Science.gov

Sample records for abnormal mitotic spindles

  1. Myosin-10 independently influences mitotic spindle structure and mitotic progression.

    PubMed

    Sandquist, Joshua C; Larson, Matthew E; Hine, Ken J

    2016-06-01

    The iconic bipolar structure of the mitotic spindle is of extreme importance to proper spindle function. At best, spindle abnormalities result in a delayed mitosis, while worse outcomes include cell death or disease. Recent work has uncovered an important role for the actin-based motor protein myosin-10 in the regulation of spindle structure and function. Here we examine the contribution of the myosin tail homology 4 (MyTH4) domain of the myosin-10 tail to the protein's spindle functions. The MyTH4 domain is known to mediate binding to microtubules and we verify the suspicion that this domain contributes to myosin-10's close association with the spindle. More surprisingly, our data demonstrate that some but not all of myosin-10's spindle functions require microtubule binding. In particular, myosin-10's contribution to spindle pole integrity requires microtubule binding, whereas its contribution to normal mitotic progression does not. This is demonstrated by the observation that dominant negative expression of the wild-type MyTH4 domain produces multipolar spindles and an increased mitotic index, whereas overexpression of a version of the MyTH4 domain harboring point mutations that abrogate microtubule binding results in only the mitotic index phenotype. Our data suggest that myosin-10 helps to control the metaphase to anaphase transition in cells independent of microtubule binding. © 2016 Wiley Periodicals, Inc.

  2. Mechanisms of Mitotic Spindle Assembly

    PubMed Central

    Petry, Sabine

    2016-01-01

    Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ~200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes. PMID:27145846

  3. Chromatin shapes the mitotic spindle.

    PubMed

    Dinarina, Ana; Pugieux, Céline; Corral, Maria Mora; Loose, Martin; Spatz, Joachim; Karsenti, Eric; Nédélec, François

    2009-08-07

    In animal and plant cells, mitotic chromatin locally generates microtubules that self-organize into a mitotic spindle, and its dimensions and bipolar symmetry are essential for accurate chromosome segregation. By immobilizing microscopic chromatin-coated beads on slide surfaces using a microprinting technique, we have examined the effect of chromatin on the dimensions and symmetry of spindles in Xenopus laevis cytoplasmic extracts. While circular spots with diameters around 14-18 microm trigger bipolar spindle formation, larger spots generate an incorrect number of poles. We also examined lines of chromatin with various dimensions. Their length determined the number of poles that formed, with a 6 x 18 microm rectangular patch generating normal spindle morphology. Around longer lines, multiple poles formed and the structures were disorganized. While lines thinner than 10 mum generated symmetric structures, thicker lines induced the formation of asymmetric structures where all microtubules are on the same side of the line. Our results show that chromatin defines spindle shape and orientation. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.

  4. Influence of centriole number on mitotic spindle length and symmetry

    PubMed Central

    Keller, Lani C.; Wemmer, Kimberly A.; Marshall, Wallace F.

    2010-01-01

    The functional role of centrioles or basal bodies in mitotic spindle assembly and function is currently unclear. Although supernumerary centrioles have been associated with multipolar spindles in cancer cells, suggesting centriole number might dictate spindle polarity, bipolar spindles are able to assembly in the complete absence of centrioles, suggesting a level of centriole-independence in the spindle assembly pathway. In this report we perturb centriole number using mutations in Chlamydomonas reinhardtii, and measure the response of the mitotic spindle to these perturbations in centriole number. Although altered centriole number increased the frequency of monopolar and multipolar spindles, the majority of spindles remained bipolar regardless of the centriole number. But even when spindles were bipolar, abnormal centriole numbers led to asymmetries in tubulin distribution, half-spindle length and spindle pole focus. Half spindle length correlated directly with number of centrioles at a pole, such that an imbalance in centriole number between the two poles of a bipolar spindle correlated with increased asymmetry between half spindle lengths. These results are consistent with centrioles playing an active role in regulating mitotic spindle length. Mutants with centriole number alteration also show increased cytokinesis defects, but these do not correlate with centriole number in the dividing cell and may therefore reflect downstream consequences of defects in preceding cell divisions. PMID:20540087

  5. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  6. Force and the spindle: Mechanical cues in mitotic spindle orientation

    PubMed Central

    Nestor-Bergmann, Alexander; Goddard, Georgina; Woolner, Sarah

    2014-01-01

    The mechanical environment of a cell has a profound effect on its behaviour, from dictating cell shape to driving the transcription of specific genes. Recent studies have demonstrated that mechanical forces play a key role in orienting the mitotic spindle, and therefore cell division, in both single cells and tissues. Whilst the molecular machinery that mediates the link between external force and the mitotic spindle remains largely unknown, it is becoming increasingly clear that this is a widely used mechanism which could prove vital for coordinating cell division orientation across tissues in a variety of contexts. PMID:25080021

  7. The mitotic spindle and actin tails.

    PubMed

    Karsenti, Eric; Nédélec, François

    2004-04-01

    To segregate their chromosomes, eukaryotic cells rely on a dynamic structure made of microtubules: the mitotic spindle. This structure can form in cells lacking centrosomes, because their chromosomes also nucleate microtubules. This second assembly pathway is observed even in some cells that naturally have centrosomes, for example when the centrosomes are ablated by laser surgery. Recent results have started to address the complementary question of whether centrosome-nucleated microtubules alone could sustain the formation of a functional mitotic spindle. We wonder in this respect whether lower eukaryotes such as yeasts are different from higher eukaryotes such as vertebrates.

  8. Mitotic spindle studied using picosecond laser scissors

    NASA Astrophysics Data System (ADS)

    Baker, N. M.; Botvinick, E. L.; Shi, Linda; Berns, M. B.; Wu, George

    2006-08-01

    In previous studies we have shown that the second harmonic 532 nm, from a picosecond frequency doubled Nd:YAG laser, can cleanly and selectively disrupt spindle fiber microtubules in live cells (Botvinick et al 2004, Biophys. J. 87:4303-4212). In the present study we have ablated different locations and amounts of the metaphase mitotic spindle, and followed the cells in order to observe the fate of the irradiated spindle and the ability of the cell to continue through mitosis. Cells of the rat kangaroo line (PTK2) were stably transfected by ECFP-tubulin and, using fluorescent microscopy and the automated RoboLase microscope, (Botvinick and Berns, 2005, Micros. Res. Tech. 68:65-74) brightly fluorescent individual cells in metaphase were irradiated with 0.2447 nJ/micropulse corresponding to an irradiance of 1.4496*10^7 J/(ps*cm^2) . Upon irradiation the exposed part of the mitotic spindle immediately lost fluorescence and the following events were observed in the cells over time: (1) immediate contraction of the spindle pole towards the cut, (2) recovery of connection between pole and cut microtubule, (3) completion of mitosis. This system should be very useful in studying internal cellular dynamics of the mitotic spindle.

  9. Dynamic Positioning of Mitotic Spindles in Yeast:

    PubMed Central

    Yeh, Elaine; Yang, Charlie; Chin, Elaine; Maddox, Paul; Salmon, E. D.; Lew, Daniel J.; Bloom, Kerry

    2000-01-01

    In the budding yeast Saccharomyces cerevisiae, movement of the mitotic spindle to a predetermined cleavage plane at the bud neck is essential for partitioning chromosomes into the mother and daughter cells. Astral microtubule dynamics are critical to the mechanism that ensures nuclear migration to the bud neck. The nucleus moves in the opposite direction of astral microtubule growth in the mother cell, apparently being “pushed” by microtubule contacts at the cortex. In contrast, microtubules growing toward the neck and within the bud promote nuclear movement in the same direction of microtubule growth, thus “pulling” the nucleus toward the bud neck. Failure of “pulling” is evident in cells lacking Bud6p, Bni1p, Kar9p, or the kinesin homolog, Kip3p. As a consequence, there is a loss of asymmetry in spindle pole body segregation into the bud. The cytoplasmic motor protein, dynein, is not required for nuclear movement to the neck; rather, it has been postulated to contribute to spindle elongation through the neck. In the absence of KAR9, dynein-dependent spindle oscillations are evident before anaphase onset, as are postanaphase dynein-dependent pulling forces that exceed the velocity of wild-type spindle elongation threefold. In addition, dynein-mediated forces on astral microtubules are sufficient to segregate a 2N chromosome set through the neck in the absence of spindle elongation, but cytoplasmic kinesins are not. These observations support a model in which spindle polarity determinants (BUD6, BNI1, KAR9) and cytoplasmic kinesin (KIP3) provide directional cues for spindle orientation to the bud while restraining the spindle to the neck. Cytoplasmic dynein is attenuated by these spindle polarity determinants and kinesin until anaphase onset, when dynein directs spindle elongation to distal points in the mother and bud. PMID:11071919

  10. Rapid measurement of mitotic spindle orientation in cultured mammalian cells

    PubMed Central

    Decarreau, Justin; Driver, Jonathan; Asbury, Charles; Wordeman, Linda

    2014-01-01

    Summary Factors that influence the orientation of the mitotic spindle are important for the maintenance of stem cell populations and in cancer development. However, screening for these factors requires rapid quantification of alterations of the angle of the mitotic spindle in cultured cell lines. Here we describe a method to image mitotic cells and rapidly score the angle of the mitotic spindle using a simple MATLAB application to analyze a stack of Z-images. PMID:24633791

  11. Mitotic Spindle Positioning in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tirnauer, Jennifer S. M.D. 5d. PROJECT NUMBER Email: tirnauer@uchc.edu 5e. TASK...SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project was to determine whether mitotic spindle position differs in benign versus malignant...postdoc working on the project has left, I want to re-visit the experiments with MCF-10A cells using serum free media. 15. SUBJECT TERMS breast

  12. Regulation of mitotic spindle orientation during epidermal stratification.

    PubMed

    Xie, Wei; Zhou, Jun

    2016-12-20

    The epidermis is a stratified epithelium that serves as a barrier to infection from environmental pathogens and prevents water loss. Epidermal stratification is tightly controlled during embryogenesis. Progenitor cells in the developing epidermis undergo both symmetric and asymmetric cell divisions to balance the growth of the skin surface area against the generation of differentiated cell layers. Therefore, understanding the relationship between oriented divisions of progenitor cells and the development and stratification of the epidermis is of paramount importance in the field of skin biology and pathology. We provide here an integrated view of recent studies implicating that improper orientation of the mitotic spindle contributes to disorders associated with abnormal epidermal stratification and suggesting that spindle orientation could serve as a potential therapeutic target in skin diseases.

  13. A Functional Mitotic Spindle Prepared from Mammalian Cells in Culture

    PubMed Central

    Cande, W. Zacheus; Snyder, Judith; Smith, Diana; Summers, Keith; McIntosh, J. R.

    1974-01-01

    Mitotic cells lysed into solutions of polymerizable microtubule protein contain a spindle which is similar to the living spindle in two respects: it will lose and gain birefringence when cooled and warmed, and it will move anaphase chromosomes to the opposite ends of the cell. Early anaphase cells lysed into buffers containing high molecular weight polyethylene glycol and nucleotide triphosphates will continue chromosome motion and spindle elongation in the absence of exogenous spindle subunits. These results suggest that while spindle growth requires microtubule polymerization, anaphase motions do not. Images PMID:4524659

  14. Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms

    PubMed Central

    Yamada, Moé; Goshima, Gohta

    2017-01-01

    In textbooks, the mitotic spindles of plants are often described separately from those of animals. How do they differ at the molecular and mechanistic levels? In this chapter, we first outline the process of mitotic spindle assembly in animals and land plants. We next discuss the conservation of spindle assembly factors based on database searches. Searches of >100 animal spindle assembly factors showed that the genes involved in this process are well conserved in plants, with the exception of two major missing elements: centrosomal components and subunits/regulators of the cytoplasmic dynein complex. We then describe the spindle and phragmoplast assembly mechanisms based on the data obtained from robust gene loss-of-function analyses using RNA interference (RNAi) or mutant plants. Finally, we discuss future research prospects of plant spindles. PMID:28125061

  15. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  16. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells

    PubMed Central

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118

  17. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    PubMed

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-09-25

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division.

  18. Mitotic Spindle Disruption by Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells

    PubMed Central

    Giladi, Moshe; Schneiderman, Rosa S; Voloshin, Tali; Porat, Yaara; Munster, Mijal; Blat, Roni; Sherbo, Shay; Bomzon, Zeev; Urman, Noa; Itzhaki, Aviran; Cahal, Shay; Shteingauz, Anna; Chaudhry, Aafia; Kirson, Eilon D; Weinberg, Uri; Palti, Yoram

    2015-01-01

    Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells. PMID:26658786

  19. Mechanical design principles of a mitotic spindle.

    PubMed

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-12-18

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.

  20. Mechanical design principles of a mitotic spindle

    PubMed Central

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-01-01

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This ‘pushing’ mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length. DOI: http://dx.doi.org/10.7554/eLife.03398.001 PMID:25521247

  1. Distinct Kinesin-14 mitotic mechanisms in spindle bipolarity.

    PubMed

    Simeonov, Dimitre R; Kenny, Katelyn; Seo, Lan; Moyer, Amanda; Allen, Jessica; Paluh, Janet L

    2009-11-01

    Kinesin-like proteins are integral to formation and function of a conserved mitotic spindle apparatus that directs chromosome segregation and precedes cell division. Ubiquitous to the mechanism of spindle assembly and stability are balanced Kinesin-5 promoting and Kinesin-14 opposing forces. Distinct Kinesin-14 roles in bipolarity in eukaryotes have not been shown, but are suggested by gamma-tubulin-based pole interactions that affect establishment and by microtubule cross-linking and sliding that maintain bipolarity and spindle length. Distinct roles also imply specialized functional domains. By cross-species analysis of compatible mechanisms in establishing mitotic bipolarity we demonstrate that Kinesin-14 human HSET (HsHSET) functionally replaces Schizosaccharomyces pombe Pkl1 and its action is similarly blocked by mutation in a Kinesin-14 binding site on gamma-tubulin. Drosophila DmNcd localizes preferentially to bundled interpolar microtubules in fission yeast and does not replace SpPkl1. Analysis of twenty-six Kinesin-14 derivatives, including Tail, Stalk or Neck-Motor chimeras, for spindle localization, spindle assembly and mitotic progression defined critical domains. The Tail of SpPkl1 contains functional elements enabling its role in spindle assembly that are distinct from but transferable to DmNcd, whereas HsHSET function utilizes both Tail and Stalk features. Our analysis is the first to demonstrate distinct mechanisms between SpPkl1 and DmNcd, and reveal that HsHSET shares functional overlap in spindle pole mechanisms.

  2. Forces positioning the mitotic spindle: Theories, and now experiments.

    PubMed

    Wu, Hai-Yin; Nazockdast, Ehssan; Shelley, Michael J; Needleman, Daniel J

    2017-02-01

    The position of the spindle determines the position of the cleavage plane, and is thus crucial for cell division. Although spindle positioning has been extensively studied, the underlying forces ultimately responsible for moving the spindle remain poorly understood. A recent pioneering study by Garzon-Coral et al. uses magnetic tweezers to perform the first direct measurements of the forces involved in positioning the mitotic spindle. Combining this with molecular perturbations and geometrical effects, they use their data to argue that the forces that keep the spindle in its proper position for cell division arise from astral microtubules growing and pushing against the cell's cortex. Here, we review these ground-breaking experiments, the various biomechanical models for spindle positioning that they seek to differentiate, and discuss new questions raised by these measurements.

  3. Plk2 regulates mitotic spindle orientation and mammary gland development.

    PubMed

    Villegas, Elizabeth; Kabotyanski, Elena B; Shore, Amy N; Creighton, Chad J; Westbrook, Thomas F; Rosen, Jeffrey M

    2014-04-01

    Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here, we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and that this might account for its suggested role as a tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally, a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development.

  4. Regulation of Aurora-A kinase on the mitotic spindle.

    PubMed

    Kufer, Thomas A; Nigg, Erich A; Silljé, Herman H W

    2003-12-01

    The error-free segregation of duplicated chromosomes during cell division is essential for the maintenance of an intact genome. This process is brought about by a highly dynamic bipolar array of microtubules, the mitotic spindle. The formation and function of the mitotic spindle during M-phase of the cell cycle is regulated by protein phosphorylation, involving multiple protein kinases and phosphatases. Prominent among the enzymes implicated in spindle assembly is the serine/threonine-specific protein kinase Aurora-A. In several common human tumors, Aurora-A is overexpressed, and deregulation of this kinase was shown to result in mitotic defects and aneuploidy. Moreover, recent genetic evidence directly links the human Aurora-A gene to cancer susceptibility. Several of the physiological substrates of Aurora-A presumably await identification, but recent studies are beginning to shed light on the regulation of this critical mitotic kinase. Here, we review these findings with particular emphasis on the role of TPX2, a prominent spindle component implicated in a Ran-GTP-mediated spindle assembly pathway.

  5. Physical Description of Mitotic Spindle Orientation During Cell Division

    NASA Astrophysics Data System (ADS)

    Jiménez-Dalmaroni, Andrea; Théry, Manuel; Racine, Victor; Bornens, Michel; Jülicher, Frank

    2009-03-01

    During cell division, the duplicated chromosomes are physically separated by the action of the mitotic spindle. The spindle is a dynamic structure of the cytoskeleton, which consists of two microtubule asters. Its orientation defines the axis along which the cell divides. Recent experiments show that the spindle orientation depends on the spatial distribution of cell adhesion sites. Here we show that the experimentally observed spindle orientation can be understood as the result of the action of cortical force generators acting on the spindle. We assume that the local activity of force generators is controlled by the spatial distribution of cell adhesion sites determined by the particular geometry of the adhesive substrate. We develop a simple physical description of the spindle mechanics, which allows us to calculate the torque acting on the spindle, as well as the energy profile and the angular distribution of spindle orientation. Our model accounts for the preferred spindle orientation, as well as the full shape of the angular distributions of spindle orientation observed in a large variety of pattern geometries. M. Th'ery, A. Jim'enez-Dalmaroni, et al., Nature 447, 493 (2007).

  6. Pattern formation in stochastic systems: Magnetized billiards and mitotic spindles

    NASA Astrophysics Data System (ADS)

    Schaffner, Stuart C.

    Physical systems that exhibit chaotic behavior or are subject to thermal noise are treated as random processes, especially if the state of the system cannot be measured precisely. Here we examine two such systems. The first is a single electron confined to a wedge-shaped section of a disk, called a billiard, in the presence of a uniform transverse magnetic field. The system exhibits a mixture of chaotic and nonchaotic behavior at different values of the magnetic field strength. If the size of the billiard is on the order of micrometers, as in a quantum dot, both quantum and classical analyses are necessary. The second system is a collection of stiff fibers, called microtubules, suspended in a fluid called the cytoplasm, and lying over chromosomes in a cell. The cytoplasm supplies molecular motors and fuel for the motors. The chromosomes supply motor attachment points. The combination causes the microtubules to self-assemble into a coherent structure called the mitotic spindle. This structure is vital to cell division in plants and animals. Elements of the mitotic spindle have sizes ranging from nanometers to micrometers, and all are subject to considerable thermal agitation. Mitotic spindle self-assembly occurs despite the randomizing effect of this thermal motion. We studied both systems by constructing physical models described by mathematical equations. From these we were able to perform computer simulations. For the billiard problem, we made innovative use of geometric symmetries. These symmetries allowed us to construct efficient representations of both classical and quantum systems. We found a new region of integrable trajectories for a magnetic field above that required to produce completely chaotic orbits. For the mitotic spindle, we were the first to demonstrate spindle self-assembly in a model that matches conditions reported by experimental biologists. Our simulations have shed significant light on which of the many elements in this complex system are

  7. Spindle pole mechanics studied in mitotic asters: dynamic distribution of spindle forces through compliant linkages.

    PubMed

    Charlebois, Blake D; Kollu, Swapna; Schek, Henry T; Compton, Duane A; Hunt, Alan J

    2011-04-06

    During cell division, chromosomes must faithfully segregate to maintain genome integrity, and this dynamic mechanical process is driven by the macromolecular machinery of the mitotic spindle. However, little is known about spindle mechanics. For example, spindle microtubules are organized by numerous cross-linking proteins yet the mechanical properties of those cross-links remain unexplored. To examine the mechanical properties of microtubule cross-links we applied optical trapping to mitotic asters that form in mammalian mitotic extracts. These asters are foci of microtubules, motors, and microtubule-associated proteins that reflect many of the functional properties of spindle poles and represent centrosome-independent spindle-pole analogs. We observed bidirectional motor-driven microtubule movements, showing that microtubule linkages within asters are remarkably compliant (mean stiffness 0.025 pN/nm) and mediated by only a handful of cross-links. Depleting the motor Eg5 reduced this stiffness, indicating that Eg5 contributes to the mechanical properties of microtubule asters in a manner consistent with its localization to spindle poles in cells. We propose that compliant linkages among microtubules provide a mechanical architecture capable of accommodating microtubule movements and distributing force among microtubules without loss of pole integrity-a mechanical paradigm that may be important throughout the spindle.

  8. Poleward microtubule flux mitotic spindles assembled in vitro

    PubMed Central

    1991-01-01

    In the preceding paper we described pathways of mitotic spindle assembly in cell-free extracts prepared from eggs of Xenopus laevis. Here we demonstrate the poleward flux of microtubules in spindles assembled in vitro, using a photoactivatable fluorescein covalently coupled to tubulin and multi-channel fluorescence videomicroscopy. After local photoactivation of fluorescence by UV microbeam, we observed poleward movement of fluorescein-marked microtubules at a rate of 3 microns/min, similar to rates of chromosome movement and spindle elongation during prometaphase and anaphase. This movement could be blocked by the addition of millimolar AMP-PNP but was not affected by concentrations of vanadate up to 150 microM, suggesting that poleward flux may be driven by a microtubule motor similar to kinesin. In contrast to previous results obtained in vivo (Mitchison, T. J. 1989. J. Cell Biol. 109:637-652), poleward flux in vitro appears to occur independently of kinetochores or kinetochore microtubules, and therefore may be a general property of relatively stable microtubules within the spindle. We find that microtubules moving towards poles are dynamic structures, and we have estimated the average half-life of fluxing microtubules in vitro to be between approximately 75 and 100 s. We discuss these results with regard to the function of poleward flux in spindle movements in anaphase and prometaphase. PMID:1999464

  9. Centrophilin: a novel mitotic spindle protein involved in microtubule nucleation

    PubMed Central

    1991-01-01

    A novel protein has been identified which may serve a key function in nucleating spindle microtubule growth in mitosis. This protein, called centrophilin, is sequentially relocated from the centromeres to the centrosomes to the midbody in a manner dependent on the mitotic phase. Centrophilin was initially detected by immunofluorescence with a monoclonal, primate-specific antibody (2D3) raised against kinetochore- enriched chromosome extract from HeLa cells (Valdivia, M. M., and B. R. Brinkley. 1985. J. Cell Biol. 101:1124-1134). Centrophilin forms prominent crescents at the poles of the metaphase spindle, gradually diminishes during anaphase, and bands the equatorial ends of midbody microtubules in telophase. The formation and breakdown of the spindle and midbody correlates in time and space with the aggregation and disaggregation of centrophilin foci. Immunogold EM reveals that centrophilin is a major component of pericentriolar material in metaphase. During recovery from microtubule inhibition, centrophilin foci act as nucleation sites for the assembly of spindle tubules. The 2D3 probe recognizes two high molecular mass polypeptides, 180 and 210 kD, on immunoblots of whole HeLa cell extract. Taken together, these data and the available literature on microtubule dynamics point inevitably to a singular model for control of spindle tubule turnover. PMID:1991791

  10. The spindle protein CHICA mediates localization of the chromokinesin Kid to the mitotic spindle.

    PubMed

    Santamaria, Anna; Nagel, Susanna; Sillje, Herman H W; Nigg, Erich A

    2008-05-20

    Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was originally identified in a proteomic survey of the human spindle apparatus [1]. We show that CHICA localizes to the mitotic spindle and is both upregulated and phosphorylated during mitosis. CHICA-depleted cells form shorter spindles and fail to organize a proper metaphase plate, highly reminiscent of the phenotype observed upon depletion of the chromokinesin Kid, a key mediator of polar ejection forces [2-6]. We further show that CHICA coimmunoprecipitates with Kid and is required for the spindle localization of Kid without affecting its chromosome association. Moreover, upon depletion of either CHICA or Kid (or both proteins simultaneously), chromosomes collapse onto the poles of monastrol-induced monopolar spindles. We conclude that CHICA represents a novel interaction partner of the chromokinesin Kid that is required for the generation of polar ejection forces and chromosome congression.

  11. Toucan protein is essential for the assembly of syncytial mitotic spindles in Drosophila melanogaster.

    PubMed

    Debec, A; Grammont, M; Berson, G; Dastugue, B; Sullivan, W; Couderc, J L

    2001-12-01

    The toc gene of Drosophila melanogaster encodes a 235-kD polypeptide with a coiled-coil domain, which is highly expressed during oogenesis (Grammont et al., 1997, 2000). We now report the localization of the Toucan protein during early embryonic development. The Toucan protein is present only during the syncytial stages and is associated with the nuclear envelope and the cytoskeletal structures of the syncytial embryo. In anaphase A, Toucan is concentrated at the spindle poles near the minus end of microtubules. This microtubule association is very dynamic during the nuclear cell cycle. Mutant embryos lacking the Toucan protein are blocked in a metaphase-like state. They display abnormal and nonfunctional spindles, characterized by broad poles, detachment of the centrosomes, and failure of migration of the chromosomes. These results strongly suggest that Toucan represents a factor essential for the assembly and the function of the syncytial mitotic spindles.

  12. Mitotic spindle assembly on chromatin patterns made with deep UV photochemistry.

    PubMed

    Tarnawska, Katarzyna; Pugieux, Céline; Nédélec, François

    2014-01-01

    We provide a detailed method to generate arrays of mitotic spindles in vitro. Spindles are formed in extract prepared from unfertilized Xenopus laevis eggs, which contain all the molecular ingredients of mitotic spindles. The method is based on using deep UV photochemistry to attach chromatin-coated beads on a glass surface according to a pattern of interest. The immobilized beads act as artificial chromosomes, and induce the formation of mitotic spindles in their immediate vicinity. To perform the experiment, a chamber is assembled over the chromatin pattern, Xenopus egg extract is flowed in and after incubation the spindles are imaged with a confocal microscope.

  13. Control of Mitotic Spindle Position by the Saccharomyces cerevisiae Formin Bni1p

    PubMed Central

    Lee, Laifong; Klee, Saskia K.; Evangelista, Marie; Boone, Charles; Pellman, David

    1999-01-01

    Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Δ cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Δ cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation. PMID:10085293

  14. Polycystic kidney disease protein fibrocystin localizes to the mitotic spindle and regulates spindle bipolarity.

    PubMed

    Zhang, Jingjing; Wu, Maoqing; Wang, Shixuan; Shah, Jagesh V; Wilson, Patricia D; Zhou, Jing

    2010-09-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a significant hereditary renal disease occurring in infancy and childhood, which presents with greatly enlarged echogenic kidneys, ultimately leading to renal insufficiency and end-stage renal disease. ARPKD is caused by mutations in a single gene PKHD1, which encodes fibrocystin/polyductin (FPC), a large single transmembrane protein generally known to be on the primary cilium, basal body and plasma membrane. Here, using our newly generated antibody raised against the entire C-terminal intracellular cytoplasmic domain (ICD) of FPC, as well as our previously well-characterized antibody against a peptide of ICD, we report for the first time that at least one isoform of FPC is localized to the centrosome and mitotic spindle of dividing cells in multiple cell lines, including MDCK, mIMCD3, LLC-PK1, HEK293, RCTEC and HFCT cells. Using short-hairpin-mediated RNA interference, we show that the inhibition of FPC function in MDCK and mIMCD3 cells leads to centrosome amplification, chromosome lagging and multipolar spindle formation. Consistent with our in vitro findings, we also observed centrosome amplification in the kidneys from human ARPKD patients. These findings demonstrate a novel function of FPC in centrosome duplication and mitotic spindle assembly during cell division. We propose that mitotic defects due to FPC dysfunction contribute to cystogenesis in ARPKD.

  15. Microtubule organization within mitotic spindles revealed by serial block face scanning EM and image analysis.

    PubMed

    Nixon, Faye M; Honnor, Thomas R; Clarke, Nicholas I; Starling, Georgina P; Beckett, Alison J; Johansen, Adam M; Brettschneider, Julia A; Prior, Ian A; Royle, Stephen J

    2017-04-07

    Serial block face scanning electron microscopy (SBF-SEM) is a powerful method to analyze cells in 3D. Here, working at the resolution limit of the method, we describe a correlative light-SBF-SEM workflow to resolve microtubules of the mitotic spindle in human cells. We present four examples of uses for this workflow which are not practical by light microscopy and/or transmission electron microscopy. First, distinguishing closely associated microtubules within K-fibers; second, resolving bridging fibers in the mitotic spindle; third, visualizing membranes in mitotic cells, relative to the spindle apparatus; fourth, volumetric analysis of kinetochores. Our workflow also includes new computational tools for exploring the spatial arrangement of MTs within the mitotic spindle. We use these tools to show that microtubule order in mitotic spindles is sensitive to the level of TACC3 on the spindle.

  16. UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production

    SciTech Connect

    Spurck, T.P.; Stonington, O.G.; Snyder, J.A.; Pickett-Heaps, J.D.; Bajer, A.; Mole-Bajer, J. )

    1990-10-01

    Metaphase and anaphase spindles in cultured newt and PtK1 cells were irradiated with a UV microbeam (285 nM), creating areas of reduced birefringence (ARBs) in 3 s that selectively either severed a few fibers or cut across the half spindle. In either case, the birefringence at the polewards edge of the ARB rapidly faded polewards, while it remained fairly constant at the other, kinetochore edge. Shorter astral fibers, however, remained present in the enlarged ARB; presumably these had not been cut by the irradiation. After this enlargement of the ARB, metaphase spindles recovered rapidly as the detached pole moved back towards the chromosomes, reestablishing spindle fibers as the ARB closed; this happened when the ARB cut a few fibers or across the entire half spindle. We never detected elongation of the cut kinetochore fibers. Rather, astral fibers growing from the pole appeared to bridge and then close the ARB, just before the movement of the pole toward the chromosomes. When a second irradiation was directed into the closing ARB, the polewards movement again stopped before it restarted. In all metaphase cells, once the pole had reestablished connection with the chromosomes, the unirradiated half spindle then also shortened to create a smaller symmetrical spindle capable of normal anaphase later. Anaphase cells did not recover this way; the severed pole remained detached but the chromosomes continued a modified form of movement, clumping into a telophase-like group. The results are discussed in terms of controls operating on spindle microtubule stability and mechanisms of mitotic force generation.

  17. The Prp19 complex directly functions in mitotic spindle assembly.

    PubMed

    Hofmann, Jennifer C; Tegha-Dunghu, Justus; Dräger, Stefanie; Will, Cindy L; Lührmann, Reinhard; Gruss, Oliver J

    2013-01-01

    The conserved Prp19 (pre-RNA processing 19) complex is required for pre-mRNA splicing in eukaryotic nuclei. Recent RNAi screens indicated that knockdown of Prp19 complex subunits strongly delays cell proliferation. Here we show that knockdown of the smallest subunit, BCAS2/Spf27, destabilizes the entire complex and leads to specific mitotic defects in human cells. These could result from splicing failures in interphase or reflect a direct function of the complex in open mitosis. Using Xenopus extracts, in which cell cycle progression and spindle formation can be reconstituted in vitro, we tested Prp19 complex functions during a complete cell cycle and directly in open mitosis. Strikingly, immunodepletion of the complex either before or after interphase significantly reduces the number of intact spindles, and increases the percentage of spindles with lower microtubule density and impaired metaphase alignment of chromosomes. Our data identify the Prp19 complex as the first spliceosome subcomplex that directly contributes to mitosis in vertebrates independently of its function in interphase.

  18. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit

    PubMed Central

    Onishi, Masayuki; Yeong, Foong May

    2016-01-01

    Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS) formation at the division site to drive acto-myosin ring (AMR) constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p) neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit. PMID:27447488

  19. Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol.

    PubMed

    Luo, Yan; Ji, Xinmiao; Liu, Juanjuan; Li, Zhiyuan; Wang, Wenchao; Chen, Wei; Wang, Junfeng; Liu, Qingsong; Zhang, Xin

    2016-06-01

    Microtubules are the fundamental components in mitotic spindle, which plays essential roles in cell division. It was well known that purified microtubules could be affected by static magnetic fields (SMFs) in vitro because of the diamagnetic anisotropy of tubulin. However, whether these effects lead to cell division defects was unknown. Here we find that 1T SMFs induce abnormal mitotic spindles and increase mitotic index. Synchronization experiments show that SMFs delay cell exit from mitosis and cause mitotic arrest. These mimic the cellular effects of a microtubule-targeting drug Paclitaxel (Taxol), which is frequently used in combination with 5-Fluorouracil (5-FU) and Cisplatin in cancer treatment. Using four different human cancer cell lines, HeLa, HCT116, CNE-2Z and MCF7, we find that SMFs increase the antitumor efficacy of 5-FU or 5-FU/Taxol, but not Cisplatin, which indicates that the SMF-induced combinational effects with chemodrugs are drug-specific. Our study not only reveals the effect of SMFs on microtubules to cause abnormal mitotic spindles and delay cells exit from mitosis, but also implies the potential applications of SMFs in combination with chemotherapy drugs 5-FU or 5-FU/Taxol, but not with Cisplatin in cancer treatment.

  20. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation.

    PubMed

    Jonassen, Julie A; SanAgustin, Jovenal; Baker, Stephen P; Pazour, Gregory J

    2012-04-01

    Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre-driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression.

  1. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    PubMed Central

    Carvalhal, Sara; Ribeiro, Susana Abreu; Arocena, Miguel; Kasciukovic, Taciana; Temme, Achim; Koehler, Katrin; Huebner, Angela; Griffis, Eric R.

    2015-01-01

    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome. PMID:26246606

  2. Aurora A phosphorylation of WD40-repeat protein 62 in mitotic spindle regulation

    PubMed Central

    Lim, Nicholas R.; Yeap, Yvonne Y. C.; Ang, Ching-Seng; Williamson, Nicholas A.; Bogoyevitch, Marie A.; Quinn, Leonie M.; Ng, Dominic C. H.

    2016-01-01

    ABSTRACT Mitotic spindle organization is regulated by centrosomal kinases that potentiate recruitment of spindle-associated proteins required for normal mitotic progress including the microcephaly protein WD40-repeat protein 62 (WDR62). WDR62 functions underlie normal brain development as autosomal recessive mutations and wdr62 loss cause microcephaly. Here we investigate the signaling interactions between WDR62 and the mitotic kinase Aurora A (AURKA) that has been recently shown to cooperate to control brain size in mice. The spindle recruitment of WDR62 is closely correlated with increased levels of AURKA following mitotic entry. We showed that depletion of TPX2 attenuated WDR62 localization at spindle poles indicating that TPX2 co-activation of AURKA is required to recruit WDR62 to the spindle. We demonstrated that AURKA activity contributed to the mitotic phosphorylation of WDR62 residues Ser49 and Thr50 and phosphorylation of WDR62 N-terminal residues was required for spindle organization and metaphase chromosome alignment. Our analysis of several MCPH-associated WDR62 mutants (V65M, R438H and V1314RfsX18) that are mislocalized in mitosis revealed that their interactions and phosphorylation by AURKA was substantially reduced consistent with the notion that AURKA is a key determinant of WDR62 spindle recruitment. Thus, our study highlights the role of AURKA signaling in the spatiotemporal control of WDR62 at spindle poles where it maintains spindle organization. PMID:26713495

  3. Spindle checkpoint protein Bub1 corrects mitotic aberrancy induced by human T-cell leukemia virus type I Tax.

    PubMed

    Sasaki, M; Sugimoto, K; Tamayose, K; Ando, M; Tanaka, Y; Oshimi, K

    2006-06-22

    Bub1 is a component of the mitotic spindle checkpoint apparatus. Abnormality of this apparatus is known to cause multinuclei formation, a hallmark of chromosomal instability (CIN). A549, aneuploid cell line, aberrantly passed through the mitotic phase and became multinuclei morphology in the presence of nocodazole. Time-lapse videomicroscopy showed unreported bizarre morphology, which we named 'mitotic lobulation' in A549 cells just before the exit from mitosis and multinuclei formation. External expression of wild-type Bub1-EGFP clearly suppressed the multinuclei formation by retaining A549 cells at the mitotic phase during 48 h of time-lapse observation. This suppressive effect on mitotic aberrancy should not be mere restoration of normal Bub1 function, because A549 cells express proper amount of Bub1, which distributed cytoplasm during interphase and concentrated at kinetochore in metaphase. Furthermore, external expression of wild-type Bub1-EGFP suppressed multinuclei formation induced by Tax both in A549 and HeLa cells. Tax is known to induce mitotic abnormality by binding and inactivating Mad1. These observations, therefore, suggest functional redundancy between Bub1 and other mitotic checkpoint protein(s) and a possibility of correction of mitotic aberrancy by external Bub1 expression.

  4. Physical limits on kinesin-5–mediated chromosome congression in the smallest mitotic spindles

    PubMed Central

    McCoy, Kelsey M.; Tubman, Emily S.; Claas, Allison; Tank, Damien; Clancy, Shelly Applen; O’Toole, Eileen T.; Berman, Judith; Odde, David J.

    2015-01-01

    A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro­tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to

  5. Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly

    PubMed Central

    Lucena, Rafael; Dephoure, Noah; Gygi, Steve P.; Kellogg, Douglas R.; Tallada, Victor A.

    2015-01-01

    During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast. PMID:25963819

  6. Mitotic noncoding RNA processing promotes kinetochore and spindle assembly in Xenopus

    PubMed Central

    Grenfell, Andrew W.

    2016-01-01

    Transcription at the centromere of chromosomes plays an important role in kinetochore assembly in many eukaryotes, and noncoding RNAs contribute to activation of the mitotic kinase Aurora B. However, little is known about how mitotic RNA processing contributes to spindle assembly. We found that inhibition of transcription initiation or RNA splicing, but not translation, leads to spindle defects in Xenopus egg extracts. Spliceosome inhibition resulted in the accumulation of high molecular weight centromeric transcripts, concomitant with decreased recruitment of the centromere and kinetochore proteins CENP-A, CENP-C, and NDC80 to mitotic chromosomes. In addition, blocking transcript synthesis or processing during mitosis caused accumulation of MCAK, a microtubule depolymerase, on the spindle, indicating misregulation of Aurora B. These findings suggest that co-transcriptional recruitment of the RNA processing machinery to nascent mitotic transcripts is an important step in kinetochore and spindle assembly and challenge the idea that RNA processing is globally repressed during mitosis. PMID:27402954

  7. A LCMT1-PME-1 methylation equilibrium controls mitotic spindle size.

    PubMed

    Xia, Xiaoyu; Gholkar, Ankur; Senese, Silvia; Torres, Jorge Z

    2015-01-01

    Leucine carboxyl methyltransferase-1 (LCMT1) and protein phosphatase methylesterase-1 (PME-1) are essential enzymes that regulate the methylation of the protein phosphatase 2A catalytic subunit (PP2AC). LCMT1 and PME-1 have been linked to the regulation of cell growth and proliferation, but the underlying mechanisms have remained elusive. We show here an important role for an LCMT1-PME-1 methylation equilibrium in controlling mitotic spindle size. Depletion of LCMT1 or overexpression of PME-1 led to long spindles. In contrast, depletion of PME-1, pharmacological inhibition of PME-1 or overexpression of LCMT1 led to short spindles. Furthermore, perturbation of the LCMT1-PME-1 methylation equilibrium led to mitotic arrest, spindle assembly checkpoint activation, defective cell divisions, induction of apoptosis and reduced cell viability. Thus, we propose that the LCMT1-PME-1 methylation equilibrium is critical for regulating mitotic spindle size and thereby proper cell division.

  8. Centrin: Another target of monastrol, an inhibitor of mitotic spindle

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Wang, Tong-Qing; Bian, Wei; Liu, Wen; Sun, Yue; Yang, Bin-Sheng

    2015-02-01

    Monastrol, a cell-permeable inhibitor, considered to specifically inhibit kinesin Eg5, can cause mitotic arrest and monopolar spindle formation, thus exhibiting antitumor properties. Centrin, a ubiquitous protein associated with centrosome, plays a critical role in centrosome duplication. Moreover, a correlation between centrosome amplification and cancer has been reported. In this study, it is proposed for the first time that centrin may be another target of the anticancer drug monastrol since monastrol can effectively inhibit not only the growth of the transformed Escherichia coli cells in vivo, but also the Lu3+-dependent self-assembly of EoCen in vitro. The two closely related compounds (Compounds 1 and 2) could not take the same effect. Fluorescence titration experiments suggest that four monastrols per protein is the optimum binding pattern, and the binding constants at different temperatures were obtained. Detailed thermodynamic analysis indicates that hydrophobic force is the main acting force between monastrol and centrin, and the extent of monastrol inhibition of centrin self-assembly is highly dependent upon the hydrophobic region of the protein, which is largely exposed by the binding of metal ions.

  9. Kin4 kinase delays mitotic exit in response to spindle alignment defects.

    PubMed

    Pereira, Gislene; Schiebel, Elmar

    2005-07-22

    For many polarized cells, it is critical that the mitotic spindle becomes positioned relative to the polarity axis. This is especially important in yeast, where the site of cytokinesis is predetermined. The spindle position checkpoint (SPOC) therefore delays mitotic exit of cells with a mispositioned spindle. One component of the SPOC is the Bub2-Bfa1 complex, an inhibitor of the mitotic exit network (MEN). Here, we show that the Kin4 kinase is a component of the SPOC and as such is essential to delay cell cycle progression of cells with a misaligned spindle. When spindles are correctly oriented, Kin4 and Bub2-Bfa1 are asymmetrically localized to opposite spindle pole bodies (SPBs). Bub2-Bfa1 then becomes inhibited by Cdc5 polo kinase with anaphase onset, a prerequisite for mitotic exit. In response to spindle misalignment, Kin4 and Bub2-Bfa1 are brought together at both SPBs. Kin4 now maintains Bub2-Bfa1 activity by counteracting Cdc5, thereby inhibiting mitotic exit.

  10. Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts.

    PubMed

    Halpin, David; Kalab, Petr; Wang, Jay; Weis, Karsten; Heald, Rebecca

    2011-12-01

    During cell division the genetic material on chromosomes is distributed to daughter cells by a dynamic microtubule structure called the mitotic spindle. Here we establish a reconstitution system to assess the contribution of individual chromosome proteins to mitotic spindle formation around single 10 µm diameter porous glass beads in Xenopus egg extracts. We find that Regulator of Chromosome Condensation 1 (RCC1), the Guanine Nucleotide Exchange Factor (GEF) for the small GTPase Ran, can induce bipolar spindle formation. Remarkably, RCC1 beads oscillate within spindles from pole to pole, a behavior that could be converted to a more typical, stable association by the addition of a kinesin together with RCC1. These results identify two activities sufficient to mimic chromatin-mediated spindle assembly, and establish a foundation for future experiments to reconstitute spindle assembly entirely from purified components.

  11. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast

    PubMed Central

    Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R.; O’Toole, Eileen; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.

    2017-01-01

    Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly—the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy. PMID:28116355

  12. Electro-acoustic behavior of the mitotic spindle: a semi-classical coarse-grained model.

    PubMed

    Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A; Cifra, Michal

    2014-01-01

    The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells--a strategy used in novel methods for cancer treatment.

  13. Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model

    PubMed Central

    Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A.; Cifra, Michal

    2014-01-01

    The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells—a strategy used in novel methods for cancer treatment. PMID:24497952

  14. Hsp72 is targeted to the mitotic spindle by Nek6 to promote K-fiber assembly and mitotic progression.

    PubMed

    O'Regan, Laura; Sampson, Josephina; Richards, Mark W; Knebel, Axel; Roth, Daniel; Hood, Fiona E; Straube, Anne; Royle, Stephen J; Bayliss, Richard; Fry, Andrew M

    2015-05-11

    Hsp70 proteins represent a family of chaperones that regulate cellular homeostasis and are required for cancer cell survival. However, their function and regulation in mitosis remain unknown. In this paper, we show that the major inducible cytoplasmic Hsp70 isoform, Hsp72, is required for assembly of a robust bipolar spindle capable of efficient chromosome congression. Mechanistically, Hsp72 associates with the K-fiber-stabilizing proteins, ch-TOG and TACC3, and promotes their interaction with each other and recruitment to spindle microtubules (MTs). Targeting of Hsp72 to the mitotic spindle is dependent on phosphorylation at Thr-66 within its nucleotide-binding domain by the Nek6 kinase. Phosphorylated Hsp72 concentrates on spindle poles and sites of MT-kinetochore attachment. A phosphomimetic Hsp72 mutant rescued defects in K-fiber assembly, ch-TOG/TACC3 recruitment and mitotic progression that also resulted from Nek6 depletion. We therefore propose that Nek6 facilitates association of Hsp72 with the mitotic spindle, where it promotes stable K-fiber assembly through recruitment of the ch-TOG-TACC3 complex.

  15. Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle.

    PubMed

    Nannas, Natalie J; O'Toole, Eileen T; Winey, Mark; Murray, Andrew W

    2014-12-15

    The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro-tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore-microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.

  16. Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle

    PubMed Central

    Nannas, Natalie J.; O’Toole, Eileen T.; Winey, Mark; Murray, Andrew W.

    2014-01-01

    The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro­tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore–microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number. PMID:25318669

  17. Temporal and compartment-specific signals coordinate mitotic exit with spindle position

    PubMed Central

    Caydasi, Ayse Koca; Khmelinskii, Anton; Duenas-Sanchez, Rafael; Kurtulmus, Bahtiyar; Knop, Michael; Pereira, Gislene

    2017-01-01

    The spatiotemporal control of mitotic exit is crucial for faithful chromosome segregation during mitosis. In budding yeast, the mitotic exit network (MEN) drives cells out of mitosis, whereas the spindle position checkpoint (SPOC) blocks MEN activity when the anaphase spindle is mispositioned. How the SPOC operates at a molecular level remains unclear. Here, we report novel insights into how mitotic signalling pathways orchestrate chromosome segregation in time and space. We establish that the key function of the central SPOC kinase, Kin4, is to counterbalance MEN activation by the cdc fourteen early anaphase release (FEAR) network in the mother cell compartment. Remarkably, Kin4 becomes dispensable for SPOC function in the absence of FEAR. Cells lacking both FEAR and Kin4 show that FEAR contributes to mitotic exit through regulation of the SPOC component Bfa1 and the MEN kinase Cdc15. Furthermore, we uncover controls that specifically promote mitotic exit in the daughter cell compartment. PMID:28117323

  18. Temporal and compartment-specific signals coordinate mitotic exit with spindle position.

    PubMed

    Caydasi, Ayse Koca; Khmelinskii, Anton; Duenas-Sanchez, Rafael; Kurtulmus, Bahtiyar; Knop, Michael; Pereira, Gislene

    2017-01-24

    The spatiotemporal control of mitotic exit is crucial for faithful chromosome segregation during mitosis. In budding yeast, the mitotic exit network (MEN) drives cells out of mitosis, whereas the spindle position checkpoint (SPOC) blocks MEN activity when the anaphase spindle is mispositioned. How the SPOC operates at a molecular level remains unclear. Here, we report novel insights into how mitotic signalling pathways orchestrate chromosome segregation in time and space. We establish that the key function of the central SPOC kinase, Kin4, is to counterbalance MEN activation by the cdc fourteen early anaphase release (FEAR) network in the mother cell compartment. Remarkably, Kin4 becomes dispensable for SPOC function in the absence of FEAR. Cells lacking both FEAR and Kin4 show that FEAR contributes to mitotic exit through regulation of the SPOC component Bfa1 and the MEN kinase Cdc15. Furthermore, we uncover controls that specifically promote mitotic exit in the daughter cell compartment.

  19. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle

    PubMed Central

    1995-01-01

    The three dimensional organization of microtubules in mitotic spindles of the yeast Saccharomyces cerevisiae has been determined by computer- aided reconstruction from electron micrographs of serially cross- sectioned spindles. Fifteen spindles ranging in length from 0.6-9.4 microns have been analyzed. Ordered microtubule packing is absent in spindles up to 0.8 micron, but the total number of microtubules is sufficient to allow one microtubule per kinetochore with a few additional microtubules that may form an interpolar spindle. An obvious bundle of about eight interpolar microtubules was found in spindles 1.3- 1.6 microns long, and we suggest that the approximately 32 remaining microtubules act as kinetochore fibers. The relative lengths of the microtubules in these spindles suggest that they may be in an early stage of anaphase, even though these spindles are all situated in the mother cell, not in the isthmus between mother and bud. None of the reconstructed spindles exhibited the uniform populations of kinetochore microtubules characteristic of metaphase. Long spindles (2.7-9.4 microns), presumably in anaphase B, contained short remnants of a few presumed kinetochore microtubules clustered near the poles and a few long microtubules extending from each pole toward the spindle midplane, where they interdigitated with their counterparts from the other pole. Interpretation of these reconstructed spindles offers some insights into the mechanisms of mitosis in this yeast. PMID:7790357

  20. Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum

    PubMed Central

    Lázaro-Diéguez, Francisco; Ispolatov, Iaroslav; Müsch, Anne

    2015-01-01

    All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning. PMID:25657320

  1. The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells

    PubMed Central

    Yan, Kaowen; Li, Li; Wang, Xiaojian; Hong, Ruisha; Zhang, Ying; Yang, Hua; Lin, Ming; Zhang, Sha; He, Qihua; Zheng, Duo; Tang, Jun; Yin, Yuxin

    2015-01-01

    Deubiquitinating enzymes (DUBs) negatively regulate protein ubiquitination and play an important role in diverse physiological processes, including mitotic division. The BRCC36 isopeptidase complex (BRISC) is a DUB that is specific for lysine 63–linked ubiquitin hydrolysis; however, its biological function remains largely undefined. Here, we identify a critical role for BRISC in the control of mitotic spindle assembly in cultured mammalian cells. BRISC is a microtubule (MT)-associated protein complex that predominantly localizes to the minus ends of K-fibers and spindle poles and directly binds to MTs; importantly, BRISC promotes the assembly of functional bipolar spindle by deubiquitinating the essential spindle assembly factor nuclear mitotic apparatus (NuMA). The deubiquitination of NuMA regulates its interaction with dynein and importin-β, which are required for its function in spindle assembly. Collectively, these results uncover BRISC as an important regulator of the mitotic spindle assembly and cell division, and have important implications for the development of anticancer drugs targeting BRISC. PMID:26195665

  2. Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants.

    PubMed

    Bannigan, Alex; Lizotte-Waniewski, Michelle; Riley, Margaret; Baskin, Tobias I

    2008-01-01

    Flowering plants, lacking centrosomes as well as dynein, assemble their mitotic spindle via a pathway that is distinct visually and molecularly from that of animals and yeast. The molecular components underlying mitotic spindle assembly and function in plants are beginning to be discovered. Here, we review recent evidence suggesting the preprophase band in plants functions analogously to the centrosome in animals in establishing spindle bipolarity, and we review recent progress characterizing the roles of specific motor proteins in plant mitosis. Loss of function of certain minus-end-directed KIN-14 motor proteins causes a broadening of the spindle pole; whereas, loss of function of a KIN-5 causes the formation of monopolar spindles, resembling those formed when the homologous motor protein (e.g., Eg5) is knocked out in animal cells. We present a phylogeny of the kinesin-5 motor domain, which shows deep divergence among plant sequences, highlighting possibilities for specialization. Finally, we review information concerning the roles of selected structural proteins at mitosis as well as recent findings concerning regulation of M-phase in plants. Insight into the mitotic spindle will be obtained through continued comparison of mitotic mechanisms in a diversity of cells.

  3. Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage.

    PubMed

    Tao, Weikang; South, Victoria J; Zhang, Yun; Davide, Joseph P; Farrell, Linda; Kohl, Nancy E; Sepp-Lorenzino, Laura; Lobell, Robert B

    2005-07-01

    The inhibition of KSP causes mitotic arrest by activating the spindle assembly checkpoint. While transient inhibition of KSP leads to reversible mitotic arrest, prolonged exposure to a KSP inhibitor induces apoptosis. Induction of apoptosis by the KSP inhibitor couples with mitotic slippage. Slippage-refractory cells show resistance to KSP inhibitor-mediated lethality, whereas promotion of slippage after mitotic arrest enhances apoptosis. However, attenuation of the spindle checkpoint confers resistance to KSP inhibitor-induced apoptosis. Furthermore, sustained KSP inhibition activates the proapoptotic protein, Bax, and both activation of the spindle checkpoint and subsequent mitotic slippage are required for Bax activation. These studies indicate that in response to KSP inhibition, activation of the spindle checkpoint followed by mitotic slippage initiates apoptosis by activating Bax.

  4. Live-Cell Analysis of Mitotic Spindle Formation in Taxol-Treated Cells

    PubMed Central

    Hornick, Jessica E.; Bader, Jason R.; Tribble, Emily K.; Trimble, Kayleigh; Breunig, J. Scott; Halpin, Elizabeth S.; Vaughan, Kevin T.; Hinchcliffe, Edward H.

    2009-01-01

    Taxol functions to suppress the dynamic behavior of individual microtubules, and induces multipolar mitotic spindles. However, little is known about the mechanisms by which taxol disrupts normal bipolar spindle assembly in vivo. Using live imaging of GFP-α tubulin expressing cells, we examined spindle assembly after taxol treatment. We find that as taxol-treated cells enter mitosis, there is a dramatic redistribution of the microtubule network from the centrosomes to the cell cortex. As they align there, the cortical microtubules recruit NuMA to their embedded ends, followed by the kinesin motor HSET. These cortical microtubules then bud off to form cytasters, which fuse into multipolar spindles. Cytoplasmic dynein and dynactin do not re-localize to cortical microtubules, and disruption of dynein/dynactin interactions by over-expression of p50 “dynamitin” does not prevent cytaster formation. Taxol added well before spindle poles begin to form induces multipolarity, but taxol added after nascent spindle poles are visible—but before NEB is complete—results in bipolar spindles. Our results suggest that taxol prevents rapid transport of key components, such as NuMA, to the nascent spindle poles. The net result is loss of mitotic spindle pole cohesion, microtubule re-distribution, and cytaster formation. PMID:18481305

  5. p21-activated kinase 4 regulates mitotic spindle positioning and orientation.

    PubMed

    Bompard, Guillaume; Morin, Nathalie

    2012-01-01

    During mitosis, microtubules (MTs) are massively rearranged into three sets of highly dynamic MTs that are nucleated from the centrosomes to form the mitotic spindle. Tight regulation of spindle positioning in the dividing cell and chromosome alignment at the center of the metaphase spindle are required to ensure perfect chromosome segregation and to position the cytokinetic furrow that will specify the two daughter cells. Spindle positioning requires regulation of MT dynamics, involving depolymerase activities together with cortical and kinetochore-mediated pushing and pulling forces acting on astral MTs and kinetochore fibres. These forces rely on MT motor activities. Cortical pulling forces exerted on astral MTs depend upon dynein/dynactin complexes and are essential in both symmetric and asymmetric cell division. A well-established spindle positioning pathway regulating the cortical targeting of dynein/dynactin involves the conserved LGN (Leu-Gly-Asn repeat-enriched-protein) and NuMA (microtubule binding nuclear mitotic apparatus protein) complex. Spindle orientation is also regulated by integrin-mediated cell adhesion and actin retraction fibres that respond to mechanical stress and are influenced by the microenvironment of the dividing cell. Altering the capture of astral MTs or modulating pulling forces affects spindle position, which can impair cell division, differentiation and embryogenesis. In this general scheme, the activity of mitotic kinases such as Auroras and Plk1 (Polo-like kinase 1) is crucial. Recently, the p21-activated kinases (PAKs) emerged as novel important players in mitotic progression. In our recent article, we demonstrated that PAK4 regulates spindle positioning in symmetric cell division. In this commentary, and in light of recent published studies, we discuss how PAK4 could participate in the regulation of mechanisms involved in spindle positioning and orientation.

  6. Tem1 localization to the spindle pole bodies is essential for mitotic exit and impairs spindle checkpoint function

    PubMed Central

    Valerio-Santiago, Mauricio

    2011-01-01

    The mitotic exit network (MEN) is a signaling cascade that triggers inactivation of the mitotic cyclin-dependent kinases and exit from mitosis. The GTPase Tem1 localizes on the spindle pole bodies (SPBs) and initiates MEN signaling. Tem1 activity is inhibited until anaphase by Bfa1-Bub2. These proteins are also part of the spindle position checkpoint (SPOC), a surveillance mechanism that restrains mitotic exit until the spindle is correctly positioned. Here, we show that regulation of Tem1 localization is essential for the proper function of the MEN and the SPOC. We demonstrate that the dynamics of Tem1 loading onto SPBs determine the recruitment of other MEN components to this structure, and reevaluate the interdependence in the localization of Tem1, Bfa1, and Bub2. We also find that removal of Tem1 from the SPBs is critical for the SPOC to impede cell cycle progression. Finally, we demonstrate for the first time that localization of Tem1 to the SPBs is a requirement for mitotic exit. PMID:21321099

  7. Tem1 localization to the spindle pole bodies is essential for mitotic exit and impairs spindle checkpoint function.

    PubMed

    Valerio-Santiago, Mauricio; Monje-Casas, Fernando

    2011-02-21

    The mitotic exit network (MEN) is a signaling cascade that triggers inactivation of the mitotic cyclin-dependent kinases and exit from mitosis. The GTPase Tem1 localizes on the spindle pole bodies (SPBs) and initiates MEN signaling. Tem1 activity is inhibited until anaphase by Bfa1-Bub2. These proteins are also part of the spindle position checkpoint (SPOC), a surveillance mechanism that restrains mitotic exit until the spindle is correctly positioned. Here, we show that regulation of Tem1 localization is essential for the proper function of the MEN and the SPOC. We demonstrate that the dynamics of Tem1 loading onto SPBs determine the recruitment of other MEN components to this structure, and reevaluate the interdependence in the localization of Tem1, Bfa1, and Bub2. We also find that removal of Tem1 from the SPBs is critical for the SPOC to impede cell cycle progression. Finally, we demonstrate for the first time that localization of Tem1 to the SPBs is a requirement for mitotic exit.

  8. Patterns of tubulin isotype synthesis and usage during mitotic spindle morphogenesis in Physarum.

    PubMed

    Paul, E C; Roobol, A; Foster, K E; Gull, K

    1987-01-01

    Tubulin synthesis in the naturally synchronous plasmodium of Physarum polycephalum is a markedly periodic event restricted to the late G2 period of the cell cycle. Mitosis in the plasmodium is intranuclear, and there are no cytoplasmic microtubules at any stage of the cell cycle. We have combined a biochemical investigation of the synthesis of the plasmodial tubulin isotypes and their participation in the mitotic spindle with a microscopic study (immunofluorescence) of the development of spindle microtubules throughout the cell cycle. We have shown that all four tubulin isotypes identified in the plasmodium (alpha 1, alpha 2, beta 1 and beta 2) are present in the mitotic spindle. The stoichiometry of isotype usage in the mitotic spindle generally reflects the overall abundance of isotypes in the plasmodium as a whole: beta 2 greater than alpha 1 greater than alpha 2 greater than beta 1. We have also shown that tubulins synthesized in the G2 period of one cell cycle can be incorporated into the spindles of the immediately ensuing mitosis and have sufficient biological longevity to allow participation in the mitotic divisions of future cell cycles. Thus, the phenomenon of periodic tubulin synthesis does not reflect a restricted use of tubulin to the cell cycle in which it was synthesized. The major polymerization of tubulin in the nucleus occurred less than 30 min before metaphase. A novel tubulin-containing structure was, however, present in the nucleus approximately 60 min before metaphase. Polymerized tubulin is rapidly removed from the nucleus following nucleokinesis.

  9. The effect of magnesium on mitotic spindle formation in Schizosaccharomyces pombe.

    PubMed

    Uz, Gulsen; Sarikaya, Aysegul Topal

    2016-01-01

    Magnesium (Mg2+), an essential ion for cells and biological systems, is involved in a variety of cellular processes, including the formation and breakdown of microtubules. The results of a previous investigation suggested that as cells grow the intracellular Mg2+ concentration falls, thereby stimulating formation of the mitotic spindle. In the present work, we used a Mg2+-deficient Schizosaccharomyces pombe strain GA2, in which two essential membrane Mg2+ transporter genes (homologs of ALR1 and ALR2 in Saccharomyces cerevisae) were deleted, and its parental strain Sp292, to examine the extent to which low Mg2+ concentrations can affect mitotic spindle formation. The two S. pombe strains were transformed with a plasmid carrying a GFP-α2-tubulin construct to fluorescently label microtubules. Using the free Mg2+-specific fluorescent probe mag-fura-2, we confirmed that intracellular free Mg2+ levels were lower in GA2 than in the parental strain. Defects in interphase microtubule organization, a lower percentage of mitotic spindle formation and a reduced mitotic index were also observed in the GA2 strain. Although there was interphase microtubule polymerization, the lower level of mitotic spindle formation in the Mg2+-deficient strain suggested a greater requirement for Mg2+ in this phenomenon than previously thought.

  10. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    PubMed Central

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  11. Mitotic Spindle Assembly: Building the Bridge between Sister K-Fibers.

    PubMed

    Simunić, Juraj; Tolić, Iva M

    2016-10-01

    The mitotic spindle performs the task of physically dividing the genetic material between the newly formed daughter cells. To achieve this, bundles of microtubules and associated proteins orchestrate forces that spatially organize and then separate the chromosomes. In the classic view of the spindle, the kinetochore microtubules (k-fibers) are tensed and, thus, straight, whereas interpolar bundles are curved and do not interact with k-fibers close to the spindle equator. The updated view of the spindle depicts k-fibers as curved and interacting with newly identified interpolar bundles, called bridging fibers, along their length. In this Opinion, we propose and discuss scenarios for the origin of this structure in the context of known spindle assembly mechanisms.

  12. Chromosome and mitotic spindle dynamics in fission yeast kinesin-8 mutants

    NASA Astrophysics Data System (ADS)

    Crapo, Ammon M.; Gergley, Zachary R.; McIntosh, J. Richard; Betterton, M. D.

    2014-03-01

    Fission yeast proteins Klp5p and Klp6p are plus-end directed motors of the kinesin-8 family which promote microtubule (MT) depolymerization and also affect chromosome segregation, but the mechanism of these activities is not well understood. Using live-cell time-lapse fluorescence microscopy of fission yeast wild-type (WT) and klp5/6 mutant strains, we quantify and compare the dynamics of kinetochore motion and mitotic spindle length in 3D. In WT cells, the spindle, once formed, remains a consistent size and chromosomes are correctly organized and segregated. In kinesin-8 mutants, spindles undergo large length fluctuations of several microns. Kinetochore motions are also highly fluctuating, with kinetochores frequently moving away from the spindle rather than toward it. We observe transient pushing of chromosomes away from the spindle by as much as 10 microns in distance.

  13. EGFR controls IQGAP basolateral membrane localization and mitotic spindle orientation during epithelial morphogenesis

    PubMed Central

    Bañón-Rodríguez, Inmaculada; Gálvez-Santisteban, Manuel; Vergarajauregui, Silvia; Bosch, Minerva; Borreguero-Pascual, Arantxa; Martín-Belmonte, Fernando

    2014-01-01

    Establishing the correct orientation of the mitotic spindle is an essential step in epithelial cell division in order to ensure that epithelial tubules form correctly during organ development and regeneration. While recent findings have identified some of the molecular mechanisms that underlie spindle orientation, many aspects of this process remain poorly understood. Here, we have used the 3D-MDCK model system to demonstrate a key role for a newly identified protein complex formed by IQGAP1 and the epithelial growth factor receptor (EGFR) in controlling the orientation of the mitotic spindle. IQGAP1 is a scaffolding protein that regulates many cellular pathways, from cell-cell adhesion to microtubule organization, and its localization in the basolateral membrane ensures correct spindle orientation. Through its IQ motifs, IQGAP1 binds to EGFR, which is responsible for maintaining IQGAP1 in the basolateral membrane domain. Silencing IQGAP1, or disrupting the basolateral localization of either IQGAP1 or EGFR, results in a non-polarized distribution of NuMA, mitotic spindle misorientation and defects in single lumen formation. PMID:24421325

  14. Aurora at the pole and equator: overlapping functions of Aurora kinases in the mitotic spindle.

    PubMed

    Hochegger, Helfrid; Hégarat, Nadia; Pereira-Leal, Jose B

    2013-03-20

    The correct assembly and timely disassembly of the mitotic spindle is crucial for the propagation of the genome during cell division. Aurora kinases play a central role in orchestrating bipolar spindle establishment, chromosome alignment and segregation. In most eukaryotes, ranging from amoebas to humans, Aurora activity appears to be required both at the spindle pole and the kinetochore, and these activities are often split between two different Aurora paralogues, termed Aurora A and B. Polar and equatorial functions of Aurora kinases have generally been considered separately, with Aurora A being mostly involved in centrosome dynamics, whereas Aurora B coordinates kinetochore attachment and cytokinesis. However, double inactivation of both Aurora A and B results in a dramatic synergy that abolishes chromosome segregation. This suggests that these two activities jointly coordinate mitotic progression. Accordingly, recent evidence suggests that Aurora A and B work together in both spindle assembly in metaphase and disassembly in anaphase. Here, we provide an outlook on these shared functions of the Auroras, discuss the evolution of this family of mitotic kinases and speculate why Aurora kinase activity may be required at both ends of the spindle microtubules.

