Walther, Sebastian; Stegmayer, Katharina; Federspiel, Andrea; Bohlhalter, Stephan; Wiest, Roland; Viher, Petra V
2017-09-01
Motor abnormalities are frequently observed in schizophrenia and structural alterations of the motor system have been reported. The association of aberrant motor network function, however, has not been tested. We hypothesized that abnormal functional connectivity would be related to the degree of motor abnormalities in schizophrenia. In 90 subjects (46 patients) we obtained resting stated functional magnetic resonance imaging (fMRI) for 8 minutes 40 seconds at 3T. Participants further completed a motor battery on the scanning day. Regions of interest (ROI) were cortical motor areas, basal ganglia, thalamus and motor cerebellum. We computed ROI-to-ROI functional connectivity. Principal component analyses of motor behavioral data produced 4 factors (primary motor, catatonia and dyskinesia, coordination, and spontaneous motor activity). Motor factors were correlated with connectivity values. Schizophrenia was characterized by hyperconnectivity in 3 main areas: motor cortices to thalamus, motor cortices to cerebellum, and prefrontal cortex to the subthalamic nucleus. In patients, thalamocortical hyperconnectivity was linked to catatonia and dyskinesia, whereas aberrant connectivity between rostral anterior cingulate and caudate was linked to the primary motor factor. Likewise, connectivity between motor cortex and cerebellum correlated with spontaneous motor activity. Therefore, altered functional connectivity suggests a specific intrinsic and tonic neural abnormality in the motor system in schizophrenia. Furthermore, altered neural activity at rest was linked to motor abnormalities on the behavioral level. Thus, aberrant resting state connectivity may indicate a system out of balance, which produces characteristic behavioral alterations. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Abnormal behavior and associated risk factors in captive baboons (Papio hamadryas spp.).
Lutz, Corrine K; Williams, Priscilla C; Sharp, R Mark
2014-04-01
Abnormal behavior, ranging from motor stereotypies to self-injurious behavior, has been documented in captive nonhuman primates, with risk factors including nursery rearing, single housing, and veterinary procedures. Much of this research has focused on macaque monkeys; less is known about the extent of and risk factors for abnormal behavior in baboons. Because abnormal behavior can be indicative of poor welfare, either past or present, the purpose of this study was to survey the presence of abnormal behavior in captive baboons and to identify potential risk factors for these behaviors with an aim of prevention. Subjects were 144 baboons (119 females, 25 males) aged 3-29 (median = 9.18) years temporarily singly housed for research or clinical reasons. A 15-min focal observation was conducted on each subject using the Noldus Observer® program. Abnormal behavior was observed in 26% of the subjects, with motor stereotypy (e.g., pace, rock, swing) being the most common. Motor stereotypy was negatively associated with age when first singly housed (P < 0.005) while self-directed behavior (e.g., hair pull, self-bite) was positively associated with the lifetime number of days singly housed (P < 0.05) and the average number of blood draws per year (P < 0.05). In addition, abnormal appetitive behavior was associated with being male (P < 0.05). Although the baboons in this study exhibited relatively low levels of abnormal behavior, the risk factors for these behaviors (e.g., social restriction, routine veterinary procedures, and sex) appear to remain consistent across primate species. © 2013 Wiley Periodicals, Inc.
Cross-species assessments of motor and exploratory behavior related to bipolar disorder.
Henry, Brook L; Minassian, Arpi; Young, Jared W; Paulus, Martin P; Geyer, Mark A; Perry, William
2010-07-01
Alterations in exploratory behavior are a fundamental feature of bipolar mania, typically characterized as motor hyperactivity and increased goal-directed behavior in response to environmental cues. In contrast, abnormal exploration associated with schizophrenia and depression can manifest as prominent withdrawal, limited motor activity, and inattention to the environment. While motor abnormalities are cited frequently as clinical manifestations of these disorders, relatively few empirical studies have quantified human exploratory behavior. This article reviews the literature characterizing motor and exploratory behavior associated with bipolar disorder and genetic and pharmacological animal models of the illness. Despite sophisticated assessment of exploratory behavior in rodents, objective quantification of human motor activity has been limited primarily to actigraphy studies with poor cross-species translational value. Furthermore, symptoms that reflect the cardinal features of bipolar disorder have proven difficult to establish in putative animal models of this illness. Recently, however, novel tools such as the human behavioral pattern monitor provide multivariate translational measures of motor and exploratory activity, enabling improved understanding of the neurobiology underlying psychiatric disorders.
Abnormal experimentally- and behaviorally-induced LTP-like plasticity in focal hand dystonia.
Belvisi, Daniele; Suppa, Antonio; Marsili, Luca; Di Stasio, Flavio; Parvez, Ahmad Khandker; Agostino, Rocco; Fabbrini, Giovanni; Berardelli, Alfredo
2013-02-01
Idiopathic focal hand dystonia (FHD) arises from abnormal plasticity in the primary motor cortex (M1) possibly reflecting abnormal sensori-motor integration processes. In this transcranial magnetic stimulation (TMS) study in FHD, we evaluated changes in motor evoked potentials (MEPs) after intermittent theta burst stimulation (iTBS) and paired associative stimulation (PAS), techniques that elicit different forms of experimentally-induced long-term potentiation (LTP)-like plasticity in M1. We also examined behaviorally-induced LTP-like plasticity as reflected by early motor learning of a simple motor task. We studied 14 patients with FHD and 14 healthy subjects. MEPs were recorded before and after iTBS and PAS at the 25 ms interstimulus interval (PAS(25)) in separate sessions. Subjects did a simple motor task entailing repetitive index finger abductions. To measure early motor learning we tested practice-related improvement in peak velocity and peak acceleration. In FHD patients iTBS failed to elicit the expected MEP changes and PAS(25) induced abnormally increased MEPs in target and non-target muscles. In the experiment testing early motor learning, patients lacked the expected practice-related changes in kinematic variables. In FHD, the degree of early motor learning correlated with patients' clinical features. We conclude that experimentally-induced (iTBS and PAS) and behaviorally-induced LTP-like plasticity are both altered in FHD. Copyright © 2012 Elsevier Inc. All rights reserved.
Cross-species assessments of Motor and Exploratory Behavior related to Bipolar Disorder
Henry, Brook L.; Minassian, Arpi; Young, Jared W.; Paulus, Martin P.; Geyer, Mark A.; Perry, William
2010-01-01
Alterations in exploratory behavior are a fundamental feature of bipolar mania, typically characterized as motor hyperactivity and increased goal-directed behavior in response to environmental cues. In contrast, abnormal exploration associated with schizophrenia and depression can manifest as prominent withdrawal, limited motor activity, and inattention to the environment. While motor abnormalities are cited frequently as clinical manifestations of these disorders, relatively few empirical studies have quantified human exploratory behavior. This article reviews the literature characterizing motor and exploratory behavior associated with bipolar disorder and genetic and pharmacological animal models of the illness. Despite sophisticated assessment of exploratory behavior in rodents, objective quantification of human motor activity has been limited primarily to actigraphy studies with poor cross-species translational value. Furthermore, symptoms that reflect the cardinal features of bipolar disorder have proven difficult to establish in putative animal models of this illness. Recently, however, novel tools such as the Human Behavioral Pattern Monitor provide multivariate translational measures of motor and exploratory activity, enabling improved understanding of the neurobiology underlying psychiatric disorders. PMID:20398694
Cerebellar Influence on Motor Cortex Plasticity: Behavioral Implications for Parkinson’s Disease
Kishore, Asha; Meunier, Sabine; Popa, Traian
2014-01-01
Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration, and normal functioning of these networks. Strong topography-specific connections among the basal ganglia, cerebellum, and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other’s plastic responses and functions. The defective striatal signaling in Parkinson’s disease (PD) could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar, and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD. PMID:24834063
The development of behavioral abnormalities in the motor neuron degeneration (mnd) mouse.
Bolivar, Valerie J; Scott Ganus, J; Messer, Anne
2002-05-24
The motor neuron degeneration (mnd) mouse, which has widespread abnormal accumulating lipoprotein and neuronal degeneration, has a mutation in CLN8, the gene for human progressive epilepsy with mental retardation (EPMR). EPMR is one of the neuronal ceroid lipofuscinoses (NCLs), a group of neurological disorders characterized by autofluorescent lipopigment accumulation, blindness, seizures, motor deterioration, and dementia. The human phenotype of EPMR suggests that, in addition to the motor symptoms previously categorized, various types of progressive behavioral abnormalities would be expected in mnd mice. We have therefore examined exploratory behavior, fear conditioning, and aggression in 2-3 month and 4-5 month old male mnd mice and age-matched C57BL/6 (B6) controls. The mnd mice displayed increased activity with decreased habituation in the activity monitor, poor contextual and cued memory, and heightened aggression relative to B6 controls. These behavioral deficits were most prominent at 4-5 months of age, which is prior to the onset of gross motor symptoms at 6 months. Our results provide a link from the mutation via pathology to a quantifiable multidimensional behavioral phenotype of this naturally occurring mouse model of NCL.
Development of oral motor behavior related to the skill assisted spoon feeding.
van den Engel-Hoek, Lenie; van Hulst, Karen C M; van Gerven, Marjo H J C; van Haaften, Leenke; de Groot, Sandra A F
2014-05-01
Milestones in the typical development of eating skills are considered to be nippling (breast or bottle), eating from a spoon, drinking from a cup, biting and chewing. The purpose of this research was to study the development and consolidation of oral motor behavior related to the skill assisted spoon feeding in young infants. The present study longitudinally investigated the development of this skill in 39 healthy children from the start of spoon feeding until the skill was acquired. The Observation List Spoon Feeding with 7 observation items for oral motor behavior and 6 items for abnormal behavior was used. Results showed that infants between 4 and 8 months of age needed 5.7 weeks (SD 2.1), with a range of 8 weeks (from 2 to 10 weeks) to acquire this skill. No significant correlation (p=.109) between age at start spoon feeding and weeks needed to develop the skill was found. During this period oral motor behavior consolidated and abnormal behavior diminished. With this study it is shown that the period in weeks needed to acquire the oral motor behavior for the skill assisted spoon feeding is important in case of feeding problems. Copyright © 2014 Elsevier Inc. All rights reserved.
Kwak, Sang Su; Jeong, Mikyoung; Choi, Ji Hye; Kim, Daesoo; Min, Hyesun; Yoon, Yoosik; Hwang, Onyou; Meadows, Gary G.; Joe, Cheol O.
2013-01-01
This study reports an amelioration of abnormal motor behaviors in tetrahydrobiopterin (BH4)-deficient Spr −/− mice by the dietary supplementation of tyrosine. Since BH4 is an essential cofactor for the conversion of phenylalanine into tyrosine as well as the synthesis of dopamine neurotransmitter within the central nervous system, the levels of tyrosine and dopamine were severely reduced in brains of BH4-deficient Spr −/− mice. We found that Spr −/− mice display variable ‘open-field’ behaviors, impaired motor functions on the ‘rotating rod’, and dystonic ‘hind-limb clasping’. In this study, we report that these aberrant motor deficits displayed by Spr −/− mice were ameliorated by the therapeutic tyrosine diet for 10 days. This study also suggests that dopamine deficiency in brains of Spr −/− mice may not be the biological feature of aberrant motor behaviors associated with BH4 deficiency. Brain levels of dopamine (DA) and its metabolites in Spr −/− mice were not substantially increased by the dietary tyrosine therapy. However, we found that mTORC1 activity severely suppressed in brains of Spr −/− mice fed a normal diet was restored 10 days after feeding the mice the tyrosine diet. The present study proposes that brain mTORC1 signaling pathway is one of the potential targets in understanding abnormal motor behaviors associated with BH4-deficiency. PMID:23577163
Nonverbal Social Communication and Gesture Control in Schizophrenia
Walther, Sebastian; Stegmayer, Katharina; Sulzbacher, Jeanne; Vanbellingen, Tim; Müri, René; Strik, Werner; Bohlhalter, Stephan
2015-01-01
Schizophrenia patients are severely impaired in nonverbal communication, including social perception and gesture production. However, the impact of nonverbal social perception on gestural behavior remains unknown, as is the contribution of negative symptoms, working memory, and abnormal motor behavior. Thus, the study tested whether poor nonverbal social perception was related to impaired gesture performance, gestural knowledge, or motor abnormalities. Forty-six patients with schizophrenia (80%), schizophreniform (15%), or schizoaffective disorder (5%) and 44 healthy controls matched for age, gender, and education were included. Participants completed 4 tasks on nonverbal communication including nonverbal social perception, gesture performance, gesture recognition, and tool use. In addition, they underwent comprehensive clinical and motor assessments. Patients presented impaired nonverbal communication in all tasks compared with controls. Furthermore, in contrast to controls, performance in patients was highly correlated between tasks, not explained by supramodal cognitive deficits such as working memory. Schizophrenia patients with impaired gesture performance also demonstrated poor nonverbal social perception, gestural knowledge, and tool use. Importantly, motor/frontal abnormalities negatively mediated the strong association between nonverbal social perception and gesture performance. The factors negative symptoms and antipsychotic dosage were unrelated to the nonverbal tasks. The study confirmed a generalized nonverbal communication deficit in schizophrenia. Specifically, the findings suggested that nonverbal social perception in schizophrenia has a relevant impact on gestural impairment beyond the negative influence of motor/frontal abnormalities. PMID:25646526
Sleep disorders in children with cerebral palsy: neurodevelopmental and behavioral correlates.
Romeo, Domenico M; Brogna, Claudia; Quintiliani, Michela; Baranello, Giovanni; Pagliano, Emanuela; Casalino, Tiziana; Sacco, Annalisa; Ricci, Daniela; Mallardi, Maria; Musto, Elisa; Sivo, Serena; Cota, Francesco; Battaglia, Domenica; Bruni, Oliviero; Mercuri, Eugenio
2014-02-01
We aimed to estimate the frequency of sleep disorders in children with cerebral palsy (CP) using the Sleep Disturbance Scale for Children (SDSC) and to evaluate the relations between sleep disorders and motor, cognitive, and behavioral problems. One hundred and sixty-five children with CP ages 6-16 years (mean age, 11years) were assessed using the SDSC, the Gross Motor Function Classification System (GMFCS), the Wechsler Intelligence Scale for Children and the Child Behavior Check List (CBCL) to assess sleep, motor, cognitive, and behavioral problems, respectively. An abnormal total sleep score was found in 19% of children with CP; more than 40% of children had an abnormal score on at least one SDSC factor. The SDSC total score was significantly associated (P<.01) with mental retardation, epilepsy, CBCL scores, and level 5 on the GMFCS. Our results confirm that sleep disorders are common in children with cerebral palsy. The relationship between motor and cognitive behavior and epilepsy should be further explored to better understand how these factors influence one another to identify effective treatments and to improve the well-being of the child. Copyright © 2014 Elsevier B.V. All rights reserved.
Alaverdashvili, Mariam; Lapointe, Valerie; Whishaw, Ian Q; Cross, Albert R
2017-01-01
Manganese-enhanced magnetic resonance imaging (MEMRI) has been suggested to be a useful tool to visualize and map behavior-relevant neural populations at large scale in freely behaving rodents. A primary concern in MEMRI applications is Mn 2+ toxicity. Although a few studies have specifically examined toxicity on gross motor behavior, Mn 2+ toxicity on skilled motor behavior was not explored. Thus, the objective of this study was to combine manganese as a functional contrast agent with comprehensive behavior evaluation. We evaluated Mn 2+ effect on skilled reach-to-eat action, locomotion, and balance using a single pellet reaching task, activity cage, and cylinder test, respectively. The tests used are sensitive to the pathophysiology of many neurological and neurodegenerative disorders of the motor system. The behavioral testing was done in combination with a moderate dose of manganese. Behavior was studied before and after a single, intravenous infusion of MnCl 2 (48 mg/kg). The rats were imaged at 1, 3, 5, 7, and 14 days following infusion. The results show that MnCl 2 infusion resulted in detectable abnormalities in skilled reaching, locomotion, and balance that recovered within 3 days compared with the infusion of saline. Because some tests and behavioral measures could not detect motor abnormalities of skilled movements, comprehensive evaluation of motor behavior is critical in assessing the effects of MnCl 2 . The relaxation mapping results suggest that the transport of Mn 2+ into the brain is through the choroid plexus-cerebrospinal fluid system with the primary entry point and highest relaxation rates found in the pituitary gland. Relaxation rates in the pituitary gland correlated with measures of motor skill, suggesting that altered motor ability is related to the level of Mn circulating in the brain. Thus, combined MEMRI and behavioral studies that both achieve adequate image enhancement and are also free of motor skills deficits are difficult to achieve using a single systemic dose of MnCl 2 .
What Behavioral and Psychological Symptoms of Dementia Affect Caregiver Burnout?
Hiyoshi-Taniguchi, Kazuko; Becker, Carl B; Kinoshita, Ayae
2018-01-01
Patients' irritability and aggression have been linked to caregiver depression, but the behaviors that most burden caregivers are not yet definitively identified. This study examines the connection between behavioral and psychological symptoms of dementia (BPSD) and the burnout of caregivers caring for home-dwelling elders with dementia symptoms in Japan. 80 Japanese rural and urban family caregivers completed detailed questionnaires about their experiences in caring for demented family members. We statistically analyzed the results for correlations between types of dementia, Pines Burnout, and Caregiver Distress. BPSD symptom severity significantly correlated with caregiver distress. The dementia symptoms most strongly correlated with caregiver burnout were: aggression, irritability, abnormal motor behavior, and hallucinations. Among the commonest symptoms, apathy, anxiety, and depression did not seriously aggravate caregiver burnout. Caregivers displayed higher burnout facing agitation/aggression, irritability, aberrant motor behavior, and hallucinations. Caregivers' reported distress was surprisingly dissimilar to their burnout scores; patients' delusions and anxiety led to higher distress reporting but not to burnout. Advance diagnosis of BPSD symptoms should be helpful to support nurses and caregivers of dementia patients. Particular support should be considered for caregivers and nurses of patients expressing aggression, irritability, abnormal motor behavior, and hallucination.
Bartlett, Doreen J; Fanning, Jamie E
2003-01-01
The Alberta Infant Motor Scale (AIMS) was used to examine variations in motor development of infants born preterm. Sixty infants attending a Developmental Follow-up Clinic participated. Infants were assessed by physical therapists using the AIMS and independently judged by physicians to be neurodevelopmentally and neurologically "normal," "suspect," or "abnormal." The AIMS clearly differentiated infants in these three categories. Compared to the normative sample, infants judged to be "normal" demonstrated similar motor behaviors, infants judged to be "abnormal" were significantly different across a wide range of items, and infants judged to be "suspect" were significantly different on items requiring antigravity postural control, lower extremity dissociation, and trunk rotation. The AIMS can be used to identify infants developing abnormally, to affirm normalcy in infants developing typically, and to identify motor differences in infants who are neurologically "suspect." In the latter group of infants, the AIMS can be used to provide anticipatory guidance to parents regarding the components of movement they might expect their infants to be developing next.
Dealing with Abnormal Behavior in the Classroom. Fastback 245.
ERIC Educational Resources Information Center
Romney, David M.
This booklet discusses four of the more common classroom behavior disorders with which teachers must deal: hyperactivity, childhood depression, extreme shyness, and aggressive behavior. In the section on hyperactivity, three characteristics--excessive motor activity, inattentiveness, and impulsiveness--are listed as constituting the hyperactivity…
Cortese, Leonardo; Caligiuri, Michael P; Malla, Ashok K; Manchanda, Rahul; Takhar, Jatinder; Haricharan, Raj
2005-06-01
From the very inception of the modern diagnostic scheme for psychotic disorders, abnormalities in motor function have been observed in these conditions. Despite convergence from multiple areas of research supporting the notion that multiple frontal-subcortical circuits regulate motor and limbic behavior, the precise relationship between motor abnormalities and psychopathology has not been elucidated. The goals of this study were to examine the prevalence of extrapyramidal signs (EPS) in first-episode schizophrenia patients and their relationships to three psychopathological dimensions (positive psychosis syndrome, negative syndrome, and disorganization). We assessed EPS using traditional observer-based as well as quantitative instrumental measures in 39 neuroleptic-naive first-episode schizophrenia subjects. Subjects were followed for 6 months after initiating antipsychotic treatment to examine the stability of motor-limbic relationships. Four main findings emerged from this study. First, depending on the measure used the prevalence of dyskinesia prior to treatment ranged from 13% to 20%. The prevalence of parkinsonism ranged from 18% to 28%. Second, severity of dyskinesia was associated with the positive psychotic syndrome; whereas parkinsonism was associated with the positive psychosis, negative syndrome and disorganization. Third, psychopathology improved significantly across all symptom dimensions following antipsychotic treatment, while EPS remained stable. This suggests that some motor abnormalities in schizophrenia may reflect trait characteristics. Fourth, abnormalities on the pre-treatment instrumental measure of parkinsonism predicted greater improvement on positive psychosis symptoms following treatment (p=0.008). Our findings support the notion that neuromotor disturbances may be a core feature of schizophrenia in a substantial proportion of patients and implicate multiple fronto-striatal circuits regulating limbic and neuromotor behavior in schizophrenia.
Visual Behaviors and Adaptations Associated with Cortical and Ocular Impairment in Children.
ERIC Educational Resources Information Center
Jan, J. E.; Groenveld, M.
1993-01-01
This article shows the usefulness of understanding visual behaviors in the diagnosis of various types of visual impairments that are due to ocular and cortical disorders. Behaviors discussed include nystagmus, ocular motor dyspraxia, head position, close viewing, field loss adaptations, mannerisms, photophobia, and abnormal color perception. (JDD)
Sokhadze, Estate M.; Tasman, Allan; Sokhadze, Guela E.; El-Baz, Ayman S.; Casanova, Manuel F.
2015-01-01
Abnormalities in motor skills have been regarded as part of the symptomatology characterizing autism spectrum disorder (ASD). It has been estimated that 80% of subjects with autism display “motor dyspraxia” or clumsiness that are not readily identified in a routine neurological examination. In this study we used behavioral measures, event-related potentials (ERP), and lateralized readiness potential (LRP) to study cognitive and motor preparation deficits contributing to the dyspraxia of autism. A modified Posner cueing task was used to analyze motor preparation abnormalities in children with autism and in typically developing children (N=30/per group). In this task, subjects engage in preparing motor response based on a visual cue, and then execute a motor movement based on the subsequent imperative stimulus. The experimental conditions, such as the validity of the cue and the spatial location of the target stimuli were manipulated to influence motor response selection, preparation, and execution. Reaction time and accuracy benefited from validly cued targets in both groups, while main effects of target spatial position were more obvious in the autism group. The main ERP findings were prolonged and more negative early frontal potentials in the ASD in incongruent trials in both types of spatial location. The LRP amplitude was larger in incongruent trials and had stronger effect in the children with ASD. These effects were better expressed at the earlier stages of LRP, specifically those related to response selection, and showed difficulties at the cognitive phase of stimulus processing rather that at the motor execution stage. The LRP measures at different stages reflect the chronology of cognitive aspects of movement preparation and are sensitive to manipulations of cue correctness, thus representing very useful biomarker in autism dyspraxia research. Future studies may use more advance and diverse manipulations of movement preparation demands in testing more refined specifics of dyspraxia symptoms to investigate functional connectivity abnormalities underlying motor skills deficits in autism. PMID:26377686
Otsuki, Noriyuki; Homma, Takujiro; Fujiwara, Hiroki; Kaneko, Kenya; Hozumi, Yasukazu; Shichiri, Mototada; Takashima, Mizuki; Ito, Junitsu; Konno, Tasuku; Kurahashi, Toshihiro; Yoshida, Yasukazu; Goto, Kaoru; Fujii, Satoshi; Fujii, Junichi
2016-08-01
Trichloroethylene (TCE) has been implicated as a causative agent for Parkinson's disease (PD). The administration of TCE to rodents induces neurotoxicity associated with dopaminergic neuron death, and evidence suggests that oxidative stress as a major player in the progression of PD. Here we report on TCE-induced behavioral abnormality in mice that are deficient in superoxide dismutase 1 (SOD1). Wild-type (WT) and SOD1-deficient (Sod1(-/-)) mice were intraperitoneally administered TCE (500 mg/kg) over a period of 4 weeks. Although the TCE-administrated Sod1(-/-) mice showed marked abnormal motor behavior, no significant differences were observed among the experimental groups by biochemical and histopathological analyses. However, treating mouse neuroblastoma-derived NB2a cells with TCE resulted in the down regulation of the SOD1 protein and elevated oxidative stress under conditions where SOD1 production was suppressed. Taken together, these data indicate that SOD1 plays a pivotal role in protecting motor neuron function against TCE toxicity. Copyright © 2016 Elsevier Inc. All rights reserved.
