and Mps1/TTK. The catalytic activities of these kinases are activated by phosphorylation and through protein–protein interactions. In this review, we summarize the current state of knowledge of the structural basis of mitotic kinase activation mechanisms. This review aims to provide a clear and comprehensive primer on these mechanisms to a broad community of researchers, bringing together the common themes, and highlighting specific differences. Along the way, we have uncovered some features of these proteins that have previously gone unreported, and identified unexplored questions for future work. The dysregulation of mitotic kinases is associated with proliferative disorders such as cancer, and structural biology will continue to play a critical role in the development of chemical probes used to interrogate disease biology and applied to the treatment of patients. PMID:23226601

  16. Toward a systems-level view of mitotic checkpoints.

    PubMed

    Ibrahim, Bashar

    2015-03-01

    Reproduction and natural selection are the key elements of life. In order to reproduce, the genetic material must be doubled, separated and placed into two new daughter cells, each containing a complete set of chromosomes and organelles. In mitosis, transition from one process to the next is guided by intricate surveillance mechanisms, known as the mitotic checkpoints. Dis-regulation of cell division through checkpoint malfunction can lead to developmental defects and contribute to the development or progression of tumors. This review approaches two important mitotic checkpoints, the spindle assembly checkpoint (SAC) and the spindle position checkpoint (SPOC). The highly conserved spindle assembly checkpoint (SAC) controls the onset of anaphase by preventing premature segregation of the sister chromatids of the duplicated genome, to the spindle poles. In contrast, the spindle position checkpoint (SPOC), in the budding yeast Saccharomyces cerevisiae, ensures that during asymmetric cell division mitotic exit does not occur until the spindle is properly aligned with the cell polarity axis. Although there are no known homologs, there is indication that functionally similar checkpoints exist also in animal cells. This review can be regarded as an "executable model", which could be easily translated into various quantitative concrete models like Petri nets, ODEs, PDEs, or stochastic particle simulations. It can also function as a base for developing quantitative models explaining the interplay of the various components and proteins controlling mitosis.

  17. On the molecular mechanisms of mitotic kinase activation.

    PubMed

    Bayliss, Richard; Fry, Andrew; Haq, Tamanna; Yeoh, Sharon

    2012-11-01

    During mitosis, human cells exhibit a peak of protein phosphorylation that alters the behaviour of a significant proportion of proteins, driving a dramatic transformation in the cell's shape, intracellular structures and biochemistry. These mitotic phosphorylation events are catalysed by several families of protein kinases, including Auroras, Cdks, Plks, Neks, Bubs, Haspin and Mps1/TTK. The catalytic activities of these kinases are activated by phosphorylation and through protein-protein interactions. In this review, we summarize the current state of knowledge of the structural basis of mitotic kinase activation mechanisms. This review aims to provide a clear and comprehensive primer on these mechanisms to a broad community of researchers, bringing together the common themes, and highlighting specific differences. Along the way, we have uncovered some features of these proteins that have previously gone unreported, and identified unexplored questions for future work. The dysregulation of mitotic kinases is associated with proliferative disorders such as cancer, and structural biology will continue to play a critical role in the development of chemical probes used to interrogate disease biology and applied to the treatment of patients.

  18. Cbx2 stably associates with mitotic chromosomes via a PRC2- or PRC1-independent mechanism and is needed for recruiting PRC1 complex to mitotic chromosomes.

    PubMed

    Zhen, Chao Yu; Duc, Huy Nguyen; Kokotovic, Marko; Phiel, Christopher J; Ren, Xiaojun

    2014-11-15

    Polycomb group (PcG) proteins are epigenetic transcriptional factors that repress key developmental regulators and maintain cellular identity through mitosis via a poorly understood mechanism. Using quantitative live-cell imaging in mouse ES cells and tumor cells, we demonstrate that, although Polycomb repressive complex (PRC) 1 proteins (Cbx-family proteins, Ring1b, Mel18, and Phc1) exhibit variable capacities of association with mitotic chromosomes, Cbx2 overwhelmingly binds to mitotic chromosomes. The recruitment of Cbx2 to mitotic chromosomes is independent of PRC1 or PRC2, and Cbx2 is needed to recruit PRC1 complex to mitotic chromosomes. Quantitative fluorescence recovery after photobleaching analysis indicates that PRC1 proteins rapidly exchange at interphasic chromatin. On entry into mitosis, Cbx2, Ring1b, Mel18, and Phc1 proteins become immobilized at mitotic chromosomes, whereas other Cbx-family proteins dynamically bind to mitotic chromosomes. Depletion of PRC1 or PRC2 protein has no effect on the immobilization of Cbx2 on mitotic chromosomes. We find that the N-terminus of Cbx2 is needed for its recruitment to mitotic chromosomes, whereas the C-terminus is required for its immobilization. Thus these results provide fundamental insights into the molecular mechanisms of epigenetic inheritance.

  19. AIBp regulates mitotic entry and mitotic spindle assembly by controlling activation of both Aurora-A and Plk1.

    PubMed

    Chou, Chia-Hua; Loh, Joon-Khim; Yang, Ming-Chang; Lin, Ching-Chih; Hong, Ming-Chang; Cho, Chung-Lung; Chou, An-Kuo; Wang, Chi-Huei; Lieu, Ann-Shung; Howng, Shen-Long; Hsu, Ching-Mei; Hong, Yi-Ren

    2015-01-01

    We previously reported that Aurora-A and the hNinein binding protein AIBp facilitate centrosomal structure maintenance and contribute to spindle formation. Here, we report that AIBp also interacts with Plk1, raising the possibility of functional similarity to Bora, which subsequently promotes Aurora-A-mediated Plk1 activation at Thr210 as well as Aurora-A activation at Thr288. In kinase assays, AIBp acts not only as a substrate but also as a positive regulator of both Aurora-A and Plk1. However, AIBp functions as a negative regulator to block phosphorylation of hNinein mediated by Aurora-A and Plk1. These findings suggest a novel AIBp-dependent regulatory machinery that controls mitotic entry. Additionally, knockdown of hNinein caused failure of AIBp to target the centrosome, whereas depletion of AIBp did not affect the localization of hNinein and microtubule nucleation. Notably, knockdown of AIBp in HeLa cells impaired both Aurora-A and Plk1 kinase, resulting in phenotypes with multiple spindle pole formation and chromosome misalignment. Our data show that depletion of AIBp results in the mis-localization of TACC3 and ch-TOG, but not CEP192 and CEP215, suggesting that loss of AIBp dominantly affects the Aurora-A substrate to cause mitotic aberrations. Collectively, our data demonstrate that AIBp contributes to mitotic entry and bipolar spindle assembly and may partially control localization, phosphorylation, and activation of both Aurora-A and Plk1 via hNinein during mitotic progression.

  20. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  1. Hsp72 is targeted to the mitotic spindle by Nek6 to promote K-fiber assembly and mitotic progression.

    PubMed

    O'Regan, Laura; Sampson, Josephina; Richards, Mark W; Knebel, Axel; Roth, Daniel; Hood, Fiona E; Straube, Anne; Royle, Stephen J; Bayliss, Richard; Fry, Andrew M

    2015-05-11

    Hsp70 proteins represent a family of chaperones that regulate cellular homeostasis and are required for cancer cell survival. However, their function and regulation in mitosis remain unknown. In this paper, we show that the major inducible cytoplasmic Hsp70 isoform, Hsp72, is required for assembly of a robust bipolar spindle capable of efficient chromosome congression. Mechanistically, Hsp72 associates with the K-fiber-stabilizing proteins, ch-TOG and TACC3, and promotes their interaction with each other and recruitment to spindle microtubules (MTs). Targeting of Hsp72 to the mitotic spindle is dependent on phosphorylation at Thr-66 within its nucleotide-binding domain by the Nek6 kinase. Phosphorylated Hsp72 concentrates on spindle poles and sites of MT-kinetochore attachment. A phosphomimetic Hsp72 mutant rescued defects in K-fiber assembly, ch-TOG/TACC3 recruitment and mitotic progression that also resulted from Nek6 depletion. We therefore propose that Nek6 facilitates association of Hsp72 with the mitotic spindle, where it promotes stable K-fiber assembly through recruitment of the ch-TOG-TACC3 complex.

  2. Occipital network for figure/ground organization.

    PubMed

    Likova, Lora T; Tyler, Christopher W

    2008-08-01

    To study the cortical mechanism of figure/ground categorization in the human brain, we employed fMRI and the temporal-asynchrony paradigm. This paradigm is able to eliminate any differential activation for local stimulus features, and thus to identify only global perceptual interactions. Strong segmentation of the image into different spatial configurations was generated solely from temporal asynchronies between zones of homogeneous dynamic noise. The figure/ground configuration was a single geometric figure enclosed in a larger surround region. In a control condition, the figure/ground organization was eliminated by segmenting the noise field into many identical temporal-asynchrony stripes. The manipulation of the type of perceptual organization triggered dramatic reorganization in the cortical activation pattern. The figure/ground configuration generated suppression of the ground representation (limited to early retinotopic visual cortex, V1 and V2) and strong activation in the motion complex hMT+/V5+; conversely, both responses were abolished when the figure/ground organization was eliminated. These results suggest that figure/ground processing is mediated by top-down suppression of the ground representation in the earliest visual areas V1/V2 through a signal arising in the motion complex. We propose a model of a recurrent cortical architecture incorporating suppressive feedback that operates in a topographic manner, forming a figure/ground categorization network distinct from that for "pure" scene segmentation and thus underlying the perceptual organization of dynamic scenes into cognitively relevant components.

  3. Feature Assignment in Perception of Auditory Figure

    ERIC Educational Resources Information Center

    Gregg, Melissa K.; Samuel, Arthur G.

    2012-01-01

    Because the environment often includes multiple sounds that overlap in time, listeners must segregate a sound of interest (the auditory figure) from other co-occurring sounds (the unattended auditory ground). We conducted a series of experiments to clarify the principles governing the extraction of auditory figures. We distinguish between auditory…

  4. Key Figures on Vocational Education and Training.

    ERIC Educational Resources Information Center

    Mossoux, Anne France, Ed.

    This brochure identifies key figures on vocational education and training (VET) and VET-related topics in Europe using harmonized data from Eurostat. Throughout, figures of candidate countries are compared to those of European Union (EU) member states. Background information on the education and training systems is as follows: increasing numbers…

  5. "Blessed": Musical Talent, Smartness, & Figured Identities

    ERIC Educational Resources Information Center

    Hoffman, Adria R.

    2015-01-01

    The purpose of this study is to explore smartness and talent as social constructs. Drawing on Holland et al.'s (1998) figured identities, this article explores the figuring of abilities by elucidating the voices of African American high school chorus students. Critical Race Theory (CRT) helps to unpack normalized language and practices that…

  6. Automatic figure classification in bioscience literature.

    PubMed

    Kim, Daehyun; Ramesh, Balaji Polepalli; Yu, Hong

    2011-10-01

    Millions of figures appear in biomedical articles, and it is important to develop an intelligent figure search engine to return relevant figures based on user entries. In this study we report a figure classifier that automatically classifies biomedical figures into five predefined figure types: Gel-image, Image-of-thing, Graph, Model, and Mix. The classifier explored rich image features and integrated them with text features. We performed feature selection and explored different classification models, including a rule-based figure classifier, a supervised machine-learning classifier, and a multi-model classifier, the latter of which integrated the first two classifiers. Our results show that feature selection improved figure classification and the novel image features we explored were the best among image features that we have examined. Our results also show that integrating text and image features achieved better performance than using either of them individually. The best system is a multi-model classifier which combines the rule-based hierarchical classifier and a support vector machine (SVM) based classifier, achieving a 76.7% F1-score for five-type classification. We demonstrated our system at http://figureclassification.askhermes.org/.

  7. Detector array evaluation and figures of merit

    NASA Technical Reports Server (NTRS)

    Dereniak, Eustace L.

    1990-01-01

    The commonly used methods to evaluate the performance of a two-dimensional focal-plane array using charge transfer devices are reviewed. Two figures of merit that attempt to combine quantum efficiency, read noise and dark-current generation into a single parameter are discussed. The figures of merit are suggested as possible alternatives to the D asterisk.

  8. Analysis of That Mysterious Figure 8

    ERIC Educational Resources Information Center

    Leyden, Michael B.

    1974-01-01

    Presents a quantitative analysis of the "figure 8" found on the globes of most earth science textbooks, using an exercise of year's eccentric shadow plotting techniques. Indicates that the exercise can serve to change a student's abstract "figure 8" to his real learning experience. (CC)

  9. The Vernier Caliper and Significant Figures.

    ERIC Educational Resources Information Center

    Oberhofer, E. S.

    1985-01-01

    Misconceptions occur because the caliper is often read with the same significant figures as a meter stick; however, the precision of the vernier caliper is greater than the precision of a meter stick. Clarification of scale reading, precision of both tools, and significant figures are discussed. (JN)

  10. The Development of Ambiguous Figure Perception

    ERIC Educational Resources Information Center

    Wimmer, Marina C.; Doherty, Martin J.

    2011-01-01

    Ambiguous figures have fascinated researchers for almost 200 years. The physical properties of these figures remain constant, yet two distinct interpretations are possible; these reverse (switch) from one percept to the other. The consensus is that reversal requires complex interaction of perceptual bottom-up and cognitive top-down elements. The…

  11. Evolution of the Significant Figure Rules

    ERIC Educational Resources Information Center

    Carter, Ashley R.

    2013-01-01

    Today, almost all introductory physics textbooks include standardized "rules" on how to find the number of significant figures in a calculated value. And yet, 30 years ago these rules were almost nonexistent. Why have we increased the role of significant figures in introductory classes, and should we continue this trend? A look back at…

  12. 16 CFR Figure 3 to Part 1508 - Figure 3 to Part 1508

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Figure 3 to Part 1508 3 Figure 3 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES Multiple-tube fireworks devices. Pt. 1508, Fig. 3 Figure 3 to Part 1508...

  13. 16 CFR Figure 3 to Part 1509 - Figure 3 to Part 1509

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Figure 3 to Part 1509 3 Figure 3 to Part 1509 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS Pt. 1509, Fig. 3 Figure 3 to Part 1509 EC03OC91.066...

  14. 16 CFR Figure 3 to Part 1508 - Figure 3 to Part 1508

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Figure 3 to Part 1508 3 Figure 3 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS Pt. 1508, Fig. 3 Figure 3 to Part 1508 EC03OC91.063...

  15. 16 CFR Figure 1 to Part 1509 - Figure 1 to Part 1509

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Figure 1 to Part 1509 1 Figure 1 to Part 1509 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS Pt. 1509, Fig. 1 Figure 1 to Part 1509 EC03OC91.064...

  16. 16 CFR Figure 1 to Part 1509 - Figure 1 to Part 1509

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Figure 1 to Part 1509 1 Figure 1 to Part 1509 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS Pt. 1509, Fig. 1 Figure 1 to Part 1509 EC03OC91.064...

  17. 16 CFR Figure 3 to Part 1508 - Figure 3 to Part 1508

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Figure 3 to Part 1508 3 Figure 3 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS Pt. 1508, Fig. 3 Figure 3 to Part 1508 EC03OC91.063...

  18. 16 CFR Figure 3 to Part 1509 - Figure 3 to Part 1509

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Figure 3 to Part 1509 3 Figure 3 to Part 1509 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS Pt. 1509, Fig. 3 Figure 3 to Part 1509 EC03OC91.066...

  19. 16 CFR Figure 3 to Part 1508 - Figure 3 to Part 1508

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Figure 3 to Part 1508 3 Figure 3 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES Multiple-tube fireworks devices. Pt. 1508, Fig. 3 Figure 3 to Part 1508...

  20. 16 CFR Figure 3 to Part 1508 - Figure 3 to Part 1508

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Figure 3 to Part 1508 3 Figure 3 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES Multiple-tube fireworks devices. Pt. 1508, Fig. 3 Figure 3 to Part 1508...

  1. Determination of genotoxic effects of Imazethapyr herbicide in Allium cepa root cells by mitotic activity, chromosome aberration, and comet assay.

    PubMed

    Liman, Recep; Ciğerci, İbrahim Hakkı; Öztürk, Nur Serap

    2015-02-01

    Imazethapyr (IM) is an imidazolinone herbicide that is currently used for broad-spectrum weed control in soybean and other legume crops. In this study, cytotoxic and genotoxic effects of IM were investigated by using mitotic index (MI), mitotic phases, chromosomal abnormalities (CAs) and DNA damage on the root meristem cells of Allium cepa. In Allium root growth inhibition test, EC50 value was determined as 20 ppm, and 0.5xEC50, EC50 and 2xEC50 concentrations of IM herbicide were introduced to onion tuber roots. Distilled water and methyl methane sulfonate (MMS, 10 mg/L) were used as a negative and positive control, respectively. As A. cepa cell cycle is 24 hours, so, application process was carried out for 24, 48, 72 and 96 hours. All the applied doses decreased MIs compared to control group and these declines were found to be statistically meaningful. Analysis of the chromosomes showed that 10 ppm IM except for 48 h induced CAs but 40 ppm IM except for 72 h decreased CAs. DNA damage was found significantly higher in 20 and 40 ppm of IM compared to the control in comet assay. These results indicated that IM herbicide exhibits cytotoxic activity but not genotoxic activity (except 10 ppm) and induced DNA damage in a dose dependent manner in A. cepa root meristematic cells.

  2. Influence of the circadian rhythm in cell division on radiation-induced mitotic delay in vivo

    SciTech Connect

    Rubin, N.H.

    1982-01-01

    Mitotic delay is described as a classical response to radiation; however, circadian rhythmicity in cell division in vivo has not been considered by many authors. The present study investigated the relation between fluctuations reported as mitotic delay and recovery in vivo and circadian oscillations in mitotic index in mouse corneal epithelium. One aspect involved single doses (approximately 600 rad) given to mice at different circadian stages. The normal circadian rhythm in cell division was never obliterated. Inhibition of mitosis was evident but unpredictable, ranging from 6 to 15 hr after irradiation. Recovery was evident only during the daily increase in mitotic index of controls. The classical interpretation of recovery from mitotic delay may be in an in vitro phenomenon not reflecting in vivo responses, which are apparently strongly circadian stage dependent. The second portion of the study demonstrated a dose-response effect on length of mitotic delay and, to a lesser extent, degree of recovery.

  3. Genome-wide siRNA screen reveals coupling between mitotic apoptosis and adaptation

    PubMed Central

    Díaz-Martínez, Laura A; Karamysheva, Zemfira N; Warrington, Ross; Li, Bing; Wei, Shuguang; Xie, Xian-Jin; Roth, Michael G; Yu, Hongtao

    2014-01-01

    The antimitotic anti-cancer drugs, including taxol, perturb spindle dynamics, and induce prolonged, spindle checkpoint-dependent mitotic arrest in cancer cells. These cells then either undergo apoptosis triggered by the intrinsic mitochondrial pathway or exit mitosis without proper cell division in an adaptation pathway. Using a genome-wide small interfering RNA (siRNA) screen in taxol-treated HeLa cells, we systematically identify components of the mitotic apoptosis and adaptation pathways. We show that the Mad2 inhibitor p31comet actively promotes mitotic adaptation through cyclin B1 degradation and has a minor separate function in suppressing apoptosis. Conversely, the pro-apoptotic Bcl2 family member, Noxa, is a critical initiator of mitotic cell death. Unexpectedly, the upstream components of the mitochondrial apoptosis pathway and the mitochondrial fission protein Drp1 contribute to mitotic adaption. Our results reveal crosstalk between the apoptosis and adaptation pathways during mitotic arrest. PMID:25024437

  4. MEN, destruction and separation: mechanistic links between mitotic exit and cytokinesis in budding yeast.

    PubMed

    Yeong, Foong May; Lim, Hong Hwa; Surana, Uttam

    2002-07-01

    Cellular events must be executed in a certain sequence during the cell division in order to maintain genome integrity and hence ensure a cell's survival. In M phase, for instance, chromosome segregation always precedes mitotic exit (characterized by mitotic kinase inactivation via cyclin destruction); this is then followed by cytokinesis. How do cells impose this strict order? Recent findings in budding yeast have suggested a mechanism whereby partitioning of chromosomes into the daughter cell is a prerequisite for the activation of mitotic exit network (MEN). So far, however, a regulatory scheme that would temporally link the initiation of cytokinesis to the execution of mitotic exit has not been determined. We propose that the requirement of MEN components for cytokinesis, their translocation to the mother-daughter neck and triggering of this translocation by inactivation of the mitotic kinase may be the three crucial elements that render initiation of cytokinesis dependent on mitotic exit.

  5. Enhancement of spontaneous mitotic recombination by the meiotic mutant spo11-1 in Saccharomyces cerevisiae

    SciTech Connect

    Bruschi, C.V.; Esposito, M.S.

    1983-12-01

    Both nonreciprocal and reciprocal mitotic recombination are enhanced by the recessive mutant spo11-1, which was previously shown to affect meiosis by decreasing recombination and increasing nondisjunction. The mitotic effects are not distributed equally in all chromosomal regions. The genotypes of mitotic recombinants in spo11-1/spo11-1 diploid cells provide further evidence that widely spaced chromosomal markers undergo coincident conversion in mitosis.

  6. Advanced figure sensor operations and maintenance manual

    NASA Technical Reports Server (NTRS)

    Robertson, H. J.

    1972-01-01

    This manual contains procedures for installing, operating, and maintaining the optical figure sensor and its associated electronic controls. The optical figure sensor, a system of integrated components, comprises: (1) a phase measuring modified interferometer employing a single frequency 6328 A laser, and a Vidissector; (2) a two-axis automatic thermal compensation control mount; (3) a five degree of freedom manual adjustment stand; and (4) a control console. This instrument provides real time output data of optical figure errors for spherical mirrors, and is also capable of measuring aspherical mirrors if a null corrector is added.

  7. BCL-W is a regulator of microtubule inhibitor-induced mitotic cell death

    PubMed Central

    Huang, Shan; Tang, Rui; Randy, Y.C. Poon

    2016-01-01

    Microtubule inhibitors including taxanes and vinca alkaloids are among the most widely used anticancer agents. Disrupting the microtubules activates the spindle-assembly checkpoint and traps cells in mitosis. Whether cells subsequently undergo mitotic cell death is an important factor for the effectiveness of the anticancer agents. Given that apoptosis accounts for the majority of mitotic cell death induced by microtubule inhibitors, we performed a systematic study to determine which members of the anti-apoptotic BCL-2 family are involved in determining the duration of mitotic block before cell death or slippage. Depletion of several anti-apoptotic BCL-2-like proteins significantly shortened the time before apoptosis. Among these proteins, BCL-W has not been previously characterized to play a role in mitotic cell death. Although the expression of BCL-W remained constant during mitotic block, it varied significantly between different cell lines. Knockdown of BCL-W with siRNA or disruption of the BCL-W gene with CRISPR-Cas9 speeded up mitotic cell death. Conversely, overexpression of BCL-W delayed mitotic cell death, extending the mitotic block to allow mitotic slippage. Taken together, these results showed that BCL-W contributes to the threshold of anti-apoptotic activity during mitosis. PMID:27231850

  8. A Functional Mitotic Spindle Prepared from Mammalian Cells in Culture

    PubMed Central

    Cande, W. Zacheus; Snyder, Judith; Smith, Diana; Summers, Keith; McIntosh, J. R.

    1974-01-01

    Mitotic cells lysed into solutions of polymerizable microtubule protein contain a spindle which is similar to the living spindle in two respects: it will lose and gain birefringence when cooled and warmed, and it will move anaphase chromosomes to the opposite ends of the cell. Early anaphase cells lysed into buffers containing high molecular weight polyethylene glycol and nucleotide triphosphates will continue chromosome motion and spindle elongation in the absence of exogenous spindle subunits. These results suggest that while spindle growth requires microtubule polymerization, anaphase motions do not. Images PMID:4524659

  9. Mitotically unstable polyploids in the yeast Pichia guilliermondii.

    PubMed

    Klinner, U; Böttcher, F

    1992-01-01

    Attempts to obtain triploids or tetraploids of P. guilliermondii by sexual hybridization led to mitotically stable hybrids. However, their DNA content per cell was not higher than in diploids. The results of random spore analysis demonstrate that these hybrids were in fact aneuploids which obviously suffered drastic chromosome losses immediately after mating. This phenomenon could have been caused either by aneuploidy already present in the parental strains or it might have been due to a general inability of P. guilliermondii to maintain a polyploid genome.

  10. Past to Present: Undergrowth with Two Figures

    ERIC Educational Resources Information Center

    School Arts: The Art Education Magazine for Teachers, 2004

    2004-01-01

    This brief article describes the historical, cultural, and artistic elements of Vincent van Gogh's oil on canvas "Undergrowth with Two Figures" of 1980. The article concludes with questions for students to consider in relation to these aspects of the painting.

  11. Rhetoric Denuded and Redressed: Figs and Figures.

    ERIC Educational Resources Information Center

    Poulakos, John; Whitson, Steve

    1995-01-01

    Replies to an article in this issue that responds to an earlier article by these authors. Replies aesthetically in aphorisms, subsuming philosophical argument within a vortex of figuration and thus troping the knowledge drive while privileging "doxa" over "episteme." (SR)

  12. Factors associated with escalation and problematic approaches toward public figures.

    PubMed

    Meloy, J Reid; James, David V; Mullen, Paul E; Pathé, Michele T; Farnham, Frank R; Preston, Lulu F; Darnley, Brian J

    2011-01-01

    Detailed comparison of factors associated with abnormal approach to the prominent and with escalation from communication to approach has not hitherto been undertaken. This partially reflects the failure of individual studies to adopt compatible terminologies. This study involves a careful dissection of six public figure studies, three involving U.S. politicians, two Hollywood celebrities, and one the British Royal Family. Common findings were unearthed across six headings. Approachers were significantly more likely to exhibit serious mental illness, engage in multiple means of communication, involve multiple contacts/targets, and to incorporate into their communication requests for help. They were significantly less likely to use threatening or antagonistic language in their communications, except in those cases involving security breaches. These results emphasize the importance of integrating mental health findings and preventive measures into risk management. Approach should not be regarded as a single behavioral category and has multiple motivations. Future studies should adopt standard terminology, preferably taken from the general stalking research.

  13. Evolution of the Significant Figure Rules

    NASA Astrophysics Data System (ADS)

    Carter, Ashley R.

    2013-09-01

    Today, almost all introductory physics textbooks include standardized "rules" on how to find the number of significant figures in a calculated value. And yet, 30 years ago these rules were almost nonexistent. Whyhave we increased the role of significant figures in introductory classes, and should we continue this trend? A look back at the evolution of significant figures over the last 300 years, from Newton to Millikan to modern authors, sheds some light on their purpose moving forward. While there is much discussion for and against their use, especially in chemistry, a review of earlier versions of the rules suggests that we have lost some items of value, most notably, a significant figure rule for angles. In addition, we have lost the emphasis that the significant figure rules were designed to calculate an approximate (not exact) precision. Now that the significant figure rules are ingrained into our introductory physics sequence, we would be wise to reiterate that these are just general "rules of thumb."

  14. Ion beam figuring of small optical components

    NASA Astrophysics Data System (ADS)

    Drueding, Thomas W.; Fawcett, Steven C.; Wilson, Scott R.; Bifano, Thomas G.

    1995-12-01

    Ion beam figuring provides a highly deterministic method for the final precision figuring of optical components with advantages over conventional methods. The process involves bombarding a component with a stable beam of accelerated particles that selectively removes material from the surface. Figure corrections are achieved by rastering the fixed-current beam across the workplace at appropriate, time-varying velocities. Unlike conventional methods, ion figuring is a noncontact technique and thus avoids such problems as edge rolloff effects, tool wear, and force loading of the workpiece. This work is directed toward the development of the precision ion machining system at NASA's Marshall Space Flight Center. This system is designed for processing small (approximately equals 10-cm diam) optical components. Initial experiments were successful in figuring 8-cm-diam fused silica and chemical-vapor-deposited SiC samples. The experiments, procedures, and results of figuring the sample workpieces to shallow spherical, parabolic (concave and convex), and non-axially-symmetric shapes are discussed. Several difficulties and limitations encountered with the current system are discussed. The use of a 1-cm aperture for making finer corrections on optical components is also reported.

  15. Determination of Cell Cycle Stage and Mitotic Exit Through the Quantification of the Protein Levels of Known Mitotic Regulators.

    PubMed

    Cepeda-García, Cristina

    2017-01-01

    There are multiple processes that occur at certain points during the cell cycle and that affect later steps. Impairment of such processes could cause delays or even completely abolish cell cycle progression. Therefore, it is extremely helpful in order to determine the potential consequences that interfering on a cellular process imposes on cell cycle progression to be able to precisely characterize the cell cycle stage by using molecular markers. Here, we describe the analysis of the protein levels of known mitotic regulators as molecular markers to monitor the progression of cells through the cell cycle by western blot in synchronized yeast cell cultures.

  16. [The relativity of abnormity].

    PubMed

    Nilson, Annika

    2006-01-01

    In the late 19th century and in the beginning of the 20th century, mental diseases and abnormal behavior was considered to be a great danger to culture and society. "Degeneration" was the buzzword of the time, used and misused by artists and scientists alike. At the same time, some scientists saw abnormity as the key to unlock the mysteries of the ordinary mind. Naturalistic curiosity left Pandoras box open when religion declined in Darwins wake. Two swedish scientists, the physician Bror Gadelius (1862-1938) and his friend the philosopher Axel Herrlin (1870-1937), inspired by the French psychologist Theodule Ribots (1839-1916) "psychology without a soul", denied all fixed demarcation lines between abnormity and normality. All humans are natures creatures ruled by physiological laws, not ruled by God or convention. Even ordinary morality was considered to be an utterly backward explanation and guideline for complex human behavior. Different forms of therapy, not various kinds of penalties for wicked and disturbing behavior, are the now the solution for lots of people, "normal" as well as "abnormal". Psychiatry is expanding.

  17. Abnormalities of gonadal differentiation.

    PubMed

    Berkovitz, G D; Seeherunvong, T

    1998-04-01

    Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.

  18. Unconventional Functions of Mitotic Kinases in Kidney Tumorigenesis

    PubMed Central

    Hascoet, Pauline; Chesnel, Franck; Le Goff, Cathy; Le Goff, Xavier; Arlot-Bonnemains, Yannick

    2015-01-01

    Human tumors exhibit a variety of genetic alterations, including point mutations, translocations, gene amplifications and deletions, as well as aneuploid chromosome numbers. For carcinomas, aneuploidy is associated with poor patient outcome for a large variety of tumor types, including breast, colon, and renal cell carcinoma. The Renal cell carcinoma (RCC) is a heterogeneous carcinoma consisting of different histologic types. The clear renal cell carcinoma (ccRCC) is the most common subtype and represents 85% of the RCC. Central to the biology of the ccRCC is the loss of function of the Von Hippel–Lindau gene, but is also associated with genetic instability that could be caused by abrogation of the cell cycle mitotic spindle checkpoint and may involve the Aurora kinases, which regulate centrosome maturation. Aneuploidy can also result from the loss of cell–cell adhesion and apical–basal cell polarity that also may be regulated by the mitotic kinases (polo-like kinase 1, casein kinase 2, doublecortin-like kinase 1, and Aurora kinases). In this review, we describe the “non-mitotic” unconventional functions of these kinases in renal tumorigenesis. PMID:26579493

  19. Inhibition of mitotic-specific histone phophorylation by sodium arsenite

    SciTech Connect

    Cobo, J.M.; Valdez, J.G.; Gurley, L.R.

    1994-10-01

    Synchronized cultures of Chinese hamster cells (line CHO) were used to measure the effects of 10{mu}M sodium arsenite on histone phosphorylation. This treatment caused cell proliferation to be temporarily arrested, after which the cells spontaneously resumed cell proliferation in a radiomimetric manner. Immediately following treatment, it was found that sodium arsenite affected only mitotic-specific HI and H3 phosphorylations. Neither interphase, nor mitotic, H2A and H4 phosphorylations were affected, nor was interphase HI Phosphorylation affected. The phosphorylation of HI was inhibited only in mitosis, reducing HI phosphorylation to 38.1% of control levels, which was the level of interphase HI phosphorylation. The phosphorylation of both H3 variants was inhibited in mitosis, the less hydrophobic H3 to 19% and the more hydrophobic H3 to 24% of control levels. These results suggest that sodium arsenite may inhibite cell proliferation by interfering with the cyclin B/p34{sup cdc2} histone kinase activity which is thought to play a key role in regulating the cell cycle. It has been proposed by our laboratory that HI and H3 phosphorylations play a role in restructuring interphase chromatin into metaphase chromosomes. Interference of this process by sodium arsenite may lead to structurally damaged chromosomes resulting in the increased cancer risks known to be produced by arsenic exposure from the environment.