  15. AIBp regulates mitotic entry and mitotic spindle assembly by controlling activation of both Aurora-A and Plk1.

    PubMed

    Chou, Chia-Hua; Loh, Joon-Khim; Yang, Ming-Chang; Lin, Ching-Chih; Hong, Ming-Chang; Cho, Chung-Lung; Chou, An-Kuo; Wang, Chi-Huei; Lieu, Ann-Shung; Howng, Shen-Long; Hsu, Ching-Mei; Hong, Yi-Ren

    2015-01-01

    We previously reported that Aurora-A and the hNinein binding protein AIBp facilitate centrosomal structure maintenance and contribute to spindle formation. Here, we report that AIBp also interacts with Plk1, raising the possibility of functional similarity to Bora, which subsequently promotes Aurora-A-mediated Plk1 activation at Thr210 as well as Aurora-A activation at Thr288. In kinase assays, AIBp acts not only as a substrate but also as a positive regulator of both Aurora-A and Plk1. However, AIBp functions as a negative regulator to block phosphorylation of hNinein mediated by Aurora-A and Plk1. These findings suggest a novel AIBp-dependent regulatory machinery that controls mitotic entry. Additionally, knockdown of hNinein caused failure of AIBp to target the centrosome, whereas depletion of AIBp did not affect the localization of hNinein and microtubule nucleation. Notably, knockdown of AIBp in HeLa cells impaired both Aurora-A and Plk1 kinase, resulting in phenotypes with multiple spindle pole formation and chromosome misalignment. Our data show that depletion of AIBp results in the mis-localization of TACC3 and ch-TOG, but not CEP192 and CEP215, suggesting that loss of AIBp dominantly affects the Aurora-A substrate to cause mitotic aberrations. Collectively, our data demonstrate that AIBp contributes to mitotic entry and bipolar spindle assembly and may partially control localization, phosphorylation, and activation of both Aurora-A and Plk1 via hNinein during mitotic progression.

  16. Asymmetric Localization of Components and Regulators of the Mitotic Exit Network at Spindle Pole Bodies.

    PubMed

    Scarfone, Ilaria; Piatti, Simonetta

    2017-01-01

    Most proteins of the Mitotic Exit Network (MEN) and their upstream regulators localize at spindle pole bodies (SPBs) at least in some stages of the cell cycle. Studying the SPB localization of MEN factors has been extremely useful to elucidate their biological roles, organize them in a hierarchical pathway, and define their dynamics under different conditions.Recruitment to SPBs of the small GTPase Tem1 and the downstream kinases Cdc15 and Mob1/Dbf2 is thought to be essential for Cdc14 activation and mitotic exit, while that of the upstream Tem1 regulators (the Kin4 kinase and the GTPase activating protein Bub2-Bfa1) is important for MEN inhibition upon spindle mispositioning. Here, we describe the detailed fluorescence microscopy procedures that we use in our lab to analyze the localization at SPBs of Mitotic Exit Network (MEN) components tagged with GFP or HA epitopes.

  17. Mitotic spindle orients perpendicular to the forces imposed by dynamic shear.

    PubMed

    Fernandez, Pablo; Maier, Matthias; Lindauer, Martina; Kuffer, Christian; Storchova, Zuzana; Bausch, Andreas R

    2011-01-01

    Orientation of the division axis can determine cell fate in the presence of morphogenetic gradients. Understanding how mitotic cells integrate directional cues is therefore an important question in embryogenesis. Here, we investigate the effect of dynamic shear forces on confined mitotic cells. We found that human epithelial cells (hTERT-RPE1) as well as MC3T3 osteoblasts align their mitotic spindle perpendicular to the external force. Spindle orientation appears to be a consequence of cell elongation along the zero-force direction in response to the dynamic shear. This process is a nonlinear response to the strain amplitude, requires actomyosin activity and correlates with redistribution of myosin II. Mechanosteered cells divide normally, suggesting that this mechanism is compatible with biological functions.

  18. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity.

    PubMed

    Oshimori, Naoki; Ohsugi, Miho; Yamamoto, Tadashi

    2006-10-01

    Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.

  19. Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1.

    PubMed

    Scarfone, Ilaria; Piatti, Simonetta

    2015-10-02

    The budding yeast S. cerevisiae divides asymmetrically and is an excellent model system for asymmetric cell division. As for other asymmetrically dividing cells, proper spindle positioning along the mother-daughter polarity axis is crucial for balanced chromosome segregation. Thus, a surveillance mechanism named Spindle Position Checkpoint (SPOC) inhibits mitotic exit and cytokinesis until the mitotic spindle is properly oriented, thereby preventing the generation of cells with aberrant ploidies. The small GTPase Tem1 is required to trigger a Hippo-like protein kinase cascade, named Mitotic Exit Network (MEN), that is essential for mitotic exit and cytokinesis but also contributes to correct spindle alignment in metaphase. Importantly, Tem1 is the target of the SPOC, which relies on the activity of the GTPase-activating complex (GAP) Bub2-Bfa1 to keep Tem1 in the GDP-bound inactive form. Tem1 forms a hetero-trimeric complex with Bub2-Bfa1 at spindle poles (SPBs) that accumulates asymmetrically on the bud-directed spindle pole during mitosis when the spindle is properly positioned. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. We have recently shown that Tem1 residence at SPBs depends on its nucleotide state and, importantly, asymmetry of the Bub2-Bfa1-Tem1 complex does not promote mitotic exit but rather controls spindle positioning.

  20. Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1

    PubMed Central

    Scarfone, Ilaria; Piatti, Simonetta

    2015-01-01

    The budding yeast S. cerevisiae divides asymmetrically and is an excellent model system for asymmetric cell division. As for other asymmetrically dividing cells, proper spindle positioning along the mother-daughter polarity axis is crucial for balanced chromosome segregation. Thus, a surveillance mechanism named Spindle Position Checkpoint (SPOC) inhibits mitotic exit and cytokinesis until the mitotic spindle is properly oriented, thereby preventing the generation of cells with aberrant ploidies. The small GTPase Tem1 is required to trigger a Hippo-like protein kinase cascade, named Mitotic Exit Network (MEN), that is essential for mitotic exit and cytokinesis but also contributes to correct spindle alignment in metaphase. Importantly, Tem1 is the target of the SPOC, which relies on the activity of the GTPase-activating complex (GAP) Bub2-Bfa1 to keep Tem1 in the GDP-bound inactive form. Tem1 forms a hetero-trimeric complex with Bub2-Bfa1 at spindle poles (SPBs) that accumulates asymmetrically on the bud-directed spindle pole during mitosis when the spindle is properly positioned. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. We have recently shown that Tem1 residence at SPBs depends on its nucleotide state and, importantly, asymmetry of the Bub2-Bfa1-Tem1 complex does not promote mitotic exit but rather controls spindle positioning. PMID:26507466

  1. Computational analysis of the spatial distribution of mitotic spindle angles in mouse developing airway

    NASA Astrophysics Data System (ADS)

    Tang, Nan; Marshall, Wallace F.

    2013-02-01

    Investigating the spatial information of cellular processes in tissues during mouse embryo development is one of the major technical challenges in development biology. Many imaging methods are still limited to the volumes of tissue due to tissue opacity, light scattering and the availability of advanced imaging tools. For analyzing the mitotic spindle angle distribution in developing mouse airway epithelium, we determined spindle angles in mitotic epithelial cells on serial sections of whole airway of mouse embryonic lungs. We then developed a computational image analysis to obtain spindle angle distribution in three dimensional airway reconstructed from the data obtained from all serial sections. From this study, we were able to understand how mitotic spindle angles are distributed in a whole airway tube. This analysis provides a potentially fast, simple and inexpensive alternative method to quantitatively analyze cellular process at subcellular resolution. Furthermore, this analysis is not limited to the size of tissues, which allows to obtain three dimensional and high resolution information of cellular processes in cell populations deeper inside intact organs.

  2. Warts phosphorylates Mud to promote Pins-mediated mitotic spindle orientation in Drosophila independent of Yorkie

    PubMed Central

    Dewey, Evan B.; Sanchez, Desiree; Johnston, Christopher A.

    2015-01-01

    SUMMARY Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily-conserved cell proliferation pathway. PMID:26592339

  3. Reduced O-GlcNAcase expression promotes mitotic errors and spindle defects.

    PubMed

    Lanza, Chris; Tan, Ee Phie; Zhang, Zhen; Machacek, Miranda; Brinker, Amanda E; Azuma, Mizuki; Slawson, Chad

    2016-05-18

    Alterations in O-GlcNAc cycling, the addition and removal of O-GlcNAc, lead to mitotic defects and increased aneuploidy. Herein, we generated stable O-GlcNAcase (OGA, the enzyme that removes O-GlcNAc) knockdown HeLa cell lines and characterized the effect of the reduction in OGA activity on cell cycle progression. After release from G1/S, the OGA knockdown cells progressed normally through S phase but demonstrated mitotic exit defects. Cyclin A was increased in the knockdown cells while Cyclin B and D expression was reduced. Retinoblastoma protein (RB) phosphorylation was also increased in the knockdown compared to control. At M phase, the knockdown cells showed more compact spindle chromatids than control cells and had a greater percentage of cells with multipolar spindles. Furthermore, the timing of the inhibitory tyrosine phosphorylation of Cyclin Dependent Kinase 1 (CDK1) was altered in the OGA knockdown cells. Although expression and localization of the chromosomal passenger protein complex (CPC) was unchanged, histone H3 threonine 3 phosphorylation was decreased in one of the OGA knockdown cell lines. The Ewing Sarcoma Breakpoint Region 1 Protein (EWS) participates in organizing the CPC at the spindle and is a known substrate for O-GlcNAc transferase (OGT, the enzyme that adds O-GlcNAc). EWS O-GlcNAcylation was significantly increased in the OGA knockdown cells promoting uneven localization of the mitotic midzone. Our data suggests that O-GlcNAc cycling is an essential mechanism for proper mitotic signaling and spindle formation, and alterations in the rate of O-GlcNAc cycling produces aberrant spindles and promotes aneuploidy.

  4. Reeling in chromosomes to spindle poles: The roles of microtubule-destabilizing enzymes in mitotic spindle dynamics

    NASA Astrophysics Data System (ADS)

    Sharp, David

    2004-03-01

    The central purpose of mitosis is achieved during anaphase when sister chromatids disjoin and translocate towards opposite poles of a microtubule-based machine termed mitotic spindle. We have identified two functionally distinct microtubule-destabilizing Kin I kinesin enzymes that are responsible for normal chromatid-to-pole motion during anaphase in Drosophila. One of them, KLP59C, is required to depolymerize MTs specifically at their kinetochore-associated "plus-ends" such that chromosomes 'chew' their way poleward. The second, KLP10A, is required to depolymerize MTs specifically at their pole-associated "minus-ends" thereby 'reeling' chromosomes into spindle poles. These findings provide the first description of the protein machinery that drives anaphase chromatid segregation by actively depolymerizing kinetochore MTs at both ends.

  5. Absence of a conventional spindle mitotic checkpoint in the binucleated single-celled parasite Giardia intestinalis.

    PubMed

    Markova, Kristyna; Uzlikova, Magdalena; Tumova, Pavla; Jirakova, Klara; Hagen, Guy; Kulda, Jaroslav; Nohynkova, Eva

    2016-10-01

    The spindle assembly checkpoint (SAC) joins the machinery of chromosome-to-spindle microtubule attachment with that of the cell cycle to prevent missegregation of chromosomes during mitosis. Although a functioning SAC has been verified in a limited number of organisms, it is regarded as an evolutionarily conserved safeguard mechanism. In this report, we focus on the existence of the SAC in a single-celled parasitic eukaryote, Giardia intestinalis. Giardia belongs to Excavata, a large and diverse supergroup of unicellular eukaryotes in which SAC control has been nearly unexplored. We show that Giardia cells with absent or defective mitotic spindles due to the inhibitory effects of microtubule poisons do not arrest in mitosis; instead, they divide without any delay, enter the subsequent cell cycle and even reduplicate DNA before dying. We identified a limited repertoire of kinetochore and SAC components in the Giardia genome, indicating that this parasite is ill equipped to halt mitosis before the onset of anaphase via SAC control of chromosome-spindle microtubule attachment. Finally, based on overexpression, we show that Giardia Mad2, a core SAC protein in other eukaryotes, localizes along intracytoplasmic portions of caudal flagellar axonemes, but never within nuclei, even in mitotic cells with blocked spindles, where the SAC should be active. These findings are consistent with the absence of a conventional SAC, known from yeast and metazoans, in the parasitic protist Giardia.

  6. Automated segmentation of the first mitotic spindle in differential interference contrast microcopy images of C. elegans embryos.

    PubMed

    Farhadifar, Reza; Needleman, Daniel

    2014-01-01

    Differential interference contrast (DIC) microscopy is a non-fluorescent microscopy technique that is commonly used to visualize the first mitotic spindle in C. elegans embryos. DIC movies are easy to acquire and provide data with high spatial and temporal resolution, allowing detailed investigations of the dynamics of the spindle-which elongates, oscillates, and is positioned asymmetrically. Despite the immense amount of information such movies provide, they are normally only used to draw qualitative conclusion based on manual inspection. We have developed an algorithm to automatically segment the mitotic spindle in DIC movies of C. elegans embryos, determine the position of centrosomes, quantify the morphology and motions of the spindle, and track these features over time. This method should be widely useful for studying the first mitotic spindle in C. elegans.

  7. Cytoplasmic flows as signatures for the mechanics of mitotic spindle positioning

    NASA Astrophysics Data System (ADS)

    Nazockdast, Ehssan; Rahimian, Abtin; Needleman, Daniel; Shelley, Michael

    2015-11-01

    The proper positioning of the mitotic spindle is crucial for asymmetric cell division and generating cell diversity during development. We use dynamic simulations to study the cytoplasmic flows generated by three possible active forcing mechanisms involved in positioning of the mitotic spindle in the first cell division of C.elegans embryo namely cortical pulling, cortical pushing, and cytoplasmic pulling mechanisms. The numerical platform we have developed for simulating cytoskeletal assemblies is the first to incorporate the interactions between the fibers and other intracellular bodies with the cytoplasmic fluid, while also accounting for their polymerization, and interactions with motor proteins. The hydrodynamic interactions are computed using boundary integral methods in Stokes flow coupled with highly efficient fast summation techniques that reduce the computational cost to scale linearly with the number of fibers and other bodies. We show that although all three force transduction mechanisms predict proper positioning and orientation of the mitotic spindle, each model produces a different signature in its induced cytoplasmic flow and MT conformation. We suggest that cytoplasmic flows and MT conformation can be used to differentiate between these mechanisms.

  8. Robust control of mitotic spindle orientation in the developing epidermis

    PubMed Central

    Poulson, Nicholas D.

    2010-01-01

    Progenitor cells must balance self-amplification and production of differentiated progeny during development and homeostasis. In the epidermis, progenitors divide symmetrically to increase surface area and asymmetrically to promote stratification. In this study, we show that individual epidermal cells can undergo both types of division, and therefore, the balance is provided by the sum of individual cells’ choices. In addition, we define two control points for determining a cell’s mode of division. First is the expression of the mouse Inscuteable gene, which is sufficient to drive asymmetric cell division (ACD). However, there is robust control of division orientation as excessive ACDs are prevented by a change in the localization of NuMA, an effector of spindle orientation. Finally, we show that p63, a transcriptional regulator of stratification, does not control either of these processes. These data have uncovered two important regulatory points controlling ACD in the epidermis and allow a framework for analysis of how external cues control this important choice. PMID:21098114

  9. Uncovering Chromatin’s Contribution to the Mitotic Spindle: Applications of Computational and Polymer Models

    PubMed Central

    Larson, Matthew E.; Harrison, Benjamin D.; Bloom, Kerry

    2010-01-01

    The mitotic spindle is a structure that forms during mitosis to help ensure that each daughter cell receives a full complement of genetic material. In metaphase, the spindle contains microtubules that nucleate inward from two opposing poles. Chromosomes are attached to plus-ends of these microtubules via protein structures called kinetochores. The centromere is the specific region of kinetochore attachment on the chromosome. Chromatin surrounding the centromere (pericentric chromatin) is subject to microtubule-based forces and is commonly modeled as a linear spring, where the force that it exerts is proportional to the distance that it is stretched. We have incorporated physically based models of chromatin to create more accurate and predictive models of the spindle. In addition, using fluorescence microscopy and motion analysis of fluorescently labeled chromatin spots we discovered that pericentric chromatin is restrained relative to free diffusive motion. The characterization of chromatin is crucial to understand mitotic spindle stability and to understand the cell cycle checkpoint regulating anaphase onset. PMID:20600566

  10. Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit.

    PubMed

    Scarfone, Ilaria; Venturetti, Marianna; Hotz, Manuel; Lengefeld, Jette; Barral, Yves; Piatti, Simonetta

    2015-02-01

    The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is

  11. Asymmetry of the Budding Yeast Tem1 GTPase at Spindle Poles Is Required for Spindle Positioning But Not for Mitotic Exit

    PubMed Central

    Scarfone, Ilaria; Venturetti, Marianna; Hotz, Manuel; Lengefeld, Jette; Barral, Yves; Piatti, Simonetta

    2015-01-01

    The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is

  12. A gene encoding the major beta tubulin of the mitotic spindle in Physarum polycephalum plasmodia

    SciTech Connect

    Burland, T.G.; Paul, E.C.A.; Oetliker, M.; Dove, W.F.

    1988-03-01

    The multinucleate plasmodium of Physarum polycephalum is unusual among eucaryotic cells in that it uses tubulins only in mitotic-spindle microtubules; cytoskeletal, flagellar, and centriolar microtubules are absent in this cell type. The authors identified a ..beta..-tubulin cDNA clone, ..beta..105, which is shown to correspond to the transcript of the betC ..beta..-tubulin locus and to encode ..beta..2 tubulin, the ..beta.. tubulin expressed specifically in the plasmodium and used exclusively in the mitotic spindle. Physarum amoebae utilize tubulins in the cytoskeleton, centrioles, and flagella, in addition to the mitotic spindle. Sequence analysis shows that ..beta..2 tubulin is only 83% identical to the two ..beta.. tubulins expressed in amoebae. This compares with 70 to 83% identity between Physarum ..beta..2 tubulin and the ..beta.. tubulins of yeasts, fungi, alga, trypanosome, fruit fly, chicken, and mouse. On the other hand, Physarum ..beta..2 tubulin is no more similar to, for example, Aspergillus ..beta.. tubulins than it is to those of Drosophila melanogaster or mammals. Several eucaryotes express at least one widely diverged ..beta.. tubulin as well as one or more ..beta.. tubulins that conform more closely to a consensus ..beta..-tubulin sequence. The authors suggest that ..beta..-tubulins diverge more when their expression pattern is restricted, especially when this restriction results in their use in fewer functions. This divergence among ..beta.. tubulins could have resulted through neutral drift. For example, exclusive use of Physarum ..beta..2 tubulin in the spindle may have allowed more amino acid substitutions than would be functionally tolerable in the ..beta.. tubulins that are utilized in multiple microtubular organelles. Alternatively, restricted use of ..beta.. tubulins may allow positive selection to operate more freely to refine ..beta..-tubulin function.

  13. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing.

    PubMed

    Vietri, Marina; Schink, Kay O; Campsteijn, Coen; Wegner, Catherine Sem; Schultz, Sebastian W; Christ, Liliane; Thoresen, Sigrid B; Brech, Andreas; Raiborg, Camilla; Stenmark, Harald

    2015-06-11

    At the onset of metazoan cell division the nuclear envelope breaks down to enable capture of chromosomes by the microtubule-containing spindle apparatus. During anaphase, when chromosomes have separated, the nuclear envelope is reassembled around the forming daughter nuclei. How the nuclear envelope is sealed, and how this is coordinated with spindle disassembly, is largely unknown. Here we show that endosomal sorting complex required for transport (ESCRT)-III, previously found to promote membrane constriction and sealing during receptor sorting, virus budding, cytokinesis and plasma membrane repair, is transiently recruited to the reassembling nuclear envelope during late anaphase. ESCRT-III and its regulatory AAA (ATPase associated with diverse cellular activities) ATPase VPS4 are specifically recruited by the ESCRT-III-like protein CHMP7 to sites where the reforming nuclear envelope engulfs spindle microtubules. Subsequent association of another ESCRT-III-like protein, IST1, directly recruits the AAA ATPase spastin to sever microtubules. Disrupting spastin function impairs spindle disassembly and results in extended localization of ESCRT-III at the nuclear envelope. Interference with ESCRT-III functions in anaphase is accompanied by delayed microtubule disassembly, compromised nuclear integrity and the appearance of DNA damage foci in subsequent interphase. We propose that ESCRT-III, VPS4 and spastin cooperate to coordinate nuclear envelope sealing and spindle disassembly at nuclear envelope-microtubule intersection sites during mitotic exit to ensure nuclear integrity and genome safeguarding, with a striking mechanistic parallel to cytokinetic abscission.

  14. B-Cyclin/CDKs Regulate Mitotic Spindle Assembly by Phosphorylating Kinesins-5 in Budding Yeast

    PubMed Central

    Chee, Mark K.; Haase, Steven B.

    2010-01-01

    Although it has been known for many years that B-cyclin/CDK complexes regulate the assembly of the mitotic spindle and entry into mitosis, the full complement of relevant CDK targets has not been identified. It has previously been shown in a variety of model systems that B-type cyclin/CDK complexes, kinesin-5 motors, and the SCFCdc4 ubiquitin ligase are required for the separation of spindle poles and assembly of a bipolar spindle. It has been suggested that, in budding yeast, B-type cyclin/CDK (Clb/Cdc28) complexes promote spindle pole separation by inhibiting the degradation of the kinesins-5 Kip1 and Cin8 by the anaphase-promoting complex (APCCdh1). We have determined, however, that the Kip1 and Cin8 proteins are present at wild-type levels in the absence of Clb/Cdc28 kinase activity. Here, we show that Kip1 and Cin8 are in vitro targets of Clb2/Cdc28 and that the mutation of conserved CDK phosphorylation sites on Kip1 inhibits spindle pole separation without affecting the protein's in vivo localization or abundance. Mass spectrometry analysis confirms that two CDK sites in the tail domain of Kip1 are phosphorylated in vivo. In addition, we have determined that Sic1, a Clb/Cdc28-specific inhibitor, is the SCFCdc4 target that inhibits spindle pole separation in cells lacking functional Cdc4. Based on these findings, we propose that Clb/Cdc28 drives spindle pole separation by direct phosphorylation of kinesin-5 motors. PMID:20463882

  15. Dietary flavonoid fisetin induces a forced exit from mitosis by targeting the mitotic spindle checkpoint

    PubMed Central

    Salmela, Anna-Leena; Pouwels, Jeroen; Varis, Asta; Kukkonen, Anu M.; Toivonen, Pauliina; Halonen, Pasi K.; Perälä, Merja; Kallioniemi, Olli; Gorbsky, Gary J.; Kallio, Marko J.

    2009-01-01

    Fisetin is a natural flavonol present in edible vegetables, fruits and wine at 2–160 μg/g concentrations and an ingredient in nutritional supplements with much higher concentrations. The compound has been reported to exert anticarcinogenic effects as well as antioxidant and anti-inflammatory activity via its ability to act as an inhibitor of cell proliferation and free radical scavenger, respectively. Our cell-based high-throughput screen for small molecules that override chemically induced mitotic arrest identified fisetin as an antimitotic compound. Fisetin rapidly compromised microtubule drug-induced mitotic block in a proteasome-dependent manner in several human cell lines. Moreover, in unperturbed human cancer cells fisetin caused premature initiation of chromosome segregation and exit from mitosis without normal cytokinesis. To understand the molecular mechanism behind these mitotic errors, we analyzed the consequences of fisetin treatment on the localization and phoshorylation of several mitotic proteins. Aurora B, Bub1, BubR1 and Cenp-F rapidly lost their kinetochore/centromere localization and others became dephosphorylated upon addition of fisetin to the culture medium. Finally, we identified Aurora B kinase as a novel direct target of fisetin. The activity of Aurora B was significantly reduced by fisetin in vitro and in cells, an effect that can explain the observed forced mitotic exit, failure of cytokinesis and decreased cell viability. In conclusion, our data propose that fisetin perturbs spindle checkpoint signaling, which may contribute to the antiproliferative effects of the compound. PMID:19395653

  16. Opposing motor activities are required for the organization of the mammalian mitotic spindle pole

    PubMed Central

    1996-01-01

    We use both in vitro and in vivo approaches to examine the roles of Eg5 (kinesin-related protein), cytoplasmic dynein, and dynactin in the organization of the microtubules and the localization of NuMA (Nu-clear protein that associates with the Mitotic Apparatus) at the polar ends of the mammalian mitotic spindle. Perturbation of the function of Eg5 through either immunodepletion from a cell free system for assembly of mitotic asters or antibody microinjection into cultured cells leads to organized astral microtubule arrays with expanded polar regions in which the minus ends of the microtubules emanate from a ring-like structure that contains NuMA. Conversely, perturbation of the function of cytoplasmic dynein or dynactin through either specific immunodepletition from the cell free system or expression of a dominant negative subunit of dynactin in cultured cells results in the complete lack of organization of microtubules and the failure to efficiently concentrate the NuMA protein despite its association with the microtubules. Simultaneous immunodepletion of these proteins from the cell free system for mitotic aster assembly indicates that the plus end- directed activity of Eg5 antagonizes the minus end-directed activity of cytoplasmic dynein and a minus end-directed activity associated with NuMA during the organization of the microtubules into a morphologic pole. Taken together, these results demonstrate that the unique organization of the minus ends of microtubules and the localization of NuMA at the polar ends of the mammalian mitotic spindle can be accomplished in a centrosome-independent manner by the opposing activities of plus end- and minus end-directed motors. PMID:8896597

  17. Transportin Regulates Major Mitotic Assembly Events: From Spindle to Nuclear Pore Assembly

    PubMed Central

    Lau, Corine K.; Delmar, Valerie A.; Chan, Rene C.; Phung, Quang; Bernis, Cyril; Fichtman, Boris; Rasala, Beth A.

    2009-01-01

    Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportin—and importin beta—initiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events. PMID:19641022

  18. Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly.

    PubMed

    Lau, Corine K; Delmar, Valerie A; Chan, Rene C; Phung, Quang; Bernis, Cyril; Fichtman, Boris; Rasala, Beth A; Forbes, Douglass J

    2009-09-01

    Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportin-and importin beta-initiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events.

  19. Aurora Kinases Phosphorylate Lgl to Induce Mitotic Spindle Orientation in Drosophila Epithelia

    PubMed Central

    Bell, Graham P.; Fletcher, Georgina C.; Brain, Ruth; Thompson, Barry J.

    2015-01-01

    Summary The Lethal giant larvae (Lgl) protein was discovered in Drosophila as a tumor suppressor in both neural stem cells (neuroblasts) and epithelia. In neuroblasts, Lgl relocalizes to the cytoplasm at mitosis, an event attributed to phosphorylation by mitotically activated aPKC kinase and thought to promote asymmetric cell division. Here we show that Lgl also relocalizes to the cytoplasm at mitosis in epithelial cells, which divide symmetrically. The Aurora A and B kinases directly phosphorylate Lgl to promote its mitotic relocalization, whereas aPKC kinase activity is required only for polarization of Lgl. A form of Lgl that is a substrate for aPKC, but not Aurora kinases, can restore cell polarity in lgl mutants but reveals defects in mitotic spindle orientation in epithelia. We propose that removal of Lgl from the plasma membrane at mitosis allows Pins/LGN to bind Dlg and thus orient the spindle in the plane of the epithelium. Our findings suggest a revised model for Lgl regulation and function in both symmetric and asymmetric cell divisions. PMID:25484300

  20. Evaluation of the Dynamicity of Mitotic Exit Network and Spindle Position Checkpoint Components on Spindle Pole Bodies by Fluorescence Recovery After Photobleaching (FRAP).

    PubMed

    Caydasi, Ayse Koca; Pereira, Gislene

    2017-01-01

    Fluorescence recovery after photobleaching (FRAP) is a powerful technique to study in vivo binding and diffusion dynamics of fluorescently labeled proteins. In this chapter, we describe how to determine spindle pole body (SPB) binding dynamics of mitotic exit network (MEN) and spindle position checkpoint (SPOC) proteins using FRAP microscopy. Procedures presented here include the growth of the yeast cultures, sample preparation, image acquisition and analysis.

  1. Multisite Phosphorylation of NuMA-Related LIN-5 Controls Mitotic Spindle Positioning in C. elegans

    PubMed Central

    Portegijs, Vincent; van Mourik, Tim; Akhmanova, Anna; Heck, Albert J. R.; van den Heuvel, Sander

    2016-01-01

    During cell division, the mitotic spindle segregates replicated chromosomes to opposite poles of the cell, while the position of the spindle determines the plane of cleavage. Spindle positioning and chromosome segregation depend on pulling forces on microtubules extending from the centrosomes to the cell cortex. Critical in pulling force generation is the cortical anchoring of cytoplasmic dynein by a conserved ternary complex of Gα, GPR-1/2, and LIN-5 proteins in C. elegans (Gα–LGN–NuMA in mammals). Previously, we showed that the polarity kinase PKC-3 phosphorylates LIN-5 to control spindle positioning in early C. elegans embryos. Here, we investigate whether additional LIN-5 phosphorylations regulate cortical pulling forces, making use of targeted alteration of in vivo phosphorylated residues by CRISPR/Cas9-mediated genetic engineering. Four distinct in vivo phosphorylated LIN-5 residues were found to have critical functions in spindle positioning. Two of these residues form part of a 30 amino acid binding site for GPR-1, which we identified by reverse two-hybrid screening. We provide evidence for a dual-kinase mechanism, involving GSK3 phosphorylation of S659 followed by phosphorylation of S662 by casein kinase 1. These LIN-5 phosphorylations promote LIN-5–GPR-1/2 interaction and contribute to cortical pulling forces. The other two critical residues, T168 and T181, form part of a cyclin-dependent kinase consensus site and are phosphorylated by CDK1-cyclin B in vitro. We applied a novel strategy to characterize early embryonic defects in lethal T168,T181 knockin substitution mutants, and provide evidence for sequential LIN-5 N-terminal phosphorylation and dephosphorylation in dynein recruitment. Our data support that phosphorylation of multiple LIN-5 domains by different kinases contributes to a mechanism for spatiotemporal control of spindle positioning and chromosome segregation. PMID:27711157

  2. The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4

    PubMed Central

    Bertazzi, Daniela Trinca; Kurtulmus, Bahtiyar

    2011-01-01

    The spindle position checkpoint (SPOC) is an essential surveillance mechanism that allows mitotic exit only when the spindle is correctly oriented along the cell axis. Key SPOC components are the kinase Kin4 and the Bub2–Bfa1 GAP complex that inhibit the mitotic exit–promoting GTPase Tem1. During an unperturbed cell cycle, Kin4 associates with the mother spindle pole body (mSPB), whereas Bub2–Bfa1 is at the daughter SPB (dSPB). When the spindle is mispositioned, Bub2–Bfa1 and Kin4 bind to both SPBs, which enables Kin4 to phosphorylate Bfa1 and thereby block mitotic exit. Here, we show that the daughter cell protein Lte1 physically interacts with Kin4 and inhibits Kin4 kinase activity. Specifically, Lte1 binds to catalytically active Kin4 and promotes Kin4 hyperphosphorylation, which restricts Kin4 binding to the mSPB. This Lte1-mediated exclusion of Kin4 from the dSPB is essential for proper mitotic exit of cells with a correctly aligned spindle. Therefore, Lte1 promotes mitotic exit by inhibiting Kin4 activity at the dSPB. PMID:21670215

  3. The cortical protein Lte1 promotes mitotic exit by inhibiting the spindle position checkpoint kinase Kin4.

    PubMed

    Bertazzi, Daniela Trinca; Kurtulmus, Bahtiyar; Pereira, Gislene

    2011-06-13

    The spindle position checkpoint (SPOC) is an essential surveillance mechanism that allows mitotic exit only when the spindle is correctly oriented along the cell axis. Key SPOC components are the kinase Kin4 and the Bub2-Bfa1 GAP complex that inhibit the mitotic exit-promoting GTPase Tem1. During an unperturbed cell cycle, Kin4 associates with the mother spindle pole body (mSPB), whereas Bub2-Bfa1 is at the daughter SPB (dSPB). When the spindle is mispositioned, Bub2-Bfa1 and Kin4 bind to both SPBs, which enables Kin4 to phosphorylate Bfa1 and thereby block mitotic exit. Here, we show that the daughter cell protein Lte1 physically interacts with Kin4 and inhibits Kin4 kinase activity. Specifically, Lte1 binds to catalytically active Kin4 and promotes Kin4 hyperphosphorylation, which restricts Kin4 binding to the mSPB. This Lte1-mediated exclusion of Kin4 from the dSPB is essential for proper mitotic exit of cells with a correctly aligned spindle. Therefore, Lte1 promotes mitotic exit by inhibiting Kin4 activity at the dSPB.

  4. The Saccharomyces cerevisiae spindle pole body duplication gene MPS1 is part of a mitotic checkpoint

    PubMed Central

    1996-01-01

    M-phase checkpoints inhibit cell division when mitotic spindle function is perturbed. Here we show that the Saccharomyces cerevisiae MPS1 gene product, an essential protein kinase required for spindle pole body (SPB) duplication (Winey et al., 1991; Lauze et al., 1995), is also required for M-phase check-point function. In cdc31-2 and mps2-1 mutants, conditional failure of SPB duplication results in cell cycle arrest with high p34CDC28 kinase activity that depends on the presence of the wild-type MAD1 checkpoint gene, consistent with checkpoint arrest of mitosis. In contrast, mps1 mutant cells fail to duplicate their SPBs and do not arrest division at 37 degrees C, exhibiting a normal cycle of p34CDC28 kinase activity despite the presence of a monopolar spindle. Double mutant cdc31-2, mps1-1 cells also fail to arrest mitosis at 37 degrees C, despite having SPB structures similar to cdc31-2 single mutants as determined by EM analysis. Arrest of mitosis upon microtubule depolymerization by nocodazole is also conditionally absent in mps1 strains. This is observed in mps1 cells synchronized in S phase with hydroxyurea before exposure to nocodazole, indicating that failure of checkpoint function in mps1 cells is independent of SPB duplication failure. In contrast, hydroxyurea arrest and a number of other cdc mutant arrest phenotypes are unaffected by mps1 alleles. We propose that the essential MPS1 protein kinase functions both in SPB duplication and in a mitotic checkpoint monitoring spindle integrity. PMID:8567717

  5. LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs.

    PubMed

    Po'uha, S T; Shum, M S Y; Goebel, A; Bernard, O; Kavallaris, M

    2010-01-28

    LIM-kinase 2 (LIMK2) belongs to the LIMK family of proteins, which comprises LIMK1 and LIMK2. Both proteins regulate actin polymerization through phosphorylation and inactivation of the actin depolymerizing factor cofilin. In this study, we show that the level of LIMK2 protein is increased in neuroblastoma, BE(2)-C cells, selected for resistance to microtubule-destabilizing agents, vincristine and colchicine. However, the level of phosphorylated LIMK1 and LIMK2 was similar in the resistant and parental BE(2)-C cells. In contrast, the level of phospho-cofilin was greatly increased in the drug-resistant cells. Downregulation of LIMK2 expression increases sensitivity of neuroblastoma SH-EP cells to vincristine and vinblastine but not to microtubule-stabilizing agents, while it's overexpression increased its resistance to vincristine. Its vincristine-induced mitotic arrest was moderately inhibited in the LIMK2 knockdown cells, suggesting that the increased drug sensitivity is through an alternative mechanism other then mitotic arrest and apoptosis. Moreover, downregulation of LIMK2 expression induces formation of abnormal mitotic spindles, an effect enhanced in the presence of microtubule-destabilizing agents. LIMK2 is important for normal mitotic spindle formation and altered LIMK2 expression mediates sensitivity to microtubule destabilizing agents. These findings suggest that inhibition of LIMK2 activity may be used for the treatment of tumors resistant to microtubule-destabilizing drugs.

  6. Abundance of actin filaments in the preprophase band and mitotic spindle of brick1 Zea mays mutant.

    PubMed

    Panteris, Emmanuel; Adamakis, Ioannis-Dimosthenis S; Tzioutziou, Nickoleta A

    2009-07-01

    The preprophase band and mitotic spindle of dividing protodermal cells of wild-type Zea mays leaves include few actin filaments. Surprisingly, abundant actin filaments were observed in the above arrays, in dividing protodermal cells in the leaves of the brick1 mutant. The same abundance was observed in the spindle of Taxol-treated brick1 mitotic protodermal cells. Apart from the above difference, the relevant arrays displayed normal microtubule organization in both wild type and mutant cells, as far as can be discerned by immunofluorescence microscopy. Accordingly, the abundance of actin filaments in the preprophase band and spindle of brick1 mitotic cells seems not to influence the structure of the above arrays and might be a non-functional "side-effect" of defective F-actin organization in this mutant.

  7. Human papillomavirus type 16 E7 oncoprotein engages but does not abrogate the mitotic spindle assembly checkpoint

    SciTech Connect

    Yu, Yueyang; Munger, Karl

    2012-10-10

    The mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore-microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as well as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons.

  8. The SUMO protease SENP1 is required for cohesion maintenance and mitotic arrest following spindle poison treatment

    SciTech Connect

    Era, Saho; Abe, Takuya; Arakawa, Hiroshi; Kobayashi, Shunsuke; Szakal, Barnabas; Yoshikawa, Yusuke; Motegi, Akira; Takeda, Shunichi; Branzei, Dana

    2012-09-28

    Highlights: Black-Right-Pointing-Pointer SENP1 knockout chicken DT40 cells are hypersensitive to spindle poisons. Black-Right-Pointing-Pointer Spindle poison treatment of SENP1{sup -/-} cells leads to increased mitotic slippage. Black-Right-Pointing-Pointer Mitotic slippage in SENP1{sup -/-} cells associates with apoptosis and endoreplication. Black-Right-Pointing-Pointer SENP1 counteracts sister chromatid separation during mitotic arrest. Black-Right-Pointing-Pointer Plk1-mediated cohesion down-regulation is involved in colcemid cytotoxicity. -- Abstract: SUMO conjugation is a reversible posttranslational modification that regulates protein function. SENP1 is one of the six SUMO-specific proteases present in vertebrate cells and its altered expression is observed in several carcinomas. To characterize SENP1 role in genome integrity, we generated Senp1 knockout chicken DT40 cells. SENP1{sup -/-} cells show normal proliferation, but are sensitive to spindle poisons. This hypersensitivity correlates with increased sister chromatid separation, mitotic slippage, and apoptosis. To test whether the cohesion defect had a causal relationship with the observed mitotic events, we restored the cohesive status of sister chromatids by introducing the TOP2{alpha}{sup +/-} mutation, which leads to increased catenation, or by inhibiting Plk1 and Aurora B kinases that promote cohesin release from chromosomes during prolonged mitotic arrest. Although TOP2{alpha} is SUMOylated during mitosis, the TOP2{alpha}{sup +/-} mutation had no obvious effect. By contrast, inhibition of Plk1 or Aurora B rescued the hypersensitivity of SENP1{sup -/-} cells to colcemid. In conclusion, we identify SENP1 as a novel factor required for mitotic arrest and cohesion maintenance during prolonged mitotic arrest induced by spindle poisons.

  9. Phallacidin stains the kinetochore region in the mitotic spindle of the green algae Oedogonium spp.

    PubMed

    Sampson, K; Pickett-Heaps, J D

    2001-01-01

    We found previously that in living cells of Oedogonium cardiacum and O. donnellii, mitosis is blocked by the drug cytochalasin D (CD). We now report on the staining observed in these spindles with fluorescently actin-labeling reagents, particularly Bodipy FL phallacidin. Normal mitotic cells exhibited spots of staining associated with chromosomes; frequently the spots appeared in pairs during prometaphase-metaphase. During later anaphase and telophase, the staining was confined to the region between chromosomes and poles. The texture of the staining appeared to be somewhat dispersed by CD treatment but it was still present, particularly after shorter (< 2 h) exposure. Electron microscopy of CD-treated cells revealed numerous spindle microtubules (MTs); many kinetochores had MTs associated with them, often laterally and some even terminating in the kinetochore as normal, but the usual bundle of kinetochore MTs was never present. As treatment with CD became prolonged, the kinetochores became shrunken and sunk into the chromosomes. These results support the possibility that actin is present in the kinetochore of Oedogonium spp. The previous observations on living cells suggest that it is a functional component of the kinetochore-MT complex involved in the correct attachment of chromosomes to the spindle.

  10. Carbofuran alters centrosome and spindle organization, and delays cell division in oocytes and mitotic cells.

    PubMed

    Cinar, Ozgur; Semiz, Olcay; Can, Alp

    2015-04-01

    Although many countries banned of its usage, carbofuran (CF) is still one of the most commonly used carbamate derivative insecticides against insects and nematodes in agriculture and household, threatening the human and animal health by contaminating air, water, and food. Our goal was to evaluate the potential toxic effects of CF on mammalian oocytes besides mitotic cells. Caspase-dependent apoptotic pathway was assessed by immunofluorescence and western blot techniques. Alterations in the meiotic spindle formation after CF exposure throughout the in vitro maturation of mice oocyte-cumulus complexes (COCs) were analyzed by using a 3D confocal laser microscope. Maturation efficiency and kinetics were assessed by direct observation of the COCs. Results indicated that the number of TUNEL-positive cells increased in CF-exposed groups, particularly higher doses (>250 µM) in a dose-dependent fashion. The ratio of anticleaved caspase-3 labeled cells in those groups positively correlated with TUNEL-positivity. Western blot analysis confirmed a significant increase in active caspase-3 activity. CF caused a dose-dependent accumulation of oocytes at prometaphase-I (PM-I) of meiosis. Partial loss of spindle microtubules (MTs) was noted, which consequently gave rise to a diamond shape spindle. Aberrant pericentrin foci were noted particularly in PM-I and metaphase-I (M-I) stages. Conclusively, CF (1) induces programmed cell death in a dose-dependent manner, and (2) alters spindle morphology most likely through a mechanism that interacts with MT assembly and/or disorientation of pericentriolar proteins. Overall, data suggest that CF could give rise to aneuploidy or cell death in higher doses, therefore reduce fertilization and implantation rates.

  11. Cytoskeletal architecture of isolated mitotic spindle with special reference to microtubule-associated proteins and cytoplasmic dynein.

    PubMed

    Hirokawa, N; Takemura, R; Hisanaga, S

    1985-11-01

    We have studied cytoskeletal architectures of isolated mitotic apparatus from sea urchin eggs using quick-freeze, deep-etch electron microscopy. This method revealed the existence of an extensive three-dimensional network of straight and branching crossbridges between spindle microtubules. The surface of the spindle microtubules was almost entirely covered with hexagonally packed, small, round button-like structures which were very uniform in shape and size (approximately 8 nm in diameter), and these microtubule buttons frequently provided bases for crossbridges between adjacent microtubules. These structures were removed from the surface of microtubules by high salt (0.6 M NaCl) extraction. Microtubule-associated proteins (MAPs) and microtubules isolated from mitotic spindles which were mainly composed of a large amount of 75-kD protein and some high molecular mass (250 kD, 245 kD) proteins were polymerized in vitro and examined by quick-freeze, deep-etch electron microscopy. The surfaces of microtubules were entirely covered with the same hexagonally packed round buttons, the arrangement of which is intimately related to that of tubulin dimers. Short crossbridges and some longer crossbridges were also observed. High salt treatment (0.6 M NaCl) extracted both 75-kD protein and high molecular weight proteins and removed microtubule buttons and most of crossbridges from the surface of microtubules. Considering the relatively high amount of 75-kD protein among MAPs isolated from mitotic spindles, it is concluded that these microtubule buttons probably consist of 75-kD MAP and that some of the crossbridges in vivo could belong to MAPs. Another kind of granule, larger in size (11-26 nm in diameter), was also on occasion associated with the surface of microtubules of mitotic spindles. A fine sidearm sometimes connected the larger granule to adjacent microtubules. Localization of cytoplasmic dynein ATPase in the mitotic spindle was investigated by electron microscopic

  12. 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells

    PubMed Central

    Zhang, Lei; Hou, Yubin; Li, Zhiyuan; Ji, Xinmiao; Wang, Ze; Wang, Huizhen; Tian, Xiaofei; Yu, Fazhi; Yang, Zhenye; Pi, Li; Mitchison, Timothy J; Lu, Qingyou; Zhang, Xin

    2017-01-01

    Purified microtubules have been shown to align along the static magnetic field (SMF) in vitro because of their diamagnetic anisotropy. However, whether mitotic spindle in cells can be aligned by magnetic field has not been experimentally proved. In particular, the biological effects of SMF of above 20 T (Tesla) have never been reported. Here we found that in both CNE-2Z and RPE1 human cells spindle orients in 27 T SMF. The direction of spindle alignment depended on the extent to which chromosomes were aligned to form a planar metaphase plate. Our results show that the magnetic torque acts on both microtubules and chromosomes, and the preferred direction of spindle alignment relative to the field depends more on chromosome alignment than microtubules. In addition, spindle morphology was also perturbed by 27 T SMF. This is the first reported study that investigated the cellular responses to ultra-high magnetic field of above 20 T. Our study not only found that ultra-high magnetic field can change the orientation and morphology of mitotic spindles, but also provided a tool to probe the role of spindle orientation and perturbation in developmental and cancer biology. DOI: http://dx.doi.org/10.7554/eLife.22911.001 PMID:28244368

  13. The tumour suppressor DLC2 ensures mitotic fidelity by coordinating spindle positioning and cell-cell adhesion.

    PubMed

    Vitiello, Elisa; Ferreira, Jorge G; Maiato, Helder; Balda, Maria S; Matter, Karl

    2014-12-18

    Dividing epithelial cells need to coordinate spindle positioning with shape changes to maintain cell-cell adhesion. Microtubule interactions with the cell cortex regulate mitotic spindle positioning within the plane of division. How the spindle crosstalks with the actin cytoskeleton to ensure faithful mitosis and spindle positioning is unclear. Here we demonstrate that the tumour suppressor DLC2, a negative regulator of Cdc42, and the interacting kinesin Kif1B coordinate cell junction maintenance and planar spindle positioning by regulating microtubule growth and crosstalk with the actin cytoskeleton. Loss of DLC2 induces the mislocalization of Kif1B, increased Cdc42 activity and cortical recruitment of the Cdc42 effector mDia3, a microtubule stabilizer and promoter of actin dynamics. Accordingly, DLC2 or Kif1B depletion promotes microtubule stabilization, defective spindle positioning, chromosome misalignment and aneuploidy. The tumour suppressor DLC2 and Kif1B are thus central components of a signalling network that guides spindle positioning, cell-cell adhesion and mitotic fidelity.

  14. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles.

    PubMed

    Sharp, D J; McDonald, K L; Brown, H M; Matthies, H J; Walczak, C; Vale, R D; Mitchison, T J; Scholey, J M

    1999-01-11

    Previous genetic and biochemical studies have led to the hypothesis that the essential mitotic bipolar kinesin, KLP61F, cross-links and slides microtubules (MTs) during spindle assembly and function. Here, we have tested this hypothesis by immunofluorescence and immunoelectron microscopy (immunoEM). We show that Drosophila embryonic spindles at metaphase and anaphase contain abundant bundles of MTs running between the spindle poles. These interpolar MT bundles are parallel near the poles and antiparallel in the midzone. We have observed that KLP61F motors, phosphorylated at a cdk1/cyclin B consensus domain within the BimC box (BCB), localize along the length of these interpolar MT bundles, being concentrated in the midzone region. Nonphosphorylated KLP61F motors, in contrast, are excluded from the spindle and display a cytoplasmic localization. Immunoelectron microscopy further suggested that phospho-KLP61F motors form cross-links between MTs within interpolar MT bundles. These bipolar KLP61F MT-MT cross-links should be capable of organizing parallel MTs into bundles within half spindles and sliding antiparallel MTs apart in the spindle midzone. Thus we propose that bipolar kinesin motors and MTs interact by a "sliding filament mechanism" during the formation and function of the mitotic spindle.

  15. Modelling the mitotic apparatus. From the discovery of the bipolar spindle to modern concepts.

    PubMed

    Gourret, J P

    1995-06-01

    This bibliographical review of the modelling of the mitotic apparatus covers a period of one hundred and twenty years, from the discovery of the bipolar mitotic spindle up to the present day. Without attempting to be fully comprehensive, it will describe the evolution of the main ideas that have left their mark on a century of experimental and theoretical research. Fol and Bütschli's first writings date back to 1873, at a time when Schleiden and Schwann's cell theory was rapidly gaining ground throughout Germany. Both mitosis and chromosomes were to be discovered within the space of thirty years, along with the two key events in the animal and plant reproductive cycle, namely fecondation and meiosis. The mitotic pole, a term still in use to this day, was employed to describe a morphological fact which was noted as early as 1876, namely that the lines and the dots of the karyokinetic figure, with its spindle and asters, looks remarkably like the lines of force around a bar magnet. This was to lead to models designed to explain the movements of chromosomes which take place when the cell nucleus appears to cease to exist as an organelle during mitosis. The nature of those mechanisms and the origin of the forces behind the chromosomes' ordered movements were central to the debate. Auguste Prenant, in a remarkable bibliographical synthesis published in 1910, summed up the opposing viewpoints of the 'vitalists', on the one hand, who favoured the theory of contractility or extensility in spindle fibres, and of those who believed in models based on physical phenomena, on the other. The latter subdivided into two groups: some, like Bütschli, Rhumbler or Leduc, referred to diffusion, osmosis and superficial tension, whilst the others, led by Gallardo and Hartog, focussed on the laws of electromagnetism. Lillie, Kuwada and Darlington followed up this line of research. The mid-20th century was a major turning point. Most of the modelling mentioned above was criticized and

  16. EFHC1, a protein mutated in juvenile myoclonic epilepsy, associates with the mitotic spindle through its N-terminus

    SciTech Connect

    Nijs, Laurence de; Lakaye, Bernard; Coumans, Bernard; Leon, Christine; Ikeda, Takashi; Delgado-Escueta, Antonio V.; Chanas, Grazyna . E-mail: G.Chanas@ulg.ac.be

    2006-09-10

    A novel gene, EFHC1, mutated in juvenile myoclonic epilepsy (JME) encodes a protein with three DM10 domains of unknown function and one putative EF-hand motif. To study the properties of EFHC1, we expressed EGFP-tagged protein in various cell lines. In interphase cells, the fusion protein was present in the cytoplasm and in the nucleus with specific accumulation at the centrosome. During mitosis EGFP-EFHC1 colocalized with the mitotic spindle, especially at spindle poles and with the midbody during cytokinesis. Using a specific antibody, we demonstrated the same distribution of the endogenous protein. Deletion analyses revealed that the N-terminal region of EFHC1 is crucial for the association with the mitotic spindle and the midbody. Our results suggest that EFHC1 could play an important role during cell division.

  17. Use of a Laser-Induced Optical Force Trap to Study Chromosome Movement on the Mitotic Spindle

    NASA Astrophysics Data System (ADS)

    Berns, Michael W.; Wright, William H.; Tromberg, Bruce J.; Profeta, Glen A.; Andrews, Jeffrey J.; Walter, Robert J.

    1989-06-01

    A laser-induced optical force trap was used to alter the movement of chromosomes in mitotic cells in vitro. The trap was produced by using a 1.06-μ m neodymium YAG (yttrium/aluminum garnet) laser focused through a phase-contrast microscope. The trap was applied to one side of centrophilic chromosomes off the mitotic spindle and to latemoving chromosomes on the mitotic spindle. In both situations, chromosome movement was initiated in the direction opposite to that of the applied force. When the force was applied, chromosomes moved at velocities 10-20 times normal. These studies verify and extend the feasibility of using this new technique to study factors that influence organelle motility.

  18. RHAMM Promotes Interphase Microtubule Instability and Mitotic Spindle Integrity through MEK1/ERK1/2 Activity*

    PubMed Central

    Tolg, Cornelia; Hamilton, Sara R.; Morningstar, Lyndsey; Zhang, Jing; Zhang, S.; Esguerra, Kenneth V.; Telmer, Patrick G.; Luyt, Len G.; Harrison, Rene; McCarthy, James B.; Turley, Eva A.

    2010-01-01

    An oncogenic form of RHAMM (receptor for hyaluronan-mediated motility, mouse, amino acids 163–794 termed RHAMMΔ163) is a cell surface hyaluronan receptor and mitotic spindle protein that is highly expressed in aggressive human cancers. Its regulation of mitotic spindle integrity is thought to contribute to tumor progression, but the molecular mechanisms underlying this function have not previously been defined. Here, we report that intracellular RHAMMΔ163 modifies the stability of interphase and mitotic spindle microtubules through ERK1/2 activity. RHAMM−/− mouse embryonic fibroblasts exhibit strongly acetylated interphase microtubules, multi-pole mitotic spindles, aberrant chromosome segregation, and inappropriate cytokinesis during mitosis. These defects are rescued by either expression of RHAMM or mutant active MEK1. Mutational analyses show that RHAMMΔ163 binds to α- and β-tubulin protein via a carboxyl-terminal leucine zipper, but in vitro analyses indicate this interaction does not directly contribute to tubulin polymerization/stability. Co-immunoprecipitation and pulldown assays reveal complexes of RHAMMΔ163, ERK1/2-MEK1, and α- and β-tubulin and demonstrate direct binding of RHAMMΔ163 to ERK1 via a D-site motif. In vitro kinase analyses, expression of mutant RHAMMΔ163 defective in ERK1 binding in mouse embryonic fibroblasts, and blocking MEK1 activity collectively confirm that the effect of RHAMMΔ163 on interphase and mitotic spindle microtubules is mediated by ERK1/2 activity. Our results suggest a model wherein intracellular RHAMMΔ163 functions as an adaptor protein to control microtubule polymerization during interphase and mitosis as a result of localizing ERK1/2-MEK1 complexes to their tubulin-associated substrates. PMID:20558733

  19. The Mitotic Spindle in the One-Cell C. elegans Embryo Is Positioned with High Precision and Stability

    NASA Astrophysics Data System (ADS)

    Pécréaux, Jacques; Redemann, Stefanie; Alayan, Zahraa; Mercat, Benjamin; Pastezeur, Sylvain; Garzon-Coral, Carlos; Hyman, Anthony A.; Howard, Jonathon

    2016-10-01

    Precise positioning of the mitotic spindle is important for specifying the plane of cell division, which in turn determines how the cytoplasmic contents are partitioned into the daughter cells, and how the daughters are positioned within the tissue. During metaphase in the early C. elegans embryo, the spindle is aligned and centered on the anterior-posterior axis by a microtubule-dependent machinery that exerts restoring forces when the spindle is displaced from the center. To investigate the accuracy and stability of centering, we tracked the position and orientation of the mitotic spindle during the first cell division with high temporal and spatial resolution. We found that the precision is remarkably high: the cell-to-cell variation in the transverse position of the center of the spindle during metaphase, as measured by the standard deviation, was only 1.5% of the length of the short axis of the cell. Spindle position is also very stable: the standard deviation of the fluctuations in transverse spindle position during metaphase was only 0.5% of the short axis of the cell. Assuming that stability is limited by fluctuations in the number of independent motor elements such as microtubules or dyneins underlying the centering machinery, we infer that the number is on the order of one thousand, consistent with the several thousand of astral microtubules in these cells. Astral microtubules grow out from the two spindle poles, make contact with the cell cortex, and then shrink back shortly thereafter. The high stability of centering can be accounted for quantitatively if, while making contact with the cortex, the astral microtubules buckle as they exert compressive, pushing forces. We thus propose that the large number of microtubules in the asters provides a highly precise mechanism for positioning the spindle during metaphase while assembly is completed prior to the onset of anaphase.

  20. Lte1 promotes mitotic exit by controlling the localization of the spindle position checkpoint kinase Kin4

    PubMed Central

    Falk, Jill E.; Chan, Leon Y.; Amon, Angelika

    2011-01-01

    For a daughter cell to receive a complete genomic complement, it is essential that the mitotic spindle be positioned accurately within the cell. In budding yeast, a signaling system known as the spindle position checkpoint (SPOC) monitors spindle position and regulates the activity of the mitotic exit network (MEN), a GTPase signaling pathway that promotes exit from mitosis. The protein kinase Kin4 is a central component of the spindle position checkpoint. Kin4 primarily localizes to the mother cell and associates with spindle pole bodies (SPBs) located in the mother cell to inhibit MEN signaling. In contrast, the kinase does not associate with the SPB in the bud. Thus, only when a MEN bearing SPB leaves the mother cell and the spindle is accurately positioned along the mother–bud axis can MEN signaling occur and cell division proceed. Here, we describe a mechanism ensuring that Kin4 only associates with mother cell-located SPBs. The bud-localized MEN regulator Lte1, whose molecular function has long been unclear, prevents Kin4 that escapes into the bud from associating with SPBs in the daughter cell. PMID:21709215

  1. Lte1 promotes mitotic exit by controlling the localization of the spindle position checkpoint kinase Kin4.

    PubMed

    Falk, Jill E; Chan, Leon Y; Amon, Angelika

    2011-08-02

    For a daughter cell to receive a complete genomic complement, it is essential that the mitotic spindle be positioned accurately within the cell. In budding yeast, a signaling system known as the spindle position checkpoint (SPOC) monitors spindle position and regulates the activity of the mitotic exit network (MEN), a GTPase signaling pathway that promotes exit from mitosis. The protein kinase Kin4 is a central component of the spindle position checkpoint. Kin4 primarily localizes to the mother cell and associates with spindle pole bodies (SPBs) located in the mother cell to inhibit MEN signaling. In contrast, the kinase does not associate with the SPB in the bud. Thus, only when a MEN bearing SPB leaves the mother cell and the spindle is accurately positioned along the mother-bud axis can MEN signaling occur and cell division proceed. Here, we describe a mechanism ensuring that Kin4 only associates with mother cell-located SPBs. The bud-localized MEN regulator Lte1, whose molecular function has long been unclear, prevents Kin4 that escapes into the bud from associating with SPBs in the daughter cell.

  2. Proteins related to the spindle and checkpoint mitotic emphasize the different pathogenesis of hypoplastic MDS.

    PubMed

    Heredia, Fabiola Fernandes; de Sousa, Juliana Cordeiro; Ribeiro Junior, Howard Lopes; Carvalho, Alex Fiorini; Magalhaes, Silvia Maria Meira; Pinheiro, Ronald Feitosa

    2014-02-01

    Some studies show that alterations in expression of proteins related to mitotic spindle (AURORAS KINASE A and B) and mitotic checkpoint (CDC20 and MAD2L1) are involved in chromosomal instability and tumor progression in various solid and hematologic malignancies. This study aimed to evaluate these genes in MDS patients. The cytogenetics analysis was carried out by G-banding, AURKA and AURKB amplification was performed using FISH, and AURKA, AURKB, CDC20 and MAD2L1 gene expression was performed by qRT-PCR in 61 samples of bone marrow from MDS patients. AURKA gene amplification was observed in 10% of the cases, which also showed higher expression levels than the control group (p=0.038). Patients with normo/hypercellular BM presented significantly higher expression levels than hypocellular BM patients, but normo and hypercellular BM groups did not differ. After logistic regression analysis, our results showed that HIGH expression levels were associated with increased risk of developing normo/hypercellular MDS. It also indicated that age is associated with AURKA, CDC20 and MAD2L1 HIGH expression levels. The distinct expression of hypocellular patients emphasizes the prognostic importance of cellularity to MDS. The amplification/high expression of AURKA suggests that the increased expression of this gene may be related to the pathogenesis of disease.

  3. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    PubMed

    Zhang, Zhong Rong; Al Zaharna, Mazen; Wong, Matthew Man-Kin; Chiu, Sung-Kay; Cheung, Hon-Yeung

    2013-01-01

    Andrographolide (Andro) suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi) has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose) polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC), alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  4. XCTK2: A Kinesin-related Protein That Promotes Mitotic Spindle Assembly in Xenopus laevis Egg Extracts

    PubMed Central

    Walczak, Claire E.; Verma, Suzie; Mitchison, Timothy J.

    1997-01-01

    We used a peptide antibody to a conserved sequence in the motor domain of kinesins to screen a Xenopus ovary cDNA expression library. Among the clones isolated were two that encoded a protein we named XCTK2 for Xenopus COOH-terminal kinesin 2. XCTK2 contains an NH2-terminal globular domain, a central α-helical stalk, and a COOH-terminal motor domain. XCTK2 is similar to CTKs in other organisms and is most homologous to CHO2. Antibodies raised against XCTK2 recognize a 75-kD protein in Xenopus egg extracts that cosediments with microtubules. In Xenopus tissue culture cells, the anti-XCTK2 antibodies stain mitotic spindles as well as a subset of interphase nuclei. To probe the function of XCTK2, we have used an in vitro assay for spindle assembly in Xenopus egg extracts. Addition of antibodies to cytostatic factor- arrested extracts causes a 70% reduction in the percentage of bipolar spindles formed. XCTK2 is not required for maintenance of bipolar spindles, as antibody addition to preformed spindles has no effect. To further evaluate the function of XCTK2, we expressed XCTK2 in insect Sf-9 cells using the baculovirus expression system. When purified (recombinant XCTK2 is added to Xenopus egg extracts at a fivefold excess over endogenous levels) there is a stimulation in both the rate and extent of bipolar spindle formation. XCTK2 exists in a large complex in extracts and can be coimmunoprecipitated with two other proteins from extracts. XCTK2 likely plays an important role in the establishment and structural integrity of mitotic spindles. PMID:9049251

  5. Phospho-Ser383-Elk-1 is localized to the mitotic spindles during cell cycle and interacts with mitotic kinase Aurora-A.

    PubMed

    Demir, Ozlem; Kurnaz, Isil Aksan

    2013-10-01

    Elk-1 is a member of the E-twenty-six (ETS) domain superfamily of transcription factors and has been traditionally associated with mitogen-induced immediate early gene transcription upon phosphorylation by mitogen activated protein kinases (ERK/MAPK). Elk-1 is not only upregulated but also phosphorylated in brain tumour cells. However, in this study, we show for the first time that S383-phosphorylated Elk-1 (P-S383-Elk-1) is associated with mitotic spindle poles from metaphase through telophase and relocates to the spindle midbody during cytokinesis, while Thr417Ala mutation is associated with DNA throughout mitosis. Serine 383 phosphorylation appears to be important for polar localization of Elk-1, since exogenous protein including serine-to-alanine mutation was seen to be distributed throughout the spindle fibres. We further show that Elk-1 interacts with the cell cycle kinase Aurora-A, and when Aurora inhibitors are used, P-S383-Elk-1 fails to localize to the poles and remains associated with DNA. Apart from one transcriptional repressor molecule, Kaiso, this is the first time a transactivator was shown to possess such mitotic localization and interaction. The functional significance and detailed mechanism of this cell cycle-related localization of Elk-1 are yet to be determined.

  6. Acrylamide effects on kinesin-related proteins of the mitotic/meiotic spindle

    SciTech Connect

    Sickles, Dale W. . E-mail: dsickles@mcg.edu; Sperry, Ann O. . E-mail: sperrya@ecu.edu; Testino, Angie; Friedman, Marvin

    2007-07-01

    The microtubule (MT) motor protein kinesin is a vital component of cells and organs expressing acrylamide (ACR) toxicity. As a mechanism of its potential carcinogenicity, we determined whether kinesins involved in cell division are inhibited by ACR similar to neuronal kinesin [Sickles, D.W., Brady, S.T., Testino, A.R., Friedman, M.A., and Wrenn, R.A. (1996). Direct effect of the neurotoxicant acrylamide on kinesin-based microtubule motility. Journal of Neuroscience Research 46, 7-17.] Kinesin-related genes were isolated from rat testes [Navolanic, P.M., and Sperry, A.O. (2000). Identification of isoforms of a mitotic motor in mammalian spermatogenesis. Biology of Reproduction 62, 1360-1369.], their kinesin-like proteins expressed in bacteria using recombinant DNA techniques and the effects of ACR, glycidamide (GLY) and propionamide (a non-neurotoxic metabolite) on the function of two of the identified kinesin motors were tested. KIFC5A MT bundling activity, required for mitotic spindle formation, was measured in an MT-binding assay. Both ACR and GLY caused a similar concentration-dependent reduction in the binding of MT; concentrations of 100 {mu}M ACR or GLY reduced its activity by 60%. KRP2 MT disassembling activity was assayed using the quantity of tubulin disassembled from taxol-stabilized MT. Both ACR and GLY inhibited KRP2-induced MT disassembly. GLY was substantially more potent; significant reductions of 60% were achieved by 500 {mu}M, a comparable inhibition by ACR required a 5 mM concentration. Propionamide had no significant effect on either kinesin, except KRP2 at 10 mM. This is the first report of ACR inhibition of a mitotic/meiotic motor protein. ACR (or GLY) inhibition of kinesin may be an alternative mechanism to DNA adduction in the production of cell division defects and potential carcinogenicity. We conclude that ACR may act on multiple kinesin family members and produce toxicities in organs highly dependent on microtubule-based functions.