Neurophysiological Outcomes of mTBI
2017-03-28
position : an experimental approach to timing and working memory deficits in schizophrenia. Journal of abnormal psychology . 2004 Nov; 113(4 ):509 . Gilaie...clinical boys with hyperactive behavior: the effect of methylphenidate on motor timing. Journal of abnormal child psychology . 2003 Jun 1 ;31 (3) :301-13...disorder (ADHD). Journal of abnormal child psychology . 2005 Oct 1 ;33(5):639-54. Toplak ME, Ruckl idge JJ , Hetherington R, John SC, Tannock R. Time
Muthugovindan, Deivasumathy; Singer, Harvey
2009-04-01
This review highlights recent advances in understanding the clinical features, prevalence, and outcomes of motor stereotypy disorders in typically developing children. Longitudinal data indicate that stereotypies in children with normal intelligence show an early age of onset, chronicity, and high prevalence of comorbid difficulties, including tics, obsessive-compulsive behaviors, and attention deficit hyperactivity disorder. The underlying abnormality remains unknown, but there is increasing evidence for Mendelian inheritance and a neurobiological mechanism. Primary motor stereotypies are relatively common in childhood and can be subdivided into three groups (common, head nodding, and complex motor). Movements are similar to those seen in children with autistic spectrum disorders, mental retardation, and sensory deprivation. The role of pharmacotherapy is not established and behavioral therapy can be beneficial.
Vandeleest, Jessica J; McCowan, Brenda; Capitanio, John P
2011-06-01
Laboratory and zoo housed non-human primates sometimes exhibit abnormal behaviors that are thought to reflect reduced wellbeing. Previous research attempted to identify risk factors to aid in the prevention and treatment of these behaviors, and focused on demographic (e.g. sex or age) and experience-related (e.g. single housing or nursery rearing) factors. However, not all animals that display abnormal behavior possess these risk factors and some individuals that possess a risk factor do not show behavioral abnormalities. We hypothesized that other aspects of early experience and individual characteristics might identify animals that were more likely to display one specific abnormal behavior, motor stereotypy (MS). Using logistic regression we explored the influence of early rearing (involving four different types of rearing conditions), and variation in temperament, on likelihood of displaying MS while controlling for previously identified risk factors. Analyses indicated that having a greater proportion of life lived indoors, a greater proportion of life-indoors singly-housed, and a greater number of anesthesias and blood draws significantly increased the risk of displaying MS (P < 0.001). Rearing condition failed to independently predict the display of MS; however significant interactions indicated that single housing had a greater impact on risk for indoor-reared animals versus outdoor-reared animals, and for indoor mother-reared animals versus nursery-reared animals. There were no main effects of temperament, although interactions with rearing were evident: scoring high on Gentle or Nervous was a risk factor for indoor-reared animals but not outdoor-reared animals. The final model accounted for approximately 69.3 % of the variance in the display of MS, and correctly classified 90.6% of animals. These results indicate that previously identified risk factors may impact animals differently depending on the individual's early rearing condition. These results are also the first in non-human primates to demonstrate that individual difference factors, like temperament, could be additional tools to identify animals at highest risk for motor stereotypy.
Luk, Berkley; Veeraragavan, Surabi; Engevik, Melinda; Balderas, Miriam; Major, Angela; Runge, Jessica; Luna, Ruth Ann; Versalovic, James
2018-01-01
Accumulating studies have defined a role for the intestinal microbiota in modulation of host behavior. Research using gnotobiotic mice emphasizes that early microbial colonization with a complex microbiota (conventionalization) can rescue some of the behavioral abnormalities observed in mice that grow to adulthood completely devoid of bacteria (germ-free mice). However, the human infant and adult microbiomes vary greatly, and effects of the neonatal microbiome on neurodevelopment are currently not well understood. Microbe-mediated modulation of neural circuit patterning in the brain during neurodevelopment may have significant long-term implications that we are only beginning to appreciate. Modulation of the host central nervous system by the early-life microbiota is predicted to have pervasive and lasting effects on brain function and behavior. We sought to replicate this early microbe-host interaction by colonizing gnotobiotic mice at the neonatal stage with a simplified model of the human infant gut microbiota. This model consortium consisted of four "infant-type" Bifidobacterium species known to be commensal members of the human infant microbiota present in high abundance during postnatal development. Germ-free mice and mice neonatally-colonized with a complex, conventional murine microbiota were used for comparison. Motor and non-motor behaviors of the mice were tested at 6-7 weeks of age, and colonization patterns were characterized by 16S ribosomal RNA gene sequencing. Adult germ-free mice were observed to have abnormal memory, sociability, anxiety-like behaviors, and motor performance. Conventionalization at the neonatal stage rescued these behavioral abnormalities, and mice colonized with Bifidobacterium spp. also exhibited important behavioral differences relative to the germ-free controls. The ability of Bifidobacterium spp. to improve the recognition memory of both male and female germ-free mice was a prominent finding. Together, these data demonstrate that the early-life gut microbiome, and human "infant-type" Bifidobacterium species, affect adult behavior in a strongly sex-dependent manner, and can selectively recapitulate the results observed when mice are colonized with a complex microbiota.
Schneider, M L
1992-11-01
This prospective study investigated whether mild maternal stress during pregnancy could alter the behavioral and affective responses in rhesus monkey infants in a complex, novel environment. Twenty-four rhesus monkey infants were tested on three occasions at 6 months of age in a novel environment. Twelve infants were derived from mothers exposed to a daily 10-min mild stressor from Day 90 to Day 145 postconception, while 12 were derived from mothers undisturbed during pregnancy. Prenatally stressed infants demonstrated more disturbance behavior, and lower levels of gross motor/exploratory behavior. Moreover, half of the prenatally stressed infants showed an abnormal response, falling asleep, while none of the control infants displayed this behavior. Males exhibited more clinging to surrogates, while females spent more time in gross motor/exploratory behaviors, with prenatally stressed males tending to spend the least time in gross motor/exploratory activity.
ERIC Educational Resources Information Center
Tani, Masayuki; Kanai, Chieko; Ota, Haruhisa; Yamada, Takashi; Watanabe, Hiromi; Yokoi, Hideki; Takayama, Yuko; Ono, Taisei; Hashimoto, Ryuichiro; Kato, Nobumasa; Iwanami, Akira
2012-01-01
People with Asperger's syndrome (AS) experience mental comorbidities, and behavioral symptoms that can deepen social isolation and handicaps. We compared the frequency of mental and behavioral symptoms, motor abnormality, and life history between adults with AS and those with no mental disorders but with disturbance of social functions and…
Andersen, Stine Linding; Andersen, Stig; Liew, Zeyan; Vestergaard, Peter; Olsen, Jørn
2018-02-01
Abnormal maternal thyroid function in pregnancy may impair fetal brain development, but more evidence is needed to refine and corroborate the hypothesis. To estimate the association between maternal thyroid function in early pregnancy and neuropsychological performance of the child at 5 years of age. Follow-up study. A cohort of 1153 women and their children sampled from the Danish National Birth Cohort. Maternal thyroid-stimulating hormone (TSH) and free thyroxine (fT4) were measured in stored biobank sera from early pregnancy. Child neuropsychological test results (Wechsler Intelligence Scale/Test of Everyday Attention), test of motor function (Movement Assessment Battery), and results of parent and teacher reports (Behavior Rating Inventory of Executive Function/Strengths and Difficulties Questionnaire). Altogether 145 children (12.6%) were born to mothers with abnormal thyroid function in the early pregnancy. High maternal TSH and low fT4 were associated with lower child verbal intelligence quotient (adjusted mean difference TSH ≥ 10 mIU/L vs 0.1 to 2.49 mIU/L, -8.9 [95% confidence interval (CI), -15 to -2.4]; fT4 < 10 pmol/l vs 12.0 to 18.99 pmol/l, -13 [95% CI, -19 to -7.3]). Abnormal maternal thyroid function was also associated with adverse motor function and teacher-reported problems of executive function and behavior, and these associations were dominated by exposure to maternal hypothyroxinemia. Maternal thyroid hormone abnormalities were associated with adverse neuropsychological function of the child at 5 years of age. For intelligence, marked hypothyroidism was important, whereas for motor function and executive and behavior problems, maternal hypothyroxinemia was predominant. Copyright © 2017 Endocrine Society
Abnormalities of social interactions and home-cage behavior in a mouse model of Rett syndrome.
Moretti, Paolo; Bouwknecht, J Adriaan; Teague, Ryan; Paylor, Richard; Zoghbi, Huda Y
2005-01-15
Rett syndrome (RTT) is an autistic spectrum disorder with a known genetic basis. RTT is caused by loss of function mutations in the X-linked gene MECP2 and is characterized by loss of acquired motor, social and language skills in females beginning at 6-18 months of age. MECP2 mutations also cause non-syndromic mental retardation in males and females, and abnormalities of MeCP2 expression in the brain have been found in autistic spectrum disorders. We studied home-cage behavior and social interactions in a mouse model of RTT (Mecp2(308/Y)) carrying a mutation similar to common RTT causing alleles. Young adult mutant mice showed abnormal home-cage diurnal activity in the absence of motor skill deficits. Nesting, a phenotype related to social behavior, and social interactions were both impaired in these animals. Mecp2(308/Y) mice showed deficits in nest building and decreased nest use. Although there were no differences in aggression or exploration of novel inanimate stimuli, mutant mice took less initiative and were less decisive approaching unfamiliar males and spent less time in close vicinity to them in several social interaction paradigms. The abnormalities of diurnal activity and social behavior in Mecp2(308/Y) mice are reminiscent of the sleep/wake dysfunction and autistic features of RTT. These data suggest that MECP2 regulates the expression and/or function of genes involved in social behavior. The study of Mecp2(308/Y) mice will allow the identification of the molecular basis of social impairment in RTT and related autistic spectrum disorders.
Lack of GPR88 enhances medium spiny neuron activity and alters motor- and cue-dependent behaviors.
Quintana, Albert; Sanz, Elisenda; Wang, Wengang; Storey, Granville P; Güler, Ali D; Wanat, Matthew J; Roller, Bryan A; La Torre, Anna; Amieux, Paul S; McKnight, G Stanley; Bamford, Nigel S; Palmiter, Richard D
2012-11-01
The striatum regulates motor control, reward and learning. Abnormal function of striatal GABAergic medium spiny neurons (MSNs) is believed to contribute to the deficits in these processes that are observed in many neuropsychiatric diseases. The orphan G protein-coupled receptor GPR88 is robustly expressed in MSNs and is regulated by neuropharmacological drugs, but its contribution to MSN physiology and behavior is unclear. We found that, in the absence of GPR88, MSNs showed increased glutamatergic excitation and reduced GABAergic inhibition, which promoted enhanced firing rates in vivo, resulting in hyperactivity, poor motor coordination and impaired cue-based learning in mice. Targeted viral expression of GPR88 in MSNs rescued the molecular and electrophysiological properties and normalized behavior, suggesting that aberrant MSN activation in the absence of GPR88 underlies behavioral deficits and its dysfunction may contribute to behaviors observed in neuropsychiatric disease.
Adde, Lars; Thomas, Niranjan; John, Hima B; Oommen, Samuel; Vågen, Randi Tynes; Fjørtoft, Toril; Jensenius, Alexander Refsum; Støen, Ragnhild
2016-11-01
Most studies on Prechtl's method of assessing General Movements (GMA) in young infants originate in Europe. To determine if motor behavior at an age of 3 months post term is associated with motor development at 12 months post age in VLBW infants in India. 243 VLBW infants (135 boys, 108 girls; median gestational age 31wks, range 26-39wks) were video-recorded at a median age of 11wks post term (range 9-16wks). Certified and experienced observers assessed the videos by the "Assessment of Motor Repertoire - 2-5 Months". Fidgety movements (FMs) were classified as abnormal if absent, sporadic or exaggerated, and as normal if intermittently or continually present. The motor behaviour was evaluated by repertoire of co-existent other movements (age-adequacy) and concurrent motor repertoire. In addition, videos of 215 infants were analyzed by computer and the variability of the spatial center of motion (C SD ) was calculated. The Peabody Developmental Motor Scales was used to assess motor development at 12 months. Abnormal FMs, reduced age adequacy, and an abnormal concurrent motor repertoire were significantly associated with lower Gross Motor and Total Motor Quotient (GMQ, TMQ) scores (p < 0.05). The C SD was higher in children with TMQ scores <90 (-1SD) than in children with higher TMQ scores (p = 0.002). Normal FMs (assessed by Gestalt perception) and a low variability of the spatial center of motion (assessed by computer-based video analysis) predicted higher Peabody scores in 12-month-old infants born in India with a very low birth weight. Copyright © 2016 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Autism, oxytocin and interoception
Quattrocki, E.; Friston, Karl
2014-01-01
Autism is a pervasive developmental disorder characterized by profound social and verbal communication deficits, stereotypical motor behaviors, restricted interests, and cognitive abnormalities. Autism affects approximately 1% of children in developing countries. Given this prevalence, identifying risk factors and therapeutic interventions are pressing objectives—objectives that rest on neurobiologically grounded and psychologically informed theories about the underlying pathophysiology. In this article, we review the evidence that autism could result from a dysfunctional oxytocin system early in life. As a mediator of successful procreation, not only in the reproductive system, but also in the brain, oxytocin plays a crucial role in sculpting socio-sexual behavior. Formulated within a (Bayesian) predictive coding framework, we propose that oxytocin encodes the saliency or precision of interoceptive signals and enables the neuronal plasticity necessary for acquiring a generative model of the emotional and social ‘self.’ An aberrant oxytocin system in infancy could therefore help explain the marked deficits in language and social communication – as well as the sensory, autonomic, motor, behavioral, and cognitive abnormalities – seen in autism. PMID:25277283
Striatal Circuits as a Common Node for Autism Pathophysiology
Fuccillo, Marc V.
2016-01-01
Autism spectrum disorders (ASD) are characterized by two seemingly unrelated symptom domains—deficits in social interactions and restrictive, repetitive patterns of behavioral output. Whether the diverse nature of ASD symptomatology represents distributed dysfunction of brain networks or abnormalities within specific neural circuits is unclear. Striatal dysfunction is postulated to underlie the repetitive motor behaviors seen in ASD, and neurological and brain-imaging studies have supported this assumption. However, as our appreciation of striatal function expands to include regulation of behavioral flexibility, motivational state, goal-directed learning, and attention, we consider whether alterations in striatal physiology are a central node mediating a range of autism-associated behaviors, including social and cognitive deficits that are hallmarks of the disease. This review investigates multiple genetic mouse models of ASD to explore whether abnormalities in striatal circuits constitute a common pathophysiological mechanism in the development of autism-related behaviors. Despite the heterogeneity of genetic insult investigated, numerous genetic ASD models display alterations in the structure and function of striatal circuits, as well as abnormal behaviors including repetitive grooming, stereotypic motor routines, deficits in social interaction and decision-making. Comparative analysis in rodents provides a unique opportunity to leverage growing genetic association data to reveal canonical neural circuits whose dysfunction directly contributes to discrete aspects of ASD symptomatology. The description of such circuits could provide both organizing principles for understanding the complex genetic etiology of ASD as well as novel treatment routes. Furthermore, this focus on striatal mechanisms of behavioral regulation may also prove useful for exploring the pathogenesis of other neuropsychiatric diseases, which display overlapping behavioral deficits with ASD. PMID:26903795
Lateralized hyperkinetic motor behavior.
Krishnaiah, Balaji; Acharya, Jayant; Ahmed, Aiesha
2018-01-01
Seizures are followed by a post-ictal period, which is characterized by usual slowing of brain activity. This case report describes a 68-year old woman who presented with right-sided rhythmic, non-voluntary, semi-purposeful motor behavior that started 2 days after an episode of generalized seizure. Her initial electroencephalogram (EEG) showed beta activity with no evidence of epileptiform discharges. Computed tomography scan showed hypodensity in the left parieto-occipital region. Magnetic resonance imaging (MRI) showed restricted diffusion/fluid-attenuated inversion recovery hyperintensities in the left precentral and post-central gyrus. Unilateral compulsive motor behavior during the post-ictal state should be considered, and not confused with partial status epilepticus to avoid unnecessary treatment. Abnormal magnetic resonance imaging (MRI) findings, which are reversible, can help with the diagnostic and therapeutic approach.
Hodges, Jennifer L; Yu, Xinzhu; Gilmore, Anthony; Bennett, Hannah; Tjia, Michelle; Perna, James F; Chen, Chia-Chien; Li, Xiang; Lu, Ju; Zuo, Yi
2017-07-15
Fragile X syndrome (FXS) is the most common type of mental retardation attributable to a single-gene mutation. It is caused by FMR1 gene silencing and the consequent loss of its protein product, fragile X mental retardation protein. Fmr1 global knockout (KO) mice recapitulate many behavioral and synaptic phenotypes associated with FXS. Abundant evidence suggests that astrocytes are important contributors to neurological diseases. This study investigates astrocytic contributions to the progression of synaptic abnormalities and learning impairments associated with FXS. Taking advantage of the Cre-lox system, we generated and characterized mice in which fragile X mental retardation protein is selectively deleted or exclusively expressed in astrocytes. We performed in vivo two-photon imaging to track spine dynamics/morphology along dendrites of neurons in the motor cortex and examined associated behavioral defects. We found that adult astrocyte-specific Fmr1 KO mice displayed increased spine density in the motor cortex and impaired motor-skill learning. The learning defect coincided with a lack of enhanced spine dynamics in the motor cortex that normally occurs in response to motor skill acquisition. Although spine density was normal at 1 month of age in astrocyte-specific Fmr1 KO mice, new spines formed at an elevated rate. Furthermore, fragile X mental retardation protein expression in only astrocytes was insufficient to rescue most spine or behavioral defects. Our work suggests a joint astrocytic-neuronal contribution to FXS pathogenesis and reveals that heightened spine formation during adolescence precedes the overabundance of spines and behavioral defects found in adult Fmr1 KO mice. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Baseline Cognition, Behavior, and Motor Skills in Children with New-Onset, Idiopathic Epilepsy
ERIC Educational Resources Information Center
Bhise, Vikram V.; Burack, Gail D.; Mandelbaum, David E.
2010-01-01
Aim: Epilepsy is associated with difficulties in cognition and behavior in children. These problems have been attributed to genetics, ongoing seizures, psychosocial issues, underlying abnormality of the brain, and/or antiepileptic drugs. In a previous study, we found baseline cognitive differences between children with partial versus generalized…
Mohanty, Suman; Greene, Rachel K.; Cook, Edwin H.; Vaillancourt, David E.; Sweeney, John A.
2015-01-01
Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. PMID:25653359
[An autopsied case of senile onset frontotemporal lobar degeneration].
Iwasaki, Yasushi; Mori, Keiko; Ito, Masumi; Deguchi, Akira; Yoshida, Mari
2011-06-01
A Japanese male with no family history of neurological disease or dementia showed behavioral abnormalities including egocentric and antisocial behavior at the age of 80. Over the next few years, other psychiatric symptoms such as allotriophagy and stereotypical behavior were also observed and his abnormal behavior became a social problem. Neurological examination revealed no apparent motor abnormalities, pyramidal and extrapyramidal signs, or ataxia. Aphasia, including semantic dementia was not apparent. The severity of memory disturbance was relatively milder than his psychiatric symptoms. Daily living activities and conversational ability were relatively maintained until shortly before his death at the age of 86. The clinical diagnosis was Alzheimer disease. Autopsy revealed that the brain weighed 950 g; frontotemporal atrophy with lateral ventricular dilatation was apparent. Neuron loss, gliosis, and tissue rarefaction were recognized in the frontotemporal cortex, subiculum, transentorhinal cortex, amygdala, and insular cortex and were particularly noticeable in the superficial layer of the cortex. Many ubiquitin-positive/TDP-43 positive but tau-negative dystrophic neurites with a few neuronal cytoplasmic inclusions were widely observed. Neuronal cytoplasmic inclusions were also observed in the dentate gyrus of the hippocampus. Although the spinal cord was not investigated, there was no apparent involvement of the motor neuron system. Small numbers of neurofibrillary tangles and senile plaques were observed, corresponding to Braak stage II and CERAD stage B, respectively. Argyrophilic grains, Lewy bodies and Pick bodies were not observed. The patient was pathologically diagnosed with frontotemporal lobar degeneration with ubiquitin-positive/TDP-43-positive inclusions (FTLD-TDP) and without motor neuron disease. No mutation was found in the TDP-43 gene. We considered the psychiatric symptoms and head CT findings of the present patient to be important observations for helping to discriminate between Alzheimer disease or other neurodegenerative diseases with dementia, and FTLD-TDP.
Knockout of Foxp2 disrupts vocal development in mice.
Castellucci, Gregg A; McGinley, Matthew J; McCormick, David A
2016-03-16
The FOXP2 gene is important for the development of proper speech motor control in humans. However, the role of the gene in general vocal behavior in other mammals, including mice, is unclear. Here, we track the vocal development of Foxp2 heterozygous knockout (Foxp2+/-) mice and their wildtype (WT) littermates from juvenile to adult ages, and observe severe abnormalities in the courtship song of Foxp2+/- mice. In comparison to their WT littermates, Foxp2+/- mice vocalized less, produced shorter syllable sequences, and possessed an abnormal syllable inventory. In addition, Foxp2+/- song also exhibited irregular rhythmic structure, and its development did not follow the consistent trajectories observed in WT vocalizations. These results demonstrate that the Foxp2 gene is critical for normal vocal behavior in juvenile and adult mice, and that Foxp2 mutant mice may provide a tractable model system for the study of the gene's role in general vocal motor control.
Neurodevelopment of children under 3 years of age with Smith-Magenis syndrome.
Wolters, Pamela L; Gropman, Andrea L; Martin, Staci C; Smith, Michaele R; Hildenbrand, Hanna L; Brewer, Carmen C; Smith, Ann C M
2009-10-01
Systematic data regarding early neurodevelopmental functioning in Smith-Magenis syndrome are limited. Eleven children with Smith-Magenis syndrome less than 3 years of age (mean, 19 months; range, 5-34 months) received prospective multidisciplinary assessments using standardized measures. The total sample scored in the moderately to severely delayed range in cognitive functioning, expressive language, and motor skills and exhibited generalized hypotonia, oral-motor abnormalities, and middle ear dysfunction. Socialization skills were average, and significantly higher than daily living, communication, and motor abilities, which were below average. Mean behavior ratings were in the nonautistic range. According to exploratory analyses, the toddler subgroup scored significantly lower than the infant subgroup in cognition, expressive language, and adaptive behavior, suggesting that the toddlers were more delayed than the infants relative to their respective peers. Infants aged approximately 1 year or younger exhibited cognitive, language, and motor skills that ranged from average to delayed, but with age-appropriate social skills and minimal maladaptive behaviors. At ages 2 to 3 years, the toddlers consistently exhibited cognitive, expressive language, adaptive behavior, and motor delays and mildly to moderately autistic behaviors. Combining age groups in studies may mask developmental and behavioral differences. Increased knowledge of these early neurodevelopmental characteristics should facilitate diagnosis and appropriate intervention.
Functional Analysis of Dopaminergic Systems in a DYT1 Knock-in Mouse Model of Dystonia
Song, Chang-Hyun; Fan, Xueliang; Exeter, Cicely J.; Hess, Ellen J.; Jinnah, H. A.