  20. Differential Mitotic Stability of Yeast Disomes Derived from Triploid Meiosis

    PubMed Central

    Campbell, Douglas; Doctor, John S.; Feuersanger, Jeane H.; Doolittle, Mark M.

    1981-01-01

    The frequencies of recovered disomy among the meiotic segregants of yeast (Saccharomyces cerevisiae) triploids were assessed under conditions in which all 17 yeast chromosomes were monitored simultaneously. The studies employed inbred triploids, in which all homologous centromeres were identical by descent, and single haploid testers carrying genetic markers for all 17 linkage groups. The principal results include: (1) Ascospores from triploid meiosis germinate at frequencies comparable to those from normal diploids, but most fail to produce visible colonies due to the growth-retarding effects of high multiple disomy. (2) The probability of disome formation during triploid meiosis is the same for all chromosomes; disomy for any given chromosome does not exclude simultaneous disomy for any other chromosome. (3) The 17 yeast chromosomes fall into three frequency classes in terms of disome recovery. The results support the idea that multiply disomic meiotic segregants of the triploid experience repeated, nonrandom, post-germination mitotic chromosome losses (N+1→N) and that the observed variations in individual disome recovery are wholly attributable to inherent differences in disome mitotic stability. PMID:7035289

  1. Validate Mitotic Checkpoint and Kinetochore Motor Proteins in Breast Cancer Cells as Targets for the Development of Novel Anti-Mitotic Drugs

    DTIC Science & Technology

    2005-07-01

    which chromosomal instability, aneuploidy, and increased tumorigenesis are prominent hallmarks. These include ataxia-telangiectasia, xeroderma ... pigmentosum , Nijmegen breakage syndromes, Bloom’s syndrome, and Werner’s syndrome, (Modesti and Kanaar, 2001; Thompson and Schild, 2002). Defects in mitotic

  2. Wet-Etch Figuring Optical Figuring by Controlled Application of Liquid Etchant

    SciTech Connect

    Britten, J

    2001-02-13

    WET-ETCH FIGURING (WEF) is an automated method of precisely figuring optical materials by the controlled application of aqueous etchant solution. This technology uses surface-tension-gradient-driven flow to confine and stabilize a wetted zone of an etchant solution or other aqueous processing fluid on the surface of an object. This wetted zone can be translated on the surface in a computer-controlled fashion for precise spatial control of the surface reactions occurring (e.g. chemical etching). WEF is particularly suitable for figuring very thin optical materials because it applies no thermal or mechanical stress to the material. Also, because the process is stress-free the workpiece can be monitored during figuring using interferometric metrology, and the measurements obtained can be used to control the figuring process in real-time--something that cannot be done with traditional figuring methods.

  3. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit

    PubMed Central

    Onishi, Masayuki; Yeong, Foong May

    2016-01-01

    Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS) formation at the division site to drive acto-myosin ring (AMR) constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p) neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit. PMID:27447488

  4. Minimizing Uncertainty in Cryogenic Surface Figure Measurement

    NASA Technical Reports Server (NTRS)

    Blake, Peter; Mink, Ronald G.; Chambers, John; Robinson, F. David; Content, David; Davila, Pamela

    2005-01-01

    A new facility at the Goddard Space Flight Center is designed to measure with unusual accuracy the surface figure of mirrors at cryogenic temperatures down to 12 K. The facility is currently configured for spherical mirrors with a radius of curvature (ROC) of 600 mm, and apertures of about 150 mm or less. The goals of the current experiment were to 1) Obtain the best possible estimate of test mirror surface figure, S(x,y) at 87 K and 20 K; 2) Obtain the best estimate of the cryo-change, Delta (x,y): the change in surface figure between room temperature and the two cryo-temperatures; and 3) Determine the uncertainty of these measurements, using the definitions and guidelines of the ISO Guide to the Expression of Uncertainty in Measurement. A silicon mirror was tested, and the cry-change from room temperature to 20K was found to be 3.7 nm rms, with a standard uncertainty of 0.23 nm in the rms statistic. Both the cryo-change figure and the uncertainty are among the lowest such figures yet published. This report describes the facilities, experimental methods, and uncertainty analysis of the measurements.

  5. Reduced mitotic activity at the periphery of human embryonic stem cell colonies cultured in vitro with mitotically-inactivated murine embryonic fibroblast feeder cells.

    PubMed

    Heng, Boon Chin; Cao, Tong; Liu, Hua; Rufaihah, Abdul Jalil

    2005-01-01

    This study attempted to investigate whether different levels of mitotic activity exist within different physical regions of a human embryonic stem (hES) cell colony. Incorporation of 5-bromo-2-deoxyuridine (BrdU) within newly-synthesized DNA, followed by immunocytochemical staining was used as a means of detecting mitotically-active cells within hES colonies. The results showed rather surprisingly that the highest levels of mitotic activity are primarily concentrated within the central regions of hES colonies, whereas the peripheral regions exhibited reduced levels of cellular proliferation. Two hypothetical mechanisms are therefore proposed for hES colony growth and expansion. Firstly, it is envisaged that the less mitotically-active hES cells at the periphery of the colony are continually migrating outwards, thereby providing space for newly-divided daughter cells within the more mitotically-active central region of the hES colony. Secondly, it is proposed that the newly-divided hES cells within the central region of the colony somehow migrate to the outer periphery. This could possibly explain why the periphery of hES colonies are less mitotically-active, since there would obviously be an extended time-lag before newly-divided daughter cells are ready again for the next cell division. Further investigations need to be carried out to characterize the atypical mechanisms by which hES colonies grow and expand in size.

  6. Heritable bovine fetal abnormalities.

    PubMed

    Whitlock, B K; Kaiser, L; Maxwell, H S

    2008-08-01

    The etiologies for congenital bovine fetal anomalies can be divided into heritable, toxic, nutritional, and infectious categories. Although uncommon in most herds, inherited congenital anomalies are probably present in all breeds of cattle and propagated as a result of specific trait selection that inadvertently results in propagation of the defect. In some herds, the occurrence of inherited anomalies has become frequent, and economically important. Anomalous traits can affect animals in a range of ways, some being lethal or requiring euthanasia on humane grounds, others altering structure, function, or performance of affected animals. Veterinary practitioners should be aware of the potential for inherited defects, and be prepared to investigate and report animals exhibiting abnormal characteristics. This review will discuss the morphologic characteristics, mode of inheritance, breeding lines affected, and the availability of genetic testing for selected heritable bovine fetal abnormalities.

  7. Liver abnormalities in pregnancy.

    PubMed

    Than, Nwe Ni; Neuberger, James

    2013-08-01

    Abnormalities of liver function (notably rise in alkaline phosphatase and fall in serum albumin) are common in normal pregnancy, whereas rise in serum bilirubin and aminotransferase suggest either exacerbation of underlying pre-existing liver disease, liver disease related to pregnancy or liver disease unrelated to pregnancy. Pregnant women appear to have a worse outcome when infected with Hepatitis E virus. Liver diseases associated with pregnancy include abnormalities associated hyperemesis gravidarum, acute fatty liver disease, pre-eclampsia, cholestasis of pregnancy and HELLP syndrome. Prompt investigation and diagnosis is important in ensuring a successful maternal and foetal outcome. In general, prompt delivery is the treatment of choice for acute fatty liver, pre-eclampsia and HELLP syndrome and ursodeoxycholic acid is used for cholestasis of pregnancy although it is not licenced for this indication.

  8. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  9. Gene-specific factors determine mitotic expression and bookmarking via alternate regulatory elements

    PubMed Central

    Arampatzi, Panagiota; Gialitakis, Manolis; Makatounakis, Takis; Papamatheakis, Joseph

    2013-01-01

    Transcriptional silencing during mitosis is caused by inactivation of critical transcriptional regulators and/or chromatin condensation. Inheritance of gene expression patterns through cell division involves various bookmarking mechanisms. In this report, we have examined the mitotic and post-mitotic expression of the DRA major histocompatibility class II (MHCII) gene in different cell types. During mitosis the constitutively MHCII-expressing B lymphoblastoid cells showed sustained occupancy of the proximal promoter by the cognate enhanceosome and general transcription factors. In contrast, although mitotic epithelial cells were depleted of these proteins irrespectively of their MHCII transcriptional activity, a distal enhancer selectively recruited the PP2A phosphatase via NFY and maintained chromatin accessibility. Based on our data, we propose a novel chromatin anti-condensation role for this element in mitotic bookmarking and timing of post-mitotic transcriptional reactivation. PMID:23303784

  10. On generating cell exemplars for detection of mitotic cells in breast cancer histopathology images.

    PubMed

    Aloraidi, Nada A; Sirinukunwattana, Korsuk; Khan, Adnan M; Rajpoot, Nasir M

    2014-01-01

    Mitotic activity is one of the main criteria that pathologists use to decide the grade of the cancer. Computerised mitotic cell detection promises to bring efficiency and accuracy into the grading process. However, detection and classification of mitotic cells in breast cancer histopathology images is a challenging task because of the large intra-class variation in the visual appearance of mitotic cells in various stages of cell division life cycle. In this paper, we test the hypothesis that cells in histopathology images can be effectively represented using cell exemplars derived from sub-images of various kinds of cells in an image for the purposes of mitotic cell classification. We compare three methods for generating exemplar cells. The methods have been evaluated in terms of classification performance on the MITOS dataset. The experimental results demonstrate that eigencells combined with support vector machines produce reasonably high detection accuracy among all the methods.

  11. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    PubMed Central

    Carvalhal, Sara; Ribeiro, Susana Abreu; Arocena, Miguel; Kasciukovic, Taciana; Temme, Achim; Koehler, Katrin; Huebner, Angela; Griffis, Eric R.

    2015-01-01

    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome. PMID:26246606

  12. Temporal and compartment-specific signals coordinate mitotic exit with spindle position

    PubMed Central

    Caydasi, Ayse Koca; Khmelinskii, Anton; Duenas-Sanchez, Rafael; Kurtulmus, Bahtiyar; Knop, Michael; Pereira, Gislene

    2017-01-01

    The spatiotemporal control of mitotic exit is crucial for faithful chromosome segregation during mitosis. In budding yeast, the mitotic exit network (MEN) drives cells out of mitosis, whereas the spindle position checkpoint (SPOC) blocks MEN activity when the anaphase spindle is mispositioned. How the SPOC operates at a molecular level remains unclear. Here, we report novel insights into how mitotic signalling pathways orchestrate chromosome segregation in time and space. We establish that the key function of the central SPOC kinase, Kin4, is to counterbalance MEN activation by the cdc fourteen early anaphase release (FEAR) network in the mother cell compartment. Remarkably, Kin4 becomes dispensable for SPOC function in the absence of FEAR. Cells lacking both FEAR and Kin4 show that FEAR contributes to mitotic exit through regulation of the SPOC component Bfa1 and the MEN kinase Cdc15. Furthermore, we uncover controls that specifically promote mitotic exit in the daughter cell compartment. PMID:28117323

  13. Microtubule organization within mitotic spindles revealed by serial block face scanning EM and image analysis.

    PubMed

    Nixon, Faye M; Honnor, Thomas R; Clarke, Nicholas I; Starling, Georgina P; Beckett, Alison J; Johansen, Adam M; Brettschneider, Julia A; Prior, Ian A; Royle, Stephen J

    2017-04-07

    Serial block face scanning electron microscopy (SBF-SEM) is a powerful method to analyze cells in 3D. Here, working at the resolution limit of the method, we describe a correlative light-SBF-SEM workflow to resolve microtubules of the mitotic spindle in human cells. We present four examples of uses for this workflow which are not practical by light microscopy and/or transmission electron microscopy. First, distinguishing closely associated microtubules within K-fibers; second, resolving bridging fibers in the mitotic spindle; third, visualizing membranes in mitotic cells, relative to the spindle apparatus; fourth, volumetric analysis of kinetochores. Our workflow also includes new computational tools for exploring the spatial arrangement of MTs within the mitotic spindle. We use these tools to show that microtubule order in mitotic spindles is sensitive to the level of TACC3 on the spindle.

  14. Temporal and compartment-specific signals coordinate mitotic exit with spindle position.

    PubMed

    Caydasi, Ayse Koca; Khmelinskii, Anton; Duenas-Sanchez, Rafael; Kurtulmus, Bahtiyar; Knop, Michael; Pereira, Gislene

    2017-01-24

    The spatiotemporal control of mitotic exit is crucial for faithful chromosome segregation during mitosis. In budding yeast, the mitotic exit network (MEN) drives cells out of mitosis, whereas the spindle position checkpoint (SPOC) blocks MEN activity when the anaphase spindle is mispositioned. How the SPOC operates at a molecular level remains unclear. Here, we report novel insights into how mitotic signalling pathways orchestrate chromosome segregation in time and space. We establish that the key function of the central SPOC kinase, Kin4, is to counterbalance MEN activation by the cdc fourteen early anaphase release (FEAR) network in the mother cell compartment. Remarkably, Kin4 becomes dispensable for SPOC function in the absence of FEAR. Cells lacking both FEAR and Kin4 show that FEAR contributes to mitotic exit through regulation of the SPOC component Bfa1 and the MEN kinase Cdc15. Furthermore, we uncover controls that specifically promote mitotic exit in the daughter cell compartment.

  15. Infradian biorhythms of mitotic activity esophageal epithelium in male Wistar rats.

    PubMed

    Diatroptov, M E; Makarova, O V

    2015-01-01

    Infradian rhythms of esophageal epithelium mitotic activity were studied in male Wistar rats of two age groups: 35-45 days (prepubertal) and 3-4 months (adults). Studies of the time course of esophageal epithelium mitotic indexes in adult males showed 4- and 12-day biorhythms, while prepubertal rats exhibited only 4-day infradian biorhythms of this parameter. Studies of the mitotic activity over long periods (3 years) showed 4.058- and 12.175-day periodicity of infradian biorhythms for this parameter, presumably due to external exposures synchronizing the biorhythms. Studies of the mean daily values of the Bz component of interplanetary magnetic field during the period of our research (2012-2013) showed rhythmicities analogous to changes in the mitotic activity of the epithelium. The minimum mitotic indexes were detected on the days of the most pronounced negative values of the interplanetary magnetic field Bz component.

  16. Anatomical Abnormalities in Autism?

    PubMed

    Haar, Shlomi; Berman, Sigal; Behrmann, Marlene; Dinstein, Ilan

    2016-04-01

    Substantial controversy exists regarding the presence and significance of anatomical abnormalities in autism spectrum disorders (ASD). The release of the Autism Brain Imaging Data Exchange (∼1000 participants, age 6-65 years) offers an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across groups and to resolve many of the outstanding questions. Comprehensive univariate analyses using volumetric, thickness, and surface area measures of over 180 anatomically defined brain areas, revealed significantly larger ventricular volumes, smaller corpus callosum volume (central segment only), and several cortical areas with increased thickness in the ASD group. Previously reported anatomical abnormalities in ASD including larger intracranial volumes, smaller cerebellar volumes, and larger amygdala volumes were not substantiated by the current study. In addition, multivariate classification analyses yielded modest decoding accuracies of individuals' group identity (<60%), suggesting that the examined anatomical measures are of limited diagnostic utility for ASD. While anatomical abnormalities may be present in distinct subgroups of ASD individuals, the current findings show that many previously reported anatomical measures are likely to be of low clinical and scientific significance for understanding ASD neuropathology as a whole in individuals 6-35 years old.

  17. Software systems for modeling articulated figures

    NASA Technical Reports Server (NTRS)

    Phillips, Cary B.

    1989-01-01

    Research in computer animation and simulation of human task performance requires sophisticated geometric modeling and user interface tools. The software for a research environment should present the programmer with a powerful but flexible substrate of facilities for displaying and manipulating geometric objects, yet insure that future tools have a consistent and friendly user interface. Jack is a system which provides a flexible and extensible programmer and user interface for displaying and manipulating complex geometric figures, particularly human figures in a 3D working environment. It is a basic software framework for high-performance Silicon Graphics IRIS workstations for modeling and manipulating geometric objects in a general but powerful way. It provides a consistent and user-friendly interface across various applications in computer animation and simulation of human task performance. Currently, Jack provides input and control for applications including lighting specification and image rendering, anthropometric modeling, figure positioning, inverse kinematics, dynamic simulation, and keyframe animation.

  18. Mitotic rate in melanoma: prognostic value of immunostaining and computer-assisted image analysis.

    PubMed

    Hale, Christopher S; Qian, Meng; Ma, Michelle W; Scanlon, Patrick; Berman, Russell S; Shapiro, Richard L; Pavlick, Anna C; Shao, Yongzhao; Polsky, David; Osman, Iman; Darvishian, Farbod

    2013-06-01

    The prognostic value of mitotic rate in melanoma is increasingly recognized, particularly in thin melanoma in which the presence or absence of a single mitosis/mm can change staging from T1a to T1b. Still, accurate mitotic rate calculation (mitoses/mm) on hematoxylin and eosin (H&E)-stained sections can be challenging. Antimonoclonal mitotic protein-2 (MPM-2) and antiphosphohistone-H3 (PHH3) are 2 antibodies reported to be more mitosis-specific than other markers of proliferation such as Ki-67. We used light microscopy and computer-assisted image analysis software to quantify MPM-2 and PHH3 staining in melanoma. We then compared mitotic rates by each method with conventional H&E-based mitotic rate for correlation with clinical outcomes. Our study included primary tissues from 190 nonconsecutive cutaneous melanoma patients who were prospectively enrolled at New York University Langone Medical Center with information on age, gender, and primary tumor characteristics. The mitotic rate was quantified manually by light microscopy of corresponding H&E-stained, MPM-2-stained, and PHH3-stained sections. Computer-assisted image analysis was then used to quantify immunolabeled mitoses on the previously examined PHH3 and MPM-2 slides. We then analyzed the association between mitotic rate and both progression-free and melanoma-specific survival. Univariate analysis of PHH3 found significant correlation between increased PHH3 mitotic rate and decreased progression-free survival (P=0.04). Computer-assisted image analysis enhanced the correlation of PHH3 mitotic rate with progression-free survival (P=0.02). Regardless of the detection method, neither MPM-2 nor PHH3 offered significant advantage over conventional H&E determination of mitotic rate.

  19. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  20. Mitotic crossover promotes leukemogenesis in children born with TEL-AML1 via the generation of loss of heterozygosity at 12p.

    PubMed

    Ivanovski, Ivan; Garavelli, Livia; Djurić, Olivera; Ćirović, Aleksandar; Škorić, Dejan; Ivanovski, Petar I

    2015-06-30

    TEL-AML1 (ETV6-RUNX1) fusion gene which is formed prenatally in 1% of the newborns, is a common genetic abnormality in childhood Bcell precursor acute lymphoblastic leukemia. But only one child out of a hundred children born with this fusion gene develops leukemia (bottleneck phenomenon) later in its life, if contracts the second mutation. In other words, out of a hundred children born with TEL-AML1 only one child is at risk for leukemia development, which means that TEL-AML1 fusion gene is not sufficient for overt leukemia. There is a stringent requirement for a second genetic abnormality for leukemia development and this is the real or the ultimate cause of the leukemia bottleneck phenomenon. In most cases of TEL-AML1+ leukemia, the translocation t(12;21) is complemented with the loss of the normal TEL gene, not involved in the translocation, on the contralateral 12p. The loss of the normal TEL gene, i.e. loss of heterozygosity at 12p, occurs postnatally during the mitotic proliferation of TEL-AML1+ cell in the mitotic crossing over process. Mitotic crossing over is a very rare event with a frequency rate of 10-6 in a 10 kb region. The exploration and identification of the environmental exposure(s) that cause(s) proliferation of the TELAML1+ cell in which approximately 106 mitoses are generated to cause 12p loss of heterozygosity, i.e. TEL gene deletion, may contribute to the introduction of preventive measures for leukemia.

  1. [Figures of anima in the Odyssey].

    PubMed

    Meneghello, Mauro

    2012-01-01

    Feminine characters in the Odyssey show different aspects of the archetype: Mother and Anima (C.G. Jung). From an Analytical Psychology perspective the encounters of Odysseus with goddesses: Circe, Calypso, Ino are looked at as different and successive stages of the hero's way into the inconscious, who shows himself in feminine figures, being masculine the consciousness of the hero. Nausicaa is a new, nearly-human figure of Anima who appears after the symbolic death of Odysseus and leads him to the royal couple Alcinous-Arete: in front of them all he finds his new, reborn, personality by creating and narrating his own myth.

  2. Metrics of Justice. A Sundial's Nomological Figuration.

    PubMed

    Behrmann, Carolin

    2015-01-01

    This paper examines a polyhedral dial from the British Museum made by the instrument maker Ulrich Schniep, and discusses the status of multifunctional scientific instruments. It discerns a multifaceted iconic meaning considering different dimensions such as scientific functionality (astronomy), the complex allegorical figure of Justice (iconography), and the representation of the sovereign (politics), the court and the Kunstkammer of Albrecht v of Bavaria. As a numen mixtum the figure of "Justicia" touches different fields that go far beyond pure astronomical measurement and represents the power of the ruler as well as the rules of economic justice.

  3. [Molecular abnormalities in lymphomas].

    PubMed

    Delsol, G

    2010-11-01

    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  4. Mitotic wavefronts mediated by mechanical signaling in early Drosophila embryos

    NASA Astrophysics Data System (ADS)

    Kang, Louis; Idema, Timon; Liu, Andrea; Lubensky, Tom

    2013-03-01

    Mitosis in the early Drosophila embryo demonstrates spatial and temporal correlations in the form of wavefronts that travel across the embryo in each cell cycle. This coordinated phenomenon requires a signaling mechanism, which we suggest is mechanical in origin. We have constructed a theoretical model that supports nonlinear wavefront propagation in a mechanically-excitable medium. Previously, we have shown that this model captures quantitatively the wavefront speed as it varies with cell cycle number, for reasonable values of the elastic moduli and damping coefficient of the medium. Now we show that our model also captures the displacements of cell nuclei in the embryo in response to the traveling wavefront. This new result further supports that mechanical signaling may play an important role in mediating mitotic wavefronts.

  5. Aurora A's Functions During Mitotic Exit: The Guess Who Game.

    PubMed

    Reboutier, David; Benaud, Christelle; Prigent, Claude

    2015-01-01

    Until recently, the knowledge of Aurora A kinase functions during mitosis was limited to pre-metaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. However, an involvement of Aurora A in post-metaphase events was also suspected, but not clearly demonstrated due to the technical difficulty to perform the appropriate experiments. Recent developments of both an analog-specific version of Aurora A and small molecule inhibitors have led to the first demonstration that Aurora A is required for the early steps of cytokinesis. As in pre-metaphase, Aurora A plays diverse functions during anaphase, essentially participating in astral microtubules dynamics and central spindle assembly and functioning. The present review describes the experimental systems used to decipher new functions of Aurora A during late mitosis and situate these functions into the context of cytokinesis mechanisms.

  6. FTO influences adipogenesis by regulating mitotic clonal expansion.

    PubMed

    Merkestein, Myrte; Laber, Samantha; McMurray, Fiona; Andrew, Daniel; Sachse, Gregor; Sanderson, Jeremy; Li, Mengdi; Usher, Samuel; Sellayah, Dyan; Ashcroft, Frances M; Cox, Roger D

    2015-04-17

    The fat mass and obesity-associated (FTO) gene plays a pivotal role in regulating body weight and fat mass; however, the underlying mechanisms are poorly understood. Here we show that primary adipocytes and mouse embryonic fibroblasts (MEFs) derived from FTO overexpression (FTO-4) mice exhibit increased potential for adipogenic differentiation, while MEFs derived from FTO knockout (FTO-KO) mice show reduced adipogenesis. As predicted from these findings, fat pads from FTO-4 mice fed a high-fat diet show more numerous adipocytes. FTO influences adipogenesis by regulating events early in adipogenesis, during the process of mitotic clonal expansion. The effect of FTO on adipogenesis appears to be mediated via enhanced expression of the pro-adipogenic short isoform of RUNX1T1, which enhanced adipocyte proliferation, and is increased in FTO-4 MEFs and reduced in FTO-KO MEFs. Our findings provide novel mechanistic insight into how upregulation of FTO leads to obesity.

  7. Forces positioning the mitotic spindle: Theories, and now experiments.

    PubMed

    Wu, Hai-Yin; Nazockdast, Ehssan; Shelley, Michael J; Needleman, Daniel J

    2017-02-01

    The position of the spindle determines the position of the cleavage plane, and is thus crucial for cell division. Although spindle positioning has been extensively studied, the underlying forces ultimately responsible for moving the spindle remain poorly understood. A recent pioneering study by Garzon-Coral et al. uses magnetic tweezers to perform the first direct measurements of the forces involved in positioning the mitotic spindle. Combining this with molecular perturbations and geometrical effects, they use their data to argue that the forces that keep the spindle in its proper position for cell division arise from astral microtubules growing and pushing against the cell's cortex. Here, we review these ground-breaking experiments, the various biomechanical models for spindle positioning that they seek to differentiate, and discuss new questions raised by these measurements.

  8. Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex

    PubMed Central

    Vicente, Juan-Jesus; Cande, W. Zacheus

    2014-01-01

    The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered. PMID:25057014

  9. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  10. 50 CFR Figure 1 to Part 640 - Figure 1 to Part 640

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 10 2011-10-01 2011-10-01 false Figure 1 to Part 640 1 Figure 1 to Part 640 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Pt....

  11. 50 CFR Figure 1 to Part 640 - Figure 1 to Part 640

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 12 2012-10-01 2012-10-01 false Figure 1 to Part 640 1 Figure 1 to Part 640 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Pt....

  12. 50 CFR Figure 1 to Part 640 - Figure 1 to Part 640

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 8 2010-10-01 2010-10-01 false Figure 1 to Part 640 1 Figure 1 to Part 640 Wildlife and Fisheries FISHERY CONSERVATION AND MANAGEMENT, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE SPINY LOBSTER FISHERY OF THE GULF OF MEXICO AND SOUTH ATLANTIC Pt....

  13. Induction of mitotic and chromosomal abnormalities on Allium cepa cells by pesticides imidacloprid and sulfentrazone and the mixture of them.

    PubMed

    Bianchi, Jaqueline; Fernandes, Thais Cristina Casimiro; Marin-Morales, Maria Aparecida

    2016-02-01

    To evaluate the cytotoxic and genotoxic effects of low concentrations of pesticides in non-target organisms, seeds of Allium cepa were exposed for 24 h to the imidacloprid insecticide, sulfentrazone herbicide and to the mixture of them, followed by recovery periods of 48 and 72 h. Imidacloprid results indicated an indirect genotoxic effect by inducing different types of chromosome aberration (CA), mainly bridges and chromosomal adherences. Cells with micronucleus (MN) were not significant in the analyzed meristems. Moreover, the 72-h recovery tests indicated that the two lower concentrations of the insecticide (0.036 and 0.36 g L(-1)) had their genotoxic effects minimized after discontinuation of treatment, differently to the observed for the field concentration (3.6 g L(-1)). Sulfentrazone herbicide at field concentration (6 g L(-1)) caused cytotoxic effects by inducing nuclear fragmentation and inhibition of cell division. The other concentrations (0.06, 0.6 and 1.2 g L(-1)) indicated genotoxic effects for this herbicide. The concentration of 0.06 g L(-1) induced persistent effects that could be visualized both by the induction of CA in the recovery times as by the presence of MN in meristematic and F1 cells. The induction of MN by this lowest concentration was associated with the great amount of breakage, losses and chromosomal bridges. The mixture of pesticides induced genotoxic and cytotoxic effects, by reducing the MI of the cells. The chromosomal damage induced by the mixture of pesticides was not persistent to the cells, since such damage was minimized 72 h after the interruption of the exposure.

  14. Abnormal growth of ovarian antral follicles in breast cancer patients.

    PubMed

    Byskov, A G; McNatty, K P; Westergaard, L; Larsen, J K; Grinsted, J; Peters, H

    1983-07-01

    Ovarian antral follicles from patients with breast cancer were compared with follicles from healthy women. Steroid levels in the follicular fluid and the health status of the follicles were evaluated. Follicles were judged to be healthy or atretic by flow cytometric determinations of the deoxyribonucleic acid content of aspirated granulosa cell nuclei. Fifteen of the 25 follicles (60%) from the cancer patients contained unmeasurable or abnormally low steriod levels (i.e., less than 100 ng/ml) which were significantly (P less than 0.001) lower than in follicles of the same health status from healthy women (500 to 1000 ng/ml). It is speculated whether substances other than the usual follicular steriods are produced by the cancer patients, which stimulate mitotic activity of the granulosa cells.

  15. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  16. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  17. The Offerings of Fringe Figures and Migrants

    ERIC Educational Resources Information Center

    Engels-Schwarzpaul, A.-Chr.

    2015-01-01

    "The Western tradition", as passe-partout, includes fringe figures, émigrés and migrants. Rather than looking to resources at the core of the Western tradition to overcome its own blindnesses, I am more interested in its gaps and peripheries, where other thoughts and renegade knowledges take hold. It is in the contact zones with…

  18. Cylindrical optic figuring dwell time optimization

    NASA Astrophysics Data System (ADS)

    Waluschka, Eugene

    2000-11-01

    The Constellation-X, grazing incidence, x-ray telescope may be fabricated from replicated segments. A series of mandrels will serve as the 'masters' in the replication processes. Diamond turning (milling) followed by abrasive figuring followed by a super polishing are the steps currently envisioned in making just one (of many) mandrel. The abrasive figuring of a mandrel is accomplished by moving a grinding tool along a helical path on this almost cylindrical surface. The measurement of the surface is, however, performed along 'axial' scan lines which intercept this helical path. This approach to figuring and measuring permits a relatively simple scheme to be implemented for the determination of the optimal dwell times of the figuring tool. These optimal dwell times are determined by a deconvolution which approaches the problem in a linear programming context and uses the Simplex Method. The approach maximizes the amount of material removed at any point subject to inequality constraints. The effects of using these 'optimum' dwell times is to significantly improve the tools effectiveness at removing the higher spatial frequencies while staying (strictly) within the bounds and constraints imposed by the hardware. In addition, the ringing at the edges of the optic, frequently present in deconvolution problems, is completely eliminated.

  19. Go Figure. HEADJAM. Teaching Guide [and Videotape].

    ERIC Educational Resources Information Center

    MATHCOUNTS Foundation, Alexandria, VA.

    The HeadJam series is comprised of six programs exploring mathematics, science, and critical thinking skills. It is an award-winning, educational videotape series for middle school students that explores multi-disciplinary skills in a highly entertaining way. The teacher's guide and 22-minute video, "Go Figure," demonstrate how math is used in the…

  20. Noise figure of hybrid optical parametric amplifiers.

    PubMed

    Marhic, Michel E

    2012-12-17

    Following a fiber optical parametric amplifier, used as a wavelength converter or in the phase-sensitive mode, by a phase-insensitive amplifier (PIA) can significantly reduce four-wave mixing between signals in broadband systems. We derive the quantum mechanical noise figures (NF) for these two hybrid configurations, and show that adding the PIA only leads to a moderate increase in NF.

  1. Computerized Testing: The Hidden Figures Test.

    ERIC Educational Resources Information Center

    Jacobs, Ronald L.; And Others

    1985-01-01

    This study adapted the Hidden Figures Test for use on PLATO and determined the reliability of the computerized version compared to the paper and pencil version. Results indicate the test was successfully adapted with some modifications, and it was judged reliable although it may be measuring additional constructs. (MBR)

  2. Human Figure Drawings of Vietnamese Children.

    ERIC Educational Resources Information Center

    Delatte, Joseph G. Jr.

    1978-01-01

    Some characteristics of the human figure drawings of 93 Vietnamese children were investigated. Drawings were scored according to the Goodenough method. Mental age scores were high in relation to chronological age and this result is explained in terms of cultural emphasis on the value of copying well. (SE)

  3. Facts and Figures about Chinese Americans.

    ERIC Educational Resources Information Center

    Association of Chinese Teachers, San Francisco, CA.