  7. How does a protein with dual mitotic spindle and extracellular matrix receptor functions affect tumor susceptibility and progression?

    PubMed Central

    Tolg, Cornelia; McCarthy, James B

    2011-01-01

    The mechanisms responsible for the oncogenic effects of the hyaluronan (HA) receptor and mitotic spindle binding protein, RHAMM, are poorly understood. On one hand, extracellular RHAMM interacts with HA and cellsurface receptors such as CD44 to coordinately activate the MAPK/ERK1,2 pathway, thus contributing to the spread and proliferation of tumor cells. On the other hand, intracellular RHAMM decorates mitotic spindles and is necessary for spindle formation and progression through G2/M and overexpression or loss of RHAMM can result in multipole spindles and chromosome missegregation. The deregulation of these intracellular functions could lead to genomic instability and fuel tumor progression. This suggests that both extracellular and intracellular RHAMM can promote tumor progression. Intracellular RHAMM can bind directly to ERK1 to form complexes with ERK2, MEK1 and ERK1,2 substrates, and we present a model whereby RHAMM's function is as a scaffold protein, controlling activation and targeting of ERK1,2 to specific substrates. PMID:21655434

  8. C-terminal region of Mad2 plays an important role during mitotic spindle checkpoint in fission yeast Schizosaccharomyces pombe.

    PubMed

    Singh, Gaurav Kumar; Karade, Sharanbasappa Shrimant; Ranjan, Rajeev; Ahamad, Nafees; Ahmed, Shakil

    2017-02-01

    The mitotic arrest deficiency 2 (Mad2) protein is an essential component of the spindle assembly checkpoint that interacts with Cdc20/Slp1 and inhibit its ability to activate anaphase promoting complex/cyclosome (APC/C). In bladder cancer cell line the C-terminal residue of the mad2 gene has been found to be deleted. In this study we tried to understand the role of the C-terminal region of mad2 on the spindle checkpoint function. To envisage the role of C-terminal region of Mad2, we truncated 25 residues of Mad2 C-terminal region in fission yeast S.pombe and characterized its effect on spindle assembly checkpoint function. The cells containing C-terminal truncation of Mad2 exhibit sensitivity towards microtubule destabilizing agent suggesting perturbation of spindle assembly checkpoint. Further, the C-terminal truncation of Mad2 exhibit reduced viability in the nda3-KM311 mutant background at non-permissive temperature. Truncation in mad2 gene also affects its foci forming ability at unattached kinetochore suggesting that the mad2-∆CT mutant is unable to maintain spindle checkpoint activation. However, in response to the defective microtubule, only brief delay of mitotic progression was observed in Mad2 C-terminal truncation mutant. In addition we have shown that the deletion of two β strands of Mad2 protein abolishes its ability to interact with APC activator protein Slp1/Cdc20. We purpose that the truncation of two β strands (β7 and β8) of Mad2 destabilize the safety belt and affect the Cdc20-Mad2 interaction leading to defects in the spindle checkpoint activation.

  9. Downregulation of protein 4.1R, a mature centriole protein, disrupts centrosomes, alters cell cycle progression, and perturbs mitotic spindles and anaphase.

    PubMed

    Krauss, Sharon Wald; Spence, Jeffrey R; Bahmanyar, Shirin; Barth, Angela I M; Go, Minjoung M; Czerwinski, Debra; Meyer, Adam J

    2008-04-01

    Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events.

  10. Kinetochores capture astral microtubules during chromosome attachment to the mitotic spindle: direct visualization in live newt lung cells

    PubMed Central

    1990-01-01

    When viewed by light microscopy the mitotic spindle in newt pneumocytes assembles in an optically clear area of cytoplasm, virtually devoid of mitochondria and other organelles, which can be much larger than the forming spindle. This unique optical property has allowed us to examine the behavior of individual microtubules, at the periphery of asters in highly flattened living prometaphase cells, by video-enhanced differential interference-contrast light microscopy and digital image processing. As in interphase newt pneumocytes (Cassimeris, L., N. K. Pryer, and E. D. Salmon. 1988. J. Cell Biol. 107:2223-2231), centrosomal (i.e., astral) microtubules in prometaphase cells appear to exhibit dynamic instability, elongating at a mean rate of 14.3 +/- 5.1 microns/min (N = 19) and shortening at approximately 16 microns/min. Under favorable conditions the initial interaction between a kinetochore and the forming spindle can be directly observed. During this process the unattached chromosome is repeatedly probed by microtubules projecting from one of the polar regions. When one of these microtubules contacts the primary constriction the chromosome rapidly undergoes poleward translocation. Our observations on living mitotic cells directly demonstrate, for the first time, that chromosome attachment results from an interaction between astral microtubules and the kinetochore. PMID:2391359

  11. The moyamoya disease susceptibility variant RNF213 R4810K (rs112735431) induces genomic instability by mitotic abnormality

    SciTech Connect

    Hitomi, Toshiaki; Habu, Toshiyuki; Kobayashi, Hatasu; Okuda, Hiroko; Harada, Kouji H.; Osafune, Kenji; Taura, Daisuke; Sone, Masakatsu; Asaka, Isao; Ameku, Tomonaga; Watanabe, Akira; Kasahara, Tomoko; Sudo, Tomomi; Shiota, Fumihiko; Hashikata, Hirokuni; Takagi, Yasushi; Morito, Daisuke; Miyamoto, Susumu; Nakao, Kazuwa; Koizumi, Akio

    2013-10-04

    Highlights: •Overexpression of RNF213 R4810K inhibited cell proliferation. •Overexpression of RNF213 R4810K had the time of mitosis 4-fold and mitotic failure. •R4810K formed a complex with MAD2 more readily than wild-type. •iPSECs from the MMD patients had elevated mitotic failure compared from the control. •RNF213 R4810K induced mitotic abnormality and increased risk of aneuploidy. -- Abstract: Moyamoya disease (MMD) is a cerebrovascular disease characterized by occlusive lesions in the Circle of Willis. The RNF213 R4810K polymorphism increases susceptibility to MMD. In the present study, we characterized phenotypes caused by overexpression of RNF213 wild type and R4810K variant in the cell cycle to investigate the mechanism of proliferation inhibition. Overexpression of RNF213 R4810K in HeLa cells inhibited cell proliferation and extended the time of mitosis 4-fold. Ablation of spindle checkpoint by depletion of mitotic arrest deficiency 2 (MAD2) did not shorten the time of mitosis. Mitotic morphology in HeLa cells revealed that MAD2 colocalized with RNF213 R4810K. Immunoprecipitation revealed an RNF213/MAD2 complex: R4810K formed a complex with MAD2 more readily than RNF213 wild-type. Desynchronized localization of MAD2 was observed more frequently during mitosis in fibroblasts from patients (n = 3, 61.0 ± 8.2%) compared with wild-type subjects (n = 6, 13.1 ± 7.7%; p < 0.01). Aneuploidy was observed more frequently in fibroblasts (p < 0.01) and induced pluripotent stem cells (iPSCs) (p < 0.03) from patients than from wild-type subjects. Vascular endothelial cells differentiated from iPSCs (iPSECs) of patients and an unaffected carrier had a longer time from prometaphase to metaphase than those from controls (p < 0.05). iPSECs from the patients and unaffected carrier had significantly increased mitotic failure rates compared with controls (p < 0.05). Thus, RNF213 R4810K induced mitotic abnormalities and increased risk of genomic instability.

  12. Coordination of adjacent domains mediates TACC3–ch-TOG–clathrin assembly and mitotic spindle binding

    PubMed Central

    Hood, Fiona E.; Williams, Samantha J.; Burgess, Selena G.; Richards, Mark W.; Roth, Daniel; Straube, Anne; Pfuhl, Mark

    2013-01-01

    Acomplex of transforming acidic coiled-coil protein 3 (TACC3), colonic and hepatic tumor overexpressed gene (ch-TOG), and clathrin has been implicated in mitotic spindle assembly and in the stabilization of kinetochore fibers by cross-linking microtubules. It is unclear how this complex binds microtubules and how the proteins in the complex interact with one another. TACC3 and clathrin have each been proposed to be the spindle recruitment factor. We have mapped the interactions within the complex and show that TACC3 and clathrin were interdependent for spindle recruitment, having to interact in order for either to be recruited to the spindle. The N-terminal domain of clathrin and the TACC domain of TACC3 in tandem made a microtubule interaction surface, coordinated by TACC3–clathrin binding. A dileucine motif and Aurora A–phosphorylated serine 558 on TACC3 bound to the “ankle” of clathrin. The other interaction within the complex involved a stutter in the TACC3 coiled-coil and a proposed novel sixth TOG domain in ch-TOG, which was required for microtubule localization of ch-TOG but not TACC3–clathrin. PMID:23918938

  13. Par1b Induces Asymmetric Inheritance of Plasma Membrane Domains via LGN-Dependent Mitotic Spindle Orientation in Proliferating Hepatocytes

    PubMed Central

    Slim, Christiaan L.; Lázaro-Diéguez, Francisco; Bijlard, Marjolein; Toussaint, Mathilda J. M.; de Bruin, Alain; Du, Quansheng; Müsch, Anne; van IJzendoorn, Sven C. D.

    2013-01-01

    The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct “apicolateral” subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2) translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN) and the capture of nuclear mitotic apparatus protein (NuMA)–positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma. PMID:24358023

  14. Non-thermal effects of 2.45 GHz microwaves on spindle assembly, mitotic cells and viability of Chinese hamster V-79 cells.

    PubMed

    Ballardin, Michela; Tusa, Ignazia; Fontana, Nunzia; Monorchio, Agostino; Pelletti, Chiara; Rogovich, Alessandro; Barale, Roberto; Scarpato, Roberto

    2011-11-01

    The production of mitotic spindle disturbances and activation of the apoptosis pathway in V79 Chinese hamster cells by continuous 2.45 GHz microwaves exposure were studied, in order to investigate possible non-thermal cell damage. We demonstrated that microwave (MW) exposure at the water resonance frequency was able to induce alteration of the mitotic apparatus and apoptosis as a function of the applied power densities (5 and 10mW/cm(2)), together with a moderate reduction in the rate of cell division. After an exposure time of 15 min the proportion of aberrant spindles and of apoptotic cells was significantly increased, while the mitotic index decreased as well, as compared to the untreated V79 cells. Additionally, in order to understand if the observed effects were due to RF exposure per se or to a thermal effect, V79 cells were also treated in thermostatic bath mimicking the same temperature increase recorded during microwave emission. The effect of temperature on the correct assembly of mitotic spindles was negligible up to 41°C, while apoptosis was induced only when the medium temperature achieved 40°C, thus exceeding the maximum value registered during MW exposure. We hypothesise that short-time MW exposures at the water resonance frequency cause, in V79 cells, reversible alterations of the mitotic spindle, this representing, in turn, a pro-apoptotic signal for the cell line.

  15. The sequential activation of the mitotic microtubule assembly pathways favors bipolar spindle formation

    PubMed Central

    Cavazza, Tommaso; Malgaretti, Paolo; Vernos, Isabelle

    2016-01-01

    Centrosome maturation is the process by which the duplicated centrosomes recruit pericentriolar components and increase their microtubule nucleation activity before mitosis. The role of this process in cells entering mitosis has been mostly related to the separation of the duplicated centrosomes and thereby to the assembly of a bipolar spindle. However, spindles can form without centrosomes. In fact, all cells, whether they have centrosomes or not, rely on chromatin-driven microtubule assembly to form a spindle. To test whether the sequential activation of these microtubule assembly pathways, defined by centrosome maturation and nuclear envelope breakdown, plays any role in spindle assembly, we combined experiments in tissue culture cells and Xenopus laevis egg extracts with a mathematical model. We found that interfering with the sequential activation of the microtubule assembly pathways compromises bipolar spindle assembly in tissue culture cells but not in X. laevis egg extracts. Our data suggest a novel function for centrosome maturation that determines the contribution of the chromosomal microtubule assembly pathway and favors bipolar spindle formation in most animal cells in which tubulin is in limiting amounts. PMID:27489339

  16. SAP-like domain in nucleolar spindle associated protein mediates mitotic chromosome loading as well as interphase chromatin interaction

    SciTech Connect

    Verbakel, Werner; Carmeliet, Geert; Engelborghs, Yves

    2011-08-12

    Highlights: {yields} The SAP-like domain in NuSAP is a functional DNA-binding domain with preference for dsDNA. {yields} This SAP-like domain is essential for chromosome loading during early mitosis. {yields} NuSAP is highly dynamic on mitotic chromatin, as evident from photobleaching experiments. {yields} The SAP-like domain also mediates NuSAP-chromatin interaction in interphase nucleoplasm. -- Abstract: Nucleolar spindle associated protein (NuSAP) is a microtubule-stabilizing protein that localizes to chromosome arms and chromosome-proximal microtubules during mitosis and to the nucleus, with enrichment in the nucleoli, during interphase. The critical function of NuSAP is underscored by the finding that its depletion in HeLa cells results in various mitotic defects. Moreover, NuSAP is found overexpressed in multiple cancers and its expression levels often correlate with the aggressiveness of cancer. Due to its localization on chromosome arms and combination of microtubule-stabilizing and DNA-binding properties, NuSAP takes a special place within the extensive group of spindle assembly factors. In this study, we identify a SAP-like domain that shows DNA binding in vitro with a preference for dsDNA. Deletion of the SAP-like domain abolishes chromosome arm binding of NuSAP during mitosis, but is not sufficient to abrogate its chromosome-proximal localization after anaphase onset. Fluorescence recovery after photobleaching experiments revealed the highly dynamic nature of this NuSAP-chromatin interaction during mitosis. In interphase cells, NuSAP also interacts with chromatin through its SAP-like domain, as evident from its enrichment on dense chromatin regions and intranuclear mobility, measured by fluorescence correlation spectroscopy. The obtained results are in agreement with a model where NuSAP dynamically stabilizes newly formed microtubules on mitotic chromosomes to enhance chromosome positioning without immobilizing these microtubules. Interphase Nu

  17. Specific association of STOP protein with microtubules in vitro and with stable microtubules in mitotic spindles of cultured cells.

    PubMed

    Margolis, R L; Rauch, C T; Pirollet, F; Job, D

    1990-12-01

    STOP (Stable Tubule Only Polypeptide) is a neuronal microtubule associated protein of 145 kd that stabilizes microtubules indefinitely to in vitro disassembly induced by cold temperature, millimolar calcium or by drugs. We have produced monoclonal antibodies against STOP. Using an antibody affinity column, we have produced a homogeneously pure 145 kd protein which has STOP activity as defined by its ability to induce cold stability and resistance to dilution induced disassembly in microtubules in vitro. Western blot analysis, using a specific monoclonal antibody, demonstrates that STOP recycles quantitatively with microtubules through three assembly cycles in vitro. Immunofluorescence analysis demonstrates that STOP is specifically associated with microtubules of mitotic spindles in neuronal cells. Further, and most interestingly, STOP at physiological temperature appears to be preferentially distributed on the distinct microtubule subpopulations that display cold stability; kinetochore-to-pole microtubules and telophase midbody microtubules. The observed distribution suggests that STOP induces the observed cold stability of these microtubule subpopulations in vivo.

  18. Microtubular origin of mitotic spindle form birefringence. Demonstration of the applicability of Wiener's equation

    PubMed Central

    1975-01-01

    Meiosis I metaphase spindles were isolated from oocytes of the sea-star Pisaster ochraceus by a method that produced no detectable net loss in spindle birefringence. Some of the spindles were fixed immediately and embedded and sectioned for electron microscopy. Others were laminated between gelatine pellicles in a perfusion chamber, then fixed and sequentially and reversibly imbibed with a series of media of increasing refractive indices. Electron microscopy showed little else besides microtubules in the isolates, and no other component present could account for the observed form birefringence. An Ambronn plot of the birefringent retardation measured during imbibition was a good least squares fit to a computer generated theoretical curve based on the Bragg-Pippard rederivation of the Wiener curve for form birefringence. The data were best fit by the curve for rodlet index (n1) = 1.512, rodlet volume fraction (f) = 0.0206, and coefficient of intrinsic birefringence = 4.7 X 10(-5). The value obtained for n1 is unequivocal and is virtually as good as the refractometer determinations of imbibing medium index on which it is based. The optically interactive volume of the microtubule subunit, calculated from our electron microscope determination of spindle microtubule distribution (106/mum2), 13 protofilaments per microtubules, an 8 nm repeat distance and our best value for f, is compatible with known subunit dimensions as determined by other means. We also report curves fitted to the results of Ambronn imbibition of Bouin's-fixed Lytechinus spindles and to the Noll and Weber muscle imbibition data. PMID:1238403

  19. Mitotic abnormalities leading to cancer predisposition and progression.

    PubMed

    Cavenee, W K

    1989-01-01

    The development of human cancer is generally thought to entail a series of events that cause a progressively more malignant phenotype. Such a hypothesis predicts that tumor cells of the ultimate stage will carry each of the events, cells of the penultimate stage will carry each of the events less the last one, and so on. That is to say a dissection of the pathway from a normal cell to a fully malignant tumor may be viewed as the unraveling of a nested set of aberrations. In experiments designed to elucidate these events, we have compared genotypic combinations at genomic loci defined by restriction endonuclease recognition site variation in normal and tumor tissues from patients with various forms and stages of cancer. The first step, inherited predisposition, is best described for retinoblastoma in which a recessive mutation of a locus residing in the 13q14 region of the genome is unmasked by aberrant, but specific, mitotic chromosomal segregation. A similar mechanism involving the distal short arm of chromosome 17 is apparent in astrocytic tumors and the event is shared by cells in each malignancy stage. This is distinct from a loss of heterozygosity for loci on chromosome 10 which is restricted to the ultimate stage, glioblastoma multiforme. These results suggest a genetic approach to defining degrees of tumor progression and means for determining the genomic locations of genes involved in the pathway as a prelude to their molecular isolation and characterization.

  20. A High Throughput, Whole Cell Screen for Small Molecule Inhibitors of the Mitotic Spindle Checkpoint Identifies OM137, a Novel Aurora Kinase Inhibitor

    PubMed Central

    DeMoe, Joanna H.; Santaguida, Stefano; Daum, John R.; Musacchio, Andrea; Gorbsky, Gary J.

    2008-01-01

    In mitosis the kinetochores of chromosomes that lack full microtubule attachments and/or mechanical tension activate a signaling pathway called the mitotic spindle checkpoint that blocks progression into anaphase and prevents premature segregation of the chromatids until chromosomes become aligned at the metaphase plate (1). The spindle checkpoint is responsible for arresting cells in mitosis in response to chemotherapeutic spindle poisons such as paclitaxel or vinblastine. Some cancer cells show a weakened checkpoint signaling system that may contribute to chromosome instability in tumors. Since complete absence of the spindle checkpoint leads to catastrophic cell division, we reasoned that drugs targeting the checkpoint might provide a therapeutic window in which the checkpoint would be eliminated in cancer cells but sufficiently preserved in normal cells. We developed an assay to identify lead compounds that inhibit the spindle checkpoint. Most cells respond to microtubule drugs by activating the spindle checkpoint and arresting in mitosis with a rounded morphology. Our assay depended on the ability of checkpoint inhibitor compounds to drive mitotic exit and cause cells to flatten onto the substrate in the continuous presence of microtubule drugs. In this study we characterize one of the compounds, OM137, as an inhibitor of Aurora kinases. We find that this compound is growth inhibitory to cultured cells when applied at high concentration and potentiates the growth inhibitory effects of subnanomolar concentrations of paclitaxel. PMID:19190331

  1. Association of human SCF(SKP2) subunit p19(SKP1) with interphase centrosomes and mitotic spindle poles.

    PubMed

    Gstaiger, M; Marti, A; Krek, W

    1999-03-15

    In Saccharomyces cerevisiae, the initiation of DNA replication and mitotic progression requires SKP1p function. SKP1p is an essential subunit of a newly identified class of E3 ubiquitin protein ligases, the SCF complexes, that catalyze ubiquitin-mediated proteolysis of key cell-cycle-regulatory proteins at distinct times in the cell cycle. SKP1p is also required for proper kinetochore assembly. Little is known about the corresponding human homolog, p19(SKP1), except that it is expressed throughout the cell cycle and that it too is a component of an S-phase-regulating SCF-E3 ligase complex. Here we show by immunofluorescence microscopy that p19(SKP1) localizes to the centrosomes. Centrosome association occurs throughout the mammalian cell cycle, including all stages of mitosis. These findings suggest that p19(SKP1) is a novel component of the centrosome and the mitotic spindle, which, in turn, implies a physiological role of this protein in the regulation of one or more aspects of the centrosome cycle.

  2. The essential mitotic target of calmodulin is the 110-kilodalton component of the spindle pole body in Saccharomyces cerevisiae.

    PubMed Central

    Geiser, J R; Sundberg, H A; Chang, B H; Muller, E G; Davis, T N

    1993-01-01

    Two independent methods identified the spindle pole body component Nuf1p/Spc110p as the essential mitotic target of calmodulin. Extragenic suppressors of cmd1-1 were isolated and found to define three loci, XCM1, XCM2, and XCM3 (extragenic suppressor of cmd1-1). The gene encoding a dominant suppressor allele of XCM1 was cloned. On the basis of DNA sequence analysis, genetic cosegregation, and mutational analysis, XCM1 was identified as NUF1/SPC110. Independently, a C-terminal portion of Nuf1p/Spc110p, amino acid residues 828 to 944, was isolated as a calmodulin-binding protein by the two-hybrid system. As assayed by the two-hybrid system, Nuf1p/Spc110p interacts with wild-type calmodulin and triple-mutant calmodulins defective in binding Ca2+ but not with two mutant calmodulins that confer a temperature-sensitive phenotype. Deletion analysis by the two-hybrid system mapped the calmodulin-binding site of Nuf1p/Spc110p to amino acid residues 900 to 927. Direct binding between calmodulin and Nuf1p/Spc110p was demonstrated by a modified gel overlay assay. Furthermore, indirect immunofluorescence with fixation procedures known to aid visualization of spindle pole body components localized calmodulin to the spindle pole body. Sequence analysis of five suppressor alleles of NUF1/SPC110 indicated that suppression of cmd1-1 occurs by C-terminal truncation of Nuf1p/Spc110p at amino acid residues 856, 863, or 881, thereby removing the calmodulin-binding site. Images PMID:8247006

  3. Localization and role of RAP55/LSM14 in HeLa cells: a new finding on the mitotic spindle assembly.

    PubMed

    Mili, Donia; Georgesse, Dane; Kenani, Abderraouf

    2015-01-01

    The MAP family includes large proteins like MAP-1A, MAP-1B, MAP-1C, MAP-2, and MAP-4 and smaller components like tau and MAP-2C. This article focuses on the relevant aspects of RAP55/LSM14 position with emphasis on its role in mitotic spindle formation and stability. In this context, the localization of RNA associated Protein 55kDa (RAP55/LSM14) during mitosis was identified as a Mitotic Spindle Protein (MSP). We found a new location obtained by expressing GFP-tagged proteins in HeLa Cells during mitosis that has never been previously reported. We demonstrated also, for the first time, that the depletion of RAP55/LSM14 destabilizes spindle assembly, stops cells in mitosis and induces many other cell cytoskeletal disorders. Finally, by using an "in vitro" assay investigation, we found that RAP55/LSM14 binds directly the tubulin and that is implicated in the process of the mitotic spindle stabilization, which is a novel discovery in this field of research.

  4. Motile kinetochores and polar ejection forces dictate chromosome position on the vertebrate mitotic spindle

    PubMed Central

    1994-01-01

    We argue that hypotheses for how chromosomes achieve a metaphase alignment, that are based solely on a tug-of-war between poleward pulling forces produced along the length of opposing kinetochore fibers, are no longer tenable for vertebrates. Instead, kinetochores move themselves and their attached chromosomes, poleward and away from the pole, on the ends of relatively stationary but shortening/elongating kinetochore fiber microtubules. Kinetochores are also "smart" in that they switch between persistent constant-velocity phases of poleward and away from the pole motion, both autonomously and in response to information within the spindle. Several molecular mechanisms may contribute to this directional instability including kinetochore-associated microtubule motors and kinetochore microtubule dynamic instability. The control of kinetochore directional instability, to allow for congression and anaphase, is likely mediated by a vectorial mechanism whose magnitude and orientation depend on the density and orientation or growth of polar microtubules. Polar microtubule arrays have been shown to resist chromosome poleward motion and to push chromosomes away from the pole. These "polar ejection forces" appear to play a key role in regulating kinetochore directional instability, and hence, positions achieved by chromosomes on the spindle. PMID:8294508

  5. A muscle spindle abnormity in one laryngeal muscle would be sufficient to cause stuttering.

    PubMed

    Schuster, Steffen H; Schuster, Frank M

    2012-07-01

    Muscle spindles are increasingly recognized as playing a pivotal role in the cause of dystonia. This development and own laryngeal observations that support the idea of causally "well-intentioned" stuttering motivated us to present the following hypothesis: stuttering events compensate for a sensory problem that arises when the abductor/adductor ratio of afferent impulse rates from the posterior cricoarytenoid and lateral cricoarytenoid muscle spindles is abnormally reduced and processed for the occasional determination of the vocal fold position. This hypothesis implies that functional and structural brain abnormalities might be interpreted as secondary compensatory reactions. Verification of this hypothesis (using technologies such as microneurography, dissection and muscle afferent block) is important because its confirmation could relink dystonia and stuttering research, change the direction of stuttering therapy and destigmatize stuttering radically.

  6. The mesh is a network of microtubule connectors that stabilizes individual kinetochore fibers of the mitotic spindle.

    PubMed

    Nixon, Faye M; Gutiérrez-Caballero, Cristina; Hood, Fiona E; Booth, Daniel G; Prior, Ian A; Royle, Stephen J

    2015-06-19

    Kinetochore fibers (K-fibers) of the mitotic spindle are force-generating units that power chromosome movement during mitosis. K-fibers are composed of many microtubules that are held together throughout their length. Here, we show, using 3D electron microscopy, that K-fiber microtubules (MTs) are connected by a network of MT connectors. We term this network 'the mesh'. The K-fiber mesh is made of linked multipolar connectors. Each connector has up to four struts, so that a single connector can link up to four MTs. Molecular manipulation of the mesh by overexpression of TACC3 causes disorganization of the K-fiber MTs. Optimal stabilization of K-fibers by the mesh is required for normal progression through mitosis. We propose that the mesh stabilizes K-fibers by pulling MTs together and thereby maintaining the integrity of the fiber. Our work thus identifies the K-fiber meshwork of linked multipolar connectors as a key integrator and determinant of K-fiber structure and function.

  7. Kid, a novel kinesin-like DNA binding protein, is localized to chromosomes and the mitotic spindle.

    PubMed Central

    Tokai, N; Fujimoto-Nishiyama, A; Toyoshima, Y; Yonemura, S; Tsukita, S; Inoue, J; Yamamota, T

    1996-01-01

    Microtubule-associated motor proteins are thought to be involved in spindle formation and chromosome movements in mitosis/meiosis. We have molecularly cloned cDNAs for a gene that codes for a novel member of the kinesin family of proteins. Nucleotide sequencing reveals that the predicted gene product is a 73 kDa protein and is related to some extent to the Drosophila node gene product, which is involved in chromosomal segregation during meiosis. A sequence similar to the microtubule binding motor domain of kinesin is present in the N-terminal half of the protein, and its ability to bind to microtubules is demonstrated. Furthermore we show that its C-terminal half contains a putative nuclear localization signal similar to that of Jun and is able to bind to DNA. Accordingly, the protein was termed Kid (kinesin-like DNA binding protein). Indirect immunofluorescence studies show that Kid colocalizes with mitotic chromosomes and that it is enriched in the kinetochore at anaphase. Thus, we propose that Kid might play a role(s) in regulating the chromosomal movement along microtubules during mitosis. Images PMID:8599929

  8. miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression

    PubMed Central

    Bhattacharjya, S; Nath, S; Ghose, J; Maiti, G P; Biswas, N; Bandyopadhyay, S; Panda, C K; Bhattacharyya, N P; Roychoudhury, S

    2013-01-01

    The spindle assembly checkpoint (SAC) is a ‘wait-anaphase' mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome–spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC is vaguely understood. We report here that Mad1, a core SAC protein, is repressed by human miR-125b. Mad1 serves as an adaptor protein for Mad2 – which functions to inhibit anaphase entry till the chromosomal defects in metaphase are corrected. We show that exogenous expression of miR-125b, through downregulation of Mad1, delays cells at metaphase. As a result of this delay, cells proceed towards apoptotic death, which follows from elevated chromosomal abnormalities upon ectopic expression of miR-125b. Moreover, expressions of Mad1 and miR-125b are inversely correlated in a variety of cancer cell lines, as well as in primary head and neck tumour tissues. We conclude that increased expression of miR-125b inhibits cell proliferation by suppressing Mad1 and activating the SAC transiently. We hypothesize an optimum Mad1 level and thus, a properly scheduled SAC is maintained partly by miR-125b. PMID:23099851

  9. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived neurotrophin 3.

    PubMed

    Shneider, Neil A; Mentis, George Z; Schustak, Joshua; O'Donovan, Michael J

    2009-04-15

    The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin 1 receptor ErbB2 from muscle precursors. However, despite a modest ( approximately 30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by approximately 80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections but not their initial formation or their specificity.

  10. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived NT3

    PubMed Central

    Shneider, Neil A.; Mentis, George Z.; Schustak, Joshua; O’Donovan, Michael J.

    2009-01-01

    Summary The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin1 receptor ErbB2 from muscle precursors. However, despite a modest (~30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by ~80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections, but not their initial formation or their specificity. PMID:19369542

  11. Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells

    PubMed Central

    Guo, Xihan; Wang, Xu

    2016-01-01

    The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC. PMID:27598149

  12. Phyllanthus emblica Fruit Extract Activates Spindle Assembly Checkpoint, Prevents Mitotic Aberrations and Genomic Instability in Human Colon Epithelial NCM460 Cells.

    PubMed

    Guo, Xihan; Wang, Xu

    2016-09-03

    The fruit of Phyllanthus emblica Linn. (PE) has been widely consumed as a functional food and folk medicine in Southeast Asia due to its remarkable nutritional and pharmacological effects. Previous research showed PE delays mitotic progress and increases genomic instability (GIN) in human colorectal cancer cells. This study aimed to investigate the similar effects of PE by the biomarkers related to spindle assembly checkpoint (SAC), mitotic aberrations and GIN in human NCM460 normal colon epithelial cells. Cells were treated with PE and harvested differently according to the biomarkers observed. Frequencies of micronuclei (MN), nucleoplasmic bridge (NPB) and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of GIN. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment, multipolar division, chromosome lagging and chromatin bridge. SAC activity was determined by anaphase-to- metaphase ratio (AMR) and the expression of core SAC gene budding uninhibited by benzimidazoles related 1 (BubR1). Compared with the control, PE-treated cells showed (1) decreased incidences of MN, NPB and NB (p < 0.01); (2) decreased frequencies of all mitotic aberration biomarkers (p < 0.01); and (3) decreased AMR (p < 0.01) and increased BubR1 expression (p < 0.001). The results revealed PE has the potential to protect human normal colon epithelial cells from mitotic and genomic damages partially by enhancing the function of SAC.

  13. Identification and characterization of INMAP, a novel interphase nucleus and mitotic apparatus protein that is involved in spindle formation and cell cycle progression

    SciTech Connect

    Shen, Enzhi; Lei, Yan; Liu, Qian; Zheng, Yanbo; Song, Chunqing; Marc, Jan; Wang, Yongchao; Sun, Le; Liang, Qianjin

    2009-04-15

    A novel protein that associates with interphase nucleus and mitotic apparatus (INMAP) was identified by screening HeLa cDNA expression library with an autoimmune serum followed by tandem mass spectrometry. Its complete cDNA sequence of 1.818 kb encodes 343 amino acids with predicted molecular mass of 38.2 kDa and numerous phosphorylation sites. The sequence is identical with nucleotides 1-1800 bp of an unnamed gene (GenBank accession no. (7022388)) and highly homologous with the 3'-terminal sequence of POLR3B. A monoclonal antibody against INMAP reacted with similar proteins in S. cerevisiae, Mel and HeLa cells, suggesting that it is a conserved protein. Confocal microscopy using either GFP-INMAP fusion protein or labeling with the monoclonal antibody revealed that the protein localizes as distinct dots in the interphase nucleus, but during mitosis associates closely with the spindle. Double immunolabeling using specific antibodies showed that the INMAP co-localizes with {alpha}-tubulin, {gamma}-tubulin, and NuMA. INMAP also co-immunoprecipitated with these proteins in their native state. Stable overexpression of INMAP in HeLa cell lines leads to defects in the spindle, mitotic arrest, formation of polycentrosomal and multinuclear cells, inhibition of growth, and apoptosis. We propose that INMAP is a novel protein that plays essential role in spindle formation and cell-cycle progression.

  14. The spindle and kinetochore–associated (Ska) complex enhances binding of the anaphase-promoting complex/cyclosome (APC/C) to chromosomes and promotes mitotic exit

    PubMed Central

    Sivakumar, Sushama; Daum, John R.; Tipton, Aaron R.; Rankin, Susannah; Gorbsky, Gary J.

    2014-01-01

    The spindle and kinetochore–associated (Ska) protein complex is a heterotrimeric complex required for timely anaphase onset. The major phenotypes seen after small interfering RNA–mediated depletion of Ska are transient alignment defects followed by metaphase arrest that ultimately results in cohesion fatigue. We find that cells depleted of Ska3 arrest at metaphase with only partial degradation of cyclin B1 and securin. In cells arrested with microtubule drugs, Ska3-depleted cells exhibit slower mitotic exit when the spindle checkpoint is silenced by inhibition of the checkpoint kinase, Mps1, or when cells are forced to exit mitosis downstream of checkpoint silencing by inactivation of Cdk1. These results suggest that in addition to a role in fostering kinetochore–microtubule attachment and chromosome alignment, the Ska complex has functions in promoting anaphase onset. We find that both Ska3 and microtubules promote chromosome association of the anaphase-promoting complex/cyclosome (APC/C). Chromosome-bound APC/C shows significantly stronger ubiquitylation activity than cytoplasmic APC/C. Forced localization of Ska complex to kinetochores, independent of microtubules, results in enhanced accumulation of APC/C on chromosomes and accelerated cyclin B1 degradation during induced mitotic exit. We propose that a Ska-microtubule-kinetochore association promotes APC/C localization to chromosomes, thereby enhancing anaphase onset and mitotic exit. PMID:24403607

  15. [Biologic mechanisms of mitotic abnormalities and chromosome number changes in malignant tumors].

    PubMed

    Hegyi, Katalin

    2015-12-01

    induction of aneuploid cell populations. These parallel effects finally increase the complexity of mitotic abnormalities and generate aneuploid cell populations.

  16. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization.

    PubMed

    Gualtieri, Maurizio; Ovrevik, Johan; Mollerup, Steen; Asare, Nana; Longhin, Eleonora; Dahlman, Hans-Jørgen; Camatini, Marina; Holme, Jørn A

    2011-08-01

    Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in "classical" apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.

  17. Prevention of mammalian DNA reduplication, following the release from the mitotic spindle checkpoint, requires p53 protein, but not p53-mediated transcriptional activity.

    PubMed

    Notterman, D; Young, S; Wainger, B; Levine, A J

    1998-11-26

    The tumor suppressor p53 has been identified as a component of a mitotic spindle checkpoint. When exposed to a spindle-disrupting drug such as nocodazole, fibroblasts derived from mice having wild-type p53 are blocked with a 4N content of DNA. Conversely, fibroblasts from p53-deficient mice become polyploid. To learn if transcriptional activation of downstream genes by p53 plays a role in this putative checkpoint, three cell lines were exposed to nocodazole. In one line, p53 protein is not expressed, while the other two cell lines over-express p53. In one of these two lines, the N-terminal transactivation domain is wild-type and in the second, this region contains a mutation that eliminates the ability of the protein to act as a transcription factor. Incubation with nocodazole of cells containing wild-type p53 results in accumulation of both 2N and 4N populations of cells. Under the same conditions, cells containing a transactivation-deficient mutant of p53 accumulate a 4N population of cells, but not a 2N population of cells. Cells entirely deficient in p53 protein become hyperdiploid, and display 8N to 16N DNA content. In all three cell lines, nocodazole elicited an initial increase in mitotic cells, but within 24 h the mitotic index returned to baseline. Expression patterns of cyclins B and D indicated that following entry into mitosis, the cells returned to a G1 state but with 4N DNA content. Subsequent re-duplication of DNA beyond 4N is prevented in cells containing either wild-type or transcriptionally inactive p53 protein. In cells entirely lacking p53 protein, DNA is re-duplicated (without an intervening mitosis) and the cells become hyperdiploid. These experiments indicate that p53 does not participate in the transient mitotic arrest that follows spindle disruption, but is essential to prevent subsequent reduplication of DNA and the resulting hyperdiploid state. This function is intact in a mutant that is transcriptionally inactive.

  18. TORC1 kinase and the S-phase cyclin Clb5 collaborate to promote mitotic spindle assembly and DNA replication in S. cerevisiae

    PubMed Central

    Tran, Lieu T.; Wang’ondu, Ruth W.; Weng, Jessica B.; Wanjiku, Grace W.; Fong, Chi M.; Kile, Andrew C.; Koepp, Deanna M.; Hood-DeGrenier, Jennifer K.

    2011-01-01

    The Target of Rapamycin complex 1 (TORC1) is a central regulator of eukaryotic cell growth that is inhibited by the drug rapamycin. In the budding yeast Saccharomyces cerevisiae, translational defects associated with TORC1 inactivation inhibit cell cycle progression at an early stage in G1, but little is known about the possible roles for TORC1 later in the cell cycle. We investigated the rapamycin-hypersensitivity phenotype of cells lacking the S phase cyclin Clb5 (clb5Δ) as a basis for uncovering novel connections between TORC1 and the cell cycle regulatory machinery. Dosage suppression experiments suggested that the clb5Δ rapamycin hypersensitivity reflects a unique Clb5-associated cyclin-dependent kinase (CDK) function that cannot be performed by mitotic cyclins and that also involves motor proteins, particularly the kinesin-like protein Kip3. Synchronized cell experiments revealed rapamycin-induced defects in pre-anaphase spindle assembly and S phase progression that were more severe in clb5Δ than in wild type cells but no apparent activation of Rad53-dependent checkpoint pathways. Some rapamycin-treated cells had aberrant spindle morphologies, but rapamycin did not cause gross defects in the microtubule cytoskeleton. We propose a model in which TORC1 and Clb5/CDK act coordinately to promote both spindle assembly via a pathway involving Kip3 and S phase progression. PMID:20697716

  19. Morphogenesis of the mitotic and meiotic spindle: Conclusions obtained from one system are not necessarily applicable to the other

    SciTech Connect

    Rieder, C.L.; Ault, J.G.; Eichenlaub-Ritter, U.; Sluder, G.

    1993-12-31

    Chromosome distribution during both mitosis and meiosis is effected by the {open_quotes}spindle{close_quotes}, a complex ensemble formed from an interaction between chromosomes and microtubules (MTs). One of the most important characteristics of the spindle is its bipolar structure, established as it forms during prometaphase, which ensures that the replicated chromosomes are segregated equivalently to two daughter cells. A major goal of cell division research is to understand the mechanism of spindle morphogenesis and how bipolarity is established. Because they are relatively flat and easily obtained year-round, spermatocytes, especially those from insects, have been a favored material for the study of animal cell division since the process was first described by Flemming in the late 1800`s. Like living cultured cells, spindle formation in spermatocytes can be detailed by all forms of light microscopy (LM), and cells followed in vivo can be fixed and processed for a subsequent analysis with the electron microscope (EM). Unfortunately, with the exception of a few marine organisms, the large size and opaque nature of most oocytes impedes a detailed analysis of their meiosis in vivo. As a result, information regarding spindle formation and function during meiosis in oocytes is typically derived from EM or immunofluorescent (IMF) studies of fixed cells or cell-free oocyte extracts.

  20. Knockdown of UCHL5IP causes abnormalities in γ-tubulin localisation, spindle organisation and chromosome alignment in mouse oocyte meiotic maturation.

    PubMed

    Wang, Ya-Peng; Qi, Shu-Tao; Wei, Yanchang; Ge, Zhao-Jia; Chen, Lei; Hou, Yi; Ouyang, Ying-Chun; Schatten, Heide; Zhao, Jian-Guo; Sun, Qing-Yuan

    2013-01-01

    UCHL5IP is one of the subunits of the haus complex, which is important for microtubule generation, spindle bipolarity and accurate chromosome segregation in Drosophila and human mitotic cells. In this study, the expression and localisation of UCHL5IP were explored, as well as its functions in mouse oocyte meiotic maturation. The results showed that the UCHL5IP protein level was consistent during oocyte maturation and it was localised to the meiotic spindle in MI and MII stages. Knockdown of UCHL5IP led to spindle defects, chromosome misalignment and disruption of γ-tubulin localisation in the spindle poles. These results suggest that UCHL5IP plays critical roles in spindle formation during mouse oocyte meiotic maturation.

  1. From proto-mitosis to mitosis — An alternative hypothesis on the origin and evolution of the mitotic spindle

    NASA Astrophysics Data System (ADS)

    Roos, U.-P.

    1984-03-01

    Based on the assumption that the ancestral proto-eukaryote evolved from an ameboid prokarybte I propose the hypothesis that nuclear division of the proto-eukaryote was effected by the same system of contractile filaments it used for ameboid movement and cytosis. When the nuclear membranes evolved from the cell membrane, contractile filaments remained associated with them. The attachment site of the genome in the nuclear envelope was linked to the cell membrane by specialized contractile filaments. During protomitosis, i.e., nuclear and cell division of the proto-eukaryote, these filaments performed segregation of the chromosomes, whereas others constricted and cleaved the nucleus and the mother cell. When microtubules (MTs) had evolved in the cytoplasm, they also became engaged in nuclear division. Initially, an extranuolear bundle of MTs assisted chromosome segregation by establishing a defined axis. The evolutionary tendency then was towards an increasingly important role for MTs. Spindle pole bodies (SPBs) developed from the chromosomal attachment sites in the nuclear envelope and organized an extranuclear central spindle. The chromosomes remained attached to the SPBs during nuclear division. In a subsequent step the spindle became permanently lodged inside the nucleus. Chromosomes detached from the SPBs and acquired kinetochores and kinetochore-MTs. At first, this spindle segregated chromosomes by elongation, the kinetochore-MTs playing the role of static anchors. Later, spindle elongation was supplemented by poleward movement of the chromosomes. When dissolution of the nuclear envelope at the beginning of mitosis became a permanent feature, the open spindle of higher eukaryotes was born.

  2. Mitotic Spindle Defects and Chromosome Mis-Segregation Induced by LDL/Cholesterol—Implications for Niemann-Pick C1, Alzheimer’s Disease, and Atherosclerosis

    PubMed Central

    Granic, Antoneta; Potter, Huntington

    2013-01-01

    Elevated low-density lipoprotein (LDL)-cholesterol is a risk factor for both Alzheimer’s disease (AD) and Atherosclerosis (CVD), suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy–in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß) inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1) high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis’ first prediction, 2) Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3) oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL), induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4) LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5) cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6) ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol’s aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  3. Salt-induced abnormalities on root tip mitotic cells of Allium cepa: prevention by inositol pretreatment.

    PubMed

    Chatterjee, Jolly; Majumder, Arun Lahiri

    2010-09-01

    Salt-induced growth reduction of plants is a well-known phenomenon which poses major problem in crop productivity in places where vast majority of land plants are affected by salt. In this report, studies were carried out to reveal the effect of salt injury on the cell division pattern in roots and the role of myo-inositol in preventing the salt-induced ion disequilibrium on the chromosome and DNA degradation in roots. Present study revealed induction of various chromosomal abnormalities on the root tip mitotic cells of Allium cepa by treatment with different concentrations of NaCl (0-500 mM) for 24 h as also the amelioration of such effect by prior treatment of the roots with different concentration of myo-inositol (0-300 mM). Results showed that a narrow albeit definite range of extracellular myo-inositol (100-150 mM) is effective in preventing internucleosomal fragmentation which is the early response in roots under salt stress. Transgenic tobacco plants overexpressing Oryza (OsINO1) as well as Porteresia (PcINO1) cytosolic L: -myo-inositol-1-phosphate synthase coding genes can withstand and retain their chromosomal and DNA integrity in 100 mM NaCl solution and can subsequently prevent DNA fragmentation, caused by intracellular endonuclease activity at this salt concentration.

  4. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2

    PubMed Central

    Zeng, Kang; Bastos, Ricardo Nunes

    2010-01-01

    Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A–TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A–TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation. PMID:21187329

  5. Nuclear inner membrane fusion facilitated by yeast Jem1p is required for spindle pole body fusion but not for the first mitotic nuclear division during yeast mating.

    PubMed

    Nishikawa, Shuh-ichi; Hirata, Aiko; Endo, Toshiya

    2008-11-01

    During mating of budding yeast, Saccharomyces cerevisiae, two haploid nuclei fuse to produce a diploid nucleus. The process of nuclear fusion requires two J proteins, Jem1p in the endoplasmic reticulum (ER) lumen and Sec63p, which forms a complex with Sec71p and Sec72p, in the ER membrane. Zygotes of mutants defective in the functions of Jem1p or Sec63p contain two haploid nuclei that were closely apposed but failed to fuse. Here we analyzed the ultrastructure of nuclei in jem1 Delta and sec71 Delta mutant zygotes using electron microscope with the freeze-substituted fixation method. Three-dimensional reconstitution of nuclear structures from electron microscope serial sections revealed that Jem1p facilitates nuclear inner-membrane fusion and spindle pole body (SPB) fusion while Sec71p facilitates nuclear outer-membrane fusion. Two haploid SPBs that failed to fuse could duplicate, and mitotic nuclear division of the unfused haploid nuclei started in jem1 Delta and sec71 Delta mutant zygotes. This observation suggests that nuclear inner-membrane fusion is required for SPB fusion, but not for SPB duplication in the first mitotic cell division.

  6. Embryonic exposure to ethanol disturbs regulation of mitotic spindle orientation via GABA(A) receptors in neural progenitors in ventricular zone of developing neocortex.

    PubMed

    Tochitani, Shiro; Sakata-Haga, Hiromi; Fukui, Yoshihiro

    2010-03-19

    Neural progenitors in the ventricular zone of the developing neocortex divide oriented either parallel or perpendicular to the ventricular surface based on their mitotic spindle orientation. It has been shown that the cleavage plane orientation is developmentally regulated and plays a crucial role in cell fate determination of neural progenitors or the maintenance of the proliferative ventricular zone during neocortical development. We tested if fetal exposure to ethanol, the most widely used psychoactive agent and a potent teratogen that may cause malformation in the central nervous system, alters mitotic cleavage orientation of the neural progenitors at the apical surface of the ventricular zone in the developing neocortex. Fetal exposure to ethanol on E10.5 and 11.5 increased the occurrence frequency of a horizontal cleavage plane that is parallel to the ventricular surface on E 12.5. Administration of picrotoxin, a GABA(A) receptor antagonist, prior to ethanol administration canceled the effect of ethanol with the frequency of horizontal division similar to the control level, although picrotoxin itself did not show any effect on cleavage plane orientation. Phenobarbital, a GABA(A) receptor agonist, induced horizontal cleavage to an extent similar to that induced by ethanol administration. (+)MK801, an antagonist of NMDA receptor that is another major target of ethanol in neural cells, did not affect the cleavage plane of dividing progenitors. These results suggest that fetal ethanol exposure induced alterations in the cleavage plane orientation of neural progenitors in the ventricular zone of the neocortex via the enhancement of the function of GABA(A) receptors.

  7. Profiling of the Mammalian Mitotic Spindle Proteome Reveals an ER Protein, OSTD-1, as Being Necessary for Cell Division and ER Morphology

    PubMed Central

    Bonner, Mary Kate; Han, Bo Hwa; Skop, Ahna

    2013-01-01

    Cell division is important for many cellular processes including cell growth, reproduction, wound healing and stem cell renewal. Failures in cell division can often lead to tumors and birth defects. To identify factors necessary for this process, we implemented a comparative profiling strategy of the published mitotic spindle proteome from our laboratory. Of the candidate mammalian proteins, we determined that 77% had orthologs in Caenorhabditis elegans and 18% were associated with human disease. Of the C. elegans candidates (n=146), we determined that 34 genes functioned in embryonic development and 56% of these were predicted to be membrane trafficking proteins. A secondary, visual screen to detect distinct defects in cell division revealed 21 genes that were necessary for cytokinesis. One of these candidates, OSTD-1, an ER resident protein, was further characterized due to the aberrant cleavage furrow placement and failures in division. We determined that OSTD-1 plays a role in maintaining the dynamic morphology of the ER during the cell cycle. In addition, 65% of all ostd-1 RNAi-treated embryos failed to correctly position cleavage furrows, suggesting that proper ER morphology plays a necessary function during animal cell division. PMID:24130834

  8. The clinical significance of anti-mitotic spindle apparatus antibody (MSA) and anti-centromere antibody (ACA) detected in patients with small cell lung cancer (SCLC)

    PubMed Central

    Tan, Liming; Zhang, Yuhong; Jiang, Yongqing; Li, Hua; Chen, Juanjuan; Ming, Feng; Wang, Waimei; Yu, Jianlin; Zeng, Tingting; Tian, Yongjian; Wu, Yang

    2017-01-01

    Purpose: The project is aimed to detect anti-mitotic spindle apparatus antibody (MSA) and anti-centromere antibody (ACA) and explore the clinical value for the diagnosis of small cell lung cancer (SCLC), providing clinical evidence for molecular studies of SCLC. Methods: 93 SCLC patients, 208 patients with other cancers and 50 healthy controls were enrolled in this study. MSA antibodies were detected by enzyme linked immunosorbent assay (ELISA). MSA, ACA and anti nuclear antibodies (ANA) were examined by indirect immuno-fluorescence (IIF). And the results were retrospectively analyzed. Results: ① the positivity for MSA and ACA by IIF assay was respectively 36.56% and 30.11% in SCLC group, higher than in other tumor groups (P<0.01), ② in correlative analysis, the RR (Relative Ratio) value between MSA and SCLC was as high as 12.93, 12.74, and the RR value of ACA and ANA with SCLC was respectively 4.31 and 3.48. ③ the area under ROC (Receiver operating characteristic) curve (AUC) of MSA detection for SCLC was 0.778, with medium diagnostic value. Conclusion: MSA and ACA might serve as a new marker for SCLC because of its high detection rate. These two markers may participate in the occurrence and development of SCLC, resulting from the highly strong risk. So, the study have some application value for early detection, clinical diagnosis and potential treatments of SCLC. PMID:28337388

  9. ACT3: a putative centractin homologue in S. cerevisiae is required for proper orientation of the mitotic spindle

    PubMed Central

    1994-01-01

    As part of our ongoing efforts to understand the functional role of vertebrate centractins, we have identified a new member of the actin- related family of proteins in the yeast Saccharomyces cerevisiae using a PCR-based approach. Consistent with the current nomenclature for actin-related proteins in yeast, we propose to denote this locus ACT3. The primary amino acid sequence of Act3p is most similar to canine and human alpha-centractin (73% similarity/54% identity). The sequence of a genomic clone indicates ACT3 lies adjacent to and is transcribed convergently with respect to FUR1 on chromosome VIII. Molecular genetic analysis indicates ACT3 is represented by a single gene from which the corresponding mRNA is expressed at a low level compared to ACT1. Tetrad analysis of heterozygotes harboring a TRP1 replacement of the ACT3- coding region indicates ACT3 is nonessential for growth under normal conditions and at extremes of temperature and osmolarity. However, growth at 14 degrees C indicates a spindle orientation defect similar to phenotypes recently described for yeast harboring mutations in actin, tubulin, or cytoplasmic dynein. Taken together, our data suggest that ACT3 is the S. cerevisiae homologue of vertebrate centractins. PMID:7929558

  10. Hmga1 null mouse embryonic fibroblasts display downregulation of spindle assembly checkpoint gene expression associated to nuclear and karyotypic abnormalities

    PubMed Central

    Pierantoni, Giovanna Maria; Conte, Andrea; Rinaldo, Cinzia; Tornincasa, Mara; Gerlini, Raffaele; Valente, Davide; Izzo, Antonella; Fusco, Alfredo

    2016-01-01

    ABSTRACT The High Mobility Group A1 proteins (HMGA1) are nonhistone chromatinic proteins with a critical role in development and cancer. We have recently reported that HMGA1 proteins are able to increase the expression of spindle assembly checkpoint (SAC) genes, thus impairing SAC function and causing chromosomal instability in cancer cells. Moreover, we found a significant correlation between HMGA1 and SAC genes expression in human colon carcinomas. Here, we report that mouse embryonic fibroblasts null for the Hmga1 gene show downregulation of Bub1, Bub1b, Mad2l1 and Ttk SAC genes, and present several features of chromosomal instability, such as nuclear abnormalities, binucleation, micronuclei and karyotypic alterations. Interestingky, also MEFs carrying only one impaired Hmga1 allele present karyotypic alterations. These results indicate that HMGA1 proteins regulate SAC genes expression and, thereby, genomic stability also in embryonic cells. PMID:26889953

  11. Monitoring spindle orientation: Spindle position checkpoint in charge.

    PubMed

    Caydasi, Ayse K; Ibrahim, Bashar; Pereira, Gislene

    2010-12-11

    Every cell division in budding yeast is inherently asymmetric and counts on the correct positioning of the mitotic spindle along the mother-daughter polarity axis for faithful chromosome segregation. A surveillance mechanism named the spindle position checkpoint (SPOC), monitors the orientation of the mitotic spindle and prevents cells from exiting mitosis when the spindle fails to align along the mother-daughter axis. SPOC is essential for maintenance of ploidy in budding yeast and similar mechanisms might exist in higher eukaryotes to ensure faithful asymmetric cell division. Here, we review the current model of SPOC activation and highlight the importance of protein localization and phosphorylation for SPOC function.

  12. Arsenite-induced mitotic death involves stress response and is independent of tubulin polymerization

    SciTech Connect

    Taylor, B. Frazier; McNeely, Samuel C.; Miller, Heather L.; States, J. Christopher

    2008-07-15

    Arsenite, a known mitotic disruptor, causes cell cycle arrest and cell death at anaphase. The mechanism causing mitotic arrest is highly disputed. We compared arsenite to the spindle poisons nocodazole and paclitaxel. Immunofluorescence analysis of {alpha}-tubulin in interphase cells demonstrated that, while nocodazole and paclitaxel disrupt microtubule polymerization through destabilization and hyperpolymerization, respectively, microtubules in arsenite-treated cells remain comparable to untreated cells even at supra-therapeutic concentrations. Immunofluorescence analysis of {alpha}-tubulin in mitotic cells showed spindle formation in arsenite- and paclitaxel-treated cells but not in nocodazole-treated cells. Spindle formation in arsenite-treated cells appeared irregular and multi-polar. {gamma}-tubulin staining showed that cells treated with nocodazole and therapeutic concentrations of paclitaxel contained two centrosomes. In contrast, most arsenite-treated mitotic cells contained more than two centrosomes, similar to centrosome abnormalities induced by heat shock. Of the three drugs tested, only arsenite treatment increased expression of the inducible isoform of heat shock protein 70 (HSP70i). HSP70 and HSP90 proteins are intimately involved in centrosome regulation and mitotic spindle formation. HSP90 inhibitor 17-DMAG sensitized cells to arsenite treatment and increased arsenite-induced centrosome abnormalities. Combined treatment of 17-DMAG and arsenite resulted in a supra-additive effect on viability, mitotic arrest, and centrosome abnormalities. Thus, arsenite-induced abnormal centrosome amplification and subsequent mitotic arrest is independent of effects on tubulin polymerization and may be due to specific stresses that are protected against by HSP90 and HSP70.

  13. The ASQ2 gene required for mother-daughter centriole linkage and mitotic spindle orientation encodes a conserved TBCC-like protein

    PubMed Central

    Feldman, Jessica L.; Marshall, Wallace F.

    2009-01-01

    Summary An intriguing feature of centrioles is that these highly complicated microtubule-based structures duplicate once per cell cycle and the cell has precise control over their number. Each cell contains exactly two centrioles, linked together as a pair, one of which is a mother centriole formed in a previous cell cycle and the other a daughter centriole whose assembly is templated by the mother. Neither the molecular basis nor the functional role of mother-daughter centriole linkage is understood. We have identified a mutant, asq2, with defects in centriole linkage. asq2 mutant cells have variable numbers of centrioles and defects in centriole positioning. Here, we show that ASQ2 encodes the novel conserved protein, TBCCd1, a member of a protein family that includes a tubulin folding co-chaperone and the retinitis pigmentosa protein, RP2, involved in tubulin quality control during ciliogenesis. We characterize mitosis in asq2 cells. We show that the majority of cells establish a bipolar spindle, but that cells have defects in spindle orientation. A small subset of asq2 cells have centrioles at both poles, and these cells have properly positioned spindles, indicating that centrioles at the poles may be important for spindle orientation. The defects in centriole number control, centriole positioning, and spindle orientation appear to arise from a primary defect in centriole linkage mediated by TBCCd1/ASQ2. PMID:19631545

  14. The Nuclear Matrix Protein Megator Regulates Stem Cell Asymmetric Division through the Mitotic Checkpoint Complex in Drosophila Testes.

    PubMed

    Liu, Ying; Singh, Shree Ram; Zeng, Xiankun; Zhao, Jiangsha; Hou, Steven X

    2015-12-01

    In adult Drosophila testis, asymmetric division of germline stem cells (GSCs) is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2). However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor), a nuclear matrix protein, which regulates GSC maintenance and asymmetric division through the spindle assembly checkpoint (SAC) complex. Loss of Mtor function results in Apc2 mis-localization, incorrect centrosome orientation, defective mitotic spindle formation, and abnormal chromosome segregation that lead to the eventual GSC loss. Expression of mitotic arrest-deficient-2 (Mad2) and monopolar spindle 1 (Mps1) of the SAC complex effectively rescued the GSC loss phenotype associated with loss of Mtor function. Collectively our results define a new role of the nuclear matrix-SAC axis in regulating stem cell maintenance and asymmetric division.

  15. Biophysical Aspects of Spindle Evolution

    NASA Astrophysics Data System (ADS)

    Farhadifar, Reza; Baer, Charlie; Needleman, Daniel

    2011-03-01

    The continual propagation of genetic material from one generation to the next is one of the most basic characteristics of all organisms. In eukaryotes, DNA is segregated into the two daughter cells by a highly dynamic, self-organizing structure called the mitotic spindle. Mitotic spindles can show remarkable variability between tissues and organisms, but there is currently little understanding of the biophysical and evolutionary basis of this diversity. We are studying how spontaneous mutations modify cell division during nematode development. By comparing the mutational variation - the raw material of evolution - with the variation present in nature, we are investigating how the mitotic spindle is shaped over the course of evolution. This combination of quantitative genetics and cellular biophysics gives insight into how the structure and dynamics of the spindle is formed through selection, drift, and biophysical constraints.

  16. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis

    PubMed Central

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L.; Yang, Jingyi; Yin, Yuxin; Shen, Wen H.

    2016-01-01

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. PMID:27492783

  17. Proteomic profiling revealed the functional networks associated with mitotic catastrophe of HepG2 hepatoma cells induced by 6-bromine-5-hydroxy-4-methoxybenzaldehyde

    SciTech Connect

    Zhang Bo; Huang Bo; Guan Hua; Zhang Shimeng; Xu Qinzhi; He Xingpeng; Liu Xiaodan; Wang Yu; Shang Zengfu; Zhou Pingkun

    2011-05-01

    Mitotic catastrophe, a form of cell death resulting from abnormal mitosis, is a cytotoxic death pathway as well as an appealing mechanistic strategy for the development of anti-cancer drugs. In this study, 6-bromine-5-hydroxy-4-methoxybenzaldehyde was demonstrated to induce DNA double-strand break, multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human hepatoma HepG2 cells. We used proteomic profiling to identify the differentially expressed proteins underlying mitotic catastrophe. A total of 137 differentially expressed proteins (76 upregulated and 61 downregulated proteins) were identified. Some of the changed proteins have previously been associated with mitotic catastrophe, such as DNA-PKcs, FoxM1, RCC1, cyclin E, PLK1-pT210, 14-3-3{sigma} and HSP70. Multiple isoforms of 14-3-3, heat-shock proteins and tubulin were upregulated. Analysis of functional significance revealed that the 14-3-3-mediated signaling network was the most significantly enriched for the differentially expressed proteins. The modulated proteins were found to be involved in macromolecule complex assembly, cell death, cell cycle, chromatin remodeling and DNA repair, tubulin and cytoskeletal organization. These findings revealed the overall molecular events and functional signaling networks associated with spindle disruption and mitotic catastrophe. - Graphical abstract: Display Omitted Research highlights: > 6-bromoisovanillin induced spindle disruption and sustained mitotic arrest, consequently resulted in mitotic catastrophe. > Proteomic profiling identified 137 differentially expressed proteins associated mitotic catastrophe. > The 14-3-3-mediated signaling network was the most significantly enriched for the altered proteins. > The macromolecule complex assembly, cell cycle, chromatin remodeling and DNA repair, tubulin organization were also shown involved in mitotic catastrophe.

  18. Hice1, a Novel Microtubule-Associated Protein Required for Maintenance of Spindle Integrity and Chromosomal Stability in Human Cells▿ †

    PubMed Central

    Wu, Guikai; Lin, Yi-Tzu; Wei, Randy; Chen, Yumay; Shan, Zhiyin; Lee, Wen-Hwa

    2008-01-01

    Spindle integrity is critical for efficient mitotic progression and accurate chromosome segregation. Deregulation of spindles often leads to structural and functional aberrations, ultimately promoting segregation errors and aneuploidy, a hallmark of most human cancers. Here we report the characterization of a previously identified human sarcoma antigen (gene located at 19p13.11), Hice1, an evolutionarily nonconserved 46-kDa coiled-coil protein. Hice1 shows distinct cytoplasmic localization and associates with interphase centrosomes and mitotic spindles, preferentially at the spindle pole vicinity. Depletion of Hice1 by RNA interference resulted in abnormal and unstable spindle configurations, mitotic delay at prometaphase and metaphase, and elevated aneuploidy. Conversely, loss of Hice1 had minimal effects on interphase centrosome duplication. We also found that both full-length Hice1 and Hice1-N1, which is composed of 149 amino acids of the N-terminal region, but not the mutant lacking the N-terminal region, exhibited activities of microtubule bundling and stabilization at a near-physiological concentration. Consistently, overexpression of Hice1 rendered microtubule bundles in cells resistant to nocodazole- or cold-treatment-induced depolymerization. These results demonstrate that Hice1 is a novel microtubule-associated protein important for maintaining spindle integrity and chromosomal stability, in part by virtue of its ability to bind, bundle, and stabilize microtubules. PMID:18362163

  19. Heat shock protein inhibitors, 17-DMAG and KNK437, enhance arsenic trioxide-induced mitotic apoptosis

    SciTech Connect

    Wu Yichen; Yen Wenyen; Lee, T.-C. Yih, L.-H.

    2009-04-15

    Arsenic trioxide (ATO) has recently emerged as a promising therapeutic agent in leukemia because of its ability to induce apoptosis. However, there is no sufficient evidence to support its therapeutic use for other types of cancers. In this study, we investigated if, and how, 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17-DMAG), an antagonist of heat shock protein 90 (HSP90), and KNK437, a HSP synthesis inhibitor, potentiated the cytotoxic effect of ATO. Our results showed that cotreatment with ATO and either 17-DMAG or KNK437 significantly increased ATO-induced cell death and apoptosis. siRNA-mediated attenuation of the expression of the inducible isoform of HSP70 (HSP70i) or HSP90{alpha}/{beta} also enhanced ATO-induced apoptosis. In addition, cotreatment with ATO and 17-DMAG or KNK437 significantly increased ATO-induced mitotic arrest and ATO-induced BUBR1 phosphorylation and PDS1 accumulation. Cotreatment also significantly increased the percentage of mitotic cells with abnormal mitotic spindles and promoted metaphase arrest as compared to ATO treatment alone. These results indicated that 17-DMAG or KNK437 may enhance ATO cytotoxicity by potentiating mitotic arrest and mitotic apoptosis possibly through increased activation of the spindle checkpoint.