2012-01-01
The dystonias are a group of disorders characterized by involuntary twisting movements and abnormal posturing. The most common of the inherited dystonias is DYT1 dystonia, which is due to deletion of a single GAG codon (ΔE) in the TOR1A gene that encodes torsinA. Since some forms of dystonia have been linked with dysfunction of brain dopamine pathways, the integrity of these pathways was explored in a knock-in mouse model of DYT1 dystonia. In DYT1(ΔE) knock-in mice, neurochemical measures revealed only small changes in the content of dopamine or its metabolites in tissue homogenates from caudoputamen or midbrain, but microdialysis studies revealed robust decreases in baseline and amphetamine-stimulated extracellular dopamine in the caudoputamen. Quantitative stereological methods revealed no evidence for striatal or midbrain atrophy, but substantia nigra neurons immunopositive for tyrosine hydroxylase were slightly reduced in numbers and enlarged in size. Behavioral studies revealed subtle abnormalities in gross motor activity and motor coordination without overt dystonia. Neuropharmacological challenges of dopamine systems revealed normal behavioral responses to amphetamine and a minor increase in sensitivity to haloperidol. These results demonstrate that this DYT1(ΔE) knock-in mouse model of dystonia harbors neurochemical and structural changes of the dopamine pathways, as well as motor abnormalities. PMID:22659308
Sleep disturbances in preschool age children with cerebral palsy: a questionnaire study.
Romeo, Domenico M; Brogna, Claudia; Musto, Elisa; Baranello, Giovanni; Pagliano, Emanuela; Casalino, Tiziana; Ricci, Daniela; Mallardi, Maria; Sivo, Serena; Cota, Francesco; Battaglia, Domenica; Bruni, Oliviero; Mercuri, Eugenio
2014-09-01
The study aimed to analyze (i) the prevalence of sleep disorders in pre-school children with cerebral palsy (CP) using the Sleep Disturbance Scale for Children (SDSC), (ii) the possible association with motor, cognitive and behavioral problems, and (iii) the possible differences with typically developing children matched for age and gender. One-hundred children with CP (age range: 3-5 years, mean: 3.8 years) were assessed using the SDSC, the Gross Motor Function Classification System (GMFCS), the Wechsler Preschool and Primary Scale of Intelligence, and the Child Behaviour Check List (CBCL) to assess sleep, motor, cognitive, and behavioral problems, respectively. Further 100 healthy children matched for age and sex were assessed using the SDSC. An abnormal total sleep score was found in 13% of children with CP while 35% had an abnormal score on at least one SDSC factor. SDSC total score was significantly associated with pathological internalizing scores on CBCL and active epilepsy on multivariate analysis. CP group reported higher significant median scores on SDSC total, parasomnias, and difficulty in initiating and maintaining sleep factors. In pre-school children sleep disorders are more common in children with CP than in healthy control group and are often associated with epilepsy and behavioral problems. Copyright © 2014 Elsevier B.V. All rights reserved.
Cerebellar Plasticity and Motor Learning Deficits in a Copy Number Variation Mouse Model of Autism
Piochon, Claire; Kloth, Alexander D; Grasselli, Giorgio; Titley, Heather K; Nakayama, Hisako; Hashimoto, Kouichi; Wan, Vivian; Simmons, Dana H; Eissa, Tahra; Nakatani, Jin; Cherskov, Adriana; Miyazaki, Taisuke; Watanabe, Masahiko; Takumi, Toru; Kano, Masanobu; Wang, Samuel S-H; Hansel, Christian
2014-01-01
A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, occurring in a majority of children with autism, consistent with perturbation in cerebellar function. Here we report alterations in motor behavior and cerebellar synaptic plasticity in a mouse model (patDp/+) for the human 15q11-13 duplication, one of the most frequently observed genetic aberrations in autism. These mice show ASD-resembling social behavior deficits. We find that in patDp/+ mice delay eyeblink conditioning—a form of cerebellum-dependent motor learning—is impaired, and observe deregulation of a putative cellular mechanism for motor learning, long-term depression (LTD) at parallel fiber-Purkinje cell synapses. Moreover, developmental elimination of surplus climbing fibers—a model for activity-dependent synaptic pruning—is impaired. These findings point to deficits in synaptic plasticity and pruning as potential causes for motor problems and abnormal circuit development in autism. PMID:25418414
[Autoaggression and pulse rate--a longitudinal study].
Rohmann, U H; Elbing, U; Hartmann, H
1988-12-01
This article presents a model of autoaggressive behavior in which a distinction is made between determining and maintaining factors. Specific environmental, in particular social, and organismic variables are linked to them. The two types of variables interact, thus causing or maintaining autoaggressive behavior. A theory of autoaggression must therefore rely on multicausal/multimodal explanations. A connection between autoaggression and a high level of arousal suggests itself. In this single-case longitudinal study a comparison was made between heart rate and frequency of autoaggressive behavior. High heart rates were found to be correlated with low frequencies of autoaggressive behavior and vice versa. Decreasing autoaggressive behavior was coupled with increasing muscle relaxation and increasing motor activity. However, abnormally high heart rates were associated with both low and high levels of motor activity.
Transport behaviors of locally fractional coupled Brownian motors with fluctuating interactions
NASA Astrophysics Data System (ADS)
Wang, Huiqi; Ni, Feixiang; Lin, Lifeng; Lv, Wangyong; Zhu, Hongqiang
2018-09-01
In some complex viscoelastic mediums, it is ubiquitous that absorbing and desorbing surrounding Brownian particles randomly occur in coupled systems. The conventional method is to model a variable-mass system driven by both multiplicative and additive noises. In this paper, an improved mathematical model is created based on generalized Langevin equations (GLE) to characterize the random interaction with locally fluctuating number of coupled particles in the elastically coupled factional Brownian motors (FBM). By the numerical simulations, the effect of fluctuating interactions on collective transport behaviors is investigated, and some abnormal phenomena, such as cooperative behaviors, stochastic resonance (SR) and anomalous transport, are observed in the regime of sub-diffusion.
Mosconi, Matthew W; Mohanty, Suman; Greene, Rachel K; Cook, Edwin H; Vaillancourt, David E; Sweeney, John A
2015-02-04
Sensorimotor abnormalities are common in autism spectrum disorder (ASD) and among the earliest manifestations of the disorder. They have been studied far less than the social-communication and cognitive deficits that define ASD, but a mechanistic understanding of sensorimotor abnormalities in ASD may provide key insights into the neural underpinnings of the disorder. In this human study, we examined rapid, precision grip force contractions to determine whether feedforward mechanisms supporting initial motor output before sensory feedback can be processed are disrupted in ASD. Sustained force contractions also were examined to determine whether reactive adjustments to ongoing motor behavior based on visual feedback are altered. Sustained force was studied across multiple force levels and visual gains to assess motor and visuomotor mechanisms, respectively. Primary force contractions of individuals with ASD showed greater peak rate of force increases and large transient overshoots. Individuals with ASD also showed increased sustained force variability that scaled with force level and was more severe when visual gain was highly amplified or highly degraded. When sustaining a constant force level, their reactive adjustments were more periodic than controls, and they showed increased reliance on slower feedback mechanisms. Feedforward and feedback mechanism alterations each were associated with more severe social-communication impairments in ASD. These findings implicate anterior cerebellar circuits involved in feedforward motor control and posterior cerebellar circuits involved in transforming visual feedback into precise motor adjustments in ASD. Copyright © 2015 the authors 0270-6474/15/352015-11$15.00/0.
Emotion-motion interactions in conversion disorder: an FMRI study.
Aybek, Selma; Nicholson, Timothy R; O'Daly, Owen; Zelaya, Fernando; Kanaan, Richard A; David, Anthony S
2015-01-01
To evaluate the neural correlates of implicit processing of negative emotions in motor conversion disorder (CD) patients. An event related fMRI task was completed by 12 motor CD patients and 14 matched healthy controls using standardised stimuli of faces with fearful and sad emotional expressions in comparison to faces with neutral expressions. Temporal changes in the sensitivity to stimuli were also modelled and tested in the two groups. We found increased amygdala activation to negative emotions in CD compared to healthy controls in region of interest analyses, which persisted over time consistent with previous findings using emotional paradigms. Furthermore during whole brain analyses we found significantly increased activation in CD patients in areas involved in the 'freeze response' to fear (periaqueductal grey matter), and areas involved in self-awareness and motor control (cingulate gyrus and supplementary motor area). In contrast to healthy controls, CD patients exhibited increased response amplitude to fearful stimuli over time, suggesting abnormal emotional regulation (failure of habituation / sensitization). Patients with CD also activated midbrain and frontal structures that could reflect an abnormal behavioral-motor response to negative including threatening stimuli. This suggests a mechanism linking emotions to motor dysfunction in CD.
Mentis, George Z.; Blivis, Dvir; Liu, Wenfang; Drobac, Estelle; Crowder, Melissa E.; Kong, Lingling; Alvarez, Francisco J.; Sumner, Charlotte J.; O'Donovan, Michael J.
2011-01-01
SUMMARY To define alterations of neuronal connectivity that occur during motor neuron degeneration, we characterized the function and structure of spinal circuitry in spinal muscular atrophy (SMA) model mice. SMA motor neurons show reduced proprioceptive reflexes that correlate with decreased number and function of synapses on motor neuron somata and proximal dendrites. These abnormalities occur at an early stage of disease in motor neurons innervating proximal hindlimb muscles and medial motor neurons innervating axial muscles, but only at end-stage disease in motor neurons innervating distal hindlimb muscles. Motor neuron loss follows afferent synapse loss with the same temporal and topographical pattern. Trichostatin A, which improves motor behavior and survival of SMA mice, partially restores spinal reflexes illustrating the reversibility of these synaptic defects. De-afferentation of motor neurons is an early event in SMA and may be a primary cause of motor dysfunction that is amenable to therapeutic intervention. PMID:21315257
Sema4D/CD100 deficiency leads to superior performance in mouse motor behavior.
Yukawa, Kazunori; Tanaka, Tetsuji; Takeuchi, Noriko; Iso, Hiroyuki; Li, Li; Kohsaka, Akira; Waki, Hidefumi; Miyajima, Masayasu; Maeda, Masanobu; Kikutani, Hitoshi; Kumanogoh, Atsushi
2009-05-01
Sema4D/CD100 is a type of class 4 semaphorin, exhibiting crucial roles in growth cone guidance in developing neurons. Sema4D is widely expressed throughout the central nervous system in embryonic mouse brain, and is selectively localized to oligodendrocytes and myelin in the postnatal brain. However, direct evidence of the actual involvement of Sema4D in the neuronal network development crucial for neurobehavioral performance is still lacking. The present study therefore examined whether Sema4D deficiency leads to abnormal behavioral development. Both wild-type and Sema4D-deficient mice were subjected to behavioral analyses including open-field, adhesive tape removal, rotarod tests and a water maze task. Open-field tests revealed increased locomotor activity in Sema4D-deficient mice with less percentage of time spent in the center of the field. In both the adhesive tape removal and rotarod tests, which examine motor coordination and balance, Sema4D-deficient mice showed significantly superior performance, suggesting facilitated motor behavior. Both Sema4D-deficient and wild-type mice successfully learnt the water maze task, locating a hidden escape platform, and also showed precise memory for the platform position in probe tests. However, the swimming speed of Sema4D-deficient mice was significantly faster than that of wild-type mice, providing further evidence of their accelerated motor behavior. Our mouse behavioral analyses revealed enhanced motor activity in Sema4D-deficient mice, suggesting the crucial involvement of Sema4D in the neurodevelopmental processes of the central structures mediating motor behavior in mice.
Altered Connectivity and Action Model Formation in Autism Is Autism
Mostofsky, Stewart H.; Ewen, Joshua B.
2014-01-01
Internal action models refer to sensory-motor programs that form the brain basis for a wide range of skilled behavior and for understanding others’ actions. Development of these action models, particularly those reliant on visual cues from the external world, depends on connectivity between distant brain regions. Studies of children with autism reveal anomalous patterns of motor learning and impaired execution of skilled motor gestures. These findings robustly correlate with measures of social and communicative function, suggesting that anomalous action model formation may contribute to impaired development of social and communicative (as well as motor) capacity in autism. Examination of the pattern of behavioral findings, as well as convergent data from neuroimaging techniques, further suggests that autism-associated action model formation may be related to abnormalities in neural connectivity, particularly decreased function of long-range connections. This line of study can lead to important advances in understanding the neural basis of autism and, more critically, can be used to guide effective therapies targeted at improving social, communicative, and motor function. PMID:21467306
Oral Motor Abilities Are Task Dependent: A Factor Analytic Approach to Performance Rate.
Staiger, Anja; Schölderle, Theresa; Brendel, Bettina; Bötzel, Kai; Ziegler, Wolfram
2017-01-01
Measures of performance rates in speech-like or volitional nonspeech oral motor tasks are frequently used to draw inferences about articulation rate abnormalities in patients with neurologic movement disorders. The study objective was to investigate the structural relationship between rate measures of speech and of oral motor behaviors different from speech. A total of 130 patients with neurologic movement disorders and 130 healthy subjects participated in the study. Rate data was collected for oral reading (speech), rapid syllable repetition (speech-like), and rapid single articulator movements (nonspeech). The authors used factor analysis to determine whether the different rate variables reflect the same or distinct constructs. The behavioral data were most appropriately captured by a measurement model in which the different task types loaded onto separate latent variables. The data on oral motor performance rates show that speech tasks and oral motor tasks such as rapid syllable repetition or repetitive single articulator movements measure separate traits.
Macrì, Simone; Ceci, Chiara; Onori, Martina Proietti; Invernizzi, Roberto William; Bartolini, Erika; Altabella, Luisa; Canese, Rossella; Imperi, Monica; Orefici, Graziella; Creti, Roberta; Margarit, Immaculada; Magliozzi, Roberta; Laviola, Giovanni
2015-01-01
Repeated exposure to Group-A β-Haemolytic Streptococcus (GAS) may constitute a vulnerability factor in the onset and course of pediatric motor disturbances. GAS infections/colonization can stimulate the production of antibodies, which may cross the blood brain barrier, target selected brain areas (e.g. basal ganglia), and exacerbate motor alterations. Here, we exposed developing SJL male mice to four injections with a GAS homogenate and evaluated the following domains: motor coordination; general locomotion; repetitive behaviors; perseverative responses; and sensorimotor gating (pre-pulse inhibition, PPI). To demonstrate that behavioral changes were associated with immune-mediated brain alterations, we analyzed, in selected brain areas, the presence of infiltrates and microglial activation (immunohistochemistry), monoamines (HPLC), and brain metabolites (in vivo Magnetic Resonance Spectroscopy). GAS-exposed mice showed increased repetitive and perseverative behaviors, impaired PPI, and reduced concentrations of serotonin in prefrontal cortex, a brain area linked to the behavioral domains investigated, wherein they also showed remarkable elevations in lactate. Active inflammatory processes were substantiated by the observation of infiltrates and microglial activation in the white matter of the anterior diencephalon. These data support the hypothesis that repeated GAS exposure may elicit inflammatory responses in brain areas involved in motor control and perseverative behavior, and result in phenotypic abnormalities. PMID:26304458
Macrì, Simone; Ceci, Chiara; Onori, Martina Proietti; Invernizzi, Roberto William; Bartolini, Erika; Altabella, Luisa; Canese, Rossella; Imperi, Monica; Orefici, Graziella; Creti, Roberta; Margarit, Immaculada; Magliozzi, Roberta; Laviola, Giovanni
2015-08-25
Repeated exposure to Group-A β-Haemolytic Streptococcus (GAS) may constitute a vulnerability factor in the onset and course of pediatric motor disturbances. GAS infections/colonization can stimulate the production of antibodies, which may cross the blood brain barrier, target selected brain areas (e.g. basal ganglia), and exacerbate motor alterations. Here, we exposed developing SJL male mice to four injections with a GAS homogenate and evaluated the following domains: motor coordination; general locomotion; repetitive behaviors; perseverative responses; and sensorimotor gating (pre-pulse inhibition, PPI). To demonstrate that behavioral changes were associated with immune-mediated brain alterations, we analyzed, in selected brain areas, the presence of infiltrates and microglial activation (immunohistochemistry), monoamines (HPLC), and brain metabolites (in vivo Magnetic Resonance Spectroscopy). GAS-exposed mice showed increased repetitive and perseverative behaviors, impaired PPI, and reduced concentrations of serotonin in prefrontal cortex, a brain area linked to the behavioral domains investigated, wherein they also showed remarkable elevations in lactate. Active inflammatory processes were substantiated by the observation of infiltrates and microglial activation in the white matter of the anterior diencephalon. These data support the hypothesis that repeated GAS exposure may elicit inflammatory responses in brain areas involved in motor control and perseverative behavior, and result in phenotypic abnormalities.
Knockout of Foxp2 disrupts vocal development in mice
Castellucci, Gregg A.; McGinley, Matthew J.; McCormick, David A.
2016-01-01
The FOXP2 gene is important for the development of proper speech motor control in humans. However, the role of the gene in general vocal behavior in other mammals, including mice, is unclear. Here, we track the vocal development of Foxp2 heterozygous knockout (Foxp2+/−) mice and their wildtype (WT) littermates from juvenile to adult ages, and observe severe abnormalities in the courtship song of Foxp2+/− mice. In comparison to their WT littermates, Foxp2+/− mice vocalized less, produced shorter syllable sequences, and possessed an abnormal syllable inventory. In addition, Foxp2+/− song also exhibited irregular rhythmic structure, and its development did not follow the consistent trajectories observed in WT vocalizations. These results demonstrate that the Foxp2 gene is critical for normal vocal behavior in juvenile and adult mice, and that Foxp2 mutant mice may provide a tractable model system for the study of the gene’s role in general vocal motor control. PMID:26980647
Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs.
Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki
2014-11-14
To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity.
Motor Control Abnormalities in Parkinson’s Disease
Mazzoni, Pietro; Shabbott, Britne; Cortés, Juan Camilo
2012-01-01
The primary manifestations of Parkinson’s disease are abnormalities of movement, including movement slowness, difficulties with gait and balance, and tremor. We know a considerable amount about the abnormalities of neuronal and muscle activity that correlate with these symptoms. Motor symptoms can also be described in terms of motor control, a level of description that explains how movement variables, such as a limb’s position and speed, are controlled and coordinated. Understanding motor symptoms as motor control abnormalities means to identify how the disease disrupts normal control processes. In the case of Parkinson’s disease, movement slowness, for example, would be explained by a disruption of the control processes that determine normal movement speed. Two long-term benefits of understanding the motor control basis of motor symptoms include the future design of neural prostheses to replace the function of damaged basal ganglia circuits, and the rational design of rehabilitation strategies. This type of understanding, however, remains limited, partly because of limitations in our knowledge of normal motor control. In this article, we review the concept of motor control and describe a few motor symptoms that illustrate the challenges in understanding such symptoms as motor control abnormalities. PMID:22675667
Mechanism of gastrointestinal abnormal motor activity induced by cisplatin in conscious dogs
Ando, Hiroyuki; Mochiki, Erito; Ohno, Tetsuro; Yanai, Mitsuhiro; Toyomasu, Yoshitaka; Ogata, Kyoichi; Tabe, Yuichi; Aihara, Ryuusuke; Nakabayashi, Toshihiro; Asao, Takayuki; Kuwano, Hiroyuki
2014-01-01
AIM: To investigate whether 5-hydroxytryptamine (serotonin; 5-HT) is involved in mediating abnormal motor activity in dogs after cisplatin administration. METHODS: After the dogs had been given a 2-wk recovery period, all of them were administered cisplatin, and the motor activity was recorded using strain gauge force transducers. Blood and intestinal fluid samples were collected to measure 5-HT for 24 h. To determine whether 5-HT in plasma or that in intestinal fluids is more closely related to abnormal motor activity we injected 5-HT into the bloodstream and the intestinal tract of the dogs. RESULTS: Cisplatin given intravenously produced abnormal motor activity that lasted up to 5 h. From 3 to 4 h after cisplatin administration, normal intact dogs exhibited retropropagation of motor activity accompanied by emesis. The concentration of 5-HT in plasma reached the peak at 4 h, and that in intestinal fluids reached the peak at 3 h. In normal intact dogs with resection of the vagus nerve that were administered kytril, cisplatin given intravenously did not produce abnormal motor activity. Intestinal serotonin administration did not produce abnormal motor activity, but intravenous serotonin administration did. CONCLUSION: After the intravenous administration of cisplatin, abnormal motor activity was produced in the involved vagus nerve and in the involved serotonergic neurons via another pathway. This study was the first to determine the relationship between 5-HT and emesis-induced motor activity. PMID:25400453
Toll-like receptor 9 deficiency impacts sensory and motor behaviors.
Khariv, Veronika; Pang, Kevin; Servatius, Richard J; David, Brian T; Goodus, Matthew T; Beck, Kevin D; Heary, Robert F; Elkabes, Stella
2013-08-01
Toll-like receptors (TLRs) mediate the induction of the innate immune system in response to pathogens, injury and disease. However, they also play non-immune roles and are expressed in the central nervous system (CNS) during prenatal and postnatal stages including adulthood. Little is known about their roles in the CNS in the absence of pathology. Several members of the TLR family have been implicated in the development of neural and cognitive function although the contribution of TLR9 to these processes has not been well defined. The current studies were undertaken to determine whether developmental TLR9 deficiency affects motor, sensory or cognitive functions. We report that TLR9 deficient (TLR9(-/-)) mice show a hyper-responsive sensory and motor phenotype compared to wild type (TLR9(+/+)) controls. This is indicated by hypersensitivity to thermal stimuli in the hot plate paw withdrawal test, enhanced motor-responsivity under anxious conditions in the open field test and greater sensorimotor reactivity in the acoustic startle response. Prepulse inhibition (PPI) of the acoustic startle response was also enhanced, which indicates abnormal sensorimotor gating. In addition, subtle, but significant, gait abnormalities were noted in the TLR9(-/-) mice on the horizontal balance beam test with higher foot slip numbers than TLR9(+/+) controls. In contrast, spatial learning and memory, assessed by the Morris water maze, was similar in the TLR9(-/-) and TLR9(+/+) mice. These findings support the notion that TLR9 is important for the appropriate development of sensory and motor behaviors. Copyright © 2013 Elsevier Inc. All rights reserved.
Early school outcomes for extremely preterm infants with transient neurological abnormalities.
Harmon, Heidi M; Taylor, H Gerry; Minich, Nori; Wilson-Costello, Deanne; Hack, Maureen
2015-09-01
To determine if transient neurological abnormalities (TNA) at 9 months corrected age predict cognitive, behavioral, and motor outcomes at 6 years of age in extremely preterm infants. A cohort of 124 extremely preterm infants (mean gestational age 25.5wks; 55 males, 69 females), admitted to our unit between 2001 and 2003, were classified based on the Amiel-Tison Neurological Assessment at 9 months and 20 months corrected age as having TNA (n=17), normal neurological assessment (n=89), or neurologically abnormal assessment (n=18). The children were assessed at a mean age of 5 years 11 months (SD 4mo) on cognition, academic achievement, motor ability, and behavior. Compared with children with a normal neurological assessment, children with TNA had higher postnatal exposure to steroids (35% vs 9%) and lower adjusted mean scores on spatial relations (84 [standard error {SE} 5] vs 98 [SE 2]), visual matching (79 [SE 5] vs 91 [SE 2]), letter-word identification (97 [SE 4] vs 108 [SE 1]), and spelling (76 [SE 4] vs 96 [SE 2]) (all p<0.05). Despite a normalized neurological assessment, extremely preterm children with a history TNA are at higher risk for lower cognitive and academic skills than those with normal neurological findings during their first year of school. © 2015 Mac Keith Press.
Early school outcomes for extremely preterm infants with transient neurological abnormalities
Harmon, Heidi; Taylor, H Gerry; Minich, Nori; Wilson-Costello, Deanne; Hack, Maureen
2015-01-01
AIM To determine if transient neurological abnormalities (TNA) at 9 months corrected age predict cognitive, behavioral, and motor outcomes at 6 years of age in extremely preterm infants. METHOD A cohort of 124 extremely preterm infants (mean gestational age 25.5wk; 55 males, 69 females), admitted to our unit between 2001 and 2003, were classified based on the Amiel-Tison Neurological Assessment at 9 months and 20 months corrected age as having TNA (n=17), normal neurological assessment (n=89), or neurologically abnormal assessment (n=18). The children were assessed at a mean age of 5 years 11 months (SD 4mo) on cognition, academic achievement, motor ability, and behavior. RESULTS Compared with children with a normal neurological assessment, children with TNA had higher postnatal exposure to steroids (35% vs 9%) and lower adjusted mean scores on spatial relations (84 [standard error {SE} 5] vs 98 [SE 2]), visual matching (79 [SE 5] vs 91 [SE 2]), letter–word identification (97 [SE 4] vs 108 [SE 1]), and spelling (76 [SE 4] vs 96 [SE 2]) (all p<0.05). INTERPRETATION Despite a normalized neurological assessment, extremely preterm children with a history TNA are at higher risk for lower cognitive and academic skills than those with normal neurological findings during their first year of school. PMID:26014665
Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities
Suidan, Georgette L.; Vanderhorst, Veronique; Hampton, Thomas G.; Wong, Siu Ling; Voorhees, Jaymie R.; Wagner, Denisa D.