    In this brief collection of facts and figures about Chinese Americans, information and data are presented on the geographic location of Chinese in America, the pattern of Chinese immigration to the United States, and income and occupations of Chinese Americans. In addition, a brief chronology of Chinese American history is presented. (Author/AM)

  4. Data Behind the Figures in AAS Journals

    NASA Astrophysics Data System (ADS)

    Biemesderfer, Chris

    2013-01-01

    Substantial amounts of digital data are produced in the scientific enterprise, and much of it is carefully analyzed and processed. Often resulting from a good deal of intellectual effort, many of these highly-processed products are published in the scholarly literature. Many of these data - or more precisely, representations of these data - are committed to the scholarly record in the forms of figures and tables that appear within articles: the AAS journals publish more than 30,000 figures and nearly 10,000 tables each year. For more than a decade, the AAS journals have accepted machine-readable tables that provide the data behind (some of) the tables, and recently the journals have started to encourage the submission of the data behind figures. (See the related poster by Greg Schwarz.) During this time, the journals have been refining techniques for acquiring and managing the digital data that underlie figures and tables. In 2012 the AAS was awarded a grant by the US NSF so that the journals can extend the methods for providing access to these data objects, through a deeper collaboration with the VO and with organizations like DataCite, and by spearheading discussions about the formats and metadata that will best facilitate long-term data management and access. An important component of these activities is educating scientists about the importance and benefits of making such data sets available.

  5. Cultural Impact on Human Figure Drawings.

    ERIC Educational Resources Information Center

    De La Serna, Marcelo; And Others

    1979-01-01

    A human figure drawing instrument was administered to Black children from the Virgin Islands and Georgia and to White children from Mexico. Both cultural and sex differences occurred, influencing the drawings. Black children from different cultures differed from each other on this instrument. (Author/BEF)

  6. 36 CFR Appendix - Figures to Part 1194

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Figures to Part 1194 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE BOARD ELECTRONIC AND INFORMATION TECHNOLOGY ACCESSIBILITY STANDARDS Information, Documentation, and Support Information, documentation, and support. Pt. 1194,...

  7. 36 CFR Appendix - Figures to Part 1192

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Figures to Part 1192 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE BOARD AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems Trams, similar vehicles and systems. Pt....

  8. 36 CFR Appendix - Figures to Part 1192

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Figures to Part 1192 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE BOARD AMERICANS WITH DISABILITIES ACT (ADA) ACCESSIBILITY GUIDELINES FOR TRANSPORTATION VEHICLES Other Vehicles and Systems Trams, similar vehicles and systems. Pt....

  9. 36 CFR Appendix - Figures to Part 1194

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 3 2010-07-01 2010-07-01 false Figures to Part 1194 Parks, Forests, and Public Property ARCHITECTURAL AND TRANSPORTATION BARRIERS COMPLIANCE BOARD ELECTRONIC AND INFORMATION TECHNOLOGY ACCESSIBILITY STANDARDS Information, Documentation, and Support Information, documentation, and support. Pt. 1194,...

  10. T'ang Dynasty Tomb Figure.

    ERIC Educational Resources Information Center

    Selle, Penny

    1988-01-01

    Uses a print of a T'ang Dynasty tomb figure to acquaint grades 10-12 students with the tools needed for developing aesthetic judgement and artistic criticism. Includes background on the artwork and instructional strategies to help students describe the object, analyze the artmaking process, and formulate their own opinions. (GEA)

  11. Fading-Figure Tracing in Williams Syndrome

    ERIC Educational Resources Information Center

    Nagai, Chiyoko; Inui, Toshio; Iwata, Makoto

    2011-01-01

    Williams syndrome (WS) is a neurodevelopmental disorder characterized by severe impairment of visuospatial abilities. Figure-drawing abilities, which are thought to reflect visuospatial abilities, have yet to be fully investigated in WS. The purpose of the present study was to clarify whether drawing abilities differ between WS individuals and…

  12. Participation in the Figured World of Graffiti

    ERIC Educational Resources Information Center

    Valle, Imuris; Weiss, Eduardo

    2010-01-01

    This article is based on ethnographic work with two "crews" of young graffiti artists in southern Mexico City. The crews share certain characteristics with gangs or urban tribes, but more with "communities of practice": they live in the "figured world" of graffiti, a community of practice at the local and global…

  13. Mirror Figuring Techniques of Sir William Herschel

    NASA Astrophysics Data System (ADS)

    Albin, E. F.

    2004-05-01

    Between the years 1773 to 1818, Sir William Herschel constructed dozens of speculum telescope mirrors, with diameters ranging from 6 - 48 inches. Very little, if any, detailed information has ever been published on the specifics of his mirror figuring efforts. The reason for this certainly relates to his desire to closely guard mirror production trade secrets. Upon Herschel's death, all telescope-making documents were passed on to his only son, Sir John Herschel. These materials are now in the possession of the British RAS and primarily consist of: a) a four volume series entitled "Experiments on the Construction of Specula," b) a 129 page treaty called "On the Construction of Specula," and c) a 179 page manuscript entitled "Results of Experiments on the Construction of Mirrors." It is suggested that publication was further delayed and then eventually abandoned due to silver-coated glass mirrors coming into favor. A recent investigation by the author, of the unpublished manuscripts on the construction of specula, suggests that Herschel's mirror figuring techniques did not involve any guess work; in fact, his methods were highly refined -- never leaving to chance the evolution of a spherical surface into the required paraboloid. At the heart of Herschel's figuring techniques were a series of aperture diaphragms (similar to the Couder masks used by modern telescope makers) that were placed over the mirror, which allowed for the precise determination of its curvature at various predefined zones. With this information, Herschel was able to vary his figuring strokes with his polishing tool accordingly. In addition, all mirrors were subsequently "star tested," sometimes with aperture diaphragms in place, allowing for field examination of the mirror's "distinctness" or performance. Double stars and the planet Saturn were favorite targets used to analyze and then correct a mirror's figure.

  14. Evidence for regulation of mitotic progression through temporal phosphorylation and dephosphorylation of CK2alpha.

    PubMed

    St-Denis, Nicole A; Derksen, D Richard; Litchfield, David W

    2009-04-01

    Proper mitotic progression is crucial for maintenance of genomic integrity in proliferating cells and is regulated through an intricate series of events, including protein phosphorylation governed by a complex network of protein kinases. One kinase family implicated in the regulation of mitotic progression is protein kinase CK2, a small family of enzymes that is overexpressed in cancer and induces transformation in mice and cultured fibroblasts. CK2alpha, one isoform of the catalytic subunits of CK2, is maximally phosphorylated at four sites in nocodazole-treated cells. To investigate the effects of CK2alpha phosphorylation on mitotic progression, we generated phosphospecific antibodies against its mitotic phosphorylation sites. In U2OS cells released from S-phase arrest, these antibodies reveal that CK2alpha is most highly phosphorylated in prophase and metaphase. Phosphorylation gradually decreases during anaphase and becomes undetectable during telophase and cytokinesis. Stable expression of phosphomimetic CK2alpha (CK2alpha-4D, CK2alpha-4E) results in aberrant centrosome amplification and chromosomal segregation defects and loss of mitotic cells through mitotic catastrophe. Conversely, cells expressing nonphosphorylatable CK2alpha (CK2alpha-4A) show a decreased ability to arrest in mitosis following nocodazole treatment, suggesting involvement in the spindle assembly checkpoint. Collectively, these studies indicate that reversible phosphorylation of CK2alpha requires precise regulation to allow proper mitotic progression.

  15. Closed MAD2 (C-MAD2) is selectively incorporated into the mitotic checkpoint complex (MCC)

    PubMed Central

    Tipton, Aaron R; Tipton, Michael; Yen, Tim

    2011-01-01

    The mitotic checkpoint is a specialized signal transduction pathway that monitors kinetochore-microtubule attachment to achieve faithful chromosome segregation. MAD2 is an evolutionarily conserved mitotic checkpoint protein that exists in open (O) and closed (C) conformations. The increase of intracellular C-MAD2 level during mitosis, through O→C-MAD2 conversion as catalyzed by unattached kinetochores, is a critical signaling event for the mitotic checkpoint. However, it remains controversial whether MAD2 is an integral component of the effector of the mitotic checkpoint—the mitotic checkpoint complex (MCC). We show here that endogenous human MCC is assembled by first forming a BUBR1:BUB3:CDC20 complex in G2 and then selectively incorporating C-MAD2 during mitosis. Nevertheless, MCC can be induced to form in G1/S cells by expressing a C-conformation locked MAD2 mutant, indicating intracellular level of C-MAD2 as a major limiting factor for MCC assembly. In addition, a recombinant MCC containing C-MAD2 exhibits effective inhibitory activity toward APC/C isolated from mitotic HeLa cells, while a recombinant BUBR1:BUB3:CDC20 ternary complex is ineffective at comparable concentrations despite association with APC/C. These results help establish a direct connection between a major signal transducer (C-MAD2) and the potent effector (MCC) of the mitotic checkpoint, and provide novel insights into protein-protein interactions during assembly of a functional MCC. PMID:22037211

  16. Efficient Activation of Apoptotic Signaling during Mitotic Arrest with AK301

    PubMed Central

    Bleiler, Marina; Yeagley, Michelle; Wright, Dennis; Giardina, Charles

    2016-01-01

    Mitotic inhibitors are widely utilized chemotherapeutic agents that take advantage of mitotic defects in cancer cells. We have identified a novel class of piperazine-based mitotic inhibitors, of which AK301 is the most potent derivative identified to date (EC50 < 200 nM). Colon cancer cells arrested in mitosis with AK301 readily underwent a p53-dependent apoptosis following compound withdrawal and arrest release. This apoptotic response was significantly higher for AK301 than for other mitotic inhibitors tested (colchicine, vincristine, and BI 2536). AK301-treated cells exhibited a robust mitosis-associated DNA damage response, including ATM activation, γH2AX phosphorylation and p53 stabilization. The association between mitotic signaling and the DNA damage response was supported by the finding that Aurora B inhibition reduced the level of γH2AX staining. Confocal imaging of AK301-treated cells revealed multiple γ-tubulin microtubule organizing centers attached to microtubules, but with limited centrosome migration, raising the possibility that aberrant microtubule pulling may underlie DNA breakage. AK301 selectively targeted APC-mutant colonocytes and promoted TNF-induced apoptosis in p53-mutant colon cancer cells. Our findings indicate that AK301 induces a mitotic arrest state with a highly active DNA damage response. Together with a reversible arrest state, AK301 is a potent promoter of a mitosis-to-apoptosis transition that can target cancer cells with mitotic defects. PMID:27097159

  17. Induction of mitotic catastrophe by PKC inhibition in Nf1-deficient cells.

    PubMed

    Zhou, Xiaodong; Kim, Sung-Hoon; Shen, Ling; Lee, Hyo-Jung; Chen, Changyan

    2014-01-01

    Mutations of tumor suppressor Nf1 gene deregulate Ras-mediated signaling, which confers the predisposition for developing benign or malignant tumors. Inhibition of protein kinase C (PKC) was shown to be in synergy with aberrant Ras for the induction of apoptosis in various types of cancer cells. However, it has not been investigated whether loss of PKC is lethal for Nf1-deficient cells. In this study, using HMG (3-hydroxy-3-methylgutaryl, a PKC inhibitor), we demonstrate that the inhibition of PKC by HMG treatment triggered a persistently mitotic arrest, resulting in the occurrence of mitotic catastrophe in Nf1-deficient ST8814 cells. However, the introduction of the Nf1 effective domain gene into ST8814 cells abolished this mitotic crisis. In addition, HMG injection significantly attenuated the growth of the xenografted ST8814 tumors. Moreover, Chk1 was phosphorylated, accompanied with the persistent increase of cyclin B1 expression in HMG-treated ST8814 cells. The knockdown of Chk1 by the siRNA prevented the Nf1-deficient cells from undergoing HMG-mediated mitotic arrest as well as mitotic catastrophe. Thus, our data suggested that the suppression of PKC activates the Chk1-mediated mitotic exit checkpoint in Nf1-deficient cells, leading to the induction of apoptosis via mitotic catastrophe. Collectively, the study indicates that targeting PKC may be a potential option for developing new strategies to treat Nf1-deficiency-related diseases.

  18. Epilepsy and chromosomal abnormalities

    PubMed Central

    2010-01-01

    Background Many chromosomal abnormalities are associated with Central Nervous System (CNS) malformations and other neurological alterations, among which seizures and epilepsy. Some of these show a peculiar epileptic and EEG pattern. We describe some epileptic syndromes frequently reported in chromosomal disorders. Methods Detailed clinical assessment, electrophysiological studies, survey of the literature. Results In some of these congenital syndromes the clinical presentation and EEG anomalies seems to be quite typical, in others the manifestations appear aspecific and no strictly linked with the chromosomal imbalance. The onset of seizures is often during the neonatal period of the infancy. Conclusions A better characterization of the electro clinical patterns associated with specific chromosomal aberrations could give us a valuable key in the identification of epilepsy susceptibility of some chromosomal loci, using the new advances in molecular cytogenetics techniques - such as fluorescent in situ hybridization (FISH), subtelomeric analysis and CGH (comparative genomic hybridization) microarray. However further studies are needed to understand the mechanism of epilepsy associated with chromosomal abnormalities. PMID:20438626

  19. Pixantrone induces cell death through mitotic perturbations and subsequent aberrant cell divisions

    PubMed Central

    Beeharry, Neil; Di Rora, Andrea Ghelli Luserna; Smith, Mitchell R; Yen, Timothy J

    2015-01-01

    Pixantrone is a novel aza-anthracenedione active against aggressive lymphoma and is being evaluated for use against various hematologic and solid tumors. The drug is an analog of mitoxantrone, but displays less cardiotoxicity than mitoxantrone or the more commonly used doxorubicin. Although pixantrone is purported to inhibit topoisomerase II activity and intercalate with DNA, exact mechanisms of how it induces cell death remain obscure. Here we evaluated the effect of pixantrone on a panel of solid tumor cell lines to understand its mechanism of cell killing. Initial experiments with pixantrone showed an apparent discrepancy between its anti-proliferative effects in MTS assays (short-term) compared with clonogenic assays (long-term). Using live cell videomicroscopy to track the fates of cells, we found that cells treated with pixantrone underwent multiple rounds of aberrant cell division before eventually dying after approximately 5 d post-treatment. Cells underwent abnormal mitosis in which chromosome segregation was impaired, generating chromatin bridges between cells or within cells containing micronuclei. While pixantrone-treated cells did not display γH2AX foci, a marker of DNA damage, in the main nuclei, such foci were often detected in the micronuclei. Using DNA content analysis, we found that pixantrone concentrations that induced cell death in a clonogenic assay did not impede cell cycle progression, further supporting the lack of canonical DNA damage signaling. These findings suggest pixantrone induces a latent type of DNA damage that impairs the fidelity of mitosis, without triggering DNA damage response or mitotic checkpoint activation, but is lethal after successive rounds of aberrant division. PMID:26177126

  20. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  1. A chemical tool box defines mitotic and interphase roles for Mps1 kinase

    PubMed Central

    Lan, Weijie

    2010-01-01

    In this issue, three groups (Hewitt et al. 2010. J. Cell Biol. doi:10.1083/jcb.201002133; Maciejowski et al. 2010. J. Cell Biol. doi:10.1083/jcb.201001050; Santaguida et al. 2010. J. Cell Biol. doi:10.1083/jcb.201001036) use chemical inhibitors to analyze the function of the mitotic checkpoint kinase Mps1. These studies demonstrate that Mps1 kinase activity ensures accurate chromosome segregation through its recruitment to kinetochores of mitotic checkpoint proteins, formation of interphase and mitotic inhibitors of Cdc20, and correction of faulty microtubule attachments. PMID:20624898

  2. Mitotic spindle assembly on chromatin patterns made with deep UV photochemistry.

    PubMed

    Tarnawska, Katarzyna; Pugieux, Céline; Nédélec, François

    2014-01-01

    We provide a detailed method to generate arrays of mitotic spindles in vitro. Spindles are formed in extract prepared from unfertilized Xenopus laevis eggs, which contain all the molecular ingredients of mitotic spindles. The method is based on using deep UV photochemistry to attach chromatin-coated beads on a glass surface according to a pattern of interest. The immobilized beads act as artificial chromosomes, and induce the formation of mitotic spindles in their immediate vicinity. To perform the experiment, a chamber is assembled over the chromatin pattern, Xenopus egg extract is flowed in and after incubation the spindles are imaged with a confocal microscope.

  3. [Mitotic activity of the lymphocytes of the thymus cortex in hypokinesia during the period of readaptation].

    PubMed

    Kharlova, G V; Li, S E

    1979-10-01

    The changes in the weight and mitotic index were studied in the cortex of the thymus of Wistar rats during 10-day hypokinesia and 10-day readaptation (restoration). 24 hours after immobilization of the animals the mitotic index was 2 times as lower. No complete readaptation was attained during 10-day hypokinesia. No readaptation was attained during 10-day hypokinesia. In readaptation the stage of secondary stress was found (the mitotic index was 3.5 times as reduced), the stage of genuine restoration being revealed after 10 days.

  4. A grading system combining architectural features and mitotic count predicts recurrence in stage I lung adenocarcinoma.

    PubMed

    Kadota, Kyuichi; Suzuki, Kei; Kachala, Stefan S; Zabor, Emily C; Sima, Camelia S; Moreira, Andre L; Yoshizawa, Akihiko; Riely, Gregory J; Rusch, Valerie W; Adusumilli, Prasad S; Travis, William D

    2012-08-01

    The International Association for the Study of Lung Cancer (IASLC)/American Thoracic Society (ATS)/European Respiratory Society (ERS) has recently proposed a new lung adenocarcinoma classification. We investigated whether nuclear features can stratify prognostic subsets. Slides of 485 stage I lung adenocarcinoma patients were reviewed. We evaluated nuclear diameter, nuclear atypia, nuclear/cytoplasmic ratio, chromatin pattern, prominence of nucleoli, intranuclear inclusions, mitotic count/10 high-power fields (HPFs) or 2.4 mm(2), and atypical mitoses. Tumors were classified into histologic subtypes according to the IASLC/ATS/ERS classification and grouped by architectural grade into low (adenocarcinoma in situ, minimally invasive adenocarcinoma, or lepidic predominant), intermediate (papillary or acinar), and high (micropapillary or solid). Log-rank tests and Cox regression models evaluated the ability of clinicopathologic factors to predict recurrence-free probability. In univariate analyses, nuclear diameter (P=0.007), nuclear atypia (P=0.006), mitotic count (P<0.001), and atypical mitoses (P<0.001) were significant predictors of recurrence. The recurrence-free probability of patients with high mitotic count (≥5/10 HPF: n=175) was the lowest (5-year recurrence-free probability=73%), followed by intermediate (2-4/10 HPF: n=106, 80%), and low (0-1/10 HPF: n=204, 91%, P<0.001). Combined architectural/mitotic grading system stratified patient outcomes (P<0.001): low grade (low architectural grade with any mitotic count and intermediate architectural grade with low mitotic count: n=201, 5-year recurrence-free probability=92%), intermediate grade (intermediate architectural grade with intermediate-high mitotic counts: n=206, 78%), and high grade (high architectural grade with any mitotic count: n=78, 68%). The advantage of adding mitotic count to architectural grade is in stratifying patients with intermediate architectural grade into two prognostically

  5. Figure correction of multilayer coated optics

    DOEpatents

    Chapman; Henry N. , Taylor; John S.

    2010-02-16

    A process is provided for producing near-perfect optical surfaces, for EUV and soft-x-ray optics. The method involves polishing or otherwise figuring the multilayer coating that has been deposited on an optical substrate, in order to correct for errors in the figure of the substrate and coating. A method such as ion-beam milling is used to remove material from the multilayer coating by an amount that varies in a specified way across the substrate. The phase of the EUV light that is reflected from the multilayer will be affected by the amount of multilayer material removed, but this effect will be reduced by a factor of 1-n as compared with height variations of the substrate, where n is the average refractive index of the multilayer.

  6. Recommended Figures of Merit for Green Monopropellants

    NASA Technical Reports Server (NTRS)

    Marshall. William M.; Deans, Matthew C.

    2013-01-01

    Hydrazine propellant has historically been used as a rocket thruster monopropellant since the mid-1960s. Mission managers are well aware of its characteristics and performance. However, it is a known toxic chemical and a wide effort is underway to reduce and/or eliminate its use worldwide. Several new propellant combinations have been developed in the last few years which tout or promise to provide same or better performance as hydrazine while being "non-toxic" or "green". Yet, there is no consistent definition for what constitutes "non-toxic" or "green", and thus no good figure of merit for which to compare. This paper seeks to review the three major categories of figures of merit, and discusses how they might be used to assess the viability of a propellant.

  7. LETTER TO THE EDITOR: Significant figures

    NASA Astrophysics Data System (ADS)

    Wheeler, David

    2000-05-01

    The interesting article on `University students' conceptions of basic astronomy concepts' by Ricardo Trumper (2000 Phys. Educ. 35 9-15) was spoiled by a lack of attention to detail. The percentages for the student responses were mostly quoted to three figures but the sample size of 76 allows for only two at most. As well as making the article much less `readable', the decimal point in the percentage figure implies a measurement accuracy that is just not there in reality. Sociologists and newspaper reporters have long been guilty of this kind of accidental deception. If we physicists don't set an example in our own journals how can we ever expect it to stop?

  8. Figure and finish of grazing incidence mirrors

    SciTech Connect

    Takacs, P.Z. ); Church, E.L. . Army Armament Research, Development and Engineering Center)

    1989-08-01

    Great improvement has been made in the past several years in the quality of optical components used in synchrotron radiation (SR) beamlines. Most of this progress has been the result of vastly improved metrology techniques and instrumentation permitting rapid and accurate measurement of the surface finish and figure on grazing incidence optics. A significant theoretical effort has linked the actual performance of components used as x-ray wavelengths to their topological properties as measured by surface profiling instruments. Next-generation advanced light sources will require optical components and systems to have sub-arc second surface figure tolerances. This paper will explore the consequences of these requirements in terms of manufacturing tolerances to see if the present manufacturing state-of-the-art is capable of producing the required surfaces. 15 refs., 14 figs., 2 tabs.

  9. High figure of merit thermoelectrics - Theoretical considerations

    NASA Technical Reports Server (NTRS)

    Vining, Cronin B.

    1990-01-01

    The thermoelectric figure of merit of a semiconductor, ZT, can be calculated from a small number of microscopic material parameters, the material composition, the doping level, and the temperature. The functional dependence of ZT on these parameters has been studied for a range of material parameters using a recently developed model which accurately and self-consistently describes the thermoelectric properties of n-type silicon-germanium alloys. ZT values several times larger than current state-of-the-art values of ZT of about 1 are shown to be entirely consistent with existing theory, even using material parameters already observed. A search for materials with much higher figure of merit values therefore remains of interest, in spite of several decades of relatively slow progress in this area.

  10. Skeletal abnormalities in homocystinuria.

    PubMed Central

    Brenton, D. P.

    1977-01-01

    The skeletal changes of thirty-four patients with the biochemical and clinical features of cystathionine synthase deficiency are described. It is emphasized that there is clinical evidence of excessive bone growth and the formation for bone which is structurally weaker than normal. The similarities and differences between this condition and Marfan's syndrome are stressed and the possible nature of the connective tissue defect leading to the skeletal changes discussed. The most characteristic skeletal changes in homocystinuria are the skeletal disproportion (pubis-heel length greater than crown-pubis length), the abnormal vertebrae, sternal deformities, genu valgum and large metaphyses and epiphyses. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 PMID:917963

  11. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem.

  12. Adolescent girls' parasocial interactions with media figures.

    PubMed

    Theran, Sally A; Newberg, Emily M; Gleason, Tracy R

    2010-01-01

    We examined aspects of adolescent girls' parasocial interactions in the context of typical development. Parasocial interactions are defined as symbolic, one-sided quasi-interactions between a viewer and a media figure. In total, 107 adolescent girls were examined; 94% reported engaging in parasocial interactions to some degree. Preoccupied attachment style predicted the degree of involvement in and emotional intensity of parasocial interactions. Results suggest that parasocial interactions are characteristic of girls with preoccupied attachment, but are also part of normative development.

  13. Figure-Ground Segmentation Using Factor Graphs.

    PubMed

    Shen, Huiying; Coughlan, James; Ivanchenko, Volodymyr

    2009-06-04

    Foreground-background segmentation has recently been applied [26,12] to the detection and segmentation of specific objects or structures of interest from the background as an efficient alternative to techniques such as deformable templates [27]. We introduce a graphical model (i.e. Markov random field)-based formulation of structure-specific figure-ground segmentation based on simple geometric features extracted from an image, such as local configurations of linear features, that are characteristic of the desired figure structure. Our formulation is novel in that it is based on factor graphs, which are graphical models that encode interactions among arbitrary numbers of random variables. The ability of factor graphs to express interactions higher than pairwise order (the highest order encountered in most graphical models used in computer vision) is useful for modeling a variety of pattern recognition problems. In particular, we show how this property makes factor graphs a natural framework for performing grouping and segmentation, and demonstrate that the factor graph framework emerges naturally from a simple maximum entropy model of figure-ground segmentation.We cast our approach in a learning framework, in which the contributions of multiple grouping cues are learned from training data, and apply our framework to the problem of finding printed text in natural scenes. Experimental results are described, including a performance analysis that demonstrates the feasibility of the approach.

  14. Generating Ambiguous Figure-Ground Images.

    PubMed

    Kuo, Ying-Miao; Chu, Hung-Kuo; Chi, Ming-Te; Lee, Ruen-Rone; Lee, Tong-Yee

    2016-02-26

    Ambiguous figure-ground images, mostly represented as binary images, are fascinating as they present viewers a visual phenomena of perceiving multiple interpretations from a single image. In one possible interpretation, the white region is seen as a foreground figure while the black region is treated as shapeless background. Such perception can reverse instantly at any moment. In this paper, we investigate the theory behind this ambiguous perception and present an automatic algorithm to generate such images. We model the problem as a binary image composition using two object contours and approach it through a three-stage pipeline. The algorithm first performs a partial shape matching to find a good partial contour matching between objects. This matching is based on a content-aware shape matching metric, which captures features of ambiguous figure-ground images. Then we combine matched contours into a compound contour using an adaptive contour deformation, followed by computing an optimal cropping window and image binarization for the compound contour that maximize the completeness of object contours in the final composition. We have tested our system using a wide range of input objects and generated a large number of convincing examples with or without user guidance. The efficiency of our system and quality of results are verified through an extensive experimental study.

  15. Changes in area affect figure-ground assignment in pigeons.

    PubMed

    Castro, Leyre; Lazareva, Olga F; Vecera, Shaun P; Wasserman, Edward A

    2010-03-05

    A critical cue for figure-ground assignment in humans is area: smaller regions are more likely to be perceived as figures than are larger regions. To see if pigeons are similarly sensitive to this cue, we trained birds to report whether a target appeared on a colored figure or on a differently colored background. The initial training figure was either smaller than (Experiments 1 and 2) or the same area as (Experiment 2) the background. After training, we increased or decreased the size of the figure. When the original training shape was smaller than the background, pigeons' performance improved with smaller figures (and worsened with larger figures); when the original training shape was the same area as the background, pigeons' performance worsened when they were tested with smaller figures. A smaller figural region appeared to improve the figure-ground discrimination only when size was a relevant cue in the initial discrimination.

  16. A deep learning based strategy for identifying and associating mitotic activity with gene expression derived risk categories in estrogen receptor positive breast cancers.

    PubMed

    Romo-Bucheli, David; Janowczyk, Andrew; Gilmore, Hannah; Romero, Eduardo; Madabhushi, Anant

    2017-02-13

    The treatment and management of early stage estrogen receptor positive (ER+) breast cancer is hindered by the difficulty in identifying patients who require adjuvant chemotherapy in contrast to those that will respond to hormonal therapy. To distinguish between the more and less aggressive breast tumors, which is a fundamental criterion for the selection of an appropriate treatment plan, Oncotype DX (ODX) and other gene expression tests are typically employed. While informative, these gene expression tests are expensive, tissue destructive, and require specialized facilities. Bloom-Richardson (BR) grade, the common scheme employed in breast cancer grading, has been shown to be correlated with the Oncotype DX risk score. Unfortunately, studies have also shown that the BR grade determined experiences notable inter-observer variability. One of the constituent categories in BR grading is the mitotic index. The goal of this study was to develop a deep learning (DL) classifier to identify mitotic figures from whole slides images of ER+ breast cancer, the hypothesis being that the number of mitoses identified by the DL classifier would correlate with the corresponding Oncotype DX risk categories. The mitosis detector yielded an average F-score of 0.556 in the AMIDA mitosis dataset using a 6-fold validation setup. For a cohort of 174 whole slide images with early stage ER+ breast cancer for which the corresponding Oncotype DX score was available, the distributions of the number of mitoses identified by the DL classifier was found to be significantly different between the high vs low Oncotype DX risk groups (P < 0.01). Comparisons of other risk groups, using both ODX score and histological grade, were also found to present significantly different automated mitoses distributions. Additionally, a support vector machine classifier trained to separate low/high Oncotype DX risk categories using the mitotic count determined by the DL classifier yielded a 83.19% classification

  17. Mitotic and meiotic chromosome studies in silky anteater Cyclopes didactylus (Myrmecophagidae: Xenarthra).

    PubMed

    Jorge, W

    2000-01-01

    The karyotype of a male pigmy anteater, Cyclopes didactylus, an endangered species from the Amazon region, is described. The size and morphology of the X and Y chromosomes in mitotic and meiotic analyses is recorded and discussed.

  18. Selective extraction of isolated mitotic apparatus. Evidence that typical microtubule protein is extracted by organic mercurial.

    PubMed

    Bibring, T; Baxandall, J

    1971-02-01

    Mitotic apparatus isolated from sea urchin eggs has been treated with meralluride sodium under conditions otherwise resembling those of its isolation. The treatment causes a selective morphological disappearance of microtubules while extracting a major protein fraction, probably consisting of two closely related proteins, which constitutes about 10% of mitotic apparatus protein. Extraction of other cell particulates under similar conditions yields much less of this protein. The extracted protein closely resembles outer doublet microtubule protein from sea urchin sperm tail in properties considered typical of microtubule proteins: precipitation by calcium ion and vinblastine, electrophoretic mobility in both acid and basic polyacrylamide gels, sedimentation coefficient, molecular weight, and, according to a preliminary determination, amino acid composition. An antiserum against a preparation of sperm tail outer doublet microtubules cross-reacts with the extract from mitotic apparatus. On the basis of these findings it appears that microtubule protein is selectively extracted from isolated mitotic apparatus by treatment with meralluride, and is a typical microtubule protein.

  19. Phosphorylation of Lte1 by Cdk prevents polarized growth during mitotic arrest in S. cerevisiae

    PubMed Central

    Spanos, Adonis; Jensen, Sanne; Sedgwick, Steven G.

    2010-01-01

    Lte1 is known as a regulator of mitotic progression in budding yeast. Here we demonstrate phosphorylation-dependent inhibition of polarized bud growth during G2/M by Lte1. Cla4 activity first localizes Lte1 to the polarity cap and thus specifically to the bud. This localization is a prerequisite for subsequent Clb–Cdk-dependent phosphorylation of Lte1 and its relocalization to the entire bud cortex. There, Lte1 interferes with activation of the small GTPases, Ras and Bud1. The inhibition of Bud1 prevents untimely polarization until mitosis is completed and Cdc14 phosphatase is released. Inhibition of Bud1 and Ras depends on Lte1’s GEF-like domain, which unexpectedly inhibits these small G proteins. Thus, Lte1 has dual functions for regulation of mitotic progression: it both induces mitotic exit and prevents polarized growth during mitotic arrest, thereby coupling cell cycle progression and morphological development. PMID:21149565

  20. Suspension of mitotic activity in dentate gyrus of the hibernating ground squirrel.

    PubMed

    Popov, Victor I; Kraev, Igor V; Ignat'ev, Dmitri A; Stewart, Michael G

    2011-01-01

    Neurogenesis occurs in the adult mammalian hippocampus, a region of the brain important for learning and memory. Hibernation in Siberian ground squirrels provides a natural model to study mitosis as the rapid fall in body temperature in 24 h (from 35-36°C to +4-6°C) permits accumulation of mitotic cells at different stages of the cell cycle. Histological methods used to study adult neurogenesis are limited largely to fixed tissue, and the mitotic state elucidated depends on the specific phase of mitosis at the time of day. However, using an immunohistochemical study of doublecortin (DCX) and BrdU-labelled neurons, we demonstrate that the dentate gyrus of the ground squirrel hippocampus contains a population of immature cells which appear to possess mitotic activity. Our data suggest that doublecortin-labelled immature cells exist in a mitotic state and may represent a renewable pool for generation of new neurons within the dentate gyrus.