  20. Evidence of Selection against Complex Mitotic-Origin Aneuploidy during Preimplantation Development

    PubMed Central

    McCoy, Rajiv C.; Demko, Zachary P.; Ryan, Allison; Banjevic, Milena; Hill, Matthew; Sigurjonsson, Styrmir; Rabinowitz, Matthew; Petrov, Dmitri A.

    2015-01-01

    Whole-chromosome imbalances affect over half of early human embryos and are the leading cause of pregnancy loss. While these errors frequently arise in oocyte meiosis, many such whole-chromosome abnormalities affecting cleavage-stage embryos are the result of chromosome missegregation occurring during the initial mitotic cell divisions. The first wave of zygotic genome activation at the 4–8 cell stage results in the arrest of a large proportion of embryos, the vast majority of which contain whole-chromosome abnormalities. Thus, the full spectrum of meiotic and mitotic errors can only be detected by sampling after the initial cell divisions, but prior to this selective filter. Here, we apply 24-chromosome preimplantation genetic screening (PGS) to 28,052 single-cell day-3 blastomere biopsies and 18,387 multi-cell day-5 trophectoderm biopsies from 6,366 in vitro fertilization (IVF) cycles. We precisely characterize the rates and patterns of whole-chromosome abnormalities at each developmental stage and distinguish errors of meiotic and mitotic origin without embryo disaggregation, based on informative chromosomal signatures. We show that mitotic errors frequently involve multiple chromosome losses that are not biased toward maternal or paternal homologs. This outcome is characteristic of spindle abnormalities and chaotic cell division detected in previous studies. In contrast to meiotic errors, our data also show that mitotic errors are not significantly associated with maternal age. PGS patients referred due to previous IVF failure had elevated rates of mitotic error, while patients referred due to recurrent pregnancy loss had elevated rates of meiotic error, controlling for maternal age. These results support the conclusion that mitotic error is the predominant mechanism contributing to pregnancy losses occurring prior to blastocyst formation. This high-resolution view of the full spectrum of whole-chromosome abnormalities affecting early embryos provides insight

  1. The spindle pole bodies facilitate nuclear envelope division during closed mitosis in fission yeast.

    PubMed

    Zheng, Liling; Schwartz, Cindi; Magidson, Valentin; Khodjakov, Alexey; Oliferenko, Snezhana

    2007-07-01

    Many organisms divide chromosomes within the confines of the nuclear envelope (NE) in a process known as closed mitosis. Thus, they must ensure coordination between segregation of the genetic material and division of the NE itself. Although many years of work have led to a reasonably clear understanding of mitotic spindle function in chromosome segregation, the NE division mechanism remains obscure. Here, we show that fission yeast cells overexpressing the transforming acid coiled coil (TACC)-related protein, Mia1p/Alp7p, failed to separate the spindle pole bodies (SPBs) at the onset of mitosis, but could assemble acentrosomal bipolar and antiparallel spindle structures. Most of these cells arrested in anaphase with fully extended spindles and nonsegregated chromosomes. Spindle poles that lacked the SPBs did not lead the division of the NE during spindle elongation, but deformed it, trapping the chromosomes within. When the SPBs were severed by laser microsurgery in wild-type cells, we observed analogous deformations of the NE by elongating spindle remnants, resulting in NE division failure. Analysis of dis1Delta cells that elongate spindles despite unattached kinetochores indicated that the SPBs were required for maintaining nuclear shape at anaphase onset. Strikingly, when the NE was disassembled by utilizing a temperature-sensitive allele of the Ran GEF, Pim1p, the abnormal spindles induced by Mia1p overexpression were capable of segregating sister chromatids to daughter cells, suggesting that the failure to divide the NE prevents chromosome partitioning. Our results imply that the SPBs preclude deformation of the NE during spindle elongation and thus serve as specialized structures enabling nuclear division during closed mitosis in fission yeast.

  2. Therapeutic potential of mitotic interaction between the nucleoporin Tpr and aurora kinase A.

    PubMed

    Kobayashi, Akiko; Hashizume, Chieko; Dowaki, Takayuki; Wong, Richard W

    2015-01-01

    Spindle poles are defined by centrosomes; therefore, an abnormal number or defective structural organization of centrosomes can lead to loss of spindle bipolarity and genetic integrity. Previously, we showed that Tpr (translocated promoter region), a component of the nuclear pore complex (NPC), interacts with Mad1 and dynein to promote proper chromosome segregation during mitosis. Tpr also associates with p53 to induce autophagy. Here, we report that Tpr depletion induces mitotic catastrophe and enhances the rate of tetraploidy and polyploidy. Mechanistically, Tpr interacts, via its central domain, with Aurora A but not Aurora B kinase. In Tpr-depleted cells, the expression levels, centrosomal localization and phosphorylation of Aurora A were all reduced. Surprisingly, an Aurora A inhibitor, Alisertib (MLN8237), also disrupted centrosomal localization of Tpr and induced mitotic catastrophe and cell death in a time- and dose-dependent manner. Strikingly, over-expression of Aurora A disrupted Tpr centrosomal localization only in cells with supernumerary centrosomes but not in bipolar cells. Our results highlight the mutual regulation between Tpr and Aurora A and further confirm the importance of nucleoporin function in spindle pole organization, bipolar spindle assembly, and mitosis; functions that are beyond the conventional nucleocytoplasmic transport and NPC structural roles of nucleoporins. Furthermore, the central coiled-coil domain of Tpr binds to and sequesters extra Aurora A to safeguard bipolarity. This Tpr domain merits further investigation for its ability to inhibit Aurora kinase and as a potential therapeutic agent in cancer treatment.

  3. Nek9 regulates spindle organization and cell cycle progression during mouse oocyte meiosis and its location in early embryo mitosis

    PubMed Central

    Yang, Shang-Wu; Gao, Chen; Chen, Lei; Song, Ya-Li; Zhu, Jin-Liang; Qi, Shu-Tao; Jiang, Zong-Zhe; Wang, Zhong-Wei; Lin, Fei; Huang, Hao; Xing, Fu-Qi; Sun, Qing-Yuan

    2012-01-01

    Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage. PMID:23159858

  4. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest

    PubMed Central

    Dikovskaya, Dina; Cole, John J.; Mason, Susan M.; Nixon, Colin; Karim, Saadia A.; McGarry, Lynn; Clark, William; Hewitt, Rachael N.; Sammons, Morgan A.; Zhu, Jiajun; Athineos, Dimitris; Leach, Joshua D.G.; Marchesi, Francesco; van Tuyn, John; Tait, Stephen W.; Brock, Claire; Morton, Jennifer P.; Wu, Hong; Berger, Shelley L.; Blyth, Karen; Adams, Peter D.

    2015-01-01

    Summary Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells. PMID:26299965

  5. Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest.

    PubMed

    Dikovskaya, Dina; Cole, John J; Mason, Susan M; Nixon, Colin; Karim, Saadia A; McGarry, Lynn; Clark, William; Hewitt, Rachael N; Sammons, Morgan A; Zhu, Jiajun; Athineos, Dimitris; Leach, Joshua D G; Marchesi, Francesco; van Tuyn, John; Tait, Stephen W; Brock, Claire; Morton, Jennifer P; Wu, Hong; Berger, Shelley L; Blyth, Karen; Adams, Peter D

    2015-09-01

    Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.

  6. NuMA Phosphorylation by Aurora-A Orchestrates Spindle Orientation.

    PubMed

    Gallini, Sara; Carminati, Manuel; De Mattia, Fabiola; Pirovano, Laura; Martini, Emanuele; Oldani, Amanda; Asteriti, Italia Anna; Guarguaglini, Giulia; Mapelli, Marina

    2016-02-22

    Spindle positioning is essential for tissue morphogenesis and homeostasis. The signaling network synchronizing spindle placement with mitotic progression relies on timely recruitment at the cell cortex of NuMA:LGN:Gαi complexes, in which NuMA acts as a receptor for the microtubule motor Dynein. To study the implication of Aurora-A in spindle orientation, we developed protocols for the partial inhibition of its activity. Under these conditions, in metaphase NuMA and Dynein accumulate abnormally at the spindle poles and do not reach the cortex, while the cortical distribution of LGN remains unperturbed. FRAP experiments revealed that Aurora-A governs the dynamic exchange between the cytoplasmic and the spindle pole-localized pools of NuMA. We show that Aurora-A phosphorylates directly the C terminus of NuMA on three Ser residues, of which Ser1969 determines the dynamic behavior and the spindle orientation functions of NuMA. Most interestingly, we identify a new microtubule-binding domain of NuMA, which does not overlap with the LGN-binding motif. Our study demonstrates that in metaphase the direct phosphorylation of NuMA by Aurora-A controls its cortical enrichment, and that this is the major event underlying the spindle orientation functions of Aurora-A in transformed and non-transformed cells in culture. Phosphorylation of NuMA by Aurora-A does not affect its affinity for microtubules or for LGN but rather determines the mobility of the protein at the spindle poles. The finding that NuMA can associate concomitantly with LGN and microtubules suggests that its microtubule-binding activity contributes to anchor Dynein-loaded microtubule +TIPs at cortical sites with LGN.

  7. Chemically diverse microtubule stabilizing agents initiate distinct mitotic defects and dysregulated expression of key mitotic kinases.

    PubMed

    Rohena, Cristina C; Peng, Jiangnan; Johnson, Tyler A; Crews, Phillip; Mooberry, Susan L

    2013-04-15

    Microtubule stabilizers are some of the most successful drugs used in the treatment of adult solid tumors and yet the molecular events responsible for their antimitotic actions are not well defined. The mitotic events initiated by three structurally and biologically diverse microtubule stabilizers; taccalonolide AJ, laulimalide/fijianolide B and paclitaxel were studied. These microtubule stabilizers cause the formation of aberrant, but structurally distinct mitotic spindles leading to the hypothesis that they differentially affect mitotic signaling. Each microtubule stabilizer initiated different patterns of expression of key mitotic signaling proteins. Taccalonolide AJ causes centrosome separation and disjunction failure to a much greater extent than paclitaxel or laulimalide, which is consistent with the distinct defects in expression and activation of Plk1 and Eg5 caused by each stabilizer. Localization studies revealed that TPX2 and Aurora A are associated with each spindle aster formed by each stabilizer. This suggests a common mechanism of aster formation. However, taccalonolide AJ also causes pericentrin accumulation on every spindle aster. The presence of pericentrin at every spindle aster initiated by taccalonolide AJ might facilitate the maintenance and stability of the highly focused asters formed by this stabilizer. Laulimalide and paclitaxel cause completely different patterns of expression and activation of these proteins, as well as phenotypically different spindle phenotypes. Delineating how diverse microtubule stabilizers affect mitotic signaling pathways could identify key proteins involved in modulating sensitivity and resistance to the antimitotic actions of these compounds.

  8. Chemically Diverse Microtubule Stabilizing Agents Initiate Distinct Mitotic Defects and Dysregulated Expression of Key Mitotic Kinases

    PubMed Central

    Rohena, Cristina C.; Peng, Jiangnan; Johnson, Tyler A.; Crews, Phillip; Mooberry, Susan L.

    2013-01-01

    Microtubule stabilizers are some of the most successful drugs used in the treatment of adult solid tumors and yet the molecular events responsible for their antimitotic actions are not well defined. The mitotic events initiated by three structurally and biologically diverse microtubule stabilizers; taccalonolide AJ, laulimalide/fijianolide B and paclitaxel were studied. These microtubule stabilizers cause the formation of aberrant, but structurally distinct mitotic spindles leading to the hypothesis that they differentially affect mitotic signaling. Each microtubule stabilizer initiated different patterns of expression of key mitotic signaling proteins. Taccalonolide AJ causes centrosome separation and disjunction failure to a much greater extent than paclitaxel or laulimalide, which is consistent with the distinct defects in expression and activation of Plk1 and Eg5 caused by each stabilizer. Localization studies revealed that TPX2 and Aurora A are associated with each spindle aster formed by each stabilizer. This suggests a common mechanism of aster formation. However, taccalonolide AJ also causes pericentrin accumulation on every spindle aster. The presence of pericentrin at every spindle aster initiated by taccalonolide AJ might facilitate the maintenance and stability of the highly focused asters formed by this stabilizer. Laulimalide and paclitaxel cause completely different patterns of expression and activation of these proteins, as well as phenotypically different spindle phenotypes. Delineating how diverse microtubule stabilizers affect mitotic signaling pathways could identify key proteins involved in modulating sensitivity and resistance to the antimitotic actions of these compounds. PMID:23399639

  9. A leukemia fusion protein attenuates the spindle checkpoint and promotes aneuploidy

    PubMed Central

    Boyapati, Anita; Yan, Ming; Peterson, Luke F.; Biggs, Joseph R.; Le Beau, Michelle M.

    2007-01-01

    The 8;21 chromosomal translocation occurs in 15% to 40% of patients with the FAB M2 subtype of acute myeloid leukemia (AML). This chromosomal abnormality fuses part of the AML1/RUNX1 gene to the ETO/MTG8 gene and generates the AML1-ETO protein. We previously identified a C-terminal truncated AML1-ETO protein (AEtr) in a mouse leukemia model. AEtr is almost identical to the AML1-ETO exon 9a isoform expressed in leukemia patients. Here, we describe a novel function of AEtr in the development of aneuploidy through spindle checkpoint attenuation. AEtr cells had a reduced mitotic index following nocodazole treatment, suggesting a failure in a subset of cells to arrest in mitosis with a functional spindle checkpoint. Additionally, primary leukemia cells and cell lines expressing AEtr were aneuploid. Moreover, AEtr cells had reduced levels of several spindle checkpoint proteins including BubR1 and securin following treatment with the spindle poison nocodazole. These results suggest that inactivation of the spindle checkpoint may contribute to the development of aneuploidy described in t(8;21) leukemia patients. PMID:17197431

  10. The spindle position checkpoint: how to deal with spindle misalignment during asymmetric cell division in budding yeast.

    PubMed

    Fraschini, Roberta; Venturetti, Marianna; Chiroli, Elena; Piatti, Simonetta

    2008-06-01

    During asymmetric cell division, spindle positioning is critical to ensure the unequal segregation of polarity factors and generate daughter cells with different sizes or fates. In budding yeast the boundary between mother and daughter cell resides at the bud neck, where cytokinesis takes place at the end of the cell cycle. Since budding and bud neck formation occur much earlier than bipolar spindle formation, spindle positioning is a finely regulated process. A surveillance device called the SPOC (spindle position checkpoint) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability.

  11. The Aurora kinase A inhibitor TC-A2317 disrupts mitotic progression and inhibits cancer cell proliferation.

    PubMed

    Min, Yoo Hong; Kim, Wootae; Kim, Ja-Eun

    2016-12-20

    Mitotic progression is crucial for the maintenance of chromosomal stability. A proper progression is ensured by the activities of multiple kinases. One of these enzymes, the serine/threonine kinase Aurora A, is required for proper mitosis through the regulation of centrosome and spindle assembly. In this study, we functionally characterized a newly developed Aurora kinase A inhibitor, TC-A2317. In human lung cancer cells, TC-A2317 slowed proliferation by causing aberrant formation of centrosome and microtubule spindles and prolonging the duration of mitosis. Abnormal mitotic progression led to accumulation of cells containing micronuclei or multinuclei. Furthermore, TC-A2317-treated cells underwent apoptosis, autophagy or senescence depending on cell type. In addition, TC-A2317 inactivated the spindle assembly checkpoint triggered by paclitaxel, thereby exacerbating mitotic catastrophe. Consistent with this, the expression level of Aurora A in tumors was inversely correlated with survival in lung cancer patients. Collectively, these data suggest that inhibition of Aurora kinase A using TC-A2317 is a promising target for anti-cancer therapeutics.

  12. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation.

    PubMed

    Kiyomitsu, Tomomi; Cheeseman, Iain M

    2012-02-12

    Mitotic spindle positioning by cortical pulling forces defines the cell division axis and location, which is critical for proper cell division and development. Although recent work has identified developmental and extrinsic cues that regulate spindle orientation, the contribution of intrinsic signals to spindle positioning and orientation remains unclear. Here, we demonstrate that cortical force generation in human cells is controlled by distinct spindle-pole- and chromosome-derived signals that regulate cytoplasmic dynein localization. First, dynein exhibits a dynamic asymmetric cortical localization that is negatively regulated by spindle-pole proximity, resulting in spindle oscillations to centre the spindle within the cell. We find that this signal comprises the spindle-pole-localized polo-like kinase (Plk1), which regulates dynein localization by controlling the interaction between dynein-dynactin and its upstream cortical targeting factors NuMA and LGN. Second, a chromosome-derived RanGTP gradient restricts the localization of NuMA-LGN to the lateral cell cortex to define and maintain the spindle orientation axis. RanGTP acts in part through the nuclear localization sequence of NuMA to locally alter the ability of NuMA-LGN to associate with the cell cortex in the vicinity of chromosomes. We propose that these chromosome- and spindle-pole-derived gradients generate an intrinsic code to control spindle position and orientation.

  13. Kinetochore flexibility: creating a dynamic chromosome-spindle interface

    PubMed Central

    O’Connell, Christopher B.; Khodjakov, Alexey; McEwen, Bruce F.

    2012-01-01

    Kinetochores are complex macromolecular assemblies that link chromosomes to the mitotic spindle, mediate forces for chromosome motion, and generate the checkpoint signal delaying anaphase onset until all chromosomes are incorporated into the spindle. Proper execution of these functions depends on precise interactions between kinetochores and microtubules. While the molecular composition of the kinetochore is well described, structural organization of this organelle at the molecular and atomic levels is just beginning to emerge. Recent structural studies across scales suggest that kinetochores should not be viewed as rigid static scaffolds. Instead, these organelles exhibit a surprising degree of flexibility that enables rapid adaptations to various types of interactions with the mitotic spindle. PMID:22221609

  14. Mechanical stability of bipolar spindle assembly

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Muhuri, Sudipto

    2016-07-01

    Assembly and stability of mitotic spindle are governed by the interplay of various intra-cellular forces, e.g. the forces generated by motor proteins by sliding overlapping anti-parallel microtubules (MTs) polymerized from the opposite centrosomes, the interaction of kinetochores with MTs, and the interaction of MTs with the chromosome arms. We study the mechanical behavior and stability of spindle assembly within the framework of a minimal model which includes all these effects. For this model, we derive a closed-form analytical expression for the force acting between the centrosomes as a function of their separation distance and we show that an effective potential can be associated with the interactions at play. We obtain the stability diagram of spindle formation in terms of parameters characterizing the strength of motor sliding, repulsive forces generated by polymerizing MTs, and the forces arising out of the interaction of MTs with kinetochores. The stability diagram helps in quantifying the relative effects of the different interactions and elucidates the role of motor proteins in formation and inhibition of spindle structures during mitotic cell division. We also predict a regime of bistability for a certain parameter range, wherein the spindle structure can be stable for two different finite separation distances between centrosomes. This occurrence of bistability also suggests the mechanical versatility of such self-assembled spindle structures.

  15. Spindle Assembly and Chromosome Segregation Requires Central Spindle Proteins in Drosophila Oocytes

    PubMed Central

    Das, Arunika; Shah, Shital J.; Fan, Bensen; Paik, Daniel; DiSanto, Daniel J.; Hinman, Anna Maria; Cesario, Jeffry M.; Battaglia, Rachel A.; Demos, Nicole; McKim, Kim S.

    2016-01-01

    Oocytes segregate chromosomes in the absence of centrosomes. In this situation, the chromosomes direct spindle assembly. It is still unclear in this system which factors are required for homologous chromosome bi-orientation and spindle assembly. The Drosophila kinesin-6 protein Subito, although nonessential for mitotic spindle assembly, is required to organize a bipolar meiotic spindle and chromosome bi-orientation in oocytes. Along with the chromosomal passenger complex (CPC), Subito is an important part of the metaphase I central spindle. In this study we have conducted genetic screens to identify genes that interact with subito or the CPC component Incenp. In addition, the meiotic mutant phenotype for some of the genes identified in these screens were characterized. We show, in part through the use of a heat-shock-inducible system, that the Centralspindlin component RacGAP50C and downstream regulators of cytokinesis Rho1, Sticky, and RhoGEF2 are required for homologous chromosome bi-orientation in metaphase I oocytes. This suggests a novel function for proteins normally involved in mitotic cell division in the regulation of microtubule–chromosome interactions. We also show that the kinetochore protein, Polo kinase, is required for maintaining chromosome alignment and spindle organization in metaphase I oocytes. In combination our results support a model where the meiotic central spindle and associated proteins are essential for acentrosomal chromosome segregation. PMID:26564158

  16. Spindle alignment regulates the dynamic association of checkpoint proteins with yeast spindle pole bodies.

    PubMed

    Caydasi, Ayse Koca; Pereira, Gislene

    2009-01-01

    In many polarized cells, the accuracy of chromosome segregation depends on the correct positioning of the mitotic spindle. In budding yeast, the spindle positioning checkpoint (SPOC) delays mitotic exit when the anaphase spindle fails to extend toward the mother-daughter axis. However it remains to be established how spindle orientation is translated to SPOC components at the yeast spindle pole bodies (SPB). Here, we used photobleaching techniques to show that the dynamics with which Bub2-Bfa1 turned over at SPBs significantly increased upon SPOC activation. A version of Bfa1 that was stably associated with SPBs rendered the cells SPOC deficient without affecting other Bub2-Bfa1 functions, demonstrating the functional importance of regulating the dynamics of Bfa1 SPB association. In addition, we established that the SPOC kinase Kin4 is the major regulator of Bfa1 residence time at SPBs. We suggest that upon SPOC activation Bfa1-Bub2 spreads throughout the cytoplasm, thereby inhibiting mitotic exit.

  17. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    PubMed

    Castagnetti, Stefania; Oliferenko, Snezhana; Nurse, Paul

    2010-10-12

    Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  18. Plk1 Inhibition Causes Post-Mitotic DNA Damage and Senescence in a Range of Human Tumor Cell Lines

    PubMed Central

    Bowman, Doug; Shinde, Vaishali; Lasky, Kerri; Shi, Judy; Vos, Tricia; Stringer, Bradley; Amidon, Ben; D'Amore, Natalie; Hyer, Marc L.

    2014-01-01

    Plk1 is a checkpoint protein whose role spans all of mitosis and includes DNA repair, and is highly conserved in eukaryotes from yeast to man. Consistent with this wide array of functions for Plk1, the cellular consequences of Plk1 disruption are diverse, spanning delays in mitotic entry, mitotic spindle abnormalities, and transient mitotic arrest leading to mitotic slippage and failures in cytokinesis. In this work, we present the in vitro and in vivo consequences of Plk1 inhibition in cancer cells using potent, selective small-molecule Plk1 inhibitors and Plk1 genetic knock-down approaches. We demonstrate for the first time that cellular senescence is the predominant outcome of Plk1 inhibition in some cancer cell lines, whereas in other cancer cell lines the dominant outcome appears to be apoptosis, as has been reported in the literature. We also demonstrate strong induction of DNA double-strand breaks in all six lines examined (as assayed by γH2AX), which occurs either during mitotic arrest or mitotic-exit, and may be linked to the downstream induction of senescence. Taken together, our findings expand the view of Plk1 inhibition, demonstrating the occurrence of a non-apoptotic outcome in some settings. Our findings are also consistent with the possibility that mitotic arrest observed as a result of Plk1 inhibition is at least partially due to the presence of unrepaired double-strand breaks in mitosis. These novel findings may lead to alternative strategies for the development of novel therapeutic agents targeting Plk1, in the selection of biomarkers, patient populations, combination partners and dosing regimens. PMID:25365521

  19. A force-generating machinery maintains the spindle at the cell center during mitosis.

    PubMed

    Garzon-Coral, Carlos; Fantana, Horatiu A; Howard, Jonathon

    2016-05-27

    The position and orientation of the mitotic spindle is precisely regulated to ensure the accurate partition of the cytoplasm between daughter cells and the correct localization of the daughters within growing tissue. Using magnetic tweezers to perturb the position of the spindle in intact cells, we discovered a force-generating machinery that maintains the spindle at the cell center during metaphase and anaphase in one- and two-cell Caenorhabditis elegans embryos. The forces increase with the number of microtubules and are larger in smaller cells. The machinery is rigid enough to suppress thermal fluctuations to ensure precise localization of the mitotic spindle, yet compliant enough to allow molecular force generators to fine-tune the position of the mitotic spindle to facilitate asymmetric division.

  20. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis.

    PubMed

    Chou, En-Ju; Hung, Liang-Yi; Tang, Chieh-Ju C; Hsu, Wen-Bin; Wu, Hsin-Yi; Liao, Pao-Chi; Tang, Tang K

    2016-03-29

    CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM) dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.

  1. Toward a systems-level view of mitotic checkpoints.

    PubMed

    Ibrahim, Bashar

    2015-03-01

    Reproduction and natural selection are the key elements of life. In order to reproduce, the genetic material must be doubled, separated and placed into two new daughter cells, each containing a complete set of chromosomes and organelles. In mitosis, transition from one process to the next is guided by intricate surveillance mechanisms, known as the mitotic checkpoints. Dis-regulation of cell division through checkpoint malfunction can lead to developmental defects and contribute to the development or progression of tumors. This review approaches two important mitotic checkpoints, the spindle assembly checkpoint (SAC) and the spindle position checkpoint (SPOC). The highly conserved spindle assembly checkpoint (SAC) controls the onset of anaphase by preventing premature segregation of the sister chromatids of the duplicated genome, to the spindle poles. In contrast, the spindle position checkpoint (SPOC), in the budding yeast Saccharomyces cerevisiae, ensures that during asymmetric cell division mitotic exit does not occur until the spindle is properly aligned with the cell polarity axis. Although there are no known homologs, there is indication that functionally similar checkpoints exist also in animal cells. This review can be regarded as an "executable model", which could be easily translated into various quantitative concrete models like Petri nets, ODEs, PDEs, or stochastic particle simulations. It can also function as a base for developing quantitative models explaining the interplay of the various components and proteins controlling mitosis.

  2. Chromosome passenger complexes control anaphase duration and spindle elongation via a kinesin-5 brake

    PubMed Central

    Rozelle, Daniel K.; Hansen, Scott D.

    2011-01-01

    During mitosis, chromosome passenger complexes (CPCs) exhibit a well-conserved association with the anaphase spindle and have been implicated in spindle stability. However, their precise effect on the spindle is not clear. In this paper, we show, in budding yeast, that a CPC consisting of CBF3, Bir1, and Sli15, but not Ipl1, is required for normal spindle elongation. CPC mutants slow spindle elongation through the action of the bipolar kinesins Cin8 and Kip1. The same CPC mutants that slow spindle elongation also result in the enrichment of Cin8 and Kip1 at the spindle midzone. Together, these findings argue that CPCs function to organize the spindle midzone and potentially switch motors between force generators and molecular brakes. We also find that slowing spindle elongation delays the mitotic exit network (MEN)–dependent release of Cdc14, thus delaying spindle breakdown until a minimal spindle size is reached. We propose that these CPC- and MEN-dependent mechanisms are important for coordinating chromosome segregation with spindle breakdown and mitotic exit. PMID:21482719

  3. JMJD5 (Jumonji Domain-containing 5) Associates with Spindle Microtubules and Is Required for Proper Mitosis.

    PubMed

    He, Zhimin; Wu, Junyu; Su, Xiaonan; Zhang, Ye; Pan, Lixia; Wei, Huimin; Fang, Qiang; Li, Haitao; Wang, Da-Liang; Sun, Fang-Lin

    2016-02-26

    Precise mitotic spindle assembly is a guarantee of proper chromosome segregation during mitosis. Chromosome instability caused by disturbed mitosis is one of the major features of various types of cancer. JMJD5 has been reported to be involved in epigenetic regulation of gene expression in the nucleus, but little is known about its function in mitotic process. Here we report the unexpected localization and function of JMJD5 in mitotic progression. JMJD5 partially accumulates on mitotic spindles during mitosis, and depletion of JMJD5 results in significant mitotic arrest, spindle assembly defects, and sustained activation of the spindle assembly checkpoint (SAC). Inactivating SAC can efficiently reverse the mitotic arrest caused by JMJD5 depletion. Moreover, JMJD5 is found to interact with tubulin proteins and associate with microtubules during mitosis. JMJD5-depleted cells show a significant reduction of α-tubulin acetylation level on mitotic spindles and fail to generate enough interkinetochore tension to satisfy the SAC. Further, JMJD5 depletion also increases the susceptibility of HeLa cells to the antimicrotubule agent. Taken together, these results suggest that JMJD5 plays an important role in regulating mitotic progression, probably by modulating the stability of spindle microtubules.

  4. Cytoplasmic Volume Modulates Spindle Size During Embryogenesis

    PubMed Central

    Good, Matthew C.; Vahey, Michael D.; Skandarajah, Arunan; Fletcher, Daniel A.; Heald, Rebecca

    2014-01-01

    Rapid and reductive cell divisions during embryogenesis require that intracellular structures adapt to a wide range of cell sizes. The mitotic spindle presents a central example of this flexibility, scaling with the dimensions of the cell to mediate accurate chromosome segregation. To determine whether spindle size regulation is achieved through a developmental program or is intrinsically specified by cell size or shape, we developed a system to encapsulate cytoplasm from Xenopus eggs and embryos inside cell-like compartments of defined sizes. Spindle size was observed to shrink with decreasing compartment size, similar to what occurs during early embryogenesis, and this scaling trend depended on compartment volume rather than shape. Thus, the amount of cytoplasmic material provides a mechanism for regulating the size of intracellular structures. PMID:24233724

  5. Direct interaction between centralspindlin and PRC1 reinforces mechanical resilience of the central spindle

    PubMed Central

    Lee, Kian-Yong; Esmaeili, Behrooz; Zealley, Ben; Mishima, Masanori

    2015-01-01

    During animal cell division, the central spindle, an anti-parallel microtubule bundle structure formed between segregating chromosomes during anaphase, cooperates with astral microtubules to position the cleavage furrow. Because the central spindle is the only structure linking the two halves of the mitotic spindle, it is under mechanical tension from dynein-generated cortical pulling forces, which determine spindle positioning and drive chromosome segregation through spindle elongation. The central spindle should be flexible enough for efficient chromosome segregation while maintaining its structural integrity for reliable cytokinesis. How the cell balances these potentially conflicting requirements is poorly understood. Here, we demonstrate that the central spindle in C. elegans embryos has a resilient mechanism for recovery from perturbations by excess tension derived from cortical pulling forces. This mechanism involves the direct interaction of two different types of conserved microtubule bundlers that are crucial for central spindle formation, PRC1 and centralspindlin. PMID:26088160

  6. Direct interaction between centralspindlin and PRC1 reinforces mechanical resilience of the central spindle

    NASA Astrophysics Data System (ADS)

    Lee, Kian-Yong; Esmaeili, Behrooz; Zealley, Ben; Mishima, Masanori

    2015-06-01

    During animal cell division, the central spindle, an anti-parallel microtubule bundle structure formed between segregating chromosomes during anaphase, cooperates with astral microtubules to position the cleavage furrow. Because the central spindle is the only structure linking the two halves of the mitotic spindle, it is under mechanical tension from dynein-generated cortical pulling forces, which determine spindle positioning and drive chromosome segregation through spindle elongation. The central spindle should be flexible enough for efficient chromosome segregation while maintaining its structural integrity for reliable cytokinesis. How the cell balances these potentially conflicting requirements is poorly understood. Here, we demonstrate that the central spindle in C. elegans embryos has a resilient mechanism for recovery from perturbations by excess tension derived from cortical pulling forces. This mechanism involves the direct interaction of two different types of conserved microtubule bundlers that are crucial for central spindle formation, PRC1 and centralspindlin.

  7. Genome-wide siRNA screen reveals coupling between mitotic apoptosis and adaptation

    PubMed Central

    Díaz-Martínez, Laura A; Karamysheva, Zemfira N; Warrington, Ross; Li, Bing; Wei, Shuguang; Xie, Xian-Jin; Roth, Michael G; Yu, Hongtao

    2014-01-01

    The antimitotic anti-cancer drugs, including taxol, perturb spindle dynamics, and induce prolonged, spindle checkpoint-dependent mitotic arrest in cancer cells. These cells then either undergo apoptosis triggered by the intrinsic mitochondrial pathway or exit mitosis without proper cell division in an adaptation pathway. Using a genome-wide small interfering RNA (siRNA) screen in taxol-treated HeLa cells, we systematically identify components of the mitotic apoptosis and adaptation pathways. We show that the Mad2 inhibitor p31comet actively promotes mitotic adaptation through cyclin B1 degradation and has a minor separate function in suppressing apoptosis. Conversely, the pro-apoptotic Bcl2 family member, Noxa, is a critical initiator of mitotic cell death. Unexpectedly, the upstream components of the mitochondrial apoptosis pathway and the mitochondrial fission protein Drp1 contribute to mitotic adaption. Our results reveal crosstalk between the apoptosis and adaptation pathways during mitotic arrest. PMID:25024437

  8. Mos oncogene product associates with kinetochores in mammalian somatic cells and disrupts mitotic progression.

    PubMed Central

    Wang, X M; Yew, N; Peloquin, J G; Vande Woude, G F; Borisy, G G

    1994-01-01

    The mos protooncogene has opposing effects on cell cycle progression. It is required for reinitiation of meiotic maturation and for meiotic progression through metaphase II, yet it is an active component of cytostatic factor. mos is a potent oncogene in fibroblasts, but high levels of expression are lethal. The lethality of mos gene expression in mammalian cells could be a consequence of a blockage induced by its cytostatic factor-related activity, which may appear at high dosage in mitotic cells. We have directly tested whether expression of the Mos protein can block mitosis in mammalian cells by microinjecting a fusion protein between Escherichia coli maltose-binding protein and Xenopus c-Mos into PtK1 epithelial cells and analyzing the cells by video time-lapse and immunofluorescence microscopy. Time-course analyses showed that Mos blocked mitosis by preventing progression to a normal metaphase. Chromosomes frequently failed to attain a bipolar orientation and were found near one pole. Injection of a kinase-deficient mutant Mos had no effect on mitosis, indicating that the blockage of mitotic progression required Mos kinase activity. Antitubulin immunostaining of cells blocked by Mos showed that microtubules were present but that spindle morphology was abnormal. Immunostaining for the Mos fusion protein showed that both wild-type and kinase mutant proteins localized at the kinetochores. Our results suggest that mitotic blockage by Mos may result from an action of the Mos kinase on the kinetochores, thus increasing chromosome instability and preventing normal congression. Images PMID:8078882

  9. CHK2-BRCA1 tumor-suppressor axis restrains oncogenic Aurora-A kinase to ensure proper mitotic microtubule assembly.

    PubMed

    Ertych, Norman; Stolz, Ailine; Valerius, Oliver; Braus, Gerhard H; Bastians, Holger

    2016-02-16

    BRCA1 (breast cancer type 1 susceptibility protein) is a multifunctional tumor suppressor involved in DNA damage response, DNA repair, chromatin regulation, and mitotic chromosome segregation. Although the nuclear functions of BRCA1 have been investigated in detail, its role during mitosis is little understood. It is clear, however, that loss of BRCA1 in human cancer cells leads to chromosomal instability (CIN), which is defined as a perpetual gain or loss of whole chromosomes during mitosis. Moreover, our recent work has revealed that the mitotic function of BRCA1 depends on its phosphorylation by the tumor-suppressor kinase Chk2 (checkpoint kinase 2) and that this regulation is required to ensure normal microtubule plus end assembly rates within mitotic spindles. Intriguingly, loss of the positive regulation of BRCA1 leads to increased oncogenic Aurora-A activity, which acts as a mediator for abnormal mitotic microtubule assembly resulting in chromosome missegregation and CIN. However, how the CHK2-BRCA1 tumor suppressor axis restrains oncogenic Aurora-A during mitosis to ensure karyotype stability remained an open question. Here we uncover a dual molecular mechanism by which the CHK2-BRCA1 axis restrains oncogenic Aurora-A activity during mitosis and identify BRCA1 itself as a target for Aurora-A relevant for CIN. In fact, Chk2-mediated phosphorylation of BRCA1 is required to recruit the PP6C-SAPS3 phosphatase, which acts as a T-loop phosphatase inhibiting Aurora-A bound to BRCA1. Consequently, loss of CHK2 or PP6C-SAPS3 promotes Aurora-A activity associated with BRCA1 in mitosis. Aurora-A, in turn, then phosphorylates BRCA1 itself, thereby inhibiting the mitotic function of BRCA1 and promoting mitotic microtubule assembly, chromosome missegregation, and CIN.

  10. Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control.

    PubMed

    Su, Xiaolei; Arellano-Santoyo, Hugo; Portran, Didier; Gaillard, Jeremie; Vantard, Marylin; Thery, Manuel; Pellman, David

    2013-08-01

    Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by crosslinking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report an antiparallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule-destabilizing activity. In conjunction with Cin8, a kinesin-5 family member, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a slide-disassemble model where the sliding and destabilizing activity of Kip3 balance during pre-anaphase. This facilitates normal spindle assembly. However, the destabilizing activity of Kip3 dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly.

  11. Nucleosome functions in spindle assembly and nuclear envelope formation

    PubMed Central

    Zierhut, Christian; Funabiki, Hironori

    2016-01-01

    Summary Chromosomes are not only carriers of the genetic material, but also actively regulate the assembly of complex intracellular architectures. During mitosis, chromosome-induced microtubule polymerisation ensures spindle assembly in cells without centrosomes and plays a supportive role in centrosome-containing cells. Chromosomal signals also mediate post-mitotic nuclear envelope (NE) re-formation. Recent studies using novel approaches to manipulate histones in oocytes, where functions can be analysed in the absence of transcription, have established that nucleosomes, but not DNA alone, mediate the chromosomal regulation of spindle assembly and NE formation. Both processes require the generation of RanGTP by RCC1 recruited to nucleosomes but nucleosomes also acquire cell cycle stage specific regulators, Aurora B in mitosis and ELYS, the initiator of nuclear pore complex assembly, at mitotic exit. Here, we review the mechanisms by which nucleosomes control assembly and functions of the spindle and the NE, and discuss their implications for genome maintenance. PMID:26222742

  12. A lysine deacetylase Hos3 is targeted to the bud neck and involved in the spindle position checkpoint.

    PubMed

    Wang, Mengqiao; Collins, Ruth N

    2014-09-15

    An increasing number of cellular activities can be regulated by reversible lysine acetylation. Targeting the enzymes responsible for such posttranslational modifications is instrumental in defining their substrates and functions in vivo. Here we show that a Saccharomyces cerevisiae lysine deacetylase, Hos3, is asymmetrically targeted to the daughter side of the bud neck and to the daughter spindle pole body (SPB). The morphogenesis checkpoint member Hsl7 recruits Hos3 to the neck region. Cells with a defect in spindle orientation trigger Hos3 to load onto both SPBs. When associated symmetrically with both SPBs, Hos3 functions as a spindle position checkpoint (SPOC) component to inhibit mitotic exit. Neck localization of Hos3 is essential for its symmetric association with SPBs in cells with misaligned spindles. Our data suggest that Hos3 facilitates cross-talk between the morphogenesis checkpoint and the SPOC as a component of the intricate monitoring of spindle orientation after mitotic entry and before commitment to mitotic exit.

  13. Kinesin-5 Contributes to Spindle-length Scaling in the Evolution of Cancer toward Metastasis

    PubMed Central

    Yang, Ching-Feng; Tsai, Wan-Yu; Chen, Wei-An; Liang, Kai-Wen; Pan, Cheng-Ju; Lai, Pei-Lun; Yang, Pan-Chyr; Huang, Hsiao-Chun

    2016-01-01

    During natural evolution, the spindles often scale with cell sizes to orchestrate accurate chromosome segregation. Whether in cancer evolution, when the constraints on genome integrity are relaxed, cancer cells may evolve the spindle to confer other advantages has not been investigated. Using invasion as a selective pressure in vitro, we found that a highly metastatic cancer clone displays a lengthened metaphase spindle, with faster spindle elongation that correlates with transiently elevated speed of cell migration. We found that kinesin-5 is upregulated in this malignant clone, and weak inhibition of kinesin-5 activity could revert the spindle to a smaller aspect ratio, decrease the speed of spindle pole separation, and suppress post-mitotic cell migration. A correlation was found between high aspect ratio and strong metastatic potential in cancers that evolved and were selected in vivo, implicating that the spindle aspect ratio could serve as a promising cellular biomarker for metastatic cancer clones. PMID:27767194

  14. Drosophila parthenogenesis: A tool to decipher centrosomal vs acentrosomal spindle assembly pathways

    SciTech Connect

    Riparbelli, Maria Giovanna; Callaini, Giuliano

    2008-04-15

    Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first female meiosis, suggesting that similar pathways may be operative. In the cytoplasm of eggs in which centrosomes do form, monastral and biastral spindles are found. Analysis by laser scanning confocal microscopy suggests that these spindles are derived from the stochastic interaction of astral microtubules directly with kinetochore regions or indirectly with kinetochore microtubules. Our findings are consistent with the idea that mitotic spindle assembly requires both acentrosomal and centrosomal pathways, strengthening the hypothesis that astral microtubules can dictate the organization of the spindle by capturing kinetochore microtubules.

  15. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region.

    PubMed

    Schweizer, Nina; Pawar, Nisha; Weiss, Matthias; Maiato, Helder

    2015-08-31

    The mitotic spindle is a microtubular assembly required for chromosome segregation during mitosis. Additionally, a spindle matrix has long been proposed to assist this process, but its nature has remained elusive. By combining live-cell imaging with laser microsurgery, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy in Drosophila melanogaster S2 cells, we uncovered a microtubule-independent mechanism that underlies the accumulation of molecules in the spindle region. This mechanism relies on a membranous system surrounding the mitotic spindle that defines an organelle-exclusion zone that is conserved in human cells. Supported by mathematical modeling, we demonstrate that organelle exclusion by a membrane system causes spatio-temporal differences in molecular crowding states that are sufficient to drive accumulation of mitotic regulators, such as Mad2 and Megator/Tpr, as well as soluble tubulin, in the spindle region. This membranous "spindle envelope" confined spindle assembly, and its mechanical disruption compromised faithful chromosome segregation. Thus, cytoplasmic compartmentalization persists during early mitosis to promote spindle assembly and function.

  16. Profiling DNA damage response following mitotic perturbations

    PubMed Central

    S. Pedersen, Ronni; Karemore, Gopal; Gudjonsson, Thorkell; Rask, Maj-Britt; Neumann, Beate; Hériché, Jean-Karim; Pepperkok, Rainer; Ellenberg, Jan; Gerlich, Daniel W.; Lukas, Jiri; Lukas, Claudia

    2016-01-01

    Genome integrity relies on precise coordination between DNA replication and chromosome segregation. Whereas replication stress attracted much attention, the consequences of mitotic perturbations for genome integrity are less understood. Here, we knockdown 47 validated mitotic regulators to show that a broad spectrum of mitotic errors correlates with increased DNA breakage in daughter cells. Unexpectedly, we find that only a subset of these correlations are functionally linked. We identify the genuine mitosis-born DNA damage events and sub-classify them according to penetrance of the observed phenotypes. To demonstrate the potential of this resource, we show that DNA breakage after cytokinesis failure is preceded by replication stress, which mounts during consecutive cell cycles and coincides with decreased proliferation. Together, our results provide a resource to gauge the magnitude and dynamics of DNA breakage associated with mitotic aberrations and suggest that replication stress might limit propagation of cells with abnormal karyotypes. PMID:27976684

  17. Distinct roles for antiparallel microtubule pairing and overlap during early spindle assembly

    PubMed Central

    Nazarova, Elena; O'Toole, Eileen; Kaitna, Susi; Francois, Paul; Winey, Mark; Vogel, Jackie

    2013-01-01

    During spindle assembly, microtubules may attach to kinetochores or pair to form antiparallel pairs or interpolar microtubules, which span the two spindle poles and contribute to mitotic pole separation and chromosome segregation. Events in the specification of the interpolar microtubules are poorly understood. Using three-dimensional electron tomography and analysis of spindle dynamical behavior in living cells, we investigated the process of spindle assembly. Unexpectedly, we found that the phosphorylation state of an evolutionarily conserved Cdk1 site (S360) in γ-tubulin is correlated with the number and organization of interpolar microtubules. Mimicking S360 phosphorylation (S360D) results in bipolar spindles with a normal number of microtubules but lacking interpolar microtubules. Inhibiting S360 phosphorylation (S360A) results in spindles with interpolar microtubules and high-angle, antiparallel microtubule pairs. The latter are also detected in wild-type spindles <1 μm in length, suggesting that high-angle microtubule pairing represents an intermediate step in interpolar microtubule formation. Correlation of spindle architecture with dynamical behavior suggests that microtubule pairing is sufficient to separate the spindle poles, whereas interpolar microtubules maintain the velocity of pole displacement during early spindle assembly. Our findings suggest that the number of interpolar microtubules formed during spindle assembly is controlled in part through activities at the spindle poles. PMID:23966467

  18. Trivalent dimethylarsenic compound induces histone H3 phosphorylation and abnormal localization of Aurora B kinase in HepG2 cells

    SciTech Connect

    Suzuki, Toshihide; Miyazaki, Koichi; Kita, Kayoko; Ochi, Takafumi

    2009-12-15

    Trivalent dimethylarsinous acid [DMA(III)] has been shown to induce mitotic abnormalities, such as centrosome abnormality, multipolar spindles, multipolar division, and aneuploidy, in several cell lines. In order to elucidate the mechanisms underlying these mitotic abnormalities, we investigated DMA(III)-mediated changes in histone H3 phosphorylation and localization of Aurora B kinase, which is a key molecule in cell mitosis. DMA(III) caused the phosphorylation of histone H3 (ser10) and was distributed predominantly in mitotic cells, especially in prometaphase cells. By contrast, most of the phospho-histone H3 was found to be localized in interphase cells after treatment with inorganic arsenite [iAs(III)], suggesting the involvement of a different pathway in phosphorylation. DMA(III) activated Aurora B kinase and slightly activated ERK MAP kinase. Phosphorylation of histone H3 by DMA(III) was effectively reduced by ZM447439 (Aurora kinase inhibitor) and slightly reduced by U0126 (MEK inhibitor). By contrast, iAs(III)-dependent histone H3 phosphorylation was markedly reduced by U0126. Aurora B kinase is generally localized in the midbody during telophase and plays an important role in cytokinesis. However, in some cells treated with DMA(III), Aurora B was not localized in the midbody of telophase cells. These findings suggested that DMA(III) induced a spindle abnormality, thereby activating the spindle assembly checkpoint (SAC) through the Aurora B kinase pathway. In addition, cytokinesis was not completed because of the abnormal localization of Aurora B kinase by DMA(III), thereby resulting in the generation of multinucleated cells. These results provide insight into the mechanism of arsenic tumorigenesis.

  19. v-Src-induced nuclear localization of YAP is involved in multipolar spindle formation in tetraploid cells.

    PubMed

    Kakae, Keiko; Ikeuchi, Masayoshi; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2017-01-01

    The protein-tyrosine kinase, c-Src, is involved in a variety of signaling events, including cell division. We have reported that v-Src, which is a mutant variant of the cellular proto-oncogene, c-Src, causes delocalization of Aurora B kinase, resulting in a furrow regression in cytokinesis and the generation of multinucleated cells. However, the effect of v-Src on mitotic spindle formation is unknown. Here we show that v-Src-expressing HCT116 and NIH3T3 cells undergo abnormal cell division, in which cells separate into more than two cells. Upon v-Src expression, the proportion of multinucleated cells is increased in a time-dependent manner. Flow cytometry analysis revealed that v-Src increases the number of cells having a ≥4N DNA content. Microscopic analysis showed that v-Src induces the formation of multipolar spindles with excess centrosomes. These results suggest that v-Src induces multipolar spindle formation by generating multinucleated cells. Tetraploidy activates the tetraploidy checkpoint, leading to a cell cycle arrest of tetraploid cells at the G1 phase, in which the nuclear exclusion of the transcription co-activator YAP plays a critical role. In multinucleated cells that are induced by cytochalasin B and the Plk1 inhibitor, YAP is excluded from the nucleus. However, v-Src prevents this nuclear exclusion of YAP through a decrease in the phosphorylation of YAP at Ser127 in multinucleated cells. Furthermore, v-Src decreases the expression level of p53, which also plays a critical role in the cell cycle arrest of tetraploid cells. These results suggest that v-Src promotes abnormal spindle formation in at least two ways: generation of multinucleated cells and a weakening of the tetraploidy checkpoint.

  20. A CEP215–HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer

    PubMed Central

    Chavali, Pavithra L.; Chandrasekaran, Gayathri; Barr, Alexis R.; Tátrai, Péter; Taylor, Chris; Papachristou, Evaggelia K.; Woods, C. Geoffrey; Chavali, Sreenivas; Gergely, Fanni

    2016-01-01

    Numerical centrosome aberrations underlie certain developmental abnormalities and may promote cancer. A cell maintains normal centrosome numbers by coupling centrosome duplication with segregation, which is achieved through sustained association of each centrosome with a mitotic spindle pole. Although the microcephaly- and primordial dwarfism-linked centrosomal protein CEP215 has been implicated in this process, the molecular mechanism responsible remains unclear. Here, using proteomic profiling, we identify the minus end-directed microtubule motor protein HSET as a direct binding partner of CEP215. Targeted deletion of the HSET-binding domain of CEP215 in vertebrate cells causes centrosome detachment and results in HSET depletion at centrosomes, a phenotype also observed in CEP215-deficient patient-derived cells. Moreover, in cancer cells with centrosome amplification, the CEP215–HSET complex promotes the clustering of extra centrosomes into pseudo-bipolar spindles, thereby ensuring viable cell division. Therefore, stabilization of the centrosome–spindle pole interface by the CEP215–HSET complex could promote survival of cancer cells containing supernumerary centrosomes. PMID:26987684

  1. GSK3 Regulates Mitotic Chromosomal Alignment through CRMP4

    PubMed Central

    Ong Tone, Stephan; Dayanandan, Bama

    2010-01-01

    Background Glycogen Synthase Kinase 3 (GSK3) has been implicated in regulating chromosomal alignment and mitotic progression but the physiological substrates mediating these GSK3-dependent effects have not been identified. Collapsin Response Mediator Protein 4 (CRMP4) is a cytosolic phosphoprotein known to regulate cytoskeletal dynamics and is a known physiological substrate of GSK3. In this study, we investigate the role of CRMP4 during mitosis. Methodology and Principal Findings Here we demonstrate that during mitosis CRMP4 phosphorylation is regulated in a GSK3-dependent manner. We show that CRMP4 localizes to spindle microtubules during mitosis and loss of CRMP4 disrupts chromosomal alignment and mitotic progression. The effect of CRMP4 on chromosomal alignment is dependent on phosphorylation by GSK3 identifying CRMP4 as a critical GSK3 substrate during mitotic progression. We also provide mechanistic data demonstrating that CRMP4 regulates spindle microtubules consistent with its known role in the regulation of the microtubule cytoskeleton. Conclusion and Significance Our findings identify CRMP4 as a key physiological substrate of GSK3 in regulating chromosomal alignment and mitotic progression through its effect on spindle microtubules. PMID:21179545

  2. Cell cycle-dependent SUMO-1 conjugation to nuclear mitotic apparatus protein (NuMA)

    SciTech Connect

    Seo, Jae Sung; Kim, Ha Na; Kim, Sun-Jick; Bang, Jiyoung; Kim, Eun-A; Sung, Ki Sa; Yoon, Hyun-Joo; Yoo, Hae Yong; Choi, Cheol Yong

    2014-01-03

    Highlights: •NuMA is modified by SUMO-1 in a cell cycle-dependent manner. •NuMA lysine 1766 is the primary target site for SUMOylation. •SUMOylation-deficient NuMA induces multiple spindle poles during mitosis. •SUMOylated NuMA induces microtubule bundling. -- Abstract: Covalent conjugation of proteins with small ubiquitin-like modifier 1 (SUMO-1) plays a critical role in a variety of cellular functions including cell cycle control, replication, and transcriptional regulation. Nuclear mitotic apparatus protein (NuMA) localizes to spindle poles during mitosis, and is an essential component in the formation and maintenance of mitotic spindle poles. Here we show that NuMA is a target for covalent conjugation to SUMO-1. We find that the lysine 1766 residue is the primary NuMA acceptor site for SUMO-1 conjugation. Interestingly, SUMO modification of endogenous NuMA occurs at the entry into mitosis and this modification is reversed after exiting from mitosis. Knockdown of Ubc9 or forced expression of SENP1 results in impairment of the localization of NuMA to mitotic spindle poles during mitosis. The SUMOylation-deficient NuMA mutant is defective in microtubule bundling, and multiple spindles are induced during mitosis. The mitosis-dependent dynamic SUMO-1 modification of NuMA might contribute to NuMA-mediated formation and maintenance of mitotic spindle poles during mitosis.

  3. Pharicin A, a novel natural ent-kaurene diterpenoid, induces mitotic arrest and mitotic catastrophe of cancer cells by interfering with BubR1 function.

    PubMed

    Xu, Han-Zhang; Huang, Ying; Wu, Ying-Li; Zhao, Yong; Xiao, Wei-Lie; Lin, Qi-Shan; Sun, Han-Dong; Dai, Wei; Chen, Guo-Qiang

    2010-07-15

    In this study, we report the functional characterization of a new ent-kaurene diterpenoid termed pharicin A, which was originally isolated from Isodon, a perennial shrub frequently used in Chinese folk medicine for tumor treatment. Pharicin A induces mitotic arrest in leukemia and solid tumor-derived cells identified by their morphology, DNA content and mitotic marker analyses. Pharicin A-induced mitotic arrest is associated with unaligned chromosomes, aberrant BubR1 localization and deregulated spindle checkpoint activation. Pharicin A directly binds to BubR1 in vitro, which is correlated with premature sister chromatid separation in vivo. Pharicin A also induces mitotic arrest in paclitaxel-resistant Jurkat and U2OS cells. Combined, our study strongly suggests that pharicin A represents a novel class of small molecule compounds capable of perturbing mitotic progression and initiating mitotic catastrophe, which merits further preclinical and clinical investigations for cancer drug development.

  4. A dynamical model of the spindle position checkpoint.

    PubMed

    Caydasi, Ayse Koca; Lohel, Maiko; Grünert, Gerd; Dittrich, Peter; Pereira, Gislene; Ibrahim, Bashar

    2012-05-08

    The orientation of the mitotic spindle with respect to the polarity axis is crucial for the accuracy of asymmetric cell division. In budding yeast, a surveillance mechanism called the spindle position checkpoint (SPOC) prevents exit from mitosis when the mitotic spindle fails to align along the mother-to-daughter polarity axis. SPOC arrest relies upon inhibition of the GTPase Tem1 by the GTPase-activating protein (GAP) complex Bfa1-Bub2. Importantly, reactions signaling mitotic exit take place at yeast centrosomes (named spindle pole bodies, SPBs) and the GAP complex also promotes SPB localization of Tem1. Yet, whether the regulation of Tem1 by Bfa1-Bub2 takes place only at the SPBs remains elusive. Here, we present a quantitative analysis of Bfa1-Bub2 and Tem1 localization at the SPBs. Based on the measured SPB-bound protein levels, we introduce a dynamical model of the SPOC that describes the regulation of Bfa1 and Tem1. Our model suggests that Bfa1 interacts with Tem1 in the cytoplasm as well as at the SPBs to provide efficient Tem1 inhibition.

  5. Mitotic arrest-associated apoptosis induced by sodium arsenite in A375 melanoma cells is BUBR1-dependent

    SciTech Connect

    McNeely, Samuel C.; Taylor, B. Frazier; States, J. Christopher

    2008-08-15

    A375 human malignant melanoma cells undergo mitotic arrest-associated apoptosis when treated with pharmacological concentrations of sodium arsenite, a chemotherapeutic for acute promyelocytic leukemia. Our previous studies indicated that decreased arsenite sensitivity correlated with reduced mitotic spindle checkpoint function and reduced expression of the checkpoint protein BUBR1. In the current study, arsenite induced securin and cyclin B stabilization, BUBR1 phosphorylation, and spindle checkpoint activation. Arsenite also increased activating cyclin dependent kinase 1 (CDK1) Thr{sup 161} phosphorylation but decreased inhibitory Tyr15 phosphorylation. Mitotic arrest resulted in apoptosis as indicated by colocalization of mitotic phospho-Histone H3 with active caspase 3. Apoptosis was associated with BCL-2 Ser70 phosphorylation. Inhibition of CDK1 with roscovitine in arsenite-treated mitotic cells inhibited spindle checkpoint maintenance as inferred from reduced BUBR1 phosphorylation, reduced cyclin B expression, and diminution of mitotic index. Roscovitine also reduced BCL-2 Ser70 phosphorylation and protected against apoptosis, suggesting mitotic arrest caused by hyperactivation of CDK1 directly or indirectly leads to BCL-2 phosphorylation and apoptosis. In addition, suppression of BUBR1 with siRNA prevented arsenite-induced mitotic arrest and apoptosis. These findings provide insight into the mechanism of arsenic's chemotherapeutic action and indicate a functional spindle checkpoint may be required for arsenic-sensitivity.

  6. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe.

    PubMed

    Martinez-Castillo, Macario; Bonilla-Moreno, Raul; Aleman-Lazarini, Leticia; Meraz-Rios, Marco Antonio; Orozco, Lorena; Cedillo-Barron, Leticia; Cordova, Emilio J; Villegas-Sepulveda, Nicolas

    2016-01-01

    Curcumin is extensively investigated as a good chemo-preventive agent in the development of many cancers and particularly in leukemia, including treatment of chronic myelogenous leukemia and it has been proposed as an adjuvant for leukemia therapies. Human chronic myeloid leukemia cells (K562), were treated with 20 μM of curcumin, and we found that a subpopulation of these cells were arrested and accumulate in the G2/M phase of the cell cycle. Characterization of this cell subpopulation showed that the arrested cells presented nuclear morphology changes resembling those described for mitotic catastrophe. Mitotic cells displayed abnormal chromatin organization, collapse of the mitotic spindle and abnormal chromosome segregation. Then, these cells died in an apoptosis dependent manner and showed diminution in the protein levels of BCL-2 and XIAP. Moreover, our results shown that a transient activation of the nuclear factor κB (NFκB) occurred early in these cells, but decreased after 6 h of the treatment, explaining in part the diminution of the anti-apoptotic proteins. Additionally, P73 was translocated to the cell nuclei, because the expression of the C/EBPα, a cognate repressor of the P73 gene, was decreased, suggesting that apoptosis is trigger by elevation of P73 protein levels acting in concert with the diminution of the two anti-apoptotic molecules. In summary, curcumin treatment might produce a P73-dependent apoptotic cell death in chronic myelogenous leukemia cells (K562), which was triggered by mitotic catastrophe, due to sustained BAX and survivin expression and impairment of the anti-apoptotic proteins BCL-2 and XIAP.

  7. A Subpopulation of the K562 Cells Are Killed by Curcumin Treatment after G2/M Arrest and Mitotic Catastrophe

    PubMed Central

    Martinez-Castillo, Macario; Bonilla-Moreno, Raul; Aleman-Lazarini, Leticia; Meraz-Rios, Marco Antonio; Orozco, Lorena; Cedillo-Barron, Leticia; Cordova, Emilio J.

    2016-01-01

    Curcumin is extensively investigated as a good chemo-preventive agent in the development of many cancers and particularly in leukemia, including treatment of chronic myelogenous leukemia and it has been proposed as an adjuvant for leukemia therapies. Human chronic myeloid leukemia cells (K562), were treated with 20 μM of curcumin, and we found that a subpopulation of these cells were arrested and accumulate in the G2/M phase of the cell cycle. Characterization of this cell subpopulation showed that the arrested cells presented nuclear morphology changes resembling those described for mitotic catastrophe. Mitotic cells displayed abnormal chromatin organization, collapse of the mitotic spindle and abnormal chromosome segregation. Then, these cells died in an apoptosis dependent manner and showed diminution in the protein levels of BCL-2 and XIAP. Moreover, our results shown that a transient activation of the nuclear factor κB (NFκB) occurred early in these cells, but decreased after 6 h of the treatment, explaining in part the diminution of the anti-apoptotic proteins. Additionally, P73 was translocated to the cell nuclei, because the expression of the C/EBPα, a cognate repressor of the P73 gene, was decreased, suggesting that apoptosis is trigger by elevation of P73 protein levels acting in concert with the diminution of the two anti-apoptotic molecules. In summary, curcumin treatment might produce a P73-dependent apoptotic cell death in chronic myelogenous leukemia cells (K562), which was triggered by mitotic catastrophe, due to sustained BAX and survivin expression and impairment of the anti-apoptotic proteins BCL-2 and XIAP. PMID:27832139

  8. A Brief History of Research on Mitotic Mechanisms

    PubMed Central

    McIntosh, J. Richard; Hays, Thomas

    2016-01-01

    This chapter describes in summary form some of the most important research on chromosome segregation, from the discovery and naming of mitosis in the nineteenth century until around 1990. It gives both historical and scientific background for the nine chapters that follow, each of which provides an up-to-date review of a specific aspect of mitotic mechanism. Here, we trace the fruits of each new technology that allowed a deeper understanding of mitosis and its underlying mechanisms. We describe how light microscopy, including phase, polarization, and fluorescence optics, provided descriptive information about mitotic events and also enabled important experimentation on mitotic functions, such as the dynamics of spindle fibers and the forces generated for chromosome movement. We describe studies by electron microscopy, including quantitative work with serial section reconstructions. We review early results from spindle biochemistry and genetics, coupled to molecular biology, as these methods allowed scholars to identify key molecular components of mitotic mechanisms. We also review hypotheses about mitotic mechanisms whose testing led to a deeper understanding of this fundamental biological event. Our goal is to provide modern scientists with an appreciation of the work that has laid the foundations for their current work and interests. PMID:28009830

  9. The kinesin-8 Kip3 scales anaphase spindle length by suppression of midzone microtubule polymerization.

    PubMed

    Rizk, Rania S; Discipio, Katherine A; Proudfoot, Kathleen G; Gupta, Mohan L

    2014-03-17

    Mitotic spindle function is critical for cell division and genomic stability. During anaphase, the elongating spindle physically segregates the sister chromatids. However, the molecular mechanisms that determine the extent of anaphase spindle elongation remain largely unclear. In a screen of yeast mutants with altered spindle length, we identified the kinesin-8 Kip3 as essential to scale spindle length with cell size. Kip3 is a multifunctional motor protein with microtubule depolymerase, plus-end motility, and antiparallel sliding activities. Here we demonstrate that the depolymerase activity is indispensable to control spindle length, whereas the motility and sliding activities are not sufficient. Furthermore, the microtubule-destabilizing activity is required to counteract Stu2/XMAP215-mediated microtubule polymerization so that spindle elongation terminates once spindles reach the appropriate final length. Our data support a model where Kip3 directly suppresses spindle microtubule polymerization, limiting midzone length. As a result, sliding forces within the midzone cannot buckle spindle microtubules, which allows the cell boundary to define the extent of spindle elongation.

  10. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability

    NASA Astrophysics Data System (ADS)

    Sutradhar, S.; Basu, S.; Paul, R.

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.

  11. Live imaging of spindle pole disorganization in docetaxel-treated multicolor cells

    SciTech Connect

    Sakaushi, Shinji . E-mail: ssaka@biochem.osakafu-u.ac.jp; Nishida, Kumi; Minamikawa, Harumi; Fukada, Takashi; Oka, Shigenori; Sugimoto, Kenji

    2007-06-08

    Treatment of cells with docetaxel at low concentrations induces aberrant bipolar spindles of which two centrosomes stay at only one pole, and also induces multipolar spindles. To gain insight into the relations between centrosome impairment and structural defects of the spindle, live-cell imaging was performed on a human MDA Auro/imp/H3 cell line in which centrosomes/mitotic spindles, nuclear membrane and chromatin were simultaneously visualized by fluorescent proteins. In the presence of docetaxel at IC{sub 50} concentration, the centrosomes did not segregate, and multiple aster-like structures ectopically arose around the disappearing nuclear membrane. Those ectopic structures formed an acentrosomal pole opposing to the two-centrosomes-containing pole. In late metaphase, one pole often fragmented into multiple spindle poles, leading multipolar division. These results suggest that spindle pole fragility may be induced by centrosome impairment, and collapse of the pole may contribute to induction of aneuploid daughter cells.