2013-01-01
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593
Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.
Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D
2013-01-01
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.
Guo, Xiaochuan; Hamilton, Peter J; Reish, Nicholas J; Sweatt, J David; Miller, Courtney A; Rumbaugh, Gavin
2009-06-01
Abnormal function of NMDA receptors is believed to be a contributing factor to the pathophysiology of schizophrenia. NMDAR subunits and postsynaptic-interacting proteins of these channels are abnormally expressed in some patients with this illness. In mice, reduced NMDAR expression leads to behaviors analogous to symptoms of schizophrenia, but reports of animals with mutations in core postsynaptic density proteins having similar a phenotype have yet to be reported. Here we show that reduced expression of the neuronal RasGAP and NMDAR-associated protein, SynGAP, results in abnormal behaviors strikingly similar to that reported in mice with reduced NMDAR function. SynGAP mutant mice exhibited nonhabituating and persistent hyperactivity that was ameliorated by the antipsychotic clozapine. An NMDAR antagonist, MK-801, induced hyperactivity in normal mice but SynGAP mutants were less responsive, suggesting that NMDAR hypofunction contributes to this behavioral abnormality. SynGAP mutants exhibited enhanced startle reactivity and impaired sensory-motor gating. These mice also displayed a complete lack of social memory and a propensity toward social isolation. Finally, SynGAP mutants had deficits in cued fear conditioning and working memory, indicating abnormal function of circuits that control emotion and choice. Our results demonstrate that SynGAP mutant mice have gross neurological deficits similar to other mouse models of schizophrenia. Because SynGAP interacts with NMDARs, and the signaling activity of this protein is regulated by these channels, our data in dicate that SynGAP lies downstream of NMDARs and is a required intermediate for normal neural circuit function and behavior. Taken together, these data support the idea that schizophrenia may arise from abnormal signaling pathways that are mediated by NMDA receptors.
Prader-Willi syndrome: atypical psychoses and motor dysfunctions.
Verhoeven, Willem M A; Tuinier, Siegfried
2006-01-01
Prader-Willi syndrome (PWS) is the result of a lack of expression of genes on the paternally derived chromosome 15q11-q13 and can be considered as a hypothalamic disorder. Its behavioral phenotype is characterized by ritualistic, stereotyped, and compulsive behaviors as well as motor abnormalities. After adolescence, recurrent affective psychoses are relatively frequent, especially in patients with uniparental disomy. These psychotic states have a subacute onset with complete recovery and comprise an increase of psychomotor symptoms that show resemblance with catatonia. Some evidence has emerged that gamma-aminobutyric acid (GABA) dysfunctionality is involved in both PWS and catatonia. Treatment of these atypical psychoses should preferably include GABA mimetic compounds like lorazepam, valproic acid, and possibly topiramate.
Almeida, Jackson Roberto Guedes da Silva; Souza, Grasielly Rocha; Silva, Juliane Cabral; Saraiva, Sarah Raquel Gomes de Lima; Júnior, Raimundo Gonçalves de Oliveira; Quintans, Jullyana de Souza Siqueira; Barreto, Rosana de Souza Siqueira; Bonjardim, Leonardo Rigoldi; Cavalcanti, Sócrates Cabral de Holanda; Junior, Lucindo José Quintans
2013-01-01
Borneol, a bicyclic monoterpene, has been evaluated for antinociceptive and anti-inflammatory activities. Antinociceptive and anti-inflammatory activities were studied by measuring nociception by acetic acid, formalin, hot plate, and grip strength tests, while inflammation was prompted by carrageenan-induced peritonitis. The rotarod test was used to evaluate motor coordination. Borneol produced a significant (P < 0.01) reduction of the nociceptive behavior at the early and late phases of paw licking and reduced the writhing reflex in mice (formalin and writhing tests, resp.). When the hot plate test was conducted, borneol (in higher dose) produced an inhibition (P < 0.05) of the nociceptive behavior. Such results were unlikely to be provoked by motor abnormality. Additionally, borneol-treated mice reduced the carrageenan-induced leukocytes migration to the peritoneal cavity. Together, our results suggest that borneol possess significant central and peripheral antinociceptive activity; it has also anti-inflammatory activity. In addition, borneol did not impair motor coordination. PMID:23710149
Zhang, Xiaoli; Rocha-Ferreira, Eridan; Li, Tao; Vontell, Regina; Jabin, Darakhshan; Hua, Sha; Zhou, Kai; Nazmi, Arshed; Albertsson, Anna-Maj; Sobotka, Kristina; Ek, Joakim; Thornton, Claire; Hagberg, Henrik; Mallard, Carina; Leavenworth, Jianmei W; Zhu, Changlian; Wang, Xiaoyang
2017-12-20
Infection and sepsis are associated with brain white matter injury in preterm infants and the subsequent development of cerebral palsy. In the present study, we used a neonatal mouse sepsis-induced white matter injury model to determine the contribution of different T cell subsets (αβT cells and γδT cells) to white matter injury and consequent behavioral changes. C57BL/6J wild-type (WT), T cell receptor (TCR) δ-deficient (Tcrd -/- , lacking γδT cells), and TCRα-deficient (Tcra -/- , lacking αβT cells) mice were administered with lipopolysaccharide (LPS) at postnatal day (PND) 2. Brain myelination was examined at PNDs 12, 26, and 60. Motor function and anxiety-like behavior were evaluated at PND 26 or 30 using DigiGait analysis and an elevated plus maze. White matter development was normal in Tcrd -/- and Tcrα -/- compared to WT mice. LPS exposure induced reductions in white matter tissue volume in WT and Tcrα -/- mice, but not in the Tcrd -/- mice, compared with the saline-treated groups. Neither LPS administration nor the T cell deficiency affected anxiety behavior in these mice as determined with the elevated plus maze. DigiGait analysis revealed motor function deficiency after LPS-induced sepsis in both WT and Tcrα -/- mice, but no such effect was observed in Tcrd -/- mice. Our results suggest that γδT cells but not αβT cells contribute to sepsis-induced white matter injury and subsequent motor function abnormalities in early life. Modulating the activity of γδT cells in the early stages of preterm white matter injury might represent a novel therapeutic strategy for the treatment of perinatal brain injury.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altman, J.
1987-10-01
In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brainmore » regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. 109 references.« less
Yokoi, Fumiaki; Dang, Mai T; Zhou, Tong; Li, Yuqing
2012-02-15
DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ε-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ε-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ε-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ε-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients.
Ahmed, Muhammad Rashid; Shaikh, Masood Ahmed; Ul Haq, Syed Hafiz Imran; Nazir, Shakila
2018-01-01
Selective degeneration of dopaminergic neurons is the pathological hallmark of Parkinson disease (PD). Enhanced oxidative stress, lipid peroxidation and susceptibility of dopaminergic neurons to apoptotic cellular death are the leading pathogenetic mechanisms. Chrysin is an active flavonoid. Its neuroprotective effects have been reported. This study examined the neuroprotective effects of chrysin in ameliorating the dopaminergic neuronal degeneration and motor behavioral changes in rotenone model of PD. Thirty Sprague-Dawley rats were assigned into three groups: Control, rotenone-treated, and rotenone+chrysin treated groups. Rotenone was given at a dose of 3 mg/kg daily intraperitoneally, and chrysin was given at a dose of 50 mg/kg daily intraperitoneally for 4 weeks. Using five neurobehavioral assessment tests, evaluation was done weekly to record the motor behavioral changes. After 4 weeks, animals were sacrificed, brains were removed, and section from striatum and substantia nigra were stained using hematoxylin and eosin and cresyl violet stains. Immunohistochemical sections were also prepared using anti-tyrosine hydroxylase (TH) antibody. Rotenone-induced Parkinson like changes were evident from deteriorating motor behavior. These animals showed extensive loss of dopaminergic neurons, decreased immunoreactivity against anti-TH antibodies and number of TH positive dopaminergic neurons in the nigrostriatal region. Chrysin treated animals showed a significant reduction in motor behavioral changes, degeneration and loss of nigrostriatal dopaminergic neurons and increased immunoreactivity to anti-TH antibody. This study concludes that chrysin confers neuroprotection in rat model of PD. It attenuates the degeneration of the nigrostriatal dopaminergic neurons and motor behavioral abnormalities.
Lunardini, Francesca; Casellato, Claudia; Bertucco, Matteo; Sanger, Terence D; Pedrocchi, Alessandra
2015-01-01
Muscle synergies are hypothesized to represent motor modules recruited by the nervous system to flexibly perform subtasks necessary to achieve movement. Muscle synergy analysis may offer a better view of the neural structure underlying motor behaviors and how they change in motor deficits and rehabilitation. The aim of this study is to investigate if muscle synergies are able to encode regularities in the musculoskeletal system organization and dynamic behavior of patients with dystonia, or if they are altered as a consequence of the nervous system dysfunction in dystonia. To do so, we applied muscle synergies analysis to muscle activity recorded during the execution of upper limb writing tasks in 10 children with dystonia and 9 age-matched healthy controls. We show that, although children with dystonia present movement abnormalities compared to control subjects, the muscle synergies extracted from the two groups are very similar, and that the two groups share a significant number of motor modules. Our finding therefore suggests that a regular modular organization of upper limb muscle coordination is preserved for childhood dystonia.
Alaverdashvili, Mariam; Hackett, Mark J; Pickering, Ingrid J; Paterson, Phyllis G
2014-12-01
The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a "Zn valley" in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways. Copyright © 2014 Elsevier Inc. All rights reserved.
Alaverdashvili, Mariam; Hackett, Mark J.; Pickering, Ingrid J.; Paterson, Phyllis G.
2015-01-01
The rat is the most widely studied pre-clinical model system of various neurological and neurodegenerative disorders affecting hand function. Although brain injury to the forelimb region of the motor cortex in rats mostly induces behavioral abnormalities in motor control of hand movements, behavioral deficits in the sensory-motor domain are also observed. This questions the prevailing view that cortical layer IV, a recipient of sensory information from the thalamus, is absent in rat motor cortex. Because zinc-containing neurons are generally not found in pathways that run from the thalamus, an absence of zinc (Zn) in a cortical layer would be suggestive of sensory input from the thalamus. To test this hypothesis, we used synchrotron micro X-ray fluorescence imaging to measure Zn distribution across cortical layers. Zn maps revealed a heterogeneous layered Zn distribution in primary and secondary motor cortices of the forelimb region in the adult rat. Two wider bands with elevated Zn content were separated by a narrow band having reduced Zn content, and this was evident in two rat strains. The Zn distribution pattern was comparable to that in sensorimotor cortex, which is known to contain a well demarcated layer IV. Juxtaposition of Zn maps and the images of brain stained for Nissl bodies revealed a “Zn valley” in primary motor cortex, apparently starting at the ventral border of pyramidal layer III and ending at the close vicinity of layer V. This finding indicates the presence of a conspicuous cortical layer between layers III and V, i.e. layer IV, the presence of which previously has been disputed. The results have implications for the use of rat models to investigate human brain function and neuropathology, such as after stroke. The presence of layer IV in the forelimb region of the motor cortex suggests that therapeutic interventions used in rat models of motor cortex injury should target functional abnormalities in both motor and sensory domains. The finding is also critical for future investigation of the biochemical mechanisms through which therapeutic interventions can enhance neural plasticity, particularly through Zn dependent pathways. PMID:25192655
Self-Injurious Behavior: An Animal Model of an Autism Endophenotype
2012-01-01
time there was a visible release of the pasta (not a drop) or a reformation of the digits holding the pasta via motor patterns of flexion/extension...review of 18 pasta -trials, nine trials randomly selected from each experimental group. Behaviors included on the code sheet were number of drops...failure to contact reaches, angling with head tilt, abnormal posture, use of a unilateral paw technique, and twirling of the pasta . Specific descriptions
ERIC Educational Resources Information Center
Evans, David W.; Lewis, Marc D.; Iobst, Emily
2004-01-01
Mounting evidence concerning obsessive-compulsive disorders points to abnormal functioning of the orbitofrontal cortices. First, patients with obsessive-compulsive disorder (OCD) perform poorly on tasks that rely on response suppression/motor inhibition functions mediated by the orbitofrontal cortex relative to both normal and clinical controls.…
A New Neurobehavioral Model of Autism in Mice: Pre-and Postnatal Exposure to Sodium Valproate
ERIC Educational Resources Information Center
Wagner, George C.; Reuhl, Kenneth R.; Cheh, Michelle; McRae, Paulette; Halladay, Alycia K.
2006-01-01
Autism symptoms, including impairments in language development, social interactions, and motor skills, have been difficult to model in rodents. Since children exposed in utero to sodium valproate (VPA) demonstrate behavioral and neuroanatomical abnormalities similar to those seen in autism, the neurodevelopmental effects of this antiepileptic…
Surmounting retraining limits in musicians' dystonia by transcranial stimulation.
Furuya, Shinichi; Nitsche, Michael A; Paulus, Walter; Altenmüller, Eckart
2014-05-01
Abnormal cortical excitability is evident in various movement disorders that compromise fine motor control. Here we tested whether skilled finger movements can be restored in musicians with focal hand dystonia through behavioral training assisted by transcranial direct current stimulation to the motor cortex of both hemispheres. The bilateral motor cortices of 20 pianists (10 with focal dystonia, 10 healthy controls) were electrically stimulated noninvasively during bimanual mirrored finger movements. We found improvement in the rhythmic accuracy of sequential finger movements with the affected hand during and after cathodal stimulation over the affected cortex and simultaneous anodal stimulation over the unaffected cortex. The improvement was retained 4 days after intervention. Neither a stimulation with the reversed montage of electrodes nor sham stimulation yielded any improvement. Furthermore, the amount of improvement was positively correlated with the severity of the symptoms. Bihemispheric stimulation without concurrent motor training failed to improve fine motor control, underlining the importance of combined retraining and stimulation for restoring the dystonic symptoms. For the healthy pianists, none of the stimulation protocols enhanced movement accuracy. These results suggest a therapeutic potential of behavioral training assisted by bihemispheric, noninvasive brain stimulation in restoring fine motor control in focal dystonia. © 2014 American Neurological Association.
Yokoi, Fumiaki; Dang, Mai T.; Zhou, Tong; Li, Yuqing
2012-01-01
DYT11 myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonic symptoms and caused by mutations in paternally expressed SGCE, which codes for ɛ-sarcoglycan. Paternally inherited Sgce heterozygous knock-out (KO) mice exhibit motor deficits and spontaneous myoclonus. Abnormal nuclear envelopes have been reported in cellular and mouse models of early-onset DYT1 generalized torsion dystonia; however, the relationship between the abnormal nuclear envelopes and motor symptoms are not clear. Furthermore, it is not known whether abnormal nuclear envelope exists in non-DYT1 dystonia. In the present study, abnormal nuclear envelopes in the striatal medium spiny neurons (MSNs) were found in Sgce KO mice. To analyze whether the loss of ɛ-sarcoglycan in the striatum alone causes abnormal nuclear envelopes, motor deficits or myoclonus, we produced paternally inherited striatum-specific Sgce conditional KO (Sgce sKO) mice and analyzed their phenotypes. Sgce sKO mice exhibited motor deficits in both beam-walking and accelerated rotarod tests, while they did not exhibit abnormal nuclear envelopes, alteration in locomotion, or myoclonus. The results suggest that the loss of ɛ-sarcoglycan in the striatum contributes to motor deficits, while it alone does not produce abnormal nuclear envelopes or myoclonus. Development of therapies targeting the striatum to compensate for the loss of ɛ-sarcoglycan function may rescue the motor deficits in DYT11 M-D patients. PMID:22080833
High prevalence of abnormal motor repertoire at 3 months corrected age in extremely preterm infants.
Fjørtoft, Toril; Evensen, Kari Anne I; Øberg, Gunn Kristin; Songstad, Nils Thomas; Labori, Cathrine; Silberg, Inger Elisabeth; Loennecken, Marianne; Møinichen, Unn Inger; Vågen, Randi; Støen, Ragnhild; Adde, Lars
2016-03-01
To compare early motor repertoire between extremely preterm and term-born infants. An association between the motor repertoire and gestational age and birth weight was explored in extremely preterm infants without severe ultrasound abnormalities. In a multicentre study, the early motor repertoire of 82 infants born extremely preterm (ELGAN:<28 weeks) and/or with extremely low birth weight (ELBW:<1000 g) and 87 term-born infants were assessed by the "Assessment of Motor Repertoire - 2 to 5 Months" (AMR) which is part of Prechtl's "General Movement Assessment", at 12 weeks post-term age. Fidgety movements were classified as normal if present and abnormal if absent, sporadic or exaggerated. Concurrent motor repertoire was classified as normal if smooth and fluent and abnormal if monotonous, stiff, jerky and/or predominantly fast or slow. Eight-teen ELBW/ELGAN infants had abnormal fidgety movements (8 absent, 7 sporadic and 3 exaggerated fidgety movements) compared with 2 control infants (OR:12.0; 95%CI:2.7-53.4) and 46 ELBW/ELGAN infants had abnormal concurrent motor repertoire compared with 17 control infants (OR:5.3; 95%CI:2.6-10.5). Almost all detailed aspects of the AMR differed between the groups. Results were the same when three infants with severe ultrasound abnormalities were excluded. In the remaining ELBW/ELGAN infants, there was no association between motor repertoire and gestational age or birth weight. ELBW/ELGAN infants had poorer quality of early motor repertoire than term-born infants.The findings were not explained by severe abnormalities on neonatal ultrasound scans and were not correlated to the degree of prematurity. The consequences of these abnormal movement patterns remain to be seen in future follow-up studies. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Optogenetic approaches to evaluate striatal function in animal models of Parkinson disease.
Parker, Krystal L; Kim, Youngcho; Alberico, Stephanie L; Emmons, Eric B; Narayanan, Nandakumar S
2016-03-01
Optogenetics refers to the ability to control cells that have been genetically modified to express light-sensitive ion channels. The introduction of optogenetic approaches has facilitated the dissection of neural circuits. Optogenetics allows for the precise stimulation and inhibition of specific sets of neurons and their projections with fine temporal specificity. These techniques are ideally suited to investigating neural circuitry underlying motor and cognitive dysfunction in animal models of human disease. Here, we focus on how optogenetics has been used over the last decade to probe striatal circuits that are involved in Parkinson disease, a neurodegenerative condition involving motor and cognitive abnormalities resulting from degeneration of midbrain dopaminergic neurons. The precise mechanisms underlying the striatal contribution to both cognitive and motor dysfunction in Parkinson disease are unknown. Although optogenetic approaches are somewhat removed from clinical use, insight from these studies can help identify novel therapeutic targets and may inspire new treatments for Parkinson disease. Elucidating how neuronal and behavioral functions are influenced and potentially rescued by optogenetic manipulation in animal models could prove to be translatable to humans. These insights can be used to guide future brain-stimulation approaches for motor and cognitive abnormalities in Parkinson disease and other neuropsychiatric diseases.
Arisawa, Hirohiko; Imai, Eiichi; Fujise, Nobuaki; Fukui, Kenji; Masunaga, Hiroaki
2002-01-01
A novel muscarinic receptor agonist, SNI-2011 ((+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] monohydrochloride hemihydrate, cevimeline, CAS 153504-70-2), is a candidate therapeutic drug for xerostomia in Sjögren's syndrome. The general pharmacological properties of this drug on general behavior and the central nervous system were investigated in mice, rats and cats. 1. General behavior: When SNI-2011 was administered orally to mice at 100 mg/kg, mydriasis, a decrease of spontaneous motor activity, tremor, convulsions, salivation, abnormal posture, abnormal gait, reduced grip strength and reduced response against external stimulating were observed, and 2 out of 6 animals died. At 10 mg/kg or lower, no particular sign was observed except mydriasis, which appeared to be caused via the peripheral muscarinic acetylcholine receptors. 2. Central nervous system: SNI-2011 had no effect on the motor coordination in mice. Hypothermia was observed in rats and reduced spontaneous motor activity, analgesia and enhanced maximum electroshock-induced convulsions were observed in mice after oral administration of 30 mg/kg SNI-2011. Slight increase in the rate of theta-wave band in the hippocampal EEG of rats and spinal multisynaptic reflexes in cats were observed after intravenous injection of 10 mg/kg SNI-2011. At an oral dose of 10 mg/kg, prolongation of thiopental-induced sleeping time in mice was observed. The prolongation of sleeping time was inhibited by a peripheral muscarinic antagonist. These results suggest that SNI-2011 has muscarinic effects on general behavior and the central nervous system at the doses approximately 10-fold higher than the effective doses needed for saliva secretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Facciolo, Rosa Maria, E-mail: rm.facciolo@unical.i; Crudo, Michele; Giusi, Giuseppina
2010-02-15
At date the major neuroreceptors i.e. gamma-aminobutyric acid{sub A} (GABA{sub A}R) and orexin (ORXR) systems are beginning to be linked to homeostasis, neuroendocrine and emotional states. In this study, intraperitoneal treatment of the marine teleost Thalassoma pavo with the highly selective GABA{sub A}R agonist (muscimol, MUS; 0,1 mug/g body weight) and/or its antagonist bicuculline (BIC; 1 mug/g body weight) have corroborated a GABA{sub A}ergic role on motor behaviors. In particular, MUS induced moderate (p < 0.05) and great (p < 0.01) increases of swimming towards food sources and resting states after 24 (1 dose) and 96 (4 doses) h treatmentmore » sessions, respectively, when compared to controls. Conversely, BIC caused a very strong (p < 0.001) reduction of the former behavior and in some cases convulsive swimming. From the correlation of BIC-dependent behavioral changes to neuronal morphological and ORXR transcriptional variations, it appeared that the disinhibitory action of GABA{sub A}R was very likely responsible for very strong and strong ORXR mRNA reductions in cerebellum valvula and torus longitudinalis, respectively. Moreover these effects were linked to evident ultra-structural changes such as shrunken cell membranes and loss of cytoplasmic architecture. In contrast, MUS supplied a very low, if any, argyrophilic reaction in hypothalamic and mesencephalic regions plus a scarce level of ultra-structural damages. Interestingly, combined administrations of MUS + BIC were not related to consistent damages, aside mild neuronal alterations in motor-related areas such as optic tectum. Overall it is tempting to suggest, for the first time, a neuroprotective role of GABA{sub A}R inhibitory actions against the overexcitatory ORXR-dependent neurodegeneration and consequently abnormal swimming events in fish.« less
DYT1 dystonia increases risk taking in humans.
Arkadir, David; Radulescu, Angela; Raymond, Deborah; Lubarr, Naomi; Bressman, Susan B; Mazzoni, Pietro; Niv, Yael
2016-06-01
It has been difficult to link synaptic modification to overt behavioral changes. Rodent models of DYT1 dystonia, a motor disorder caused by a single gene mutation, demonstrate increased long-term potentiation and decreased long-term depression in corticostriatal synapses. Computationally, such asymmetric learning predicts risk taking in probabilistic tasks. Here we demonstrate abnormal risk taking in DYT1 dystonia patients, which is correlated with disease severity, thereby supporting striatal plasticity in shaping choice behavior in humans.
Gross Motor Development, Movement Abnormalities, and Early Identification of Autism
Young, Gregory S.; Goldring, Stacy; Greiss-Hess, Laura; Herrera, Adriana M.; Steele, Joel; Macari, Suzanne; Hepburn, Susan; Rogers, Sally J.
2015-01-01
Gross motor development (supine, prone, rolling, sitting, crawling, walking) and movement abnormalities were examined in the home videos of infants later diagnosed with autism (regression and no regression subgroups), developmental delays (DD), or typical development. Group differences in maturity were found for walking, prone, and supine, with the DD and Autism-No Regression groups both showing later developing motor maturity than typical children. The only statistically significant differences in movement abnormalities were in the DD group; the two autism groups did not differ from the typical group in rates of movement abnormalities or lack of protective responses. These findings do not replicate previous investigations suggesting that early motor abnormalities seen on home video can assist in early identification of autism. PMID:17805956
Motility abnormalities in esophageal body in GERD: are they truly related to reflux?