  1. Human mitotic chromosomes consist predominantly of irregularly folded nucleosome fibres without a 30-nm chromatin structure

    PubMed Central

    Nishino, Yoshinori; Eltsov, Mikhail; Joti, Yasumasa; Ito, Kazuki; Takata, Hideaki; Takahashi, Yukio; Hihara, Saera; Frangakis, Achilleas S; Imamoto, Naoko; Ishikawa, Tetsuya; Maeshima, Kazuhiro

    2012-01-01

    How a long strand of genomic DNA is compacted into a mitotic chromosome remains one of the basic questions in biology. The nucleosome fibre, in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fibre and further hierarchical regular structures to form mitotic chromosomes, although the actual existence of these regular structures is controversial. Here, we show that human mitotic HeLa chromosomes are mainly composed of irregularly folded nucleosome fibres rather than 30-nm chromatin fibres. Our comprehensive and quantitative study using cryo-electron microscopy and synchrotron X-ray scattering resolved the long-standing contradictions regarding the existence of 30-nm chromatin structures and detected no regular structure >11 nm. Our finding suggests that the mitotic chromosome consists of irregularly arranged nucleosome fibres, with a fractal nature, which permits a more dynamic and flexible genome organization than would be allowed by static regular structures. PMID:22343941

  2. Mitotic noncoding RNA processing promotes kinetochore and spindle assembly in Xenopus

    PubMed Central

    Grenfell, Andrew W.

    2016-01-01

    Transcription at the centromere of chromosomes plays an important role in kinetochore assembly in many eukaryotes, and noncoding RNAs contribute to activation of the mitotic kinase Aurora B. However, little is known about how mitotic RNA processing contributes to spindle assembly. We found that inhibition of transcription initiation or RNA splicing, but not translation, leads to spindle defects in Xenopus egg extracts. Spliceosome inhibition resulted in the accumulation of high molecular weight centromeric transcripts, concomitant with decreased recruitment of the centromere and kinetochore proteins CENP-A, CENP-C, and NDC80 to mitotic chromosomes. In addition, blocking transcript synthesis or processing during mitosis caused accumulation of MCAK, a microtubule depolymerase, on the spindle, indicating misregulation of Aurora B. These findings suggest that co-transcriptional recruitment of the RNA processing machinery to nascent mitotic transcripts is an important step in kinetochore and spindle assembly and challenge the idea that RNA processing is globally repressed during mitosis. PMID:27402954

  3. A Fine-Structure Map of Spontaneous Mitotic Crossovers in the Yeast Saccharomyces cerevisiae

    PubMed Central

    Lee, Phoebe S.; Greenwell, Patricia W.; Dominska, Margaret; Gawel, Malgorzata; Hamilton, Monica; Petes, Thomas D.

    2009-01-01

    Homologous recombination is an important mechanism for the repair of DNA damage in mitotically dividing cells. Mitotic crossovers between homologues with heterozygous alleles can produce two homozygous daughter cells (loss of heterozygosity), whereas crossovers between repeated genes on non-homologous chromosomes can result in translocations. Using a genetic system that allows selection of daughter cells that contain the reciprocal products of mitotic crossing over, we mapped crossovers and gene conversion events at a resolution of about 4 kb in a 120-kb region of chromosome V of Saccharomyces cerevisiae. The gene conversion tracts associated with mitotic crossovers are much longer (averaging about 12 kb) than the conversion tracts associated with meiotic recombination and are non-randomly distributed along the chromosome. In addition, about 40% of the conversion events have patterns of marker segregation that are most simply explained as reflecting the repair of a chromosome that was broken in G1 of the cell cycle. PMID:19282969

  4. Dimerization of TRAF-interacting protein (TRAIP) regulates the mitotic progression.

    PubMed

    Park, I Seul; Jo, Ku-Sung; Won, Hyung-Sik; Kim, Hongtae

    2015-08-07

    The homo- or hetero-dimerization of proteins plays critical roles in the mitotic progression. The TRAF-interacting protein (TRAIP) is crucial in early mitotic progression and chromosome alignment defects in the metaphase. The TRAIP is a 469 amino acid protein, including the Really Interesting New Gene (RING), coiled-coil (CC), and leucine zipper (LZ) domain. In general, the CC or LZ domain containing proteins forms homo- or hetero-dimerization to achieve its activity. In this study, a number of TRAIP mutants were used to define the TRAIP molecular domains responsible for its homo-dimerization. A co-immunoprecipitation assay indicated that the TRAIP forms homo-dimerization through the CC domain. The cells, expressing the CC domain-deleted mutant that could not form a homo-dimer, increased the mitotic index and promoted mitotic progression.

  5. Anti-mitotic agents: Are they emerging molecules for cancer treatment?

    PubMed

    Penna, Larissa Siqueira; Henriques, João Antonio Pêgas; Bonatto, Diego

    2017-02-04

    Mutations in cancer cells frequently result in cell cycle alterations that lead to unrestricted growth compared to normal cells. Considering this phenomenon, many drugs have been developed to inhibit different cell-cycle phases. Mitotic phase targeting disturbs mitosis in tumor cells, triggers the spindle assembly checkpoint and frequently results in cell death. The first anti-mitotics to enter clinical trials aimed to target tubulin. Although these drugs improved the treatment of certain cancers, and many anti-microtubule compounds are already approved for clinical use, severe adverse events such as neuropathies were observed. Since then, efforts have been focused on the development of drugs that also target kinases, motor proteins and multi-protein complexes involved in mitosis. In this review, we summarize the major proteins involved in the mitotic phase that can also be targeted for cancer treatment. Finally, we address the activity of anti-mitotic drugs tested in clinical trials in recent years.

  6. Poleward microtubule flux mitotic spindles assembled in vitro

    PubMed Central

    1991-01-01

    In the preceding paper we described pathways of mitotic spindle assembly in cell-free extracts prepared from eggs of Xenopus laevis. Here we demonstrate the poleward flux of microtubules in spindles assembled in vitro, using a photoactivatable fluorescein covalently coupled to tubulin and multi-channel fluorescence videomicroscopy. After local photoactivation of fluorescence by UV microbeam, we observed poleward movement of fluorescein-marked microtubules at a rate of 3 microns/min, similar to rates of chromosome movement and spindle elongation during prometaphase and anaphase. This movement could be blocked by the addition of millimolar AMP-PNP but was not affected by concentrations of vanadate up to 150 microM, suggesting that poleward flux may be driven by a microtubule motor similar to kinesin. In contrast to previous results obtained in vivo (Mitchison, T. J. 1989. J. Cell Biol. 109:637-652), poleward flux in vitro appears to occur independently of kinetochores or kinetochore microtubules, and therefore may be a general property of relatively stable microtubules within the spindle. We find that microtubules moving towards poles are dynamic structures, and we have estimated the average half-life of fluxing microtubules in vitro to be between approximately 75 and 100 s. We discuss these results with regard to the function of poleward flux in spindle movements in anaphase and prometaphase. PMID:1999464

  7. Physical Description of Mitotic Spindle Orientation During Cell Division

    NASA Astrophysics Data System (ADS)

    Jiménez-Dalmaroni, Andrea; Théry, Manuel; Racine, Victor; Bornens, Michel; Jülicher, Frank

    2009-03-01

    During cell division, the duplicated chromosomes are physically separated by the action of the mitotic spindle. The spindle is a dynamic structure of the cytoskeleton, which consists of two microtubule asters. Its orientation defines the axis along which the cell divides. Recent experiments show that the spindle orientation depends on the spatial distribution of cell adhesion sites. Here we show that the experimentally observed spindle orientation can be understood as the result of the action of cortical force generators acting on the spindle. We assume that the local activity of force generators is controlled by the spatial distribution of cell adhesion sites determined by the particular geometry of the adhesive substrate. We develop a simple physical description of the spindle mechanics, which allows us to calculate the torque acting on the spindle, as well as the energy profile and the angular distribution of spindle orientation. Our model accounts for the preferred spindle orientation, as well as the full shape of the angular distributions of spindle orientation observed in a large variety of pattern geometries. M. Th'ery, A. Jim'enez-Dalmaroni, et al., Nature 447, 493 (2007).

  8. Centrin: Another target of monastrol, an inhibitor of mitotic spindle

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Wang, Tong-Qing; Bian, Wei; Liu, Wen; Sun, Yue; Yang, Bin-Sheng

    2015-02-01

    Monastrol, a cell-permeable inhibitor, considered to specifically inhibit kinesin Eg5, can cause mitotic arrest and monopolar spindle formation, thus exhibiting antitumor properties. Centrin, a ubiquitous protein associated with centrosome, plays a critical role in centrosome duplication. Moreover, a correlation between centrosome amplification and cancer has been reported. In this study, it is proposed for the first time that centrin may be another target of the anticancer drug monastrol since monastrol can effectively inhibit not only the growth of the transformed Escherichia coli cells in vivo, but also the Lu3+-dependent self-assembly of EoCen in vitro. The two closely related compounds (Compounds 1 and 2) could not take the same effect. Fluorescence titration experiments suggest that four monastrols per protein is the optimum binding pattern, and the binding constants at different temperatures were obtained. Detailed thermodynamic analysis indicates that hydrophobic force is the main acting force between monastrol and centrin, and the extent of monastrol inhibition of centrin self-assembly is highly dependent upon the hydrophobic region of the protein, which is largely exposed by the binding of metal ions.

  9. Centrophilin: a novel mitotic spindle protein involved in microtubule nucleation

    PubMed Central

    1991-01-01

    A novel protein has been identified which may serve a key function in nucleating spindle microtubule growth in mitosis. This protein, called centrophilin, is sequentially relocated from the centromeres to the centrosomes to the midbody in a manner dependent on the mitotic phase. Centrophilin was initially detected by immunofluorescence with a monoclonal, primate-specific antibody (2D3) raised against kinetochore- enriched chromosome extract from HeLa cells (Valdivia, M. M., and B. R. Brinkley. 1985. J. Cell Biol. 101:1124-1134). Centrophilin forms prominent crescents at the poles of the metaphase spindle, gradually diminishes during anaphase, and bands the equatorial ends of midbody microtubules in telophase. The formation and breakdown of the spindle and midbody correlates in time and space with the aggregation and disaggregation of centrophilin foci. Immunogold EM reveals that centrophilin is a major component of pericentriolar material in metaphase. During recovery from microtubule inhibition, centrophilin foci act as nucleation sites for the assembly of spindle tubules. The 2D3 probe recognizes two high molecular mass polypeptides, 180 and 210 kD, on immunoblots of whole HeLa cell extract. Taken together, these data and the available literature on microtubule dynamics point inevitably to a singular model for control of spindle tubule turnover. PMID:1991791

  10. Control of the mitotic exit network during meiosis.

    PubMed

    Attner, Michelle A; Amon, Angelika

    2012-08-01

    The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division.

  11. The Prp19 complex directly functions in mitotic spindle assembly.

    PubMed

    Hofmann, Jennifer C; Tegha-Dunghu, Justus; Dräger, Stefanie; Will, Cindy L; Lührmann, Reinhard; Gruss, Oliver J

    2013-01-01

    The conserved Prp19 (pre-RNA processing 19) complex is required for pre-mRNA splicing in eukaryotic nuclei. Recent RNAi screens indicated that knockdown of Prp19 complex subunits strongly delays cell proliferation. Here we show that knockdown of the smallest subunit, BCAS2/Spf27, destabilizes the entire complex and leads to specific mitotic defects in human cells. These could result from splicing failures in interphase or reflect a direct function of the complex in open mitosis. Using Xenopus extracts, in which cell cycle progression and spindle formation can be reconstituted in vitro, we tested Prp19 complex functions during a complete cell cycle and directly in open mitosis. Strikingly, immunodepletion of the complex either before or after interphase significantly reduces the number of intact spindles, and increases the percentage of spindles with lower microtubule density and impaired metaphase alignment of chromosomes. Our data identify the Prp19 complex as the first spliceosome subcomplex that directly contributes to mitosis in vertebrates independently of its function in interphase.

  12. Maintaining Genome Stability in Defiance of Mitotic DNA Damage

    PubMed Central

    Ferrari, Stefano; Gentili, Christian

    2016-01-01

    The implementation of decisions affecting cell viability and proliferation is based on prompt detection of the issue to be addressed, formulation and transmission of a correct set of instructions and fidelity in the execution of orders. While the first and the last are purely mechanical processes relying on the faithful functioning of single proteins or macromolecular complexes (sensors and effectors), information is the real cue, with signal amplitude, duration, and frequency ultimately determining the type of response. The cellular response to DNA damage is no exception to the rule. In this review article we focus on DNA damage responses in G2 and Mitosis. First, we set the stage describing mitosis and the machineries in charge of assembling the apparatus responsible for chromosome alignment and segregation as well as the inputs that control its function (checkpoints). Next, we examine the type of issues that a cell approaching mitosis might face, presenting the impact of post-translational modifications (PTMs) on the correct and timely functioning of pathways correcting errors or damage before chromosome segregation. We conclude this essay with a perspective on the current status of mitotic signaling pathway inhibitors and their potential use in cancer therapy. PMID:27493659

  13. Effects of polyamines and polyamine biosynthetic inhibitors on mitotic activity of Allium cepa root tips.

    PubMed

    Unal, Meral; Palavan-Unsal, Narcin; Tufekci, M A

    2008-03-01

    The genotoxic and cytotoxic effects of exogenous polyamines (PAs), putrescine (Put), spermidine (Spd), spermine (Spm) and PA biosynthetic inhibitors, alpha-difluoromethylornithine (DFMO), cyclohexilamine (CHA), methylglioxal bis-(guanylhydrazone) (MGBG) were investigated in the root meristems of Allium cepa L. The reduction of mitotic index and the induction of chromosomal aberrations such as bridges, stickiness, c-mitotic anaphases, micronuclei, endoredupliction by PAs and PA biosynthetic inhibitors were observed and these were used as evidence of genotoxicity and cytotoxicity.

  14. Prognostic value of mitotic index and Bcl2 expression in male breast cancer.

    PubMed

    Lacle, Miangela M; van der Pol, Carmen; Witkamp, Arjen; van der Wall, Elsken; van Diest, Paul J

    2013-01-01

    The incidence of male breast cancer (MBC) is rising. Current treatment regimens for MBC are extrapolated from female breast cancer (FBC), based on the assumption that FBC prognostic features and therapeutic targets can be extrapolated to MBC. However, there is yet little evidence that prognostic features that have been developed and established in FBC are applicable to MBC as well. In a recent study on FBC, a combination of mitotic index and Bcl2 expression proved to be of strong prognostic value. Previous papers on Bcl2 expression in MBC were equivocal, and the prognostic value of Bcl2 combined with mitotic index has not been studied in MBC. The aim of the present study was therefore to investigate the prognostic value of Bcl2 in combination with mitotic index in MBC. Immunohistochemical staining for Bcl2 was performed on tissue microarrays of a total of 151 male breast cancer cases. Mitotic index was scored. The prognostic value of Bcl2 expression and Bcl2/mitotic index combinations was evaluated studying their correlations with clinicopathologic features and their prediction of survival. The vast majority of MBC (94%) showed Bcl2 expression, more frequently than previously described for FBC. Bcl2 expression had no significant associations with clinicopathologic features such as tumor size, mitotic count and grade. In univariate survival analysis, Bcl2 had no prognostic value, and showed no additional prognostic value to tumor size and histological grade in Cox regression. In addition, the Bcl2/mitotic index combination as opposed to FBC did not predict survival in MBC. In conclusion, Bcl2 expression is common in MBC, but is not associated with major clinicopathologic features and, in contrast to FBC, does not seem to have prognostic value, also when combined with mitotic index.

  15. Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding.

    PubMed

    Fykerud, Tone A; Knudsen, Lars M; Totland, Max Z; Sørensen, Vigdis; Dahal-Koirala, Shiva; Lothe, Ragnhild A; Brech, Andreas; Leithe, Edward

    2016-11-01

    In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed "mitotic nanotubes," were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding.

  16. XAB2 functions in mitotic cell cycle progression via transcriptional regulation of CENPE

    PubMed Central

    Hou, Shuai; Li, Na; Zhang, Qian; Li, Hui; Wei, Xinyue; Hao, Tian; Li, Yue; Azam, Sikandar; Liu, Caigang; Cheng, Wei; Jin, Bilian; Liu, Quentin; Li, Man; Lei, Haixin

    2016-01-01

    Xeroderma pigmentosum group A (XPA)-binding protein 2 (XAB2) is a multi-functional protein that plays critical role in processes including transcription, transcription-coupled DNA repair, pre-mRNA splicing, homologous recombination and mRNA export. Microarray analysis on gene expression in XAB2 knockdown cells reveals that many genes with significant change in expression function in mitotic cell cycle regulation. Fluorescence-activated cell scanner analysis confirmed XAB2 depletion led to cell arrest in G2/M phase, mostly at prophase or prometaphase. Live cell imaging further disclosed that XAB2 knockdown induced severe mitotic defects including chromosome misalignment and defects in segregation, leading to mitotic arrest, mitotic catastrophe and subsequent cell death. Among top genes down-regulated by XAB2 depletion is mitotic motor protein centrosome-associated protein E (CENPE). Knockdown CENPE showed similar phenotypes to loss of XAB2, but CENPE knockdown followed by XAB2 depletion did not further enhance cell cycle arrest. Luciferase assay on CENPE promoter showed that overexpression of XAB2 increased luciferase activity, whereas XAB2 depletion resulted in striking reduction of luciferase activity. Further mapping revealed a region in CENPE promoter that is required for the transcriptional regulation by XAB2. Moreover, ChIP assay showed that XAB2 interacted with CENPE promoter. Together, these results support a novel function of XAB2 in mitotic cell cycle regulation, which is partially mediated by transcription regulation on CENPE. PMID:27735937

  17. Phosphorylation of XIAP by CDK1–cyclin-B1 controls mitotic cell death

    PubMed Central

    Hou, Ying; Allan, Lindsey A.

    2017-01-01

    ABSTRACT Regulation of cell death is crucial for the response of cancer cells to drug treatments that cause arrest in mitosis, and is likely to be important for protection against chromosome instability in normal cells. Prolonged mitotic arrest can result in cell death by activation of caspases and the induction of apoptosis. Here, we show that X-linked inhibitor of apoptosis (XIAP) plays a key role in the control of mitotic cell death. Ablation of XIAP expression sensitises cells to prolonged mitotic arrest caused by a microtubule poison. XIAP is stable during mitotic arrest, but its function is controlled through phosphorylation by the mitotic kinase CDK1–cyclin-B1 at S40. Mutation of S40 to a phosphomimetic residue (S40D) inhibits binding to activated effector caspases and abolishes the anti-apoptotic function of XIAP, whereas a non-phosphorylatable mutant (S40A) blocks apoptosis. By performing live-cell imaging, we show that phosphorylation of XIAP reduces the threshold for the onset of cell death in mitosis. This work illustrates that mitotic cell death is a form of apoptosis linked to the progression of mitosis through control by CDK1–cyclin-B1. PMID:27927753

  18. Mitotic cells form actin-based bridges with adjacent cells to provide intercellular communication during rounding

    PubMed Central

    Fykerud, Tone A.; Knudsen, Lars M.; Totland, Max Z.; Dahal-Koirala, Shiva; Lothe, Ragnhild A.; Brech, Andreas; Leithe, Edward

    2016-01-01

    ABSTRACT In order to achieve accurate chromosome segregation, eukaryotic cells undergo a dramatic change in morphology to obtain a spherical shape during mitosis. Interphase cells communicate directly with each other by exchanging ions and small molecules via gap junctions, which have important roles in controlling cell growth and differentiation. As cells round up during mitosis, the gap junctional communication between mitotic cells and adjacent interphase cells ceases. Whether mitotic cells use alternative mechanisms for mediating direct cell-cell communication during rounding is currently unknown. Here, we have studied the mechanisms involved in the remodeling of gap junctions during mitosis. We further demonstrate that mitotic cells are able to form actin-based plasma membrane bridges with adjacent cells during rounding. These structures, termed “mitotic nanotubes,” were found to be involved in mediating the transport of cytoplasm, including Rab11-positive vesicles, between mitotic cells and adjacent cells. Moreover, a subpool of the gap-junction channel protein connexin43 localized in these intercellular bridges during mitosis. Collectively, the data provide new insights into the mechanisms involved in the remodeling of gap junctions during mitosis and identify actin-based plasma membrane bridges as a novel means of communication between mitotic cells and adjacent cells during rounding. PMID:27625181

  19. The Mitotic Checkpoint Gene, SIL is Regulated by E2F1

    PubMed Central

    Erez, Ayelet; Chaussepied, Marie; Tina, Colaizzo-Anas; Aplan, Peter; Ginsberg, Doron; Izraeli, Shai

    2009-01-01

    The SIL gene expression is increased in multiple cancers and correlates with the expression of mitotic spindle checkpoint genes and with increased metastatic potential. SIL regulates mitotic entry, organization of the mitotic spindle and cell survival. The E2F transcription factors regulate cell cycle progression by controlling the expression of genes mediating the G1/S transition. More recently E2F has been shown to regulate mitotic spindle checkpoint genes as well. As SIL expression correlates with mitotic checkpoint genes we hypothesized that SIL is regulated by E2F. We mined raw data of published experiments and performed new experiments by modification of E2F expression in cell lines, reporter assays and chromatin immunoprecipitation. Ectopic expression or endogenous activation of E2F induced the expression of SIL, while knockdown of E2F by shRNA, downregulated SIL expression. E2F activated SIL promoter by reporter assay and bound to SIL promoter in-vivo. Taken together these data demonstrate that SIL is regulated by E2F. As SIL is essential for mitotic entry, E2F may regulate G2/M transition through the induction of SIL. Furthermore, as silencing of SIL cause apoptosis in cancer cells, these finding may have therapeutic relevance in tumors with constitutive activation of E2F. PMID:18649360

  20. Intrinsic connective tissue abnormalities in the heart muscle of cardiomyopathic Syrian hamsters.

    PubMed Central

    Cohen-Gould, L.; Robinson, T. F.; Factor, S. M.

    1987-01-01

    Significant connective tissue abnormalities occurring in hearts of cardiomyopathic Syrian hamsters are reported. These abnormalities include a pronounced loss of the intrinsic connective tissue skeletal framework around foci of myocytolytic necrosis within the non-necrotic myocardium. These changes were demonstrated by a silver impregnation technique, and they were confirmed by scanning electron microscopy. Quantitation demonstrated more than a twofold increase in the area of ventricular wall affected by pathologic changes, when the connective tissue alterations were included with the myocardial necrosis. In addition, the authors also observed focal, thick "tethering" connective tissue fibers at the termini of necrotic lesions, seemingly connecting them to normal muscle. These connective tissue abnormalities may contribute to the progressive loss of ventricular function that occurs in this model of cardiomyopathy. They may permit greater wall thinning than would occur with focal necrosis alone, and they may increase focal mural stiffness in the tethered regions. Further investigation of the pathogenesis of these changes and their mechanical significance is indicated. Images Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:3578490

  1. Thermoelectric figure of merit in topological insulators

    NASA Astrophysics Data System (ADS)

    Takahashi, Ryuji; Murakami, Shuichi

    2011-07-01

    Transport behavior of two-dimensional topological insulators is theoretically studied in narrow ribbon geometry. The system has perfectly conducting edge channels, which are free from backscattering. At high temperature, the bulk states dominate in the transport phenomenon. However, at low temperature the conducting channels along the edges become dominant. It causes a bulk-to-edge crossover. Namely, by lowering temperature, the figure of merit first decreases by a competition between the bulk and the edge transport, and then increases again because the edge transport become larger.

  2. Nitrogen deficiency inhibits leaf blade growth in Lolium perenne by increasing cell cycle duration and decreasing mitotic and post-mitotic growth rates.

    PubMed

    Kavanová, Monika; Lattanzi, Fernando Alfredo; Schnyder, Hans

    2008-06-01

    Nitrogen deficiency severely inhibits leaf growth. This response was analysed at the cellular level by growing Lolium perenne L. under 7.5 mM (high) or 1 mM (low) nitrate supply, and performing a kinematic analysis to assess the effect of nitrogen status on cell proliferation and cell growth in the leaf blade epidermis. Low nitrogen supply reduced leaf elongation rate (LER) by 43% through a similar decrease in the cell production rate and final cell length. The former was entirely because of a decreased average cell division rate (0.023 versus 0.032 h(-1)) and thus longer cell cycle duration (30 versus 22 h). Nitrogen status did not affect the number of division cycles of the initial cell's progeny (5.7), and accordingly the meristematic cell number (53). Meristematic cell length was unaffected by nitrogen deficiency, implying that the division and mitotic growth rates were equally impaired. The shorter mature cell length arose from a considerably reduced post-mitotic growth rate (0.033 versus 0.049 h(-1)). But, nitrogen stress did not affect the position where elongation stopped, and increased cell elongation duration. In conclusion, nitrogen deficiency limited leaf growth by increasing the cell cycle duration and decreasing mitotic and post-mitotic elongation rates, delaying cell maturation.

  3. Surface figure control for coated optics

    DOEpatents

    Ray-Chaudhuri, Avijit K.; Spence, Paul A.; Kanouff, Michael P.

    2001-01-01

    A pedestal optical substrate that simultaneously provides high substrate dynamic stiffness, provides low surface figure sensitivity to mechanical mounting hardware inputs, and constrains surface figure changes caused by optical coatings to be primarily spherical in nature. The pedestal optical substrate includes a disk-like optic or substrate section having a top surface that is coated, a disk-like base section that provides location at which the substrate can be mounted, and a connecting cylindrical section between the base and optics or substrate sections. The optic section has an optical section thickness.sup.2 /optical section diameter ratio of between about 5 to 10 mm, and a thickness variation between front and back surfaces of less than about 10%. The connecting cylindrical section may be attached via three spaced legs or members. However, the pedestal optical substrate can be manufactured from a solid piece of material to form a monolith, thus avoiding joints between the sections, or the disk-like base can be formed separately and connected to the connecting section. By way of example, the pedestal optical substrate may be utilized in the fabrication of optics for an extreme ultraviolet (EUV) lithography imaging system, or in any optical system requiring coated optics and substrates with reduced sensitivity to mechanical mounts.

  4. Figures of Merit for Lunar Simulants

    NASA Astrophysics Data System (ADS)

    Slane, Frederick

    The collection and analysis of lunar samples from 1969 to present has yielded large amounts of data. Published analyses give some idea of the complex nature of the regolith at all scales, rocks, soils and the smaller particulates commonly referred to as dust. Data recently acquired in support of NASA's simulant effort has markedly increased our knowledge and quantitatively demonstrates that complexity. It is anticipated that future analyses will further add to the known complexity. In an effort to communicate among the diverse technical communities performing research on or research using regolith samples and simulants, a set of Figures of Merit (FoM) have been devised. The objective is to allow consistent and concise comparative communication between researchers from multiple organizations and nations engaged in lunar exploration. This paper describes Figures of Merit in a working draft of an international standard for Lunar Simulants. The FoM methodology uses scientific understanding of the lunar samples to formulate parameters which are reproducibly quantifiable. Advanced work at NASA has evolved this effort to the point that formal definitions, supporting mathematics and functioning code have implemented the concept for testing.

  5. Figure-ground separation by cue integration.

    PubMed

    Tang, Xiangyu; von der Malsburg, Christoph

    2008-06-01

    This letter presents an improved cue integration approach to reliably separate coherent moving objects from their background scene in video sequences. The proposed method uses a probabilistic framework to unify bottom-up and top-down cues in a parallel, "democratic" fashion. The algorithm makes use of a modified Bayes rule where each pixel's posterior probabilities of figure or ground layer assignment are derived from likelihood models of three bottom-up cues and a prior model provided by a top-down cue. Each cue is treated as independent evidence for figure-ground separation. They compete with and complement each other dynamically by adjusting relative weights from frame to frame according to cue quality measured against the overall integration. At the same time, the likelihood or prior models of individual cues adapt toward the integrated result. These mechanisms enable the system to organize under the influence of visual scene structure without manual intervention. A novel contribution here is the incorporation of a top-down cue. It improves the system's robustness and accuracy and helps handle difficult and ambiguous situations, such as abrupt lighting changes or occlusion among multiple objects. Results on various video sequences are demonstrated and discussed. (Video demos are available at http://organic.usc.edu:8376/ approximately tangx/neco/index.html .).

  6. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  7. Systemic abnormalities in liver disease

    PubMed Central

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648

  8. Figure-ground organization in real and subjective contours: a new ambiguous figure, some novel measures of ambiguity, and apparent distance across regions of figure and ground.

    PubMed

    Shank, M D; Walker, J T

    1989-08-01

    This study was designed to assess the effects of organization, luminance contrast, sector angle, and orientation on a new, highly ambiguous Cs-keyhole figure. Organization and contrast were the most important factors, and sector angle also influenced figure-ground relationships. There was no significant effect of orientation, nor was there any significant interaction between any of the factors. Several new measures of figure-ground organization were developed, such as ambiguity ratios based on reaction times and on ratings of the strength of perceived organizations, providing new quantitative measures of figure-ground relationships. Distances measured across figural regions appeared smaller than equal distances across the ground in the new reversible figure, and also in Rubin's classic vase-face figure presented in real and subjective contours. Inducing a perceptual set to see a particular organization in a reversible figure influenced the apparent distance across that organization. Several possible explanations of the observed effects are considered: (1) an instance of Emmert's law, based on the difference in apparent depth of figure and ground; (2) an aspect of the Müller-Lyer illusion; (3) a feature-detector model of contour attraction; (4) a natural set or predisposition to see a figure as smaller; and (5) framing effects. The first two explanations appear the most promising.

  9. The biphasic interphase-mitotic polarity of cell nuclei induced under DNA replication stress seems to be correlated with Pin2 localization in root meristems of Allium cepa.

    PubMed

    Żabka, Aneta; Trzaskoma, Paweł; Winnicki, Konrad; Polit, Justyna Teresa; Chmielnicka, Agnieszka; Maszewski, Janusz

    2015-02-01

    Long-term treatment of Allium cepa seedlings with low concentration of hydroxyurea (HU) results in a disruption of cell cycle checkpoints, leading root apex meristem (RAM) cells to an abnormal organization of nuclear structures forming interphase (I) and mitotic (M) domains of chromatin at opposite poles of the nucleus. Thus far, both critical cell length and an uneven distribution of cyclin B-like proteins along the nuclear axis have been recognized as essential factors needed to facilitate the formation of biphasic interphase-mitotic (IM) cells. Two new aspects with respect to their emergence are investigated in this study. The first concerns a relationship between the polarity of increasing chromatin condensation (IM orientation) and the acropetal (base→apex) alignment of RAM cell files. The second problem involves the effects of auxin (IAA), on the frequency of IM cells. We provide evidence that there is an association between the advanced M-poles of the IM cell nuclei and the polarized accumulation sites of auxin efflux carriers (PIN2 proteins) and IAA. Furthermore, our observations reveal exclusion regions for PIN2 proteins in the microtubule-rich structures, such as preprophase bands (PPBs) and phragmoplast. The current and previous studies have prompted us to formulate a hypothetical mechanism linking PIN2-mediated unilateral localization of IAA and the induction of bipolar IM cells in HU-treated RAMs of A. cepa.