  12. Targeting mitotic exit with hyperthermia or APC/C inhibition to increase paclitaxel efficacy.

    PubMed

    Giovinazzi, Serena; Bellapu, Dhruv; Morozov, Viacheslav M; Ishov, Alexander M

    2013-08-15

    Microtubule-poisoning drugs, such as Paclitaxel (or Taxol, PTX), are powerful and commonly used anti-neoplastic agents for the treatment of several malignancies. PTX triggers cell death, mainly through a mitotic arrest following the activation of the spindle assembly checkpoint (SAC). Cells treated with PTX slowly slip from this mitotic block and die by mitotic catastrophe. However, cancer cells can acquire or are intrinsically resistant to this drug, posing one of the main obstacles for PTX clinical effectiveness. In order to override PTX resistance and increase its efficacy, we investigated both the enhancement of mitotic slippage and the block of mitotic exit. To test these opposing strategies, we used physiological hyperthermia (HT) to force exit from PTX-induced mitotic block and the anaphase-promoting complex/cyclosome (APC/C) inhibitor, proTAME, to block mitotic exit. We observed that application of HT on PTX-treated cells forced mitotic slippage, as shown by the rapid decline of cyclin B levels and by microscopy analysis. Similarly, HT induced mitotic exit in cells blocked in mitosis by other antimitotic drugs, such as Nocodazole and the Aurora A inhibitor MLN8054, indicating a common effect of HT on mitotic cells. On the other hand, proTAME prevented mitotic exit of PTX and MLN8054 arrested cells, prolonged mitosis, and induced apoptosis. In addition, we showed that proTAME prevented HT-mediated mitotic exit, indicating that stress-induced APC/C activation is necessary for HT-induced mitotic slippage. Finally, HT significantly increased PTX cytotoxicity, regardless of cancer cells' sensitivity to PTX, and this activity was superior to the combination of PTX with pro-TAME. Our data suggested that forced mitotic exit of cells arrested in mitosis by anti-mitotic drugs, such as PTX, can be a more successful anticancer strategy than blocking mitotic exit by inactivation of the APC/C.

  13. A comprehensive model to predict mitotic division in budding yeasts

    PubMed Central

    Sutradhar, Sabyasachi; Yadav, Vikas; Sridhar, Shreyas; Sreekumar, Lakshmi; Bhattacharyya, Dibyendu; Ghosh, Santanu Kumar; Paul, Raja; Sanyal, Kaustuv

    2015-01-01

    High-fidelity chromosome segregation during cell division depends on a series of concerted interdependent interactions. Using a systems biology approach, we built a robust minimal computational model to comprehend mitotic events in dividing budding yeasts of two major phyla: Ascomycota and Basidiomycota. This model accurately reproduces experimental observations related to spindle alignment, nuclear migration, and microtubule (MT) dynamics during cell division in these yeasts. The model converges to the conclusion that biased nucleation of cytoplasmic microtubules (cMTs) is essential for directional nuclear migration. Two distinct pathways, based on the population of cMTs and cortical dyneins, differentiate nuclear migration and spindle orientation in these two phyla. In addition, the model accurately predicts the contribution of specific classes of MTs in chromosome segregation. Thus we present a model that offers a wider applicability to simulate the effects of perturbation of an event on the concerted process of the mitotic cell division. PMID:26310442

  14. Mitotic chromosome condensation in vertebrates

    SciTech Connect

    Vagnarelli, Paola

    2012-07-15

    Work from several laboratories over the past 10-15 years has revealed that, within the interphase nucleus, chromosomes are organized into spatially distinct territories [T. Cremer, C. Cremer, Chromosome territories, nuclear architecture and gene regulation in mammalian cells, Nat. Rev. Genet. 2 (2001) 292-301 and T. Cremer, M. Cremer, S. Dietzel, S. Muller, I. Solovei, S. Fakan, Chromosome territories-a functional nuclear landscape, Curr. Opin. Cell Biol. 18 (2006) 307-316]. The overall compaction level and intranuclear location varies as a function of gene density for both entire chromosomes [J.A. Croft, J.M. Bridger, S. Boyle, P. Perry, P. Teague,W.A. Bickmore, Differences in the localization and morphology of chromosomes in the human nucleus, J. Cell Biol. 145 (1999) 1119-1131] and specific chromosomal regions [N.L. Mahy, P.E. Perry, S. Gilchrist, R.A. Baldock, W.A. Bickmore, Spatial organization of active and inactive genes and noncoding DNA within chromosome territories, J. Cell Biol. 157 (2002) 579-589] (Fig. 1A, A'). In prophase, when cyclin B activity reaches a high threshold, chromosome condensation occurs followed by Nuclear Envelope Breakdown (NEB) [1]. At this point vertebrate chromosomes appear as compact structures harboring an attachment point for the spindle microtubules physically recognizable as a primary constriction where the two sister chromatids are held together. The transition from an unshaped interphase chromosome to the highly structured mitotic chromosome (compare Figs. 1A and B) has fascinated researchers for several decades now; however a definite picture of how this process is achieved and regulated is not yet in our hands and it will require more investigation to comprehend the complete process. From a biochemical point of view a vertebrate mitotic chromosomes is composed of DNA, histone proteins (60%) and non-histone proteins (40%) [6]. I will discuss below what is known to date on the contribution of these two different classes of

  15. Mitotic exit: Determining the PP2A dephosphorylation program.

    PubMed

    Pereira, Gislene; Schiebel, Elmar

    2016-08-29

    In mitotic exit, proteins that were highly phosphorylated are sequentially targeted by the phosphatase PP2A-B55, but what underlies substrate selection is unclear. In this issue, Cundell et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201606033) identify the determinants of PP2A-B55's dephosphorylation program, thereby influencing spindle disassembly, nuclear envelope reformation, and cytokinesis.

  16. Mitotic exit: Determining the PP2A dephosphorylation program

    PubMed Central

    2016-01-01

    In mitotic exit, proteins that were highly phosphorylated are sequentially targeted by the phosphatase PP2A-B55, but what underlies substrate selection is unclear. In this issue, Cundell et al. (2016. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201606033) identify the determinants of PP2A-B55’s dephosphorylation program, thereby influencing spindle disassembly, nuclear envelope reformation, and cytokinesis. PMID:27551057

  17. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells.

  18. Aberrant spindle dynamics and cytokinesis in Dictyostelium discoideum cells that lack glycogen synthase kinase 3.

    PubMed

    Harwood, Adrian J; Forde-Thomas, Josephine E; Williams, Hazel; Samereier, Matthias; Müller-Taubenberger, Annette

    2013-01-01

    Eukaryotic cell division requires the co-ordinated assembly and disassembly of the mitotic spindle, accurate chromosome segregation and temporal control of cytokinesis to generate two daughter cells. While the absolute details of these processes differ between organisms, there are evolutionarily conserved core components common to all eukaryotic cells, whose identification will reveal the key processes that control cell division. Glycogen synthase kinase 3 (GSK-3) is a major protein kinase found throughout the eukaryotes and regulates many processes, including cell differentiation, growth, motility and apoptosis. In animals, GSK-3 associates with mitotic spindles and its inhibition causes mis-regulation of chromosome segregation. Two suppressor screens in yeast point to a more general effect of GSK-3 on cell division, however the direct role of GSK-3 in control of mitosis has not been explored outside the animal kingdom. Here we report that the Dictyostelium discoideum GSK-3 orthologue, GskA, associates with the mitotic spindle during cell division, as seen for its mammalian counterparts. Dictyostelium possesses only a single GSK-3 gene that can be deleted to eliminate all GSK-3 activity. We found that gskA-null mutants failed to elongate their mitotic spindle and were unable to divide in shaking culture, but have no chromosome segregation defect. These results suggest further conservation for the role of GSK-3 in the regulation of spindle dynamics during mitosis, but also reveal differences in the mechanisms ensuring accurate chromosome segregation.

  19. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1

    PubMed Central

    Matsumura, Shigeru; Kojidani, Tomoko; Kamioka, Yuji; Uchida, Seiichi; Haraguchi, Tokuko; Kimura, Akatsuki; Toyoshima, Fumiko

    2016-01-01

    Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1–LGN–NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry. PMID:27292265

  20. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae.

    PubMed Central

    Byers, B; Goetsch, L

    1975-01-01

    The interdependence of spindle plaque with other aspects of cell division and conjugation in Saccharomyces cerevisiae has been investigated. Three forms of the spindle plaque appear sequentially before the formation of the complete, intranuclear spindle. The single plaque is present initially in the mitotic cycle; it becomes transformed into a satellite-bearing single plaque during the latter part of G1. Subsequently, plaque duplication yields the double plaque characteristic of the early phase of budding, which coincides with the period of chromosome replication (S). The eventual separation of these plaques to form a complete spindle, with a single plaque at each pole, is nearly coincident with the completion of S. The form of the plaque differs in two independent cases of G1 arrest: the single plaque is found in a cell in stationary arrest of growth, whereas a cell arrested by mating factors in preparation for conjugation contains a satellite-bearing single plaque. The latter form is retained during zygote formation, where it serves as the initial site of fusion of each prezygotic nuceus with the other. This fusion results in the formation of a single zygotic nucleus with a satellite-bearing single plaque, which is subsequently transformed into a double plaque as the zygote buds. The double plaque is situated adjacent to the site of bud emergence in both vegetative cells and zygotes. Images PMID:1100612

  1. The mother-bud neck as a signaling platform for the coordination between spindle position and cytokinesis in budding yeast.

    PubMed

    Merlini, Laura; Piatti, Simonetta

    2011-08-01

    During asymmetric cell division, spindle positioning is critical for ensuring the unequal inheritance of polarity factors. In budding yeast, the mother-bud neck determines the cleavage plane and a correct nuclear division between mother and daughter cell requires orientation of the mitotic spindle along the mother-bud axis. A surveillance device called the spindle position/orientation checkpoint (SPOC) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability. Cytoskeletal proteins called septins form a ring at the bud neck that is essential for cytokinesis. Furthermore, septins and septin-associated proteins are implicated in spindle positioning and SPOC. In this review, we discuss the emerging connections between septins and the SPOC and the role of the mother-bud neck as a signaling platform to couple proper chromosome segregation to cytokinesis.

  2. Spatial signals link exit from mitosis to spindle position

    PubMed Central

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-01-01

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT– bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position. DOI: http://dx.doi.org/10.7554/eLife.14036.001 PMID:27166637

  3. Coordinated Spindle Assembly and Orientation Requires Clb5p-Dependent Kinase in Budding Yeast

    PubMed Central

    Segal, Marisa; Clarke, Duncan J.; Maddox, Paul; Salmon, E.D.; Bloom, Kerry; Reed, Steven I.

    2000-01-01

    The orientation of the mitotic spindle along a polarity axis is critical in asymmetric cell divisions. In the budding yeast, Saccharomyces cerevisiae, loss of the S-phase B-type cyclin Clb5p under conditions of limited cyclin-dependent kinase activity (cdc28-4 clb5Δ cells) causes a spindle positioning defect that results in an undivided nucleus entering the bud. Based on time-lapse digital imaging microscopy of microtubules labeled with green fluorescent protein fusions to either tubulin or dynein, we observed that the asymmetric behavior of the spindle pole bodies during spindle assembly was lost in the cdc28-4 clb5Δ cells. As soon as a spindle formed, both poles were equally likely to interact with the bud cell cortex. Persistent dynamic interactions with the bud ultimately led to spindle translocation across the bud neck. Thus, the mutant failed to assign one spindle pole body the task of organizing astral microtubules towards the mother cell. Our data suggest that Clb5p-associated kinase is required to confer mother-bound behavior to one pole in order to establish correct spindle polarity. In contrast, B-type cyclins, Clb3p and Clb4p, though partially redundant with Clb5p for an early role in spindle morphogenesis, preferentially promote spindle assembly. PMID:10662771

  4. The isolation of a mutation causing abnormal cytokinesis in male and split chromocenter in female meiosis in Drosophila melanogaster.

    PubMed

    Fedorova, S; Nokkala, S; Chubykin, V; Omelyanchuk, L

    2001-01-01

    The genetic screen for the meiotic mutations showing chromosome non-disjunction in mosaic clones of female germ line generated by FLP-FRT mediated mitotic recombination was performed. The sterile meiotic mutation ff16 (69D1-70A2) was found among the mutants obtained. In the male germ line the mutation showed lack of meiosis 1 cytokinesis and other meiotic abnormalities. The sterility of the mutant is due to the lack of the sperm motility. In female germ line the morphological defects-decreased number of ovarioles and nurse cells in the egg chambers is visible. At the cell level the mutation showed karyosome fragmentation constituting to the gene participation in chromocenter formation/maintance. The cases of the spindle fragmentation revealed the processes acting in female meiotic metaphase. Premeiotic and mitotic defects of the mutation have also been detected.

  5. The Mitotic Checkpoint Gene, SIL is Regulated by E2F1

    PubMed Central

    Erez, Ayelet; Chaussepied, Marie; Tina, Colaizzo-Anas; Aplan, Peter; Ginsberg, Doron; Izraeli, Shai

    2009-01-01

    The SIL gene expression is increased in multiple cancers and correlates with the expression of mitotic spindle checkpoint genes and with increased metastatic potential. SIL regulates mitotic entry, organization of the mitotic spindle and cell survival. The E2F transcription factors regulate cell cycle progression by controlling the expression of genes mediating the G1/S transition. More recently E2F has been shown to regulate mitotic spindle checkpoint genes as well. As SIL expression correlates with mitotic checkpoint genes we hypothesized that SIL is regulated by E2F. We mined raw data of published experiments and performed new experiments by modification of E2F expression in cell lines, reporter assays and chromatin immunoprecipitation. Ectopic expression or endogenous activation of E2F induced the expression of SIL, while knockdown of E2F by shRNA, downregulated SIL expression. E2F activated SIL promoter by reporter assay and bound to SIL promoter in-vivo. Taken together these data demonstrate that SIL is regulated by E2F. As SIL is essential for mitotic entry, E2F may regulate G2/M transition through the induction of SIL. Furthermore, as silencing of SIL cause apoptosis in cancer cells, these finding may have therapeutic relevance in tumors with constitutive activation of E2F. PMID:18649360

  6. Timeless links replication termination to mitotic kinase activation.

    PubMed

    Dheekollu, Jayaraju; Wiedmer, Andreas; Hayden, James; Speicher, David; Gotter, Anthony L; Yen, Tim; Lieberman, Paul M

    2011-05-06

    The mechanisms that coordinate the termination of DNA replication with progression through mitosis are not completely understood. The human Timeless protein (Tim) associates with S phase replication checkpoint proteins Claspin and Tipin, and plays an important role in maintaining replication fork stability at physical barriers, like centromeres, telomeres and ribosomal DNA repeats, as well as at termination sites. We show here that human Tim can be isolated in a complex with mitotic entry kinases CDK1, Auroras A and B, and Polo-like kinase (Plk1). Plk1 bound Tim directly and colocalized with Tim at a subset of mitotic structures in M phase. Tim depletion caused multiple mitotic defects, including the loss of sister-chromatid cohesion, loss of mitotic spindle architecture, and a failure to exit mitosis. Tim depletion caused a delay in mitotic kinase activity in vivo and in vitro, as well as a reduction in global histone H3 S10 phosphorylation during G2/M phase. Tim was also required for the recruitment of Plk1 to centromeric DNA and formation of catenated DNA structures at human centromere alpha satellite repeats. Taken together, these findings suggest that Tim coordinates mitotic kinase activation with termination of DNA replication.

  7. ASK1 controls spindle orientation and positioning by phosphorylating EB1 and stabilizing astral microtubules

    PubMed Central

    Luo, Youguang; Ran, Jie; Xie, Songbo; Yang, Yunfan; Chen, Jie; Li, Shanshan; Shui, Wenqing; Li, Dengwen; Liu, Min; Zhou, Jun

    2016-01-01

    Orientation and positioning of the mitotic spindle are involved in dictating cell division axis and cleavage site, and play important roles in cell fate determination and tissue morphogenesis. However, how spindle movement is controlled to achieve a defined alignment within the dividing cell is not fully understood. Here, we describe an unexpected role for apoptosis signal-regulating kinase 1 (ASK1) in regulating spindle behavior. We find that ASK1 is required for proper mitotic progression and daughter cell adhesion to the substratum. ASK1 interacts with end-binding protein 1 (EB1) and phosphorylates EB1 at serine 40, threonine 154 and threonine 206, enhancing its binding to the plus ends of astral microtubules. Consequently, astral microtubules are stabilized and therefore capable of mediating spindle interaction with the cell cortex, a requirement for spindle movement. These findings reveal a previously undiscovered function of ASK1 in cell division by regulating spindle orientation and positioning, and point to the importance of protein phosphorylation in the regulation of spindle behavior. PMID:27721984

  8. Cdc42 activation couples spindle positioning to first polar body formation in oocyte maturation.

    PubMed

    Ma, Chunqi; Benink, Héléne A; Cheng, Daye; Montplaisir, Véronique; Wang, Ling; Xi, Yanwei; Zheng, Pei-Pei; Bement, William M; Liu, X Johné

    2006-01-24

    During vertebrate egg maturation, cytokinesis initiates after one pole of the bipolar metaphase I spindle attaches to the oocyte cortex, resulting in the formation of a polar body and the mature egg. It is not known what signal couples the spindle pole positioning to polar body formation. We approached this question by drawing an analogy to mitotic exit in budding yeast, as asymmetric spindle attachment to the appropriate cortical region is the common regulatory cue. In budding yeast, the small G protein Cdc42 plays an important role in mitotic exit following the spindle pole attachment . We show here that inhibition of Cdc42 activation blocks polar body formation. The oocytes initiate anaphase but fail to properly form and direct a contractile ring. Endogenous Cdc42 is activated at the spindle pole-cortical contact site immediately prior to polar body formation. The cortical Cdc42 activity zone, which directly overlays the spindle pole, is circumscribed by a cortical RhoA activity zone; the latter defines the cytokinetic contractile furrow . As the RhoA ring contracts during cytokinesis, the Cdc42 zone expands, maintaining its complementary relationship with the RhoA ring. Cdc42 signaling may thus be an evolutionarily conserved mechanism that couples spindle positioning to asymmetric cytokinesis.

  9. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures

    PubMed Central

    Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry

    2016-01-01

    Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. DOI: http://dx.doi.org/10.7554/eLife.12504.001 PMID:26765568

  10. Intranodal leiomyoma in a young child: report of a rare spindle cell lesion.

    PubMed

    Girhotra, Manish; Virk, Shehbaaz Singh; Verma, Sarika; Bansal, Kalpana; Gupta, Ruchika

    2014-01-01

    ABSTRACT Primary spindle cell lesions of lymph nodes, with the exception of Kaposi's sarcoma, are rare. Intranodal palisaded myofibroblastoma has been described as a spindle cell tumor with prominent amianthoid fibers, intralesional hemorrhage, and intracellular or extracellular inclusions. Another spindle cell lesion, intranodal leiomyoma, has been reported only occasionally. We report the case of a 6-year-old boy with a mass in the neck without other systemic complaints. Excision biopsy of the lymph node revealed a spindle cell tumor with lymph nodal tissue at the periphery. The tumor showed features of smooth muscle differentiation with focally high mitotic index. The classical features of myofibroblastoma were not present. A final pathologic diagnosis of intranodal leiomyoma was rendered. The child has been free of recurrence in the follow-up period. Intranodal leiomyoma is a rare primary spindle cell lesion of the lymph nodes and should be considered in the differential diagnosis of the same.

  11. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division.

    PubMed

    Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B

    2014-07-04

    Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis.

  12. The role of Hklp2 in the stabilization and maintenance of spindle bipolarity.

    PubMed

    Vanneste, David; Takagi, Masatoshi; Imamoto, Naoko; Vernos, Isabelle

    2009-11-03

    Spindle bipolarity relies on a fine balance of forces exerted by various molecular motors [1-4]. In most animal cells, spindle bipolarity requires sustained outward forces to push the spindle poles apart, an activity that is provided by Eg5, a conserved homotetrameric plus-end-directed kinesin that crosslinks and slides antiparallel microtubules apart [5]. These pushing forces are balanced by inward minus-end-directed forces. Impairing both Eg5 and dynein restores the formation of functional bipolar spindles [4], although the mechanism at play is far from clear. The current model also fails to explain why in some systems Eg5 inhibition does not promote bipolar spindle collapse [6, 7] or why increasing Eg5 levels does not interfere with bipolar spindle assembly [8]. Moreover, the C. elegans Eg5 ortholog is not required for bipolar spindle formation [9]. We show here that the kinesin Hklp2 participates in the assembly and stabilization of the bipolar spindle. Hklp2 localizes to the mitotic microtubules in a TPX2-dependent manner and to the chromosomes through Ki67. Our data indicate that its mechanism of action is clearly distinct from and complementary to that of Eg5, providing an additional understanding of the mechanism driving the formation and maintenance of the bipolar spindle.

  13. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-gao; Huo, Tiancheng; Tian, Ning; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping

    2013-05-01

    The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the mouse living oocytes at metaphase II as well as the mitotic spindles in the living zygotes at metaphase and telophase. By post-processing of the 3-D dataset obtained with FF-OCT, the important morphological and spatial parameters of the spindles, such as short and long axes, spatial localization, and the angle of meiotic spindle deviation from the first polar body in the oocyte were precisely measured with the spatial resolution of 0.7 μm. Our results reveal the potential of FF-OCT as an imaging tool capable of noninvasive 3-D live morphological analysis for spindles, which might be useful to ART related procedures and many other spindle related studies.

  14. Anthrax receptors position the spindle.

    PubMed

    Minc, Nicolas; Piel, Matthieu

    2013-01-01

    Spindle orientation plays a pivotal role in tissue morphogenesis. An asymmetric anthrax receptor cap is revealed to promote activation of a formin to orient the spindle along the planar cell polarity (PCP) axis in zebrafish dorsal epiblast cells.

  15. BCL-W is a regulator of microtubule inhibitor-induced mitotic cell death

    PubMed Central

    Huang, Shan; Tang, Rui; Randy, Y.C. Poon

    2016-01-01

    Microtubule inhibitors including taxanes and vinca alkaloids are among the most widely used anticancer agents. Disrupting the microtubules activates the spindle-assembly checkpoint and traps cells in mitosis. Whether cells subsequently undergo mitotic cell death is an important factor for the effectiveness of the anticancer agents. Given that apoptosis accounts for the majority of mitotic cell death induced by microtubule inhibitors, we performed a systematic study to determine which members of the anti-apoptotic BCL-2 family are involved in determining the duration of mitotic block before cell death or slippage. Depletion of several anti-apoptotic BCL-2-like proteins significantly shortened the time before apoptosis. Among these proteins, BCL-W has not been previously characterized to play a role in mitotic cell death. Although the expression of BCL-W remained constant during mitotic block, it varied significantly between different cell lines. Knockdown of BCL-W with siRNA or disruption of the BCL-W gene with CRISPR-Cas9 speeded up mitotic cell death. Conversely, overexpression of BCL-W delayed mitotic cell death, extending the mitotic block to allow mitotic slippage. Taken together, these results showed that BCL-W contributes to the threshold of anti-apoptotic activity during mitosis. PMID:27231850

  16. Nup98 regulates bipolar spindle assembly through association with microtubules and opposition of MCAK

    PubMed Central

    Cross, Marie K.; Powers, Maureen A.

    2011-01-01

    During mitosis, the nuclear pore complex is disassembled and, increasingly, nucleoporins are proving to have mitotic functions when released from the pore. We find a contribution of the nucleoporin Nup98 to mitotic spindle assembly through regulation of microtubule dynamics. When added to Xenopus extract spindle assembly assays, the C-terminal domain of Nup98 stimulates uncontrolled growth of microtubules. Conversely, inhibition or depletion of Nup98 leads to formation of stable monopolar spindles. Spindle bipolarity is restored by addition of purified, recombinant Nup98 C-terminus. The minimal required region of Nup98 corresponds to a portion of the C-terminal domain lacking a previously characterized function. We show association between this region of the C-terminus of Nup98 and both Taxol-stabilized microtubules and the microtubule-depolymerizing mitotic centromere–associated kinesin (MCAK). Importantly, we demonstrate that this domain of Nup98 inhibits MCAK depolymerization activity in vitro. These data support a model in which Nup98 interacts with microtubules and antagonizes MCAK activity, thus promoting bipolar spindle assembly. PMID:21209315

  17. Mechanical control of mitotic progression in single animal cells.

    PubMed

    Cattin, Cedric J; Düggelin, Marcel; Martinez-Martin, David; Gerber, Christoph; Müller, Daniel J; Stewart, Martin P

    2015-09-08

    Despite the importance of mitotic cell rounding in tissue development and cell proliferation, there remains a paucity of approaches to investigate the mechanical robustness of cell rounding. Here we introduce ion beam-sculpted microcantilevers that enable precise force-feedback-controlled confinement of single cells while characterizing their progression through mitosis. We identify three force regimes according to the cell response: small forces (∼5 nN) that accelerate mitotic progression, intermediate forces where cells resist confinement (50-100 nN), and yield forces (>100 nN) where a significant decline in cell height impinges on microtubule spindle function, thereby inhibiting mitotic progression. Yield forces are coincident with a nonlinear drop in cell height potentiated by persistent blebbing and loss of cortical F-actin homogeneity. Our results suggest that a buildup of actomyosin-dependent cortical tension and intracellular pressure precedes mechanical failure, or herniation, of the cell cortex at the yield force. Thus, we reveal how the mechanical properties of mitotic cells and their response to external forces are linked to mitotic progression under conditions of mechanical confinement.

  18. Mitotic Exit Control as an Evolved Complex System

    SciTech Connect

    Bosl, W; Li, R

    2005-04-25

    The exit from mitosis is the last critical decision a cell has to make during a division cycle. A complex regulatory system has evolved to evaluate the success of mitotic events and control this decision. Whereas outstanding genetic work in yeast has led to rapid discovery of a large number of interacting genes involved in the control of mitotic exit, it has also become increasingly difficult to comprehend the logic and mechanistic features embedded in the complex molecular network. Our view is that this difficulty stems in part from the attempt to explain mitotic exit control using concepts from traditional top-down engineering design, and that exciting new results from evolutionary engineering design applied to networks and electronic circuits may lend better insights. We focus on four particularly intriguing features of the mitotic exit control system: the two-stepped release of Cdc14; the self-activating nature of Tem1 GTPase; the spatial sensor associated with the spindle pole body; and the extensive redundancy in the mitotic exit network. We attempt to examine these design features from the perspective of evolutionary design and complex system engineering.

  19. Metaphase Spindle Assembly

    PubMed Central

    Kapoor, Tarun M.

    2017-01-01

    A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells. PMID:28165376

  20. Mad2, Bub3, and Mps1 regulate chromosome segregation and mitotic synchrony in Giardia intestinalis, a binucleate protist lacking an anaphase-promoting complex

    PubMed Central

    Vicente, Juan-Jesus; Cande, W. Zacheus

    2014-01-01

    The binucleate pathogen Giardia intestinalis is a highly divergent eukaryote with a semiopen mitosis, lacking an anaphase-promoting complex/cyclosome (APC/C) and many of the mitotic checkpoint complex (MCC) proteins. However, Giardia has some MCC components (Bub3, Mad2, and Mps1) and proteins from the cohesin system (Smc1 and Smc3). Mad2 localizes to the cytoplasm, but Bub3 and Mps1 are either located on chromosomes or in the cytoplasm, depending on the cell cycle stage. Depletion of Bub3, Mad2, or Mps1 resulted in a lowered mitotic index, errors in chromosome segregation (including lagging chromosomes), and abnormalities in spindle morphology. During interphase, MCC knockdown cells have an abnormal number of nuclei, either one nucleus usually on the left-hand side of the cell or two nuclei with one mislocalized. These results suggest that the minimal set of MCC proteins in Giardia play a major role in regulating many aspects of mitosis, including chromosome segregation, coordination of mitosis between the two nuclei, and subsequent nuclear positioning. The critical importance of MCC proteins in an organism that lacks their canonical target, the APC/C, suggests a broader role for these proteins and hints at new pathways to be discovered. PMID:25057014

  1. The Phosphatase PP4c Controls Spindle Orientation to Maintain Proliferative Symmetric Divisions in the Developing Neocortex

    PubMed Central

    Xie, Yunli; Jüschke, Christoph; Esk, Christopher; Hirotsune, Shinji; Knoblich, Juergen A.

    2013-01-01

    Summary In the developing neocortex, progenitor cells expand through symmetric division before they generate cortical neurons through multiple rounds of asymmetric cell division. Here, we show that the orientation of the mitotic spindle plays a crucial role in regulating the transition between those two division modes. We demonstrate that the protein phosphatase PP4c regulates spindle orientation in early cortical progenitor cells. Upon removing PP4c, mitotic spindles fail to orient in parallel to the neuroepithelial surface and progenitors divide with random orientation. As a result, their divisions become asymmetric and neurogenesis starts prematurely. Biochemical and genetic experiments show that PP4c acts by dephosphorylating the microtubule binding protein Ndel1, thereby enabling complex formation with Lis1 to form a functional spindle orientation complex. Our results identify a key regulator of cortical development and demonstrate that changes in the orientation of progenitor division are responsible for the transition between symmetric and asymmetric cell division. PMID:23830831

  2. Mcl-1 dynamics influence mitotic slippage and death in mitosis.

    PubMed

    Sloss, Olivia; Topham, Caroline; Diez, Maria; Taylor, Stephen

    2016-02-02

    Microtubule-binding drugs such as taxol are frontline treatments for a variety of cancers but exactly how they yield patient benefit is unclear. In cell culture, inhibiting microtubule dynamics prevents spindle assembly, leading to mitotic arrest followed by either apoptosis in mitosis or slippage, whereby a cell returns to interphase without dividing. Myeloid cell leukaemia-1 (Mcl-1), a pro-survival member of the Bcl-2 family central to the intrinsic apoptosis pathway, is degraded during a prolonged mitotic arrest and may therefore act as a mitotic death timer. Consistently, we show that blocking proteasome-mediated degradation inhibits taxol-induced mitotic apoptosis in a Mcl-1-dependent manner. However, this degradation does not require the activity of either APC/C-Cdc20, FBW7 or MULE, three separate E3 ubiquitin ligases implicated in targeting Mcl-1 for degradation. This therefore challenges the notion that Mcl-1 undergoes regulated degradation during mitosis. We also show that Mcl-1 is continuously synthesized during mitosis and that blocking protein synthesis accelerates taxol induced death-in-mitosis. Modulating Mcl-1 levels also influences slippage; overexpressing Mcl-1 extends the time from mitotic entry to mitotic exit in the presence of taxol, while inhibiting Mcl-1 accelerates it. We suggest that Mcl-1 competes with Cyclin B1 for binding to components of the proteolysis machinery, thereby slowing down the slow degradation of Cyclin B1 responsible for slippage. Thus, modulating Mcl-1 dynamics influences both death-in-mitosis and slippage. However, because mitotic degradation of Mcl-1 appears not to be under the control of an E3 ligase, we suggest that the notion of network crosstalk is used with caution.

  3. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma

    PubMed Central

    Restall, Ian J; Parolin, Doris A E; Daneshmand, Manijeh; Hanson, Jennifer E L; Simard, Manon A; Fitzpatrick, Megan E; Kumar, Ritesh; Lavictoire, Sylvie J; Lorimer, Ian A J

    2015-01-01

    Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated β-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence. PMID:26208522

  4. PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma.

    PubMed

    Restall, Ian J; Parolin, Doris A E; Daneshmand, Manijeh; Hanson, Jennifer E L; Simard, Manon A; Fitzpatrick, Megan E; Kumar, Ritesh; Lavictoire, Sylvie J; Lorimer, Ian A J

    2015-01-01

    Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the absence of a detectable DNA damage response. Here we demonstrate that senescent glioblastoma cells exhibit an aberrant centrosome morphology. This was observed in basal levels of senescence, in p21-induced senescence, and in PKCι depletion-induced senescence. In addition, senescent glioblastoma cells are polyploid, Ki-67 negative and arrest at the G1/S checkpoint, as determined by expression of cell cycle regulatory proteins. These markers are all consistent with cells that have undergone mitotic slippage. Failure of the spindle assembly checkpoint to function properly can lead to mitotic slippage, resulting in the premature exit of mitotic cells into the G1 phase of the cell cycle. Although in G1, these cells have the replicated DNA and centrosomal phenotype of a cell that has entered mitosis and failed to divide. Overall, we demonstrate that PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma cells. To our knowledge, this is the first evidence of markers of mitotic slippage directly in senescent cells by co-staining for senescence-associated β-galactosidase and immunofluorescence markers in the same cell population. We suggest that markers of mitotic slippage be assessed in future studies of senescence to determine the extent of mitotic slippage in the induction of cellular senescence.

  5. Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes.

    PubMed

    Platani, Melpomeni; Trinkle-Mulcahy, Laura; Porter, Michael; Jeyaprakash, A Arockia; Earnshaw, William C

    2015-07-06

    Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression.

  6. Mio depletion links mTOR regulation to Aurora A and Plk1 activation at mitotic centrosomes

    PubMed Central

    Trinkle-Mulcahy, Laura; Porter, Michael; Jeyaprakash, A. Arockia

    2015-01-01

    Coordination of cell growth and proliferation in response to nutrient supply is mediated by mammalian target of rapamycin (mTOR) signaling. In this study, we report that Mio, a highly conserved member of the SEACAT/GATOR2 complex necessary for the activation of mTORC1 kinase, plays a critical role in mitotic spindle formation and subsequent chromosome segregation by regulating the proper concentration of active key mitotic kinases Plk1 and Aurora A at centrosomes and spindle poles. Mio-depleted cells showed reduced activation of Plk1 and Aurora A kinase at spindle poles and an impaired localization of MCAK and HURP, two key regulators of mitotic spindle formation and known substrates of Aurora A kinase, resulting in spindle assembly and cytokinesis defects. Our results indicate that a major function of Mio in mitosis is to regulate the activation/deactivation of Plk1 and Aurora A, possibly by linking them to mTOR signaling in a pathway to promote faithful mitotic progression. PMID:26124292

  7. Divergence of mitotic strategies in fission yeasts

    PubMed Central

    Gu, Ying; Yam, Candice; Oliferenko, Snezhana

    2012-01-01

    The aim of mitosis is to produce two daughter nuclei, each containing a chromosome complement identical to that of the mother nucleus. This can be accomplished through a variety of strategies, with “open” and “closed” modes of mitosis positioned at the opposite ends of the spectrum and a range of intermediate patterns in between. In the “closed” mitosis, the nuclear envelope remains intact throughout the nuclear division. In the “open” division type, the envelope of the original nucleus breaks down early in mitosis and reassembles around the segregated daughter genomes. In any case, the nuclear membrane has to remodel to accommodate the mitotic spindle assembly, chromosome segregation and formation of the daughter nuclei. We have recently shown that within the fission yeast clade, the mitotic control of the nuclear surface area may determine the choice between the nuclear envelope breakdown and a fully “closed” division. Here we discuss our data and argue that comparative cell biology studies using two fission yeast species, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, could provide unprecedented insights into physiology and evolution of mitosis. PMID:22572960

  8. Localization of the mei-1 gene product of Caenorhaditis elegans, a meiotic-specific spindle component

    PubMed Central

    1994-01-01

    Genetic evidence suggests that the product of the mei-1 gene of Caenorhabditis elegans is specifically required for meiosis in the female germline. Loss-of-function mei-1 mutations block meiotic spindle formation while a gain-of-function allele instead results in spindle defects during the early mitotic cleavages. In this report, we use immunocytochemistry to examine the localization of the mei-1 product in wild-type and mutant embryos. During metaphase of meiosis I in wild- type embryos, mei-1 protein was found throughout the spindle but was more concentrated toward the poles. At telophase I, mei-1 product colocalized with the chromatin at the spindle poles. The pattern was repeated during meiosis II but no mei-1 product was visible during the subsequent mitotic cleavages. The mei-1 gain-of-function allele resulted in ectopic mei-1 staining in the centers of the microtubule- organizing centers during interphase and in the spindles during the early cleavages. This aberrant localization is probably responsible for the poorly formed and misoriented cleavage spindles characteristic of the mutation. We also examined the localization of mei-1(+) product in the presence of mutations of genes that genetically interact with mei-1 alleles. mei-2 is apparently required to localize mei-1 product to the spindle during meiosis while mel-26 acts as a postmeiotic inhibitor. We conclude that mei-1 encodes a novel spindle component, one that is specialized for the acentriolar meiotic spindles unique to female meiosis. The genes mei-2 and mel-26 are part of a regulatory network that confines mei-1 activity to meiosis. PMID:8027178

  9. Regulation of NDR1 activity by PLK1 ensures proper spindle orientation in mitosis

    PubMed Central

    Yan, Maomao; Chu, Lingluo; Qin, Bo; Wang, Zhikai; Liu, Xing; Jin, Changjiang; Zhang, Guanglan; Gomez, Marta; Hergovich, Alexander; Chen, Zhengjun; He, Ping; Gao, Xinjiao; Yao, Xuebiao

    2015-01-01

    Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids which depends on correct position of mitotic spindle relative to membrane cortex. Although recent work has identified the role of PLK1 in spindle orientation, the mechanisms underlying PLK1 signaling in spindle positioning and orientation have not been fully illustrated. Here, we identified a conserved signaling axis in which NDR1 kinase activity is regulated by PLK1 in mitosis. PLK1 phosphorylates NDR1 at three putative threonine residues (T7, T183 and T407) at mitotic entry, which elicits PLK1-dependent suppression of NDR1 activity and ensures correct spindle orientation in mitosis. Importantly, persistent expression of non-phosphorylatable NDR1 mutant perturbs spindle orientation. Mechanistically, PLK1-mediated phosphorylation protects the binding of Mob1 to NDR1 and subsequent NDR1 activation. These findings define a conserved signaling axis that integrates dynamic kinetochore-microtubule interaction and spindle orientation control to genomic stability maintenance. PMID:26057687

  10. Adaptive changes in the kinetochore architecture facilitate proper spindle assembly

    PubMed Central

    Magidson, Valentin; Paul, Raja; Yang, Nachen; Ault, Jeffrey G.; O’Connell, Christopher B.; Tikhonenko, Irina; McEwen, Bruce F.; Mogilner, Alex; Khodjakov, Alexey

    2015-01-01

    Mitotic spindle formation relies on the stochastic capture of microtubules at kinetochores. Kinetochore architecture affects the efficiency and fidelity of this process with large kinetochores expected to accelerate assembly at the expense of accuracy, and smaller kinetochores to suppress errors at the expense of efficiency. We demonstrate that upon mitotic entry, kinetochores in cultured human cells form large crescents that subsequently compact into discrete structures on opposite sides of the centromere. This compaction occurs only after the formation of end-on microtubule attachments. Live-cell microscopy reveals that centromere rotation mediated by lateral kinetochore-microtubule interactions precedes formation of end-on attachments and kinetochore compaction. Computational analyses of kinetochore expansion-compaction in the context of lateral interactions correctly predict experimentally-observed spindle assembly times with reasonable error rates. The computational model suggests that larger kinetochores reduce both errors and assembly times, which can explain the robustness of spindle assembly and the functional significance of enlarged kinetochores. PMID:26258631

  11. Spindle assembly checkpoint and its regulators in meiosis.

    PubMed

    Sun, Shao-Chen; Kim, Nam-Hyung

    2012-01-01

    BACKGROUND Meiosis is a unique form of cell division in which cells divide twice but DNA is duplicated only once. Errors in chromosome segregation during meiosis will result in aneuploidy, followed by loss of the conceptus during pregnancy or birth defects. During mitosis, cells utilize a mechanism called the spindle assembly checkpoint (SAC) to ensure faithful chromosome segregation. A similar mechanism has been uncovered for meiosis in the last decade, especially in the past several years. METHODS For this review, we included data and relevant information obtained through a PubMed database search for all articles published in English from 1991 through 2011 which included the term 'meiosis', 'spindle assembly checkpoint', or 'SAC'. RESULTS There are 91 studies included. Evidence for the existence of SAC functions in meiosis is provided by studies on the SAC proteins mitotic-arrest deficient-1 (Mad1), Mad2, budding uninhibited by benzimidazole-1 (Bub1), Bub3, BubR1 and Mps1; microtubule-kinetochore attachment regulators Ndc80 complex, chromosomal passenger complex, mitotic centromere-associated kinesin (MCAK), kinetochore null 1 (KNL1) and Mis12 complex and spindle stability regulators. CONCLUSIONS SAC and its regulators exist and function in meiosis, and their malfunctions may cause germ cell aneuploidy. However, species and sexual differences exist. Moreover, interaction of SAC components with other regulators is still poorly understood, which needs further study.

  12. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  13. cut11+: A Gene Required for Cell Cycle-dependent Spindle Pole Body Anchoring in the Nuclear Envelope and Bipolar Spindle Formation in Schizosaccharomyces pombe

    PubMed Central

    West, Robert R.; Vaisberg, Elena V.; Ding, Rubai; Nurse, Paul; McIntosh, J. Richard

    1998-01-01

    The “cut” mutants of Schizosaccharomyces pombe are defective in spindle formation and/or chromosome segregation, but they proceed through the cell cycle, resulting in lethality. Analysis of temperature-sensitive alleles of cut11+ suggests that this gene is required for the formation of a functional bipolar spindle. Defective spindle structure was revealed with fluorescent probes for tubulin and DNA. Three-dimensional reconstruction of mutant spindles by serial sectioning and electron microscopy showed that the spindle pole bodies (SPBs) either failed to complete normal duplication or were free floating in the nucleoplasm. Localization of Cut11p tagged with the green fluorescent protein showed punctate nuclear envelope staining throughout the cell cycle and SPBs staining from early prophase to mid anaphase. This SPB localization correlates with the time in the cell cycle when SPBs are inserted into the nuclear envelope. Immunoelectron microscopy confirmed the localization of Cut11p to mitotic SPBs and nuclear pore complexes. Cloning and sequencing showed that cut11+ encodes a novel protein with seven putative membrane-spanning domains and homology to the Saccharomyces cerevisiae gene NDC1. These data suggest that Cut11p associates with nuclear pore complexes and mitotic SPBs as an anchor in the nuclear envelope; this role is essential for mitosis. PMID:9763447

  14. Aurora A's Functions During Mitotic Exit: The Guess Who Game.

    PubMed

    Reboutier, David; Benaud, Christelle; Prigent, Claude

    2015-01-01

    Until recently, the knowledge of Aurora A kinase functions during mitosis was limited to pre-metaphase events, particularly centrosome maturation, G2/M transition, and mitotic spindle assembly. However, an involvement of Aurora A in post-metaphase events was also suspected, but not clearly demonstrated due to the technical difficulty to perform the appropriate experiments. Recent developments of both an analog-specific version of Aurora A and small molecule inhibitors have led to the first demonstration that Aurora A is required for the early steps of cytokinesis. As in pre-metaphase, Aurora A plays diverse functions during anaphase, essentially participating in astral microtubules dynamics and central spindle assembly and functioning. The present review describes the experimental systems used to decipher new functions of Aurora A during late mitosis and situate these functions into the context of cytokinesis mechanisms.

  15. Identification of MAC1: A Small Molecule That Rescues Spindle Bipolarity in Monastrol-Treated Cells.

    PubMed

    Al-Obaidi, Naowras; Mitchison, Timothy J; Crews, Craig M; Mayer, Thomas U

    2016-06-17

    The genetic integrity of each organism is intimately tied to the correct segregation of its genome during mitosis. Insights into the underlying mechanisms are fundamental for both basic research and the development of novel strategies to treat mitosis-relevant diseases such as cancer. Due to their fast mode of action, small molecules are invaluable tools to dissect mitosis. Yet, there is a great demand for novel antimitotic compounds. We performed a chemical genetic suppression screen to identify compounds that restore spindle bipolarity in cells treated with Monastrol, an inhibitor of the mitotic kinesin Eg5. We identified one compound-MAC1-that rescued spindle bipolarity in cells lacking Eg5 activity. Mechanistically, MAC1 induces the formation of additional microtubule nucleation centers, which allows kinesin Kif15-dependent bipolar spindle assembly in the absence of Eg5 activity. Thus, our chemical genetic suppression screen revealed novel unexpected insights into the mechanism of spindle assembly in mammalian cells.

  16. Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis

    PubMed Central

    Snider, Chloe E.; Stephens, Andrew D.; Kirkland, Jacob G.; Hamdani, Omar; Kamakaka, Rohinton T.

    2014-01-01

    Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms. PMID:25332162

  17. F-actin mechanics control spindle centring in the mouse zygote

    PubMed Central

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition. PMID:26727405

  18. Cortical microtubule contacts position the spindle in C. elegans embryos.

    PubMed

    Kozlowski, Cleopatra; Srayko, Martin; Nedelec, Francois

    2007-05-04

    Interactions between microtubules and the cell cortex play a critical role in positioning organelles in a variety of biological contexts. Here we used Caenorhabditis elegans as a model system to study how cortex-microtubule interactions position the mitotic spindle in response to polarity cues. Imaging EBP-2::GFP and YFP::alpha-tubulin revealed that microtubules shrink soon after cortical contact, from which we propose that cortical adaptors mediate microtubule depolymerization energy into pulling forces. We also observe association of dynamic microtubules to form astral fibers that persist, despite the catastrophe events of individual microtubules. Computer simulations show that these effects, which are crucially determined by microtubule dynamics, can explain anaphase spindle oscillations and posterior displacement in 3D.

  19. A quantitative systems view of the spindle assembly checkpoint

    PubMed Central

    Ciliberto, Andrea; Shah, Jagesh V

    2009-01-01

    The idle assembly checkpoint acts to delay chromosome segregation until all duplicated sister chromatids are captured by the mitotic spindle. This pathway ensures that each daughter cell receives a complete copy of the genome. The high fidelity and robustness of this process have made it a subject of intense study in both the experimental and computational realms. A significant number of checkpoint proteins have been identified but how they orchestrate the communication between local spindle attachment and global cytoplasmic signalling to delay segregation is not yet understood. Here, we propose a systems view of the spindle assembly checkpoint to focus attention on the key regulators of the dynamics of this pathway. These regulators in turn have been the subject of detailed cellular measurements and computational modelling to connect molecular function to the dynamics of spindle assembly checkpoint signalling. A review of these efforts reveals the insights provided by such approaches and underscores the need for further interdisciplinary studies to reveal in full the quantitative underpinnings of this cellular control pathway. PMID:19629044

  20. Involvement of CNOT3 in mitotic progression through inhibition of MAD1 expression

    SciTech Connect

    Takahashi, Akinori; Kikuguchi, Chisato; Morita, Masahiro; Shimodaira, Tetsuhiro; Tokai-Nishizumi, Noriko; Yokoyama, Kazumasa; Ohsugi, Miho; Suzuki, Toru; Yamamoto, Tadashi

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer CNOT3 depletion increases the mitotic index. Black-Right-Pointing-Pointer CNOT3 inhibits the expression of MAD1. Black-Right-Pointing-Pointer CNOT3 destabilizes the MAD1 mRNA. Black-Right-Pointing-Pointer MAD1 knockdown attenuates the CNOT3 depletion-induced mitotic arrest. -- Abstract: The stability of mRNA influences the dynamics of gene expression. The CCR4-NOT complex, the major deadenylase in mammalian cells, shortens the mRNA poly(A) tail and contributes to the destabilization of mRNAs. The CCR4-NOT complex plays pivotal roles in various physiological functions, including cell proliferation, apoptosis, and metabolism. Here, we show that CNOT3, a subunit of the CCR4-NOT complex, is involved in the regulation of the spindle assembly checkpoint, suggesting that the CCR4-NOT complex also plays a part in the regulation of mitosis. CNOT3 depletion increases the population of mitotic-arrested cells and specifically increases the expression of MAD1 mRNA and its protein product that plays a part in the spindle assembly checkpoint. We showed that CNOT3 depletion stabilizes the MAD1 mRNA, and that MAD1 knockdown attenuates the CNOT3 depletion-induced increase of the mitotic index. Basing on these observations, we propose that CNOT3 is involved in the regulation of the spindle assembly checkpoint through its ability to regulate the stability of MAD1 mRNA.

  1. Cell death by mitotic catastrophe: a molecular definition.

    PubMed

    Castedo, Maria; Perfettini, Jean-Luc; Roumier, Thomas; Andreau, Karine; Medema, Rene; Kroemer, Guido

    2004-04-12

    The current literature is devoid of a clearcut definition of mitotic catastrophe, a type of cell death that occurs during mitosis. Here, we propose that mitotic catastrophe results from a combination of deficient cell-cycle checkpoints (in particular the DNA structure checkpoints and the spindle assembly checkpoint) and cellular damage. Failure to arrest the cell cycle before or at mitosis triggers an attempt of aberrant chromosome segregation, which culminates in the activation of the apoptotic default pathway and cellular demise. Cell death occurring during the metaphase/anaphase transition is characterized by the activation of caspase-2 (which can be activated in response to DNA damage) and/or mitochondrial membrane permeabilization with the release of cell death effectors such as apoptosis-inducing factor and the caspase-9 and-3 activator cytochrome c. Although the morphological aspect of apoptosis may be incomplete, these alterations constitute the biochemical hallmarks of apoptosis. Cells that fail to execute an apoptotic program in response to mitotic failure are likely to divide asymmetrically in the next round of cell division, with the consequent generation of aneuploid cells. This implies that disabling of the apoptotic program may actually favor chromosomal instability, through the suppression of mitotic catastrophe. Mitotic catastrophe thus may be conceived as a molecular device that prevents aneuploidization, which may participate in oncogenesis. Mitotic catastrophe is controlled by numerous molecular players, in particular, cell-cycle-specific kinases (such as the cyclin B1-dependent kinase Cdk1, polo-like kinases and Aurora kinases), cell-cycle checkpoint proteins, survivin, p53, caspases and members of the Bcl-2 family.

  2. Anti-mitotic agents: Are they emerging molecules for cancer treatment?

    PubMed

    Penna, Larissa Siqueira; Henriques, João Antonio Pêgas; Bonatto, Diego

    2017-02-04

    Mutations in cancer cells frequently result in cell cycle alterations that lead to unrestricted growth compared to normal cells. Considering this phenomenon, many drugs have been developed to inhibit different cell-cycle phases. Mitotic phase targeting disturbs mitosis in tumor cells, triggers the spindle assembly checkpoint and frequently results in cell death. The first anti-mitotics to enter clinical trials aimed to target tubulin. Although these drugs improved the treatment of certain cancers, and many anti-microtubule compounds are already approved for clinical use, severe adverse events such as neuropathies were observed. Since then, efforts have been focused on the development of drugs that also target kinases, motor proteins and multi-protein complexes involved in mitosis. In this review, we summarize the major proteins involved in the mitotic phase that can also be targeted for cancer treatment. Finally, we address the activity of anti-mitotic drugs tested in clinical trials in recent years.

  3. The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal

    PubMed Central

    Maekawa, Hiromi; Priest, Claire; Lechner, Johannes; Pereira, Gislene; Schiebel, Elmar

    2007-01-01

    The spindle orientation checkpoint (SPOC) of budding yeast delays mitotic exit when cytoplasmic microtubules (MTs) are defective, causing the spindle to become misaligned. Delay is achieved by maintaining the activity of the Bfa1–Bub2 guanosine triphosphatase–activating protein complex, an inhibitor of mitotic exit. In this study, we show that the spindle pole body (SPB) component Spc72, a transforming acidic coiled coil–like molecule that interacts with the γ-tubulin complex, recruits Kin4 kinase to both SPBs when cytoplasmic MTs are defective. This allows Kin4 to phosphorylate the SPB-associated Bfa1, rendering it resistant to inactivation by Cdc5 polo kinase. Consistently, forced targeting of Kin4 to both SPBs delays mitotic exit even when the anaphase spindle is correctly aligned. Moreover, we present evidence that Spc72 has an additional function in SPOC regulation that is independent of the recruitment of Kin4. Thus, Spc72 provides a missing link between cytoplasmic MT function and components of the SPOC. PMID:17967947

  4. The yeast centrosome translates the positional information of the anaphase spindle into a cell cycle signal.

    PubMed

    Maekawa, Hiromi; Priest, Claire; Lechner, Johannes; Pereira, Gislene; Schiebel, Elmar

    2007-11-05

    The spindle orientation checkpoint (SPOC) of budding yeast delays mitotic exit when cytoplasmic microtubules (MTs) are defective, causing the spindle to become misaligned. Delay is achieved by maintaining the activity of the Bfa1-Bub2 guanosine triphosphatase-activating protein complex, an inhibitor of mitotic exit. In this study, we show that the spindle pole body (SPB) component Spc72, a transforming acidic coiled coil-like molecule that interacts with the gamma-tubulin complex, recruits Kin4 kinase to both SPBs when cytoplasmic MTs are defective. This allows Kin4 to phosphorylate the SPB-associated Bfa1, rendering it resistant to inactivation by Cdc5 polo kinase. Consistently, forced targeting of Kin4 to both SPBs delays mitotic exit even when the anaphase spindle is correctly aligned. Moreover, we present evidence that Spc72 has an additional function in SPOC regulation that is independent of the recruitment of Kin4. Thus, Spc72 provides a missing link between cytoplasmic MT function and components of the SPOC.

  5. Cell polarity and spindle orientation in the distal epithelium of embryonic lung.

    PubMed

    El-Hashash, Ahmed H; Warburton, David

    2011-02-01

    A proper balance between self-renewal and differentiation of lung-specific progenitors at the distal epithelial tips is absolutely required for normal lung morphogenesis. Cell polarity and mitotic spindle orientation play a critical role in the self-renewal/differentiation of epithelial cells and can impact normal physiological processes, including epithelial tissue branching and differentiation. Therefore, understanding the behavior of lung distal epithelial progenitors could identify innovative solutions to restoring normal lung morphogenesis. Yet little is known about cell polarity, spindle orientation, and segregation of cell fate determinant in the embryonic lung epithelium, which contains progenitor cells. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized and highly mitotic with characteristic perpendicular cell divisions. Consistent with these findings, mInsc, LGN, and NuMA polarity proteins, which control spindle orientation, are asymmetrically localized in mitotic distal epithelial progenitors of embryonic lungs. Furthermore, the cell fate determinant Numb is asymmetrically distributed at the apical side of distal epithelial progenitors and segregated to one daughter cell in most mitotic cells. These findings provide evidence for polarity in distal epithelial progenitors of embryonic lungs and provide a framework for future translationally oriented studies in this area.

  6. NITROUS OXIDE: EFFECTS ON THE MITOTIC APPARATUS AND CHROMOSOME MOVEMENT IN HELA CELLS

    PubMed Central

    Brinkley, B. R.; Rao, Potu N.

    1973-01-01

    When HeLa cells were grown in the presence of nitrous oxide (N2O) under pressure (80 lb/in2) mitosis was inhibited and the chromosomes displayed a typical colchicine metaphase (c-metaphase) configuration when examined by light microscopy. When the cells were returned to a 37°C incubator, mitosis was resumed and the cells entered G1 synchronously. Ultrastructural studies of N2O-blocked cells revealed a bipolar spindle with centriole pairs at each pole. Both chromosomal and interpolar (pole-to-pole) microtubules were also present. Thus, N2O, unlike most c-mitotic agents, appeared to have little or no effect upon spindle microtubule assembly. However, the failure of chromo somes to become properly aligned onto the metaphase plate indicated an impairment in normal prometaphase movement. The alignment of spindle microtubules was frequently atypical with some chromosomal microtubules extending from kinetochores to the poles, while others extended out at acute angles from the spindle axis. These ultrastructural studies indicated that N2O blocked cells at a stage in mitosis more advanced than that produced by Colcemid or other c-mitotic agents. Like Colcemid, however, prolonged arrest in mitosis with N2O led to an increased incidence of multipolar spindles. PMID:4726309

  7. Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity.

    PubMed

    Zhang, Xin; Ems-McClung, Stephanie C; Walczak, Claire E

    2008-07-01

    During mitosis, mitotic centromere-associated kinesin (MCAK) localizes to chromatin/kinetochores, a cytoplasmic pool, and spindle poles. Its localization and activity in the chromatin region are regulated by Aurora B kinase; however, how the cytoplasmic- and pole-localized MCAK are regulated is currently not clear. In this study, we used Xenopus egg extracts to form spindles in the absence of chromatin and centrosomes and found that MCAK localization and activity are tightly regulated by Aurora A. This regulation is important to focus microtubules at aster centers and to facilitate the transition from asters to bipolar spindles. In particular, we found that MCAK colocalized with NuMA and XMAP215 at the center of Ran asters where its activity is regulated by Aurora A-dependent phosphorylation of S196, which contributes to proper pole focusing. In addition, we found that MCAK localization at spindle poles was regulated through another Aurora A phosphorylation site (S719), which positively enhances bipolar spindle formation. This is the first study that clearly defines a role for MCAK at the spindle poles as well as identifies another key Aurora A substrate that contributes to spindle bipolarity.

  8. The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis

    PubMed Central

    Bakal, Christopher J.; Finan, Dina; LaRose, José; Wells, Clark D.; Gish, Gerald; Kulkarni, Sarang; DeSepulveda, Paulo; Wilde, Andrew; Rottapel, Robert

    2005-01-01

    Rho GTPases regulate reorganization of actin and microtubule cytoskeletal structures during both interphase and mitosis. The timing and subcellular compartment in which Rho GTPases are activated is controlled by the large family of Rho GTP exchange factors (RhoGEFs). Here, we show that the microtubule-associated RhoGEF Lfc is required for the formation of the mitotic spindle during prophase/prometaphase. The inability of cells to assemble a functioning spindle after Lfc inhibition resulted in a delay in mitosis and an accumulation of prometaphase cells. Inhibition of Lfc's primary target Rho GTPase during prophase/prometaphase, or expression of a catalytically inactive mutant of Lfc, also prevented normal spindle assembly and resulted in delays in mitotic progression. Coinjection of constitutively active Rho GTPase rescued the spindle defects caused by Lfc inhibition, suggesting the requirement of RhoGTP in regulating spindle assembly. Lastly, we implicate mDia1 as an important effector of Lfc signaling. These findings demonstrate a role for Lfc, Rho, and mDia1 during mitosis. PMID:15976019

  9. UV-C irradiation delays mitotic progression by recruiting Mps1 to kinetochores.

    PubMed

    Zhang, Xiaojuan; Ling, Youguo; Wang, Wenjun; Zhang, Yanhong; Ma, Qingjun; Tan, Pingping; Song, Ting; Wei, Congwen; Li, Ping; Liu, Xuedong; Ma, Runlin Z; Zhong, Hui; Cao, Cheng; Xu, Quanbin

    2013-04-15

    The effect of UV irradiation on replicating cells during interphase has been studied extensively. However, how the mitotic cell responds to UV irradiation is less well defined. Herein, we found that UV-C irradiation (254 nm) increases recruitment of the spindle checkpoint proteins Mps1 and Mad2 to the kinetochore during metaphase, suggesting that the spindle assembly checkpoint (SAC) is reactivated. In accordance with this, cells exposed to UV-C showed delayed mitotic progression, characterized by a prolonged chromosomal alignment during metaphase. UV-C irradiation also induced the DNA damage response and caused a significant accumulation of γ-H2AX on mitotic chromosomes. Unexpectedly, the mitotic delay upon UV-C irradiation is not due to the DNA damage response but to the relocation of Mps1 to the kinetochore. Further, we found that UV-C irradiation activates Aurora B kinase. Importantly, the kinase activity of Aurora B is indispensable for full recruitment of Mps1 to the kinetochore during both prometaphase and metaphase. Taking these findings together, we propose that UV irradiation delays mitotic progression by evoking the Aurora B-Mps1 signaling cascade, which exerts its role through promoting the association of Mps1 with the kinetochore in metaphase.

  10. Focal adhesions control cleavage furrow shape and spindle tilt during mitosis

    PubMed Central

    Taneja, Nilay; Fenix, Aidan M.; Rathbun, Lindsay; Millis, Bryan A.; Tyska, Matthew J.; Hehnly, Heidi; Burnette, Dylan T.

    2016-01-01

    The geometry of the cleavage furrow during mitosis is often asymmetric in vivo and plays a critical role in stem cell differentiation and the relative positioning of daughter cells during development. Early observations of adhesive cell lines revealed asymmetry in the shape of the cleavage furrow, where the bottom (i.e., substrate attached side) of the cleavage furrow ingressed less than the top (i.e., unattached side). This data suggested substrate attachment could be regulating furrow ingression. Here we report a population of mitotic focal adhesions (FAs) controls the symmetry of the cleavage furrow. In single HeLa cells, stronger adhesion to the substrate directed less ingression from the bottom of the cell through a pathway including paxillin, focal adhesion kinase (FAK) and vinculin. Cell-cell contacts also direct ingression of the cleavage furrow in coordination with FAs in epithelial cells—MDCK—within monolayers and polarized cysts. In addition, mitotic FAs established 3D orientation of the mitotic spindle and the relative positioning of mother and daughter centrosomes. Therefore, our data reveals mitotic FAs as a key link between mitotic cell shape and spindle orientation, and may have important implications in our understanding stem cell homeostasis and tumorigenesis. PMID:27432211

  11. Evidence for regulation of mitotic progression through temporal phosphorylation and dephosphorylation of CK2alpha.

    PubMed

    St-Denis, Nicole A; Derksen, D Richard; Litchfield, David W

    2009-04-01

    Proper mitotic progression is crucial for maintenance of genomic integrity in proliferating cells and is regulated through an intricate series of events, including protein phosphorylation governed by a complex network of protein kinases. One kinase family implicated in the regulation of mitotic progression is protein kinase CK2, a small family of enzymes that is overexpressed in cancer and induces transformation in mice and cultured fibroblasts. CK2alpha, one isoform of the catalytic subunits of CK2, is maximally phosphorylated at four sites in nocodazole-treated cells. To investigate the effects of CK2alpha phosphorylation on mitotic progression, we generated phosphospecific antibodies against its mitotic phosphorylation sites. In U2OS cells released from S-phase arrest, these antibodies reveal that CK2alpha is most highly phosphorylated in prophase and metaphase. Phosphorylation gradually decreases during anaphase and becomes undetectable during telophase and cytokinesis. Stable expression of phosphomimetic CK2alpha (CK2alpha-4D, CK2alpha-4E) results in aberrant centrosome amplification and chromosomal segregation defects and loss of mitotic cells through mitotic catastrophe. Conversely, cells expressing nonphosphorylatable CK2alpha (CK2alpha-4A) show a decreased ability to arrest in mitosis following nocodazole treatment, suggesting involvement in the spindle assembly checkpoint. Collectively, these studies indicate that reversible phosphorylation of CK2alpha requires precise regulation to allow proper mitotic progression.

  12. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine.

    PubMed

    Santaguida, Stefano; Tighe, Anthony; D'Alise, Anna Morena; Taylor, Stephen S; Musacchio, Andrea

    2010-07-12

    The catalytic activity of the MPS1 kinase is crucial for the spindle assembly checkpoint and for chromosome biorientation on the mitotic spindle. We report that the small molecule reversine is a potent mitotic inhibitor of MPS1. Reversine inhibits the spindle assembly checkpoint in a dose-dependent manner. Its addition to mitotic HeLa cells causes the ejection of Mad1 and the ROD-ZWILCH-ZW10 complex, both of which are important for the spindle checkpoint, from unattached kinetochores. By using reversine, we also demonstrate that MPS1 is required for the correction of improper chromosome-microtubule attachments. We provide evidence that MPS1 acts downstream from the AURORA B kinase, another crucial component of the error correction pathway. Our experiments describe a very useful tool to interfere with MPS1 activity in human cells. They also shed light on the relationship between the error correction pathway and the spindle checkpoint and suggest that these processes are coregulated and are likely to share at least a subset of their catalytic machinery.

  13. Dissecting the role of MPS1 in chromosome biorientation and the spindle checkpoint through the small molecule inhibitor reversine

    PubMed Central

    Santaguida, Stefano; Tighe, Anthony; D'Alise, Anna Morena; Taylor, Stephen S.

    2010-01-01

    The catalytic activity of the MPS1 kinase is crucial for the spindle assembly checkpoint and for chromosome biorientation on the mitotic spindle. We report that the small molecule reversine is a potent mitotic inhibitor of MPS1. Reversine inhibits the spindle assembly checkpoint in a dose-dependent manner. Its addition to mitotic HeLa cells causes the ejection of Mad1 and the ROD–ZWILCH–ZW10 complex, both of which are important for the spindle checkpoint, from unattached kinetochores. By using reversine, we also demonstrate that MPS1 is required for the correction of improper chromosome–microtubule attachments. We provide evidence that MPS1 acts downstream from the AURORA B kinase, another crucial component of the error correction pathway. Our experiments describe a very useful tool to interfere with MPS1 activity in human cells. They also shed light on the relationship between the error correction pathway and the spindle checkpoint and suggest that these processes are coregulated and are likely to share at least a subset of their catalytic machinery. PMID:20624901

  14. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes

    PubMed Central

    Gryaznova, Yuliya; Caydasi, Ayse Koca; Malengo, Gabriele; Sourjik, Victor; Pereira, Gislene

    2016-01-01

    The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control. DOI: http://dx.doi.org/10.7554/eLife.14029.001 PMID:27159239

  15. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes.