Ciriza de los Ríos, C; García Menéndez, L; Díez Hernández, A; Fernández Eroles, A L; Vega Fernández, A; Enguix Armada, A
2005-03-01
Esophageal motility abnormalities have been observed in patients with gastroesophageal reflux disease. The aim of the present study was to determine if esophageal motor disorders in patients with a positive response to the omeprazole test are related to the existence of reflux or they are concomitant findings. A 24-hour pH monitoring and a stationary manometry were performed on 128 patients: 49 of them had normal manometry, 31 hypotensive lower esophageal sphincter, 29 motor disorder in esophageal body, and 19 hypotensive lower esophageal sphincter and motor disorder in esophageal body. We found an association between the presence of abnormal reflux and motor disorder in esophageal body (chi test; P < 0.05). However, ineffective esophageal motility was the disorder most strongly related to reflux, whereas the hypercontractile disorders were not clearly attributed to it. Esophageal manometric abnormalities should be considered cautiously before considering a motor disorder as a consequence of abnormal reflux.
Vitamin A depletion alters sensitivity of motor behavior to MK-801 in C57BL/6J mice.
Zhang, Ming; Ji, Baohu; Zou, Hong; Shi, Junwei; Zhang, Zhao; Li, Xingwang; Zhu, Hui; Feng, Guoyin; Jin, Meilei; Yu, Lei; He, Lin; Wan, Chunling
2010-01-22
Vitamin A and its derivatives (retinoids) are crucial for the development, maintenance and morphogenesis of the central nervous system (CNS). Although motor impairment has been reported in postnatal vitamin A depletion rodents, the effect of vitamin A depletion on homeostasis maintaining capability in response to external interference is not clear. In the current study, we measured the effect of vitamin A depletion on motor ability and pain sensitivity under two different conditions: 1. prior to any injection and 2. after the injection of an N-methyl-D-aspartate (NMDA) receptor antagonist (MK-801). Vitamin A depletion mice showed decreased body weight, enhanced locomotor activity, increased rearing and less tail flick latency. Vitamin A depletion also induced hypersensitivity of stereotypy, ataxia, rearing, and tail flick latency to MK-801, but hyposensitivity of locomotion to MK-801. These findings suggest that vitamin A depletion affect broad basal behavior and disrupt homeostasis maintaining capability in response to glutamate perturbation. We provide a useful animal model for assessing the role of vitamin A depletion in regulating animal behavior, and for detecting how neurotransmitter pathways might be involved in vitamin A depletion related behavioral abnormalities.
Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.
2016-01-01
Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794
Romanian adoption. The Manitoba experience.
Benoit, T C; Jocelyn, L J; Moddemann, D M; Embree, J E
1996-12-01
To study the developmental, behavioral, and medical features in a cohort of Romanian children adopted by Manitoba families. A prospective longitudinal study. The Child Development Clinic, Children's Hospital, Winnipeg, Manitoba, from September 1990 to June 1992. Developmental, behavioral, and medical features were assessed in 22 Romanian children adopted by 18 Manitoba families. Mean (+/- SD) age at adoption was 15.5 +/- 13 months. Mean (+/- SD) age at initial assessment was 19 +/- 12 months and at follow-up, 35 +/- 13 months. Medical complications included 6 children (27%) who were positive for the hepatitis B surface antigen, 5 with intestinal parasites (23%), 1 positive for the human immunodeficiency virus, 1 with rickets (5%), and 1 with monoplegia and cleft palate (5%). Initial growth parameters were less than the fifth percentile for age for head circumference in 10 children (45%), for weight in 8 (36%), and for height in 7 (32%). At follow-up, statistically significant improvement was seen in height and weight. Initial mean (+/- SD) developmental quotients were 82 +/- 20 for gross motor, 83 +/- 23 for fine motor, 83 +/- 19 for cognitive, and 79 +/- 18 for language domains. Follow-up mean developmental quotients improved in all domains (P < .05). Twelve children (55%) displayed abnormal behavior at the initial assessment; behavioral findings persisted in 8 (36%). Initial appropriate activity level and play behavior predicted normal cognitive outcome (P < .05). This longitudinal study of Romanian adoptees delineates improvements in growth and development once the children are placed in a nurturing environment. The persistence of abnormal behavior in some children underscores the importance of further follow-up.
Morin-Moncet, Olivier; Beaumont, Vincent; de Beaumont, Louis; Lepage, Jean-Francois; Théoret, Hugo
2014-05-01
Recent data suggest that the Val66Met polymorphism of the brain-derived neurotrophic factor (BDNF) gene can alter cortical plasticity within the motor cortex of carriers, which exhibits abnormally low rates of cortical reorganization after repetitive motor tasks. To verify whether long-term retention of a motor skill is also modulated by the presence of the polymorphism, 20 participants (10 Val66Val, 10 Val66Met) were tested twice at a 1-wk interval. During each visit, excitability of the motor cortex was measured by transcranial magnetic stimulations (TMS) before and after performance of a procedural motor learning task (serial reaction time task) designed to study sequence-specific learning of the right hand and sequence-specific transfer from the right to the left hand. Behavioral results showed a motor learning effect that persisted for at least a week and task-related increases in corticospinal excitability identical for both sessions and without distinction for genetic group. Sequence-specific transfer of the motor skill from the right hand to the left hand was greater in session 2 than in session 1 only in the Val66Met genetic group. Further analysis revealed that the sequence-specific transfer occurred equally at both sessions in the Val66Val genotype group. In the Val66Met genotype group, sequence-specific transfer did not occur at session 1 but did at session 2. These data suggest a limited impact of Val66Met polymorphism on the learning and retention of a complex motor skill and its associated changes in corticospinal excitability over time, and a possible modulation of the interhemispheric transfer of procedural learning. Copyright © 2014 the American Physiological Society.
Anomalous Putamen Volume in Children with Complex Motor Stereotypies
Mahone, E. Mark; Crocetti, Deana; Tochen, Laura; Kline, Tina; Mostofsky, Stewart H.; Singer, Harvey S.
2016-01-01
Introduction Complex motor stereotypies in children are repetitive, rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm/hand flapping, waving. They occur in both “primary” (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiological abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. Methods High-resolution anatomical MRI images, acquired at 3.0T, were analyzed in children ages 8–12 years (20 with primary complex motor stereotypies, 20 typically developing). Frontal lobe sub-regions and striatal structures were delineated for analysis. Results Significant reductions (p=0.045) in the stereotypies group were identified in total putamen volume, but not caudate, nucleus accumbens or frontal sub-regions. There were no group differences in total cerebral volume. Conclusion Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomical site in primary complex motor stereotypies. PMID:27751663
Stoodley, Catherine J.; Limperopoulos, Catherine
2016-01-01
SUMMARY The increasing appreciation of the role of the cerebellum in motor and non-motor functions is crucial to understanding the outcomes of acquired cerebellar injury and developmental lesions in high-risk fetal and neonatal populations, children with cerebellar damage (e.g. posterior fossa tumors), and neurodevelopmental disorders (e.g. autism). We review available data regarding the relationship between the topography of cerebellar injury or abnormality and functional outcomes. We report emerging structure–function relationships with specific symptoms: cerebellar regions that interconnect with sensorimotor cortices are associated with motor impairments when damaged; disruption to posterolateral cerebellar regions that form circuits with association cortices impact long-term cognitive outcomes; and midline posterior vermal damage is associated with behavioral dysregulation and an autism-like phenotype. We also explore the impact of age and the potential role for critical periods on cerebellar structure and child function. These findings suggest that the cerebellum plays a critical role in motor, cognitive, and social–behavioral development, possibly via modulatory effects on the developing cerebral cortex. PMID:27184461
Ulnar neuropathy at or distal to the wrist: traumatic versus cumulative stress cases.
Chiodo, Anthony; Chadd, Edmund
2007-04-01
To identify clinical and electromyographic characteristics of ulnar neuropathy at or below the wrist, comparing those caused by unitary trauma with those caused by suspected cumulative stress. Retrospective case series. University hospital electromyography laboratory. Patients with electrodiagnostic evidence of an ulnar neuropathy at or distal to the wrist over a 3-year period. Forty-seven hands from 42 patients (age range, 20-80y; mean, 52y) were identified and evaluated in this study. Record review of clinical history, physical examination, electromyography, and treatment. Etiology of injury, physical signs and symptoms, and electromyographic testing results. Ulnar neuropathy at or distal to the wrist is commonly mischaracterized because of other mononeuropathies in the upper extremity and because of peripheral polyneuropathy. Ulnar neuropathy because of cumulative stress presents typically with sensory symptoms (63%) and a normal examination (71%), whereas trauma cases present with motor with or without sensory symptoms (92%) with motor abnormalities (92%) confirmed on examination. Traumatic cases are characterized by electromyography by decreased sensory and motor-evoked amplitudes, prolonged motor distal latencies, and abnormal needle examination. The amplitude changes are noted comparing with laboratory norms and comparing side to side. No characteristic pattern of abnormalities on electromyography is noted in the cumulative stress cases. Patients with no motor symptoms, regardless of etiology, are more apt to have sensory distal latency prolongation, whereas those with motor symptoms have motor amplitude and needle examination abnormalities. Traumatic ulnar neuropathy at or distal to the wrist is characterized by motor symptoms and sensory and motor axonal loss by electromyography, whereas cumulative stress cases have sensory symptoms and electromyographic findings that are highly variable and noncharacteristic. Patients with no motor symptoms are more apt to show sensory distal latency abnormalities on electromyography, whereas those with motor symptoms show motor-evoked amplitude and needle electromyography abnormalities.
Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.
Kita, Hitoshi; Kita, Takako
2011-07-13
The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.
Spittle, Alicia J; Boyd, Roslyn N; Inder, Terrie E; Doyle, Lex W
2009-02-01
The objective of this study was to compare the predictive value of qualitative MRI of brain structure at term and general movements assessments at 1 and 3 months' corrected age for motor outcome at 1 year's corrected age in very preterm infants. Eighty-six very preterm infants (<30 weeks' gestation) underwent MRI at term-equivalent age, were evaluated for white matter abnormality, and had general movements assessed at 1 and 3 months' corrected age. Motor outcome at 1 year's corrected age was evaluated with the Alberta Infant Motor Scale, the Neuro-Sensory Motor Development Assessment, and the diagnosis of cerebral palsy by the child's pediatrician. At 1 year of age, the Alberta Infant Motor Scale categorized 30 (35%) infants as suspicious/abnormal; the Neuro-Sensory Motor Development Assessment categorized 16 (18%) infants with mild-to-severe motor dysfunction, and 5 (6%) infants were classified with cerebral palsy. White matter abnormality at term and general movements at 1 and 3 months significantly correlated with Alberta Infant Motor Scale and Neuro-Sensory Motor Development Assessment scores at 1 year. White matter abnormality and general movements at 3 months were the only assessments that correlated with cerebral palsy. All assessments had 100% sensitivity in predicting cerebral palsy. White matter abnormality demonstrated the greatest accuracy in predicting combined motor outcomes, with excellent levels of specificity (>90%); however, the sensitivity was low. On the other hand, general movements assessments at 1 month had the highest sensitivity (>80%); however, the overall accuracy was relatively low. Neuroimaging (MRI) and functional (general movements) examinations have important complementary roles in predicting motor development of very preterm infants.
Abnormal functional motor lateralization in healthy siblings of patients with schizophrenia.
Altamura, Mario; Fazio, Leonardo; De Salvia, Michela; Petito, Annamaria; Blasi, Giuseppe; Taurisano, Paolo; Romano, Raffaella; Gelao, Barbara; Bellomo, Antonello; Bertolino, Alessandro
2012-07-30
Earlier neuroimaging studies of motor function in schizophrenia have demonstrated reduced functional lateralization in the motor network during motor tasks. Here, we used event-related functional magnetic resonance imaging during a visually guided motor task in 18 clinically unaffected siblings of patients with schizophrenia and 24 matched controls to investigate if abnormal functional lateralization is related to genetic risk for this brain disorder. Whereas activity associated with motor task performance was mainly contralateral with only a marginal ipsilateral component in healthy participants, unaffected siblings had strong bilateral activity with significantly greater response in ipsilateral and contralateral premotor areas as well as in contralateral subcortical motor regions relative to controls. Reduced lateralization in siblings was also identified with a measure of laterality quotient. These findings suggest that abnormal functional lateralization of motor circuitry is related to genetic risk of schizophrenia. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
The motor cortex: a network tuned to 7-14 Hz
Castro-Alamancos, Manuel A.
2013-01-01
The neocortex or six layer cortex consists of at least 52 cytoarchitectonically distinct areas in humans, and similar areas can be distinguished in rodents. Each of these areas has a defining set of extrinsic connections, identifiable functional roles, a distinct laminar arrangement, etc. Thus, neocortex is extensively subdivided into areas of anatomical and functional specialization, but less is known about the specialization of cellular and network physiology across areas. The motor cortex appears to have a distinct propensity to oscillate in the 7–14 Hz frequency range. Augmenting responses, normal mu and beta oscillations, and abnormal oscillations or after discharges caused by enhancing excitation or suppressing inhibition are all expressed around this frequency range. The substrate for this activity may be an excitatory network that is unique to the motor cortex or that is more strongly suppressed in other areas, such as somatosensory cortex. Interestingly, augmenting responses are dependent on behavioral state. They are abolished during behavioral arousal. Here, I briefly review this evidence. PMID:23439785
Alfieri, Julio A; Silva, Pablo R; Igaz, Lionel M
2016-01-01
Frontotemporal Dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two neurodegenerative diseases associated to mislocalization and aggregation of TAR DNA-binding protein 43 (TDP-43). To investigate in depth the behavioral phenotype associated with this proteinopathy, we used as a model transgenic (Tg) mice conditionally overexpressing human wild-type TDP 43 protein (hTDP-43-WT) in forebrain neurons. We previously characterized these mice at the neuropathological level and found progressive neurodegeneration and other features that evoke human TDP-43 proteinopathies of the FTD/ALS spectrum. In the present study we analyzed the behavior of mice at multiple domains, including motor, social and cognitive performance. Our results indicate that young hTDP-43-WT Tg mice (1 month after post-weaning transgene induction) present a normal motor phenotype compared to control littermates, as assessed by accelerated rotarod performance, spontaneous locomotor activity in the open field test and a mild degree of spasticity shown by a clasping phenotype. Analysis of social and cognitive behavior showed a rapid installment of deficits in social interaction, working memory (Y-maze test) and recognition memory (novel object recognition test) in the absence of overt motor abnormalities. To investigate if the motor phenotype worsen with age, we analyzed the behavior of mice after long-term (up to 12 months) transgene induction. Our results reveal a decreased performance on the rotarod test and in the hanging wire test, indicating a motor phenotype that was absent in younger mice. In addition, long-term hTDP-43-WT expression led to hyperlocomotion in the open field test. In sum, these results demonstrate a time-dependent emergence of a motor phenotype in older hTDP-43-WT Tg mice, recapitulating aspects of clinical FTD presentations with motor involvement in human patients, and providing a complementary animal model for studying TDP-43 proteinopathies.
Brimberg, Lior; Benhar, Itai; Mascaro-Blanco, Adita; Alvarez, Kathy; Lotan, Dafna; Winter, Christine; Klein, Julia; Moses, Allon E; Somnier, Finn E; Leckman, James F; Swedo, Susan E; Cunningham, Madeleine W; Joel, Daphna
2012-01-01
Group A streptococcal (GAS) infections and autoimmunity are associated with the onset of a spectrum of neuropsychiatric disorders in children, with the prototypical disorder being Sydenham chorea (SC). Our aim was to develop an animal model that resembled the behavioral, pharmacological, and immunological abnormalities of SC and other streptococcal-related neuropsychiatric disorders. Male Lewis rats exposed to GAS antigen exhibited motor symptoms (impaired food manipulation and beam walking) and compulsive behavior (increased induced-grooming). These symptoms were alleviated by the D2 blocker haloperidol and the selective serotonin reuptake inhibitor paroxetine, respectively, drugs that are used to treat motor symptoms and compulsions in streptococcal-related neuropsychiatric disorders. Streptococcal exposure resulted in antibody deposition in the striatum, thalamus, and frontal cortex, and concomitant alterations in dopamine and glutamate levels in cortex and basal ganglia, consistent with the known pathophysiology of SC and related neuropsychiatric disorders. Autoantibodies (IgG) of GAS rats reacted with tubulin and caused elevated calcium/calmodulin-dependent protein kinase II signaling in SK-N-SH neuronal cells, as previously found with sera from SC and related neuropsychiatric disorders. Our new animal model translates directly to human disease and led us to discover autoantibodies targeted against dopamine D1 and D2 receptors in the rat model as well as in SC and other streptococcal-related neuropsychiatric disorders. PMID:22534626
Hauser, Jonas; Knapman, Alana; Zürcher, Nicole R; Pilloud, Sonia; Maier, Claudia; Diaz-Heijtz, Rochellys; Forssberg, Hans; Dettling, Andrea; Feldon, Joram; Pryce, Christopher R
2008-12-01
Synthetic glucocorticoids such as dexamethasone (DEX) are commonly used to prevent respiratory distress syndrome in preterm infants, but there is emerging evidence of subsequent neurobehavioral abnormalities (e.g. problems with inattention/hyperactivity). In the present study, we exposed pregnant common marmosets (Callithrix jacchus, primates) to daily repeated DEX (5 mg/kg by mouth) during either early (d 42-48) or late (d 90-96) pregnancy (gestation period of 144 days). Relative to control, and with a longitudinal design, we investigated DEX effects in offspring in terms of physical growth, plasma ACTH and cortisol titers, social and maintenance behaviors, skilled motor reaching, motivation for palatable reward, and learning between infancy and adolescence. Early DEX resulted in reduced sociability in infants and increased motivation for palatable reward in adolescents. Late DEX resulted in a mild transient increase in knee-heel length in infants and enhanced reversal learning of stimulus-reward association in adolescents. There was no effect of either early or late DEX on basal plasma ACTH or cortisol titers. Both treatments resulted in impaired skilled motor reaching in juveniles, which attenuated in early DEX but persisted in late DEX across test sessions. The increased palatable-reward motivation and decreased social motivation observed in early DEX subjects provide experimental support for the clinical reports that prenatal glucocorticoid treatment impairs social development and predisposes to metabolic syndrome. These novel primate findings indicate that fetal glucocorticoid overexposure can lead to abnormal development of motor, affective, and cognitive behaviors. Importantly, the outcome is highly dependent upon the timing of glucocorticoid overexposure.
Treatment of Tourette syndrome.
Kurlan, Roger M
2014-01-01
Tourette's syndrome (TS) consists of chronic motor and phonic tics and characteristically begins in childhood. The tics can be disabling and commonly associated behavioral comorbities such as attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD), can also cause problems in daily functioning. The underlying etiology and neurobiology of TS remain unknown although genetic factors appear to be important, cortical control of basal ganglia motor function appears to be disturbed and neurochemical abnormalities, particularly involving dopamine neurotransmission, are likely present. The treatment of TS involves appropriate education and support. Tics can be treated with habit reversal cognitive behavioral therapy, medications (most commonly alpha agonists and antipsychotics), local intramuscular injections of botulinum toxin and some severe, refractory cases have responded to deep brain stimulation surgery (DBS). It is important to appropriately diagnose and treat comorbid behavioral disorders that are disrupting function. OCD can be treated with cognitive behavioral therapy, selective serotonin reuptake inhibitors, and atypical antipsychotics. DBS has become a treatment option for patients with disabling OCD despite other therapies. ADHD is treated with appropriate classroom accommodations, behavioral therapy, alpha agonists, atomoxetine or methylphenidate-containing stimulant drugs.
ALS and Frontotemporal Dysfunction: A Review
Achi, Eugene Y.; Rudnicki, Stacy A.
2012-01-01
Though once believed to be a disease that was limited to the motor system, it is now apparent that amyotrophic lateral sclerosis (ALS) may be associated with cognitive changes in some patients. Changes are consistent with frontotemporal dysfunction, and may range from mild abnormalities only recognized with formal neuropsychological testing, to profound frontotemporal dementia (FTD). Executive function, behavior, and language are the most likely areas to be involved. Screening helpful in detecting abnormalities includes verbal or categorical fluency, behavioral inventories filled out by the caregiver, and evaluation for the presence of depression and pseudobulbar affect. Patients with cognitive dysfunction have shortened survival and may be less compliant with recommendations regarding use of feeding tubes and noninvasive ventilation. Evolving knowledge of genetic and pathological links between ALS and FTD has allowed us to better understand the overlapping spectrum of ALS and FTD. PMID:22919484
DYT1 dystonia increases risk taking in humans
Arkadir, David; Radulescu, Angela; Raymond, Deborah; Lubarr, Naomi; Bressman, Susan B; Mazzoni, Pietro; Niv, Yael
2016-01-01
It has been difficult to link synaptic modification to overt behavioral changes. Rodent models of DYT1 dystonia, a motor disorder caused by a single gene mutation, demonstrate increased long-term potentiation and decreased long-term depression in corticostriatal synapses. Computationally, such asymmetric learning predicts risk taking in probabilistic tasks. Here we demonstrate abnormal risk taking in DYT1 dystonia patients, which is correlated with disease severity, thereby supporting striatal plasticity in shaping choice behavior in humans. DOI: http://dx.doi.org/10.7554/eLife.14155.001 PMID:27249418
Levodopa is Not a Useful Treatment for Lesch-Nyhan Disease
Visser, Jasper E.; Schretlen, David J.; Bloem, Bastiaan R.; Jinnah, Hyder A.
2012-01-01
Lesch-Nyhan disease (LND) is characterized by dystonia, cognitive abnormalities, and self-injurious behavior. No effective therapies are available. LND is associated with a presynaptic dopaminergic deficit, but the reported effects of dopamine replacement therapy are conflicting. The current prospective open-label study assesses the effects of levodopa on both neurological and behavioral features of LND. All 6 study participants discontinued levodopa early, due to lack of effect and sometimes worsening of motor function. The results provide important clues for pathophysiological mechanisms and suggestions for future treatment options. PMID:21506156
Shalash, Ali Soliman; Hassan, Dalia Mohamed; Elrassas, Hanan Hani; Salama, Mohamed Mosaad; Méndez-Hernández, Edna; Salas-Pacheco, José M.; Arias-Carrión, Oscar
2017-01-01
Degeneration of several brainstem nuclei has been long related to motor and non-motor symptoms (NMSs) of Parkinson’s disease (PD). Nevertheless, due to technical issues, there are only a few studies that correlate that association. Brainstem auditory-evoked potential (BAEP) and vestibular-evoked myogenic potential (VEMP) responses represent a valuable tool for brainstem assessment. Here, we investigated the abnormalities of BAEPs, ocular VEMPs (oVEMPs), and cervical VEMPs (cVEMPs) in patients with PD and its correlation to the motor and NMSs. Fifteen patients diagnosed as idiopathic PD were evaluated by Unified Parkinson’s Disease Rating Scale and its subscores, Hoehn and Yahr scale, Schwab and England scale, and Non-Motor Symptoms Scale. PD patients underwent pure-tone, speech audiometry, tympanometry, BAEP, oVEMPs, and cVEMPs, and compared to 15 age-matched control subjects. PD subjects showed abnormal BAEP wave morphology, prolonged absolute latencies of wave V and I–V interpeak latencies. Absent responses were the marked abnormality seen in oVEMP. Prolonged latencies with reduced amplitudes were seen in cVEMP responses. Rigidity and bradykinesia were correlated to the BAEP and cVEMP responses contralateral to the clinically more affected side. Contralateral and ipsilateral cVEMPs were significantly correlated to sleep (p = 0.03 and 0.001), perception (p = 0.03), memory/cognition (p = 0.025), and urinary scores (p = 0.03). The oVEMP responses showed significant correlations to cardiovascular (p = 0.01) and sexual dysfunctions (p = 0.013). PD is associated with BAEP and VEMP abnormalities that are correlated to the motor and some non-motor clinical characteristics. These abnormalities could be considered as potential electrophysiological biomarkers for brainstem dysfunction and its associated motor and non-motor features. PMID:28289399
McCairn, Kevin W; Iriki, Atsushi; Isoda, Masaki
2013-01-09
Motor tics, a cardinal symptom of Tourette syndrome (TS), are hypothesized to arise from abnormalities within cerebro-basal ganglia circuits. Yet noninvasive neuroimaging of TS has previously identified robust activation in the cerebellum. To date, electrophysiological properties of cerebellar activation and its role in basal ganglia-mediated tic expression remain unknown. We performed multisite, multielectrode recordings of single-unit activity and local field potentials from the cerebellum, basal ganglia, and primary motor cortex using a pharmacologic monkey model of motor tics/TS. Following microinjections of bicuculline into the sensorimotor putamen, periodic tics occurred predominantly in the orofacial region, and a sizable number of cerebellar neurons showed phasic changes in activity associated with tic episodes. Specifically, 64% of the recorded cerebellar cortex neurons exhibited increases in activity, and 85% of the dentate nucleus neurons displayed excitatory, inhibitory, or multiphasic responses. Critically, abnormal discharges of cerebellar cortex neurons and excitatory-type dentate neurons mostly preceded behavioral tic onset, indicating their central origins. Latencies of pathological activity in the cerebellum and primary motor cortex substantially overlapped, suggesting that aberrant signals may be traveling along divergent pathways to these structures from the basal ganglia. Furthermore, the occurrence of tic movement was most closely associated with local field potential spikes in the cerebellum and primary motor cortex, implying that these structures may function as a gate to release overt tic movements. These findings indicate that tic-generating networks in basal ganglia mediated tic disorders extend beyond classical cerebro-basal ganglia circuits, leading to global network dysrhythmia including cerebellar circuits.