  10. Inhibitory factors associated with anaphase-promoting complex/cylosome in mitotic checkpoint

    PubMed Central

    Braunstein, Ilana; Miniowitz, Shirly; Moshe, Yakir; Hershko, Avram

    2007-01-01

    The mitotic (or spindle assembly) checkpoint system ensures accurate chromosome segregation by preventing anaphase initiation until all chromosomes are correctly attached to the mitotic spindle. It affects the activity of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets inhibitors of anaphase initiation for degradation. The mechanisms by which this system regulates APC/C remain obscure. Some models propose that the system promotes sequestration of the APC/C activator Cdc20 by binding to the checkpoint proteins Mad2 and BubR1. A different model suggests that a mitotic checkpoint complex (MCC) composed of BubR1, Bub3, Cdc20, and Mad2 inhibits APC/C in mitotic checkpoint [Sudakin V, Chan GKT, Yen TJ (2001) J Cell Biol 154:925–936]. We examined this problem by using extracts from nocodazole-arrested cells that reproduce some downstream events of the mitotic checkpoint system, such as lag kinetics of the degradation of APC/C substrate. Incubation of extracts with adenosine-5′-(γ-thio)triphosphate (ATP[γS]) stabilized the checkpoint-arrested state, apparently by stable thiophosphorylation of some proteins. By immunoprecipitation of APC/C from stably checkpoint-arrested extracts, followed by elution with increased salt concentration, we isolated inhibitory factors associated with APC/C. A part of the inhibitory material consists of Cdc20 associated with BubR1 and Mad2, and is thus similar to MCC. Contrary to the original MCC hypothesis, we find that MCC disassembles upon exit from the mitotic checkpoint. Thus, the requirement of the mitotic checkpoint system for the binding of Mad2 and BubR1 to Cdc20 may be for the assembly of the inhibitory complex rather than for Cdc20 sequestration. PMID:17360335

  11. Bcl-xL controls a switch between cell death modes during mitotic arrest

    PubMed Central

    Bah, N; Maillet, L; Ryan, J; Dubreil, S; Gautier, F; Letai, A; Juin, P; Barillé-Nion, S

    2014-01-01

    Antimitotic agents such as microtubule inhibitors (paclitaxel) are widely used in cancer therapy while new agents blocking mitosis onset are currently in development. All these agents impose a prolonged mitotic arrest in cancer cells that relies on sustained activation of the spindle assembly checkpoint and may lead to subsequent cell death by incompletely understood molecular events. We have investigated the role played by anti-apoptotic Bcl-2 family members in the fate of mitotically arrested mammary tumor cells treated with paclitaxel, or depleted in Cdc20, the activator of the anaphase promoting complex. Under these conditions, a weak and delayed mitotic cell death occurs that is caspase- and Bax/Bak-independent. Moreover, BH3 profiling assays indicate that viable cells during mitotic arrest are primed to die by apoptosis and that Bcl-xL is required to maintain mitochondrial integrity. Consistently, Bcl-xL depletion, or treatment with its inhibitor ABT-737 (but not with the specific Bcl-2 inhibitor ABT-199), during mitotic arrest converts cell response to antimitotics to efficient caspase and Bax-dependent apoptosis. Apoptotic priming under conditions of mitotic arrest relies, at least in part, on the phosphorylation on serine 62 of Bcl-xL, which modulates its interaction with Bax and its sensitivity to ABT-737. The phospho-mimetic S62D-Bcl-xL mutant is indeed less efficient than the corresponding phospho-deficient S62A-Bcl-xL mutant in sequestrating Bax and in protecting cancer cells from mitotic cell death or yeast cells from Bax-induced growth inhibition. Our results provide a rationale for combining Bcl-xL targeting to antimitotic agents to improve clinical efficacy of antimitotic strategy in cancer therapy. PMID:24922075

  12. Advancing Sustainable Materials Management: Facts and Figures Report

    EPA Pesticide Factsheets

    Each year EPA releases the Advancing Sustainable Materials Management: Facts and Figures report, formerly called Municipal Solid Waste in the United States: Facts and Figures. It includes information on Municipal Solid Waste generation, recycling, an

  13. Figure Control of Lightweight Optical Structures

    NASA Technical Reports Server (NTRS)

    Main, John A.; Song, Haiping

    2005-01-01

    The goal of this paper is to demonstrate the use of fuzzy logic controllers in modifying the figure of a piezoceramic bimorph mirror. Non-contact electron actuation technology is used to actively control a bimorph mirror comprised two PZT-5H wafers by varying the electron flux and electron voltages. Due to electron blooming generated by the electron flux, it is difficult to develop an accurate control model for the bimorph mirror through theoretical analysis alone. The non-contact shape control system with electron flux blooming can be approximately described with a heuristic model based on experimental data. Two fuzzy logic feedback controllers are developed to control the shape of the bimorph mirror according to heuristic fuzzy inference rules generated from previous experimental results. Validation of the proposed fuzzy logic controllers is also discussed.

  14. Structure analysis for plane geometry figures

    NASA Astrophysics Data System (ADS)

    Feng, Tianxiao; Lu, Xiaoqing; Liu, Lu; Li, Keqiang; Tang, Zhi

    2013-12-01

    As there are increasing numbers of digital documents for education purpose, we realize that there is not a retrieval application for mathematic plane geometry images. In this paper, we propose a method for retrieving plane geometry figures (PGFs), which often appear in geometry books and digital documents. First, detecting algorithms are applied to detect common basic geometry shapes from a PGF image. Based on all basic shapes, we analyze the structural relationships between two basic shapes and combine some of them to a compound shape to build the PGF descriptor. Afterwards, we apply matching function to retrieve candidate PGF images with ranking. The great contribution of the paper is that we propose a structure analysis method to better describe the spatial relationships in such image composed of many overlapped shapes. Experimental results demonstrate that our analysis method and shape descriptor can obtain good retrieval results with relatively high effectiveness and efficiency.

  15. The Utilization during Mitotic Cell Division of Loci Controlling Meiotic Recombination and Disjunction in DROSOPHILA MELANOGASTER

    PubMed Central

    Baker, Bruce S.; Carpenter, Adelaide T. C.; Ripoll, P.

    1978-01-01

    To inquire whether the loci identified by recombination-defective and disjunction-defective meiotic mutants in Drosophila are also utilized during mitotic cell division, the effects of 18 meiotic mutants (representing 13 loci) on mitotic chromosome stability have been examined genetically. To do this, meiotic-mutant-bearing flies heterozygous for recessive somatic cell markers were examined for the frequencies and types of spontaneous clones expressing the cell markers. In such flies, marked clones can arise via mitotic recombination, mutation, chromosome breakage, nondisjunction or chromosome loss, and clones from these different origins can be distinguished. In addition, meiotic mutants at nine loci have been examined for their effects on sensitivity to killing by UV and X rays.—Mutants at six of the seven recombination-defective loci examined (mei-9, mei-41, c(3)G, mei-W68, mei-S282, mei-352, mei-218) cause mitotic chromosome instability in both sexes, whereas mutants at one locus (mei-218) do not affect mitotic chromosome stability. Thus many of the loci utilized during meiotic recombination also function in the chromosomal economy of mitotic cells.—The chromosome instability produced by mei-41 alleles is the consequence of chromosome breakage, that of mei-9 alleles is primarily due to chromosome breakage and, to a lesser extent, to an elevated frequency of mitotic recombination, whereas no predominant mechanism responsible for the instability caused by c(3)G alleles is discernible. Since these three loci are defective in their responses to mutagen damage, their effects on chromosome stability in nonmutagenized cells are interpreted as resulting from an inability to repair spontaneous lesions. Both mei-W68 and mei-S282 increase mitotic recombination (and in mei-W68, to a lesser extent, chromosome loss) in the abdomen but not the wing. In the abdomen, the primary effect on chromosome stability occurs during the larval period when the abdominal histoblasts

  16. Chromosomal abnormalities and mental illness.

    PubMed

    MacIntyre, D J; Blackwood, D H R; Porteous, D J; Pickard, B S; Muir, W J

    2003-03-01

    Linkage studies of mental illness have provided suggestive evidence of susceptibility loci over many broad chromosomal regions. Pinpointing causative gene mutations by conventional linkage strategies alone is problematic. The breakpoints of chromosomal abnormalities occurring in patients with mental illness may be more direct pointers to the relevant gene locus. Publications that describe patients where chromosomal abnormalities co-exist with mental illness are reviewed along with supporting evidence that this may amount to an association. Chromosomal abnormalities are considered to be of possible significance if (a) the abnormality is rare and there are independent reports of its coexistence with psychiatric illness, or (b) there is colocalisation of the abnormality with a region of suggestive linkage findings, or (c) there is an apparent cosegregation of the abnormality with psychiatric illness within the individual's family. Breakpoints have been described within many of the loci suggested by linkage studies and these findings support the hypothesis that shared susceptibility factors for schizophrenia and bipolar disorder may exist. If these abnormalities directly disrupt coding regions, then combining molecular genetic breakpoint cloning with bioinformatic sequence analysis may be a method of rapidly identifying candidate genes. Full karyotyping of individuals with psychotic illness especially where this coexists with mild learning disability, dysmorphism or a strong family history of mental disorder is encouraged.

  17. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  18. The isolation of a mutation causing abnormal cytokinesis in male and split chromocenter in female meiosis in Drosophila melanogaster.

    PubMed

    Fedorova, S; Nokkala, S; Chubykin, V; Omelyanchuk, L

    2001-01-01

    The genetic screen for the meiotic mutations showing chromosome non-disjunction in mosaic clones of female germ line generated by FLP-FRT mediated mitotic recombination was performed. The sterile meiotic mutation ff16 (69D1-70A2) was found among the mutants obtained. In the male germ line the mutation showed lack of meiosis 1 cytokinesis and other meiotic abnormalities. The sterility of the mutant is due to the lack of the sperm motility. In female germ line the morphological defects-decreased number of ovarioles and nurse cells in the egg chambers is visible. At the cell level the mutation showed karyosome fragmentation constituting to the gene participation in chromocenter formation/maintance. The cases of the spindle fragmentation revealed the processes acting in female meiotic metaphase. Premeiotic and mitotic defects of the mutation have also been detected.

  19. The mitotic checkpoint regulator RAE1 induces aggressive breast cancer cell phenotypes by mediating epithelial-mesenchymal transition

    PubMed Central

    Oh, Ji Hoon; Hur, Ho; Lee, Ji-Yeon; Kim, Yeejeong; Seo, Younsoo; Kim, Myoung Hee

    2017-01-01

    The gene RAE1 encodes ribonucleic acid export 1 (RAE1), which is involved in mRNA export and is known to serve as a mitotic checkpoint regulator. In addition, RAE1 haplo-insufficiency leads to chromosome missegregation and early aging-associated phenotypes. In humans, a positive correlation has been found between RAE1 copy number abnormalities and gene amplification in breast cancer cells. However, the precise functional role of RAE1 in breast cancer remains to be determined. An in silico analysis of data retrieved from GENT and cBio-Portal identified RAE1 upregulation in breast cancer tissues relative to normal breast cells. Functional studies of various cell lines showed that RAE1 induced invasive and migratory abilities by regulating epithelial-mesenchymal transition signals. A tissue microarray was constructed to demonstrate the interrelationship between clinicopathological features and RAE1 expression. Immunohistochemistry revealed a positive correlation between RAE1 expression and a high histologic grade. Furthermore, RAE1 overexpression was associated with considerably poorer disease-free survival and distant metastasis-free survival, especially in patients with oestrogen receptor-positive tumours. In summary, RAE1 may be a prognostic marker and therapeutic intervention target in malignant breast cancers. PMID:28181567

  20. Mammalian chromosomes contain cis-acting elements that control replication timing, mitotic condensation, and stability of entire chromosomes.

    PubMed

    Thayer, Mathew J

    2012-09-01

    Recent studies indicate that mammalian chromosomes contain discrete cis-acting loci that control replication timing, mitotic condensation, and stability of entire chromosomes. Disruption of the large non-coding RNA gene ASAR6 results in late replication, an under-condensed appearance during mitosis, and structural instability of human chromosome 6. Similarly, disruption of the mouse Xist gene in adult somatic cells results in a late replication and instability phenotype on the X chromosome. ASAR6 shares many characteristics with Xist, including random mono-allelic expression and asynchronous replication timing. Additional "chromosome engineering" studies indicate that certain chromosome rearrangements affecting many different chromosomes display this abnormal replication and instability phenotype. These observations suggest that all mammalian chromosomes contain "inactivation/stability centers" that control proper replication, condensation, and stability of individual chromosomes. Therefore, mammalian chromosomes contain four types of cis-acting elements, origins, telomeres, centromeres, and "inactivation/stability centers", all functioning to ensure proper replication, condensation, segregation, and stability of individual chromosomes.

  1. Stimulatory Effects of Gamma Irradiation on Phytochemical Properties, Mitotic Behaviour, and Nutritional Composition of Sainfoin (Onobrychis viciifolia Scop.)

    PubMed Central

    Mat Taha, Rosna; Lay, Ma Ma; Khalili, Mahsa

    2014-01-01

    Sainfoin (Onobrychis viciifolia Scop. Syn. Onobrychis sativa L.) is a bloat-safe forage crop with high levels of tannins, which is renowned for its medicinal qualities in grazing animals. Mutagenesis technique was applied to investigate the influence of gamma irradiation at 30, 60, 90, and 120 Gy on mitotic behavior, in vitro growth factors, phytochemical and nutritional constituents of sainfoin. Although a percentage of plant necrosis and non-growing seed were enhanced by irradiation increment, the germination speed was significantly decreased. It was observed that gamma irradiated seeds had higher value of crude protein and dry matter digestibility compared to control seeds. Toxicity of copper was reduced in sainfoin irradiated seeds at different doses of gamma rays. Anthocyanin content also decreased in inverse proportion to irradiation intensity. Accumulation of phenolic and flavonoid compounds was enhanced by gamma irradiation exposure in leaf cells. HPLC profiles differed in peak areas of the two important alkaloids, Berberine and Sanguinarine, in 120 Gy irradiated seeds compared to control seeds. There were positive correlations between irradiation dose and some abnormality divisions such as laggard chromosome, micronucleus, binucleated cells, chromosome bridge, and cytomixis. In reality, radiocytological evaluation was proven to be essential in deducing the effectiveness of gamma irradiation to induce somaclonal variation in sainfoin. PMID:25147870

  2. The mitotic checkpoint regulator RAE1 induces aggressive breast cancer cell phenotypes by mediating epithelial-mesenchymal transition.

    PubMed

    Oh, Ji Hoon; Hur, Ho; Lee, Ji-Yeon; Kim, Yeejeong; Seo, Younsoo; Kim, Myoung Hee

    2017-02-09

    The gene RAE1 encodes ribonucleic acid export 1 (RAE1), which is involved in mRNA export and is known to serve as a mitotic checkpoint regulator. In addition, RAE1 haplo-insufficiency leads to chromosome missegregation and early aging-associated phenotypes. In humans, a positive correlation has been found between RAE1 copy number abnormalities and gene amplification in breast cancer cells. However, the precise functional role of RAE1 in breast cancer remains to be determined. An in silico analysis of data retrieved from GENT and cBio-Portal identified RAE1 upregulation in breast cancer tissues relative to normal breast cells. Functional studies of various cell lines showed that RAE1 induced invasive and migratory abilities by regulating epithelial-mesenchymal transition signals. A tissue microarray was constructed to demonstrate the interrelationship between clinicopathological features and RAE1 expression. Immunohistochemistry revealed a positive correlation between RAE1 expression and a high histologic grade. Furthermore, RAE1 overexpression was associated with considerably poorer disease-free survival and distant metastasis-free survival, especially in patients with oestrogen receptor-positive tumours. In summary, RAE1 may be a prognostic marker and therapeutic intervention target in malignant breast cancers.

  3. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  4. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores.

    PubMed

    Zhang, Xiaojuan; Ling, Youguo; Wang, Wenjun; Zhang, Yanhong; Ma, Qingjun; Tan, Pingping; Song, Ting; Wei, Congwen; Li, Ping; Liu, Xuedong; Ma, Runlin Z; Zhong, Hui; Cao, Cheng; Xu, Quanbin

    2013-04-15

    The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.

  5. PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells

    PubMed Central

    Rogers, Samuel; Fey, Dirk; McCloy, Rachael A.; Parker, Benjamin L.; Mitchell, Nicholas J.; Payne, Richard J.; Daly, Roger J.; James, David E.; Caldon, C. Elizabeth; Watkins, D. Neil; Croucher, David R.; Burgess, Andrew

    2016-01-01

    ABSTRACT Entry into mitosis is driven by the phosphorylation of thousands of substrates, under the master control of Cdk1. During entry into mitosis, Cdk1, in collaboration with MASTL kinase, represses the activity of the major mitotic protein phosphatases, PP1 and PP2A, thereby ensuring mitotic substrates remain phosphorylated. For cells to complete and exit mitosis, these phosphorylation events must be removed, and hence, phosphatase activity must be reactivated. This reactivation of phosphatase activity presumably requires the inhibition of MASTL; however, it is not currently understood what deactivates MASTL and how this is achieved. In this study, we identified that PP1 is associated with, and capable of partially dephosphorylating and deactivating, MASTL during mitotic exit. Using mathematical modelling, we were able to confirm that deactivation of MASTL is essential for mitotic exit. Furthermore, small decreases in Cdk1 activity during metaphase are sufficient to initiate the reactivation of PP1, which in turn partially deactivates MASTL to release inhibition of PP2A and, hence, create a feedback loop. This feedback loop drives complete deactivation of MASTL, ensuring a strong switch-like activation of phosphatase activity during mitotic exit. PMID:26872783

  6. PP1 initiates the dephosphorylation of MASTL, triggering mitotic exit and bistability in human cells.

    PubMed

    Rogers, Samuel; Fey, Dirk; McCloy, Rachael A; Parker, Benjamin L; Mitchell, Nicholas J; Payne, Richard J; Daly, Roger J; James, David E; Caldon, C Elizabeth; Watkins, D Neil; Croucher, David R; Burgess, Andrew

    2016-04-01

    Entry into mitosis is driven by the phosphorylation of thousands of substrates, under the master control of Cdk1. During entry into mitosis, Cdk1, in collaboration with MASTL kinase, represses the activity of the major mitotic protein phosphatases, PP1 and PP2A, thereby ensuring mitotic substrates remain phosphorylated. For cells to complete and exit mitosis, these phosphorylation events must be removed, and hence, phosphatase activity must be reactivated. This reactivation of phosphatase activity presumably requires the inhibition of MASTL; however, it is not currently understood what deactivates MASTL and how this is achieved. In this study, we identified that PP1 is associated with, and capable of partially dephosphorylating and deactivating, MASTL during mitotic exit. Using mathematical modelling, we were able to confirm that deactivation of MASTL is essential for mitotic exit. Furthermore, small decreases in Cdk1 activity during metaphase are sufficient to initiate the reactivation of PP1, which in turn partially deactivates MASTL to release inhibition of PP2A and, hence, create a feedback loop. This feedback loop drives complete deactivation of MASTL, ensuring a strong switch-like activation of phosphatase activity during mitotic exit.

  7. Greatwall dephosphorylation and inactivation upon mitotic exit is triggered by PP1.

    PubMed

    Ma, Sheng; Vigneron, Suzanne; Robert, Perle; Strub, Jean Marc; Cianferani, Sara; Castro, Anna; Lorca, Thierry

    2016-04-01

    Entry into mitosis is induced by the activation of cyclin-B-Cdk1 and Greatwall (Gwl; also known as MASTL in mammals) kinases. Cyclin-B-Cdk1 phosphorylates mitotic substrates, whereas Gwl activation promotes the phosphorylation of the small proteins Arpp19 and ENSA. Phosphorylated Arpp19 and/or ENSA bind to and inhibit PP2A comprising the B55 subunit (PP2A-B55; B55 is also known as PPP2R2A), the phosphatase responsible for cyclin-B-Cdk1 substrate dephosphorylation, allowing the stable phosphorylation of mitotic proteins. Upon mitotic exit, cyclin-B-Cdk1 and Gwl kinases are inactivated, and mitotic substrates are dephosphorylated. Here, we have identified protein phosphatase-1 (PP1) as the phosphatase involved in the dephosphorylation of the activating site (Ser875) of Gwl. Depletion of PP1 from meioticXenopusegg extracts maintains phosphorylation of Ser875, as well as the full activity of this kinase, resulting in a block of meiotic and mitotic exit. By contrast, preventing the reactivation of PP2A-B55 through the addition of a hyperactive Gwl mutant (GwlK72M) mainly affected Gwl dephosphorylation on Thr194, resulting in partial inactivation of Gwl and in the incomplete exit from mitosis or meiosis. We also show that when PP2A-B55 is fully reactivated by depleting Arpp19, this protein phosphatase is able to dephosphorylate both activating sites, even in the absence of PP1.

  8. Phosphorylation–dephosphorylation cycle of HP1α governs accurate mitotic progression

    PubMed Central

    Chakraborty, Arindam; Prasanth, Supriya G

    2014-01-01

    Heterochromatin protein 1α (HP1α), a bona fide factor of silent chromatin, is required for establishing as well as maintaining the higher-order chromatin structure in eukaryotes. HP1α is decorated with several post-translational modifications, and many of these are critical for its cellular functions. HP1α is heavily phosphorylated; however, its physiological relevance had remained to be completely understood. We have recently demonstrated that human HP1α is a mitotic target for NDR kinase, and the phosphorylation at the hinge region of HP1α at the G2/M phase of the cell cycle is crucial for mitotic progression and Sgo1 loading at mitotic centromeres (Chakraborty et al., 2014). We now demonstrate that the dephosphorylation of HP1α within its hinge domain occurs during mitosis, specifically soon after prometaphase. In the absence of the hinge-specific HP1α phosphorylation, either as a consequence of depleting NDR1 or in cells expressing a non-phosphorylatable HP1α mutant, the cells arrest in prometaphase with several mitotic defects. In this study we show that NDR1-depleted cells expressing hinge-specific phosphomimetic HP1α mutant rescues the prometaphase arrest but displays defects in mitotic exit, suggesting that the dephosphorylation of HP1α is required for the completion of cytokinesis. Taken together, our results reveal that the phosphorylation–dephosphorylation cycle of HP1α orchestrates accurate progression of cells through mitosis. PMID:24786771

  9. Cyclin B1–Cdk1 Activation Continues after Centrosome Separation to Control Mitotic Progression

    PubMed Central

    Lindqvist, Arne; van Zon, Wouter; Karlsson Rosenthal, Christina; Wolthuis, Rob M. F

    2007-01-01

    Activation of cyclin B1–cyclin-dependent kinase 1 (Cdk1), triggered by a positive feedback loop at the end of G2, is the key event that initiates mitotic entry. In metaphase, anaphase-promoting complex/cyclosome–dependent destruction of cyclin B1 inactivates Cdk1 again, allowing mitotic exit and cell division. Several models describe Cdk1 activation kinetics in mitosis, but experimental data on how the activation proceeds in mitotic cells have largely been lacking. We use a novel approach to determine the temporal development of cyclin B1–Cdk1 activity in single cells. By quantifying both dephosphorylation of Cdk1 and phosphorylation of the Cdk1 target anaphase-promoting complex/cyclosome 3, we disclose how cyclin B1–Cdk1 continues to be activated after centrosome separation. Importantly, we discovered that cytoplasmic cyclin B1–Cdk1 activity can be maintained even when cyclin B1 translocates to the nucleus in prophase. These experimental data are fitted into a model describing cyclin B1–Cdk1 activation in human cells, revealing a striking resemblance to a bistable circuit. In line with the observed kinetics, cyclin B1–Cdk1 levels required to enter mitosis are lower than the amount of cyclin B1–Cdk1 needed for mitotic progression. We propose that gradually increasing cyclin B1–Cdk1 activity after centrosome separation is critical to coordinate mitotic progression. PMID:17472438

  10. Mitotic chromosomes are constrained by topoisomerase II-sensitive DNA entanglements.

    PubMed

    Kawamura, Ryo; Pope, Lisa H; Christensen, Morten O; Sun, Mingxuan; Terekhova, Ksenia; Boege, Fritz; Mielke, Christian; Andersen, Anni H; Marko, John F

    2010-03-08

    We have analyzed the topological organization of chromatin inside mitotic chromosomes. We show that mitotic chromatin is heavily self-entangled through experiments in which topoisomerase (topo) II is observed to reduce mitotic chromosome elastic stiffness. Single chromosomes were relaxed by 35% by exogenously added topo II in a manner that depends on hydrolysable adenosine triphosphate (ATP), whereas an inactive topo II cleavage mutant did not change chromosome stiffness. Moreover, experiments using type I topos produced much smaller relaxation effects than topo II, indicating that chromosome relaxation by topo II is caused by decatenation and/or unknotting of double-stranded DNA. In further experiments in which chromosomes are first exposed to protease to partially release protein constraints on chromatin, ATP alone relaxes mitotic chromosomes. The topo II-specific inhibitor ICRF-187 blocks this effect, indicating that it is caused by endogenous topo II bound to the chromosome. Our experiments show that DNA entanglements act in concert with protein-mediated compaction to fold chromatin into mitotic chromosomes.

  11. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes.

    PubMed

    Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A; Gerlich, Daniel W

    2016-07-14

    Eukaryotic genomes are partitioned into chromosomes that form compact and spatially well-separated mechanical bodies during mitosis. This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes and the discovery of proteins at the chromosome surface, the molecular and biophysical bases of mitotic chromosome structural individuality have remained unclear. Here we report that the proliferation marker protein Ki-67 (encoded by the MKI67 gene), a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of human Ki-67 is not confined within a specific protein domain, but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrostatic charge barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-colour labelling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic of polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery in mammalian cells and suggests that natural proteins can function as surfactants in intracellular compartmentalization.

  12. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes

    PubMed Central

    Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z.; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A.; Gerlich, Daniel W.

    2016-01-01

    Summary Eukaryotic genomes are partitioned into chromosomes, which during mitosis form compact and spatially well-separated mechanical bodies1–3.This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes4 and the discovery of proteins at the chromosome surface3,5,6, the molecular and biophysical basis of mitotic chromosome individuality have remained unclear. We report that Ki-67, a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of Ki-67 is not confined within a specific protein domain but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrical barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-color labeling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic for polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery and suggests that natural proteins can function as surfactants in intracellular compartmentalization. PMID:27362226

  13. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint

    PubMed Central

    Salmela, Anna-Leena; Pouwels, Jeroen; Varis, Asta; Kukkonen, Anu M.; Toivonen, Pauliina; Halonen, Pasi K.; Perälä, Merja; Kallioniemi, Olli; Gorbsky, Gary J.; Kallio, Marko J.

    2009-01-01

    Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2–160 μg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound. PMID:19395653

  14. Using in Vivo Biotinylated Ubiquitin to Describe a Mitotic Exit Ubiquitome from Human Cells *

    PubMed Central

    Min, Mingwei; Mayor, Ugo; Dittmar, Gunnar; Lindon, Catherine

    2014-01-01

    Mitotic division requires highly regulated morphological and biochemical changes to the cell. Upon commitment to exit mitosis, cells begin to remove mitotic regulators in a temporally and spatially controlled manner to bring about the changes that reestablish interphase. Ubiquitin-dependent pathways target these regulators to generate polyubiquitin-tagged substrates for degradation by the 26S proteasome. However, the lack of cell-based assays to investigate in vivo ubiquitination limits our knowledge of the identity of substrates of ubiquitin-mediated regulation in mitosis. Here we report an in vivo ubiquitin tagging system used in human cells that allows efficient purification of ubiquitin conjugates from synchronized cell populations. Coupling purification with mass spectrometry, we have identified a series of mitotic regulators targeted for polyubiquitination in mitotic exit. We show that some are new substrates of the anaphase-promoting complex/cyclosome and validate KIFC1 and RacGAP1/Cyk4 as two such targets involved respectively in timely mitotic spindle disassembly and cell spreading. We conclude that in vivo biotin tagging of ubiquitin can provide valuable information about the role of ubiquitin-mediated regulation in processes required for rebuilding interphase cells. PMID:24857844

  15. Localization of latency-associated nuclear antigen (LANA) on mitotic chromosomes

    SciTech Connect

    Rahayu, Retno; Ohsaki, Eriko; Omori, Hiroko; Ueda, Keiji

    2016-09-15

    In latent infection of Kaposi's sarcoma-associated herpesvirus (KSHV), viral gene expression is extremely limited and copy numbers of viral genomes remain constant. Latency-associated nuclear antigen (LANA) is known to have a role in maintaining viral genome copy numbers in growing cells. Several studies have shown that LANA is localized in particular regions on mitotic chromosomes, such as centromeres/pericentromeres. We independently examined the distinct localization of LANA on mitotic chromosomes during mitosis, using super-resolution laser confocal microscopy and correlative fluorescence microscopy–electron microscopy (FM-EM) analyses. We found that the majority of LANA were not localized at particular regions such as telomeres/peritelomeres, centromeres/pericentromeres, and cohesion sites, but at the bodies of condensed chromosomes. Thus, LANA may undergo various interactions with the host factors on the condensed chromosomes in order to tether the viral genome to mitotic chromosomes and realize faithful viral genome segregation during cell division. - Highlights: • This is the first report showing LANA dots on mitotic chromosomes by fluorescent microscopy followed by electron microscopy. • LANA dots localized randomly on condensed chromosomes other than centromere/pericentromere and telomere/peritelomre. • Cellular mitotic checkpoint should not be always involved in the segregation of KSHV genomes in the latency.

  16. Studies on the control of mitotic activity in excised roots. I. The experimental system.

    PubMed

    WILSON, G B; MORRISON, J H; KNOBLOCH, N

    1959-05-25

    The mitotic characteristics of excised roots of the garden pea, Pisum sativum, have been studied under conditions of controlled nutrition. The excised root system was tested with regard to its ability to respond, mitotically, to various carbon sources. Sucrose, glucose, fructose, and DL-glyceraldehyde were found to support mitotic activity in excised roots, galactose and 2-deoxy-D-glucose were toxic, and mannose ineffective. Initiation of mitotic activity in the presence of glucose was inhibited by the respiratory poisons, KCN and malonic acid, the uncoupling agent, 2,4-dinitrophenol, but was not notably affected by the protein synthesis inhibitor, chloramphenicol. The glucose-induced response in mitotic activity was not affected by the carcinogen, urethan, and indeed, there is some evidence that the response was actually enhanced. The fact that KCN, malonic acid, and probably 2,4-dinitrophenol, in suitable concentrations inhibit the onset of cell division suggests that some level of operation of the Krebs' cycle is essential for commission of cells into mitosis. Likewise, failure to inhibit cells in the process of active mitosis by KCN and malonic acid is not inconsistent with the idea that there is a shift from reliance on aerobic to anaerobic respiration between antephase and active mitosis.

  17. Kin4 kinase delays mitotic exit in response to spindle alignment defects.

    PubMed

    Pereira, Gislene; Schiebel, Elmar

    2005-07-22

    For many polarized cells, it is critical that the mitotic spindle becomes positioned relative to the polarity axis. This is especially important in yeast, where the site of cytokinesis is predetermined. The spindle position checkpoint (SPOC) therefore delays mitotic exit of cells with a mispositioned spindle. One component of the SPOC is the Bub2-Bfa1 complex, an inhibitor of the mitotic exit network (MEN). Here, we show that the Kin4 kinase is a component of the SPOC and as such is essential to delay cell cycle progression of cells with a misaligned spindle. When spindles are correctly oriented, Kin4 and Bub2-Bfa1 are asymmetrically localized to opposite spindle pole bodies (SPBs). Bub2-Bfa1 then becomes inhibited by Cdc5 polo kinase with anaphase onset, a prerequisite for mitotic exit. In response to spindle misalignment, Kin4 and Bub2-Bfa1 are brought together at both SPBs. Kin4 now maintains Bub2-Bfa1 activity by counteracting Cdc5, thereby inhibiting mitotic exit.

  18. Electro-acoustic behavior of the mitotic spindle: a semi-classical coarse-grained model.

    PubMed

    Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A; Cifra, Michal

    2014-01-01

    The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells--a strategy used in novel methods for cancer treatment.

  19. Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model

    PubMed Central

    Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A.; Cifra, Michal

    2014-01-01

    The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells—a strategy used in novel methods for cancer treatment. PMID:24497952

  20. Aurora A phosphorylation of WD40-repeat protein 62 in mitotic spindle regulation

    PubMed Central

    Lim, Nicholas R.; Yeap, Yvonne Y. C.; Ang, Ching-Seng; Williamson, Nicholas A.; Bogoyevitch, Marie A.; Quinn, Leonie M.; Ng, Dominic C. H.

    2016-01-01

    ABSTRACT Mitotic spindle organization is regulated by centrosomal kinases that potentiate recruitment of spindle-associated proteins required for normal mitotic progress including the microcephaly protein WD40-repeat protein 62 (WDR62). WDR62 functions underlie normal brain development as autosomal recessive mutations and wdr62 loss cause microcephaly. Here we investigate the signaling interactions between WDR62 and the mitotic kinase Aurora A (AURKA) that has been recently shown to cooperate to control brain size in mice. The spindle recruitment of WDR62 is closely correlated with increased levels of AURKA following mitotic entry. We showed that depletion of TPX2 attenuated WDR62 localization at spindle poles indicating that TPX2 co-activation of AURKA is required to recruit WDR62 to the spindle. We demonstrated that AURKA activity contributed to the mitotic phosphorylation of WDR62 residues Ser49 and Thr50 and phosphorylation of WDR62 N-terminal residues was required for spindle organization and metaphase chromosome alignment. Our analysis of several MCPH-associated WDR62 mutants (V65M, R438H and V1314RfsX18) that are mislocalized in mitosis revealed that their interactions and phosphorylation by AURKA was substantially reduced consistent with the notion that AURKA is a key determinant of WDR62 spindle recruitment. Thus, our study highlights the role of AURKA signaling in the spatiotemporal control of WDR62 at spindle poles where it maintains spindle organization. PMID:26713495

  1. The effect of magnesium on mitotic spindle formation in Schizosaccharomyces pombe.

    PubMed

    Uz, Gulsen; Sarikaya, Aysegul Topal

    2016-01-01

    Magnesium (Mg2+), an essential ion for cells and biological systems, is involved in a variety of cellular processes, including the formation and breakdown of microtubules. The results of a previous investigation suggested that as cells grow the intracellular Mg2+ concentration falls, thereby stimulating formation of the mitotic spindle. In the present work, we used a Mg2+-deficient Schizosaccharomyces pombe strain GA2, in which two essential membrane Mg2+ transporter genes (homologs of ALR1 and ALR2 in Saccharomyces cerevisae) were deleted, and its parental strain Sp292, to examine the extent to which low Mg2+ concentrations can affect mitotic spindle formation. The two S. pombe strains were transformed with a plasmid carrying a GFP-α2-tubulin construct to fluorescently label microtubules. Using the free Mg2+-specific fluorescent probe mag-fura-2, we confirmed that intracellular free Mg2+ levels were lower in GA2 than in the parental strain. Defects in interphase microtubule organization, a lower percentage of mitotic spindle formation and a reduced mitotic index were also observed in the GA2 strain. Although there was interphase microtubule polymerization, the lower level of mitotic spindle formation in the Mg2+-deficient strain suggested a greater requirement for Mg2+ in this phenomenon than previously thought.