    PubMed

    Gryaznova, Yuliya; Koca Caydasi, Ayse; Malengo, Gabriele; Sourjik, Victor; Pereira, Gislene

    2016-05-09

    The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control.

  16. A lysine deacetylase Hos3 is targeted to the bud neck and involved in the spindle position checkpoint

    PubMed Central

    Wang, Mengqiao; Collins, Ruth N.

    2014-01-01

    An increasing number of cellular activities can be regulated by reversible lysine acetylation. Targeting the enzymes responsible for such posttranslational modifications is instrumental in defining their substrates and functions in vivo. Here we show that a Saccharomyces cerevisiae lysine deacetylase, Hos3, is asymmetrically targeted to the daughter side of the bud neck and to the daughter spindle pole body (SPB). The morphogenesis checkpoint member Hsl7 recruits Hos3 to the neck region. Cells with a defect in spindle orientation trigger Hos3 to load onto both SPBs. When associated symmetrically with both SPBs, Hos3 functions as a spindle position checkpoint (SPOC) component to inhibit mitotic exit. Neck localization of Hos3 is essential for its symmetric association with SPBs in cells with misaligned spindles. Our data suggest that Hos3 facilitates cross-talk between the morphogenesis checkpoint and the SPOC as a component of the intricate monitoring of spindle orientation after mitotic entry and before commitment to mitotic exit. PMID:25057019

  17. Acentrosomal Drosophila epithelial cells exhibit abnormal cell division, leading to cell death and compensatory proliferation

    PubMed Central

    Poulton, John S; Cuningham, John C; Peifer, Mark

    2014-01-01

    Summary Mitotic spindles are critical for accurate chromosome segregation. Centrosomes, the primary microtubule nucleating centers of animal cells, play key roles in forming and orienting mitotic spindles. However, the survival of Drosophila without centrosomes suggested they are dispensable in somatic cells, challenging the canonical view. We used fly wing disc epithelia as a model to resolve these conflicting hypotheses, revealing that centrosomes play vital roles in spindle assembly, function, and orientation. Many acentrosomal cells exhibit prolonged spindle assembly, chromosome mis-segregation, DNA damage, misoriented divisions, and eventual apoptosis. We found that multiple mechanisms buffer the effects of centrosome loss, including alternative microtubule nucleation pathways and the Spindle Assembly Checkpoint. Apoptosis of acentrosomal cells is mediated by JNK signaling, which also drives compensatory proliferation to maintain tissue integrity and viability. These data reveal the importance of centrosomes in fly epithelia, but also demonstrate the robust compensatory mechanisms at the cellular and organismal level. PMID:25241934

  18. The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4

    PubMed Central

    Chan, Leon Y.; Amon, Angelika

    2009-01-01

    In budding yeast, a surveillance mechanism known as the spindle position checkpoint (SPOC) ensures accurate genome partitioning. In the event of spindle misposition, the checkpoint delays exit from mitosis by restraining the activity of the mitotic exit network (MEN). To date, the only component of the checkpoint to be identified is the protein kinase Kin4. Furthermore, how the kinase is regulated by spindle position is not known. Here, we identify the protein phosphatase 2A (PP2A) in complex with the regulatory subunit Rts1 as a component of the SPOC. Loss of PP2A-Rts1 function abrogates the SPOC but not other mitotic checkpoints. We further show that the protein phosphatase functions upstream of Kin4, regulating the kinase's phosphorylation and localization during an unperturbed cell cycle and during SPOC activation, thus defining the phosphatase as a key regulator of SPOC function. PMID:19605686

  19. The protein phosphatase 2A functions in the spindle position checkpoint by regulating the checkpoint kinase Kin4.

    PubMed

    Chan, Leon Y; Amon, Angelika

    2009-07-15

    In budding yeast, a surveillance mechanism known as the spindle position checkpoint (SPOC) ensures accurate genome partitioning. In the event of spindle misposition, the checkpoint delays exit from mitosis by restraining the activity of the mitotic exit network (MEN). To date, the only component of the checkpoint to be identified is the protein kinase Kin4. Furthermore, how the kinase is regulated by spindle position is not known. Here, we identify the protein phosphatase 2A (PP2A) in complex with the regulatory subunit Rts1 as a component of the SPOC. Loss of PP2A-Rts1 function abrogates the SPOC but not other mitotic checkpoints. We further show that the protein phosphatase functions upstream of Kin4, regulating the kinase's phosphorylation and localization during an unperturbed cell cycle and during SPOC activation, thus defining the phosphatase as a key regulator of SPOC function.

  20. Statistical analysis of sleep spindle occurrences.

    PubMed

    Panas, Dagmara; Malinowska, Urszula; Piotrowski, Tadeusz; Żygierewicz, Jarosław; Suffczyński, Piotr

    2013-01-01

    Spindles - a hallmark of stage II sleep - are a transient oscillatory phenomenon in the EEG believed to reflect thalamocortical activity contributing to unresponsiveness during sleep. Currently spindles are often classified into two classes: fast spindles, with a frequency of around 14 Hz, occurring in the centro-parietal region; and slow spindles, with a frequency of around 12 Hz, prevalent in the frontal region. Here we aim to establish whether the spindle generation process also exhibits spatial heterogeneity. Electroencephalographic recordings from 20 subjects were automatically scanned to detect spindles and the time occurrences of spindles were used for statistical analysis. Gamma distribution parameters were fit to each inter-spindle interval distribution, and a modified Wald-Wolfowitz lag-1 correlation test was applied. Results indicate that not all spindles are generated by the same statistical process, but this dissociation is not spindle-type specific. Although this dissociation is not topographically specific, a single generator for all spindle types appears unlikely.

  1. Mechanism of APC/CCDC20 activation by mitotic phosphorylation

    PubMed Central

    Qiao, Renping; Weissmann, Florian; Yamaguchi, Masaya; Brown, Nicholas G.; VanderLinden, Ryan; Imre, Richard; Jarvis, Marc A.; Brunner, Michael R.; Davidson, Iain F.; Litos, Gabriele; Haselbach, David; Mechtler, Karl; Stark, Holger; Schulman, Brenda A.; Peters, Jan-Michael

    2016-01-01

    Chromosome segregation and mitotic exit are initiated by the 1.2-MDa ubiquitin ligase APC/C (anaphase-promoting complex/cyclosome) and its coactivator CDC20 (cell division cycle 20). To avoid chromosome missegregation, APC/CCDC20 activation is tightly controlled. CDC20 only associates with APC/C in mitosis when APC/C has become phosphorylated and is further inhibited by a mitotic checkpoint complex until all chromosomes are bioriented on the spindle. APC/C contains 14 different types of subunits, most of which are phosphorylated in mitosis on multiple sites. However, it is unknown which of these phospho-sites enable APC/CCDC20 activation and by which mechanism. Here we have identified 68 evolutionarily conserved mitotic phospho-sites on human APC/C bound to CDC20 and have used the biGBac technique to generate 47 APC/C mutants in which either all 68 sites or subsets of them were replaced by nonphosphorylatable or phospho-mimicking residues. The characterization of these complexes in substrate ubiquitination and degradation assays indicates that phosphorylation of an N-terminal loop region in APC1 is sufficient for binding and activation of APC/C by CDC20. Deletion of the N-terminal APC1 loop enables APC/CCDC20 activation in the absence of mitotic phosphorylation or phospho-mimicking mutations. These results indicate that binding of CDC20 to APC/C is normally prevented by an autoinhibitory loop in APC1 and that its mitotic phosphorylation relieves this inhibition. The predicted location of the N-terminal APC1 loop implies that this loop controls interactions between the N-terminal domain of CDC20 and APC1 and APC8. These results reveal how APC/C phosphorylation enables CDC20 to bind and activate the APC/C in mitosis. PMID:27114510

  2. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  3. Inhibitory factors associated with anaphase-promoting complex/cylosome in mitotic checkpoint

    PubMed Central

    Braunstein, Ilana; Miniowitz, Shirly; Moshe, Yakir; Hershko, Avram

    2007-01-01

    The mitotic (or spindle assembly) checkpoint system ensures accurate chromosome segregation by preventing anaphase initiation until all chromosomes are correctly attached to the mitotic spindle. It affects the activity of the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets inhibitors of anaphase initiation for degradation. The mechanisms by which this system regulates APC/C remain obscure. Some models propose that the system promotes sequestration of the APC/C activator Cdc20 by binding to the checkpoint proteins Mad2 and BubR1. A different model suggests that a mitotic checkpoint complex (MCC) composed of BubR1, Bub3, Cdc20, and Mad2 inhibits APC/C in mitotic checkpoint [Sudakin V, Chan GKT, Yen TJ (2001) J Cell Biol 154:925–936]. We examined this problem by using extracts from nocodazole-arrested cells that reproduce some downstream events of the mitotic checkpoint system, such as lag kinetics of the degradation of APC/C substrate. Incubation of extracts with adenosine-5′-(γ-thio)triphosphate (ATP[γS]) stabilized the checkpoint-arrested state, apparently by stable thiophosphorylation of some proteins. By immunoprecipitation of APC/C from stably checkpoint-arrested extracts, followed by elution with increased salt concentration, we isolated inhibitory factors associated with APC/C. A part of the inhibitory material consists of Cdc20 associated with BubR1 and Mad2, and is thus similar to MCC. Contrary to the original MCC hypothesis, we find that MCC disassembles upon exit from the mitotic checkpoint. Thus, the requirement of the mitotic checkpoint system for the binding of Mad2 and BubR1 to Cdc20 may be for the assembly of the inhibitory complex rather than for Cdc20 sequestration. PMID:17360335

  4. Phospho-Bcl-xL(Ser62) influences spindle assembly and chromosome segregation during mitosis.

    PubMed

    Wang, Jianfang; Beauchemin, Myriam; Bertrand, Richard

    2014-01-01

    Functional analysis of a series of phosphorylation mutants reveals that Bcl-xL(Ser62Ala) influences cell entry into anaphase and mitotic exit in taxol-exposed cells compared with cells expressing wild-type Bcl-xL or a series of other phosphorylation mutants, an effect that appears to be independent of its anti-apoptotic activity. During normal mitosis progression, Bcl-xL(Ser62) is strongly phosphorylated by PLK1 and MAPK14/SAPKp38α at the prometaphase, metaphase, and the anaphase boundaries, while it is de-phosphorylated at telophase and cytokinesis. Phospho-Bcl-xL(Ser62) localizes in centrosomes with γ-tubulin and in the mitotic cytosol with some spindle-assembly checkpoint signaling components, including PLK1, BubR1, and Mad2. In taxol- and nocodazole-exposed cells, phospho-Bcl-xL(Ser62) also binds to Cdc20- Mad2-, BubR1-, and Bub3-bound complexes, while Bcl-xL(Ser62Ala) does not. Silencing Bcl-xL expression and expressing the phosphorylation mutant Bcl-xL(Ser62Ala) lead to an increased number of cells harboring mitotic spindle defects including multipolar spindle, chromosome lagging and bridging, aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h. Together, the data indicate that during mitosis, Bcl-xL(Ser62) phosphorylation impacts on spindle assembly and chromosome segregation, influencing chromosome stability. Observations of mitotic cells harboring aneuploidy with micro-, bi-, or multi-nucleated cells, and cells that fail to resolve undergo mitosis within 6 h were also made with cells expressing the phosphorylation mutant Bcl-xL(Ser49Ala) and dual mutant Bcl-xL(Ser49/62Ala).

  5. Spindle Activity Orchestrates Plasticity during Development and Sleep

    PubMed Central

    Lindemann, Christoph; Ahlbeck, Joachim; Bitzenhofer, Sebastian H.; Hanganu-Opatz, Ileana L.

    2016-01-01

    Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs) and adult sleep spindles (ASSs) show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research. PMID:27293903

  6. The nucleoporin Nup153 affects spindle checkpoint activity due to an association with Mad1

    PubMed Central

    Shimi, Takeshi

    2010-01-01

    The nucleoporin Nup153 is known to play pivotal roles in nuclear import and export in interphase cells and as the cell transitions into mitosis, Nup153 is involved in nuclear envelope breakdown. In this study, we demonstrate that the interaction of Nup153 with the spindle assembly checkpoint protein Mad1 is important in the regulation of the spindle checkpoint. Overexpression of human Nup153 in HeLa cells leads to the appearance of multinucleated cells and induces the formation of multipolar spindles. Importantly, it causes inactivation of the spindle checkpoint due to hypophosphorylation of Mad1. Depletion of Nup153 using RNA interference results in the decline of Mad1 at nuclear pores during interphase and more significantly causes a delayed dissociation of Mad1 from kinetochores in metaphase and an increase in the number of unresolved midbodies. In the absence of Nup153 the spindle checkpoint remains active. In vitro studies indicate direct binding of Mad1 to the N-terminal domain of Nup153. Importantly, Nup153 binding to Mad1 affects Mad1's phosphorylation status, but not its ability to interact with Mad2. Our data suggest that Nup153 levels regulate the localization of Mad1 during the metaphase/anaphase transition thereby affecting its phoshorylation status and in turn spindle checkpoint activity and mitotic exit. PMID:21327106

  7. A roller coaster ride with the mitotic cyclins.

    PubMed

    Fung, Tsz Kan; Poon, Randy Y C

    2005-06-01

    Cyclins are discovered as proteins that accumulate progressively through interphase and disappear abruptly at mitosis during each cell cycle. In mammalian cells, cyclin A accumulates from late G1 phase and is destroyed before metaphase, and cyclin B is destroyed slightly later at anaphase. The abundance of the mitotic cyclins is mainly regulated at the levels of transcription and proteolysis. Transcription is stimulated and repressed by several transcription factors, including B-MYB, E2F, FOXM1, and NF-Y. Elements in the promoter, including CCRE/CDE and CHR, are in part responsible for the cell cycle oscillation of transcription. Destruction of the mitotic cyclins is carried out by the ubiquitin ligases APC/C(CDC20) and APC/C(CDH1). Central to our knowledge is the understanding of how APC/C is turned on from anaphase to early G1 phase, and turned off from late G1 till the spindle-assembly checkpoint is deactivated in metaphase. Reciprocal actions of cyclin-dependent kinases (CDKs) on APC/C, as well as on the SCF complexes ensure that the mitotic cyclins are destroyed only at the proper time.

  8. G2 cell cycle arrest, down-regulation of cyclin B, and induction of mitotic catastrophe by the flavoprotein inhibitor diphenyleneiodonium.

    PubMed

    Scaife, Robin M

    2004-10-01

    Because proliferation of eukaryotic cells requires cell cycle-regulated chromatid separation by the mitotic spindle, it is subject to regulation by mitotic checkpoints. To determine the mechanism of the antiproliferative activity of the flavoprotein-specific inhibitor diphenyleneiodonium (DPI), I have examined its effect on the cell cycle and mitosis. Similar to paclitaxel, exposure to DPI causes an accumulation of cells with a 4N DNA content. However, unlike the paclitaxel-mediated mitotic block, DPI-treated cells are arrested in the cell cycle prior to mitosis. Although DPI-treated cells can arrest with fully separated centrosomes at opposite sides of the nucleus, these centrosomes fail to assemble mitotic spindle microtubules and they do not accumulate the Thr(288) phosphorylated Aurora-A kinase marker of centrosome maturation. In contrast with paclitaxel-arrested cells, DPI impairs cyclin B1 accumulation. Release from DPI permits an accumulation of cyclin B1 and progression of the cells into mitosis. Conversely, exposure of paclitaxel-arrested mitotic cells to DPI causes a precipitous drop in cyclin B and Thr(288) phosphorylated Aurora-A levels and leads to mitotic catastrophe in a range of cancerous and noncancerous cells. Hence, the antiproliferative activity of DPI reflects a novel inhibitory mechanism of cell cycle progression that can reverse spindle checkpoint-mediated cell cycle arrest.

  9. NDC1: a nuclear periphery component required for yeast spindle pole body duplication

    PubMed Central

    1993-01-01

    The spindle pole body (SPB) of Saccharomyces cerevisiae serves as the centrosome in this organism, undergoing duplication early in the cell cycle to generate the two poles of the mitotic spindle. The conditional lethal mutation ndc1-1 has previously been shown to cause asymmetric segregation, wherein all the chromosomes go to one pole of the mitotic spindle (Thomas, J. H., and D. Botstein. 1986. Cell. 44:65-76). Examination by electron microscopy of mutant cells subjected to the nonpermissive temperature reveals a defect in SPB duplication. Although duplication is seen to occur, the nascent SPB fails to undergo insertion into the nuclear envelope. The parental SPB remains functional, organizing a monopolar spindle to which all the chromosomes are presumably attached. Order-of-function experiments reveal that the NDC1 function is required in G1 after alpha-factor arrest but before the arrest caused by cdc34. Molecular analysis shows that the NDC1 gene is essential and that it encodes a 656 amino acid protein (74 kD) with six or seven putative transmembrane domains. This evidence for membrane association is further supported by immunofluorescent localization of the NDC1 product to the vicinity of the nuclear envelope. These findings suggest that the NDC1 protein acts within the nuclear envelope to mediate insertion of the nascent SPB. PMID:8349727

  10. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes

    PubMed Central

    van Ree, Janine H.; Nam, Hyun-Ja; Jeganathan, Karthik B.; Kanakkanthara, Arun; van Deursen, Jan M.

    2016-01-01

    Phosphatase and tensin homologue (Pten) suppresses neoplastic growth by negatively regulating PI(3)K signalling through its phosphatase activity1. To gain insight into the actions of non-catalytic Pten domains in normal physiological processes and tumorigenesis2,3, we engineered mice lacking the PDZ-binding domain (PDZ-BD). Here, we show that the PDZ-BD regulates centrosome movement and that its heterozygous or homozygous deletion promotes aneuploidy and tumour formation. We found that Pten is recruited to pre-mitotic centrosomes in a Plk1-dependent fashion to create a docking site for protein complexes containing the PDZ-domain-containing protein Dlg1 (also known as Sap97) and Eg5 (also known as Kif11), a kinesin essential for centrosome movement and bipolar spindle formation4. Docking of Dlg1–Eg5 complexes to Pten depended on Eg5 phosphorylation by the Nek9–Nek6 mitotic kinase cascade and Cdk1. PDZ-BD deletion or Dlg1 ablation impaired loading of Eg5 onto centrosomes and spindle pole motility, yielding asymmetrical spindles that are prone to chromosome missegregation. Collectively, these data demonstrate that Pten, through the Dlg1-binding ability of its PDZ-BD, accumulates phosphorylated Eg5 at duplicated centrosomes to establish symmetrical bipolar spindles that properly segregate chromosomes, and suggest that this function contributes to tumour suppression. PMID:27240320

  11. Aurora A triggers Lgl cortical release during symmetric division to control planar spindle orientation.

    PubMed

    Carvalho, Cátia A; Moreira, Sofia; Ventura, Guilherme; Sunkel, Cláudio E; Morais-de-Sá, Eurico

    2015-01-05

    Mitotic spindle orientation is essential to control cell-fate specification and epithelial architecture. The tumor suppressor Lgl localizes to the basolateral cortex of epithelial cells, where it acts together with Dlg and Scrib to organize apicobasal polarity. Dlg and Scrib also control planar spindle orientation, but how the organization of polarity complexes is adjusted to control symmetric division is largely unknown. Here, we show that the Dlg complex is remodeled during Drosophila follicular epithelium cell division, when Lgl is released to the cytoplasm. Lgl redistribution during epithelial mitosis is reminiscent of asymmetric cell division, where it is proposed that Aurora A promotes aPKC activation to control the localization of Lgl and cell-fate determinants. We show that Aurora A controls Lgl localization directly, triggering its cortical release at early prophase in both epithelial and S2 cells. This relies on double phosphorylation within the putative aPKC phosphorylation site, which is required and sufficient for Lgl cortical release during mitosis and can be achieved by a combination of aPKC and Aurora A activities. Cortical retention of Lgl disrupts planar spindle orientation, but only when Lgl mutants that can bind Dlg are expressed. Hence, our work reveals that Lgl mitotic cortical release is not specifically linked to the asymmetric segregation of fate determinants, and we propose that Aurora A activation breaks the Dlg/Lgl interaction to allow planar spindle orientation during symmetric division via the Pins (LGN)/Dlg pathway.

  12. AIP regulates stability of Aurora-A at early mitotic phase coordinately with GSK-3beta.

    PubMed

    Fumoto, K; Lee, P-C; Saya, H; Kikuchi, A

    2008-07-24

    Glycogen synthase kinase-3 (GSK-3beta) regulates microtubule dynamics and cellular polarity through phosphorylating various microtubule associating proteins and plus-end tracking proteins. Although it was also reported that GSK-3beta is inactivated by protein kinase B at the spindle poles, functions and targets of GSK-3beta in the mitotic phase are unknown. Here, we identified Aurora-A-interacting protein (AIP), a negative regulator of Aurora-A, as a binding partner of GSK-3beta. AIP was colocalized with Aurora-A and GSK-3beta to the spindle poles in metaphase, and its depletion in cells stabilized and activated Aurora-A in early mitotic phase and caused mitotic cell arrest. Treatment of the cells with a GSK-3beta inhibitor reduced the protein level of Aurora-A and this reduction was suppressed by AIP knockdown. AIP was phosphorylated by GSK-3beta, and an AIP mutant in which the GSK-3beta phosphorylation site was mutated could bind and downregulate Aurora-A more efficiently. These results suggest that GSK-3beta modulates the early mitotic Aurora-A level through binding and phosphorylating AIP.

  13. The flavonoid eupatorin inactivates the mitotic checkpoint leading to polyploidy and apoptosis

    SciTech Connect

    Salmela, Anna-Leena; Pouwels, Jeroen; Kukkonen-Macchi, Anu; Waris, Sinikka; Toivonen, Pauliina; Jaakkola, Kimmo; Maeki-Jouppila, Jenni; Kallio, Lila; Kallio, Marko J.

    2012-03-10

    The spindle assembly checkpoint (SAC) is a conserved mechanism that ensures the fidelity of chromosome distribution in mitosis by preventing anaphase onset until the correct bipolar microtubule-kinetochore attachments are formed. Errors in SAC function may contribute to tumorigenesis by inducing numerical chromosome anomalies (aneuploidy). On the other hand, total disruption of SAC can lead to massive genomic imbalance followed by cell death, a phenomena that has therapeutic potency. We performed a cell-based high-throughput screen with a compound library of 2000 bioactives for novel SAC inhibitors and discovered a plant-derived phenolic compound eupatorin (3 Prime ,5-dihydroxy-4 Prime ,6,7-trimethoxyflavone) as an anti-mitotic flavonoid. The premature override of the microtubule drug-imposed mitotic arrest by eupatorin is dependent on microtubule-kinetochore attachments but not interkinetochore tension. Aurora B kinase activity, which is essential for maintenance of normal SAC signaling, is diminished by eupatorin in cells and in vitro providing a mechanistic explanation for the observed forced mitotic exit. Eupatorin likely has additional targets since eupatorin treatment of pre-mitotic cells causes spindle anomalies triggering a transient M phase delay followed by impaired cytokinesis and polyploidy. Finally, eupatorin potently induces apoptosis in multiple cancer cell lines and suppresses cancer cell proliferation in organotypic 3D cell culture model.

  14. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    PubMed Central

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-01-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells. PMID:26602832

  15. Mitotic cells contract actomyosin cortex and generate pressure to round against or escape epithelial confinement

    NASA Astrophysics Data System (ADS)

    Sorce, Barbara; Escobedo, Carlos; Toyoda, Yusuke; Stewart, Martin P.; Cattin, Cedric J.; Newton, Richard; Banerjee, Indranil; Stettler, Alexander; Roska, Botond; Eaton, Suzanne; Hyman, Anthony A.; Hierlemann, Andreas; Müller, Daniel J.

    2015-11-01

    Little is known about how mitotic cells round against epithelial confinement. Here, we engineer micropillar arrays that subject cells to lateral mechanical confinement similar to that experienced in epithelia. If generating sufficient force to deform the pillars, rounding epithelial (MDCK) cells can create space to divide. However, if mitotic cells cannot create sufficient space, their rounding force, which is generated by actomyosin contraction and hydrostatic pressure, pushes the cell out of confinement. After conducting mitosis in an unperturbed manner, both daughter cells return to the confinement of the pillars. Cells that cannot round against nor escape confinement cannot orient their mitotic spindles and more likely undergo apoptosis. The results highlight how spatially constrained epithelial cells prepare for mitosis: either they are strong enough to round up or they must escape. The ability to escape from confinement and reintegrate after mitosis appears to be a basic property of epithelial cells.

  16. ARHGEF17 is an essential spindle assembly checkpoint factor that targets Mps1 to kinetochores

    PubMed Central

    Isokane, Mayumi; Walter, Thomas; Mahen, Robert; Nijmeijer, Bianca; Hériché, Jean-Karim; Miura, Kota; Maffini, Stefano; Ivanov, Miroslav Penchev; Kitajima, Tomoya S.; Peters, Jan-Michael

    2016-01-01

    To prevent genome instability, mitotic exit is delayed until all chromosomes are properly attached to the mitotic spindle by the spindle assembly checkpoint (SAC). In this study, we characterized the function of ARHGEF17, identified in a genome-wide RNA interference screen for human mitosis genes. Through a series of quantitative imaging, biochemical, and biophysical experiments, we showed that ARHGEF17 is essential for SAC activity, because it is the major targeting factor that controls localization of the checkpoint kinase Mps1 to the kinetochore. This mitotic function is mediated by direct interaction of the central domain of ARHGEF17 with Mps1, which is autoregulated by the activity of Mps1 kinase, for which ARHGEF17 is a substrate. This mitosis-specific role is independent of ARHGEF17’s RhoGEF activity in interphase. Our study thus assigns a new mitotic function to ARHGEF17 and reveals the molecular mechanism for a key step in SAC establishment. PMID:26953350

  17. Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs

    PubMed Central

    McCloy, Rachael A.; Parker, Benjamin L.; Rogers, Samuel; Chaudhuri, Rima; Gayevskiy, Velimir; Hoffman, Nolan J.; Ali, Naveid; Watkins, D. Neil; Daly, Roger J.; James, David E.; Lorca, Thierry; Castro, Anna; Burgess, Andrew

    2015-01-01

    Entry into mitosis is driven by the coordinated phosphorylation of thousands of proteins. For the cell to complete mitosis and divide into two identical daughter cells it must regulate dephosphorylation of these proteins in a highly ordered, temporal manner. There is currently a lack of a complete understanding of the phosphorylation changes that occur during the initial stages of mitotic exit in human cells. Therefore, we performed a large unbiased, global analysis to map the very first dephosphorylation events that occur as cells exit mitosis. We identified and quantified the modification of >16,000 phosphosites on >3300 unique proteins during early mitotic exit, providing up to eightfold greater resolution than previous studies. The data have been deposited to the ProteomeXchange with identifier PXD001559. Only a small fraction (∼10%) of phosphorylation sites were dephosphorylated during early mitotic exit and these occurred on proteins involved in critical early exit events, including organization of the mitotic spindle, the spindle assembly checkpoint, and reformation of the nuclear envelope. Surprisingly this enrichment was observed across all kinase consensus motifs, indicating that it is independent of the upstream phosphorylating kinase. Therefore, dephosphorylation of these sites is likely determined by the specificity of phosphatase/s rather than the activity of kinase/s. Dephosphorylation was significantly affected by the amino acids at and surrounding the phosphorylation site, with several unique evolutionarily conserved amino acids correlating strongly with phosphorylation status. These data provide a potential mechanism for the specificity of phosphatases, and how they co-ordinate the ordered events of mitotic exit. In summary, our results provide a global overview of the phosphorylation changes that occur during the very first stages of mitotic exit, providing novel mechanistic insight into how phosphatase/s specifically regulate this critical

  18. Global Phosphoproteomic Mapping of Early Mitotic Exit in Human Cells Identifies Novel Substrate Dephosphorylation Motifs.

    PubMed

    McCloy, Rachael A; Parker, Benjamin L; Rogers, Samuel; Chaudhuri, Rima; Gayevskiy, Velimir; Hoffman, Nolan J; Ali, Naveid; Watkins, D Neil; Daly, Roger J; James, David E; Lorca, Thierry; Castro, Anna; Burgess, Andrew

    2015-08-01

    Entry into mitosis is driven by the coordinated phosphorylation of thousands of proteins. For the cell to complete mitosis and divide into two identical daughter cells it must regulate dephosphorylation of these proteins in a highly ordered, temporal manner. There is currently a lack of a complete understanding of the phosphorylation changes that occur during the initial stages of mitotic exit in human cells. Therefore, we performed a large unbiased, global analysis to map the very first dephosphorylation events that occur as cells exit mitosis. We identified and quantified the modification of >16,000 phosphosites on >3300 unique proteins during early mitotic exit, providing up to eightfold greater resolution than previous studies. The data have been deposited to the ProteomeXchange with identifier PXD001559. Only a small fraction (∼ 10%) of phosphorylation sites were dephosphorylated during early mitotic exit and these occurred on proteins involved in critical early exit events, including organization of the mitotic spindle, the spindle assembly checkpoint, and reformation of the nuclear envelope. Surprisingly this enrichment was observed across all kinase consensus motifs, indicating that it is independent of the upstream phosphorylating kinase. Therefore, dephosphorylation of these sites is likely determined by the specificity of phosphatase/s rather than the activity of kinase/s. Dephosphorylation was significantly affected by the amino acids at and surrounding the phosphorylation site, with several unique evolutionarily conserved amino acids correlating strongly with phosphorylation status. These data provide a potential mechanism for the specificity of phosphatases, and how they co-ordinate the ordered events of mitotic exit. In summary, our results provide a global overview of the phosphorylation changes that occur during the very first stages of mitotic exit, providing novel mechanistic insight into how phosphatase/s specifically regulate this critical

  19. Development of a Revolutionary High Speed Spindle

    NASA Technical Reports Server (NTRS)

    Agba, Emmanuel I.

    1999-01-01

    This report presents the development of a hydraulic motor driven spindle system to be employed for high speed machining of composite materials and metals. The spindle system is conceived to be easily retrofitted into conventional milling machines. The need for the hydraulic spindle arises because of the limitations placed on conventional electric motor driven spindles by the low cutting power and the presence of vibrational phenomena associated with voltage frequency at high rotational speeds. Also, the electric motors are usually large and expensive when power requirements are moderately high. In contrast, hydraulic motor driven spindles promise a distinct increase in spindle life over the conventional electric motor driven spindles. In this report, existing technologies applicable to spindle holder for severe operating conditions were reviewed, conceptual designs of spindle holder system were developed and evaluated, and a detailed design of an acceptable concept was conducted. Finally, a rapid prototype of the design was produced for design evaluation.

  20. Eya1 controls cell polarity, spindle orientation, cell fate and Notch signaling in distal embryonic lung epithelium.

    PubMed

    El-Hashash, Ahmed H K; Turcatel, Gianluca; Al Alam, Denise; Buckley, Sue; Tokumitsu, Hiroshi; Bellusci, Saverio; Warburton, David

    2011-04-01

    Cell polarity, mitotic spindle orientation and asymmetric division play a crucial role in the self-renewal/differentiation of epithelial cells, yet little is known about these processes and the molecular programs that control them in embryonic lung distal epithelium. Herein, we provide the first evidence that embryonic lung distal epithelium is polarized with characteristic perpendicular cell divisions. Consistent with these findings, spindle orientation-regulatory proteins Insc, LGN (Gpsm2) and NuMA, and the cell fate determinant Numb are asymmetrically localized in embryonic lung distal epithelium. Interfering with the function of these proteins in vitro randomizes spindle orientation and changes cell fate. We further show that Eya1 protein regulates cell polarity, spindle orientation and the localization of Numb, which inhibits Notch signaling. Hence, Eya1 promotes both perpendicular division as well as Numb asymmetric segregation to one daughter in mitotic distal lung epithelium, probably by controlling aPKCζ phosphorylation. Thus, epithelial cell polarity and mitotic spindle orientation are defective after interfering with Eya1 function in vivo or in vitro. In addition, in Eya1(-/-) lungs, perpendicular division is not maintained and Numb is segregated to both daughter cells in mitotic epithelial cells, leading to inactivation of Notch signaling. As Notch signaling promotes progenitor cell identity at the expense of differentiated cell phenotypes, we test whether genetic activation of Notch could rescue the Eya1(-/-) lung phenotype, which is characterized by loss of epithelial progenitors, increased epithelial differentiation but reduced branching. Indeed, genetic activation of Notch partially rescues Eya1(-/-) lung epithelial defects. These findings uncover novel functions for Eya1 as a crucial regulator of the complex behavior of distal embryonic lung epithelium.

  1. Spindle assembly on immobilized chromatin micropatterns.

    PubMed

    Pugieux, Céline; Dmitrieff, Serge; Tarnawska, Katarzyna; Nédélec, François

    2014-01-01

    We describe a method to assemble meiotic spindles on immobilized micropatterns of chromatin built on a first layer of biotinylated BSA deposited by microcontact printing. Such chromatin patterns routinely produce bipolar spindles with a yield of 60%, and offer the possibility to follow spindle assembly dynamics, from the onset of nucleation to the establishment of a quasi steady state. Hundreds of spindles can be recorded in parallel for different experimental conditions. We also describe the semi-automated image analysis pipeline, which is used to analyze the assembly kinetics of spindle arrays, or the final morphological diversity of the spindles.

  2. KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly.

    PubMed

    Connolly, Amy A; Sugioka, Kenji; Chuang, Chien-Hui; Lowry, Joshua B; Bowerman, Bruce

    2015-09-14

    During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere-associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(-) mutants, extra microtubules accumulated, extra functional spindle poles assembled, and chromosomes frequently segregated as three distinct masses during meiosis I anaphase. Moreover, reducing KLP-7 function in monopolar klp-18(-) mutants often restored spindle bipolarity and chromosome segregation. MCAKs act at kinetochores to correct improper kinetochore-microtubule (k-MT) attachments, and depletion of the Ndc-80 kinetochore complex, which binds microtubules to mediate kinetochore attachment, restored bipolarity in klp-7(-) mutant oocytes. We propose a model in which KLP-7/MCAK regulates k-MT attachment and spindle tension to promote the coalescence of early spindle pole foci that produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly.

  3. Misato Controls Mitotic Microtubule Generation by Stabilizing the TCP-1 Tubulin Chaperone Complex [corrected].

    PubMed

    Palumbo, Valeria; Pellacani, Claudia; Heesom, Kate J; Rogala, Kacper B; Deane, Charlotte M; Mottier-Pavie, Violaine; Gatti, Maurizio; Bonaccorsi, Silvia; Wakefield, James G

    2015-06-29

    Mitotic spindles are primarily composed of microtubules (MTs), generated by polymerization of α- and β-Tubulin hetero-dimers. Tubulins undergo a series of protein folding and post-translational modifications in order to fulfill their functions. Defects in Tubulin polymerization dramatically affect spindle formation and disrupt chromosome segregation. We recently described a role for the product of the conserved misato (mst) gene in regulating mitotic MT generation in flies, but the molecular function of Mst remains unknown. Here, we use affinity purification mass spectrometry (AP-MS) to identify interacting partners of Mst in the Drosophila embryo. We demonstrate that Mst associates stoichiometrically with the hetero-octameric Tubulin Chaperone Protein-1 (TCP-1) complex, with the hetero-hexameric Tubulin Prefoldin complex, and with proteins having conserved roles in generating MT-competent Tubulin. We show that RNAi-mediated in vivo depletion of any TCP-1 subunit phenocopies the effects of mutations in mst or the Prefoldin-encoding gene merry-go-round (mgr), leading to monopolar and disorganized mitotic spindles containing few MTs. Crucially, we demonstrate that Mst, but not Mgr, is required for TCP-1 complex stability and that both the efficiency of Tubulin polymerization and Tubulin stability are drastically compromised in mst mutants. Moreover, our structural bioinformatic analyses indicate that Mst resembles the three-dimensional structure of Tubulin monomers and might therefore occupy the TCP-1 complex central cavity. Collectively, our results suggest that Mst acts as a co-factor of the TCP-1 complex, playing an essential role in the Tubulin-folding processes required for proper assembly of spindle MTs.

  4. Spindle cell carcinoma in maxilla

    PubMed Central

    Samuel, Soumi; Sreelatha, S V; Hegde, Nidarsh; Nair, Preeti P

    2013-01-01

    Spindle cell carcinomas (sarcomatoid carcinomas) are rare tumours. It is a variant of squamous cell carcinoma which has spindled tumour cells, which simulate a true sarcoma, but are epithelial in origin. They are extremely uncommon in the head and neck region. Only five cases with maxillary origin have been discussed in the literature. As compared to squamous cell carcinoma of maxilla, this variant is associated with poor diagnosis and advanced disease at presentation, as is demonstrated in the case presented. There are no standard recommendations for management owing to the rarity of this histology. Surgery and radiotherapy form the mainstays of treatment. We report a rare case of spindle cell carcinoma involving the maxilla. PMID:23632620

  5. Micromechanics of human mitotic chromosomes

    NASA Astrophysics Data System (ADS)

    Sun, Mingxuan; Kawamura, Ryo; Marko, John F.

    2011-02-01

    Eukaryote cells dramatically reorganize their long chromosomal DNAs to facilitate their physical segregation during mitosis. The internal organization of folded mitotic chromosomes remains a basic mystery of cell biology; its understanding would likely shed light on how chromosomes are separated from one another as well as into chromosome structure between cell divisions. We report biophysical experiments on single mitotic chromosomes from human cells, where we combine micromanipulation, nano-Newton-scale force measurement and biochemical treatments to study chromosome connectivity and topology. Results are in accord with previous experiments on amphibian chromosomes and support the 'chromatin network' model of mitotic chromosome structure. Prospects for studies of chromosome-organizing proteins using siRNA expression knockdowns, as well as for differential studies of chromosomes with and without mutations associated with genetic diseases, are also discussed.

  6. Quantifying chirp in sleep spindles.

    PubMed

    Schönwald, Suzana V; Carvalho, Diego Z; Dellagustin, Guilherme; de Santa-Helena, Emerson L; Gerhardt, Günther J L

    2011-04-15

    Sleep spindles are considered as a marker of integrity for thalamo-cortical circuits. Recently, attention has been given to internal frequency variation in sleep spindles. In this study, a procedure based on matching pursuit with a Gabor-chirplet dictionary was applied in order to measure chirp rate in atoms representing sleep spindles, also categorized into negative, positive or zero chirp types. The sample comprised 707 EEG segments containing visual sleep spindles, labeled TP, obtained from nine healthy male volunteers (aged 20-34, average 24.6 y). Control datasets were 333 non-REM (NREM) sleep background segments and 287 REM sleep intervals, each with 16s duration. Analyses were carried out on the C3-A2 EEG channel. In TP and NREM groups, the proportion of non-null chirp types was non-random and total chirp distribution was asymmetrical towards negative values, in contrast to REM. Median negative chirp rate in the TP and NREM groups was significantly lower than in REM (-0.4 Hz/s vs -0.3 Hz/s, P < 0.05). Negative chirp atoms outnumbered positives by 50% in TP, while in NREM and REM, they were, respectively, only 22% and 12% more prevalent. TP negative chirp atoms were significantly higher in amplitude compared to positive or zero types. Considering individual subjects, 88.9% had a TP negative/positive chirp ratio above 1 (mean ± sd=1.64 ± 0.65). We propose there is increasing evidence, corroborated by the present study, favoring systematic measurement of sleep spindle chirp rate or internal frequency variation. Preferential occurrence of negatively chirping spindles is consistent with the hypothesis of electrophysiological modulation of neocortical memory consolidation.

  7. Variation in sensitivity to. gamma. -ray-induced chromosomal aberrations during the mitotic cycle of the sea urchin egg

    SciTech Connect

    Ejima, Y.; Nakamura, I.; Shiroya, T.

    1982-11-01

    Sea urchin eggs were irradiated with /sup 137/Cs ..gamma.. rays at various stages of the mitotic cycle, and chromosomal aberrations at the first postirradiation mitosis and embryonic abnormalities at later developmental stages were examined. The radiosensitivity of the eggs to both endpoints varied in parallel with the mitotic stage at the time of irradiation, suggesting a possible relationship between chromosomal damage and embryonic abnormalities.

  8. Evidence for Regulation of Mitotic Progression through Temporal Phosphorylation and Dephosphorylation of CK2α▿ †

    PubMed Central

    St-Denis, Nicole A.; Derksen, D. Richard; Litchfield, David W.

    2009-01-01

    Proper mitotic progression is crucial for maintenance of genomic integrity in proliferating cells and is regulated through an intricate series of events, including protein phosphorylation governed by a complex network of protein kinases. One kinase family implicated in the regulation of mitotic progression is protein kinase CK2, a small family of enzymes that is overexpressed in cancer and induces transformation in mice and cultured fibroblasts. CK2α, one isoform of the catalytic subunits of CK2, is maximally phosphorylated at four sites in nocodazole-treated cells. To investigate the effects of CK2α phosphorylation on mitotic progression, we generated phosphospecific antibodies against its mitotic phosphorylation sites. In U2OS cells released from S-phase arrest, these antibodies reveal that CK2α is most highly phosphorylated in prophase and metaphase. Phosphorylation gradually decreases during anaphase and becomes undetectable during telophase and cytokinesis. Stable expression of phosphomimetic CK2α (CK2α-4D, CK2α-4E) results in aberrant centrosome amplification and chromosomal segregation defects and loss of mitotic cells through mitotic catastrophe. Conversely, cells expressing nonphosphorylatable CK2α (CK2α-4A) show a decreased ability to arrest in mitosis following nocodazole treatment, suggesting involvement in the spindle assembly checkpoint. Collectively, these studies indicate that reversible phosphorylation of CK2α requires precise regulation to allow proper mitotic progression. PMID:19188443

  9. MLL5 maintains spindle bipolarity by preventing aberrant cytosolic aggregation of PLK1.

    PubMed

    Zhao, Wei; Liu, Jie; Zhang, Xiaoming; Deng, Lih-Wen

    2016-03-28

    Faithful chromosome segregation with bipolar spindle formation is critical for the maintenance of genomic stability. Perturbation of this process often leads to severe mitotic failure, contributing to tumorigenesis. MLL5 has been demonstrated to play vital roles in cell cycle progression and the maintenance of genomic stability. Here, we identify a novel interaction between MLL5 and PLK1 in the cytosol that is crucial for sustaining spindle bipolarity during mitosis. Knockdown of MLL5 caused aberrant PLK1 aggregation that led to acentrosomal microtubule-organizing center (aMTOC) formation and subsequent spindle multipolarity. Further molecular studies revealed that the polo-box domain (PBD) of PLK1 interacted with a binding motif on MLL5 (Thr887-Ser888-Thr889), and this interaction was essential for spindle bipolarity. Overexpression of wild-type MLL5 was able to rescue PLK1 mislocalization and aMTOC formation in MLL5-KD cells, whereas MLL5 mutants incapable of interacting with the PBD failed to do so. We thus propose that MLL5 preserves spindle bipolarity through maintaining cytosolic PLK1 in a nonaggregated form.

  10. Compartmentalized Toxoplasma EB1 bundles spindle microtubules to secure accurate chromosome segregation

    PubMed Central

    Chen, Chun-Ti; Kelly, Megan; de Leon, Jessica; Nwagbara, Belinda; Ebbert, Patrick; Ferguson, David J. P.; Lowery, Laura Anne; Morrissette, Naomi; Gubbels, Marc-Jan

    2015-01-01

    Toxoplasma gondii replicates asexually by a unique internal budding process characterized by interwoven closed mitosis and cytokinesis. Although it is known that the centrosome coordinates these processes, the spatiotemporal organization of mitosis remains poorly defined. Here we demonstrate that centrosome positioning around the nucleus may signal spindle assembly: spindle microtubules (MTs) are first assembled when the centrosome moves to the basal side and become extensively acetylated after the duplicated centrosomes reposition to the apical side. We also tracked the spindle MTs using the MT plus end–binding protein TgEB1. Endowed by a C-terminal NLS, TgEB1 resides in the nucleoplasm in interphase and associates with the spindle MTs during mitosis. TgEB1 also associates with the subpellicular MTs at the growing end of daughter buds toward the completion of karyokinesis. Depletion of TgEB1 results in escalated disintegration of kinetochore clustering. Furthermore, we show that TgEB1’s MT association in Toxoplasma and in a heterologous system (Xenopus) is based on the same principles. Finally, overexpression of a high-MT-affinity TgEB1 mutant promotes the formation of overstabilized MT bundles, resulting in avulsion of otherwise tightly clustered kinetochores. Overall we conclude that centrosome position controls spindle activity and that TgEB1 is critical for mitotic integrity. PMID:26466679

  11. TPX2 phosphorylation maintains metaphase spindle length by regulating microtubule flux

    PubMed Central

    Fu, Jingyan; Bian, Minglei; Xin, Guangwei; Deng, Zhaoxuan; Luo, Jia; Guo, Xiao; Chen, Hao; Wang, Yao; Jiang, Qing

    2015-01-01

    A steady-state metaphase spindle maintains constant length, although the microtubules undergo intensive dynamics. Tubulin dimers are incorporated at plus ends of spindle microtubules while they are removed from the minus ends, resulting in poleward movement. Such microtubule flux is regulated by the microtubule rescue factors CLASPs at kinetochores and depolymerizing protein Kif2a at the poles, along with other regulators of microtubule dynamics. How microtubule polymerization and depolymerization are coordinated remains unclear. Here we show that TPX2, a microtubule-bundling protein and activator of Aurora A, plays an important role. TPX2 was phosphorylated by Aurora A during mitosis. Its phospho-null mutant caused short metaphase spindles coupled with low microtubule flux rate. Interestingly, phosphorylation of TPX2 regulated its interaction with CLASP1 but not Kif2a. The effect of its mutant in shortening the spindle could be rescued by codepletion of CLASP1 and Kif2a that abolished microtubule flux. Together we propose that Aurora A–dependent TPX2 phosphorylation controls mitotic spindle length through regulating microtubule flux. PMID:26240182

  12. Autoassociative MLP in sleep spindle detection.

    PubMed

    Huupponen, E; Värri, A; Himanen, S L; Hasan, J; Lehtokangas, M; Saarinen, J

    2000-06-01

    Spindles are one of the most important short-lasting waveforms in sleep EEG. They are the hallmarks of the so-called Stage 2 sleep. Visual spindle scoring is a tedious workload, since there are often a thousand spindles in one all-night recording of some 8 hr. Automated methods for spindle detection typically use some form of fixed spindle amplitude threshold, which is poor with respect to inter-subject variability. In this work a spindle detection system allowing spindle detection without an amplitude threshold was developed. This system can be used for automatic decision making of whether or not a sleep spindle is present in the EEG at a certain point of time. An Autoassociative Multilayer Perceptron (A-MLP) network was employed for the decision making. A novel training procedure was developed to remove inconsistencies from the training data, which was found to improve the system performance significantly.

  13. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes.

    PubMed

    Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A; Gerlich, Daniel W

    2016-07-14

    Eukaryotic genomes are partitioned into chromosomes that form compact and spatially well-separated mechanical bodies during mitosis. This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes and the discovery of proteins at the chromosome surface, the molecular and biophysical bases of mitotic chromosome structural individuality have remained unclear. Here we report that the proliferation marker protein Ki-67 (encoded by the MKI67 gene), a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of human Ki-67 is not confined within a specific protein domain, but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrostatic charge barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-colour labelling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic of polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery in mammalian cells and suggests that natural proteins can function as surfactants in intracellular compartmentalization.

  14. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes

    PubMed Central

    Cuylen, Sara; Blaukopf, Claudia; Politi, Antonio Z.; Müller-Reichert, Thomas; Neumann, Beate; Poser, Ina; Ellenberg, Jan; Hyman, Anthony A.; Gerlich, Daniel W.

    2016-01-01

    Summary Eukaryotic genomes are partitioned into chromosomes, which during mitosis form compact and spatially well-separated mechanical bodies1–3.This enables chromosomes to move independently of each other for segregation of precisely one copy of the genome to each of the nascent daughter cells. Despite insights into the spatial organization of mitotic chromosomes4 and the discovery of proteins at the chromosome surface3,5,6, the molecular and biophysical basis of mitotic chromosome individuality have remained unclear. We report that Ki-67, a component of the mitotic chromosome periphery, prevents chromosomes from collapsing into a single chromatin mass after nuclear envelope disassembly, thus enabling independent chromosome motility and efficient interactions with the mitotic spindle. The chromosome separation function of Ki-67 is not confined within a specific protein domain but correlates with size and net charge of truncation mutants that apparently lack secondary structure. This suggests that Ki-67 forms a steric and electrical barrier, similar to surface-active agents (surfactants) that disperse particles or phase-separated liquid droplets in solvents. Fluorescence correlation spectroscopy showed a high surface density of Ki-67 and dual-color labeling of both protein termini revealed an extended molecular conformation, indicating brush-like arrangements that are characteristic for polymeric surfactants. Our study thus elucidates a biomechanical role of the mitotic chromosome periphery and suggests that natural proteins can function as surfactants in intracellular compartmentalization. PMID:27362226

  15. Using in Vivo Biotinylated Ubiquitin to Describe a Mitotic Exit Ubiquitome from Human Cells *

    PubMed Central

    Min, Mingwei; Mayor, Ugo; Dittmar, Gunnar; Lindon, Catherine

    2014-01-01

    Mitotic division requires highly regulated morphological and biochemical changes to the cell. Upon commitment to exit mitosis, cells begin to remove mitotic regulators in a temporally and spatially controlled manner to bring about the changes that reestablish interphase. Ubiquitin-dependent pathways target these regulators to generate polyubiquitin-tagged substrates for degradation by the 26S proteasome. However, the lack of cell-based assays to investigate in vivo ubiquitination limits our knowledge of the identity of substrates of ubiquitin-mediated regulation in mitosis. Here we report an in vivo ubiquitin tagging system used in human cells that allows efficient purification of ubiquitin conjugates from synchronized cell populations. Coupling purification with mass spectrometry, we have identified a series of mitotic regulators targeted for polyubiquitination in mitotic exit. We show that some are new substrates of the anaphase-promoting complex/cyclosome and validate KIFC1 and RacGAP1/Cyk4 as two such targets involved respectively in timely mitotic spindle disassembly and cell spreading. We conclude that in vivo biotin tagging of ubiquitin can provide valuable information about the role of ubiquitin-mediated regulation in processes required for rebuilding interphase cells. PMID:24857844

  16. Regulation of AURORA B function by mitotic checkpoint protein MAD2.

    PubMed

    Shandilya, Jayasha; Medler, Kathryn F; Roberts, Stefan G E

    2016-08-17

    Cell cycle checkpoint signaling stringently regulates chromosome segregation during cell division. MAD2 is one of the key components of the spindle and mitotic checkpoint complex that regulates the fidelity of cell division along with MAD1, CDC20, BUBR1, BUB3 and MAD3. MAD2 ablation leads to erroneous attachment of kinetochore-spindle fibers and defective chromosome separation. A potential role for MAD2 in the regulation of events beyond the spindle and mitotic checkpoints is not clear. Together with active spindle assembly checkpoint signaling, AURORA B kinase activity is essential for chromosome condensation as cells enter mitosis. AURORA B phosphorylates histone H3 at serine 10 and serine 28 to facilitate the formation of condensed metaphase chromosomes. In the absence of functional AURORA B cells escape mitosis despite the presence of misaligned chromosomes. In this study we report that silencing of MAD2 results in a drastic reduction of metaphase-specific histone H3 phosphorylation at serine 10 and serine 28. We demonstrate that this is due to mislocalization of AURORA B in the absence of MAD2. Conversely, overexpression of MAD2 concentrated the localization of AURORA B at the metaphase plate and caused hyper-phosphorylation of histone H3. We find that MAD1 plays a minor role in influencing the MAD2-dependent regulation of AURORA B suggesting that the effects of MAD2 on AURORA B are independent of the spindle checkpoint complex. Our findings reveal that, in addition to its role in checkpoint signaling, MAD2 ensures chromosome stability through the regulation of AURORA B.

  17. Spindle diameter effects for cotton pickers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is concern that changes to the operating speed and size of spindles on cotton picker harvesters over the years have resulted in a general decrease in cotton fiber quality, especially spindle twists, preparation, and neps. Previous research showed that spindle speeds of 3000 and 4000 rpm had m...

  18. Nap sleep spindle correlates of intelligence.

    PubMed

    Ujma, Péter P; Bódizs, Róbert; Gombos, Ferenc; Stintzing, Johannes; Konrad, Boris N; Genzel, Lisa; Steiger, Axel; Dresler, Martin

    2015-11-26

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.

  19. Theory of meiotic spindle assembly

    NASA Astrophysics Data System (ADS)

    Furthauer, Sebastian; Foster, Peter; Needleman, Daniel; Shelley, Michael

    2016-11-01

    The meiotic spindle is a biological structure that self assembles from the intracellular medium to separate chromosomes during meiosis. It consists of filamentous microtubule (MT) proteins that interact through the fluid in which they are suspended and via the associated molecules that orchestrate their behavior. We aim to understand how the interplay between fluid medium, MTs, and regulatory proteins allows this material to self-organize into the spindle's highly stereotyped shape. To this end we develop a continuum model that treats the spindle as an active liquid crystal with MT turnover. In this active material, molecular motors, such as dyneins which collect MT minus ends and kinesins which slide MTs past each other, generate active fluid and material stresses. Moreover nucleator proteins that are advected with and transported along MTs control the nucleation and depolymerization of MTs. This theory captures the growth process of meiotic spindles, their shapes, and the essential features of many perturbation experiments. It thus provides a framework to think about the physics of this complex biological suspension.

  20. Left supraclavicular spindle cell lipoma.

    PubMed

    Olaleye, Oladejo; Fu, Bertram; Moorthy, Ram; Lawson, Charles; Black, Myles; Mitchell, David

    2010-01-01

    Background. Spindle cell lipoma (SCL) is a benign lipomatous tumour, typically occurring in the posterior neck, shoulder or upper back of elderly males. They compose of fat, CD34 positive spindle cells, and ropey collagen on a myxoid matrix. This case highlights a rare presentation of SCL and the need for pre-operative diagnosis. Case Report. A 63-year-old gentleman presented with a pre-existing left supraclavicular mass that had recently increased in size. FNA and CT Scans were performed and results discussed in the mutidisciplinary team meeting. Excisional biopsy was recommended. Radiology. CT neck showed a left supraclavicular mass of fatty density with fine internal septations. A low-grade liposarcoma could not be excluded. Histopathology. FNA was indeterminate. Histology of specimen showed bland spindle cells with no evidence of malignancy. Immuno-histochemistry showed SCL with CD34 positivity and negative staining on CDK4 and p16. Management. Excision biopsy of the mass was performed which was technically difficult as the mass invaginated around the brachial plexus. The patient recovered well post-operatively with no neurological deficits. Conclusion. Spindle cell lipoma is a rare benign tumour and a pre-operative diagnosis based on the clinical context, imaging and immuno-histochemistry is crucial to management.

  1. Samurai sword sets spindle size.

    PubMed

    Reber, Simone; Hyman, Anthony A

    2011-12-09

    Although the parts list is nearly complete for many cellular structures, mechanisms that control their size remain poorly understood. Loughlin and colleagues now show that phosphorylation of a single residue of katanin, a microtubule-severing protein, largely accounts for the difference in spindle length between two closely related frogs.

  2. Functional Characterization of G12, a Gene Required for Mitotic Progression during Gastrulation in Zebrafish

    NASA Technical Reports Server (NTRS)

    Reinsch, Sigrid; Conway, Gregory; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    In a differential RNA display screen we have isolated a zebrafish gene, G12, for which homologs can only be found in DNA databases for vertebrates, but not invertebrates. This suggests that this is a gene required specifically in vertebrates. G12 expression is upregulated at mid-blastula transition (MBT). Morpholino inactivation of this gene by injection into 1-cell embryos results in mitotic defects and apoptosis shortly after MBT. Nuclei in morpholino treated embryos also display segregation defects. We have characterized the localization of this gene as a GFP fusion in live and fixed embryos. Overexpression of G12-GFP is non-toxic. Animals retain GFP expression for at least 7 days with no developmental defects, Interestingly in these animals G12-GFP is never detectable in blood cells though blood is present. In the deep cells of early embryos, G 12GFP is localized to nuclei and cytoskeletal elements in interphase and to the centrosome and spindle apparatus during mitosis. In the EVL, G12-GFP shows additional localization to the cell periphery, especially in mitosis. In the yolk syncytium, G12-GFP again localizes to nuclei and strongly to cytoplasmic microtubules of migrating nuclei at the YSL margin. Morpholinc, injection specifically into the YSL after cellularization blocks epiboly and nuclei of the YSL show mitotic defects while deep cells show no mitotic defects and continue to divide. Rescue experiments in which morpholino and G12-GFP RNA are co-injected indicate partial rescue by the G12-GFP. The rescue is cell autonomous; that is, regions of the embryo with higher G12-GFP expression show fewer mitotic defects. Spot 14, the human bomolog of G12, has been shown to be amplified in aggressive breast tumors. This finding, along with our functional and morphological data suggest that G12 and spot 14 are vertebrate-specific and may function either as mitotic checkpoints or as structural components of the spindle apparatus.

  3. Abnormal centrosome amplification in cells through the targeting of Ran-binding protein-1 by the human T cell leukemia virus type-1 Tax oncoprotein.

    PubMed

    Peloponese, Jean-Marie; Haller, Kerstin; Miyazato, Akiko; Jeang, Kuan-Teh

    2005-12-27

    Human T cell leukemia virus type-1 (HTLV-1) is an oncogenic retrovirus etiologically causal of adult T cell leukemia. The virus encodes a Tax oncoprotein that functions in transcriptional regulation, cell cycle control, and transformation. Because adult T cell leukemia like many other human cancers is a disease of genomic instability with frequent gains and losses of chromosomes, to understand this disease it is important to comprehend how HTLV-1 engenders aneuploidy in host cells. In this regard, loss of cell cycle checkpoints permits tolerance of aneuploidy but does not explain how aneuploidy is created. We show here that HTLV-1 Tax causes abnormal centrosome fragmentation in the mitotic phase of the cell cycle. We report that Tax directly binds Ran and Ran-binding protein-1, locates to centrosomes/spindle poles, and causes supernumerary centrosomes.

  4. Bcl-xL controls a switch between cell death modes during mitotic arrest

    PubMed Central

    Bah, N; Maillet, L; Ryan, J; Dubreil, S; Gautier, F; Letai, A; Juin, P; Barillé-Nion, S

    2014-01-01

    Antimitotic agents such as microtubule inhibitors (paclitaxel) are widely used in cancer therapy while new agents blocking mitosis onset are currently in development. All these agents impose a prolonged mitotic arrest in cancer cells that relies on sustained activation of the spindle assembly checkpoint and may lead to subsequent cell death by incompletely understood molecular events. We have investigated the role played by anti-apoptotic Bcl-2 family members in the fate of mitotically arrested mammary tumor cells treated with paclitaxel, or depleted in Cdc20, the activator of the anaphase promoting complex. Under these conditions, a weak and delayed mitotic cell death occurs that is caspase- and Bax/Bak-independent. Moreover, BH3 profiling assays indicate that viable cells during mitotic arrest are primed to die by apoptosis and that Bcl-xL is required to maintain mitochondrial integrity. Consistently, Bcl-xL depletion, or treatment with its inhibitor ABT-737 (but not with the specific Bcl-2 inhibitor ABT-199), during mitotic arrest converts cell response to antimitotics to efficient caspase and Bax-dependent apoptosis. Apoptotic priming under conditions of mitotic arrest relies, at least in part, on the phosphorylation on serine 62 of Bcl-xL, which modulates its interaction with Bax and its sensitivity to ABT-737. The phospho-mimetic S62D-Bcl-xL mutant is indeed less efficient than the corresponding phospho-deficient S62A-Bcl-xL mutant in sequestrating Bax and in protecting cancer cells from mitotic cell death or yeast cells from Bax-induced growth inhibition. Our results provide a rationale for combining Bcl-xL targeting to antimitotic agents to improve clinical efficacy of antimitotic strategy in cancer therapy. PMID:24922075

  5. Caenorhabditis elegans oocyte meiotic spindle pole assembly requires microtubule severing and the calponin homology domain protein ASPM-1

    PubMed Central

    Connolly, Amy A.; Osterberg, Valerie; Christensen, Sara; Price, Meredith; Lu, Chenggang; Chicas-Cruz, Kathy; Lockery, Shawn; Mains, Paul E.; Bowerman, Bruce

    2014-01-01

    In many animals, including vertebrates, oocyte meiotic spindles are bipolar but assemble in the absence of centrosomes. Although meiotic spindle positioning in oocytes has been investigated extensively, much less is known about their assembly. In Caenorhabditis elegans, three genes previously shown to contribute to oocyte meiotic spindle assembly are the calponin homology domain protein encoded by aspm-1, the katanin family member mei-1, and the kinesin-12 family member klp-18. We isolated temperature-sensitive alleles of all three and investigated their requirements using live-cell imaging to reveal previously undocumented requirements for aspm-1 and mei-1. Our results indicate that bipolar but abnormal oocyte meiotic spindles assemble in aspm-1(-) embryos, whereas klp-18(-) and mei-1(-) mutants assemble monopolar and apolar spindles, respectively. Furthermore, two MEI-1 functions—ASPM-1 recruitment to the spindle and microtubule severing—both contribute to monopolar spindle assembly in klp-18(-) mutants. We conclude that microtubule severing and ASPM-1 both promote meiotic spindle pole assembly in C. elegans oocytes, whereas the kinesin 12 family member KLP-18 promotes spindle bipolarity. PMID:24554763

  6. Tumor treating fields perturb the localization of septins and cause aberrant mitotic exit.

    PubMed

    Gera, Nidhi; Yang, Aaron; Holtzman, Talia S; Lee, Sze Xian; Wong, Eric T; Swanson, Kenneth D

    2015-01-01

    The anti-tumor effects of chemotherapy and radiation are thought to be mediated by triggering G1/S or G2/M cell cycle checkpoints, while spindle poisons, such as paclitaxel, block metaphase exit by initiating the spindle assembly checkpoint. In contrast, we have found that 150 kilohertz (kHz) alternating electric fields, also known as Tumor Treating Fields (TTFields), perturbed cells at the transition from metaphase to anaphase. Cells exposed to the TTFields during mitosis showed normal progression to this point, but exhibited uncontrolled membrane blebbing that coincided with metaphase exit. The ability of such alternating electric fields to affect cellular physiology is likely to be dependent on their interactions with proteins possessing high dipole moments. The mitotic Septin complex consisting of Septin 2, 6 and 7, possesses a high calculated dipole moment of 2711 Debyes (D) and plays a central role in positioning the cytokinetic cleavage furrow, and governing its contraction during ingression. We showed that during anaphase, TTFields inhibited Septin localization to the anaphase spindle midline and cytokinetic furrow, as well as its association with microtubules during cell attachment and spreading on fibronectin. After aberrant metaphase exit as a consequence of TTFields exposure, cells exhibited aberrant nuclear architecture and signs of cellular stress including an overall decrease in cellular proliferation, followed by apoptosis that was strongly influenced by the p53 mutational status. Thus, TTFields are able to diminish cell proliferation by specifically perturbing key proteins involved in cell division, leading to mitotic catastrophe and subsequent cell death.

  7. Tumor Treating Fields Perturb the Localization of Septins and Cause Aberrant Mitotic Exit

    PubMed Central

    Holtzman, Talia S.; Lee, Sze Xian; Wong, Eric T.; Swanson, Kenneth D.