Anomalous Putamen Volume in Children With Complex Motor Stereotypies.
Mahone, E Mark; Crocetti, Deana; Tochen, Laura; Kline, Tina; Mostofsky, Stewart H; Singer, Harvey S
2016-12-01
Complex motor stereotypies in children are repetitive rhythmic movements that have a predictable pattern and location, seem purposeful, but serve no obvious function, tend to be prolonged, and stop with distraction, e.g., arm or hand flapping, waving. They occur in both "primary" (otherwise typically developing) and secondary conditions. These movements are best defined as habitual behaviors and therefore pathophysiologically hypothesized to reside in premotor to posterior putamen circuits. This study sought to clarify the underlying neurobiologic abnormality in children with primary complex motor stereotypies using structural neuroimaging, emphasizing brain regions hypothesized to underlie these atypical behaviors. High-resolution anatomic magnetic resonance images, acquired at 3.0 T, were analyzed in children aged eight to twelve years (20 with primary complex motor stereotypies and 20 typically developing). Frontal lobe subregions and striatal structures were delineated for analysis. Significant reductions (P = 0.045) in the stereotypies group were identified in total putamen volume but not in caudate, nucleus accumbens, or frontal subregions. There were no group differences in total cerebral volume. Findings of a smaller putamen provide preliminary evidence suggesting the potential involvement of the habitual pathway as the underlying anatomic site in primary complex motor stereotypies. Copyright © 2016 Elsevier Inc. All rights reserved.
Upper gastrointestinal sensory-motor dysfunction in diabetes mellitus
Zhao, Jing-Bo; Frøkjær, Jens Brøndum; Drewes, Asbjørn Mohr; Ejskjaer, Niels
2006-01-01
Gastrointestinal (GI) sensory-motor abnormalities are common in patients with diabetes mellitus and may involve any part of the GI tract. Abnormalities are frequently sub-clinical, and fortunately only rarely do severe and life-threatening problems occur. The pathogenesis of abnormal upper GI sensory-motor function in diabetes is incompletely understood and is most likely multi-factorial of origin. Diabetic autonomic neuropathy as well as acute suboptimal control of diabetes has been shown to impair GI motor and sensory function. Morphological and biomechanical remodeling of the GI wall develops during the duration of diabetes, and may contribute to motor and sensory dysfunction. In this review sensory and motility disorders of the upper GI tract in diabetes is discussed; and the morphological changes and biomechanical remodeling related to the sensory-motor dysfunction is also addressed. PMID:16718808
Early and progressive sensorimotor anomalies in mice overexpressing wild-type human alpha-synuclein.
Fleming, Sheila M; Salcedo, Jonathan; Fernagut, Pierre-Olivier; Rockenstein, Edward; Masliah, Eliezer; Levine, Michael S; Chesselet, Marie-Françoise
2004-10-20
Accumulation of alpha-synuclein in brain is a hallmark of synucleinopathies, neurodegenerative diseases that include Parkinson's disease. Mice overexpressing alpha-synuclein under the Thy-1 promoter (ASO) show abnormal accumulation of alpha-synuclein in cortical and subcortical regions of the brain, including the substantia nigra. We examined the motor deficits in ASO mice with a battery of sensorimotor tests that are sensitive to alterations in the nigrostriatal dopaminergic system. Male wild-type and ASO mice were tested every 2 months for 8 months for motor performance and coordination on a challenging beam, inverted grid, and pole, sensorimotor deficits in an adhesive removal test, spontaneous activity in a cylinder, and gait. Fine motor skills were assessed by the ability to grasp cotton from a bin. ASO mice displayed significant impairments in motor performance and coordination and a reduction in spontaneous activity as early as 2 months of age. Motor performance and coordination impairments became progressively worse with age and sensorimotor deficits appeared at 6 months. Fine motor skills were altered at 4 months and worsened at 8 months. These data indicate that overexpression of alpha-synuclein induced an early and progressive behavioral phenotype that can be detected in multiple tests of sensorimotor function. These behavioral deficits provide a useful way to assess novel drug therapy in genetic models of synucleinopathies.
Hu, Yang; Yu, Shu-Yang; Zuo, Li-Jun; Piao, Ying-Shan; Cao, Chen-Jie; Wang, Fang; Chen, Ze-Jie; Du, Yang; Lian, Teng-Hong; Liu, Gai-Fen; Wang, Ya-Jie; Chan, Piu; Chen, Sheng-Di; Wang, Xiao-Min; Zhang, Wei
2015-01-01
Objective To investigate potential mechanisms involving abnormal iron metabolism and related inflammation in Parkinson disease (PD) patients with probable rapid eye movement sleep behavior disorder (PRBD). Methods Total 210 PD patients and 31 controls were consecutively recruited. PD patients were evaluated by RBD Screening Questionnaire (RBDSQ) and classified into PRBD and probable no RBD (NPRBD) groups. Demographics information were recorded and clinical symptoms were evaluated by series of rating scales. Levels of iron and related proteins and inflammatory factors in cerebrospinal fluid (CSF) and serum were detected. Comparisons among control, NPRBD and PRBD groups and correlation analyses between RBDSQ score and levels of above factors were performed. Results (1)The frequency of PRBD in PD patients is 31.90%. (2)PRBD group has longer disease duration, more advanced disease stage, severer motor symptoms and more non-motor symptoms than NPRBD group. (3)In CSF, levels of iron, transferrin, NO and IL–1β in PRBD group are prominently increased. RBDSQ score is positively correlated with the levels of iron, transferrin, NO and IL–1β in PD group. Iron level is positively correlated with the levels of NO and IL–1β in PD group. (4)In serum, transferrin level is prominently decreased in PRBD group. PGE2 level in PRBD group is drastically enhanced. RBDSQ score exhibits a positive correlation with PGE2 level in PD group. Conclusions PRBD is common in PD patients. PRBD group has severer motor symptoms and more non-motor symptoms. Excessive iron in brain resulted from abnormal iron metabolism in central and peripheral systems is correlated with PRBD through neuroinflammation. PMID:26431210
Components of Motor Deficiencies in ADHD and Possible Interventions.
Dahan, Anat; Ryder, Chen Hanna; Reiner, Miriam
2018-05-15
There is a growing body of evidence pointing at several types of motor abnormalities found in attention-deficit/hyperactivity disorder (ADHD). In this article we review findings stemming from different paradigms, and suggest an interweaving approach to the different stages involved in the motor regulation process. We start by reviewing various aspects of motor abnormalities found in ADHD and related brain mechanisms. Then, we classify reported motor impairments associated with ADHD, into four classes of motor stages: Attention to the task, motion preparation, motion execution and motion monitoring. Motor abnormalities and corresponding neural activations are analyzed in the context of each of the four identified motor patterns, along with the interactions among them and with other systems. Given the specifications and models of the role of the four motor impairments in ADHD, we ask what treatments correspond to the identified motor impairments. We analyze therapeutic interventions targeting motor difficulties most commonly experienced among individuals with ADHD; first, Neurofeedback training and EMG-biofeedback. As some of the identified components of attention, planning and monitoring have been shown to be linked to abnormal oscillation patterns in the brain, we examine neurofeedback interventions aimed to address these types of oscillations: Theta/beta frequency training and SCP neurofeedback targeted at elevating the CNV component. Additionally we discuss EMG-Biofeedback interventions targeted at feedback on motor activity. Further we review physical activity and motor interventions aimed at improving motor difficulties, associated with ADHD. These kinds of interventions are shown to be helpful not only in aspects of physical ability, but also in enhancing cognition and executive functioning. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Sensory aspects of movement disorders
Patel, Neepa; Jankovic, Joseph; Hallett, Mark
2016-01-01
Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796
Altered Cerebellar Organization and Function in Monoamine Oxidase A Hypomorphic Mice
Alzghoul, Loai; Bortolato, Marco; Delis, Foteini; Thanos, Panayotis K.; Darling, Ryan D.; Godar, Sean C; Zhang, Junlin; Grant, Samuel; Wang, Gene-Jack; Simpson, Kimberly L.; Chen, Kevin; Volkow, Nora D.; Lin, Rick C.S.; Shih, Jean C.
2012-01-01
Monoamine oxidase A (MAO-A) is the key enzyme for the degradation of brain serotonin (5-hydroxytryptamine, 5-HT), norepinephrine (NE) and dopamine (DA). We recently generated and characterized a novel line of MAO-A hypormorphic mice (MAO-ANeo), featuring elevated monoamine levels, social deficits and perseverative behaviors as well as morphological changes in the basolateral amygdala and orbitofrontal cortex. Here we showed that MAO-ANeo mice displayed deficits in motor control, manifested as subtle disturbances in gait, motor coordination, and balance. Furthermore, magnetic resonance imaging of the cerebellum revealed morphological changes and a moderate reduction in the cerebellar size of MAO- ANeo mice compared to wild type (WT) mice. Histological and immunohistochemical analyses using calbindin-D-28k (CB) expression of Purkinje cells revealed abnormal cerebellar foliation with vermal hypoplasia and decreased in Purkinje cell count and their dendritic density in MAO- ANeo mice compared to WT. Our current findings suggest that congenitally low MAO-A activity leads to abnormal development of the cerebellum. PMID:22971542
Impaired Interlimb Coordination of Voluntary Leg Movements in Poststroke Hemiparesis
Tseng, Shih-Chiao
2010-01-01
Appropriate interlimb coordination of the lower extremities is particularly important for a variety of functional human motor behaviors such as jumping, kicking a ball, or simply walking. Specific interlimb coordination patterns may be especially impaired after a lesion to the motor system such as stroke, yet this has not been thoroughly examined to date. The purpose of this study was to investigate the motor deficits in individuals with chronic stroke and hemiparesis when performing unilateral versus bilateral inphase versus bilateral antiphase voluntary cyclic ankle movements. We recorded ankle angular trajectories and muscle activity from the dorsiflexors and plantarflexors and compared these between subjects with stroke and a group of healthy age-matched control subjects. Results showed clear abnormalities in both the kinematics and EMG of the stroke subjects, with significant movement degradation during the antiphase task compared with either the unilateral or the inphase task. The abnormalities included prolonged cycle durations, reduced ankle excursions, decreased agonist EMG bursts, and reduced EMG modulation across movement phases. By comparison, the control group showed nearly identical performance across all task conditions. These findings suggest that stroke involving the corticospinal system projection to the leg specifically impairs one or more components of the neural circuitry involved in lower extremity interlimb coordination. The express susceptibility of the antiphase pattern to exaggerated motor deficits could contribute to functional deficits in a number of antiphase leg movement tasks, including walking. PMID:20463199
Sheynin, Jony; Moustafa, Ahmed A.; Beck, Kevin D.; Servatius, Richard J.; Casbolt, Peter A.; Haber, Paul; Elsayed, Mahmoud; Hogarth, Lee; Myers, Catherine E.
2015-01-01
Objective Addiction is often conceptualized as a behavioral strategy for avoiding negative experiences. In rodents, opioid intake has been associated with abnormal acquisition and extinction of avoidance behavior. Here, we tested the hypothesis that these findings would generalize to human opioid-dependent subjects. Method Adults meeting DSM-IV criteria for heroin-dependence and treated with opioid medication (n=27), and healthy controls (n=26), were recruited between March–October 2013 and given a computer-based task to assess avoidance behavior. On this task, subjects controlled a spaceship and could either gain points by shooting an enemy spaceship, or hide in safe areas to avoid on-screen aversive events. Results While groups did not differ on escape responding (hiding) during the aversive event, heroin-dependent males (but not females) made more avoidance responses during a warning signal that predicted the aversive event (ANOVA, sex × group interaction, p=0.007). This group was also slower to extinguish the avoidance response when the aversive event no longer followed the warning signal (p=0.011). This behavioral pattern resulted in reduced opportunity to obtain reward without reducing risk of punishment. Results suggest that differences in avoidance behavior cannot be easily explained by impaired task performance or by exaggerated motor activity in male patients. Conclusion This study provides evidence for abnormal acquisition and extinction of avoidance behavior in opioid-dependent patients. Interestingly, data suggest abnormal avoidance is demonstrated only by male patients. Findings shed light on cognitive and behavioral manifestations of opioid addiction, and may facilitate development of therapeutic approaches to help affected individuals. PMID:27046310
Environmental Enrichment of Laboratory Rodents: The Answer Depends on the Question
2011-01-01
that offer enhanced sensory , motor, and cognitive stimulation of brain neuronal systems in comparison with standard caging13 and, alternatively, as...benefit the animal in a signifi- cant way in terms of stimulation of positive species-typical behaviors and/or prevention of abnormal or undesirable...naturalistic nesting materials, as compared with less natural substitutes, al- lows laboratory mice to construct complex dome-shaped, multi - layered nests
Angelman syndrome: current understanding and research prospects.
Dan, Bernard
2009-11-01
Angelman syndrome is a neurogenetic disorder characterized by developmental delay, severe intellectual disability, absent speech, exuberant behavior with happy demeanor, motor impairment, and epilepsy, due to deficient UBE3A gene expression that may be caused by various abnormalities of chromosome 15. Recent findings in animal models demonstrated altered dendritic spine formation as well as both synaptic [including gamma-aminobutyric acid (GABA)(A) and N-methyl-D-aspartate (NMDA) transmission] and nonsynaptic (including gap junction) influences in various brain regions, including hippocampus and cerebellar cortex. Reversal of selected abnormalities in rescue genetically engineered animal models is encouraging, although it should not be misinterpreted as promising "cure" for affected patients. Much research is still required to fully understand the functional links between lack of UBE3A expression and clinical manifestations of Angelman syndrome. Studies of regulation of UBE3A expression, including imprinting-related methylation, may point to possibilities of therapeutic upregulation. Understanding relevant roles of the gene product might lead to targeted intervention. Further documentation of brain network dynamics, with particular emphasis on hippocampus, thalamocortical, and cerebellar networks is needed, including in a developmental perspective. There is also a need for further clinical research for improving management of problems such as epilepsy, behavior, communication, learning, motor impairment, and sleep disturbances.
Cerebro-cerebellar circuits in autism spectrum disorder.
D'Mello, Anila M; Stoodley, Catherine J
2015-01-01
The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD.
Cerebro-cerebellar circuits in autism spectrum disorder
D'Mello, Anila M.; Stoodley, Catherine J.
2015-01-01
The cerebellum is one of the most consistent sites of abnormality in autism spectrum disorder (ASD) and cerebellar damage is associated with an increased risk of ASD symptoms, suggesting that cerebellar dysfunction may play a crucial role in the etiology of ASD. The cerebellum forms multiple closed-loop circuits with cerebral cortical regions that underpin movement, language, and social processing. Through these circuits, cerebellar dysfunction could impact the core ASD symptoms of social and communication deficits and repetitive and stereotyped behaviors. The emerging topography of sensorimotor, cognitive, and affective subregions in the cerebellum provides a new framework for interpreting the significance of regional cerebellar findings in ASD and their relationship to broader cerebro-cerebellar circuits. Further, recent research supports the idea that the integrity of cerebro-cerebellar loops might be important for early cortical development; disruptions in specific cerebro-cerebellar loops in ASD might impede the specialization of cortical regions involved in motor control, language, and social interaction, leading to impairments in these domains. Consistent with this concept, structural, and functional differences in sensorimotor regions of the cerebellum and sensorimotor cerebro-cerebellar circuits are associated with deficits in motor control and increased repetitive and stereotyped behaviors in ASD. Further, communication and social impairments are associated with atypical activation and structure in cerebro-cerebellar loops underpinning language and social cognition. Finally, there is converging evidence from structural, functional, and connectivity neuroimaging studies that cerebellar right Crus I/II abnormalities are related to more severe ASD impairments in all domains. We propose that cerebellar abnormalities may disrupt optimization of both structure and function in specific cerebro-cerebellar circuits in ASD. PMID:26594140
Are we missing non-motor seizures in Parkinson's disease? Two case reports.
Son, Andre Y; Cucca, Alberto; Agarwal, Shashank; Liu, Anli; Di Rocco, Alessandro; Biagioni, Milton C
2017-01-01
Parkinson's disease (PD) is predominantly recognized for its motor symptoms, but patients struggle from a morbid and heterogeneous collection of non-motor symptoms (NMS-PD) that can affect their quality of life even more. NMS-PD is a rather generalized term and the heterogeneity and non-specific nature of many symptoms poses a clinical challenge when a PD patient presents with non-motor complaints that may not be NMS-PD. We report two patients with idiopathic PD who presented with acute episodes of cognitive changes. Structural brain images, cardiovascular and laboratory assessment were unremarkable. Both patients experienced a considerable delay before receiving an epilepsy-evaluation, at which point electroencephalogram abnormalities supported the diagnosis of focal non-motor seizures with alteration of awareness. Antiepileptic therapy was implemented and was effective in both cases. Diagnosing non-motor seizures can be challenging. However, PD patients pose an even greater challenge given their eclectic non-motor clinical manifestations and other disease-related complications that could confound and mislead adequate clinical interpretation. Our two cases provide examples of non-motor seizures that may mimic non-motor symptoms of PD. Treating physicians should always consider other possible causes of non-motor symptoms that may coexist in PD patients. Epilepsy work-up should be contemplated in the differential of acute changes in cognition, behavior, or alertness.
Response Inhibition and Interference Control in Obsessive–Compulsive Spectrum Disorders
van Velzen, Laura S.; Vriend, Chris; de Wit, Stella J.; van den Heuvel, Odile A.
2014-01-01
Over the past 20 years, motor response inhibition and interference control have received considerable scientific effort and attention, due to their important role in behavior and the development of neuropsychiatric disorders. Results of neuroimaging studies indicate that motor response inhibition and interference control are dependent on cortical–striatal–thalamic–cortical (CSTC) circuits. Structural and functional abnormalities within the CSTC circuits have been reported for many neuropsychiatric disorders, including obsessive–compulsive disorder (OCD) and related disorders, such as attention-deficit hyperactivity disorder, Tourette’s syndrome, and trichotillomania. These disorders also share impairments in motor response inhibition and interference control, which may underlie some of their behavioral and cognitive symptoms. Results of task-related neuroimaging studies on inhibitory functions in these disorders show that impaired task performance is related to altered recruitment of the CSTC circuits. Previous research has shown that inhibitory performance is dependent upon dopamine, noradrenaline, and serotonin signaling, neurotransmitters that have been implicated in the pathophysiology of these disorders. In this narrative review, we discuss the common and disorder-specific pathophysiological mechanisms of inhibition-related dysfunction in OCD and related disorders. PMID:24966828
Geldof, Christiaan J A; van Hus, Janeline W P; Jeukens-Visser, Martine; Nollet, Frans; Kok, Joke H; Oosterlaan, Jaap; van Wassenaer-Leemhuis, Aleid G
2016-01-01
To extend understanding of impaired motor functioning of very preterm (VP)/very low birth weight (VLBW) children by investigating its relationship with visual attention, visual and visual-motor functioning. Motor functioning (Movement Assessment Battery for Children, MABC-2; Manual Dexterity, Aiming & Catching, and Balance component), as well as visual attention (attention network and visual search tests), vision (oculomotor, visual sensory and perceptive functioning), visual-motor integration (Beery Visual Motor Integration), and neurological status (Touwen examination) were comprehensively assessed in a sample of 106 5.5-year-old VP/VLBW children. Stepwise linear regression analyses were conducted to investigate multivariate associations between deficits in visual attention, oculomotor, visual sensory, perceptive and visual-motor integration functioning, abnormal neurological status, neonatal risk factors, and MABC-2 scores. Abnormal MABC-2 Total or component scores occurred in 23-36% of VP/VLBW children. Visual and visual-motor functioning accounted for 9-11% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Visual perceptive deficits only were associated with Aiming & Catching. Abnormal neurological status accounted for an additional 19-30% of variance in MABC-2 Total, Manual Dexterity and Balance scores, and 5% of variance in Aiming & Catching, and neonatal risk factors for 3-6% of variance in MABC-2 Total, Manual Dexterity and Balance scores. Motor functioning is weakly associated with visual and visual-motor integration deficits and moderately associated with abnormal neurological status, indicating that motor performance reflects long term vulnerability following very preterm birth, and that visual deficits are of minor importance in understanding motor functioning of VP/VLBW children. Copyright © 2016 Elsevier Ltd. All rights reserved.
Li, Jie; Ooi, Evelyn; Bloom, Jonathan; Poon, Carrie; Lax, Daniel; Rosenbaum, Daniel M.; Barone, Frank C.
2013-01-01
Persistent neurobehavioral deficits and brain changes need validation for brain restoration. Two hours middle cerebral artery occlusion (tMCAO) or sham surgery was performed in male Sprague-Dawley rats. Neurobehavioral and cognitive deficits were measured over 10 weeks included: (1) sensory, motor, beam balance, reflex/abnormal responses, hindlimb placement, forepaw foot fault and cylinder placement tests, and (2) complex active place avoidance learning (APA) and simple passive avoidance retention (PA). Electroretinogram (ERG), hemispheric loss (infarction), hippocampus CA1 neuronal loss and myelin (Luxol Fast Blue) staining in several fiber tracts were also measured. In comparison to Sham surgery, tMCAO surgery produced significant deficits in all behavioral tests except reflex/abnormal responses. Acute, short lived deficits following tMCAO were observed for forelimb foot fault and forelimb cylinder placement. Persistent, sustained deficits for the whole 10 weeks were exhibited for motor (p<0.001), sensory (p<0.001), beam balance performance (p<0.01) and hindlimb placement behavior (p<0.01). tMCAO produced much greater and prolonged cognitive deficits in APA learning (maximum on last trial of 604±83% change, p<0.05) but only a small, comparative effect on PA retention. Hemispheric loss/atrophy was measured 10 weeks after tMCAO and cross-validated by two methods (e.g., almost identical % ischemic hemispheric loss of 33.4±3.5% for H&E and of 34.2±3.5% for TTC staining). No visual dysfunction by ERG and no hippocampus neuronal loss were detected after tMCAO. Fiber tract damage measured by Luxol Fast Blue myelin staining intensity was significant (p<0.01) in the external capsule and striatum but not in corpus callosum and anterior commissure. In summary, persistent neurobehavioral deficits were validated as important endpoints for stroke restorative research in the future. Fiber myelin loss appears to contribute to these long term behavioral dysfunctions and can be important for cognitive behavioral control necessary for complex APA learning. PMID:23505432
Synaptic dysfunction and abnormal behaviors in mice lacking major isoforms of Shank3.