  2. Wnt activation followed by Notch inhibition promotes mitotic hair cell regeneration in the postnatal mouse cochlea

    PubMed Central

    Li, Wenyan; Chen, Yan; Zhang, Shasha; Tang, Mingliang; Sun, Shan; Chai, Renjie; Li, Huawei

    2016-01-01

    Hair cell (HC) loss is the main cause of permanent hearing loss in mammals. Previous studies have reported that in neonatal mice cochleae, Wnt activation promotes supporting cell (SC) proliferation and Notch inhibition promotes the trans-differentiation of SCs into HCs. However, Wnt activation alone fails to regenerate significant amounts of new HCs, Notch inhibition alone regenerates the HCs at the cost of exhausting the SC population, which leads to the death of the newly regenerated HCs. Mitotic HC regeneration might preserve the SC number while regenerating the HCs, which could be a better approach for long-term HC regeneration. We present a two-step gene manipulation, Wnt activation followed by Notch inhibition, to accomplish mitotic regeneration of HCs while partially preserving the SC number. We show that Wnt activation followed by Notch inhibition strongly promotes the mitotic regeneration of new HCs in both normal and neomycin-damaged cochleae while partially preserving the SC number. Lineage tracing shows that the majority of the mitotically regenerated HCs are derived specifically from the Lgr5+ progenitors with or without HC damage. Our findings suggest that the co-regulation of Wnt and Notch signaling might provide a better approach to mitotically regenerate HCs from Lgr5+ progenitor cells. PMID:27564256

  3. Hyperactive mTOR pathway promotes lymphoproliferation and abnormal differentiation in autoimmune lymphoproliferative syndrome.

    PubMed

    Völkl, Simon; Rensing-Ehl, Anne; Allgäuer, Andrea; Schreiner, Elisabeth; Lorenz, Myriam Ricarda; Rohr, Jan; Klemann, Christian; Fuchs, Ilka; Schuster, Volker; von Bueren, André O; Naumann-Bartsch, Nora; Gambineri, Eleonora; Siepermann, Kathrin; Kobbe, Robin; Nathrath, Michaela; Arkwright, Peter D; Miano, Maurizio; Stachel, Klaus-Daniel; Metzler, Markus; Schwarz, Klaus; Kremer, Anita N; Speckmann, Carsten; Ehl, Stephan; Mackensen, Andreas

    2016-07-14

    Autoimmune lymphoproliferative syndrome (ALPS) is a human disorder characterized by defective Fas signaling, resulting in chronic benign lymphoproliferation and accumulation of TCRαβ(+) CD4(-) CD8(-) double-negative T (DNT) cells. Although their phenotype resembles that of terminally differentiated or exhausted T cells, lack of KLRG1, high eomesodermin, and marginal T-bet expression point instead to a long-lived memory state with potent proliferative capacity. Here we show that despite their terminally differentiated phenotype, human ALPS DNT cells exhibit substantial mitotic activity in vivo. Notably, hyperproliferation of ALPS DNT cells is associated with increased basal and activation-induced phosphorylation of serine-threonine kinases Akt and mechanistic target of rapamycin (mTOR). The mTOR inhibitor rapamycin abrogated survival and proliferation of ALPS DNT cells, but not of CD4(+) or CD8(+) T cells in vitro. In vivo, mTOR inhibition reduced proliferation and abnormal differentiation by DNT cells. Importantly, increased mitotic activity and hyperactive mTOR signaling was also observed in recently defined CD4(+) or CD8(+) precursor DNT cells, and mTOR inhibition specifically reduced these cells in vivo, indicating abnormal programming of Fas-deficient T cells before the DNT stage. Thus, our results identify the mTOR pathway as a major regulator of lymphoproliferation and aberrant differentiation in ALPS.

  4. Cremophor EL stimulates mitotic recombination in uvsH//uvsH diploid strain of Aspergillus nidulans.

    PubMed

    Busso, Cleverson; Castro-Prado, Marialba A A

    2004-03-01

    Cremophor EL is a solubilizer and emulsifier agent used in the pharmaceutical and foodstuff industries. The solvent is the principal constituent of paclitaxel's clinical formulation vehicle. Since mitotic recombination plays a crucial role in multistep carcinogenesis, the study of the recombinagenic potential of chemical compounds is of the utmost importance. In our research genotoxicity of cremophor EL has been studied by using an uvsH//uvsH diploid strain of Aspergillus nidulans. Since it spends a great part of its cell cycle in the G2period, this fungus is a special screening system for the study of mitotic recombination induced by chemical substances. Homozygotization Indexes (HI) for paba and bi markers from heterozygous B211//A837 diploid strain were determined for the evaluation of the recombinagenic effect of cremophor EL. It has been shown that cremophor EL induces increase in mitotic crossing-over events at nontoxic concentrations (0.05 and 0.075% v/v).

  5. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    PubMed Central

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  6. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    NASA Astrophysics Data System (ADS)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  7. A LCMT1-PME-1 methylation equilibrium controls mitotic spindle size.

    PubMed

    Xia, Xiaoyu; Gholkar, Ankur; Senese, Silvia; Torres, Jorge Z

    2015-01-01

    Leucine carboxyl methyltransferase-1 (LCMT1) and protein phosphatase methylesterase-1 (PME-1) are essential enzymes that regulate the methylation of the protein phosphatase 2A catalytic subunit (PP2AC). LCMT1 and PME-1 have been linked to the regulation of cell growth and proliferation, but the underlying mechanisms have remained elusive. We show here an important role for an LCMT1-PME-1 methylation equilibrium in controlling mitotic spindle size. Depletion of LCMT1 or overexpression of PME-1 led to long spindles. In contrast, depletion of PME-1, pharmacological inhibition of PME-1 or overexpression of LCMT1 led to short spindles. Furthermore, perturbation of the LCMT1-PME-1 methylation equilibrium led to mitotic arrest, spindle assembly checkpoint activation, defective cell divisions, induction of apoptosis and reduced cell viability. Thus, we propose that the LCMT1-PME-1 methylation equilibrium is critical for regulating mitotic spindle size and thereby proper cell division.

  8. Asymmetric Localization of Components and Regulators of the Mitotic Exit Network at Spindle Pole Bodies.

    PubMed

    Scarfone, Ilaria; Piatti, Simonetta

    2017-01-01

    Most proteins of the Mitotic Exit Network (MEN) and their upstream regulators localize at spindle pole bodies (SPBs) at least in some stages of the cell cycle. Studying the SPB localization of MEN factors has been extremely useful to elucidate their biological roles, organize them in a hierarchical pathway, and define their dynamics under different conditions.Recruitment to SPBs of the small GTPase Tem1 and the downstream kinases Cdc15 and Mob1/Dbf2 is thought to be essential for Cdc14 activation and mitotic exit, while that of the upstream Tem1 regulators (the Kin4 kinase and the GTPase activating protein Bub2-Bfa1) is important for MEN inhibition upon spindle mispositioning. Here, we describe the detailed fluorescence microscopy procedures that we use in our lab to analyze the localization at SPBs of Mitotic Exit Network (MEN) components tagged with GFP or HA epitopes.

  9. Mitotic spindle orients perpendicular to the forces imposed by dynamic shear.

    PubMed

    Fernandez, Pablo; Maier, Matthias; Lindauer, Martina; Kuffer, Christian; Storchova, Zuzana; Bausch, Andreas R

    2011-01-01

    Orientation of the division axis can determine cell fate in the presence of morphogenetic gradients. Understanding how mitotic cells integrate directional cues is therefore an important question in embryogenesis. Here, we investigate the effect of dynamic shear forces on confined mitotic cells. We found that human epithelial cells (hTERT-RPE1) as well as MC3T3 osteoblasts align their mitotic spindle perpendicular to the external force. Spindle orientation appears to be a consequence of cell elongation along the zero-force direction in response to the dynamic shear. This process is a nonlinear response to the strain amplitude, requires actomyosin activity and correlates with redistribution of myosin II. Mechanosteered cells divide normally, suggesting that this mechanism is compatible with biological functions.

  10. The post-mitotic state in neurons correlates with a stable nuclear higher-order structure

    PubMed Central

    Aranda-Anzaldo, Armando

    2012-01-01

    Neurons become terminally differentiated (TD) post-mitotic cells very early during development yet they may remain alive and functional for decades. TD neurons preserve the molecular machinery necessary for DNA synthesis that may be reactivated by different stimuli but they never complete a successful mitosis. The non-reversible nature of the post-mitotic state in neurons suggests a non-genetic basis for it since no set of mutations has been able to revert it. Comparative studies of the nuclear higher-order structure in neurons and cells with proliferating potential suggest that the non-reversible nature of the post-mitotic state in neurons has a structural basis in the stability of the nuclear higher-order structure. PMID:22808316

  11. Plk1-dependent phosphorylation of optineurin provides a negative feedback mechanism for mitotic progression.

    PubMed

    Kachaner, David; Filipe, Josina; Laplantine, Emmanuel; Bauch, Angela; Bennett, Keiryn L; Superti-Furga, Giulio; Israël, Alain; Weil, Robert

    2012-02-24

    Plk1 activation is required for progression through mitotic entry to cytokinesis. Here we show that at mitotic entry, Plk1 phosphorylates Optineurin (Optn) at serine 177 and that this dissociates Optn from the Golgi-localized GTPase Rab8, inducing its translocation into the nucleus. Mass spectrometry analysis revealed that Optn is associated with a myosin phosphatase complex (MP), which antagonizes the mitotic function of Plk1. Our data also indicate that Optn functionally connects this complex to Plk1 by promoting phosphorylation of the myosin phosphatase targeting subunit 1 (MYPT1). Accordingly, silencing Optn expression increases Plk1 activity and induces abscission failure and multinucleation, which were rescued upon expression of wild-type (WT) Optn, but not a phospho-deficient mutant (S177A) that cannot translocate into the nucleus during mitosis. Overall, these results highlight an important role of Optn in the spatial and temporal coordination of Plk1 activity.

  12. Mitotic Transcriptional Activation: Clearance of Actively Engaged Pol II via Transcriptional Elongation Control in Mitosis.

    PubMed

    Liang, Kaiwei; Woodfin, Ashley R; Slaughter, Brian D; Unruh, Jay R; Box, Andrew C; Rickels, Ryan A; Gao, Xin; Haug, Jeffrey S; Jaspersen, Sue L; Shilatifard, Ali

    2015-11-05

    Although it is established that some general transcription factors are inactivated at mitosis, many details of mitotic transcription inhibition (MTI) and its underlying mechanisms are largely unknown. We have identified mitotic transcriptional activation (MTA) as a key regulatory step to control transcription in mitosis for genes with transcriptionally engaged RNA polymerase II (Pol II) to activate and transcribe until the end of the gene to clear Pol II from mitotic chromatin, followed by global impairment of transcription reinitiation through MTI. Global nascent RNA sequencing and RNA fluorescence in situ hybridization demonstrate the existence of transcriptionally engaged Pol II in early mitosis. Both genetic and chemical inhibition of P-TEFb in mitosis lead to delays in the progression of cell division. Together, our study reveals a mechanism for MTA and MTI whereby transcriptionally engaged Pol II can progress into productive elongation and finish transcription to allow proper cellular division.

  13. Congenital abnormalities and selective abortion.

    PubMed

    Seller, M J

    1976-09-01

    The technique of amniocentesis, by which an abnormal fetus can be detected in utero, has brought a technological advance in medical science but attendant medical and moral problems. Dr Seller describes those congenital disabilities which can be detected in the fetus before birth, for which the "remedy" is selective abortion. She then discusses the arguments for and against selective abortion, for the issue is not simple, even in the strictly genetic sense of attempting to ensure a population free of congenital abnormality.

  14. A Computer Graphics Human Figure Application Of Biostereometrics

    NASA Astrophysics Data System (ADS)

    Fetter, William A.

    1980-07-01

    A study of improved computer graphic representation of the human figure is being conducted under a National Science Foundation grant. Special emphasis is given biostereometrics as a primary data base from which applications requiring a variety of levels of detail may be prepared. For example, a human figure represented by a single point can be very useful in overview plots of a population. A crude ten point figure can be adequate for queuing theory studies and simulated movement of groups. A one hundred point figure can usefully be animated to achieve different overall body activities including male and female figures. A one thousand point figure si-milarly animated, begins to be useful in anthropometrics and kinesiology gross body movements. Extrapolations of this order-of-magnitude approach ultimately should achieve very complex data bases and a program which automatically selects the correct level of detail for the task at hand. See Summary Figure 1.

  15. A case of figurate urticaria by etanercept

    PubMed Central

    Sessa, Maurizio; Sullo, Maria Giuseppa; Mascolo, Annamaria; Cimmaruta, Daniela; Romano, Francesca; Puca, Rosa Valentina; Capuano, Annalisa; Rossi, Francesco; Schiavo, Ada Lo

    2016-01-01

    Etanercept is a competitive inhibitor of tumor necrosis factor-alpha (TNF-α) a polypeptide hormone, involved in the development of the immune system, in host defense and immune surveillance. Even if the etanercept mechanism of action is not completely understood, it is supposed that it negatively modulates biological responses mediated by molecules (cytokines, adhesion molecules, or proteinases) induced or regulated by TNF. For this reason, it is widely used in the treatment of immunologicals diseases, such as rheumatoid and psoriatic arthritis, polyarticular juvenile idiopathic active, ankylosing spondylitis, and plaque psoriasis. Etanercept has a good tolerability profile. Adverse events related to skin are rare, arising usually in about 5% of patients treated with anti-TNF α. In this scenario, we describe a case of figurate urticaria arose after the re-administration of etanercept in a patient affected by psoriasis and hepatitis B. A 65-year-old man, affected by psoriasis, was hospitalized in September 2014 to the Regional Center for the treatment of psoriasis and Biological Drugs of Second University of Naples for progressive extension of psoriatic skin lesions. The laboratory analysis detected positivity for hepatitis B virus (HBV) antigens. For this reason, it was administered to him lamivudine 100 mg/die about 30 days before to start etanercept treatment. The etanercept therapy has resulted in a progressive improving of skin manifestations, and the patient decided individually to stop the therapy. Afterwards, for worsening of the psoriatic lesions, he was again hospitalized and treated with the same therapeutic schedule (lamivudine followed by etanercept). Ten days after the start of therapy, the patient showed the onset of urticarial rash. Due to this, the treatment with lamivudine and etanercept was suspended and the patient's clinical conditions improved. It is probably that immunological disorders due to etanercept therapy and HBV infection could

  16. Cell fate after mitotic arrest in different tumor cells is determined by the balance between slippage and apoptotic threshold

    SciTech Connect

    Galán-Malo, Patricia; Vela, Laura; Gonzalo, Oscar; Calvo-Sanjuán, Rubén; Gracia-Fleta, Lucía; Naval, Javier; Marzo, Isabel

    2012-02-01

    Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x{sub L} and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x{sub L} gene was silenced in A549 cells, vincristine induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x{sub L} or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x{sub L} switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x{sub L}/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types. Highlights: ► Vincristine induces cell death by apoptosis or mitotic catastrophe. ► Apoptosis-proficient cells die by apoptosis during mitosis upon vincristine treatment. ► p53wt apoptosis-deficient cells undergo apoptosis from a G1-like tetraploid state. ► p53mt apoptosis-deficient cells can survive and divide giving rise to 8N cells.

  17. Looking at images with human figures: comparison between autistic and normal children.

    PubMed

    van der Geest, J N; Kemner, C; Camfferman, G; Verbaten, M N; van Engeland, H

    2002-04-01

    Based on clinical observations of abnormal gaze behavior of autistic children, it has been suggested that autistic children have a problem in processing social information. Several studies on eye movements have indeed found indications that children with autism show particularly abnormal gaze behavior in relation to social stimuli. However, the methodology used in such investigations did not allow for precise gaze analysis. In the present study, the looking behavior of autistic children toward cartoon-like scenes that included a human figure was measured quantitatively using an infrared eye-tracking device. Fixation behavior of autistic children was similar to that of their age- and IQ-matched normal peers. These results do not support the notion that autistic children have a specific problem in processing socially loaded visual stimuli. Also, there is no indication for an abnormality in gaze behavior in relation to neutral objects. It is suggested that the often-reported abnormal use of gaze in everyday life is not related to the nature of the visual stimuli but that other factors, like social interaction, may play a decisive role.

  18. Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs

    PubMed Central

    McCloy, Rachael A.; Parker, Benjamin L.; Rogers, Samuel; Chaudhuri, Rima; Gayevskiy, Velimir; Hoffman, Nolan J.; Ali, Naveid; Watkins, D. Neil; Daly, Roger J.; James, David E.; Lorca, Thierry; Castro, Anna; Burgess, Andrew

    2015-01-01

    Entry into mitosis is driven by the coordinated phosphorylation of thousands of proteins. For the cell to complete mitosis and divide into two identical daughter cells it must regulate dephosphorylation of these proteins in a highly ordered, temporal manner. There is currently a lack of a complete understanding of the phosphorylation changes that occur during the initial stages of mitotic exit in human cells. Therefore, we performed a large unbiased, global analysis to map the very first dephosphorylation events that occur as cells exit mitosis. We identified and quantified the modification of >16,000 phosphosites on >3300 unique proteins during early mitotic exit, providing up to eightfold greater resolution than previous studies. The data have been deposited to the ProteomeXchange with identifier PXD001559. Only a small fraction (∼10%) of phosphorylation sites were dephosphorylated during early mitotic exit and these occurred on proteins involved in critical early exit events, including organization of the mitotic spindle, the spindle assembly checkpoint, and reformation of the nuclear envelope. Surprisingly this enrichment was observed across all kinase consensus motifs, indicating that it is independent of the upstream phosphorylating kinase. Therefore, dephosphorylation of these sites is likely determined by the specificity of phosphatase/s rather than the activity of kinase/s. Dephosphorylation was significantly affected by the amino acids at and surrounding the phosphorylation site, with several unique evolutionarily conserved amino acids correlating strongly with phosphorylation status. These data provide a potential mechanism for the specificity of phosphatases, and how they co-ordinate the ordered events of mitotic exit. In summary, our results provide a global overview of the phosphorylation changes that occur during the very first stages of mitotic exit, providing novel mechanistic insight into how phosphatase/s specifically regulate this critical

  19. Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs.

    PubMed

    McCloy, Rachael A; Parker, Benjamin L; Rogers, Samuel; Chaudhuri, Rima; Gayevskiy, Velimir; Hoffman, Nolan J; Ali, Naveid; Watkins, D Neil; Daly, Roger J; James, David E; Lorca, Thierry; Castro, Anna; Burgess, Andrew

    2015-08-01

    Entry into mitosis is driven by the coordinated phosphorylation of thousands of proteins. For the cell to complete mitosis and divide into two identical daughter cells it must regulate dephosphorylation of these proteins in a highly ordered, temporal manner. There is currently a lack of a complete understanding of the phosphorylation changes that occur during the initial stages of mitotic exit in human cells. Therefore, we performed a large unbiased, global analysis to map the very first dephosphorylation events that occur as cells exit mitosis. We identified and quantified the modification of >16,000 phosphosites on >3300 unique proteins during early mitotic exit, providing up to eightfold greater resolution than previous studies. The data have been deposited to the ProteomeXchange with identifier PXD001559. Only a small fraction (∼ 10%) of phosphorylation sites were dephosphorylated during early mitotic exit and these occurred on proteins involved in critical early exit events, including organization of the mitotic spindle, the spindle assembly checkpoint, and reformation of the nuclear envelope. Surprisingly this enrichment was observed across all kinase consensus motifs, indicating that it is independent of the upstream phosphorylating kinase. Therefore, dephosphorylation of these sites is likely determined by the specificity of phosphatase/s rather than the activity of kinase/s. Dephosphorylation was significantly affected by the amino acids at and surrounding the phosphorylation site, with several unique evolutionarily conserved amino acids correlating strongly with phosphorylation status. These data provide a potential mechanism for the specificity of phosphatases, and how they co-ordinate the ordered events of mitotic exit. In summary, our results provide a global overview of the phosphorylation changes that occur during the very first stages of mitotic exit, providing novel mechanistic insight into how phosphatase/s specifically regulate this critical

  20. Reversible hypercondensation and decondensation of mitotic chromosomes studied using combined chemical-micromechanical techniques.

    PubMed

    Poirier, Michael G; Monhait, Tamar; Marko, John F

    2002-01-01

    We show that the chromatin in mitotic chromosomes can be drastically overcompacted or unfolded by temporary shifts in ion concentrations. By locally 'microspraying' reactants from micron-size pipettes, while simultaneously monitoring the size of and tension in single chromosomes, we are able to quantitatively study the dynamics of these reactions. The tension in a chromosome is monitored through observation and calibration of bending of the glass pipettes used to manipulate the chromosomes. For concentrations > 500 mM of NaCl and > 200 mM of MgCl2, we find that the initially applied tensions of approximately 500 pN relax to zero and that mitotic chromatin temporarily disperses in agreement with previous work (Maniotis et al. [1997] J. Cell. Biochem. 65:114-130). This unfolding occurs in about 1 s, and is reversible once the charge density is returned to physiological levels, if the exposure is not longer than approximately 1 min. Low concentrations of NaCl (< 30 mM) also induces a decrease in tension and increase in size. We observe this swelling to be isotropic in experiments on chromosomes under zero tension, a behavior inconsistent with the existence of a well-defined central chromosome 'scaffold'. By contrast 10 mM of divalent cations (MgCl2 and CaCl2) induces an extremely rapid and reversible increase in tension and a reduction in the size of mitotic chromosomes. Hexaminecobalt trichloride (trivalent cation) has the same effect as MgCl2 and CaCl2, except the magnitude of force increase and size change are much larger. Hexaminecobalt trichloride reduces mitotic chromosomes to 65% of their original volume, indicating that at least 1/3 of their apparent volume is aqueous solution. These results indicate that chromatin inside mitotic chromatids has a large amount of conformational freedom allowing dynamic unfolding and refolding and that charge interactions play a central role in maintaining mitotic chromosome structure.

  1. Thermoelectric Figure of Merit in Anisotropic Systems

    NASA Astrophysics Data System (ADS)

    Bies, W.; Radtke, R. J.; Ehrenreich, H.

    1998-03-01

    General expressions for the electrical conductivity, thermopower, and electronic thermal conductivity are derived for anisotropic materials including their full tensorial character and properly treating the effects of the sample boundaries. The thermoelectric figure of merit ZT constructed from these quantities is proved to be maximal only when the electric field (in thermoelectric coolers) or thermal gradient (in power generators) is applied along the direction of highest conductivity. Fields applied along directions for which the conductivity tensor is non-diagonal induce transverse electric fields and thermal gradients which may be larger in magnitude than the applied fields. These fields reduce ZT below that expected from anisotropy alone. Numerical results are presented for bulk n-type Bi_2Te3 and quantum well and quantum wire geometries using semiclassical transport theory in the effective mass and relaxation time approximations. The effects of multi-valley conduction and confinement-induced splitting of the valley degeneracy are included. Surprisingly, this model predicts generally that the thermopower and hence ZT are independent of the direction of the applied fields in the limit of vanishing lattice thermal conductivity.

  2. An economics figure of merit in ALPS

    SciTech Connect

    Shatilla, Y.A.

    2000-07-01

    One of the most pressing issues facing the deregulated nuclear electric power industry is its economic competitiveness when compared to other sources of electrical power. Traditionally, finding the optimum loading pattern (LP) that meets all the safety and operational objective functions and at the same time produces the most attractive economical solutions is an iterative process. This is because (a) LP search tools usually lack the capability to generate equilibrium solutions and (b) economics objective functions are hard to include in the search process. In this paper, the Westinghouse Advanced Loading Pattern Search code (ALPS) has been demonstrated to successfully find LPs that meet user-defined operational and safety as well as economics objectives. This has been made possible by the development of TULIP language that allows the integration of external procedures into the search process of the main program, ALPS. In the example given, an economic figure of merit (EFM) has been defined and included via TULIP script into the fuel management optimization problem of a three-loop Westinghouse core operating an 18-month cycle. The LPs found by ALPS exhibit a clear trend of meeting and, in some cases, exceeding the EFM objective function defined for the ALPS search process a priori.

  3. Birth delays skew developing world's fertility figures.

    PubMed

    1999-09-01

    This article explains that birth delays skew developing world's fertility figures. When successive groups of women who have delayed childbearing start having children, the rapid fertility decline stalls. Such change in the timing of childbearing skews the total fertility rate (TFR). Analysis of the tempo component of TFR trends in Taiwan suggests that tempo effects reduced its TFR by about 10% in the late 1970s and early 1990s and by about 19% in the late 1980s. In Colombia, on the basis of increasing mean maternal age at childbirth between the 1970s and the late 1980s, tempo distortions of the TFR during the most of the 1980s seem likely. Moreover, many developing countries are now experiencing rapid fertility declines that are in part attributable to tempo changes. These changes have accelerated past fertility transitions, but they also make these countries vulnerable to future stalls in fertility when the delays in childbearing end. Since fertility reductions caused by tempo effects lead to real declines in birth rates and hence in population growth, countries that wish to reduce birth rates can take actions that encourage women to delay marriage and the onset of childbearing.

  4. The Caenorhabditis elegans THO Complex Is Required for the Mitotic Cell Cycle and Development

    PubMed Central

    Castellano-Pozo, Maikel; García-Muse, Tatiana; Aguilera, Andrés

    2012-01-01

    THO is a conserved eukaryotic complex involved in mRNP biogenesis and RNA export that plays an important role in preventing transcription- and RNA-mediated genome instability in mitosis and meiosis. In mammals THO is essential for embryogenesis, which limits our capacity to analyze the physiological relevance of THO during development and in adult organisms. Using Caenorhabditis elegans as a model system we show that the THO complex is essential for mitotic genome integrity and the developmentally regulated mitotic cell cycles occurring during late postembryonic stages. PMID:23285047

  5. Mitotic behavior in root tips of Brachiaria genotypes with meiotic chromosome elimination during microsporogenesis.

    PubMed

    Felismino, M F; Silva, N; Pagliarini, M S; Valle, C B

    2008-04-15

    Three accessions of Brachiaria brizantha, three of B. humidicola, and two interspecific hybrids between B. ruziziensis and B. brizantha were analyzed with regard to their mitotic behavior in root tips. All these genotypes revealed chromosome elimination or lack of chromosome affinity in previous analyses of microsporogenesis. Analyses of root tips showed a normal mitotic division in all accessions and hybrids, reinforcing the notion that the genetic control of meiosis is totally independent of that of mitosis. The implications of these findings for the Brachiaria breeding program are discussed.

  6. The spoilage yeast Zygosaccharomyces bailii forms mitotic spores: a screening method for haploidization.

    PubMed

    Rodrigues, Fernando; Ludovico, Paula; Sousa, Maria João; Steensma, H Yde; Côrte-Real, Manuela; Leão, Cecília

    2003-01-01

    Zygosaccharomyces bailii ISA 1307 and the type strain of this spoilage yeast show a diploid DNA content. Together with a rather peculiar life cycle in which mitotic but no meiotic spores appear to be formed, the diploid DNA content explains the observed difficulties in obtaining auxotrophic mutants. Mitotic chromosome loss induced by benomyl and selection on canavanine media resulted in three haploid strains of Z. bailii. This new set of Z. bailii strains allows the easy isolation of recessive mutants and is suitable for further molecular genetic studies.

  7. Induced rates of mitotic crossing over and possible mitotic gene conversion per wing anlage cell in Drosophila melanogaster by X rays and fission neutrons

    SciTech Connect

    Ayaki, T.; Fujikawa, K.; Ryo, H.; Itoh, T.; Kondo, S. )

    1990-09-01

    As a model for chromosome aberrations, radiation-induced mitotic recombination of mwh and flr genes in Drosophila melanogaster strain (mwh +/+ flr) was quantitatively studied. Fission neutrons were five to six times more effective than X rays per unit dose in producing either crossover-mwh/flr twins and mwh singles-or flr singles, indicating that common processes are involved in the production of crossover and flr singles. The X-ray-induced rate/wing anlage cell/Gy for flr singles was 1 X 10(-5), whereas that of crossover was 2 x 10(-4); the former and the latter rate are of the same order of magnitude as those of gene conversion and crossover in yeast, respectively. Thus, we conclude that proximal-marker flr singles induced in the transheterozygote are gene convertants. Using the model based on yeast that recombination events result from repair of double-strand breaks or gaps, we propose that mitotic recombination in the fly is a secondary result of recombinational DNA repair. Evidence for recombinational misrepair in the fly is given. The relative ratio of radiation-induced mitotic crossover to spontaneous meiotic crossover is one order of magnitude higher in the fly than in yeast and humans.

  8. [Diagnosticum of abnormalities of plant meiotic division].

    PubMed

    Shamina, N V

    2006-01-01

    Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.

  9. Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent

    SciTech Connect

    McNeely, Samuel C.; Taylor, B. Frazier; States, J. Christopher

    2008-08-15

    A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr{sup 161} phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic's chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity.

  10. Sperm shape abnormalities in carbaryl-exposed employees

    PubMed Central

    Wyrobek, A. J.; Watchmaker, G.; Gordon, L.; Wong, K.; Moore, D.; Whorton, D.

    1981-01-01

    for the elevated sperm abnormalities seen in this study. ImagesFIGURE 1. PMID:6791917

  11. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome.

    PubMed

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-08-14

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome.

  12. Loading of PAX3 to Mitotic Chromosomes Is Mediated by Arginine Methylation and Associated with Waardenburg Syndrome*

    PubMed Central

    Wu, Tsu-Fang; Yao, Ya-Li; Lai, I-Lu; Lai, Chien-Chen; Lin, Pei-Lun; Yang, Wen-Ming

    2015-01-01

    PAX3 is a transcription factor critical to gene regulation in mammalian development. Mutations in PAX3 are associated with Waardenburg syndrome (WS), but the mechanism of how mutant PAX3 proteins cause WS remains unclear. Here, we found that PAX3 loads on mitotic chromosomes using its homeodomain. PAX3 WS mutants with mutations in homeodomain lose the ability to bind mitotic chromosomes. Moreover, loading of PAX3 on mitotic chromosomes requires arginine methylation, which is regulated by methyltransferase PRMT5 and demethylase JMJD6. Mutant PAX3 proteins that lose mitotic chromosome localization block cell proliferation and normal development of zebrafish. These results reveal the molecular mechanism of PAX3s loading on mitotic chromosomes and the importance of this localization pattern in normal development. Our findings suggest that PAX3 WS mutants interfere with the normal functions of PAX3 in a dominant negative manner, which is important to the understanding of the pathogenesis of Waardenburg syndrome. PMID:26149688

  13. Sport-specific injuries and medical problems of figure skaters.

    PubMed

    Porter, Emily B; Young, Craig C; Niedfeldt, Mark W; Gottschlich, Laura M

    2007-09-01

    Figure skating is becoming increasingly popular as both a recreational and competitive sport. As the number of figure skating participants increases, so will the number of active patients who present to their primary care physician with sport-related injuries and medical problems. Figure skating is a unique sport that continues to evolve and progress with participants partaking in more difficult moves and more rigorous training programs. Common problems in figure skating include acute musculo-skeletal injuries and chronic overuse injuries, which primarily occur in the foot, ankle, knee, leg, hip, and lower back. Figure skaters are also more likely to endure specific medical problems such as exercise-induced bronchospasm and eating disorders. Primary care physicians are able to contribute to their figure skating patient's health by recognition and appropriate treatment of acute injuries and prevention of chronic injuries and other medical problems.