    2015-01-01

    The anti-tumor effects of chemotherapy and radiation are thought to be mediated by triggering G1/S or G2/M cell cycle checkpoints, while spindle poisons, such as paclitaxel, block metaphase exit by initiating the spindle assembly checkpoint. In contrast, we have found that 150 kilohertz (kHz) alternating electric fields, also known as Tumor Treating Fields (TTFields), perturbed cells at the transition from metaphase to anaphase. Cells exposed to the TTFields during mitosis showed normal progression to this point, but exhibited uncontrolled membrane blebbing that coincided with metaphase exit. The ability of such alternating electric fields to affect cellular physiology is likely to be dependent on their interactions with proteins possessing high dipole moments. The mitotic Septin complex consisting of Septin 2, 6 and 7, possesses a high calculated dipole moment of 2711 Debyes (D) and plays a central role in positioning the cytokinetic cleavage furrow, and governing its contraction during ingression. We showed that during anaphase, TTFields inhibited Septin localization to the anaphase spindle midline and cytokinetic furrow, as well as its association with microtubules during cell attachment and spreading on fibronectin. After aberrant metaphase exit as a consequence of TTFields exposure, cells exhibited aberrant nuclear architecture and signs of cellular stress including an overall decrease in cellular proliferation, followed by apoptosis that was strongly influenced by the p53 mutational status. Thus, TTFields are able to diminish cell proliferation by specifically perturbing key proteins involved in cell division, leading to mitotic catastrophe and subsequent cell death. PMID:26010837

  8. Histone deacetylase inhibitors promote glioma cell death by G2 checkpoint abrogation leading to mitotic catastrophe.

    PubMed

    Cornago, M; Garcia-Alberich, C; Blasco-Angulo, N; Vall-Llaura, N; Nager, M; Herreros, J; Comella, J X; Sanchis, D; Llovera, M

    2014-10-02

    Glioblastoma multiforme is resistant to conventional anti-tumoral treatments due to its infiltrative nature and capability of relapse; therefore, research efforts focus on characterizing gliomagenesis and identifying molecular targets useful on therapy. New therapeutic strategies are being tested in patients, such as Histone deacetylase inhibitors (HDACi) either alone or in combination with other therapies. Here two HDACi included in clinical trials have been tested, suberanilohydroxamic acid (SAHA) and valproic acid (VPA), to characterize their effects on glioma cell growth in vitro and to determine the molecular changes that promote cancer cell death. We found that both HDACi reduce glioma cell viability, proliferation and clonogenicity. They have multiple effects, such as inducing the production of reactive oxygen species (ROS) and activating the mitochondrial apoptotic pathway, nevertheless cell death is not prevented by the pan-caspase inhibitor Q-VD-OPh. Importantly, we found that HDACi alter cell cycle progression by decreasing the expression of G2 checkpoint kinases Wee1 and checkpoint kinase 1 (Chk1). In addition, HDACi reduce the expression of proteins involved in DNA repair (Rad51), mitotic spindle formation (TPX2) and chromosome segregation (Survivin) in glioma cells and in human glioblastoma multiforme primary cultures. Therefore, HDACi treatment causes glioma cell entry into mitosis before DNA damage could be repaired and to the formation of an aberrant mitotic spindle that results in glioma cell death through mitotic catastrophe-induced apoptosis.

  9. Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration

    PubMed Central

    Bernis, Cyril; Swift-Taylor, Beth; Nord, Matthew; Carmona, Sarah; Chook, Yuh Min; Forbes, Douglass J.

    2014-01-01

    The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107–160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin “global positioning system”or “GPS” pathways that are mechanistically parallel. PMID:24478460

  10. Transportin acts to regulate mitotic assembly events by target binding rather than Ran sequestration.

    PubMed

    Bernis, Cyril; Swift-Taylor, Beth; Nord, Matthew; Carmona, Sarah; Chook, Yuh Min; Forbes, Douglass J

    2014-04-01

    The nuclear import receptors importin β and transportin play a different role in mitosis: both act phenotypically as spatial regulators to ensure that mitotic spindle, nuclear membrane, and nuclear pore assembly occur exclusively around chromatin. Importin β is known to act by repressing assembly factors in regions distant from chromatin, whereas RanGTP produced on chromatin frees factors from importin β for localized assembly. The mechanism of transportin regulation was unknown. Diametrically opposed models for transportin action are as follows: 1) indirect action by RanGTP sequestration, thus down-regulating release of assembly factors from importin β, and 2) direct action by transportin binding and inhibiting assembly factors. Experiments in Xenopus assembly extracts with M9M, a superaffinity nuclear localization sequence that displaces cargoes bound by transportin, or TLB, a mutant transportin that can bind cargo and RanGTP simultaneously, support direct inhibition. Consistently, simple addition of M9M to mitotic cytosol induces microtubule aster assembly. ELYS and the nucleoporin 107-160 complex, components of mitotic kinetochores and nuclear pores, are blocked from binding to kinetochores in vitro by transportin, a block reversible by M9M. In vivo, 30% of M9M-transfected cells have spindle/cytokinesis defects. We conclude that the cell contains importin β and transportin "global positioning system"or "GPS" pathways that are mechanistically parallel.

  11. Inhibition of the mitotic exit network in response to damaged telomeres.

    PubMed

    Valerio-Santiago, Mauricio; de Los Santos-Velázquez, Ana Isabel; Monje-Casas, Fernando

    2013-01-01

    When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN), in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression.

  12. Unconventional Functions of Mitotic Kinases in Kidney Tumorigenesis

    PubMed Central

    Hascoet, Pauline; Chesnel, Franck; Le Goff, Cathy; Le Goff, Xavier; Arlot-Bonnemains, Yannick

    2015-01-01

    Human tumors exhibit a variety of genetic alterations, including point mutations, translocations, gene amplifications and deletions, as well as aneuploid chromosome numbers. For carcinomas, aneuploidy is associated with poor patient outcome for a large variety of tumor types, including breast, colon, and renal cell carcinoma. The Renal cell carcinoma (RCC) is a heterogeneous carcinoma consisting of different histologic types. The clear renal cell carcinoma (ccRCC) is the most common subtype and represents 85% of the RCC. Central to the biology of the ccRCC is the loss of function of the Von Hippel–Lindau gene, but is also associated with genetic instability that could be caused by abrogation of the cell cycle mitotic spindle checkpoint and may involve the Aurora kinases, which regulate centrosome maturation. Aneuploidy can also result from the loss of cell–cell adhesion and apical–basal cell polarity that also may be regulated by the mitotic kinases (polo-like kinase 1, casein kinase 2, doublecortin-like kinase 1, and Aurora kinases). In this review, we describe the “non-mitotic” unconventional functions of these kinases in renal tumorigenesis. PMID:26579493

  13. The Msd1–Wdr8–Pkl1 complex anchors microtubule minus ends to fission yeast spindle pole bodies

    PubMed Central

    Yukawa, Masashi; Ikebe, Chiho

    2015-01-01

    The minus ends of spindle microtubules are anchored to a microtubule-organizing center. The conserved Msd1/SSX2IP proteins are localized to the spindle pole body (SPB) and the centrosome in fission yeast and humans, respectively, and play a critical role in microtubule anchoring. In this paper, we show that fission yeast Msd1 forms a ternary complex with another conserved protein, Wdr8, and the minus end–directed Pkl1/kinesin-14. Individual deletion mutants displayed the identical spindle-protrusion phenotypes. Msd1 and Wdr8 were delivered by Pkl1 to mitotic SPBs, where Pkl1 was tethered through Msd1–Wdr8. The spindle-anchoring defect imposed by msd1/wdr8/pkl1 deletions was suppressed by a mutation of the plus end–directed Cut7/kinesin-5, which was shown to be mutual. Intriguingly, Pkl1 motor activity was not required for its anchoring role once targeted to the SPB. Therefore, spindle anchoring through Msd1–Wdr8–Pkl1 is crucial for balancing the Cut7/kinesin-5–mediated outward force at the SPB. Our analysis provides mechanistic insight into the spatiotemporal regulation of two opposing kinesins to ensure mitotic spindle bipolarity. PMID:25987607

  14. Okadaic acid induced cyclin B1 expression and mitotic catastrophe in rat cortex.

    PubMed

    Chen, Bo; Cheng, Min; Hong, Dao-Jun; Sun, Feng-Yan; Zhu, Cui-Qing

    2006-10-09

    Accumulating evidence indicates that the aberrant re-entry of post-mitotic neurons into the G2/M phase of cell cycle and the resulting mitotic catastrophe may contribute to the pathogenesis of Alzheimer's disease. However, the cellular event that drives the differentiated neurons to abnormally enter G2/M phase remains elusive. Similarly, whether mitotic catastrophe is indeed one of the death pathways for differentiated neurons is not clear. Previous studies revealed that okadaic acid (OA), a phosphatase inhibitor that induces AD like pathological changes, evokes mitotic changes in neuroblastoma cells. In this study, we examined the in vivo effects of OA on cyclin B1 expression, the induction of mitosis, and subsequent mitotic catastrophe. We found that cyclin B1 expression in adult neurons was significantly increased after injecting OA into rat frontal cortex, which also increased tau protein phosphorylation. Interestingly, cyclin B1 and phosphorylated tau were well co-localized around the OA injection site, but were only partially co-localized in other brain regions. Staining with toluidine blue, Giemsa dye or propidium iodide revealed typical mitotic and mitotic catastrophe-like morphological changes with irregular arrangement of condensed chromatin and chromosome fibers in a few cells. Furthermore, the strong cyclin B1 staining in these cells suggests that cyclin B1 promoted G2 to M phase transition is required for the mitotic catastrophe. The detection of neuron-specific enolase in a portion of these cells demonstrated that at least part them are neuron. All together, our results suggest that the disturbance of the protein kinase-phosphatase system caused by OA is sufficient to induce neuronal cyclin B1 expression, force neurons into the mitotic phase of cell cycle, and cause mitotic catastrophe.

  15. Synchronization and Propagation of Global Sleep Spindles

    PubMed Central

    de Souza, Rafael Toledo Fernandes; Gerhardt, Günther Johannes Lewczuk; Schönwald, Suzana Veiga; Rybarczyk-Filho, José Luiz; Lemke, Ney

    2016-01-01

    Sleep spindles occur thousands of times during normal sleep and can be easily detected by visual inspection of EEG signals. These characteristics make spindles one of the most studied EEG structures in mammalian sleep. In this work we considered global spindles, which are spindles that are observed simultaneously in all EEG channels. We propose a methodology that investigates both the signal envelope and phase/frequency of each global spindle. By analysing the global spindle phase we showed that 90% of spindles synchronize with an average latency time of 0.1 s. We also measured the frequency modulation (chirp) of global spindles and found that global spindle chirp and synchronization are not correlated. By investigating the signal envelopes and implementing a homogeneous and isotropic propagation model, we could estimate both the signal origin and velocity in global spindles. Our results indicate that this simple and non-invasive approach could determine with reasonable precision the spindle origin, and allowed us to estimate a signal speed of 0.12 m/s. Finally, we consider whether synchronization might be useful as a non-invasive diagnostic tool. PMID:26963102

  16. Statistical Analysis of Sleep Spindle Occurrences

    PubMed Central

    Panas, Dagmara; Malinowska, Urszula; Piotrowski, Tadeusz; Żygierewicz, Jarosław; Suffczyński, Piotr

    2013-01-01

    Spindles - a hallmark of stage II sleep - are a transient oscillatory phenomenon in the EEG believed to reflect thalamocortical activity contributing to unresponsiveness during sleep. Currently spindles are often classified into two classes: fast spindles, with a frequency of around 14 Hz, occurring in the centro-parietal region; and slow spindles, with a frequency of around 12 Hz, prevalent in the frontal region. Here we aim to establish whether the spindle generation process also exhibits spatial heterogeneity. Electroencephalographic recordings from 20 subjects were automatically scanned to detect spindles and the time occurrences of spindles were used for statistical analysis. Gamma distribution parameters were fit to each inter-spindle interval distribution, and a modified Wald-Wolfowitz lag-1 correlation test was applied. Results indicate that not all spindles are generated by the same statistical process, but this dissociation is not spindle-type specific. Although this dissociation is not topographically specific, a single generator for all spindle types appears unlikely. PMID:23560045

  17. Congenital Abnormalities

    MedlinePlus

    ... Listen Español Text Size Email Print Share Congenital Abnormalities Page Content Article Body About 3% to 4% ... of congenital abnormalities earlier. 5 Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic ...

  18. Sympathetic innervation of human muscle spindles

    PubMed Central

    Radovanovic, Dina; Peikert, Kevin; Lindström, Mona; Domellöf, Fatima Pedrosa

    2015-01-01

    The aim of the present study was to investigate the presence of sympathetic innervation in human muscle spindles, using antibodies against neuropeptide Y (NPY), NPY receptors and tyrosine hydroxylase (TH). A total of 232 muscle spindles were immunohistochemically examined. NPY and NPY receptors were found on the intrafusal fibers, on the blood vessels supplying muscle spindles and on free nerve endings in the periaxial space. TH-immunoreactivity was present mainly in the spindle nerve and vessel. This is, to our knowledge, the first morphological study concerning the sympathetic innervation of the human muscle spindles. The results provide anatomical evidence for direct sympathetic innervation of the intrafusal fibers and show that sympathetic innervation is not restricted to the blood vessels supplying spindles. Knowledge about direct sympathetic innervation of the muscle spindle might expand our understanding of motor and proprioceptive dysfunction under stress conditions, for example, chronic muscle pain syndromes. PMID:25994126

  19. Sympathetic innervation of human muscle spindles.

    PubMed

    Radovanovic, Dina; Peikert, Kevin; Lindström, Mona; Domellöf, Fatima Pedrosa

    2015-06-01

    The aim of the present study was to investigate the presence of sympathetic innervation in human muscle spindles, using antibodies against neuropeptide Y (NPY), NPY receptors and tyrosine hydroxylase (TH). A total of 232 muscle spindles were immunohistochemically examined. NPY and NPY receptors were found on the intrafusal fibers, on the blood vessels supplying muscle spindles and on free nerve endings in the periaxial space. TH-immunoreactivity was present mainly in the spindle nerve and vessel. This is, to our knowledge, the first morphological study concerning the sympathetic innervation of the human muscle spindles. The results provide anatomical evidence for direct sympathetic innervation of the intrafusal fibers and show that sympathetic innervation is not restricted to the blood vessels supplying spindles. Knowledge about direct sympathetic innervation of the muscle spindle might expand our understanding of motor and proprioceptive dysfunction under stress conditions, for example, chronic muscle pain syndromes.

  20. Downregulation of Protein 4.1R impairs centrosome function,bipolar spindle organization and anaphase

    SciTech Connect

    Spence, Jeffrey R.; Go, Minjoung M.; Bahmanyar, S.; Barth,A.I.M.; Krauss, Sharon Wald

    2006-03-17

    Centrosomes nucleate and organize interphase MTs and areinstrumental in the assembly of the mitotic bipolar spindle. Here wereport that two members of the multifunctional protein 4.1 family havedistinct distributions at centrosomes. Protein 4.1R localizes to maturecentrioles whereas 4.1G is a component of the pericentriolar matrixsurrounding centrioles. To selectively probe 4.1R function, we used RNAinterference-mediated depletion of 4.1R without decreasing 4.1Gexpression. 4.1R downregulation reduces MT anchoring and organization atinterphase and impairs centrosome separation during prometaphase.Metaphase chromosomes fail to properly condense/align and spindleorganization is aberrant. Notably 4.1R depletion causes mislocalizationof its binding partner NuMA (Nuclear Mitotic Apparatus Protein),essential for spindle pole focusing, and disrupts ninein. Duringanaphase/telophase, 4.1R-depleted cells have lagging chromosomes andaberrant MT bridges. Our data provide functional evidence that 4.1R makescrucial contributions to centrosome integrity and to mitotic spindlestructure enabling mitosis and anaphase to proceed with the coordinatedprecision required to avoid pathological events.

  1. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint

    PubMed Central

    Kitagawa, Mayumi; Caldez, Matias J.; Gunaratne, Jayantha; Lee, Sang Hyun

    2016-01-01

    The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing. PMID:27631493

  2. Adenovirus Replaces Mitotic Checkpoint Controls

    PubMed Central

    Turner, Roberta L.; Groitl, Peter; Dobner, Thomas

    2015-01-01

    ABSTRACT Infection with adenovirus triggers the cellular DNA damage response, elements of which include cell death and cell cycle arrest. Early adenoviral proteins, including the E1B-55K and E4orf3 proteins, inhibit signaling in response to DNA damage. A fraction of cells infected with an adenovirus mutant unable to express the E1B-55K and E4orf3 genes appeared to arrest in a mitotic-like state. Cells infected early in G1 of the cell cycle were predisposed to arrest in this state at late times of infection. This arrested state, which displays hallmarks of mitotic catastrophe, was prevented by expression of either the E1B-55K or the E4orf3 genes. However, E1B-55K mutant virus-infected cells became trapped in a mitotic-like state in the presence of the microtubule poison colcemid, suggesting that the two viral proteins restrict entry into mitosis or facilitate exit from mitosis in order to prevent infected cells from arresting in mitosis. The E1B-55K protein appeared to prevent inappropriate entry into mitosis through its interaction with the cellular tumor suppressor protein p53. The E4orf3 protein facilitated exit from mitosis by possibly mislocalizing and functionally inactivating cyclin B1. When expressed in noninfected cells, E4orf3 overcame the mitotic arrest caused by the degradation-resistant R42A cyclin B1 variant. IMPORTANCE Cells that are infected with adenovirus type 5 early in G1 of the cell cycle are predisposed to arrest in a mitotic-like state in a p53-dependent manner. The adenoviral E1B-55K protein prevents entry into mitosis. This newly described activity for the E1B-55K protein appears to depend on the interaction between the E1B-55K protein and the tumor suppressor p53. The adenoviral E4orf3 protein facilitates exit from mitosis, possibly by altering the intracellular distribution of cyclin B1. By preventing entry into mitosis and by promoting exit from mitosis, these adenoviral proteins act to prevent the infected cell from arresting in a

  3. Phase Transitions of Spindle-Associated Protein Regulate Spindle Apparatus Assembly

    PubMed Central

    Jiang, Hao; Wang, Shusheng; Huang, Yuejia; He, Xiaonan; Cui, Honggang; Zhu, Xueliang; Zheng, Yixian

    2015-01-01

    Spindle assembly required during mitosis depends on microtubule polymerization. We demonstrate that the evolutionarily conserved low-complexity protein, BuGZ, undergoes phase transition or coacervation to promote assembly of both spindles and their associated components. BuGZ forms temperature-dependent liquid droplets alone or on microtubules in physiological buffers. Coacervation in vitro or in spindle and spindle matrix depends on hydrophobic residues in BuGZ. BuGZ coacervation and its binding to microtubules and tubulin are required to promote assembly of spindle and spindle matrix in Xenopus egg extract and in mammalian cells. Since several previously identified spindle-associated components also contain low complexity regions, we propose that coacervating proteins may be a hallmark of proteins that comprise a spindle matrix that functions to promote assembly of spindles by concentrating its building blocks. PMID:26388440

  4. Mitotic Protein CSPP1 Interacts with CENP-H Protein to Coordinate Accurate Chromosome Oscillation in Mitosis*

    PubMed Central

    Zhu, Lijuan; Wang, Zhikai; Wang, Wenwen; Wang, Chunli; Hua, Shasha; Su, Zeqi; Brako, Larry; Garcia-Barrio, Minerva; Ye, Mingliang; Wei, Xuan; Zou, Hanfa; Ding, Xia; Liu, Lifang; Liu, Xing; Yao, Xuebiao

    2015-01-01

    Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochores. During chromosome alignment, kinetochore-bound microtubules undergo dynamic cycles between growth and shrinkage, leading to an oscillatory movement of chromosomes along the spindle axis. Although kinetochore protein CENP-H serves as a molecular control of kinetochore-microtubule dynamics, the mechanistic link between CENP-H and kinetochore microtubules (kMT) has remained less characterized. Here, we show that CSPP1 is a kinetochore protein essential for accurate chromosome movements in mitosis. CSPP1 binds to CENP-H in vitro and in vivo. Suppression of CSPP1 perturbs proper mitotic progression and compromises the satisfaction of spindle assembly checkpoint. In addition, chromosome oscillation is greatly attenuated in CSPP1-depleted cells, similar to what was observed in the CENP-H-depleted cells. Importantly, CSPP1 depletion enhances velocity of kinetochore movement, and overexpression of CSPP1 decreases the speed, suggesting that CSPP1 promotes kMT stability during cell division. Specific perturbation of CENP-H/CSPP1 interaction using a membrane-permeable competing peptide resulted in a transient mitotic arrest and chromosome segregation defect. Based on these findings, we propose that CSPP1 cooperates with CENP-H on kinetochores to serve as a novel regulator of kMT dynamics for accurate chromosome segregation. PMID:26378239

  5. Mitotic Protein CSPP1 Interacts with CENP-H Protein to Coordinate Accurate Chromosome Oscillation in Mitosis.

    PubMed

    Zhu, Lijuan; Wang, Zhikai; Wang, Wenwen; Wang, Chunli; Hua, Shasha; Su, Zeqi; Brako, Larry; Garcia-Barrio, Minerva; Ye, Mingliang; Wei, Xuan; Zou, Hanfa; Ding, Xia; Liu, Lifang; Liu, Xing; Yao, Xuebiao

    2015-11-06

    Mitotic chromosome segregation is orchestrated by the dynamic interaction of spindle microtubules with the kinetochores. During chromosome alignment, kinetochore-bound microtubules undergo dynamic cycles between growth and shrinkage, leading to an oscillatory movement of chromosomes along the spindle axis. Although kinetochore protein CENP-H serves as a molecular control of kinetochore-microtubule dynamics, the mechanistic link between CENP-H and kinetochore microtubules (kMT) has remained less characterized. Here, we show that CSPP1 is a kinetochore protein essential for accurate chromosome movements in mitosis. CSPP1 binds to CENP-H in vitro and in vivo. Suppression of CSPP1 perturbs proper mitotic progression and compromises the satisfaction of spindle assembly checkpoint. In addition, chromosome oscillation is greatly attenuated in CSPP1-depleted cells, similar to what was observed in the CENP-H-depleted cells. Importantly, CSPP1 depletion enhances velocity of kinetochore movement, and overexpression of CSPP1 decreases the speed, suggesting that CSPP1 promotes kMT stability during cell division. Specific perturbation of CENP-H/CSPP1 interaction using a membrane-permeable competing peptide resulted in a transient mitotic arrest and chromosome segregation defect. Based on these findings, we propose that CSPP1 cooperates with CENP-H on kinetochores to serve as a novel regulator of kMT dynamics for accurate chromosome segregation.

  6. Mad2-independent Spindle Assembly Checkpoint Activation and Controlled Metaphase–Anaphase Transition in Drosophila S2 Cells

    PubMed Central

    Orr, Bernardo; Bousbaa, Hassan

    2007-01-01

    The spindle assembly checkpoint is essential to maintain genomic stability during cell division. We analyzed the role of the putative Drosophila Mad2 homologue in the spindle assembly checkpoint and mitotic progression. Depletion of Mad2 by RNAi from S2 cells shows that it is essential to prevent mitotic exit after spindle damage, demonstrating its conserved role. Mad2-depleted cells also show accelerated transit through prometaphase and premature sister chromatid separation, fail to form metaphases, and exit mitosis soon after nuclear envelope breakdown with extensive chromatin bridges that result in severe aneuploidy. Interestingly, preventing Mad2-depleted cells from exiting mitosis by a checkpoint-independent arrest allows congression of normally condensed chromosomes. More importantly, a transient mitotic arrest is sufficient for Mad2-depleted cells to exit mitosis with normal patterns of chromosome segregation, suggesting that all the associated phenotypes result from a highly accelerated exit from mitosis. Surprisingly, if Mad2-depleted cells are blocked transiently in mitosis and then released into a media containing a microtubule poison, they arrest with high levels of kinetochore-associated BubR1, properly localized cohesin complex and fail to exit mitosis revealing normal spindle assembly checkpoint activity. This behavior is specific for Mad2 because BubR1-depleted cells fail to arrest in mitosis under these experimental conditions. Taken together our results strongly suggest that Mad2 is exclusively required to delay progression through early stages of prometaphase so that cells have time to fully engage the spindle assembly checkpoint, allowing a controlled metaphase–anaphase transition and normal patterns of chromosome segregation. PMID:17182852

  7. Nup2 requires a highly divergent partner, NupA, to fulfill functions at nuclear pore complexes and the mitotic chromatin region

    PubMed Central

    Markossian, Sarine; Suresh, Subbulakshmi; Osmani, Aysha H.; Osmani, Stephen A.

    2015-01-01

    Chromatin and nuclear pore complexes (NPCs) undergo dramatic changes during mitosis, which in vertebrates and Aspergillus nidulans involves movement of Nup2 from NPCs to the chromatin region to fulfill unknown functions. This transition is shown to require the Cdk1 mitotic kinase and be promoted prematurely by ectopic expression of the NIMA kinase. Nup2 localizes with a copurifying partner termed NupA, a highly divergent yet essential NPC protein. NupA and Nup2 locate throughout the chromatin region during prophase but during anaphase move to surround segregating DNA. NupA function is shown to involve targeting Nup2 to its interphase and mitotic locations. Deletion of either Nup2 or NupA causes identical mitotic defects that initiate a spindle assembly checkpoint (SAC)–dependent mitotic delay and also cause defects in karyokinesis. These mitotic problems are not caused by overall defects in mitotic NPC disassembly–reassembly or general nuclear import. However, without Nup2 or NupA, although the SAC protein Mad1 locates to its mitotic locations, it fails to locate to NPCs normally in G1 after mitosis. Collectively the study provides new insight into the roles of Nup2 and NupA during mitosis and in a surveillance mechanism that regulates nucleokinesis when mitotic defects occur after SAC fulfillment. PMID:25540430

  8. Thyroid Hormone Receptor Interacting Protein 13 (TRIP13) AAA-ATPase Is a Novel Mitotic Checkpoint-silencing Protein*

    PubMed Central

    Wang, Kexi; Sturt-Gillespie, Brianne; Hittle, James C.; Macdonald, Dawn; Chan, Gordon K.; Yen, Tim J.; Liu, Song-Tao

    2014-01-01

    The mitotic checkpoint (or spindle assembly checkpoint) is a fail-safe mechanism to prevent chromosome missegregation by delaying anaphase onset in the presence of defective kinetochore-microtubule attachment. The target of the checkpoint is the E3 ubiquitin ligase anaphase-promoting complex/cyclosome. Once all chromosomes are properly attached and bioriented at the metaphase plate, the checkpoint needs to be silenced. Previously, we and others have reported that TRIP13 AAA-ATPase binds to the mitotic checkpoint-silencing protein p31comet. Here we show that endogenous TRIP13 localizes to kinetochores. TRIP13 knockdown delays metaphase-to-anaphase transition. The delay is caused by prolonged presence of the effector for the checkpoint, the mitotic checkpoint complex, and its association and inhibition of the anaphase-promoting complex/cyclosome. These results suggest that TRIP13 is a novel mitotic checkpoint-silencing protein. The ATPase activity of TRIP13 is essential for its checkpoint function, and interference with TRIP13 abolished p31comet-mediated mitotic checkpoint silencing. TRIP13 overexpression is a hallmark of cancer cells showing chromosomal instability, particularly in certain breast cancers with poor prognosis. We suggest that premature mitotic checkpoint silencing triggered by TRIP13 overexpression may promote cancer development. PMID:25012665

  9. The Case of the Disappearing Spindle Burst

    PubMed Central

    Tiriac, Alexandre; Blumberg, Mark S.

    2016-01-01

    Sleep spindles are brief cortical oscillations at 10–15 Hz that occur predominantly during non-REM (quiet) sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves); accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches—and their associated spindle bursts—occur exclusively during REM (active) sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems. PMID:27119028

  10. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis.

    PubMed

    Tuncay, Hüseyin; Brinkmann, Benjamin F; Steinbacher, Tim; Schürmann, Annika; Gerke, Volker; Iden, Sandra; Ebnet, Klaus

    2015-08-26

    Planar spindle orientation in polarized epithelial cells depends on the precise localization of the dynein-dynactin motor protein complex at the lateral cortex. The contribution of cell adhesion molecules to the cortical localization of the dynein-dynactin complex is poorly understood. Here we find that junctional adhesion molecule-A (JAM-A) regulates the planar orientation of the mitotic spindle during epithelial morphogenesis. During mitosis, JAM-A triggers a transient activation of Cdc42 and PI(3)K, generates a gradient of PtdIns(3,4,5)P3 at the cortex and regulates the formation of the cortical actin cytoskeleton. In the absence of functional JAM-A, dynactin localization at the cortex is reduced, the mitotic spindle apparatus is misaligned and epithelial morphogenesis in three-dimensional culture is compromised. Our findings indicate that a PI(3)K- and cortical F-actin-dependent pathway of planar spindle orientation operates in polarized epithelial cells to regulate epithelial morphogenesis, and we identify JAM-A as a junctional regulator of this pathway.

  11. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis

    PubMed Central

    Tuncay, Hüseyin; Brinkmann, Benjamin F.; Steinbacher, Tim; Schürmann, Annika; Gerke, Volker; Iden, Sandra; Ebnet, Klaus

    2015-01-01

    Planar spindle orientation in polarized epithelial cells depends on the precise localization of the dynein–dynactin motor protein complex at the lateral cortex. The contribution of cell adhesion molecules to the cortical localization of the dynein–dynactin complex is poorly understood. Here we find that junctional adhesion molecule-A (JAM-A) regulates the planar orientation of the mitotic spindle during epithelial morphogenesis. During mitosis, JAM-A triggers a transient activation of Cdc42 and PI(3)K, generates a gradient of PtdIns(3,4,5)P3 at the cortex and regulates the formation of the cortical actin cytoskeleton. In the absence of functional JAM-A, dynactin localization at the cortex is reduced, the mitotic spindle apparatus is misaligned and epithelial morphogenesis in three-dimensional culture is compromised. Our findings indicate that a PI(3)K- and cortical F-actin-dependent pathway of planar spindle orientation operates in polarized epithelial cells to regulate epithelial morphogenesis, and we identify JAM-A as a junctional regulator of this pathway. PMID:26306570

  12. Next generation spindles for micromilling.

    SciTech Connect

    Pathak, Jay P.; Payne, Scott W. T.; Gill, David Dennis; Ziegert, John C.; Jokiel, Bernhard, Jr.

    2004-12-01

    There exists a wide variety of important applications for micro- and meso-scale mechanical systems in the commercial and defense sectors, which require high-strength materials and complex geometries that cannot be produced using current MEMS fabrication technologies. Micromilling has great potential to fill this void in MEMS technology by adding the capability of free form machining of complex 3D shapes from a wide variety and combination of traditional, well-understood engineering alloys, glasses and ceramics. Inefficiencies in micromilling result from the relationships between a cutting tool's breaking strength, the applied cutting force, and the metal removal rate. Because machining times in mesofeatures scale inversely to the part size, a feature 1/10th as large will take 10 times as long to machine. Also, required chip sizes of 1 m or less are cut with tools having edge radius of 2-3 m, the cutting edge effectively has a highly negative rake angle, cutting forces are increased significantly causing chip loads to be further reduced and the machining takes even longer than predicted above. However, cutting forces do not increase with cutting speed, so faster spindles with reduced tool runout are the path to achieve efficient mesoscale milling. This research explored the development of new ultra-high speed micromilling spindles. A novel air-bearing spindle design is discussed that will run at very high speeds (450,000 rpm) and provide very minimal runout allowing the best use of micromilling cutters and reducing overall machining time drastically. Two generations of this spindle design were completed; one with an air bearing supported tool shaft and one with a novel rolling element bearing supported tool shaft. Both designs utilized friction-drive systems that relied on diameter differences between the drive wheel (operating at speeds up to 90,000 rpm) and the tool shaft to achieve high rotational tool speeds. Runout, stiffness, and machining tests were conducted

  13. Using Photobleaching to Measure Spindle Microtubule Dynamics in Primary Cultures of Dividing Drosophila Meiotic Spermatocytes

    PubMed Central

    2015-01-01

    In dividing animal cells, a microtubule (MT)-based bipolar spindle governs chromosome movement. Current models propose that the spindle facilitates and/or generates translocating forces by regionally depolymerizing the kinetochore fibers (k-fibers) that bind each chromosome. It is unclear how conserved these sites and the resultant chromosome-moving mechanisms are between different dividing cell types because of the technical challenges of quantitatively studying MTs in many specimens. In particular, our knowledge of MT kinetics during the sperm-producing male meiotic divisions remains in its infancy. In this study, I use an easy-to-implement photobleaching-based assay for measuring spindle MT dynamics in primary cultures of meiotic spermatocytes isolated from the fruit fly Drosophila melanogaster. By use of standard scanning confocal microscopy features, fiducial marks were photobleached on fluorescent protein (FP)-tagged MTs. These were followed by time-lapse imaging during different division stages, and their displacement rates were calculated using public domain software. I find that k-fibers continually shorten at their poles during metaphase and anaphase A through the process of MT flux. Anaphase chromosome movement is complemented by Pac-Man, the shortening of the k-fiber at its chromosomal interface. Thus, Drosophila spermatocytes share the sites of spindle dynamism and mechanisms of chromosome movement with mitotic cells. The data reveal the applicability of the photobleaching assay for measuring MT dynamics in primary cultures. This approach can be readily applied to other systems. PMID:25802491

  14. Spindle structure and function changes of the human cells after simulated microgravity

    NASA Astrophysics Data System (ADS)

    Li, Yu; Wei, Lijun; Qi, Jing; Yan, Xing; Wang, Hongying; Feng, Hui; Yue, Lei; Zhang, Yao

    The main induce factors of the space environment are sustaining microgravity and ionizing radiation which can influence cell structure and function. In this study, for investigating the damage to human proliferation cells under microgravity effects, human osteosarcoma cell lines (MG-63 and U-2 OS) and peripheral blood lymphocytes were analyzed after ground-based simulated microgravity effect with clinostat. The present results showed that under the simu-lated microgravity effect for 72 hours the cytoskeleton both in human osteosarcoma cell lines and peripheral blood lymphocytes were in disorder and the spindle structure changed. The multiple polar spindle rates in human osteosarcoma cell lines MG-63 and U-2 OS increased in a linear relationship with simulated microgravity hours (0 to 96 hours). The mitotic index increased in human osteosarcoma cell lines MG-63 and U-2 OS, while decreased in human pe-ripheral blood lymphocytes. And the cell cycle of MG-63 arrest at G2/M phase. The mode number of chromosomes also varied in MG-63, while the chromosome number of human periph-eral blood lymphocytes didn't show significant difference. The Real-time quantitative reverse transcription PCR (qRT-PCR) and Western blot showed that the spindle assembly checkpoint protein MAD2 and BUB1 in MG-63 and U-2 OS changed with the spindle structure change and chromosome number change.

  15. Using Photobleaching to Measure Spindle Microtubule Dynamics in Primary Cultures of Dividing Drosophila Meiotic Spermatocytes.

    PubMed

    Savoian, Matthew S

    2015-07-01

    In dividing animal cells, a microtubule (MT)-based bipolar spindle governs chromosome movement. Current models propose that the spindle facilitates and/or generates translocating forces by regionally depolymerizing the kinetochore fibers (k-fibers) that bind each chromosome. It is unclear how conserved these sites and the resultant chromosome-moving mechanisms are between different dividing cell types because of the technical challenges of quantitatively studying MTs in many specimens. In particular, our knowledge of MT kinetics during the sperm-producing male meiotic divisions remains in its infancy. In this study, I use an easy-to-implement photobleaching-based assay for measuring spindle MT dynamics in primary cultures of meiotic spermatocytes isolated from the fruit fly Drosophila melanogaster. By use of standard scanning confocal microscopy features, fiducial marks were photobleached on fluorescent protein (FP)-tagged MTs. These were followed by time-lapse imaging during different division stages, and their displacement rates were calculated using public domain software. I find that k-fibers continually shorten at their poles during metaphase and anaphase A through the process of MT flux. Anaphase chromosome movement is complemented by Pac-Man, the shortening of the k-fiber at its chromosomal interface. Thus, Drosophila spermatocytes share the sites of spindle dynamism and mechanisms of chromosome movement with mitotic cells. The data reveal the applicability of the photobleaching assay for measuring MT dynamics in primary cultures. This approach can be readily applied to other systems.

  16. Evidence that Aurora B is implicated in spindle checkpoint signalling independently of error correction.

    PubMed

    Santaguida, Stefano; Vernieri, Claudio; Villa, Fabrizio; Ciliberto, Andrea; Musacchio, Andrea

    2011-04-20

    Fidelity of chromosome segregation is ensured by a tension-dependent error correction system that prevents stabilization of incorrect chromosome-microtubule attachments. Unattached or incorrectly attached chromosomes also activate the spindle assembly checkpoint, thus delaying mitotic exit until all chromosomes are bioriented. The Aurora B kinase is widely recognized as a component of error correction. Conversely, its role in the checkpoint is controversial. Here, we report an analysis of the role of Aurora B in the spindle checkpoint under conditions believed to uncouple the effects of Aurora B inhibition on the checkpoint from those on error correction. Partial inhibition of several checkpoint and kinetochore components, including Mps1 and Ndc80, strongly synergizes with inhibition of Aurora B activity and dramatically affects the ability of cells to arrest in mitosis in the presence of spindle poisons. Thus, Aurora B might contribute to spindle checkpoint signalling independently of error correction. Our results support a model in which Aurora B is at the apex of a signalling pyramid whose sensory apparatus promotes the concomitant activation of error correction and checkpoint signalling pathways.

  17. ATP is required for the release of the anaphase-promoting complex/cyclosome from inhibition by the mitotic checkpoint

    PubMed Central

    Miniowitz-Shemtov, Shirly; Teichner, Adar; Sitry-Shevah, Danielle; Hershko, Avram

    2010-01-01

    The mitotic (or spindle assembly) checkpoint system ensures accurate segregation of chromosomes by delaying anaphase until all chromosomes are correctly attached to the mitotic spindle. This system acts by inhibiting the activity of the anaphase-promoting complex/cyclosome (APC/C) ubiquitin ligase to target securin for degradation. APC/C is inhibited by a mitotic checkpoint complex (MCC) composed of BubR1, Bub3, Mad2, and Cdc20. The molecular mechanisms of the inactivation of the mitotic checkpoint, including the release of APC/C from inhibition, remain obscure. It has been reported that polyubiquitylation by the APC/C is required for the inactivation of the mitotic checkpoint [Reddy SK, Rape M, Margansky WA, Kirschner MW (2007) Nature, 446:921–924]. We confirmed the involvement of polyubiquitylation, but found that another process, which requires ATP cleavage at the β–γ position (as opposed to α–β bond scission involved in ubiquitylation), is essential for the release of APC/C from checkpoint inhibition. ATP (β–γ) cleavage is required both for the dissociation of MCC components from APC/C and for the disassembly of free MCC, whereas polyubiquitylation is involved only in the former process. We find that the requirement for ATP (β–γ) cleavage is not due to the involvement of the 26S proteasome and that the phenomena observed are not due to sustained activity of protein kinase Cdk1/cyclin B, caused by inhibition of the degradation of cyclin B. Thus, some other energy-consuming process is needed for the inactivation of the mitotic checkpoint. PMID:20212161

  18. The Spindle Cell Neoplasms of the Oral Cavity

    PubMed Central

    Shamim, Thorakkal

    2015-01-01

    Spindle cell neoplasms are defined as neoplasms that consist of spindle-shaped cells in the histopathology. Spindle cell neoplasms can affect the oral cavity. In the oral cavity, the origin of the spindle cell neoplasms may be traced to epithelial, mesenchymal and odontogenic components. This article aims to review the spindle cell neoplasms of the oral cavity with emphasis on histopathology. PMID:26351482

  19. Reduced Sleep Spindle Activity in Early-Onset and Elevated Risk for Depression

    ERIC Educational Resources Information Center

    Lopez, Jorge; Hoffmann, Robert; Armitage, Roseanne

    2010-01-01

    Objective: Sleep disturbances are common in major depressive disorder (MDD), although polysomnographic (PSG) abnormalities are more prevalent in adults than in children and adolescents with MDD. Sleep spindle activity (SPA) is associated with neuroplasticity mechanisms during brain maturation and is more abundant in childhood and adolescence than…

  20. A role for vasa in regulating mitotic chromosome condensation in Drosophila.

    PubMed

    Pek, Jun Wei; Kai, Toshie

    2011-01-11

    Vasa (Vas) is a conserved DEAD-box RNA helicase expressed in germline cells that localizes to a characteristic perinuclear structure called nuage. Previous studies have shown that Vas has diverse functions, with roles in regulating mRNA translation, germline differentiation, pole plasm assembly, and piwi-interacting RNA (piRNA)-mediated transposon silencing. Although vas has also been implicated in the regulation of germline proliferation in Drosophila and mice, little is known about whether Vas plays a role during the mitotic cell cycle. Here, we report a translation-independent function of vas in regulating mitotic chromosome condensation in the Drosophila germline. During mitosis, Vas facilitates robust chromosomal localization of the condensin I components Barren (Barr) and CAP-D2. Vas specifically associates with Barr and CAP-D2, but not with CAP-D3 (a condensin II component). The mitotic function of Vas is mediated by the formation of perichromosomal Vas bodies during mitosis, which requires the piRNA pathway components aubergine and spindle-E. Our results suggest that Vas functions during mitosis and may link the piRNA pathway to mitotic chromosome condensation in Drosophila.

  1. Clasp2 ensures mitotic fidelity and prevents differentiation of epidermal keratinocytes

    PubMed Central

    Shahbazi, Marta N.; Peña-Jimenez, Daniel; Antonucci, Francesca; Drosten, Matthias

    2017-01-01

    ABSTRACT Epidermal homeostasis is tightly controlled by a balancing act of self-renewal or terminal differentiation of proliferating basal keratinocytes. An increase in DNA content as a consequence of a mitotic block is a recognized mechanism underlying keratinocyte differentiation, but the molecular mechanisms involved in this process are not yet fully understood. Using cultured primary keratinocytes, here we report that the expression of the mammalian microtubule and kinetochore-associated protein Clasp2 is intimately associated with the basal proliferative makeup of keratinocytes, and its deficiency leads to premature differentiation. Clasp2-deficient keratinocytes exhibit increased centrosomal numbers and numerous mitotic alterations, including multipolar spindles and chromosomal misalignments that overall result in mitotic stress and a high DNA content. Such mitotic block prompts premature keratinocyte differentiation in a p53-dependent manner in the absence of cell death. Our findings reveal a new role for Clasp2 in governing keratinocyte undifferentiated features and highlight the presence of surveillance mechanisms that prevent cell cycle entry in cells that have alterations in the DNA content. PMID:28069833

  2. p31comet promotes disassembly of the mitotic checkpoint complex in an ATP-dependent process

    PubMed Central

    Teichner, Adar; Eytan, Esther; Sitry-Shevah, Danielle; Miniowitz-Shemtov, Shirly; Dumin, Elena; Gromis, Jonathan; Hershko, Avram

    2011-01-01

    Accurate segregation of chromosomes in mitosis is ensured by a surveillance mechanism called the mitotic (or spindle assembly) checkpoint. It prevents sister chromatid separation until all chromosomes are correctly attached to the mitotic spindle through their kinetochores. The checkpoint acts by inhibiting the anaphase-promoting complex/cyclosome (APC/C), a ubiquitin ligase that targets for degradation securin, an inhibitor of anaphase initiation. The activity of APC/C is inhibited by a mitotic checkpoint complex (MCC), composed of the APC/C activator Cdc20 bound to the checkpoint proteins MAD2, BubR1, and Bub3. When all kinetochores acquire bipolar attachment the checkpoint is inactivated, but the mechanisms of checkpoint inactivation are not understood. We have previously observed that hydrolyzable ATP is required for exit from checkpoint-arrested state. In this investigation we examined the possibility that ATP hydrolysis in exit from checkpoint is linked to the action of the Mad2-binding protein p31comet in this process. It is known that p31comet prevents the formation of a Mad2 dimer that it thought to be important for turning on the mitotic checkpoint. This explains how p31comet blocks the activation of the checkpoint but not how it promotes its inactivation. Using extracts from checkpoint-arrested cells and MCC isolated from such extracts, we now show that p31comet causes the disassembly of MCC and that this process requires β,γ-hydrolyzable ATP. Although p31comet binds to Mad2, it promotes the dissociation of Cdc20 from BubR1 in MCC. PMID:21300909

  3. Sleep Spindle Characteristics in Children with Neurodevelopmental Disorders and Their Relation to Cognition

    PubMed Central

    Wise, Merrill S.

    2016-01-01

    Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population. PMID:27478646

  4. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1{sup I4895T/wt} mouse model of core myopathy

    SciTech Connect

    Zvaritch, Elena; MacLennan, David H.

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1{sup I4895T/wt} (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed.

  5. Candida albicans Kinesin Kar3 Depends on a Cik1-Like Regulatory Partner Protein for Its Roles in Mating, Cell Morphogenesis, and Bipolar Spindle Formation

    PubMed Central

    Frazer, Corey; Joshi, Monika; Delorme, Caroline; Davis, Darlene; Bennett, Richard J.

    2015-01-01

    Candida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member CaKar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, CaKar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins. Thus, CaKar3-based motors may represent a novel antifungal drug target. We have identified and examined the roles of a kinesin-like regulator of CaKar3. We show that orf19.306 (dubbed CaCIK1) encodes a protein that forms a heterodimer with CaKar3, localizes CaKar3 to spindle pole bodies, and can bind microtubules and influence CaKar3 mechanochemistry despite lacking an ATPase activity of its own. Similar to CaKar3 depletion, loss of CaCik1 results in cell cycle arrest, filamentation defects, and an inability to undergo karyogamy. Furthermore, an examination of the spindle structure in cells lacking either of these proteins shows that a large proportion have a monopolar spindle or two dissociated half-spindles, a phenotype unique to the C. albicans kinesin-14 homolog. These findings provide new insights into mitotic spindle structure and kinesin motor function in C. albicans and identify a potentially vulnerable target for antifungal drug development. PMID:26024903

  6. An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis.

    PubMed

    Tao, Weikang; South, Victoria J; Diehl, Ronald E; Davide, Joseph P; Sepp-Lorenzino, Laura; Fraley, Mark E; Arrington, Kenneth L; Lobell, Robert B

    2007-01-01

    The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors.

  7. An Inhibitor of the Kinesin Spindle Protein Activates the Intrinsic Apoptotic Pathway Independently of p53 and De Novo Protein Synthesis▿ †

    PubMed Central

    Tao, Weikang; South, Victoria J.; Diehl, Ronald E.; Davide, Joseph P.; Sepp-Lorenzino, Laura; Fraley, Mark E.; Arrington, Kenneth L.; Lobell, Robert B.

    2007-01-01

    The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors. PMID:17101792

  8. Microelasticity of Single Mitotic Chromosomes

    NASA Astrophysics Data System (ADS)

    Poirier, Michael; Eroglu, Sertac; Chatenay, Didier; Marko, John F.; Hirano, Tatsuya

    2000-03-01

    The force-extension behavior of mitotic chromosomes from the newt TVI tumor cell line was studied using micropipette manipulation and force measuring techniques. Reversible, linear elastic response was observed for extensions up to 5 times the native length; the force required to double chromosome length was 1 nanonewton (nN). For further elongations, the linear response teminates at a force plateau of 15 nN and at an extension of 20x. Beyond this extension, the chromosome breaks at elongations between 20x and 70x. These results will be compared to the similar behavior of mitotic chromosomes from explanted newt cells (Poirier, Eroglu, Chatenay and Marko, Mol. Biol. Cell, in press). Also, the effect of biochemical modifications on the elasticity was studied. Ethidium Bromide, which binds to DNA, induces up to a 10 times increase in the Young's modulus. Anti-XCAP-E, which binds to a putative chromosome folding protein, induces up to a 2 times increase in the Young's modulus. Preliminary results on the dynamical relaxation of chromosomes will also be presented. Support of this research through a Biomedical Engineering Research Grant from The Whitaker Foundation is gratefully acknowledged.

  9. Mechanotransduction in the muscle spindle.

    PubMed

    Bewick, Guy S; Banks, Robert W

    2015-01-01

    The focus of this review is on the principal sensory ending of the mammalian muscle spindle, known as the primary ending. The process of mechanosensory transduction in the primary ending is examined under five headings: (i) action potential responses to defined mechanical stimuli-representing the ending's input-output properties; (ii) the receptor potential-including the currents giving rise to it; (iii) sensory-terminal deformation-measurable changes in the shape of the primary-ending terminals correlated with intrafusal sarcomere length, and what may cause them; (iv) putative stretch-sensitive channels-pharmacological and immunocytochemical clues to their identity; and (v) synaptic-like vesicles-the physiology and pharmacology of an intrinsic glutamatergic system in the primary and other mechanosensory endings, with some thoughts on the possible role of the system. Thus, the review highlights spindle stretch-evoked output is the product of multi-ionic receptor currents plus complex and sophisticated regulatory gain controls, both positive and negative in nature, as befits its status as the most complex sensory organ after the special senses.

  10. S-100 protein expressing spindle cells in spindle cell lipoma: a diagnostic pitfall.

    PubMed

    Mentzel, T; Rütten, A; Hantschke, M; Hornick, J L; Brenn, T

    2016-10-01

    Spindle cell lipoma represents a distinct clinicopathological entity and is related to cellular angiofibroma and mammary-type myofibroblastoma. Spindle cell lipomas are composed of mature lipogenic cells and a variable number of CD34-positive spindle cells that show loss of retinoblastoma protein expression. Spindle cell lipomas occasionally express S-100 protein. We studied one case of purely dermal spindle cell lipoma and four cases of classical subcutaneous spindle cell lipoma arising in one female and four male patients (age ranged from 55 to 69 years). The neoplasms arose on the nose, the chin, the neck, the forehead and retroauricular, and all lesions had been marginally or incompletely excised. The studied cases showed classical histological and immunohistochemical features of spindle cell lipoma and, in addition, strong expression of S-100 protein by spindle-shaped tumour cells. S-100-expression in spindle cell lipoma may cause problems in the differential diagnosis with neural and melanocytic neoplasms and emphasizes the plasticity of the spindle cells in spindle cell lipoma.

  11. Dynamic localization of LIN-5 and GPR-1/2 to cortical force generation domains during spindle positioning

    PubMed Central

    Park, Dae Hwi; Rose, Lesilee S.

    2008-01-01

    G protein signaling pathways regulate mitotic spindle positioning during cell division in many systems. In C. elegans embryos, Gα subunits act with the positive regulators GPR-1/2 and LIN-5 to generate cortical pulling forces for posterior spindle displacement during the first asymmetric division. GPR-1/2 are asymmetrically localized at the posterior cortex by PAR polarity cues at this time. Here we show that LIN-5 colocalizes with GPR-1/2 in one-cell embryos during spindle displacement. Significantly, we also find that LIN-5 and GPR-1/2 are localized to the opposite, anterior cortex in a polarity dependent manner during the nuclear centration and rotation movements that orient the forming spindle onto the polarity axis. The depletion of LIN-5 or GPR-1/2 results in decreased centration and rotation rates, indicating a role in force generation at this stage. The localization of LIN- 5 and GPR-1/2 is largely interdependent and requires Gα. Further, LIN-5 immunoprecipitates with Gα in vivo, and association is GPR-1/2 dependent. These results suggest that a complex of Gα /GPR- 1/2/LIN-5 is asymmetrically localized in response to polarity cues, and this may be the active signaling complex that transmits asymmetries to the force generation machinery during both nuclear rotation and spindle displacement. PMID:18234174

  12. Upregulated Op18/stathmin activity causes chromosomal instability through a mechanism that evades the spindle assembly checkpoint

    SciTech Connect

    Holmfeldt, Per; Sellin, Mikael E.; Gullberg, Martin

    2010-07-15

    Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18{yields}E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis, conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.

  13. Regulation of mitosis by the NIMA kinase involves TINA and its newly discovered partner, An-WDR8, at spindle pole bodies.

    PubMed

    Shen, Kuo-Fang; Osmani, Stephen A

    2013-12-01

    The NIMA kinase is required for mitotic nuclear pore complex disassembly and potentially controls other mitotic-specific events. To investigate this possibility, we imaged NIMA-green fluorescent protein (GFP) using four-dimensional spinning disk confocal microscopy. At mitosis NIMA-GFP locates to spindle pole bodies (SPBs), which contain Cdk1/cyclin B, followed by Aurora, TINA, and the BimC kinesin. NIMA promotes NPC disassembly in a spatially regulated manner starting near SPBs. NIMA is also required for TINA, a NIMA-interacting protein, to locate to SPBs during initiation of mitosis, and TINA is then necessary for locating NIMA back to SPBs during mitotic progression. To help expand the NIMA-TINA pathway, we affinity purified TINA and found it to uniquely copurify with An-WDR8, a WD40-domain protein conserved from humans to plants. Like TINA, An-WDR8 accumulates within nuclei during G2 but disperses from nuclei before locating to mitotic SPBs. Without An-WDR8, TINA levels are greatly reduced, whereas TINA is necessary for mitotic targeting of An-WDR8. Finally, we show that TINA is required to anchor mitotic microtubules to SPBs and, in combination with An-WDR8, for successful mitosis. The findings provide new insights into SPB targeting and indicate that the mitotic microtubule-anchoring system at SPBs involves WDR8 in complex with TINA.

  14. A requirement for protein phosphorylation in regulating the meiotic and mitotic cell cycles in echinoderms.

    PubMed

    Néant, I; Charbonneau, M; Guerrier, P

    1989-04-01

    Populations of hormone-stimulated starfish oocytes and fertilized sea urchin eggs undergo synchronous meiotic and mitotic divisions. We have studied the requirement for protein phosphorylation during these events by testing the effects of 6-dimethylaminopurine (6-DMAP) upon the incorporation of [32P]orthophosphate. It was found that 6-DMAP blocked meiosis reinitiation and early cleavage and simultaneously inhibited protein phosphorylation, without changing the rate of [35S]methionine incorporation or pattern of protein synthesis. The protein, cyclin (54 kDa in starfish and 57 kDa in sea urchin), continues to be synthesized in the presence of 6-DMAP. This protein is destroyed at first and second cell cycles when 6-DMAP is added 30 min following fertilization but not when this drug is present before fertilization. Thus, cyclin breakdown does not depend on the completion of the nuclear events of M-phase, and its time of breakdown is set at an early step between fertilization and first cleavage. Using tubulin immunostaining, we found that 6-DMAP did not affect the cortical microtubules and resting female centrioles of prophase-arrested starfish oocytes, whereas it induced a precocious disappearance of spindle fibers when applied to hormone-stimulated oocytes. While an early addition of 6-DMAP precluded nuclear breakdown and spindle formation in both systems, a late treatment always allowed chromosome separation and centriole separation. Under these conditions pericentriolar tubulin persisted and could organize new spindles after the inhibitor was removed. It is suggested that (1) the assembly of cortical and centriolar-associated microtubules is not controlled by the same factors as spindle-associated tubulin; (2) specific proteins which are required for the cell to enter the following M-phase can become operative only via a process depending upon protein phosphorylation; (3) microtubule-associated kinases may play an important role in MPF function and spindle dynamics.

  15. Regulation of Mitotic Exit in Saccharomyces cerevisiae.

    PubMed

    Baro, Bàrbara; Queralt, Ethel; Monje-Casas, Fernando

    2017-01-01

    The Mitotic Exit Network (MEN) is an essential signaling pathway, closely related to the Hippo pathway in mammals, which promotes mitotic exit and initiates cytokinesis in the budding yeast Saccharomyces cerevisiae. Here, we summarize the current knowledge about the MEN components and their regulation.

  16. De novo design, synthesis and biological evaluation of 1,4-dihydroquinolin-4-ones and 1,2,3,4-tetrahydroquinazolin-4-ones as potent kinesin spindle protein (KSP) inhibitors.

    PubMed

    Jiang, Cheng; Yang, Lei; Wu, Wu-Tong; Guo, Qing-Long; You, Qi-Dong

    2011-09-15

    Kinesin spindle protein (KSP) inhibitors are a promising class of anticancer agents that cause mitotic arrest in cells from a failure to form functional bipolar mitotic spindles. Here, we report the design, synthesis and biological evaluation of a novel series of 1,4-dihydroquinolin-4-ones and 1,2,3,4-tetrahydroquinazolin-4-ones using de novo design method. The synthesized compound was evaluated and proved to have potent inhibitory activities in the KSP ATPase. Compounds 15j and 15p show potent inhibitory activities in cell proliferation assays. Preferred compound 15j markedly induced G2/M phase cell cycle arrest with characteristic monoastral spindles and subsequent cell death in A549 cells. In vivo evaluation of 15j on the growth of transplantable S180 sarcoma in mice suggested its therapeutic potential for further development.

  17. Cell biology of mitotic recombination.

    PubMed

    Lisby, Michael; Rothstein, Rodney

    2015-03-02

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination.

  18. Cell Biology of Mitotic Recombination

    PubMed Central

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics of this review include the stoichiometry and dynamics of recombination complexes in vivo, the choreography of assembly and disassembly of recombination proteins at sites of DNA damage, the mobilization of damaged DNA during homology search, and the functional compartmentalization of the nucleus with respect to capacity of homologous recombination. PMID:25731763

  19. Intermediates in the assembly of mitotic checkpoint complexes and their role in the regulation of the anaphase-promoting complex

    PubMed Central

    Kaisari, Sharon; Sitry-Shevah, Danielle; Miniowitz-Shemtov, Shirly; Hershko, Avram

    2016-01-01

    The mitotic (or spindle assembly) checkpoint system prevents premature separation of sister chromatids in mitosis and thus ensures the fidelity of chromosome segregation. Kinetochores that are not attached properly to the mitotic spindle produce an inhibitory signal that prevents progression into anaphase. The checkpoint system acts on the Anaphase-Promoting Complex/Cyclosome (APC/C) ubiquitin ligase, which targets for degradation inhibitors of anaphase initiation. APC/C is inhibited by the Mitotic Checkpoint Complex (MCC), which assembles when the checkpoint is activated. MCC is composed of the checkpoint proteins BubR1, Bub3, and Mad2, associated with the APC/C coactivator Cdc20. The intermediary processes in the assembly of MCC are not sufficiently understood. It is also not clear whether or not some subcomplexes of MCC inhibit the APC/C and whether Mad2 is required only for MCC assembly and not for its action on the APC/C. We used purified subcomplexes of mitotic checkpoint proteins to examine these problems. Our results do not support a model in which Mad2 catalytically generates a Mad2-free APC/C inhibitor. We also found that the release of Mad2 from MCC caused a marked (although not complete) decrease in inhibitory action, suggesting a role of Mad2 in MCC for APC/C inhibition. A previously unknown species of MCC, which consists of Mad2, BubR1, and two molecules of Cdc20, contributes to the inhibition of APC/C by the mitotic checkpoint system. PMID:26755599

  20. Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation.

    PubMed

    Conde, Carlos; Osswald, Mariana; Barbosa, João; Moutinho-Santos, Tatiana; Pinheiro, Diana; Guimarães, Sofia; Matos, Irina; Maiato, Helder; Sunkel, Claudio E

    2013-06-12

    Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function.

  1. Molecular basis of APC/C regulation by the spindle assembly checkpoint

    PubMed Central

    Zhang, Ziguo; Yang, Jing; Maslen, Sarah; Skehel, Mark; Barford, David

    2016-01-01

    In the dividing eukaryotic cell the spindle assembly checkpoint (SAC) ensures each daughter cell inherits an identical set of chromosomes. The SAC coordinates the correct attachment of sister chromatid kinetochores to the mitotic spindle with activation of the anaphase-promoting complex/cyclosome (APC/C), the E3 ubiquitin ligase that initiates chromosome separation. In response to unattached kinetochores, the SAC generates the mitotic checkpoint complex (MCC), a multimeric assembly that inhibits the APC/C, delaying chromosome segregation. Here, using cryo-electron microscopy we determined the near-atomic resolution structure of an APC/C-MCC complex (APC/CMCC). We reveal how degron-like sequences of the MCC subunit BubR1 block degron recognition sites on Cdc20, the APC/C coactivator subunit (Cdc20APC/C) responsible for substrate interactions. BubR1 also obstructs binding of UbcH10 (APC/C’s initiating E2) to repress APC/C ubiquitination activity. Conformational variability of the complex allows for UbcH10 association, and we show from a structure of APC/CMCC in complex with UbcH10 how the Cdc20 subunit intrinsic to the MCC (Cdc20MCC) is ubiquitinated, a process that results in APC/C reactivation when the SAC is silenced. PMID:27509861

  2. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer

    SciTech Connect

    Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine

    2009-06-10

    Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.

  3. Living in CIN: Mitotic Infidelity and Its Consequences for Tumor Promotion and Suppression.

    PubMed

    Funk, Laura C; Zasadil, Lauren M; Weaver, Beth A

    2016-12-19

    Errors in chromosome segregation during mitosis have been recognized as a hallmark of tumor cells since the late 1800s, resulting in the long-standing hypothesis that mitotic abnormalities drive tumorigenesis. Recent work has shown that mitotic defects can promote tumors, suppress them, or do neither, depending on the rate of chromosome missegregation. Here we discuss the causes of chromosome missegregation, their effects on tumor initiation and progression, and the evidence that increasing the rate of chromosome missegregation may be an effective chemotherapeutic strategy.

  4. KIF2A regulates the spindle assembly and the metaphase I-anaphase I transition in mouse oocyte

    PubMed Central

    Chen, Ming-Huang; Liu, Yu; Wang, Ya-Long; Liu, Rui; Xu, Bai-Hui; Zhang, Fei; Li, Fei-Ping; Xu, Lin; Lin, Yan-Hong; He, Shu-Wen; Liao, Bao-Qiong; Fu, Xian-Pei; Wang, Xiao-Xue; Yang, Xiang-Jun; Wang, Hai-Long

    2016-01-01

    KIF2A, a member of the kinesin-13 family, has been reported to play a role in spindle assembly in mitosis. However, its function in mammalian meiosis remains unknown. In this research, we examined the expression, localization and function of KIF2A during mouse oocyte meiosis. KIF2A was expressed in some key stages in mouse oocyte meiosis. Immunofluorescent staining showed that KIF2A distributed in the germinal vesicle at the germinal vesicle stage and as the spindle assembling after meiosis resumption, KIF2A gradually accumulated to the entire spindle. The treatment of oocytes with taxol and nocodazole demonstrated that KIF2A was co-localized with α-tubulin. Depletion of KIF2A by specific short interfering (si) RNA injection resulted in abnormal spindle assembly, failure of spindle migration, misaligned chromosomes and asymmetric cell division. Meanwhile, SKA1 expression level was decreased and the TACC3 localization was disrupted. Moreover, depletion of KIF2A disrupted the actin cap formation, arrested oocytes at metaphase I with spindle assembly checkpoint protein BubR1 activated and finally reduced the rate of the first polar body extrusion. Our data indicate that KIF2A regulates the spindle assembly, asymmetric cytokinesis and the metaphase I-anaphase I transition in mouse oocyte. PMID:27991556

  5. The human Ino80 binds to microtubule via the E-hook of tubulin: Implications for the role in spindle assembly

    SciTech Connect

    Park, Eun-Jung; Hur, Shin-Kyoung; Lee, Han-Sae; Lee, Shin-Ai; Kwon, Jongbum

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The N-terminal domain of hIno80 is important for binding to the spindle. Black-Right-Pointing-Pointer The hIno80 N-terminal domain binds to tubulin and microtubule in vitro. Black-Right-Pointing-Pointer The E-hook of tubulin is critical for hIno80 binding to tubulin and microtubule. Black-Right-Pointing-Pointer Tip49a does not bind to microtubule and dispensable for spindle formation. -- Abstract: The human INO80 chromatin remodeling complex, comprising the Ino80 ATPase (hIno80) and the associated proteins such as Tip49a, has been implicated in a variety of nuclear processes other than transcription. We previously have found that hIno80 interacts with tubulin and co-localizes with the mitotic spindle and is required for spindle formation. To better understand the role of hIno80 in spindle formation, we further investigated the interaction between hIno80 and microtubule. Here, we show that the N-terminal domain, dispensable for the nucleosome remodeling activity, is important for hIno80 to interact with tubulin and co-localize with the spindle. The hIno80 N-terminal domain binds to monomeric tubulin and polymerized microtubule in vitro, and the E-hook of tubulin, involved in the polymerization of microtubule, is critical for this binding. Tip49a, which has been reported to associate with the spindle, does not bind to microtubule in vitro and dispensable for spindle formation in vivo. These results suggest that hIno80 can play a direct role in the spindle assembly independent of its chromatin remodeling activity.

  6. Reduced levels of Dusp3/Vhr phosphatase impair normal spindle bipolarity in an Erk1/2 activity-dependent manner.

    PubMed

    Tambe, Mahesh Balasaheb; Narvi, Elli; Kallio, Marko

    2016-08-01

    Dual specificity phosphatase-3 (Dusp3/Vhr) regulates cell cycle progression by counteracting the effects of mitogen-activated protein kinases (Mapk) Erk1/2 and Jnk. Despite the known upregulation of Dusp3 at M phase in mammalian cells, its mitotic functions are poorly characterized. Here, we report that loss of Dusp3 by RNAi leads to the formation of multipolar spindles in human mitotic cancer cells in an Erk1/2-dependent manner. In the phosphatase-silenced cells, the normal bipolar spindle structure was restored by chemical inhibition of Erk1/2 and ectopic overexpression of Dusp3. We propose that at M phase Dusp3 keeps Erk1/2 activity in check to facilitate normal mitosis.