  14. Abnormal insulin levels and vertigo.

    PubMed

    Proctor, C A

    1981-10-01

    Fifty patients with unexplained vertigo (36) or lightheadedness (14) are evaluated, all of whom had abnormal ENGs and normal audiograms. Five hour insulin glucose tolerance tests were performance on all patients, with insulin levels being obtained fasting and at one-half, one, two, and three hours. The results of this investigation were remarkable. Borderline or abnormal insulin levels were discovered in 82% of patients; 90% were found to have either an abnormal glucose tolerance test or at least borderline insulin levels. The response to treatment in these dizzy patients was also startling, with appropriate low carbohydrate diets improving the patient's symptoms in 90% of cases. It is, therefore, apparent that the earliest identification of carbohydrate imbalance with an insulin glucose tolerance test is extremely important in the work-up of the dizzy patients.

  15. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  16. A mitotic nuclear envelope tether for Gle1 also affects nuclear and nucleolar architecture

    PubMed Central

    Chemudupati, Mahesh; Osmani, Aysha H.; Osmani, Stephen A.

    2016-01-01

    During Aspergillus nidulans mitosis, peripheral nuclear pore complex (NPC) proteins (Nups) disperse from the core NPC structure. Unexpectedly, one predicted peripheral Nup, Gle1, remains at the mitotic nuclear envelope (NE) via an unknown mechanism. Gle1 affinity purification identified mitotic tether for Gle1 (MtgA), which tethers Gle1 to the NE during mitosis but not during interphase when Gle1 is at NPCs. MtgA is the orthologue of the Schizosaccharomyces pombe telomere-anchoring inner nuclear membrane protein Bqt4. Like Bqt4, MtgA has meiotic roles, but it is functionally distinct from Bqt4 because MtgA is not required for tethering telomeres to the NE. Domain analyses showed that MtgA targeting to the NE requires its C-terminal transmembrane domain and a nuclear localization signal. Of importance, MtgA functions beyond Gle1 mitotic targeting and meiosis and affects nuclear and nucleolar architecture when deleted or overexpressed. Deleting MtgA generates small, round nuclei, whereas overexpressing MtgA generates larger nuclei with altered nuclear compartmentalization resulting from NE expansion around the nucleolus. The accumulation of MtgA around the nucleolus promotes a similar accumulation of the endoplasmic reticulum (ER) protein Erg24, reducing its levels in the ER. This study extends the functions of Bqt4-like proteins to include mitotic Gle1 targeting and modulation of nuclear and nucleolar architecture. PMID:27630260

  17. Direct preparation protocol to obtain mitotic chromosomes from canine mammary tumors.

    PubMed

    Morais, C S D; Affonso, P R A M; Bitencourt, J A; Wenceslau, A A

    2015-12-29

    Currently, mammary neoplasms in female canines are a serious problem in veterinary clinics. In addition, the canine species is an excellent disease model for human oncology because of the biological and genetic similarities between the species. Cytogenetics has allowed further study of the characterization of neoplasms in canines. We hypothesized that the use of a direct preparation protocol for mitotic chromosome analysis would provide a simple and low cost protocol for use in all laboratories. The objective of this method is to display in a few hours of dividing cells just like the time of collection since cell division in tissue can be obtained. Ten female canines with the spontaneous occurrence of mammary neoplasia were used to test a pioneering direct preparation protocol to obtain mitotic chromosomes. The excised breast tumor tissue fragments were subjected to the protocol consisting of treatment with colchicine, treatment with hypotonic solution, and fixation. Mitotic chromosomes were absent in cell suspensions of only two samples among the 10 materials analyzed, based on the analysis of five blades for each preparation obtained. So, the cell suspension obtained allowed for the observation of eight tissue samples viable for cytogenetic analysis, five of which had excellent numbers of mitotic chromosomes. However, the technique was unsuccessful in producing high-quality cell suspensions because of inadequate condensation and scattering of chromosomes. While adjustments to methodological procedures are needed, this protocol represents a low cost and simplified method to study the cytogenetics of canine tumors.

  18. Patterns of tubulin isotype synthesis and usage during mitotic spindle morphogenesis in Physarum.

    PubMed

    Paul, E C; Roobol, A; Foster, K E; Gull, K

    1987-01-01

    Tubulin synthesis in the naturally synchronous plasmodium of Physarum polycephalum is a markedly periodic event restricted to the late G2 period of the cell cycle. Mitosis in the plasmodium is intranuclear, and there are no cytoplasmic microtubules at any stage of the cell cycle. We have combined a biochemical investigation of the synthesis of the plasmodial tubulin isotypes and their participation in the mitotic spindle with a microscopic study (immunofluorescence) of the development of spindle microtubules throughout the cell cycle. We have shown that all four tubulin isotypes identified in the plasmodium (alpha 1, alpha 2, beta 1 and beta 2) are present in the mitotic spindle. The stoichiometry of isotype usage in the mitotic spindle generally reflects the overall abundance of isotypes in the plasmodium as a whole: beta 2 greater than alpha 1 greater than alpha 2 greater than beta 1. We have also shown that tubulins synthesized in the G2 period of one cell cycle can be incorporated into the spindles of the immediately ensuing mitosis and have sufficient biological longevity to allow participation in the mitotic divisions of future cell cycles. Thus, the phenomenon of periodic tubulin synthesis does not reflect a restricted use of tubulin to the cell cycle in which it was synthesized. The major polymerization of tubulin in the nucleus occurred less than 30 min before metaphase. A novel tubulin-containing structure was, however, present in the nucleus approximately 60 min before metaphase. Polymerized tubulin is rapidly removed from the nucleus following nucleokinesis.

  19. The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells

    PubMed Central

    Yan, Kaowen; Li, Li; Wang, Xiaojian; Hong, Ruisha; Zhang, Ying; Yang, Hua; Lin, Ming; Zhang, Sha; He, Qihua; Zheng, Duo; Tang, Jun; Yin, Yuxin

    2015-01-01

    Deubiquitinating enzymes (DUBs) negatively regulate protein ubiquitination and play an important role in diverse physiological processes, including mitotic division. The BRCC36 isopeptidase complex (BRISC) is a DUB that is specific for lysine 63–linked ubiquitin hydrolysis; however, its biological function remains largely undefined. Here, we identify a critical role for BRISC in the control of mitotic spindle assembly in cultured mammalian cells. BRISC is a microtubule (MT)-associated protein complex that predominantly localizes to the minus ends of K-fibers and spindle poles and directly binds to MTs; importantly, BRISC promotes the assembly of functional bipolar spindle by deubiquitinating the essential spindle assembly factor nuclear mitotic apparatus (NuMA). The deubiquitination of NuMA regulates its interaction with dynein and importin-β, which are required for its function in spindle assembly. Collectively, these results uncover BRISC as an important regulator of the mitotic spindle assembly and cell division, and have important implications for the development of anticancer drugs targeting BRISC. PMID:26195665

  20. Subamolide a induces mitotic catastrophe accompanied by apoptosis in human lung cancer cells.

    PubMed

    Hung, Jen-Yu; Wen, Ching-Wen; Hsu, Ya-Ling; Lin, En-Shyh; Huang, Ming-Shyan; Chen, Chung-Yi; Kuo, Po-Lin

    2013-01-01

    This study investigated the anticancer effects of subamolide A (Sub-A), isolated from Cinnamomum subavenium, on human nonsmall cell lung cancer cell lines A549 and NCI-H460. Treatment of cancer cells with Sub-A resulted in decreased cell viability of both lung cancer cell lines. Sub-A induced lung cancer cell death by triggering mitotic catastrophe with apoptosis. It triggered oxidant stress, indicated by increased cellular reactive oxygen species (ROS) production and decreased glutathione level. The elevated ROS triggered the activation of ataxia-telangiectasia mutation (ATM), which further enhanced the ATF3 upregulation and subsequently enhanced p53 function by phosphorylation at Serine 15 and Serine 392. The antioxidant, EUK8, significantly decreased mitotic catastrophe by inhibiting ATM activation, ATF3 expression, and p53 phosphorylation. The reduction of ATM and ATF3 expression by shRNA decreased Sub-A-mediated p53 phosphorylation and mitotic catastrophe. Sub-A also caused a dramatic 70% reduction in tumor size in an animal model. Taken together, cell death of lung cancer cells in response to Sub-A is dependent on ROS generation, which triggers mitotic catastrophe followed by apoptosis. Therefore, Sub-A may be a novel anticancer agent for the treatment of nonsmall cell lung cancer.

  1. AIP regulates stability of Aurora-A at early mitotic phase coordinately with GSK-3beta.

    PubMed

    Fumoto, K; Lee, P-C; Saya, H; Kikuchi, A

    2008-07-24

    Glycogen synthase kinase-3 (GSK-3beta) regulates microtubule dynamics and cellular polarity through phosphorylating various microtubule associating proteins and plus-end tracking proteins. Although it was also reported that GSK-3beta is inactivated by protein kinase B at the spindle poles, functions and targets of GSK-3beta in the mitotic phase are unknown. Here, we identified Aurora-A-interacting protein (AIP), a negative regulator of Aurora-A, as a binding partner of GSK-3beta. AIP was colocalized with Aurora-A and GSK-3beta to the spindle poles in metaphase, and its depletion in cells stabilized and activated Aurora-A in early mitotic phase and caused mitotic cell arrest. Treatment of the cells with a GSK-3beta inhibitor reduced the protein level of Aurora-A and this reduction was suppressed by AIP knockdown. AIP was phosphorylated by GSK-3beta, and an AIP mutant in which the GSK-3beta phosphorylation site was mutated could bind and downregulate Aurora-A more efficiently. These results suggest that GSK-3beta modulates the early mitotic Aurora-A level through binding and phosphorylating AIP.

  2. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis

    SciTech Connect

    Salmela, Anna-Leena; Pouwels, Jeroen; Kukkonen-Macchi, Anu; Waris, Sinikka; Toivonen, Pauliina; Jaakkola, Kimmo; Maeki-Jouppila, Jenni; Kallio, Lila; Kallio, Marko J.

    2012-03-10

    The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3 Prime ,5-dihydroxy-4 Prime ,6,7-trimethoxyflavone) as an anti-mitotic flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.

  3. A role for vasa in regulating mitotic chromosome condensation in Drosophila.

    PubMed

    Pek, Jun Wei; Kai, Toshie

    2011-01-11

    Vasa (Vas) is a conserved DEAD-box RNA helicase expressed in germline cells that localizes to a characteristic perinuclear structure called nuage. Previous studies have shown that Vas has diverse functions, with roles in regulating mRNA translation, germline differentiation, pole plasm assembly, and piwi-interacting RNA (piRNA)-mediated transposon silencing. Although vas has also been implicated in the regulation of germline proliferation in Drosophila and mice, little is known about whether Vas plays a role during the mitotic cell cycle. Here, we report a translation-independent function of vas in regulating mitotic chromosome condensation in the Drosophila germline. During mitosis, Vas facilitates robust chromosomal localization of the condensin I components Barren (Barr) and CAP-D2. Vas specifically associates with Barr and CAP-D2, but not with CAP-D3 (a condensin II component). The mitotic function of Vas is mediated by the formation of perichromosomal Vas bodies during mitosis, which requires the piRNA pathway components aubergine and spindle-E. Our results suggest that Vas functions during mitosis and may link the piRNA pathway to mitotic chromosome condensation in Drosophila.

  4. Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression

    SciTech Connect

    Takahashi, Akinori; Kikuguchi, Chisato; Morita, Masahiro; Shimodaira, Tetsuhiro; Tokai-Nishizumi, Noriko; Yokoyama, Kazumasa; Ohsugi, Miho; Suzuki, Toru; Yamamoto, Tadashi

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CNOT3 depletion increases the mitotic index. Black-Right-Pointing-Pointer CNOT3 inhibits the expression of MAD1. Black-Right-Pointing-Pointer CNOT3 destabilizes the MAD1 mRNA. Black-Right-Pointing-Pointer MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4-NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4-NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4-NOT complex, is involved in the regulation of the spindle assembly checkpoint, suggesting that the CCR4-NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.

  5. Clasp2 ensures mitotic fidelity and prevents differentiation of epidermal keratinocytes

    PubMed Central

    Shahbazi, Marta N.; Peña-Jimenez, Daniel; Antonucci, Francesca; Drosten, Matthias

    2017-01-01

    ABSTRACT Epidermal homeostasis is tightly controlled by a balancing act of self-renewal or terminal differentiation of proliferating basal keratinocytes. An increase in DNA content as a consequence of a mitotic block is a recognized mechanism underlying keratinocyte differentiation, but the molecular mechanisms involved in this process are not yet fully understood. Using cultured primary keratinocytes, here we report that the expression of the mammalian microtubule and kinetochore-associated protein Clasp2 is intimately associated with the basal proliferative makeup of keratinocytes, and its deficiency leads to premature differentiation. Clasp2-deficient keratinocytes exhibit increased centrosomal numbers and numerous mitotic alterations, including multipolar spindles and chromosomal misalignments that overall result in mitotic stress and a high DNA content. Such mitotic block prompts premature keratinocyte differentiation in a p53-dependent manner in the absence of cell death. Our findings reveal a new role for Clasp2 in governing keratinocyte undifferentiated features and highlight the presence of surveillance mechanisms that prevent cell cycle entry in cells that have alterations in the DNA content. PMID:28069833

  6. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    SciTech Connect

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa; Yoon, Hyun-Joo; Yoo, Hae Yong; Choi, Cheol Yong

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  7. Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants.

    PubMed

    Bannigan, Alex; Lizotte-Waniewski, Michelle; Riley, Margaret; Baskin, Tobias I

    2008-01-01

    Flowering plants, lacking centrosomes as well as dynein, assemble their mitotic spindle via a pathway that is distinct visually and molecularly from that of animals and yeast. The molecular components underlying mitotic spindle assembly and function in plants are beginning to be discovered. Here, we review recent evidence suggesting the preprophase band in plants functions analogously to the centrosome in animals in establishing spindle bipolarity, and we review recent progress characterizing the roles of specific motor proteins in plant mitosis. Loss of function of certain minus-end-directed KIN-14 motor proteins causes a broadening of the spindle pole; whereas, loss of function of a KIN-5 causes the formation of monopolar spindles, resembling those formed when the homologous motor protein (e.g., Eg5) is knocked out in animal cells. We present a phylogeny of the kinesin-5 motor domain, which shows deep divergence among plant sequences, highlighting possibilities for specialization. Finally, we review information concerning the roles of selected structural proteins at mitosis as well as recent findings concerning regulation of M-phase in plants. Insight into the mitotic spindle will be obtained through continued comparison of mitotic mechanisms in a diversity of cells.

  8. Mitotic Phosphorylation of TREX1 C Terminus Disrupts TREX1 Regulation of the Oligosaccharyltransferase Complex.

    PubMed

    Kucej, Martin; Fermaintt, Charles S; Yang, Kun; Irizarry-Caro, Ricardo A; Yan, Nan

    2017-03-14

    TREX1 mutations are associated with several autoimmune and inflammatory diseases. The N-terminal DNase domain of TREX1 is important for preventing self-DNA from activating the interferon response. The C terminus of TREX1 is required for ER localization and regulation of oligosacchariyltransferase (OST) activity. Here, we show that during mitosis TREX1 is predominately phosphorylated at the C-terminal Serine-261 by Cyclin B/CDK1. TREX1 is dephosphorylated quickly at mitotic exit, likely by PP1/PP2-type serine/threonine phosphatase. Mitotic phosphorylation does not affect TREX1 DNase activity. Phosphomimetic mutations of mitotic phosphorylation sites in TREX1 disrupted the interaction with the OST subunit RPN1. RNA-seq analysis of Trex1(-/-) mouse embryonic fibroblasts expressing TREX1 wild-type or phosphor-mutants revealed a glycol-gene signature that is elevated when TREX1 mitotic phosphorylation sites are disrupted. Thus, the cell-cycle-dependent post-translation modification of TREX1 regulates its interaction with OST, which may have important implications for immune disease associated with the DNase-independent function of TREX1.

  9. Miniaturization of mitotic index cell-based assay using "wall-less" plate technology.

    PubMed

    Le Guezennec, Xavier; Phong, Mark; Nor, Liyana; Kim, Namyong

    2014-03-01

    The use of microscopic imaging for the accurate assessment of cells in mitosis is hampered by the round morphology of mitotic cells, which renders them poorly adherent and highly susceptible to loss during the washing stage of cell-based assays. Here, to circumvent these limitations, we make use of DropArray, a recent technology that allows high retention of weakly adherent cells and suspension cells. DropArray offers the competitive advantage of maintaining the classic high throughput format of microtiter plates while reducing classic microwell volume by up to 90% by using a drop format. Here, we present a mitotic index cell-based assay using the mitosis marker phospho histone H3 at serine 10 on a DropArray 384-well plate format. Dose-response curve analysis of the mitotic index assay with an antimitotic drug (docetaxel) on DropArray is presented that shows an effective dosage compared to previous established results similar to those obtained with conventional microtiter plates. The mitotic index assay with DropArray showed a Z-factor >0.6. Our results validate DropArray as a suitable platform for high throughput screening for compounds affecting mitosis or the cell cycle.

  10. Beyond captions: linking figures with abstract sentences in biomedical articles.

    PubMed

    Bockhorst, Joseph P; Conroy, John M; Agarwal, Shashank; O'Leary, Dianne P; Yu, Hong

    2012-01-01

    Although figures in scientific articles have high information content and concisely communicate many key research findings, they are currently under utilized by literature search and retrieval systems. Many systems ignore figures, and those that do not typically only consider caption text. This study describes and evaluates a fully automated approach for associating figures in the body of a biomedical article with sentences in its abstract. We use supervised methods to learn probabilistic language models, hidden Markov models, and conditional random fields for predicting associations between abstract sentences and figures. Three kinds of evidence are used: text in abstract sentences and figures, relative positions of sentences and figures, and the patterns of sentence/figure associations across an article. Each information source is shown to have predictive value, and models that use all kinds of evidence are more accurate than models that do not. Our most accurate method has an F1-score of 69% on a cross-validation experiment, is competitive with the accuracy of human experts, has significantly better predictive accuracy than state-of-the-art methods and enables users to access figures associated with an abstract sentence with an average of 1.82 fewer mouse clicks. A user evaluation shows that human users find our system beneficial. The system is available at http://FigureItOut.askHERMES.org.

  11. Higher-order figure discrimination in fly and human vision.

    PubMed

    Aptekar, Jacob W; Frye, Mark A

    2013-08-19

    Visually-guided animals rely on their ability to stabilize the panorama and simultaneously track salient objects, or figures, that are distinct from the background in order to avoid predators, pursue food resources and mates, and navigate spatially. Visual figures are distinguished by luminance signals that produce coherent motion cues as well as more enigmatic 'higher-order' statistical features. Figure discrimination is thus a complex form of motion vision requiring specialized neural processing. In this minireview, we will highlight recent advances in understanding the perceptual, behavioral, and neurophysiological basis of higher-order figure detection in flies, much of which is grounded in the historical perspective and mechanistic underpinnings of human psychophysics.

  12. Surface reconstruction, figure-ground modulation, and border-ownership.

    PubMed

    Jeurissen, Danique; Self, Matthew W; Roelfsema, Pieter R

    2013-01-01

    The Differentiation-Integration for Surface Completion (DISC) model aims to explain the reconstruction of visual surfaces. We find the model a valuable contribution to our understanding of figure-ground organization. We point out that, next to border-ownership, neurons in visual cortex code whether surface elements belong to a figure or the background and that this is influenced by attention. We furthermore suggest that there must be strong links between object recognition and figure-ground assignment in order to resolve the status of interior contours. Incorporation of these factors in neurocomputational models will further improve our understanding of surface reconstruction, figure-ground organization, and border-ownership.

  13. Ectodermal dysplasia and abnormal thumbs.

    PubMed

    Lucky, A W; Esterly, N B; Tunnessen, W W

    1980-05-01

    Two unrelated children, a girl and a boy, with alopecia, anomalous cutaneous pigmentation, abnormal thumbs, and endocrine disorders, including short stature and delayed bone age in one patient and juvenile onset diabetes mellitus in the other, are described. In one instance, the mother and the maternal grandmother had similar abnormalities, although of a less severe nature. Both children had normal nails and no unusual susceptibility to infections. We believe these two patients represent a previously undescribed syndrome of ectodermal dysplasia that may be inherited as an autosomal-dominant trait.

  14. BOOK REVIEW: Relativistic Figures of Equilibrium

    NASA Astrophysics Data System (ADS)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  15. Figures and First Years: Examining first-year Calculus I student ability to incorporate figures into technical reports

    NASA Astrophysics Data System (ADS)

    Antonacci, Nathan; Rogers, Michael; Pfaff, Thomas

    This three-year study focused on first-year Calculus I students and their abilities to incorporate figures into technical reports. Students were handed guidelines as part of their Multidisciplinary Sustainability Education Module meant to aid them in crafting effective figures. Figure-specific questionnaires were added in the class to gain insight into the quantitative literacy skills students possessed both before starting their course and after its completion. Reviews of the figures in 78 technical reports written by 106 students showed repeated failure to refer to figures in discussion sections and use them in evidence-based arguments. Analysis of quantitative literacy skills revealed that the students could both read and interpret figures, suggesting that issues with literacy were not the main contributor to the sub-par graphs.

  16. Hydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in Saccharomyces cerevisiae.

    PubMed

    Güven, Emine; Parnell, Lindsay A; Jackson, Erin D; Parker, Meighan C; Gupta, Nilin; Rodrigues, Jenny; Qin, Hong

    2016-01-01

    Cellular aging in Saccharomyces cerevisiae can lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the changes of viability and the frequencies of loss of heterozygosity (LOH) in response to hydrogen peroxide doses. The mid-transition points of viability and LOH were quantified using sigmoid mathematical functions. We found that the increase of hydrogen peroxide dependent genomic instability often occurs before a drop in viability. We previously observed that elevation of genomic instability generally lags behind the drop in viability during chronological aging. Hence, onset of genomic instability induced by exogenous hydrogen peroxide treatment is opposite to that induced by endogenous oxidative stress during chronological aging, with regards to the midpoint of viability. This contrast argues that the effect of endogenous oxidative stress on genome integrity is well suppressed up to the dying-off phase during chronological aging. We found that the leadoff of exogenous hydrogen peroxide induced genomic instability to viability significantly correlated with replicative lifespan (RLS), indicating that yeast cells' ability to counter oxidative stress contributes to their replicative longevity. Surprisingly, this leadoff is positively correlated with an inverse measure of endogenous mitotic asymmetry, indicating a trade-off between mitotic asymmetry and cell's ability to fend off hydrogen peroxide induced oxidative stress. Overall, our results demonstrate strong associations of oxidative stress to genomic instability and mitotic asymmetry at the population level of budding yeast.

  17. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade

    PubMed Central

    Purrington, Kristen S.; Slettedahl, Seth; Bolla, Manjeet K.; Michailidou, Kyriaki; Czene, Kamila; Nevanlinna, Heli; Bojesen, Stig E.; Andrulis, Irene L.; Cox, Angela; Hall, Per; Carpenter, Jane; Yannoukakos, Drakoulis; Haiman, Christopher A.; Fasching, Peter A.; Mannermaa, Arto; Winqvist, Robert; Brenner, Hermann; Lindblom, Annika; Chenevix-Trench, Georgia; Benitez, Javier; Swerdlow, Anthony; Kristensen, Vessela; Guénel, Pascal; Meindl, Alfons; Darabi, Hatef; Eriksson, Mikael; Fagerholm, Rainer; Aittomäki, Kristiina; Blomqvist, Carl; Nordestgaard, Børge G.; Nielsen, Sune F.; Flyger, Henrik; Wang, Xianshu; Olswold, Curtis; Olson, Janet E.; Mulligan, Anna Marie; Knight, Julia A.; Tchatchou, Sandrine; Reed, Malcolm W.R.; Cross, Simon S.; Liu, Jianjun; Li, Jingmei; Humphreys, Keith; Clarke, Christine; Scott, Rodney; Fostira, Florentia; Fountzilas, George; Konstantopoulou, Irene; Henderson, Brian E.; Schumacher, Fredrick; Le Marchand, Loic; Ekici, Arif B.; Hartmann, Arndt; Beckmann, Matthias W.; Hartikainen, Jaana M.; Kosma, Veli-Matti; Kataja, Vesa; Jukkola-Vuorinen, Arja; Pylkäs, Katri; Kauppila, Saila; Dieffenbach, Aida Karina; Stegmaier, Christa; Arndt, Volker; Margolin, Sara; Balleine, Rosemary; Arias Perez, Jose Ignacio; Pilar Zamora, M.; Menéndez, Primitiva; Ashworth, Alan; Jones, Michael; Orr, Nick; Arveux, Patrick; Kerbrat, Pierre; Truong, Thérèse; Bugert, Peter; Toland, Amanda E.; Ambrosone, Christine B.; Labrèche, France; Goldberg, Mark S.; Dumont, Martine; Ziogas, Argyrios; Lee, Eunjung; Dite, Gillian S.; Apicella, Carmel; Southey, Melissa C.; Long, Jirong; Shrubsole, Martha; Deming-Halverson, Sandra; Ficarazzi, Filomena; Barile, Monica; Peterlongo, Paolo; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Tollenaar, Robert A.E.M.; Seynaeve, Caroline; Brüning, Thomas; Ko, Yon-Dschun; Van Deurzen, Carolien H.M.; Martens, John W.M.; Kriege, Mieke; Figueroa, Jonine D.; Chanock, Stephen J.; Lissowska, Jolanta; Tomlinson, Ian; Kerin, Michael J.; Miller, Nicola; Schneeweiss, Andreas; Tapper, William J.; Gerty, Susan M.; Durcan, Lorraine; Mclean, Catriona; Milne, Roger L.; Baglietto, Laura; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Van'T Veer, Laura J.; Cornelissen, Sten; Försti, Asta; Torres, Diana; Rüdiger, Thomas; Rudolph, Anja; Flesch-Janys, Dieter; Nickels, Stefan; Weltens, Caroline; Floris, Giuseppe; Moisse, Matthieu; Dennis, Joe; Wang, Qin; Dunning, Alison M.; Shah, Mitul; Brown, Judith; Simard, Jacques; Anton-Culver, Hoda; Neuhausen, Susan L.; Hopper, John L.; Bogdanova, Natalia; Dörk, Thilo; Zheng, Wei; Radice, Paolo; Jakubowska, Anna; Lubinski, Jan; Devillee, Peter; Brauch, Hiltrud; Hooning, Maartje; García-Closas, Montserrat; Sawyer, Elinor; Burwinkel, Barbara; Marmee, Frederick; Eccles, Diana M.; Giles, Graham G.; Peto, Julian; Schmidt, Marjanka; Broeks, Annegien; Hamann, Ute; Chang-Claude, Jenny; Lambrechts, Diether; Pharoah, Paul D.P.; Easton, Douglas; Pankratz, V. Shane; Slager, Susan; Vachon, Celine M.; Couch, Fergus J.

    2014-01-01

    Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16–1.33, P = 4.2 × 10−10) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04–1.11, P = 8.7 × 10−6) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07–1.23, P = 7.9 × 10−5) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10−3). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer. PMID:24927736

  18. Genetic variation in mitotic regulatory pathway genes is associated with breast tumor grade.

    PubMed

    Purrington, Kristen S; Slettedahl, Seth; Bolla, Manjeet K; Michailidou, Kyriaki; Czene, Kamila; Nevanlinna, Heli; Bojesen, Stig E; Andrulis, Irene L; Cox, Angela; Hall, Per; Carpenter, Jane; Yannoukakos, Drakoulis; Haiman, Christopher A; Fasching, Peter A; Mannermaa, Arto; Winqvist, Robert; Brenner, Hermann; Lindblom, Annika; Chenevix-Trench, Georgia; Benitez, Javier; Swerdlow, Anthony; Kristensen, Vessela; Guénel, Pascal; Meindl, Alfons; Darabi, Hatef; Eriksson, Mikael; Fagerholm, Rainer; Aittomäki, Kristiina; Blomqvist, Carl; Nordestgaard, Børge G; Nielsen, Sune F; Flyger, Henrik; Wang, Xianshu; Olswold, Curtis; Olson, Janet E; Mulligan, Anna Marie; Knight, Julia A; Tchatchou, Sandrine; Reed, Malcolm W R; Cross, Simon S; Liu, Jianjun; Li, Jingmei; Humphreys, Keith; Clarke, Christine; Scott, Rodney; Fostira, Florentia; Fountzilas, George; Konstantopoulou, Irene; Henderson, Brian E; Schumacher, Fredrick; Le Marchand, Loic; Ekici, Arif B; Hartmann, Arndt; Beckmann, Matthias W; Hartikainen, Jaana M; Kosma, Veli-Matti; Kataja, Vesa; Jukkola-Vuorinen, Arja; Pylkäs, Katri; Kauppila, Saila; Dieffenbach, Aida Karina; Stegmaier, Christa; Arndt, Volker; Margolin, Sara; Balleine, Rosemary; Arias Perez, Jose Ignacio; Pilar Zamora, M; Menéndez, Primitiva; Ashworth, Alan; Jones, Michael; Orr, Nick; Arveux, Patrick; Kerbrat, Pierre; Truong, Thérèse; Bugert, Peter; Toland, Amanda E; Ambrosone, Christine B; Labrèche, France; Goldberg, Mark S; Dumont, Martine; Ziogas, Argyrios; Lee, Eunjung; Dite, Gillian S; Apicella, Carmel; Southey, Melissa C; Long, Jirong; Shrubsole, Martha; Deming-Halverson, Sandra; Ficarazzi, Filomena; Barile, Monica; Peterlongo, Paolo; Durda, Katarzyna; Jaworska-Bieniek, Katarzyna; Tollenaar, Robert A E M; Seynaeve, Caroline; Brüning, Thomas; Ko, Yon-Dschun; Van Deurzen, Carolien H M; Martens, John W M; Kriege, Mieke; Figueroa, Jonine D; Chanock, Stephen J; Lissowska, Jolanta; Tomlinson, Ian; Kerin, Michael J; Miller, Nicola; Schneeweiss, Andreas; Tapper, William J; Gerty, Susan M; Durcan, Lorraine; Mclean, Catriona; Milne, Roger L; Baglietto, Laura; dos Santos Silva, Isabel; Fletcher, Olivia; Johnson, Nichola; Van'T Veer, Laura J; Cornelissen, Sten; Försti, Asta; Torres, Diana; Rüdiger, Thomas; Rudolph, Anja; Flesch-Janys, Dieter; Nickels, Stefan; Weltens, Caroline; Floris, Giuseppe; Moisse, Matthieu; Dennis, Joe; Wang, Qin; Dunning, Alison M; Shah, Mitul; Brown, Judith; Simard, Jacques; Anton-Culver, Hoda; Neuhausen, Susan L; Hopper, John L; Bogdanova, Natalia; Dörk, Thilo; Zheng, Wei; Radice, Paolo; Jakubowska, Anna; Lubinski, Jan; Devillee, Peter; Brauch, Hiltrud; Hooning, Maartje; García-Closas, Montserrat; Sawyer, Elinor; Burwinkel, Barbara; Marmee, Frederick; Eccles, Diana M; Giles, Graham G; Peto, Julian; Schmidt, Marjanka; Broeks, Annegien; Hamann, Ute; Chang-Claude, Jenny; Lambrechts, Diether; Pharoah, Paul D P; Easton, Douglas; Pankratz, V Shane; Slager, Susan; Vachon, Celine M; Couch, Fergus J

    2014-11-15

    Mitotic index is an important component of histologic grade and has an etiologic role in breast tumorigenesis. Several small candidate gene studies have reported associations between variation in mitotic genes and breast cancer risk. We measured associations between 2156 single nucleotide polymorphisms (SNPs) from 194 mitotic genes and breast cancer risk, overall and by histologic grade, in the Breast Cancer Association Consortium (BCAC) iCOGS study (n = 39 067 cases; n = 42 106 controls). SNPs in TACC2 [rs17550038: odds ratio (OR) = 1.24, 95% confidence interval (CI) 1.16-1.33, P = 4.2 × 10(-10)) and EIF3H (rs799890: OR = 1.07, 95% CI 1.04-1.11, P = 8.7 × 10(-6)) were significantly associated with risk of low-grade breast cancer. The TACC2 signal was retained (rs17550038: OR = 1.15, 95% CI 1.07-1.23, P = 7.9 × 10(-5)) after adjustment for breast cancer risk SNPs in the nearby FGFR2 gene, suggesting that TACC2 is a novel, independent genome-wide significant genetic risk locus for low-grade breast cancer. While no SNPs were individually associated with high-grade disease, a pathway-level gene set analysis showed that variation across the 194 mitotic genes was associated with high-grade breast cancer risk (P = 2.1 × 10(-3)). These observations will provide insight into the contribution of mitotic defects to histological grade and the etiology of breast cancer.

  19. Drug-induced premature chromosome condensation (PCC) protocols: cytogenetic approaches in mitotic chromosome and interphase chromatin.

    PubMed

    Gotoh, Eisuke

    2015-01-01

    Chromosome analysis is a fundamental technique which is used in wide areas of cytogenetic study including karyotyping species, hereditary diseases diagnosis, or chromosome biology study. Chromosomes are usually prepared from mitotic cells arrested by colcemid block protocol. However, obtaining mitotic chromosomes is often hampered under several circumstances. As a result, cytogenetic analysis will be sometimes difficult or even impossible in such cases. Premature chromosome condensation (PCC) (see Note 1) is an alternative method that has proved to be a unique and useful way in chromosome analysis. Former, PCC has been achieved following cell fusion method (cell-fusion PCC) mediated either by fusogenic viruses (e.g., Sendai virus) or cell fusion chemicals (e.g., polyethylene glycol), but the cell fusion PCC has several drawbacks. The novel drug-induced PCC using protein phosphatase inhibitors was introduced about 20 years ago. This method is much simpler and easier even than the conventional mitotic chromosome preparation protocol use with colcemid block and furthermore obtained PCC index (equivalent to mitotic index for metaphase chromosome) is usually much higher than colcemid block method. Moreover, this method allows the interphase chromatin to be condensed to visualize like mitotic chromosomes. Therefore drug-induced PCC has opened the way for chromosome analysis not only in metaphase chromosomes but also in interphase chromatin. The drug-induced PCC has thus proven the usefulness in cytogenetics and other cell biology fields. For this second edition version, updated modifications/changes are supplemented in Subheadings 2, 3, and 4, and a new section describing the application of PCC in chromosome science fields is added with citation of updated references.

  20. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole

    PubMed Central

    1996-01-01

    We use both in vitro and in vivo approaches to examine the roles of Eg5 (kinesin-related protein), cytoplasmic dynein, and dynactin in the organization of the microtubules and the localization of NuMA (Nu-clear protein that associates with the Mitotic Apparatus) at the polar ends of the mammalian mitotic spindle. Perturbation of the function of Eg5 through either immunodepletion from a cell free system for assembly of mitotic asters or antibody microinjection into cultured cells leads to organized astral microtubule arrays with expanded polar regions in which the minus ends of the microtubules emanate from a ring-like structure that contains NuMA. Conversely, perturbation of the function of cytoplasmic dynein or dynactin through either specific immunodepletition from the cell free system or expression of a dominant negative subunit of dynactin in cultured cells results in the complete lack of organization of microtubules and the failure to efficiently concentrate the NuMA protein despite its association with the microtubules. Simultaneous immunodepletion of these proteins from the cell free system for mitotic aster assembly indicates that the plus end- directed activity of Eg5 antagonizes the minus end-directed activity of cytoplasmic dynein and a minus end-directed activity associated with NuMA during the organization of the microtubules into a morphologic pole. Taken together, these results demonstrate that the unique organization of the minus ends of microtubules and the localization of NuMA at the polar ends of the mammalian mitotic spindle can be accomplished in a centrosome-independent manner by the opposing activities of plus end- and minus end-directed motors. PMID:8896597

  1. Functional Characterization of G12, a Gene Required for Mitotic Progression during Gastrulation in Zebrafish

    NASA Technical Reports Server (NTRS)

    Reinsch, Sigrid; Conway, Gregory; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    In a differential RNA display screen we have isolated a zebrafish gene, G12, for which homologs can only be found in DNA databases for vertebrates, but not invertebrates. This suggests that this is a gene required specifically in vertebrates. G12 expression is upregulated at mid-blastula transition (MBT). Morpholino inactivation of this gene by injection into 1-cell embryos results in mitotic defects and apoptosis shortly after MBT. Nuclei in morpholino treated embryos also display segregation defects. We have characterized the localization of this gene as a GFP fusion in live and fixed embryos. Overexpression of G12-GFP is non-toxic. Animals retain GFP expression for at least 7 days with no developmental defects, Interestingly in these animals G12-GFP is never detectable in blood cells though blood is present. In the deep cells of early embryos, G 12GFP is localized to nuclei and cytoskeletal elements in interphase and to the centrosome and spindle apparatus during mitosis. In the EVL, G12-GFP shows additional localization to the cell periphery, especially in mitosis. In the yolk syncytium, G12-GFP again localizes to nuclei and strongly to cytoplasmic microtubules of migrating nuclei at the YSL margin. Morpholinc, injection specifically into the YSL after cellularization blocks epiboly and nuclei of the YSL show mitotic defects while deep cells show no mitotic defects and continue to divide. Rescue experiments in which morpholino and G12-GFP RNA are co-injected indicate partial rescue by the G12-GFP. The rescue is cell autonomous; that is, regions of the embryo with higher G12-GFP expression show fewer mitotic defects. Spot 14, the human bomolog of G12, has been shown to be amplified in aggressive breast tumors. This finding, along with our functional and morphological data suggest that G12 and spot 14 are vertebrate-specific and may function either as mitotic checkpoints or as structural components of the spindle apparatus.

  2. A new function of Skp1 in the mitotic exit of budding yeast Saccharomyces cerevisiae.

    PubMed

    Kim, Namil; Yoon, Hayoung; Lee, Eunhwa; Song, Kiwon

    2006-12-01

    We previously reported that Skp1, a component of the Skp1-Cullin-F-box protein (SCF) complex essential for the timely degradation of cell cycle proteins by ubiquitination, physically interacts with Bfa1, which is a key negative regulator of the mitotic exit network (MEN) in response to diverse checkpoint-activating stresses in budding yeast. In this study, we initially investigated whether the interaction of Skp1 and Bfa1 is involved in the regulation of the Bfa1 protein level during the cell cycle, especially by mediating its degradation. However, the profile of the Bfa1 protein did not change during the cell cycle in skp1-11, which is a SKP1 mutant allele in which the function of Skp1 as a part of SCF is completely impaired, thus indicating that Skp1 does not affect the degradation of Bfa1. On the other hand, we found that the skp1-12 mutant allele, previously reported to block G2-M transition, showed defects in mitotic exit and cytokinesis. The skp1-12 mutant allele also revealed a specific genetic interaction with Deltabfa1. Bfa1 interacted with Skp1 via its 184 C-terminal residues (Bfa1-D8) that are responsible for its function in mitotic exit. In addition, the interaction between Bfa1 and the Skp1-12 mutant protein was stronger than that of Bfa1 and the wild type Skp1. We suggest a novel function of Skp1 in mitotic exit and cytokinesis, independent of its function as a part of the SCF complex. The interaction of Skp1 and Bfa1 may contribute to the function of Skp1 in the mitotic exit.

  3. Hydrogen peroxide induced loss of heterozygosity correlates with replicative lifespan and mitotic asymmetry in Saccharomyces cerevisiae

    PubMed Central

    Jackson, Erin D.; Parker, Meighan C.; Gupta, Nilin; Rodrigues, Jenny

    2016-01-01

    Cellular aging in Saccharomyces cerevisiae can lead to genomic instability and impaired mitotic asymmetry. To investigate the role of oxidative stress in cellular aging, we examined the effect of exogenous hydrogen peroxide on genomic instability and mitotic asymmetry in a collection of yeast strains with diverse backgrounds. We treated yeast cells with hydrogen peroxide and monitored the changes of viability and the frequencies of loss of heterozygosity (LOH) in response to hydrogen peroxide doses. The mid-transition points of viability and LOH were quantified using sigmoid mathematical functions. We found that the increase of hydrogen peroxide dependent genomic instability often occurs before a drop in viability. We previously observed that elevation of genomic instability generally lags behind the drop in viability during chronological aging. Hence, onset of genomic instability induced by exogenous hydrogen peroxide treatment is opposite to that induced by endogenous oxidative stress during chronological aging, with regards to the midpoint of viability. This contrast argues that the effect of endogenous oxidative stress on genome integrity is well suppressed up to the dying-off phase during chronological aging. We found that the leadoff of exogenous hydrogen peroxide induced genomic instability to viability significantly correlated with replicative lifespan (RLS), indicating that yeast cells’ ability to counter oxidative stress contributes to their replicative longevity. Surprisingly, this leadoff is positively correlated with an inverse measure of endogenous mitotic asymmetry, indicating a trade-off between mitotic asymmetry and cell’s ability to fend off hydrogen peroxide induced oxidative stress. Overall, our results demonstrate strong associations of oxidative stress to genomic instability and mitotic asymmetry at the population level of budding yeast. PMID:27833823

  4. NeuN expression correlates with reduced mitotic index of neoplastic cells in central neurocytomas.

    PubMed

    Englund, C; Alvord, E C; Folkerth, R D; Silbergeld, D; Born, D E; Small, R; Hevner, R F

    2005-08-01

    In the developing brain, neuronal differentiation is associated with permanent exit from the mitotic cycle. This raises the possibility that neuronal differentiation may suppress proliferative activity, even in neoplastic cells. As a first step towards understanding the relation between neuronal differentiation and mitotic cycling in brain tumours, we studied the expression of NeuN (a neuronal marker) and Ki-67 (a mitotic marker) by double-labelling immuno-fluorescence in 16 brain tumours with neuronal differentiation. The tumours included a series of 11 central neurocytomas, and five single cases of other tumour types. In the central neurocytomas, NeuN(+) cells had a 15-fold lower Ki-67 labelling index, on average, than did NeuN(-) cells (P < 0.01). In the other tumours (one extraventricular neurocytoma, one desmoplastic medulloblastoma, one olfactory neuroblastoma, one ganglioglioma and one anaplastic ganglioglioma), the Ki-67 labelling index was always at least fourfold lower in NeuN(+) cells than in NeuN(-) cells. These results indicate that neuronal differentiation is associated with a substantial decrease of proliferative activity in neoplastic cells of central neurocytomas, and suggest that the same may be true across diverse types of brain tumours. However, tumours with extensive neuronal differentiation may nevertheless have a high overall Ki-67 labelling index, if the mitotic activity of NeuN(-) cells is high. The correlation between NeuN expression and reduced mitotic activity in neurocytoma cells is consistent with the hypothesis that neuronal differentiation suppresses proliferation, but further studies will be necessary to determine causality and investigate underlying mechanisms.

  5. Interobserver agreement of proliferation index (Ki-67) outperforms mitotic count in pulmonary carcinoids.

    PubMed

    Warth, Arne; Fink, Ludger; Fisseler-Eckhoff, Annette; Jonigk, Danny; Keller, Marius; Ott, German; Rieker, Ralf J; Sinn, Peter; Söder, Stephan; Soltermann, Alex; Willenbrock, Klaus; Weichert, Wilko

    2013-05-01

    Evaluation of proliferative activity is a cornerstone in the classification of endocrine tumors; in pulmonary carcinoids, the mitotic count delineates typical carcinoid (TC) from atypical carcinoid (AC). Data on the reproducibility of manual mitotic counting and other methods of proliferation index evaluation in this tumor entity are sparse. Nine experienced pulmonary pathologists evaluated 20 carcinoid tumors for mitotic count (hematoxylin and eosin) and Ki-67 index. In addition, Ki-67 index was automatically evaluated with a software-based algorithm. Results were compared with respect to correlation coefficients (CC) and kappa values for clinically relevant grouping algorithms. Evaluation of mitotic activity resulted in a low interobserver agreement with a median CC of 0.196 and a median kappa of 0.213 for the delineation of TC from AC. The median CC for hotspot (0.658) and overall (0.746) Ki-67 evaluation was considerably higher. However, kappa values for grouped comparisons of overall Ki-67 were only fair (median 0.323). The agreement of manual and automated Ki-67 evaluation was good (median CC 0.851, median kappa 0.805) and was further increased when more than one participant evaluated a given case. Ki-67 staining clearly outperforms mitotic count with respect to interobserver agreement in pulmonary carcinoids, with the latter having an unacceptable low performance status. Manual evaluation of Ki-67 is reliable, and consistency further increases with more than one evaluator per case. Although the prognostic value needs further validation, Ki-67 might perspectively be considered a helpful diagnostic parameter to optimize the separation of TC from AC.

  6. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    SciTech Connect

    Suzuki, Toshihide; Miyazaki, Koichi; Kita, Kayoko; Ochi, Takafumi

    2009-12-15

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvement of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.

  7. Vestibular abnormalities in congenital disorders.

    PubMed

    Sando, I; Orita, Y; Miura, M; Balaban, C D

    2001-10-01

    This paper reviews the histopathologic features of vestibular abnormalities in congenital disorders affecting the inner ear, based upon a comprehensive literature survey and a review of cases in our temporal bone collection. The review proceeds in three systematic steps. First, we surveyed associated diseases with the major phenotypic features of congenital abnormalities of the inner ear (including the internal auditory canal and otic capsule). Second, the vestibular anomalies are examined specifically. Finally, the anomalies are discussed from a developmental perspective. Among vestibular anomalies, a hypoplastic endolymphatic duct and sac are observed most frequently. Anomalies of the semicircular canals are also often observed. From embryological and clinical viewpoints, many of these resemble the structural features from fetal stages and appear to be associated with vestibular dysfunction. It is expected that progress in genetic analysis and accumulation of temporal bone specimens with vestibular abnormalities in congenital diseases will provide crucial information not only for pathology of those diseases, but also for genetic factors that are responsible for the specific vestibular abnormalities.

  8. Evidence for Regulation of Mitotic Progression through Temporal Phosphorylation and Dephosphorylation of CK2α▿ †

    PubMed Central

    St-Denis, Nicole A.; Derksen, D. Richard; Litchfield, David W.

    2009-01-01

    Proper mitotic progression is crucial for maintenance of genomic integrity in proliferating cells and is regulated through an intricate series of events, including protein phosphorylation governed by a complex network of protein kinases. One kinase family implicated in the regulation of mitotic progression is protein kinase CK2, a small family of enzymes that is overexpressed in cancer and induces transformation in mice and cultured fibroblasts. CK2α, one isoform of the catalytic subunits of CK2, is maximally phosphorylated at four sites in nocodazole-treated cells. To investigate the effects of CK2α phosphorylation on mitotic progression, we generated phosphospecific antibodies against its mitotic phosphorylation sites. In U2OS cells released from S-phase arrest, these antibodies reveal that CK2α is most highly phosphorylated in prophase and metaphase. Phosphorylation gradually decreases during anaphase and becomes undetectable during telophase and cytokinesis. Stable expression of phosphomimetic CK2α (CK2α-4D, CK2α-4E) results in aberrant centrosome amplification and chromosomal segregation defects and loss of mitotic cells through mitotic catastrophe. Conversely, cells expressing nonphosphorylatable CK2α (CK2α-4A) show a decreased ability to arrest in mitosis following nocodazole treatment, suggesting involvement in the spindle assembly checkpoint. Collectively, these studies indicate that reversible phosphorylation of CK2α requires precise regulation to allow proper mitotic progression. PMID:19188443

  9. Oncogenic KRAS triggers MAPK-dependent errors in mitosis and MYC-dependent sensitivity to anti-mitotic agents

    PubMed Central

    Perera, David; Venkitaraman, Ashok R.

    2016-01-01

    Oncogenic KRAS induces cell proliferation and transformation, but little is known about its effects on cell division. Functional genetic screens have recently revealed that cancer cell lines expressing oncogenic KRAS are sensitive to interference with mitosis, but neither the mechanism nor the uniformity of anti-mitotic drug sensitivity connected with mutant KRAS expression are yet clear. Here, we report that acute expression of oncogenic KRAS in HeLa cells induces mitotic delay and defects in chromosome segregation through mitogen-activated protein kinase (MAPK) pathway activation and de-regulated expression of several mitosis-related genes. These anomalies are accompanied by increased sensitivity to anti-mitotic agents, a phenotype dependent on the transcription factor MYC and its downstream target anti-apoptotic protein BCL-XL. Unexpectedly, we find no correlation between KRAS mutational status or MYC expression levels and anti-mitotic drug sensitivity when surveying a large database of anti-cancer drug responses. However, we report that the co-existence of KRAS mutations and high MYC expression predicts anti-mitotic drug sensitivity. Our findings reveal a novel function of oncogenic KRAS in regulating accurate mitotic progression and suggest new avenues to therapeutically target KRAS-mutant tumours and stratify patients in ongoing clinical trials of anti-mitotic drugs. PMID:27412232

  10. Dynamic Reaction Figures: An Integrative Vehicle for Understanding Chemical Reactions

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A highly flexible learning tool, referred to as a dynamic reaction figure, is described. Application of these figures can (i) yield the correct chemical equation by simply following a set of menu driven directions; (ii) present the underlying "mechanism" in chemical reactions; and (iii) help to solve quantitative problems in a number of different…

  11. The Young Child's Pictorial Representation of the Human Figure.

    ERIC Educational Resources Information Center

    Cox, Maureen V.; Mason, Sarah

    1998-01-01

    Examined reasons why young children typically omit the torso in human figure drawings. Found that more children produced a conventional figure when they constructed a manikin than when they were asked to draw, suggesting that children omit torsos because they have not yet devised a way of drawing them, rather than forgetting them or having an…

  12. 16 CFR Figures 3 and 4 to Subpart... - Test Specimens

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Test Specimens 3 Figures 3 and 4 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT... Figures 3 and 4 to Subpart A of Part 1201—Test Specimens EC03OC91.006...

  13. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  14. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  15. 49 CFR Appendix A to Subpart F of... - Figures

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 7 2012-10-01 2012-10-01 false Figures A Appendix A to Subpart F of Part 572 Transportation Other Regulations Relating to Transportation (Continued) NATIONAL HIGHWAY TRAFFIC SAFETY... Percentile Male Pt. 572, Subpt. F, App. A Appendix A to Subpart F of Part 572—Figures EC01AU91.168...

  16. Transformation of the Incomplete Figure in Young Children

    ERIC Educational Resources Information Center

    Noda, Mitsuru

    2014-01-01

    This study aims to examine the developmental changes in young children's perception. A matching completion task consisting of three geometric figures and one bird-like figure were completed by children 3-5 years of age ("N" = 99). The rotation effect, in which the correct response decreased with orientation (45°, 90° 135°, and 180°), was…

  17. 16 CFR Figure 2 to Part 1508 - Headform Probe

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Headform Probe 2 Figure 2 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS FIREWORKS DEVICES Multiple-tube fireworks devices. Pt. 1508, Fig. 2 Figure 2 to Part 1508—Headform...

  18. The naked truth about my classical nude figures.

    PubMed

    Burnett, Roger

    2002-02-28

    The story 'Concerns raised over nudes at cancer clinic' (news February 13) does not truly reflect the situation. Although the hospital authorities had concerns about placing the classical nude figures in the hospital environment, the overwhelming response from the public has been positive. Moreover, considerable support for the figures has come from cancer patients.

  19. Distinguishing between Realistic and Fantastical Figures in Iran

    ERIC Educational Resources Information Center

    Davoodi, Telli; Corriveau, Kathleen H.; Harris, Paul L.

    2016-01-01

    Children in the United States come to distinguish historical from fictional story figures between the ages of 3 and 5 years, guided by the plausibility of the story events surrounding the figure (Corriveau, Kim, Schwalen, & Harris, 2009; Woolley & Cox, 2007). However, U.S. children vary in their reactions to stories that include…

  20. 40 CFR Figure B-1 to Subpart B of... - Example

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 6 2014-07-01 2014-07-01 false Example B Figure B-1 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Fig. B-1 Figure B-1 to Subpart B...

  1. 40 CFR Appendix B to Subpart D of... - Figures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Figures B Appendix B to Subpart D of Part 90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Provisions Pt. 90, Subpt. D, App. B Appendix B to Subpart D of Part 90—Figures EC01MR92.085 EC01MR92.086...

  2. 40 CFR Appendix B to Subpart E of... - Figures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Figures B Appendix B to Subpart E of Part 90 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures Pt. 90, Subpt. E, App. B Appendix B to Subpart E of Part 90—Figures EC01MR92.087...

  3. 40 CFR Figure B-1 to Subpart B of... - Example

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 6 2012-07-01 2012-07-01 false Example B Figure B-1 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Fig. B-1 Figure B-1 to Subpart B...

  4. 40 CFR Appendix B to Subpart D of... - Figures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Figures B Appendix B to Subpart D of Part 91 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED.... D, App. B Appendix B to Subpart D of Part 91—Figures ER04OC96.013 ER04OC96.014...

  5. 40 CFR Appendix B to Subpart D of... - Figures

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Figures B Appendix B to Subpart D of Part 89 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Provisions Pt. 89, Subpt. D, App. B Appendix B to Subpart D of Part 89—Figures EC01MR92.000 EC01MR92.001...

  6. 40 CFR Figure B-1 to Subpart B of... - Example

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Example B Figure B-1 to Subpart B of Part 53 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... of Automated Methods for SO2, CO, O3, and NO2 Pt. 53, Subpt. B, Fig. B-1 Figure B-1 to Subpart B...

  7. 16 CFR Figure 9 to Part 1610 - Brushing Device Template

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Brushing Device Template 9 Figure 9 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 9 Figure 9 to Part 1610—Brushing...

  8. 46 CFR Figure 1 to Part 150 - Compatibility Chart

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Compatibility Chart 1 Figure 1 to Part 150 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES Pt. 150, Fig. 1 Figure 1 to Part 150—Compatibility Chart EC02FE91.079...

  9. 16 CFR Figure 1 to Part 1511 - Pacifier Test Fixture

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Pacifier Test Fixture 1 Figure 1 to Part 1511 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS Pt. 1511, Fig. 1 Figure 1 to Part 1511—Pacifier Test Fixture...

  10. 46 CFR Figure 1 to Part 150 - Compatibility Chart

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Compatibility Chart 1 Figure 1 to Part 150 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES Pt. 150, Fig. 1 Figure 1 to Part 150—Compatibility Chart EC02FE91.079...

  11. 16 CFR Figure 7 to Part 1610 - Brushing Device

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Brushing Device 7 Figure 7 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 7 Figure 7 to Part 1610—Brushing Device ER25MR08.006...

  12. 50 CFR Figure 4 to Part 223 - Georgia TED

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Georgia TED 4 Figure 4 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Pt. 223, Fig. 4 Figure 4...

  13. 50 CFR Figure 10 to Part 223 - Flounder TED

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Flounder TED 10 Figure 10 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Pt. 223, Fig. 10 Figure 10...

  14. 16 CFR Figure 1 to Part 1511 - Pacifier Test Fixture

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Pacifier Test Fixture 1 Figure 1 to Part 1511 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS Pt. 1511, Fig. 1 Figure 1 to Part 1511—Pacifier Test Fixture...

  15. 16 CFR Figure 9 to Part 1203 - Impact Test Apparatus

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Impact Test Apparatus 9 Figure 9 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 9 Figure 9 to Part 1203—Impact Test Apparatus...

  16. 16 CFR Figure 7 to Part 1610 - Brushing Device

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Brushing Device 7 Figure 7 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 7 Figure 7 to Part 1610—Brushing Device ER25MR08.006...

  17. 16 CFR Figure 2 to Part 1508 - Headform Probe

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Headform Probe 2 Figure 2 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS Pt. 1508, Fig. 2 Figure 2 to Part 1508—Headform Probe EC03OC91.062...

  18. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 2 Figure 2 to Part...

  19. 16 CFR Figure 7 to Part 1610 - Brushing Device

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Brushing Device 7 Figure 7 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 7 Figure 7 to Part 1610—Brushing Device ER25MR08.006...

  20. 16 CFR Figure 9 to Part 1610 - Brushing Device Template

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Brushing Device Template 9 Figure 9 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 9 Figure 9 to Part 1610—Brushing...

  1. 16 CFR Figure 1 to Part 1203 - Anatomical Planes

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Anatomical Planes 1 Figure 1 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 1 Figure 1 to Part 1203—Anatomical Planes ER10MR98.001...

  2. 16 CFR Figure 1 to Part 1203 - Anatomical Planes

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Anatomical Planes 1 Figure 1 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 1 Figure 1 to Part 1203—Anatomical Planes ER10MR98.001...

  3. 16 CFR Figure 2 to Part 1610 - Flammability Apparatus Views

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Flammability Apparatus Views 2 Figure 2 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 2 Figure 2 to Part...

  4. 16 CFR Figure 1 to Part 1511 - Pacifier Test Fixture

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Pacifier Test Fixture 1 Figure 1 to Part 1511 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS Pt. 1511, Fig. 1 Figure 1 to Part 1511—Pacifier Test Fixture...

  5. 16 CFR Figure 5 to Subpart A of... - Impactor

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Impactor 5 Figure 5 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR ARCHITECTURAL GLAZING MATERIALS The Standard Pt. 1201, Subpt. A, Fig. 5 Figure 5...

  6. 16 CFR Figure 1 to Part 1203 - Anatomical Planes

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Anatomical Planes 1 Figure 1 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 1 Figure 1 to Part 1203—Anatomical Planes ER10MR98.001...

  7. 16 CFR Figure 7 to Subpart A of... - Specimen Tray

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Specimen Tray 7 Figure 7 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 7 Figure...

  8. 16 CFR Figure 5 to Subpart A of... - Impactor

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Impactor 5 Figure 5 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR ARCHITECTURAL GLAZING MATERIALS The Standard Pt. 1201, Subpt. A, Fig. 5 Figure 5...

  9. 50 CFR Figure 4 to Part 223 - Georgia TED

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Georgia TED 4 Figure 4 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Pt. 223, Fig. 4 Figure 4...

  10. 16 CFR Figure 7 to Part 1610 - Brushing Device

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Brushing Device 7 Figure 7 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 7 Figure 7 to Part 1610—Brushing Device ER25MR08.006...

  11. 16 CFR Figure 6 to Part 1610 - Igniter

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Igniter 6 Figure 6 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 6 Figure 6 to Part 1610—Igniter ER20OC08.001...

  12. 50 CFR Figure 3 to Part 223 - Matagorda TED

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Matagorda TED 3 Figure 3 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Pt. 223, Fig. 3 Figure 3...

  13. 16 CFR Figure 2 to Part 1511 - Small Parts Gage

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Small Parts Gage 2 Figure 2 to Part 1511 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS Pt.1511, Fig. 2 Figure 2 to Part 1511—Small Parts Gage EC03OC91.069...

  14. 16 CFR Figure 1 to Part 1511 - Pacifier Test Fixture

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Pacifier Test Fixture 1 Figure 1 to Part 1511 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS Pt. 1511, Fig. 1 Figure 1 to Part 1511—Pacifier Test Fixture...

  15. 16 CFR Figure 8 to Part 1610 - Brush

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Brush 8 Figure 8 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 8 Figure 8 to Part 1610—Brush ER25MR08.007...

  16. 50 CFR Figure 10 to Part 223 - Flounder TED

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Flounder TED 10 Figure 10 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Pt. 223, Fig. 10 Figure 10...

  17. 16 CFR Figure 2 to Subpart A of... - Test Frame

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Test Frame 2 Figure 2 to Subpart A of Part 1201 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR ARCHITECTURAL GLAZING MATERIALS The Standard Pt. 1201, Subpt. A, Fig. 2 Figure 2...

  18. 16 CFR Figure 2 to Part 1508 - Headform Probe

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Headform Probe 2 Figure 2 to Part 1508 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR FULL-SIZE BABY CRIBS Pt. 1508, Fig. 2 Figure 2 to Part 1508—Headform Probe EC03OC91.062...

  19. 16 CFR Figure 7 to Subpart A of... - Specimen Tray

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Specimen Tray 7 Figure 7 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 7 Figure...

  20. 16 CFR Figure 9 to Part 1610 - Brushing Device Template

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Brushing Device Template 9 Figure 9 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 9 Figure 9 to Part 1610—Brushing...

  1. 16 CFR Figure 6 to Part 1610 - Igniter

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Igniter 6 Figure 6 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 6 Figure 6 to Part 1610—Igniter ER20OC08.001...

  2. 16 CFR Figure 9 to Part 1610 - Brushing Device Template

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Brushing Device Template 9 Figure 9 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 9 Figure 9 to Part 1610—Brushing...

  3. 16 CFR Figure 6 to Part 1610 - Igniter

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Igniter 6 Figure 6 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 6 Figure 6 to Part 1610—Igniter ER20OC08.001...

  4. 50 CFR Figure 10 to Part 223 - Flounder TED

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Flounder TED 10 Figure 10 to Part 223 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS THREATENED MARINE AND ANADROMOUS SPECIES Pt. 223, Fig. 10 Figure 10...

  5. 16 CFR Figure 8 to Part 1610 - Brush

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Brush 8 Figure 8 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 8 Figure 8 to Part 1610—Brush ER25MR08.007...

  6. 16 CFR Figure 7 to Subpart A of... - Specimen Tray

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Specimen Tray 7 Figure 7 to Subpart A of Part 1209 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION The Standard Pt. 1209, Subpt. A, Fig. 7 Figure...

  7. 16 CFR Figure 1 to Part 1203 - Anatomical Planes

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Anatomical Planes 1 Figure 1 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 1 Figure 1 to Part 1203—Anatomical Planes ER10MR98.001...

  8. 16 CFR Figure 1 to Part 1203 - Anatomical Planes

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Anatomical Planes 1 Figure 1 to Part 1203 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS SAFETY STANDARD FOR BICYCLE HELMETS Pt. 1203, Fig. 1 Figure 1 to Part 1203—Anatomical Planes ER10MR98.001...

  9. 16 CFR Figure 6 to Part 1610 - Igniter

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Igniter 6 Figure 6 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 6 Figure 6 to Part 1610—Igniter ER20OC08.001...

  10. 16 CFR Figure 6 to Part 1610 - Igniter

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Igniter 6 Figure 6 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 6 Figure 6 to Part 1610—Igniter ER20OC08.001...

  11. 16 CFR Figure 2 to Part 1511 - Small Parts Gage

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Small Parts Gage 2 Figure 2 to Part 1511 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS Pt.1511, Fig. 2 Figure 2 to Part 1511—Small Parts Gage EC03OC91.069...

  12. 46 CFR Figure 1 to Part 150 - Compatibility Chart

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Compatibility Chart 1 Figure 1 to Part 150 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES Pt. 150, Fig. 1 Figure 1 to Part 150—Compatibility Chart EC02FE91.079...

  13. 46 CFR Figure 1 to Part 150 - Compatibility Chart

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Compatibility Chart 1 Figure 1 to Part 150 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES COMPATIBILITY OF CARGOES Pt. 150, Fig. 1 Figure 1 to Part 150—Compatibility Chart EC02FE91.079...

  14. 16 CFR Figure 2 to Part 1509 - Headform Probe

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Headform Probe 2 Figure 2 to Part 1509 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR NON-FULL-SIZE BABY CRIBS Pt. 1509, Fig. 2 Figure 2 to Part 1509—Headform Probe EC03OC91.065...

  15. 16 CFR Figure 8 to Part 1610 - Brush

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Brush 8 Figure 8 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 8 Figure 8 to Part 1610—Brush ER25MR08.007...

  16. 16 CFR Figure 8 to Part 1610 - Brush

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Brush 8 Figure 8 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt. 1610, Fig. 8 Figure 8 to Part 1610—Brush ER25MR08.007...

  17. 16 CFR Figure 9 to Part 1610 - Brushing Device Template

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Brushing Device Template 9 Figure 9 to Part 1610 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FLAMMABLE FABRICS ACT REGULATIONS STANDARD FOR THE FLAMMABILITY OF CLOTHING TEXTILES Pt.1610, Fig. 9 Figure 9 to Part 1610—Brushing...

  18. 16 CFR Figure 2 to Part 1511 - Small Parts Gage

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Small Parts Gage 2 Figure 2 to Part 1511 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS Pt.1511, Fig. 2 Figure 2 to Part 1511—Small Parts Gage EC03OC91.069...

  19. 16 CFR Figure 2 to Part 1511 - Small Parts Gage

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Small Parts Gage 2 Figure 2 to Part 1511 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS Pt.1511, Fig. 2 Figure 2 to Part 1511—Small Parts Gage EC03OC91.069...

  20. 16 CFR Figure 1 to Part 1511 - Pacifier Test Fixture

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Pacifier Test Fixture 1 Figure 1 to Part 1511 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR PACIFIERS Pt. 1511, Fig. 1 Figure 1 to Part 1511—Pacifier Test Fixture...