  7. rough deal: a gene required for proper mitotic segregation in Drosophila

    PubMed Central

    1989-01-01

    We describe a genetic locus rough deal (rod) in Drosophila melanogaster, identified by mutations that interfere with the faithful transmission of chromosomes to daughter cells during mitosis. Five mutant alleles were isolated, each associated with a similar set of mitotic abnormalities in the dividing neuroblasts of homozygous mutant larvae: high frequencies of aneuploid cells and abnormal anaphase figures, in which chromatids may lag, form bridges, or completely fail to separate. Surviving homozygous adults are sterile, and show cuticular defects associated with cell death, i.e., roughened eyes, sparse abdominal bristles, and notched wing margins. The morphological process of spermatogenesis is largely unaffected and motile sperm are produced, but meiocyte aneuploidy is common. The nature of the observed abnormalities in mitotic cells suggests that the reduced fidelity of chromosome transmission to the daughter cells is due to a failure in a mechanism involved in assuring the proper release of sister chromatids. PMID:2512302

  8. Cell death response to anti-mitotic drug treatment in cell culture, mouse tumor model and the clinic.

    PubMed

    Shi, Jue; Mitchison, Timothy J

    2017-03-01

    Anti-mitotic cancer drugs include classic microtubule-targeting drugs, such as taxanes and vinca alkaloids, and the newer spindle-targeting drugs, such as inhibitors of the motor protein, Kinesin-5 (aka KSP, Eg5, KIF11), and Aurora-A, Aurora-B and Polo-like kinases. Microtubule-targeting drugs are among the first line of chemotherapies for a wide spectrum of cancers, but patient responses vary greatly. We still lack understanding of how these drugs achieve a favorable therapeutic index, and why individual patient responses vary. Spindle-targeting drugs have so far shown disappointing results in the clinic, but it is possible that certain patients could benefit if we understand their mechanism of action better. Pre-clinical data from both cell culture and mouse tumor models showed that the cell death response is the most variable point of the drug action. Hence, in this review we focus on current mechanistic understanding of the cell death response to anti-mitotics. We first draw on extensive results from cell culture studies, and then cross-examine them with the more limited data from animal tumor models and the clinic. We end by discussing how cell-type variation in cell death response might be harnessed to improve anti-mitotic chemotherapy by better patient stratification, new drug combinations and identification of novel targets for drug development.

  9. Disassembly of mitotic checkpoint complexes by the joint action of the AAA-ATPase TRIP13 and p31comet

    PubMed Central

    Eytan, Esther; Wang, Kexi; Miniowitz-Shemtov, Shirly; Sitry-Shevah, Danielle; Kaisari, Sharon; Yen, Tim J.; Liu, Song-Tao; Hershko, Avram

    2014-01-01

    The mitotic (or spindle assembly) checkpoint system delays anaphase until all chromosomes are correctly attached to the mitotic spindle. When the checkpoint is active, a Mitotic Checkpoint Complex (MCC) assembles and inhibits the ubiquitin ligase Anaphase-Promoting Complex/Cyclosome (APC/C). MCC is composed of the checkpoint proteins Mad2, BubR1, and Bub3 associated with the APC/C activator Cdc20. When the checkpoint signal is turned off, MCC is disassembled and the checkpoint is inactivated. The mechanisms of the disassembly of MCC are not sufficiently understood. We have previously observed that ATP hydrolysis is required for the action of the Mad2-binding protein p31comet to disassemble MCC. We now show that HeLa cell extracts contain a factor that promotes ATP- and p31comet-dependent disassembly of a Cdc20–Mad2 subcomplex and identify it as Thyroid Receptor Interacting Protein 13 (TRIP13), an AAA-ATPase known to interact with p31comet. The joint action of TRIP13 and p31comet also promotes the release of Mad2 from MCC, participates in the complete disassembly of MCC and abrogates checkpoint inhibition of APC/C. We propose that TRIP13 plays centrally important roles in the sequence of events leading to MCC disassembly and checkpoint inactivation. PMID:25092294

  10. Alveolar abnormalities

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...

  11. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... 2012:chap 71. Zaiac MN, Walker A. Nail abnormalities associated with systemic pathologies. Clin Dermatol . 2013;31: ...

  12. A screen for dynein synthetic lethals in Aspergillus nidulans identifies spindle assembly checkpoint genes and other genes involved in mitosis.

    PubMed Central

    Efimov, V P; Morris, N R

    1998-01-01

    Cytoplasmic dynein is a ubiquitously expressed microtubule motor involved in vesicle transport, mitosis, nuclear migration, and spindle orientation. In the filamentous fungus Aspergillus nidulans, inactivation of cytoplasmic dynein, although not lethal, severely impairs nuclear migration. The role of dynein in mitosis and vesicle transport in this organism is unclear. To investigate the complete range of dynein function in A. nidulans, we searched for synthetic lethal mutations that significantly reduced growth in the absence of dynein but had little effect on their own. We isolated 19 sld (synthetic lethality without dynein) mutations in nine different genes. Mutations in two genes exacerbate the nuclear migration defect seen in the absence of dynein. Mutations in six other genes, including sldA and sldB, show a strong synthetic lethal interaction with a mutation in the mitotic kinesin bimC and, thus, are likely to play a role in mitosis. Mutations in sldA and sldB also confer hypersensitivity to the microtubule-destabilizing drug benomyl. sldA and sldB were cloned by complementation of their mutant phenotypes using an A. nidulans autonomously replicating vector. Sequencing revealed homology to the spindle assembly checkpoint genes BUB1 and BUB3 from Saccharomyces cerevisiae. Genetic interaction between dynein and spindle assembly checkpoint genes, as well as other mitotic genes, indicates that A. nidulans dynein plays a role in mitosis. We suggest a model for dynein motor action in A. nidulans that can explain dynein involvement in both mitosis and nuclear distribution. PMID:9584089

  13. Fast sleep spindle reduction in schizophrenia and healthy first-degree relatives: association with impaired cognitive function and potential intermediate phenotype.

    PubMed

    Schilling, Claudia; Schlipf, Manuel; Spietzack, Simone; Rausch, Franziska; Eisenacher, Sarah; Englisch, Susanne; Reinhard, Iris; Haller, Leila; Grimm, Oliver; Deuschle, Michael; Tost, Heike; Zink, Mathias; Meyer-Lindenberg, Andreas; Schredl, Michael

    2017-04-01

    Several studies in patients with schizophrenia reported a marked reduction in sleep spindle activity. To investigate whether the reduction may be linked to genetic risk of the illness, we analysed sleep spindle activity in healthy volunteers, patients with schizophrenia and first-degree relatives, who share an enriched set of schizophrenia susceptibility genes. We further investigated the correlation of spindle activity with cognitive function in first-degree relatives and whether spindle abnormalities affect both fast (12-15 Hz) and slow (9-12 Hz) sleep spindles. We investigated fast and slow sleep spindle activity during non-rapid eye movement sleep in a total of 47 subjects comprising 17 patients with schizophrenia, 13 healthy first-degree relatives and 17 healthy volunteers. Groups were balanced for age, gender, years of education and estimated verbal IQ. A subsample of relatives received additional testing for memory performance. Compared to healthy volunteers, fast spindle density was reduced in patients with schizophrenia and healthy first-degree relatives following a pattern consistent with an assumed genetic load for schizophrenia. The deficit in spindle density was specific to fast spindles and was associated with decreased memory performance. Our findings indicate familial occurrence of this phenotype and thus support the hypothesis that deficient spindle activity relates to genetic liability for schizophrenia. Furthermore, spindle reductions predict impaired cognitive function and are specific to fast spindles. This physiological marker should be further investigated as an intermediate phenotype of schizophrenia. It could also constitute a target for drug development, especially with regard to cognitive dysfunction.

  14. Intramedullary spindle cell hemangioma: case report.

    PubMed

    Nasser, Rani; Ashayeri, Kimberly; Legatt, Alan D; Houten, John K

    2016-09-01

    The authors describe the case of a 48-year-old man found to have the first reported intramedullary spinal cord spindle cell hemangioma. Previous research indicates that spindle cell hemangiomas are rarely found in the spine. Only 3 previous cases exist, all in the intradural, extramedullary space. In the present case, gross-total resection of the tumor was possible with no loss of function from baseline. This report presents the successful resection of the first reported intramedullary spindle cell hemangioma and reports 4-month follow-up, demonstrating the biological behavior of this rare tumor.

  15. 2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1) induces G2/M arrest and mitotic catastrophe in human leukemia HL-60 cells

    SciTech Connect

    Hsu, Mei-Hua; Liu, Chin-Yu; Lin, Chiao-Min; Chen, Yen-Jung; Chen, Chun-Jen; Lin, Yu-Fu; Huang, Li-Jiau; Lee, Kuo-Hsiung; Kuo, Sheng-Chu

    2012-03-01

    2-(3-Methoxyphenyl)-5-methyl-1,8-naphthyridin-4(1H)-one (HKL-1), a 2-phenyl-1,8-naphthyridin-4-one (2-PN) derivative, was synthesized and evaluated as an effective antimitotic agent in our laboratory. However, the molecular mechanisms are uncertain. In this study, HKL-1 was demonstrated to induce multipolar spindles, sustain mitotic arrest and generate multinucleated cells, all of which indicate mitotic catastrophe, in human leukemia HL-60 cells. Western blotting showed that HKL-1 induces mitotic catastrophe in HL-60 cells through regulating mitotic phase-specific kinases (down-regulating CDK1, cyclin B1, CENP-E, and aurora B) and regulating the expression of Bcl-2 family proteins (down-regulating Bcl-2 and up-regulating Bax and Bak), followed by caspase-9/-3 cleavage. These findings suggest that HKL-1 appears to exert its cytotoxicity toward HL-60 cells in culture by inducing mitotic catastrophe. Highlights: ► HKL-1 is a potential antimitotic agent against HL-60 cells. ► HKL-1 induces spindle disruption and sustained resulted in mitotic catastrophe. ► CENP-E and aurora B protein expressions significantly reduced. ► Bcl-2 family protein expressions altered and caspase-9/-3 activation. ► HKL-1 is an attractive candidate for possible use as a novel antimitotic agent.

  16. Activity of the Kinesin Spindle Protein Inhibitor Ispinesib (SB-715992) in Models of Breast Cancer

    PubMed Central

    Purcell, James W.; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S.; Gray, Joe W.; Wood, Kenneth W.; Cases, Sylvaine

    2010-01-01

    Purpose Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein, a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have shown a 9% response rate in patients with locally advanced or metastatic breast cancer and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities, or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer, we explored the activity of ispinesib alone and in combination with several therapies approved for the treatment of breast cancer. Experimental Design We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo and tested the ability of ispinesib to enhance the antitumor activity of approved therapies. Results In vitro, ispinesib displayed broad antiproliferative activity against a panel of 53 breast cell lines. In vivo, ispinesib produced regressions in each of five breast cancer models and tumor-free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the antitumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine and exhibited activity comparable with paclitaxel and ixabepilone. Conclusions These findings support further clinical exploration of kinesin spindle protein inhibitors for the treatment of breast cancer. PMID:20068098

  17. Control of the mitotic exit network during meiosis.

    PubMed

    Attner, Michelle A; Amon, Angelika

    2012-08-01

    The mitotic exit network (MEN) is an essential GTPase signaling pathway that triggers exit from mitosis in budding yeast. We show here that during meiosis, the MEN is dispensable for exit from meiosis I but contributes to the timely exit from meiosis II. Consistent with a role for the MEN during meiosis II, we find that the signaling pathway is active only during meiosis II. Our analysis further shows that MEN signaling is modulated during meiosis in several key ways. Whereas binding of MEN components to spindle pole bodies (SPBs) is necessary for MEN signaling during mitosis, during meiosis MEN signaling occurs off SPBs and does not require the SPB recruitment factor Nud1. Furthermore, unlike during mitosis, MEN signaling is controlled through the regulated interaction between the MEN kinase Dbf20 and its activating subunit Mob1. Our data lead to the conclusion that a pathway essential for vegetative growth is largely dispensable for the specialized meiotic divisions and provide insights into how cell cycle regulatory pathways are modulated to accommodate different modes of cell division.

  18. Effects of organotin compounds on mitosis, spindle structure, toxicity and in vitro microtubule assembly.

    PubMed

    Jensen, K G; Onfelt, A; Wallin, M; Lidums, V; Andersen, O

    1991-09-01

    Di- and tri-methyl, -butyl and phenyl tin, all as chlorides were tested for toxicity and spindle disturbances in V79 Chinese hamster cells and for effects on in vitro assembly of bovine brain tubulin. The V79 cells were treated for 30 min and in general, loss of a stainable spindle could be demonstrated at slightly higher concentrations than c-mitosis. Both these effects were observed at low, non-toxic concentrations. The c-mitotic activity of the compounds was found to increase with increasing lipophilicity and it was best described by a regression on both lipophilicity (partition coefficient octanol/water) and loss of spindle stain. All compounds showed a concentration dependent inhibition of microtubule assembly and all but diphenyltin induced disassembly of preassembled microtubules. An effect on the rate of polymerization was suggested for tributyl- and triphenyltin. The results further indicate that the inhibition of microtubule assembly is through direct interaction with tubulin but does not involve the sulfhydryls of the protein. Thus, the organotins seem to act through two different cooperative mechanisms, inhibition of microtubule assembly and interaction with hydrophobic sites. The latter mechanism might involve Cl-/OH- exchange across cellular membranes. Previous studies have demonstrated chromosomal supercontraction and aneuploidy in human lymphocytes exposed to low concentrations of organotin in vitro and it is suggested that exposure to these compounds may increase the risk of aneuploidy in humans.

  19. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    PubMed

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  20. Functional organization of mitotic microtubules. Physical chemistry of the in vivo equilibrium system.

    PubMed Central

    Inoué, S; Fuseler, J; Salmon, E D; Ellis, G W

    1975-01-01

    Equilibrium between mitotic microtubules and tubulin is analyzed, using birefringence of mitotic spindle to measure microtubule concentration in vivo. A newly designed temperature-controlled slide and miniature, thermostated hydrostatic pressure chamber permit rapid alteration of temperature and of pressure. Stress birefringence of the windows is minimized, and a system for rapid recording of compensation is incorporated, so that birefringence can be measured to 0.1 nm retardation every few seconds. Both temperature and pressure data yield thermodynamic values (delta H similar to 35 kcal/mol, delta S similar to 120 entropy units [eu], delta V similar to 400 ml/mol of subunit polymerized) consistent with the explanation that polymerization of tubulin is entropy driven and mediated by hydrophobic interactions. Kinetic data suggest pseudo-zero-order polymerization and depolymerization following rapid temperature shifts, and a pseudo-first-order depolymerization during anaphase at constant temperature. The equilibrium properties of the in vivo mitotic microtubules are compared with properties of isolated brain tubules. Images FIGURE 1 FIGURE 2 FIGURE 5 FIGURE 12 FIGURE 13 FIGURE 14 FIGURE 19 PMID:1139037

  1. Quantitative phosphoproteomics reveals new roles for the protein phosphatase PP6 in mitotic cells

    PubMed Central

    Rusin, Scott F.; Schlosser, Kate A.; Adamo, Mark E.; Kettenbach, Arminja N.

    2017-01-01

    Protein phosphorylation is an important regulatory mechanism controlling mitotic progression. Protein phosphatase 6 (PP6) is an essential enzyme with conserved roles in chromosome segregation and spindle assembly from yeast to humans. We applied a baculovirus-mediated gene silencing approach to deplete HeLa cells of the catalytic subunit of PP6 (PP6c) and analyzed changes in the phosphoproteome and proteome in mitotic cells by quantitative mass spectrometry–based proteomics. We identified 408 phosphopeptides on 272 proteins that increased and 298 phosphopeptides on 220 proteins that decreased in phosphorylation upon PP6c depletion in mitotic cells. Motif analysis of the phosphorylated sites combined with bioinformatics pathway analysis revealed previously unknown PP6c–dependent regulatory pathways. Biochemical assays demonstrated that PP6c opposed casein kinase 2–dependent phosphorylation of the condensin I subunit NCAP-G, and cellular analysis showed that depletion of PP6c resulted in defects in chromosome condensation and segregation in anaphase, consistent with dysregulation of condensin I function in the absence of PP6 activity. PMID:26462736

  2. The novel combination of chlorpromazine and pentamidine exerts synergistic antiproliferative effects through dual mitotic action.

    PubMed

    Lee, Margaret S; Johansen, Lisa; Zhang, Yanzhen; Wilson, Amy; Keegan, Mitchell; Avery, William; Elliott, Peter; Borisy, Alexis A; Keith, Curtis T

    2007-12-01

    Combination therapy has proven successful in treating a wide variety of aggressive human cancers. Historically, combination treatments have been discovered through serendipity or lengthy trials using known anticancer agents with similar indications. We have used combination high-throughput screening to discover the unexpected synergistic combination of an antiparasitic agent, pentamidine, and a phenothiazine antipsychotic, chlorpromazine. This combination, CRx-026, inhibits the growth of tumor cell lines in vivo more effectively than either pentamidine or chlorpromazine alone. Here, we report that CRx-026 exerts its antiproliferative effect through synergistic dual mitotic action. Chlorpromazine is a potent and specific inhibitor of the mitotic kinesin KSP/Eg5 and inhibits tumor cell proliferation through mitotic arrest and accumulation of monopolar spindles. Pentamidine treatment results in chromosomal segregation defects and delayed progression through mitosis, consistent with inhibition of the phosphatase of regenerating liver family of phosphatases. We also show that CRx-026 synergizes in vitro and in vivo with the microtubule-binding agents paclitaxel and vinorelbine. These data support a model where dual action of pentamidine and chlorpromazine in mitosis results in synergistic antitumor effects and show the importance of systematic screening for combinations of targeted agents.

  3. Cytological characteristics and classification of spindle inhibitors according to their effects on segmentation mitoses.

    PubMed

    Sentein, P; Ates, Y

    1978-01-01

    The effects of spindle inhibitors and of protein synthesis inhibitors on segmentation mitoses allow us to classify them into six groups : 1. Colchicine type : destruction of the whole achromatic apparatus and centrospheres without storing of dense bodies; 2. Quinoline type : same effect on the achromatic apparatus, but blocked centrospheres with accumulation of dense bodies; 3. Chloralhydrate type : Incomplete destruction of achromatic apparatus, spindle residue which maintains the chromosomes in a star shape, inactive centrospheres sequestered by the reticulum, but without accumulation of dense bodies; 4. Phenylurethane type : Incomplete and reversible action, which leads to easy production of pluripolar mitoses; 5. Carboxylic acid type : dissociation of the spindle, sometimes with blocking of the centrosphere, together with profound chromosome changes without primitive breaks; the intensity and quality of their action is related to the number of carbon atoms in the acid considered; 6. Protein synthesis inhibitor type : (cycloheximide, pederin) characterized by a stop of the nuclear cycle at telo-prophase when the action is sufficient, chromosome abnormalities, sometimes, reduced to strings of beads, and freeing of asters; at weaker concentrations mitosis is possible, but the congression of chromosomes at the equator is abnormal because of functional disturbance of the kinetochores. The nature and grading of these effects, their association (or non - association) to chromosome damage, the soundness of the spindle when only the chromosomes are affected (nitrogen mustard) make this one of the tests which gives the most specific data about the action of antimitotic substances.

  4. Intrafusal muscle fibre types in frog spindles.

    PubMed

    Diwan, F H; Ito, F

    1989-04-01

    Muscle spindles from bullfrog semitendinosus, iliofibularis and sartorius muscles were examined with light and electron microscopy. Four types of intrafusal muscle fibre were identified according to their diameter, central nucleation and reticular zone arrangement: a large nuclear bag fibre, a medium nuclear bag fibre, and two types of small nuclear chain fibres with and without a reticular zone, respectively. It is suggested that they are comparable to the nuclear bag1, bag2 and chain fibres in mammalian muscle spindles.

  5. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1(I4895T/wt) mouse model of core myopathy.

    PubMed

    Zvaritch, Elena; MacLennan, David H

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1(I4895T/wt) (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies.

  6. DRG1 is a potential oncogene in lung adenocarcinoma and promotes tumor progression via spindle checkpoint signaling regulation

    PubMed Central

    Lu, Li; Lv, Yanrong; Dong, Ji; Hu, Shaohua; Peng, Ruiyun

    2016-01-01

    Developmentally regulated GTP binding protein 1 (DRG1), a member of the DRG family, plays important roles in regulating cell growth. However, the molecular basis of DRG1 in cell proliferation regulation and the relationship between DRG1 and tumor progression remain poorly understood. Here, we demonstrate that DRG1 is elevated in lung adenocarcinomas while weakly expressed in adjacent lung tissues. DRG1 knockdown causes growth inhibition of tumor cells by significantly increasing the proportion of cells in M phase. Overexpression of DRG1 leads to chromosome missegregation which is an important index for tumorigenesis. Interestingly, ectopic of DRG1 reduces taxol induced apoptosis of lung adenocarcinoma cells. Mechanistic analyses confirm that DRG1 localizes at mitotic spindles in dividing cells and binds to spindle checkpoint signaling proteins in vivo. These studies highlight the expanding role of DRG1 in tumorigenesis and reveal a mechanism of DRG1 in taxol resistance. PMID:27626498

  7. A rare spindle-cell variant of non-Hodgkin's lymphoma of the mandible

    PubMed Central

    Srikant, N; Yinti, Shanmukha Raviteja; Baliga, Mohan; Kini, Hema

    2016-01-01

    A 64-year-old male farmer presented with a rapidly progressive swelling of the left mandible since 6 months. The swelling was firm to hard, diffuse, nontender, obliterating the vestibule with paresthesia of lower lip. The cone beam computed tomography imaging revealed an ill-defined, moth-eaten radiolucency with destruction of the buccal and lingual cortical plates. The rapid growth and aggressive behavior of the lesion coupled with guidance from the patient's previous reports from the incisional biopsy and fine needle aspiration cytology warranted a mandibular resection. Microscopic examination showed an encapsulated lesion situated in the connective tissue containing a mixture of proliferating spindle-shaped cells arranged in fascicles and round cells infiltrating into the connective tissue stroma and bone. The neoplastic cells exhibited atypical features such as pleomorphism, hyperchromatism and increased mitotic figures with noncleaved nuclei. A working diagnosis of a spindle-cell sarcoma was arrived at with various differentials provided such as fibrosarcoma, rhabdomyosarcoma, leiomyosarcoma, malignant peripheral nerve sheath tumor, Langerhans cell histiocytosis and lymphoma and stating the need for immunohistochemistry to subtype the tumor. The neoplastic cells were negative for Van Gieson's stain and Masson's trichrome. Immunohistochemical analysis performed using desmin, smooth muscle actin, S-100 and CD1a in a bid to determine the phenotype of the tumor and rule out the previously stated differentials were all negative for the lesion. Lymphoid markers such as leukocyte common antigen and CD20 (cluster differentiation marker for B-cells) showed positivity in spindle-shaped cells as well as round cells indicating the tumor to be a lymphoproliferative lesion of B-cell type. A final diagnosis of “spindle-cell variant of non-Hodgkin's lymphoma” was rendered based on the immunohistochemical profile. PMID:27194875

  8. Suppression of spindly delays mitotic exit and exacerbates cell death response of cancer cells treated with low doses of paclitaxel.

    PubMed

    Silva, Patrícia M A; Ribeiro, Nilza; Lima, Raquel T; Andrade, Cláudia; Diogo, Vânia; Teixeira, Joana; Florindo, Cláudia; Tavares, Álvaro; Vasconcelos, M Helena; Bousbaa, Hassan

    2017-02-27

    Microtubule-targeting agents (MTAs) are used extensively for the treatment of diverse types of cancer. They block cancer cells in mitosis through the activation of the spindle assembly checkpoint (SAC), the surveillance mechanism that ensures accurate chromosome segregation at the onset of anaphase. However, the cytotoxic activity of MTAs is limited by premature mitotic exit (mitotic slippage) due to SAC silencing. Here we have explored the dual role of the protein Spindly in chromosome attachments and SAC silencing to analyze the consequences of its depletion on the viability of tumor cells treated with clinically relevant doses of paclitaxel. As expected, siRNA-mediated Spindly suppression induced chromosome misalignment and accumulation of cells in mitosis. Remarkably, these cells were more sensitive to low-doses of paclitaxel. Sensitization was due to an increase in the length of mitotic arrest and high frequency of multinucleated cells, both correlated with an exacerbated post-mitotic cell death response as determined by cell fate profiling. Thus, by affecting both SAC silencing and chromosome attachment, Spindly targeting offers a double-edged sword that potentiates tumor cell killing by clinically relevant doses of paclitaxel, providing a rationale for combination chemotherapy against cancer.

  9. The budding yeast Polo-like kinase Cdc5 is released from the nucleus during anaphase for timely mitotic exit.

    PubMed

    Botchkarev, Vladimir V; Rossio, Valentina; Yoshida, Satoshi

    2014-01-01

    Polo-like kinases are important regulators of multiple mitotic events; however, how Polo-like kinases are spatially and temporally regulated to perform their many tasks is not well understood. Here, we examined the subcellular localization of the budding yeast Polo-like kinase Cdc5 using a functional Cdc5-GFP protein expressed from the endogenous locus. In addition to the well-described localization of Cdc5 at the spindle pole bodies (SPBs) and the bud neck, we found that Cdc5-GFP accumulates in the nucleus in early mitosis but is released to the cytoplasm in late mitosis in a manner dependent on the Cdc14 phosphatase. This Cdc5 release from the nucleus is important for mitotic exit because artificial sequestration of Cdc5 in the nucleus by addition of a strong nuclear localization signal (NLS) resulted in mitotic exit defects. We identified a key cytoplasmic target of Cdc5 as Bfa1, an inhibitor of mitotic exit. Our study revealed a novel layer of Cdc5 regulation and suggests the existence of a possible coordination between Cdc5 and Cdc14 activity.

  10. Curcumin-treated cancer cells show mitotic disturbances leading to growth arrest and induction of senescence phenotype.

    PubMed

    Mosieniak, Grażyna; Sliwinska, Małgorzata A; Przybylska, Dorota; Grabowska, Wioleta; Sunderland, Piotr; Bielak-Zmijewska, Anna; Sikora, Ewa

    2016-05-01

    Cellular senescence is recognized as a potent anticancer mechanism that inhibits carcinogenesis. Cancer cells can also undergo senescence upon chemo- or radiotherapy. Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, shows anticancer properties both in vitro and in vivo. Previously, we have shown that treatment with curcumin leads to senescence of human cancer cells. Now we identified the molecular mechanism underlying this phenomenon. We observed a time-dependent accumulation of mitotic cells upon curcumin treatment. The time-lapse analysis proved that those cells progressed through mitosis for a significantly longer period of time. A fraction of cells managed to divide or undergo mitotic slippage and then enter the next phase of the cell cycle. Cells arrested in mitosis had an improperly formed mitotic spindle and were positive for γH2AX, which shows that they acquired DNA damage during prolonged mitosis. Moreover, the DNA damage response pathway was activated upon curcumin treatment and the components of this pathway remained upregulated while cells were undergoing senescence. Inhibition of the DNA damage response decreased the number of senescent cells. Thus, our studies revealed that the induction of cell senescence upon curcumin treatment resulted from aberrant progression through the cell cycle. Moreover, the DNA damage acquired by cancer cells, due to mitotic disturbances, activates an important molecular mechanism that determines the potential anticancer activity of curcumin.

  11. Roles of different pools of the mitotic checkpoint complex and the mechanisms of their disassembly

    PubMed Central

    Eytan, Esther; Sitry-Shevah, Danielle; Teichner, Adar; Hershko, Avram

    2013-01-01

    The mitotic (or spindle assembly) checkpoint system prevents premature separation of sister chromatids in mitosis. When the checkpoint is turned on, the mitotic checkpoint complex (MCC) inhibits the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C). MCC is composed of the checkpoint proteins BubR1, Bub3, and Mad2 associated with the APC/C activator Cdc20. The mechanisms of the assembly of MCC when the checkpoint is turned on, and of its disassembly when the checkpoint is inactivated, are not sufficiently understood. Previous reports indicated that APC/C-mediated polyubiquitylation of Cdc20 in MCC is required for the dissociation of APC/C-associated MCC, but not of free MCC. The pool of free MCC is disassembled by an ATP-dependent process stimulated by the Mad2-binding protein p31comet. It remained unknown whether free MCC is the precursor or the dissociation product of APC/C-bound MCC. By characterizing the mechanisms of the disassembly of APC/C-bound MCC in a purified system, we find that it cannot be the source of free MCC, because it is bound at high affinity and is released only in ubiquitylated or partially disassembled forms. By the use of a cell-free system from Xenopus eggs that reproduces the mitotic checkpoint, we show that MCC can be assembled in the absence of APC/C in a checkpoint-dependent manner. We propose that when the checkpoint is turned on, free MCC is the precursor of APC/C-bound MCC. When the mitotic checkpoint is extinguished, both APC/C-bound and free MCC pools have to be disassembled to release APC/C from inhibition. PMID:23754430

  12. Cdc5-Dependent Asymmetric Localization of Bfa1 Fine-Tunes Timely Mitotic Exit

    PubMed Central

    Bahk, Young Yil; Song, Kiwon

    2012-01-01

    In budding yeast, the major regulator of the mitotic exit network (MEN) is Tem1, a GTPase, which is inhibited by the GTPase-activating protein (GAP), Bfa1/Bub2. Asymmetric Bfa1 localization to the bud-directed spindle pole body (SPB) during metaphase also controls mitotic exit, but the molecular mechanism and function of this localization are not well understood, particularly in unperturbed cells. We identified four novel Cdc5 target residues within the Bfa1 C-terminus: 452S, 453S, 454S, and 559S. A Bfa1 mutant in which all of these residues had been changed to alanine (Bfa14A) persisted on both SPBs at anaphase and was hypo-phosphorylated, despite retaining its GAP activity for Tem1. A Bfa1 phospho-mimetic mutant in which all of these residues were switched to aspartate (Bfa14D) always localized asymmetrically to the SPB. These observations demonstrate that asymmetric localization of Bfa1 is tightly linked to its Cdc5-dependent phosphorylation, but not to its GAP activity. Consistent with this, in kinase-defective cdc5-2 cells Bfa1 was not phosphorylated and localized to both SPBs, whereas Bfa14D was asymmetrically localized. BFA14A cells progressed through anaphase normally but displayed delayed mitotic exit in unperturbed cell cycles, while BFA14D cells underwent mitotic exit with the same kinetics as wild-type cells. We suggest that Cdc5 induces the asymmetric distribution of Bfa1 to the bud-directed SPB independently of Bfa1 GAP activity at anaphase and that Bfa1 asymmetry fine-tunes the timing of MEN activation in unperturbed cell cycles. PMID:22253605

  13. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  14. A defect-driven diagnostic method for machine tool spindles.

    PubMed

    Vogl, Gregory W; Donmez, M Alkan

    2015-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition.

  15. A defect-driven diagnostic method for machine tool spindles

    PubMed Central

    Vogl, Gregory W.; Donmez, M. Alkan

    2016-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition. PMID:28065985

  16. Sleep Spindles as Facilitators of Memory Formation and Learning.

    PubMed

    Ulrich, Daniel

    2016-01-01

    Over the past decades important progress has been made in understanding the mechanisms of sleep spindle generation. At the same time a physiological role of sleep spindles is starting to be revealed. Behavioural studies in humans and animals have found significant correlations between the recall performance in different learning tasks and the amount of sleep spindles in the intervening sleep. Concomitant neurophysiological experiments showed a close relationship between sleep spindles and other sleep related EEG rhythms as well as a relationship between sleep spindles and synaptic plasticity. Together, there is growing evidence from several disciplines in neuroscience for a participation of sleep spindles in memory formation and learning.

  17. Corticothalamic Feedback Controls Sleep Spindle Duration In Vivo

    PubMed Central

    Bonjean, Maxime; Baker, Tanya; Lemieux, Maxime; Timofeev, Igor; Sejnowski, Terrence; Bazhenov, Maxim

    2011-01-01

    Spindle oscillations are commonly observed during stage two of non-REM sleep. During sleep spindles, the cerebral cortex and thalamus interact through feedback connections. Both initiation and termination of spindle oscillations are thought to originate in the thalamus, based on thalamic recordings and computational models, although some in vivo results suggest otherwise. Here, we have used computer modeling and in vivo multisite recordings from the cortex and the thalamus in cats to examine the involvement of the cortex in spindle oscillations. We found that although the propagation of spindles depended on synaptic interaction within the thalamus, the initiation and termination of spindle sequences critically involved corticothalamic influences. PMID:21697364

  18. Muscle spindle and fusimotor activity in locomotion.

    PubMed

    Ellaway, Peter H; Taylor, Anthony; Durbaba, Rade

    2015-08-01

    Mammals may exhibit different forms of locomotion even within a species. A particular form of locomotion (e.g. walk, run, bound) appears to be selected by supraspinal commands, but the precise pattern, i.e. phasing of limbs and muscles, is generated within the spinal cord by so-called central pattern generators. Peripheral sense organs, particularly the muscle spindle, play a crucial role in modulating the central pattern generator output. In turn, the feedback from muscle spindles is itself modulated by static and dynamic fusimotor (gamma) neurons. The activity of muscle spindle afferents and fusimotor neurons during locomotion in the cat is reviewed here. There is evidence for some alpha-gamma co-activation during locomotion involving static gamma motoneurons. However, both static and dynamic gamma motoneurons show patterns of modulation that are distinct from alpha motoneuron activity. It has been proposed that static gamma activity may drive muscle spindle secondary endings to signal the intended movement to the central nervous system. Dynamic gamma motoneuron drive appears to prime muscle spindle primary endings to signal transitions in phase of the locomotor cycle. These findings come largely from reduced animal preparations (decerebrate) and require confirmation in freely moving intact animals.

  19. Rare Case of Spindle Cell Haemangioma

    PubMed Central

    Chavva, Sunanda; Garlapati, Komali; Reddy, G. Siva Prasad; Gannepalli, Ashalata

    2015-01-01

    Spindle cell haemangioma (SCH) is a benign vascular lesion which usually occurs on distal extremities. It was previously regarded as haemangioendothelioma and was initially perceived to be low grade angiosarcoma.They are characterized by cavernous blood vessels and spindle cell proliferation. It is now considered as a reactive lesion and conservative surgical excision is preferred treatment. Intraoral occurrence is rare; hence we present a case of SCH in a 33-year-old male that presented as a swelling below the tongue. Histopathology showed well circumscribed proliferating spindle cells attached to vessel walls, dilated vascular spaces. The lesion was positive for CD31 and CD34 markers suggesting it to be of endothelial cell origin. PMID:26266229

  20. Left heart assistance with the spindle pump.

    PubMed

    Hager, J; Brandstaetter, F; Koller, I; Unger, F

    1988-11-01

    The spindle pump--a new attempt at assisted circulation--was developed to prevent the main problems of nonpulsatile blood pumps, i.e. traumatic hemolysis, thrombus formation and sealing. It was essential to achieve adequate output with the lowest possible speed in order to minimize traumatic hemolysis. The result was a spindle pump with three windings in a U-shaped housing driven by an electric motor. Many tests were necessary to establish a prototype. The spindle was completely redesigned several times to reach an acceptable volume output and corresponding pressure output. In animal experiments this final prototype working as a LVAD, with a speed of 5400 RPM circulates 4 liters/min against BP of 110 mmHg. The hemolysis rate has been low in acute and survival experiments (27 hours up to now), and is between 25 and 30 mg/100 ml of free hemoglobin, thus within the normal range.

  1. Epigenetic countermarks in mitotic chromosome condensation.

    PubMed

    van Wely, Karel H M; Mora Gallardo, Carmen; Vann, Kendra R; Kutateladze, Tatiana G

    2017-01-03

    Mitosis in metazoans is characterized by abundant phosphorylation of histone H3 and involves the recruitment of condensin complexes to chromatin. The relationship between the 2 phenomena and their respective contributions to chromosome condensation in vivo remain poorly understood. Recent studies have shown that H3T3 phosphorylation decreases binding of histone readers to methylated H3K4 in vitro and is essential to displace the corresponding proteins from mitotic chromatin in vivo. Together with previous observations, these data provide further evidence for a role of mitotic histone H3 phosphorylation in blocking transcriptional programs or preserving the 'memory' PTMs. Mitotic protein exclusion can also have a role in depopulating the chromatin template for subsequent condensin loading. H3 phosphorylation thus serves as an integral step in the condensation of chromosome arms.

  2. Disruption of a conserved CAP-D3 threonine alters condensin loading on mitotic chromosomes leading to chromosome hypercondensation.

    PubMed

    Bakhrebah, Muhammed; Zhang, Tao; Mann, Jeff R; Kalitsis, Paul; Hudson, Damien F

    2015-03-06

    The condensin complex plays a key role in organizing mitotic chromosomes. In vertebrates, there are two condensin complexes that have independent and cooperative roles in folding mitotic chromosomes. In this study, we dissect the role of a putative Cdk1 site on the condensin II subunit CAP-D3 in chicken DT40 cells. This conserved site has been shown to activate condensin II during prophase in human cells, and facilitate further phosphorylation by polo-like kinase I. We examined the functional significance of this phosphorylation mark by mutating the orthologous site of CAP-D3 (CAP-D3(T1403A)) in chicken DT40 cells. We show that this mutation is a gain of function mutant in chicken cells; it disrupts prophase, results in a dramatic shortening of the mitotic chromosome axis, and leads to abnormal INCENP localization. Our results imply phosphorylation of CAP-D3 acts to limit condensin II binding onto mitotic chromosomes. We present the first in vivo example that alters the ratio of condensin I:II on mitotic chromosomes. Our results demonstrate this ratio is a critical determinant in shaping mitotic chromosomes.

  3. Quantitative assessment of chromosome instability induced through chemical disruption of mitotic progression

    PubMed Central

    Markossian, Sarine; Arnaoutov, Alexei; Saba, Nakhle S.; Larionov, Vladimir; Dasso, Mary

    2016-01-01

    ABSTRACT Most solid tumors are aneuploid, carrying an abnormal number of chromosomes, and they frequently missegregate whole chromosomes in a phenomenon termed chromosome instability (CIN). While CIN can be provoked through disruption of numerous mitotic pathways, it is not clear which of these mechanisms are most critical, or whether alternative mechanisms could also contribute significantly in vivo. One difficulty in determining the relative importance of candidate CIN regulators has been the lack of a straightforward, quantitative assay for CIN in live human cells: While gross mitotic abnormalities can be detected visually, moderate levels of CIN may not be obvious, and are thus problematic to measure. To address this issue, we have developed the first Human Artificial Chromosome (HAC)-based quantitative live-cell assay for mitotic chromosome segregation in human cells. We have produced U2OS-Phoenix cells carrying the alphoidtetO-HAC encoding copies of eGFP fused to the destruction box (DB) of anaphase promoting complex/cyclosome (APC/C) substrate hSecurin and sequences encoding the tetracycline repressor fused to mCherry (TetR-mCherry). Upon HAC missegregation, daughter cells that do not obtain a copy of the HAC are GFP negative in the subsequent interphase. The HAC can also be monitored live following the TetR-mCherry signal. U2OS-Phoenix cells show low inherent levels of CIN, which can be enhanced by agents that target mitotic progression through distinct mechanisms. This assay allows direct detection of CIN induced by clinically important agents without conspicuous mitotic defects, allowing us to score increased levels of CIN that fall below the threshold required for discernable morphological disruption. PMID:27104376

  4. Nuclear shape, growth and integrity in the closed mitosis of fission yeast depend on the Ran-GTPase system, the spindle pole body and the endoplasmic reticulum.

    PubMed

    Gonzalez, Yanira; Meerbrey, Kristen; Chong, Jennifer; Torii, Yoshihiro; Padte, Neal N; Sazer, Shelley

    2009-07-15

    The double lipid bilayer of the nuclear envelope (NE) remains intact during closed mitosis. In the fission yeast Schizosaccharomyces pombe, the intranuclear mitotic spindle has envelope-embedded spindle pole bodies (SPB) at its ends. As the spindle elongates and the nucleus divides symmetrically, nuclear volume remains constant but nuclear area rapidly increases by 26%. When Ran-GTPase function is compromised in S. pombe, nuclear division is strikingly asymmetrical and the newly synthesized SPB is preferentially associated with the smaller nucleus, indicative of a Ran-dependent SPB defect that interferes with symmetrical nuclear division. A second defect, which specifically influences the NE, results in breakage of the NE upon spindle elongation. This defect, but not asymmetric nuclear division, is partially rescued by slowing spindle elongation, stimulating endoplasmic reticulum (ER) proliferation or changing conformation of the ER membrane. We propose that redistribution of lipid within the ER-NE network is crucial for mitosis-specific NE changes in both open and closed mitosis.

  5. Knockdown of Dystrophin Dp71 Impairs PC12 Cells Cycle: Localization in the Spindle and Cytokinesis Structures Implies a Role for Dp71 in Cell Division

    PubMed Central

    Villarreal-Silva, Marcela; Centeno-Cruz, Federico; Suárez-Sánchez, Rocío; Garrido, Efraín; Cisneros, Bulmaro

    2011-01-01

    The function of dystrophin Dp71 in neuronal cells remains to be established. Previously, we revealed the involvement of this protein in both nerve growth factor (NGF)-induced neuronal differentiation and cell adhesion by isolation and characterization of PC12 neuronal cells with depleted levels of Dp71. In this work, a novel phenotype of Dp71-knockdown cells was characterized, which is their delayed growth rate. Cell cycle analyses revealed an altered behavior of Dp71-depleted cells, which consists of a delay in G0/G1 transition and an increase in apoptosis during nocodazole-induced mitotic arrest. Dp71 associates with lamin B1 and β-dystroglycan, proteins involved in aspects of the cell division cycle; therefore, we compared the distribution of Dp71 with that of lamin B1 and β-dystroglycan in PC12 cells at mitosis and cytokinesis by means of immunofluorescence and confocal microscopy analysis. All of these three proteins exhibited a similar immunostaining pattern, localized at mitotic spindle, cleavage furrow, and midbody. It is noteworthy that a drastic decreased staining in mitotic spindle, cleavage furrow, and midbody was observed for both lamin B1 and β-dystroglycan in Dp71-depleted cells. Furthermore, we demonstrated the interaction of Dp71 with lamin B1 in PC12 cells by immunoprecipitation and pull-down assays, and importantly, we revealed that knockdown of Dp71 expression caused a marked reduction in lamin B1 levels and altered localization of the nuclear envelope protein emerin. Our data indicate that Dp71 is a component of the mitotic spindle and cytokinesis multi-protein apparatuses that might modulate the cell division cycle by affecting lamin B1 and β-dystroglycan levels. PMID:21886794

  6. Dynactin-dependent cortical dynein and spherical spindle shape correlate temporally with meiotic spindle rotation in Caenorhabditis elegans

    PubMed Central

    Crowder, Marina E.; Flynn, Jonathan R.; McNally, Karen P.; Cortes, Daniel B.; Price, Kari L.; Kuehnert, Paul A.; Panzica, Michelle T.; Andaya, Armann; Leary, Julie A.; McNally, Francis J.

    2015-01-01

    Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin. PMID:26133383

  7. Sleep spindles in Parkinson's disease may predict the development of dementia.

    PubMed

    Latreille, Véronique; Carrier, Julie; Lafortune, Marjolaine; Postuma, Ronald B; Bertrand, Josie-Anne; Panisset, Michel; Chouinard, Sylvain; Gagnon, Jean-François

    2015-02-01

    Sleep disturbances and cognitive impairment are common non-motor manifestations of Parkinson's disease (PD). Recent studies suggest that sleep spindles and slow waves play a role in brain plasticity mechanisms and are associated with cognitive performance. However, it remains unknown whether these sleep parameters could serve as markers of cognitive decline in PD. Therefore, we examined whether alterations in sleep spindles and slow waves at baseline visit were associated with increased likelihood of developing dementia at follow-up in PD. Sixty-eight nondemented PD patients (64.9 ± 8.8 years old; 46 men) participated in the study, along with 47 healthy individuals (65.0 ± 10.6 years old; 30 men). All participants underwent baseline polysomnographic recording and a comprehensive neuropsychological assessment. Sleep spindles (12-15 Hz) and slow waves (>75 μV and <4 Hz) were automatically detected on all-night non-rapid eye movement sleep electroencephalography. At follow-up (mean: 4.5 years later), 18 PD patients developed dementia (70.2 ± 7.6 years old; 13 men) and 50 remained dementia-free (63.0 ± 8.5 years old; 33 men). Sleep spindle density and amplitude were lower in PD patients who converted to dementia compared with both patients who remained dementia-free and controls, mostly in posterior cortical regions (p < 0.05). Dementia-free PD patients were intermediate between dementia patients and controls, with lower baseline sleep spindle density in all cortical areas compared with controls (p < 0.01). In demented PD patients, lower sleep spindle amplitude in parietal and occipital areas was associated with poorer visuospatial abilities. Although slow wave amplitude was lower in PD patients compared with controls (p < 0.0001), no difference was observed between those who developed or did not develop dementia. Results demonstrate non-rapid eye movement sleep electroencephalographic abnormalities in PD patients. Sleep spindle activity was particularly impaired

  8. THE DIRECT ISOLATION OF THE MITOTIC APPARATUS

    PubMed Central

    Mazia, Daniel; Mitchison, J. M.; Medina, Heitor; Harris, Patricia

    1961-01-01

    A method for isolating the mitotic apparatus from dividing sea urchin eggs without the use of ethyl alcohol or of detergents is described. In the present method, the eggs are dispersed directly in a medium containing 1 M (to 1.15 M) sucrose, 0.15 M dithiodiglycol, and 0.001 M Versene at pH 6, releasing the visibly intact mitotic apparatus. The method is designed for studies of enzyme activities, lipid components, and the variables affecting the stability of the apparatus. PMID:13768661

  9. Zona pellucida birefringence and meiotic spindle visualisation of human oocytes are not influenced by IVM technology.

    PubMed

    Omidi, Marjan; Khalili, Mohammad Ali; Ashourzadeh, Sareh; Rahimipour, Marzieh

    2014-03-01

    The aim of the present study was to investigate the relationship between the presence of the meiotic spindle and zona pellucida (ZP) birefringence with morphology of in vivo- and in vitro-matured human oocytes. Germinal vesicles (n=47) and MI (n=38) oocytes obtained from stimulated ovaries of patients undergoing intracytoplasmic sperm injection (ICSI) underwent IVM. Using a PolScope (OCTAX PolarAID; Octax, Herbon, Germany), the presence of spindles and ZP birefringence was assessed in both in vivo-matured (n=56) and IVM (n=56) oocytes. In addition, the morphology of each matured oocyte was evaluated microscopically. There were insignificant differences for ZP birefringence and meiotic spindle between the in vivo-matured and IVM MII oocytes. Subanalysis revealed that the rates of morphologically abnormal oocytes did not differ significantly between the two groups, except in the case of irregular shape (P=0.001), refractile body (P=0.001) and fragmented polar body (P=0.03), which were higher in IVM oocytes. In the case of in vivo-matured oocytes, a significantly higher percentage of oocytes with intracytoplasmic and both intra- and extracytoplasmic abnormalities have a low birefringent ZP (P=0.007 and P=0.02, respectively). There was no relationship between morphological abnormalities and spindle detection. The findings suggest that clinical IVM is a safe technology that maintains the high maturation rate and integrity of oocytes. In addition, the use of the non-invasive PolScope is recommended for the detection of oocytes most suitable for ICSI.

  10. Mitosis-specific phosphorylation of PML at T409 regulates spindle checkpoint.

    PubMed

    Jin, J; Liu, J

    2016-08-31

    During mitosis, Promyelocytic leukemia nuclear bodies (PML NBs) change dramatically in morphology and composition, but little is known about function of PML in mitosis. Here, we show that PML is phosphorylated at T409 (PML p409) in a mitosis-specific manner. More importantly, PML p409 contributes to maintain the duration of pro-metaphase and regulates spindle checkpoint. Deficient PML p409 caused a shortening of pro-metaphase and challenged the nocodazole-triggered mitotic arrest. T409A mutation led to a higher frequency of misaligned chromosomes on metaphase plate, and subsequently death in late mitosis. In addition, inhibition of PML p409 repressed growth of tumor cells, suggesting that PML p409 is a potential target for cancer therapy. Collectively, our study demonstrated an important phosphorylated site of PML, which contributed to explore the role of PML in mitosis.

  11. Small molecule targeting the Hec1/Nek2 mitotic pathway suppresses tumor cell growth in culture and in animal

    PubMed Central

    Wu, Guikai; Qiu, Xiao-Long; Zhou, Longen; Zhu, Jiewen; Chamberlin, Richard; Lau, Johnson; Chen, Phang-Lang; Lee, Wen-Hwa

    2009-01-01

    Hec1 is a conserved mitotic regulator critical for spindle checkpoint control, kinetochore functionality and cell survival. Overexpression of Hec1 has been detected in a variety of human cancers and is linked to poor prognosis of primary breast cancers. Through a chemical genetic screening, we have identified a small molecule, INH1, which specifically disrupts the Hec1/Nek2 interaction via direct Hec1 binding. Treating cells with INH1 triggered reduction of kinetochore-bound Hec1 as well as global Nek2 protein level, consequently leading to metaphase chromosome misalignment, spindle aberrancy and eventual cell death. INH1 effectively inhibited the proliferation of multiple human breast cancer cell lines in culture (GI50 10~21 μM). Furthermore, treatment with INH1 retarded tumor growth in a nude mouse model bearing xenografts derived from the human breast cancer line MDA-MB-468, with no apparent side effects. This study suggests that the Hec1/Nek2 pathway may serve as a novel mitotic target for cancer intervention by small compounds. PMID:18922912

  12. Localization of the Microtubule End Binding Protein EB1 Reveals Alternative Pathways of Spindle Development in Arabidopsis Suspension CellsW⃞

    PubMed Central

    Chan, Jordi; Calder, Grant; Fox, Samantha; Lloyd, Clive

    2005-01-01

    In a previous study on Arabidopsis thaliana suspension cells transiently infected with the microtubule end binding protein AtEB1a–green fluorescent protein (GFP), we reported that interphase microtubules grow from multiple sites dispersed over the cortex, with plus ends forming the characteristic comet-like pattern. In this study, AtEB1a-GFP was used to study the transitions of microtubule arrays throughout the division cycle of cells lacking a defined centrosome. During division, the dispersed origin of microtubules was replaced by a more focused pattern with the plus end comets growing away from sites associated with the nuclear periphery. The mitotic spindle then evolved in two quite distinct ways depending on the presence or absence of the preprophase band (PPB): the cells displaying outside-in as well as inside-out mitotic pathways. In those cells possessing a PPB, the fusion protein labeled material at the nuclear periphery that segregated into two polar caps, perpendicular to the PPB, before nuclear envelope breakdown (NEBD). These polar caps then marked the spindle poles upon NEBD. However, in the population of cells without PPBs, there was no prepolarization of material at the nuclear envelope before NEBD, and the bipolar spindle only emerged clearly after NEBD. Such cells had variable spindle orientations and enhanced phragmoplast mobility, suggesting that the PPB is involved in a polarization event that promotes early spindle pole morphogenesis and subsequent positional stability during division. Astral-like microtubules are not usually prominent in plant cells, but they are clearly seen in these Arabidopsis cells, and we hypothesize that they may be involved in orienting the division plane, particularly where the plane is not determined before division. PMID:15879559

  13. Spindle position control by embedded electromagnetic poles

    NASA Astrophysics Data System (ADS)

    Tsai, N.-C.; Lee, R.-M.

    2010-10-01

    A novel embedded cylindrical-array magnetic actuator (ECAMA) is proposed and verified by experiments to provide sufficient magnetic force for spindle deviation regulation of high-speed milling process. Four I-shape silicon steel columns enclosing the spindle constitute the backbone of the ECAMA. The shape of modified concave-type yokes is designed to reduce the average air gap between magnetic poles and the spindle. In contrast to the conventional AMB (active magnetic bearing) design for which coils are usually wound on the yokes, the copper wire is wound on the I-shape silicon steel columns. As a result, the overall wound coil turns can be much increased. In other words, stronger magnetic force can be induced by ECAMA. On the other hand, to reduce the cost of ECAMA, two pairs of self-sensing modules are employed to replace the gap sensors for measurement of spindle position deviation. In order to verify the efficacy of the proposed ECAMA and the self-sensing module, high-speed milling tests are undertaken. By inspection on the precision and quality of the finish surface of workpiece, the superiority of ECAMA and the self-sensing module are assured.

  14. Spinning Wool with a Hand Spindle.

    ERIC Educational Resources Information Center

    Kren, Margo

    1982-01-01

    Describes an eight-week program in which 8- to 14-year-olds learned to spin raw wool into yarn. Students observed wool shearing at a sheep farm, learned to prepare wool for spinning, and spun their own yarn. Detail directions for carding and use of hand spindles are included. (AM)

  15. SELECTIVE EXTRACTION OF ISOLATED MITOTIC APPARATUS

    PubMed Central

    Bibring, Thomas; Baxandall, Jane

    1971-01-01

    Mitotic apparatus isolated from sea urchin eggs has been treated with meralluride sodium under conditions otherwise resembling those of its isolation. The treatment causes a selective morphological disappearance of microtubules while extracting a major protein fraction, probably consisting of two closely related proteins, which constitutes about 10% of mitotic apparatus protein. Extraction of other cell particulates under similar conditions yields much less of this protein. The extracted protein closely resembles outer doublet microtubule protein from sea urchin sperm tail in properties considered typical of microtubule proteins: precipitation by calcium ion and vinblastine, electrophoretic mobility in both acid and basic polyacrylamide gels, sedimentation coefficient, molecular weight, and, according to a preliminary determination, amino acid composition. An antiserum against a preparation of sperm tail outer doublet microtubules cross-reacts with the extract from mitotic apparatus. On the basis of these findings it appears that microtubule protein is selectively extracted from isolated mitotic apparatus by treatment with meralluride, and is a typical microtubule protein. PMID:5543404

  16. Intrinsic and cyclin-dependent kinase-dependent control of spindle pole body duplication in budding yeast.

    PubMed

    Simmons Kovacs, Laura A; Nelson, Christine L; Haase, Steven B

    2008-08-01

    Centrosome duplication must be tightly controlled so that duplication occurs only once each cell cycle. Accumulation of multiple centrosomes can result in the assembly of a multipolar spindle and lead to chromosome mis-segregation and genomic instability. In metazoans, a centrosome-intrinsic mechanism prevents reduplication until centriole disengagement. Mitotic cyclin/cyclin-dependent kinases (CDKs) prevent reduplication of the budding yeast centrosome, called a spindle pole body (SPB), in late S-phase and G2/M, but the mechanism remains unclear. How SPB reduplication is prevented early in the cell cycle is also not understood. Here we show that, similar to metazoans, an SPB-intrinsic mechanism prevents reduplication early in the cell cycle. We also show that mitotic cyclins can inhibit SPB duplication when expressed before satellite assembly in early G1, but not later in G1, after the satellite had assembled. Moreover, electron microscopy revealed that SPBs do not assemble a satellite in cells expressing Clb2 in early G1. Finally, we demonstrate that Clb2 must localize to the cytoplasm in order to inhibit SPB duplication, suggesting the possibility for direct CDK inhibition of satellite components. These two mechanisms, intrinsic and extrinsic control by CDK, evoke two-step system that prevents SPB reduplication throughout the cell cycle.

  17. Mitotic slippage underlies the relationship between p53 dysfunction and the induction of large micronuclei by colcemid.

    PubMed

    Hashimoto, Kiyohiro; Todo, Takeshi

    2013-07-01

    Micronuclei induced by aneugens are larger than those induced by clastogens in both in vitro and in vivo micronucleus (MN) assays. p53 dysfunction increases the formation of large micronuclei following treatment with aneugens; this study sought to identify the mechanisms responsible for this. Treatment with colcemid, both a mitotic inhibitor and an aneugen, induced MN containing two or more chromosomes more frequently in NH32 cells, in which p53 function is compromised, than in TK6 cells, in which p53 is functional. This indicates that p53 dysfunction enhances aneugen-induced chromosome loss or perturbs apoptosis, resulting in the formation of large MN. To examine the former hypothesis, the incidence of chromosome malsegregation in colcemid-treated TK6 and NH32 cells was compared using the cytokinesis-block MN assay. The incidence of chromosome non-disjunction was higher in NH32 cells than in TK6 cells, whereas the incidence of MN containing two or more chromosomes was similar between the two cell lines. To address the involvement of apoptosis in cell cycle progression, examination of chromosome 8 distribution revealed that more mononuclear NH32 than TK6 cells were tetraploid after prolonged mitotic inhibition, which indicated that the more number of NH32 cells may have bypassed the spindle assembly checkpoint via mitotic slippage and progression into the next interphase. Cells that underwent mitotic slippage were likely to contain lagging chromosomes formed via chromosome malsegregation, resulting in MN separated from the main nucleus. The number of TK6 cells containing large MN following colcemid treatment was increased by treatment with a caspase inhibitor in a dose-dependent manner, indicating that TK6 cells with MN normally undergo apoptosis. In conclusion, these findings indicate that mitotic slippage and perturbed apoptosis contribute to the induction of large MN in p53-compromised cells following treatment with colcemid.

  18. Physiological evidence for involvement of a kinesin-related protein during anaphase spindle elongation in diatom central spindles

    PubMed Central

    1992-01-01

    We have developed a new model system for studying spindle elongation in vitro using the pennate, marine diatom Cylindrotheca fusiformis. C. fusiformis can be grown in bulk to high densities while in log phase growth and synchronized by a simple light/dark regime. Isolated spindles can be attained in quantities sufficient for biochemical analysis and spindle tubulin is approximately 5% of the total protein present. The spindle isolation procedure results in a 10-fold enrichment of diatom tubulin and a calculated 40-fold increase in spindle protein. Isolated spindles or spindles in permeabilized cells can elongate in vitro by the same mechanism and with the same pharmacological sensitivities as described for other anaphase B models (Cande and McDonald, 1986; Masuda et al., 1990). Using this model, in vitro spindle elongation rate profiles were developed for a battery of nucleotide triphosphates and ATP analogs. The relative rates of spindle elongation produced by various nucleotide triphosphates parallel relative rates seen for kinesin-based motility in microtubule gliding assays. Likewise ATP analogs that allow discrimination between myosin-, dynein-, and kinesin-mediated motility produce relative spindle elongation rates characteristic of kinesin motility. Also, isolated spindle fractions are enriched for a kinesin related protein as identified by a peptide antibody against a conserved region of the kinesin superfamily. These data suggest that kinesin-like motility contributes to spindle elongation during anaphase B of mitosis. PMID:1447302

  19. The mitotic tensegrity guardian tau protects mammary epithelia from katanin-like1-induced aneuploidy

    PubMed Central

    Sudo, Haruka; Nakajima, Kazunori

    2016-01-01

    The microtubule associated-protein tau has been identified as an effective positive prognostic indicator in breast cancer. To explore the physiological function of tau in early carcinogenesis, endogenous tau was knocked down in primary cultured human mammary epithelial cells. This resulted in chromosome-bridging during anaphase followed by micronucleation, both of which were suppressed by a further katanin-like1 knockdown. We also detected that the exogenously expressed katanin-like1 induction of cellular transformation is prevented by exogenous tau in rat fibroblasts. The mutant katanin-like1 (L123V) identified in breast cancer showed an increase in this transformation capacity as well as microtubule severing activity resistant to tau. The tau knockdown resulted in a loss of the kinetochore fibers on which tau is normally localized. This physical fragility was also observed in isolated tau-knockdown mitotic spindles, supporting the relevance of microtubule damage to the onset of transformation. The karyotyping of tau-knockdown cells showed increased frequency of loss of one X chromosome, further suggesting the involvement of tau in breast tumorigenesis. We propose that tau may contribute to tumor progression by protecting spindle microtubules from excess severing by katanin-like1. We also present data indicating that the microtubule-binding octapeptide NAP is a candidate modifier against the tau deficiency in tumor cells. PMID:27447563

  20. PRL-3 disrupts epithelial architecture by altering the post-mitotic midbody position.

    PubMed

    Luján, Pablo; Varsano, Giulia; Rubio, Teresa; Hennrich, Marco L; Sachsenheimer, Timo; Gálvez-Santisteban, Manuel; Martín-Belmonte, Fernando; Gavin, Anne-Claude; Brügger, Britta; Köhn, Maja

    2016-11-01

    Disruption of epithelial architecture is a fundamental event during epithelial tumorigenesis. We show that the expression of the cancer-promoting phosphatase PRL-3 (PTP4A3), which is overexpressed in several epithelial cancers, in polarized epithelial MDCK and Caco2 cells leads to invasion and the formation of multiple ectopic, fully polarized lumens in cysts. Both processes disrupt epithelial architecture and are hallmarks of cancer. The pathological relevance of these findings is supported by the knockdown of endogenous PRL-3 in MCF-7 breast cancer cells grown in three-dimensional branched structures, showing the rescue from multiple-lumen- to single-lumen-containing branch ends. Mechanistically, it has been previously shown that ectopic lumens can arise from midbodies that have been mislocalized through the loss of mitotic spindle orientation or through the loss of asymmetric abscission. Here, we show that PRL-3 triggers ectopic lumen formation through midbody mispositioning without altering the spindle orientation or asymmetric abscission, instead, PRL-3 accelerates cytokinesis, suggesting that this process is an alternative new mechanism for ectopic lumen formation in MDCK cysts. The disruption of epithelial architecture by PRL-3 revealed here is a newly recognized mechanism for PRL-3-promoted cancer progression.

  1. Fbxo30 Regulates Mammopoiesis by Targeting the Bipolar Mitotic Kinesin Eg5

    PubMed Central

    Liu, Yan; Wang, Yin; Du, Zhanwen; Yan, Xiaoli; Zheng, Pan; Liu, Yang

    2016-01-01

    Fbxo30 is an orphan member of the F-box protein family with no known substrate or function. Here, we report that while Fbxo30−/− mice exhibit normal development, growth, life span, and fertility, the females fail to nurture their offspring due to defective mammopoiesis. Mass spectrometry analysis of Fbxo30-associated proteins revealed that Fbxo30 specifically interacts with the bipolar spindle kinesin EG5 (encoded by Kif11). As a result, Fbxo30 targets Eg5 for ubiquitinylation and controls its oscillation during the cell cycle. Correlated with EG5 dysregulation, Fbxo30−/− mammary epithelial cells exhibit multiple defects in centrosome homeostasis, mitotic spindle formation, and proliferation. Effects on proliferation, centrosome homeostasis, and mammopoiesis in the Fbxo30−/− mice were rescued through normalization of Eg5 activity using shRNA and/or an EG5 inhibitor. Our data reveal the Fbxo30-Eg5 interaction as a critical checkpoint in mammopoiesis and a critical role for ubiquitinylation-regulated Eg5 oscillation in the cell cycle. PMID:27117404

  2. Rho GTPase–independent regulation of mitotic progression by the RhoGEF Net1

    PubMed Central

    Menon, Sarita; Oh, Wonkyung; Carr, Heather S.; Frost, Jeffrey A.

    2013-01-01

    Neuroepithelial transforming gene 1 (Net1) is a RhoA-subfamily–specific guanine nucleotide exchange factor that is overexpressed in multiple human cancers and is required for proliferation. Molecular mechanisms underlying its role in cell proliferation are unknown. Here we show that overexpression or knockdown of Net1 causes mitotic defects. Net1 is required for chromosome congression during metaphase and generation of stable kinetochore microtubule attachments. Accordingly, inhibition of Net1 expression results in spindle assembly checkpoint activation. The ability of Net1 to control mitosis is independent of RhoA or RhoB activation, as knockdown of either GTPase does not phenocopy effects of Net1 knockdown on nuclear morphology, and effects of Net1 knockdown are effectively rescued by expression of catalytically inactive Net1. We also observe that Net1 expression is required for centrosomal activation of p21-activated kinase and its downstream kinase Aurora A, which are critical regulators of centrosome maturation and spindle assembly. These results identify Net1 as a novel regulator of mitosis and indicate that altered expression of Net1, as occurs in human cancers, may adversely affect genomic stability. PMID:23864709

  3. PRL-3 disrupts epithelial architecture by altering the post-mitotic midbody position

    PubMed Central

    Varsano, Giulia; Sachsenheimer, Timo; Brügger, Britta

    2016-01-01

    ABSTRACT Disruption of epithelial architecture is a fundamental event during epithelial tumorigenesis. We show that the expression of the cancer-promoting phosphatase PRL-3 (PTP4A3), which is overexpressed in several epithelial cancers, in polarized epithelial MDCK and Caco2 cells leads to invasion and the formation of multiple ectopic, fully polarized lumens in cysts. Both processes disrupt epithelial architecture and are hallmarks of cancer. The pathological relevance of these findings is supported by the knockdown of endogenous PRL-3 in MCF-7 breast cancer cells grown in three-dimensional branched structures, showing the rescue from multiple-lumen- to single-lumen-containing branch ends. Mechanistically, it has been previously shown that ectopic lumens can arise from midbodies that have been mislocalized through the loss of mitotic