Wang, Xiaoming; McCoy, Portia A; Rodriguiz, Ramona M; Pan, Yanzhen; Je, H Shawn; Roberts, Adam C; Kim, Caroline J; Berrios, Janet; Colvin, Jennifer S; Bousquet-Moore, Danielle; Lorenzo, Isabel; Wu, Gangyi; Weinberg, Richard J; Ehlers, Michael D; Philpot, Benjamin D; Beaudet, Arthur L; Wetsel, William C; Jiang, Yong-Hui
2011-08-01
SHANK3 is a synaptic scaffolding protein enriched in the postsynaptic density (PSD) of excitatory synapses. Small microdeletions and point mutations in SHANK3 have been identified in a small subgroup of individuals with autism spectrum disorder (ASD) and intellectual disability. SHANK3 also plays a key role in the chromosome 22q13.3 microdeletion syndrome (Phelan-McDermid syndrome), which includes ASD and cognitive dysfunction as major clinical features. To evaluate the role of Shank3 in vivo, we disrupted major isoforms of the gene in mice by deleting exons 4-9. Isoform-specific Shank3(e4-9) homozygous mutant mice display abnormal social behaviors, communication patterns, repetitive behaviors and learning and memory. Shank3(e4-9) male mice display more severe impairments than females in motor coordination. Shank3(e4-9) mice have reduced levels of Homer1b/c, GKAP and GluA1 at the PSD, and show attenuated activity-dependent redistribution of GluA1-containing AMPA receptors. Subtle morphological alterations in dendritic spines are also observed. Although synaptic transmission is normal in CA1 hippocampus, long-term potentiation is deficient in Shank3(e4-9) mice. We conclude that loss of major Shank3 species produces biochemical, cellular and morphological changes, leading to behavioral abnormalities in mice that bear similarities to human ASD patients with SHANK3 mutations.
Supplementation of Korean Red Ginseng improves behavior deviations in animal models of autism
Gonzales, Edson Luck T.; Jang, Jong-Hwa; Mabunga, Darine Froy N.; Kim, Ji-Woon; Ko, Mee Jung; Cho, Kyu Suk; Bahn, Geon Ho; Hong, Minha; Ryu, Jong Hoon; Kim, Hee Jin; Cheong, Jae Hoon; Shin, Chan Young
2016-01-01
Background Autism spectrum disorder (ASD) is heterogeneous neurodevelopmental disorders that primarily display social and communication impairments and restricted/repetitive behaviors. ASD prevalence has increased in recent years, yet very limited therapeutic targets and treatments are available to counteract the incapacitating disorder. Korean Red Ginseng (KRG) is a popular herbal plant in South Korea known for its wide range of therapeutic effects and nutritional benefits and has recently been gaining great scientific attention, particularly for its positive effects in the central nervous system. Objectives Thus, in this study, we investigated the therapeutic potential of KRG in alleviating the neurobehavioral deficits found in the valproic acid (VPA)-exposed mice models of ASD. Design Starting at 21 days old (P21), VPA-exposed mice were given daily oral administrations of KRG solution (100 or 200 mg/kg) until the termination of all experiments. From P28, mice behaviors were assessed in terms of social interaction capacity (P28–29), locomotor activity (P30), repetitive behaviors (P32), short-term spatial working memory (P34), motor coordination (P36), and seizure susceptibility (P38). Results VPA-exposed mice showed sociability and social novelty preference deficits, hyperactivity, increased repetitive behavior, impaired spatial working memory, slightly affected motor coordination, and high seizure susceptibility. Remarkably, long-term KRG treatment in both dosages normalized all the ASD-related behaviors in VPA-exposed mice, except motor coordination ability. Conclusion As a food and herbal supplement with various known benefits, KRG demonstrated its therapeutic potential in rescuing abnormal behaviors related to autism caused by prenatal environmental exposure to VPA. PMID:26837496
Sheynin, Jony; Moustafa, Ahmed A; Beck, Kevin D; Servatius, Richard J; Casbolt, Peter A; Haber, Paul; Elsayed, Mahmoud; Hogarth, Lee; Myers, Catherine E
2016-03-01
Addiction is often conceptualized as a behavioral strategy for avoiding negative experiences. In rodents, opioid intake has been associated with abnormal acquisition and extinction of avoidance behavior. Here, we tested the hypothesis that these findings would generalize to human opioid-dependent subjects. Adults meeting DSM-IV criteria for heroin dependence and treated with opioid medication (n = 27) and healthy controls (n = 26) were recruited between March 2013 and October 2013 and given a computer-based task to assess avoidance behavior. For this task, subjects controlled a spaceship and could either gain points by shooting an enemy spaceship or hide in safe areas to avoid on-screen aversive events. Hiding duration during different periods of the task was used to measure avoidance behavior. While groups did not differ on escape responding (hiding) during the aversive event, heroin-dependent men (but not women) made more avoidance responses during a warning signal that predicted the aversive event (analysis of variance, sex × group interaction, P = .007). Heroin-dependent men were also slower to extinguish the avoidance response when the aversive event no longer followed the warning signal (P = .011). This behavioral pattern resulted in reduced opportunity to obtain reward without reducing risk of punishment. Results suggest that, in male patients, differences in avoidance behavior cannot be easily explained by impaired task performance or by exaggerated motor activity. This study provides evidence for abnormal acquisition and extinction of avoidance behavior in opioid-dependent patients. Interestingly, data suggest that abnormal avoidance is demonstrated only by male patients. Findings shed light on cognitive and behavioral manifestations of opioid addiction and may facilitate development of therapeutic approaches to help affected individuals. © Copyright 2016 Physicians Postgraduate Press, Inc.
Vinpocetine attenuates MPTP-induced motor deficit and biochemical abnormalities in Wistar rats.
Sharma, S; Deshmukh, R
2015-02-12
Up-regulation in phosphodiesterase 1 (PDE1) expression and decreased levels of cyclic nucleotides (cAMP and cGMP) have been reported in patients and experimental animal models of Parkinson's disease (PD). Phosphodiesterase (PDE) inhibitors have been reported to be beneficial in cognitive and motor deficit states. The present study is designed to investigate the effect of vinpocetine, a PDE1 inhibitor in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced experimental PD-like symptoms in rats. To produce stable motor deficit, MPTP was repeatedly administered intranigrally (bilaterally) at an interval of 1 week (days 1, 7 and 14). Following development of stable motor deficit, which was observed after the third infusion of MPTP (day 14) in rats, the animals were treated with vinpocetine (5-, 10- and 20-mg/kg, i.p.) from days 15 to 28. Movement abnormalities were assessed by a battery of behavioral tests. Moreover, levels of malondialdehyde, nitrite and reduced glutathione were measured in striatal brain homogenate to confirm the role of oxidative and nitrosative stress in PD. Repeated intranigral administration of MPTP produced stable motor deficits, reduced the cyclic nucleotides and dopamine levels and caused elevation in oxidative-nitrosative stress markers. Chronic administration of vinpocetine (for 14 days) significantly and dose dependently attenuated movement disabilities and oxidative-nitrosative stress in MPTP-treated rats. Moreover, vinpocetine treatment enhances cyclic nucleotide levels and restores the dopamine level in MPTP-treated rats. The observed results of the present study are indicative of the therapeutic potential of vinpocetine in PD. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Zhao, Lei; Lv, Guangming; Jiang, Shengyang; Yan, Zhiqiang; Sun, Junming; Wang, Ling; Jiang, Donglin
2012-01-01
Skeletal muscle atrophy occurs after denervation. The present study dissected the rat left ventral root and dorsal root at L4-6 or the sciatic nerve to establish a model of simple motor nerve injury, sensory nerve injury or mixed nerve injury. Results showed that with prolonged denervation time, rats with simple motor nerve injury, sensory nerve injury or mixed nerve injury exhibited abnormal behavior, reduced wet weight of the left gastrocnemius muscle, decreased diameter and cross-sectional area and altered ultrastructure of muscle cells, as well as decreased cross-sectional area and increased gray scale of the gastrocnemius muscle motor end plate. Moreover, at the same time point, the pathological changes were most severe in mixed nerve injury, followed by simple motor nerve injury, and the changes in simple sensory nerve injury were the mildest. These findings indicate that normal skeletal muscle morphology is maintained by intact innervation. Motor nerve injury resulted in larger damage to skeletal muscle and more severe atrophy than sensory nerve injury. Thus, reconstruction of motor nerves should be considered first in the clinical treatment of skeletal muscle atrophy caused by denervation. PMID:25337102
The non-motor syndrome of primary dystonia: clinical and pathophysiological implications
Stamelou, Maria; Edwards, Mark J.; Hallett, Mark
2012-01-01
Dystonia is typically considered a movement disorder characterized by motor manifestations, primarily involuntary muscle contractions causing twisting movements and abnormal postures. However, growing evidence indicates an important non-motor component to primary dystonia, including abnormalities in sensory and perceptual functions, as well as neuropsychiatric, cognitive and sleep domains. Here, we review this evidence and discuss its clinical and pathophysiological implications. PMID:21933808
Suto, Nana; Mieda, Tokue; Iizuka, Akira; Nakamura, Kazuhiro; Hirai, Hirokazu
2016-08-01
Spinocerebellar ataxia type 1 (SCA1) is caused by the ataxin-1 protein (ATXN1) with an abnormally expanded polyglutamine tract and is characterized by progressive neurodegeneration. We previously showed that intrathecal injection of mesenchymal stem cells (MSCs) during the nonsymptomatic stage mitigates the degeneration of the peripheral nervous system (PNS) neurons in SCA1-knock-in (SCA1-KI) mice. We tested in this study whether the therapeutic effects of MSCs in SCA1-KI mice could be reproduced with MSC-releasing factor(s). To test the effects of MSC-releasing factor(s), we used MSC-conditioned medium (MSC-CM). MSC-CM was intrathecally and/or intravenously injected into young SCA1-KI mice, and the therapeutic effects were assessed in the PNS at later ages using immunostaining, electrophysiology, and behavioral tests. MSC-CM attenuated the degeneration of axons and myelin of spinal motor neurons. Consequently, the injected SCA1-KI mice exhibited smaller reductions in nerve conduction velocity in spinal motor neurons and reduced motor incoordination than the untreated mice. These results suggest that factors released from MSC mitigate the morphological and functional abnormalities in the PNS that are observed in SCA1-KI mice in a paracrine manner. © 2016 John Wiley & Sons Ltd.
Divito, Christopher B.; Steece-Collier, Kathy; Case, Daniel T.; Williams, Sean-Paul G.; Stancati, Jennifer A.; Zhi, Lianteng; Rubio, Maria E.; Sortwell, Caryl E.; Collier, Timothy J.; Sulzer, David; Edwards, Robert H.; Zhang, Hui
2015-01-01
The striatum is essential for many aspects of mammalian behavior, including motivation and movement, and is dysfunctional in motor disorders such as Parkinson's disease. The vesicular glutamate transporter 3 (VGLUT3) is expressed by striatal cholinergic interneurons (CINs) and is thus well positioned to regulate dopamine (DA) signaling and locomotor activity, a canonical measure of basal ganglia output. We now report that VGLUT3 knock-out (KO) mice show circadian-dependent hyperlocomotor activity that is restricted to the waking cycle and is due to an increase in striatal DA synthesis, packaging, and release. Using a conditional VGLUT3 KO mouse, we show that deletion of the transporter from CINs, surprisingly, does not alter evoked DA release in the dorsal striatum or baseline locomotor activity. The mice do, however, display changes in rearing behavior and sensorimotor gating. Elevation of DA release in the global KO raised the possibility that motor deficits in a Parkinson's disease model would be reduced. Remarkably, after a partial 6-hydroxydopamine (6-OHDA)-mediated DA depletion (∼70% in dorsal striatum), KO mice, in contrast to WT mice, showed normal motor behavior across the entire circadian cycle. l-3,4-dihydroxyphenylalanine-mediated dyskinesias were also significantly attenuated. These findings thus point to new mechanisms to regulate basal ganglia function and potentially treat Parkinson's disease and related disorders. SIGNIFICANCE STATEMENT Dopaminergic signaling is critical for both motor and cognitive functions in the mammalian nervous system. Impairments, such as those found in Parkinson's disease patients, can lead to severe motor deficits. Vesicular glutamate transporter 3 (VGLUT3) loads glutamate into secretory vesicles for neurotransmission and is expressed by discrete neuron populations throughout the nervous system. Here, we report that the absence of VGLUT3 in mice leads to an upregulation of the midbrain dopamine system. Remarkably, in a Parkinson's disease model, the mice show normal motor behavior. They also show fewer abnormal motor behaviors (dyskinesias) in response to l-3,4-dihydroxyphenylalanine, the principal treatment for Parkinson's disease. The work thus suggests new avenues for the development of novel treatment strategies for Parkinson's disease and potentially other basal-ganglia-related disorders. PMID:26558771
A common optimization principle for motor execution in healthy subjects and parkinsonian patients.
Baraduc, Pierre; Thobois, Stéphane; Gan, Jing; Broussolle, Emmanuel; Desmurget, Michel
2013-01-09
Recent research on Parkinson's disease (PD) has emphasized that parkinsonian movement, although bradykinetic, shares many attributes with healthy behavior. This observation led to the suggestion that bradykinesia in PD could be due to a reduction in motor motivation. This hypothesis can be tested in the framework of optimal control theory, which accounts for many characteristics of healthy human movement while providing a link between the motor behavior and a cost/benefit trade-off. This approach offers the opportunity to interpret movement deficits of PD patients in the light of a computational theory of normal motor control. We studied 14 PD patients with bilateral subthalamic nucleus (STN) stimulation and 16 age-matched healthy controls, and tested whether reaching movements were governed by similar rules in these two groups. A single optimal control model accounted for the reaching movements of healthy subjects and PD patients, whatever the condition of STN stimulation (on or off). The choice of movement speed was explained in all subjects by the existence of a preset dynamic range for the motor signals. This range was idiosyncratic and applied to all movements regardless of their amplitude. In PD patients this dynamic range was abnormally narrow and correlated with bradykinesia. STN stimulation reduced bradykinesia and widened this range in all patients, but did not restore it to a normal value. These results, consistent with the motor motivation hypothesis, suggest that constrained optimization of motor effort is the main determinant of movement planning (choice of speed) and movement production, in both healthy and PD subjects.
Xu, Tonghui; Wang, Shaofang; Lalchandani, Rupa R.; Ding, Jun B
2017-01-01
In Parkinson’s disease (PD), dopamine depletion causes dramatic changes in the brain resulting in debilitating cognitive and motor deficits. PD neuropathology has been restricted to postmortem examinations, which are limited to only a single time point of PD progression. Models of PD where dopamine tone in the brain are chemically or physically disrupted are valuable tools in understanding the mechanisms of the disease. The basal ganglia have been well studied in the context of PD, and circuit changes in response to dopamine loss have been linked to the motor dysfunctions in PD. However, the etiology of the cognitive dysfunctions that are comorbid in PD patients has remained unclear until now. In this paper, we review recent studies exploring how dopamine depletion affects the motor cortex at the synaptic level. In particular, we highlight our recent findings on abnormal spine dynamics in the motor cortex of PD mouse models through in vivo, time-lapse imaging and motor-skill behavior assays. In combination with previous studies, a role of the motor cortex in skill-learning, and the impairment of this ability with the loss of dopamine, is becoming more apparent. Taken together, we conclude with a discussion on the potential role for the motor cortex in the motor-skill learning and cognitive impairments of PD, with the possibility of targeting the motor cortex for future PD therapeutics. PMID:28343366
Current status of safinamide for the drug portfolio of Parkinson's disease therapy.
Müller, Thomas
2013-09-01
Parkinson's disease (PD) is characterized by a slowly ongoing neuronal death. This alters dopaminergic and glutamatergic neurotransmission and causes a wide variety of motor and non-motor features. Safinamide has a unique pharmacological profile, which combines modulation of dopamine metabolism by reversible, highly specific monoamine oxidase-B inhibition, blockage of voltage-dependent sodium channels, modulation of calcium channels and of glutamate release induced by abnormal neuronal activity. Therefore, safinamide represents an ideal candidate for the treatment of PD. This compound asks for one time daily intake only within an optimum dose range between 50 and 100 mg. In clinical trials, safinamide was well tolerated and safe, improved motor behavior even in combination with dopamine agonist only, ameliorated levodopa-associated motor complications. Safinamide has the potential to become an important compound for the therapy of PD, since its symptomatic efficacy appears to be superior to available monoamine oxidase-B inhibitors or N-methyl-d-aspartate receptor antagonists like amantadine, according to available trial outcomes.
Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease.
Santana, Maxwell B; Halje, Pär; Simplício, Hougelle; Richter, Ulrike; Freire, Marco Aurelio M; Petersson, Per; Fuentes, Romulo; Nicolelis, Miguel A L
2014-11-19
Although deep brain electrical stimulation can alleviate the motor symptoms of Parkinson disease (PD), just a small fraction of patients with PD can take advantage of this procedure due to its invasive nature. A significantly less invasive method--epidural spinal cord stimulation (SCS)--has been suggested as an alternative approach for symptomatic treatment of PD. However, the mechanisms underlying motor improvements through SCS are unknown. Here, we show that SCS reproducibly alleviates motor deficits in a primate model of PD. Simultaneous neuronal recordings from multiple structures of the cortico-basal ganglia-thalamic loop in parkinsonian monkeys revealed abnormal highly synchronized neuronal activity within each of these structures and excessive functional coupling among them. SCS disrupted this pathological circuit behavior in a manner that mimics the effects caused by pharmacological dopamine replacement therapy or deep brain stimulation. These results suggest that SCS should be considered as an additional treatment option for patients with PD. Copyright © 2014 Elsevier Inc. All rights reserved.
Evaluation of Esophageal Motor Function With High-resolution Manometry
2013-01-01
For several decades esophageal manometry has been the test of choice to evaluate disorders of esophageal motor function. The recent introduction of high-resolution manometry for the study of esophageal motor function simplified performance of esophageal manometry, and revealed previously unidentified patterns of normal and abnormal esophageal motor function. Presentation of pressure data as color contour plots or esophageal pressure topography led to the development of new tools for analyzing and classifying esophageal motor patterns. The current standard and still developing approach to do this is the Chicago classification. While this methodical approach is improving our diagnosis of esophageal motor disorders, it currently does not address all motor abnormalities. We will explore the Chicago classification and disorders that it does not address. PMID:23875094
Barkow, Jessica Cummiskey; Freed, Curt R.
2017-01-01
Exercise has been recommended to improve motor function in Parkinson patients, but its value in altering progression of disease is unknown. In this study, we examined the neuroprotective effects of running wheel exercise in mice. In adult wild-type mice, one week of running wheel activity led to significantly increased DJ-1 protein concentrations in muscle and plasma. In DJ-1 knockout mice, running wheel performance was much slower and Rotarod performance was reduced, suggesting that DJ-1 protein is required for normal motor activity. To see if exercise can prevent abnormal protein deposition and behavioral decline in transgenic animals expressing a mutant human form of α-synuclein in all neurons, we set up running wheels in the cages of pre-symptomatic animals at 12 months old. Activity was monitored for a 3-month period. After 3 months, motor and cognitive performance on the Rotarod and Morris Water Maze were significantly better in running animals compared to control transgenic animals with locked running wheels. Biochemical analysis revealed that running mice had significantly higher DJ-1, Hsp70 and BDNF concentrations and had significantly less α-synuclein aggregation in brain compared to control mice. By contrast, plasma concentrations of α-synuclein were significantly higher in exercising mice compared to control mice. Our results suggest that exercise may slow the progression of Parkinson’s disease by preventing abnormal protein aggregation in brain. PMID:29272304
Neural synchrony within the motor system: what have we learned so far?
van Wijk, Bernadette C. M.; Beek, Peter J.; Daffertshofer, Andreas
2012-01-01
Synchronization of neural activity is considered essential for information processing in the nervous system. Both local and inter-regional synchronization are omnipresent in different frequency regimes and relate to a variety of behavioral and cognitive functions. Over the years, many studies have sought to elucidate the question how alpha/mu, beta, and gamma synchronization contribute to motor control. Here, we review these studies with the purpose to delineate what they have added to our understanding of the neural control of movement. We highlight important findings regarding oscillations in primary motor cortex, synchronization between cortex and spinal cord, synchronization between cortical regions, as well as abnormal synchronization patterns in a selection of motor dysfunctions. The interpretation of synchronization patterns benefits from combining results of invasive and non-invasive recordings, different data analysis tools, and modeling work. Importantly, although synchronization is deemed to play a vital role, it is not the only mechanism for neural communication. Spike timing and rate coding act together during motor control and should therefore both be accounted for when interpreting movement-related activity. PMID:22969718
Ganor, Yonatan; Goldberg-Stern, Hadassa; Cohen, Ran; Teichberg, Vivian; Levite, Mia
2014-04-01
Anti-GluR3B antibodies (GluR3B Ab's), directed against peptide B/aa372-395 of GluR3 subunit of glutamate/AMPA receptors, are found in ∼35% of epilepsy patients, activate glutamate/AMPA receptors, evoke ion currents, kill neurons and damage the brain. We recently found that GluR3B Ab's also associate with neurological/psychiatric/behavioral abnormalities in epilepsy patients. Here we asked if GluR3B Ab's could be produced in DBA/2J mice, and also modulate seizure threshold and/or cause behavioral/motor impairments in these mice. DBA/2J mice were immunized with the GluR3B peptide in Complete Freund's Adjuvant (CFA), or with controls: ovalbumin (OVA), CFA, or phosphate-buffer saline (PBS). GluR3B Ab's and OVA Ab's were tested. Seizures were induced in all mice by the chemoconvulsant pentylenetetrazole (PTZ) at three time points, each time with less PTZ to avoid non-specific death. Behavior was examined in Open-Field, RotaRod and Grip tests. GluR3B Ab's were produced only in GluR3B-immunized mice, while OVA Ab's were produced only in OVA-immunized mice, showing high Ab's specificity. In GluR3B Ab's negative mice, seizure severity scores and percentages of animals developing generalized seizures declined in response to decreasing PTZ doses. In contrast, both parameters remained unchanged/high in the GluR3B Ab's positive mice, showing that these mice were more susceptible to seizures. The seizure scores associated significantly with the GluR3B Ab's levels. GluR3B Ab's positive mice were also more anxious in Open-Field test, fell faster in RotaRod test, and fell more in Grip test, compared to all the control mice. GluR3B Ab's are produced in DBA/2J mice, facilitate seizures and induce behavioral/motor impairments. This animal model can therefore serve for studying autoimmune epilepsy and abnormal behavior mediated by pathogenic anti-GluR3B Ab's. Copyright © 2014 Elsevier Ltd. All rights reserved.
Aziz, Nadine M; Guedj, Faycal; Pennings, Jeroen L A; Olmos-Serrano, Jose Luis; Siegel, Ashley; Haydar, Tarik F; Bianchi, Diana W
2018-06-12
Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.
Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism
Pearson, BL; Pobbe, RLH; Defensor, EB; Oasay, L; Bolivar, VJ; Blanchard, DC; Blanchard, RJ
2010-01-01
The BTBR T+tf/J inbred mouse strain displays a variety of persistent phenotypic alterations similar to those exhibited in autism spectrum disorders. The unique genetic background of the BTBR strain is thought to underlie its lack of reciprocal social interactions, elevated repetitive self-directed grooming and restricted exploratory behaviors. In order to clarify the existence, range and mechanisms of abnormal repetitive behaviors within BTBR mice, we performed detailed analyses of the microstructure of self-grooming patterns and noted increased overall grooming, higher percentages of interruptions in grooming bouts and a concomitant decrease in the proportion of incorrect sequence transitions compared to C57BL/6J inbred mice. Analyses of active phase home cage behavior also revealed an increase in stereotypic bar-biting behavior in the BTBR strain relative to B6 mice. Finally, in a novel object investigation task, BTBR mice exhibited greater baseline preference for specific unfamiliar objects as well as more patterned sequences of sequential investigations of those items. These results suggest that the repetitive, stereotyped behavior patterns of BTBR mice are relatively pervasive and reflect both motor and cognitive mechanisms. Furthermore, other pre-clinical mouse models of autism spectrum disorders may benefit from these more detailed analyses of stereotypic behavior. PMID:21040460
Beyeler, A; Kadiri, N; Navailles, S; Boujema, M Ben; Gonon, F; Moine, C Le; Gross, C; De Deurwaerdère, P
2010-08-11
Serotonin2C (5-HT(2C)) receptors act in the basal ganglia, a group of sub-cortical structures involved in motor behavior, where they are thought to modulate oral activity and participate in iatrogenic motor side-effects in Parkinson's disease and Schizophrenia. Whether abnormal movements initiated by 5-HT(2C) receptors are directly consequent to dysfunctions of the motor circuit is uncertain. In the present study, we combined behavioral, immunohistochemical and extracellular single-cell recordings approaches in rats to investigate the effect of the 5-HT(2C) agonist Ro-60-0175 respectively on orofacial dyskinesia, the expression of the marker of neuronal activity c-Fos in basal ganglia and the electrophysiological activity of substantia nigra pars reticulata (SNr) neuron connected to the orofacial motor cortex (OfMC) or the medial prefrontal cortex (mPFC). The results show that Ro-60-0175 (1 mg/kg) caused bouts of orofacial movements that were suppressed by the 5-HT(2C) antagonist SB-243213 (1 mg/kg). Ro-60-0175 (0.3, 1, 3 mg/kg) dose-dependently enhanced Fos expression in the striatum and the nucleus accumbens. At the highest dose, it enhanced Fos expression in the subthalamic nucleus, the SNr and the entopeduncular nucleus but not in the external globus pallidus. However, the effect of Ro-60-0175 was mainly associated with associative/limbic regions of basal ganglia whereas subregions of basal ganglia corresponding to sensorimotor territories were devoid of Fos labeling. Ro-60-0175 (1-3 mg/kg) did not affect the electrophysiological activity of SNr neurons connected to the OfMC nor their excitatory-inhibitory-excitatory responses to the OfMC electrical stimulation. Conversely, Ro-60-0175 (1 mg/kg) enhanced the late excitatory response of SNr neurons evoked by the mPFC electrical stimulation. These results suggest that oral dyskinesia induced by 5-HT(2C) agonists are not restricted to aberrant signalling in the orofacial motor circuit and demonstrate discrete modifications in associative territories. Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Nakashima, Akio; Yamauchi, Atsushi; Matsumoto, Junichi; Dohgu, Shinya; Takata, Fuyuko; Koga, Mitsuhisa; Fukae, Jiro; Tsuboi, Yoshio; Kataoka, Yasufumi
2018-05-25
The development of Parkinson's disease (PD) involves the degeneration of dopaminergic neurons caused by oxidative stress. Accumulating clinical evidence indicates that high blood levels of uric acid (UA), an intrinsic antioxidative substance, are associated with reduced risk of PD. However, this hypothesis has not been confirmed by in-vivo experiments. The present study investigated the effects of UA on behavioral abnormalities in the development of PD. We used unilateral 6-hydroxydopamine-lesioned mice, which were fed on a diet containing 1% UA and 2.5% potassium oxonate (an uricase inhibitor) to induce hyperuricemia. A significant elevation in UA levels was found in groups that were fed a UA diet. The 6-hydroxydopamine-lesioned mice showed impaired rotarod performance and increased apomorphine-induced contralateral rotations. These behavioral abnormalities were significantly reversed by feeding a UA diet for 1 week before and 5 weeks after surgery (subchronic hyperuricemia). These behavioral improvements occurred in parallel with recovery of tyrosine hydroxylase protein levels in the lesioned striatal side. The present study with a dietary hyperuricemia mice model confirms that UA exerts a neuroprotective effect on dopaminergic neuronal loss, improving motor dysfunction and ameliorating PD development.
Yokoi, Fumiaki; Dang, Mai T.; Yang, Guang; Li, JinDong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing
2011-01-01
Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ε-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally-inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ε-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ε-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally-inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ε-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ε-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. PMID:22040906
Motor tics evoked by striatal disinhibition in the rat
Bronfeld, Maya; Yael, Dorin; Belelovsky, Katya; Bar-Gad, Izhar
2013-01-01
Motor tics are sudden, brief, repetitive movements that constitute the main symptom of Tourette syndrome (TS). Multiple lines of evidence suggest the involvement of the cortico-basal ganglia system, and in particular the basal ganglia input structure—the striatum in tic formation. The striatum receives somatotopically organized cortical projections and contains an internal GABAergic network of interneurons and projection neurons' collaterals. Disruption of local striatal GABAergic connectivity has been associated with TS and was found to induce abnormal movements in model animals. We have previously described the behavioral and neurophysiological characteristics of motor tics induced in monkeys by local striatal microinjections of the GABAA antagonist bicuculline. In the current study we explored the abnormal movements induced by a similar manipulation in freely moving rats. We targeted microinjections to different parts of the dorsal striatum, and examined the effects of this manipulation on the induced tic properties, such as latency, duration, and somatic localization. Tics induced by striatal disinhibition in monkeys and rats shared multiple properties: tics began within several minutes after microinjection, were expressed solely in the contralateral side, and waxed and waned around a mean inter-tic interval of 1–4 s. A clear somatotopic organization was observed only in rats, where injections to the anterior or posterior striatum led to tics in the forelimb or hindlimb areas, respectively. These results suggest that striatal disinhibition in the rat may be used to model motor tics such as observed in TS. Establishing this reliable and accessible animal model could facilitate the study of the neural mechanisms underlying motor tics, and the testing of potential therapies for tic disorders. PMID:24065893
A clinical study of patients with genetically confirmed Huntington's disease from India.
Murgod, U A; Saleem, Q; Anand, A; Brahmachari, S K; Jain, S; Muthane, U B
2001-09-15
Clinical data across the globe especially in genetic diseases like Huntington's disease (HD) is most helpful when collected using standardized formats. This helps in proper comparison of clinical and genetic data. Herein, we report clinical data on 26 genetically confirmed HD patients from 19 Indian families predominantly from South India. Clinical data and evaluation was performed using standardized formats used by the Huntington Disease Study Group. Adult onset HD was commonest while Juvenile HD (onset <20 years) was observed in approximately 15% of patients. Chorea was the commonest presenting symptom (n=23, 88.5%) while remaining presented with psychiatric symptoms (n=3, 11.5%). Impairment of saccades was observed in approximately 75% of patients. Mean (SD) CAG repeats in the abnormal allele was 48.4 (8.7). Total motor score but not the total behavioral score worsens with duration of symptoms. The functional checklist score correlates with total motor score rather than with duration of symptoms. We detail clinical characteristics in genetically confirmed HD patients from a predominantly South Indian cohort. We observed a slightly higher occurrence of Juvenile HD. Functional disabilities in our patients correlate with worsening of motor rather than behavioral symptoms.
Autism spectrum disorder and early motor abnormalities: Connected or coincidental companions?
Setoh, Peipei; Marschik, Peter B; Einspieler, Christa; Esposito, Gianluca
2017-01-01
Research in the past decade has produced a growing body of evidence showing that motor abnormalities in individuals with autism spectrum disorder (ASD) are the rule rather than the exception. The paper by Chinello and colleagues furthers our understanding of the importance of studying motor functions in ASD by testing a non-clinical population of parents-infant triads. Chinello and colleagues' findings seem to suggest that subclinical motor impairments may exist in the typical population with inherited non-clinical ASD traits. Chinello and colleagues' discovery also urges us to ask why motor abnormalities exist in typically developing infants when their parents present some subclinical ASD traits. We believe that there are at least two possibilities. In the first possible scenario, motor impairments and ASD traits form a single cluster of symptoms unique to a subgroup of individuals with autism. A second possible scenario is that motor atypicalities are the first warning signs of vulnerability often associated with atypical development. In conclusion, Chinello et al.'s findings inform us that subclinical atypical phenotypes such as sociocommunicative anomalies may be related to subclinical motor performances in the next generation. This adds to our knowledge by shedding some light on the relation of vulnerability in one domain with vulnerability in another domain. Copyright © 2016 Elsevier Ltd. All rights reserved.
Disruptions in Functional Network Connectivity during Alcohol Intoxicated Driving
Rzepecki-Smith, Catherine I.; Meda, Shashwath A.; Calhoun, Vince D.; Stevens, Michael C.; Jafri, Madiha J.; Astur, Robert S.; Pearlson, Godfrey D.
2009-01-01
Background: Driving while under the influence of alcohol is a major public health problem whose neural basis is not well understood. In a recently published fMRI study (Meda et al, 2009), our group identified five, independent critical driving-associated brain circuits whose inter-regional connectivity was disrupted by alcohol intoxication. However, the functional connectivity between these circuits has not yet been explored in order to determine how these networks communicate with each other during sober and alcohol-intoxicated states. Methods: In the current study, we explored such differences in connections between the above brain circuits and driving behavior, under the influence of alcohol versus placebo. Forty social drinkers who drove regularly underwent fMRI scans during virtual reality driving simulations following two alcohol doses, placebo and an individualized dose producing blood alcohol concentrations (BACs) of 0.10%. Results: At the active dose, we found specific disruptions of functional network connectivity between the frontal-temporal-basal ganglia and the cerebellar circuits. The temporal connectivity between these two circuits was found to be less correlated (p <0.05) when driving under the influence of alcohol. This disconnection was also associated with an abnormal driving behavior (unstable motor vehicle steering). Conclusions: Connections between frontal-temporal-basal ganglia and cerebellum have recently been explored; these may be responsible in part for maintaining normal motor behavior by integrating their overlapping motor control functions. These connections appear to be disrupted by alcohol intoxication, in turn associated with an explicit type of impaired driving behavior. PMID:20028354
Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism.
Pearson, B L; Pobbe, R L H; Defensor, E B; Oasay, L; Bolivar, V J; Blanchard, D C; Blanchard, R J
2011-03-01
The BTBR T+tf/J inbred mouse strain displays a variety of persistent phenotypic alterations similar to those exhibited in autism spectrum disorders (ASDs). The unique genetic background of the BTBR strain is thought to underlie its lack of reciprocal social interactions, elevated repetitive self-directed grooming, and restricted exploratory behaviors. In order to clarify the existence, range, and mechanisms of abnormal repetitive behaviors within BTBR mice, we performed detailed analyses of the microstructure of self-grooming patterns and noted increased overall grooming, higher percentages of interruptions in grooming bouts and a concomitant decrease in the proportion of incorrect sequence transitions compared to C57BL/6J inbred mice. Analyses of active phase home-cage behavior also revealed an increase in stereotypic bar-biting behavior in the BTBR strain relative to B6 mice. Finally, in a novel object investigation task, the BTBR mice exhibited greater baseline preference for specific unfamiliar objects as well as more patterned sequences of sequential investigations of those items. These results suggest that the repetitive, stereotyped behavior patterns of BTBR mice are relatively pervasive and reflect both motor and cognitive mechanisms. Furthermore, other pre-clinical mouse models of ASDs may benefit from these more detailed analyses of stereotypic behavior. © 2010 The Authors. Genes, Brain and Behavior © 2010 Blackwell Publishing Ltd and International Behavioural and Neural Genetics Society.
Movement Disorders and Other Motor Abnormalities in Adults With 22q11.2 Deletion Syndrome
Boot, Erik; Butcher, Nancy J; van Amelsvoort, Thérèse AMJ; Lang, Anthony E; Marras, Connie; Pondal, Margarita; Andrade, Danielle M; Fung, Wai Lun Alan; Bassett, Anne S
2015-01-01
Movement abnormalities are frequently reported in children with 22q11.2 deletion syndrome (22q11.2DS), but knowledge in this area is scarce in the increasing adult population. We report on five individuals illustrative of movement disorders and other motor abnormalities in adults with 22q11.2DS. In addition to an increased susceptibility to neuropsychiatric disorders, seizures, and early-onset Parkinson disease, the underlying brain dysfunction associated with 22q11.2DS may give rise to an increased vulnerability to multiple movement abnormalities, including those influenced by medications. Movement abnormalities may also be secondary to treatable endocrine diseases and congenital musculoskeletal abnormalities. We propose that movement abnormalities may be common in adults with 22q11.2DS and discuss the implications and challenges important to clinical practice. PMID:25684639
Bortolozzi, A A; Duffard, R O; Evangelista de Duffard, A M
1999-01-01
The purpose of this study was to determine whether the behavioral development pattern was altered by a pre- and postnatal exposure to 2,4-Dichlorophenoxyacetic acid (2,4-D). Pregnant rats were daily orally exposed to 70 mg/kg/day of 2,4-D from gestation day (GD) 16 to postnatal day (PND) 23. After weaning, the pups were assigned to one of the two subgroups: T1 (fed with untreated diet until PND 90) and T2 (maintained with 2,4-D diet until PND 90). Effects on offsprings were evaluated with a neurotoxicological test battery. Neuromotor reflexes, spontaneous motor activity, serotonin syndrome, circling, and catalepsy were analyzed during various postnatal ages. 2,4-D neonatal exposure induced delay of the ontogeny of righting reflex and negative geotaxis accompanied by motor abnormalities, stereotypic behaviors (excessive grooming and vertical head movements), and hyperactivity in the open field. Adult rats of both sexes (T2 group) showed a diminution of ambulation and rearing, while excessive grooming responses were only observed in T2 males. Besides, these animals manifested serotonin syndrome behaviors, catalepsy, and right-turning preference. Some behaviors were reversible, but others were permanent, and some were only expressed after pharmacological challenges.
Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K.; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D.; Tkach, Jean; Holland, Scott K.
2014-01-01
Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. Methods This case-control study included 12 children with PSD (mean age 7.42 years, 4 female) and 12 controls (mean age 7.44 years, 4 female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Results Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Conclusions Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. PMID:25481413
Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G.; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria
2014-01-01
Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention. PMID:25360097
The role of the medial prefrontal cortex in the play fighting of rats.
Bell, Heather C; McCaffrey, David R; Forgie, Margaret L; Kolb, Bryan; Pellis, Sergio M
2009-12-01
Although decorticated rats are able to engage in play, their play is abnormal in three ways. First, decorticates do not display the normal, age-related shifts in defensive strategies during development. Second, decorticates do not modify their defensive tactics in response to the social identity of their partners. Third, decorticates display a global shift in defensive tactics from more complex to less complex strategies. It has been shown that lesions of the motor cortex (MC) selectively produce the abnormal developmental effects on play, and that lesions of the orbitofrontal cortex (OFC) selectively produce the deficits in behavioral discrimination between social partners. In the current set of experiments, we demonstrate that lesions of the medial prefrontal cortex (mPFC) produce the shift from more complex to less complex defensive tactics, while leaving intact the age-related and partner-related modulation of defensive strategies. Thus, we have evidence for a triple dissociation of function between the MC, the OFC, and the mPFC with respect to social play behavior.
Tone-deafness – a new disconnection syndrome?
Loui, Psyche; Alsop, David; Schlaug, Gottfried
2009-01-01
Communicating with one’s environment requires efficient neural interaction between action and perception. Neural substrates ofsound perception and production are connected by the arcuate fasciculus (AF). While AF is known to be involved in language, its roles in non-linguistic functions are unexplored. Here we show that tone-deaf people, with impaired sound perception and production, have reduced AF connectivity. Diffusion tensor tractography and psychophysics were assessed in tone-deaf individuals and matched controls. Abnormally-reduced AF connectivity was observed in the tone-deaf. Furthermore, we observed relationships between AF and auditory-motor behavior: superior and inferior AF branches predict psychophysically-assessed pitch-discrimination and sound production-perception abilities respectively. This neural abnormality suggests that tone-deafness leads to a reduction in connectivity resulting in pitch-related impairments. Results support a dual-stream anatomy of sound production and perception implicated in vocal communications. By identifying white-matter differences and their psychophysical correlates, results contribute to our understanding of how neural connectivity subserves behavior. PMID:19692596
Smith, Jacklyn; Rho, Jong M; Teskey, G Campbell
2016-05-01
Autism spectrum disorder (ASD) is an increasingly prevalent neurodevelopmental disorder characterized by deficits in sociability and communication, and restricted and/or repetitive motor behaviors. Amongst the diverse hypotheses regarding the pathophysiology of ASD, one possibility is that there is increased neuronal excitation, leading to alterations in sensory processing, functional integration and behavior. Meanwhile, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used in the treatment of medically intractable epilepsy, has already been shown to reduce autistic behaviors in both humans and in rodent models of ASD. While the mechanisms underlying these effects remain unclear, we hypothesized that this dietary approach might shift the balance of excitation and inhibition towards more normal levels of inhibition. Using high-resolution intracortical microstimulation, we investigated basal sensorimotor excitation/inhibition in the BTBR T+Itpr(tf)/J (BTBR) mouse model of ASD and tested whether the KD restores the balance of excitation/inhibition. We found that BTBR mice had lower movement thresholds and larger motor maps indicative of higher excitation/inhibition compared to C57BL/6J (B6) controls, and that the KD reversed both these abnormalities. Collectively, our results afford a greater understanding of cortical excitation/inhibition balance in ASD and may help expedite the development of therapeutic approaches aimed at improving functional outcomes in this disorder. Copyright © 2016 Elsevier B.V. All rights reserved.
Mandel-Brehm, Caleigh; Salogiannis, John; Dhamne, Sameer C.; Rotenberg, Alexander; Greenberg, Michael E.
2015-01-01
Angelman syndrome (AS) is a neurodevelopmental disorder arising from loss-of-function mutations in the maternally inherited copy of the UBE3A gene, and is characterized by an absence of speech, excessive laughter, cognitive delay, motor deficits, and seizures. Despite the fact that the symptoms of AS occur in early childhood, behavioral characterization of AS mouse models has focused primarily on adult phenotypes. In this report we describe juvenile behaviors in AS mice that are strain-independent and clinically relevant. We find that young AS mice, compared with their wild-type littermates, produce an increased number of ultrasonic vocalizations. In addition, young AS mice have defects in motor coordination, as well as abnormal brain activity that results in an enhanced seizure-like response to an audiogenic challenge. The enhanced seizure-like activity, but not the increased ultrasonic vocalizations or motor deficits, is rescued in juvenile AS mice by genetically reducing the expression level of the activity-regulated cytoskeleton-associated protein, Arc. These findings suggest that therapeutic interventions that reduce the level of Arc expression have the potential to reverse the seizures associated with AS. In addition, the identification of aberrant behaviors in young AS mice may provide clues regarding the neural circuit defects that occur in AS and ultimately allow new approaches for treating this disorder. PMID:25848016
Mandel-Brehm, Caleigh; Salogiannis, John; Dhamne, Sameer C; Rotenberg, Alexander; Greenberg, Michael E
2015-04-21
Angelman syndrome (AS) is a neurodevelopmental disorder arising from loss-of-function mutations in the maternally inherited copy of the UBE3A gene, and is characterized by an absence of speech, excessive laughter, cognitive delay, motor deficits, and seizures. Despite the fact that the symptoms of AS occur in early childhood, behavioral characterization of AS mouse models has focused primarily on adult phenotypes. In this report we describe juvenile behaviors in AS mice that are strain-independent and clinically relevant. We find that young AS mice, compared with their wild-type littermates, produce an increased number of ultrasonic vocalizations. In addition, young AS mice have defects in motor coordination, as well as abnormal brain activity that results in an enhanced seizure-like response to an audiogenic challenge. The enhanced seizure-like activity, but not the increased ultrasonic vocalizations or motor deficits, is rescued in juvenile AS mice by genetically reducing the expression level of the activity-regulated cytoskeleton-associated protein, Arc. These findings suggest that therapeutic interventions that reduce the level of Arc expression have the potential to reverse the seizures associated with AS. In addition, the identification of aberrant behaviors in young AS mice may provide clues regarding the neural circuit defects that occur in AS and ultimately allow new approaches for treating this disorder.
Yokoi, Fumiaki; Dang, Mai T; Yang, Guang; Li, Jindong; Doroodchi, Atbin; Zhou, Tong; Li, Yuqing
2012-02-01
Myoclonus-dystonia (M-D) is a movement disorder characterized by myoclonic jerks with dystonia. DYT11 M-D is caused by mutations in SGCE which codes for ɛ-sarcoglycan. SGCE is maternally imprinted and paternally expressed. Abnormal nuclear envelope has been reported in mouse models of DYT1 generalized torsion dystonia. However, it is not known whether similar alterations occur in DYT11 M-D. We developed a mouse model of DYT11 M-D using paternally inherited Sgce heterozygous knockout (Sgce KO) mice and reported that they had myoclonus and motor coordination and learning deficits in the beam-walking test. However, the specific brain regions that contribute to these phenotypes have not been identified. Since ɛ-sarcoglycan is highly expressed in the cerebellar Purkinje cells, here we examined the nuclear envelope in these cells using a transmission electron microscope and found that they are abnormal in Sgce KO mice. Our results put DYT11 M-D in a growing family of nuclear envelopathies. To analyze the effect of loss of ɛ-sarcoglycan function in the cerebellar Purkinje cells, we produced paternally inherited cerebellar Purkinje cell-specific Sgce conditional knockout (Sgce pKO) mice. Sgce pKO mice showed motor learning deficits, while they did not show abnormal nuclear envelope in the cerebellar Purkinje cells, robust motor deficits, or myoclonus. The results suggest that ɛ-sarcoglycan in the cerebellar Purkinje cells contributes to the motor learning, while loss of ɛ-sarcoglycan in other brain regions may contribute to nuclear envelope abnormality, myoclonus and motor coordination deficits. Copyright © 2011 Elsevier B.V. All rights reserved.
Panagiotidis, P; Kaprinis, G; Iacovides, A; Fountoulakis, K
2013-01-01
Though the pathobiology of schizophrenia can be examined in multiple levels, the organic notion of brain disease suggests that neurological features will be present. One straightforward, inexpensive method of investigating brain dysfunction in schizophrenia is thought the bedside assessment of neurological abnormalities with a standard neurological examination. Neurological abnormalities are traditionally classified as "hard signs" (impairments in basic motor, sensory, and reflex behaviors, which do not appear to be affected in schizophrenia) and "soft signs", which refer to more complex phenomena such as abnormalities in motor control, integrative sensory function, sensorimotor integration, and cerebral laterality. Additionally, neurological soft signs (NSS) are minor motor and sensory abnormalities that are considered to be normal in the course of early development but abnormal when elicited in later life or persist beyond childhood. Soft signs also, have no definitive localizing significance but are indicative of subtle brain dysfunction. Most authors believe that they are a reflection not only of deficient integration between the sensory and motor systems, but also of dysfunctional neuronal circuits linking subcortical brain structures such as the basal ganglia, the brain stem, and the limbic system. Throughout the last four decades, studies have consistently shown that NSS are more frequently present in patients with schizophrenia than in normal subjects and non-psychotic psychiatric patients. However, the functional relevance of NSS remains unclear and their specificity has often been challenged, even though there is indication for a relative specificity with regard to diagnosis, or symptomatology. Many studies have considered soft signs as categorical variables thus hampering the evaluation of fluctuation with symptomatology and/or treatment, whereas other studies included insufficient number of assessed signs, or lacked a comprehensive assessment of extrapyramidal symptomatology. Factors such as sex, age or family history of schizophrenia, are said to influence the performance of neurological examination, whereas relative few studies have provided longitudinal follow-up data on neurological soft signs in a sufficient number of patients, in order to address a possible deterioration of neurological functions. Finally, one additional difficulty when analyzing the NSS literature lies in the diversity of symptoms that are evaluated in the studies and/or non-standardized procedures or scoring. We will review some basic issues concerning recurrent difficulties in the measurement and definition of soft signs, as well as controversies on the significance of these signs with respect to clinical subtyping of schizophrenia, and social and demographic variables.
Suelves, Nuria; Miguez, Andrés; López-Benito, Saray; Barriga, Gerardo García-Díaz; Giralt, Albert; Alvarez-Periel, Elena; Arévalo, Juan Carlos; Alberch, Jordi; Ginés, Silvia; Brito, Verónica
2018-05-27
Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75 NTR imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75 NTR imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75 NTR expression. Genetic normalization of p75 NTR expression in KI mutant mice delayed the onset of motor deficits and striatal neuropathology, as shown by restored levels of striatal-enriched proteins and dendritic spine density and reduced huntingtin aggregation. We found that the BDNF/TrkB/p75 NTR imbalance led to abnormal BDNF signaling, manifested as a diminished activation of TrkB-phospholipase C-gamma pathway but upregulation of c-Jun kinase pathway. Moreover, we confirmed the contribution of the proper balance of BDNF/TrkB/p75 NTR on HD pathology by a pharmacological approach using fingolimod. We observed that chronic infusion of fingolimod normalizes p75 NTR levels, which is likely to improve motor coordination and striatal neuropathology in HD transgenic mice. We conclude that downregulation of p75 NTR expression can delay disease progression suggesting that therapeutic approaches aimed to restore the balance between BDNF, TrkB, and p75 NTR could be promising to prevent motor deficits in HD.
Hou, Shuangxing; Yuan, Lianfang; Jin, Pengpeng; Ding, Bojun; Qin, Na; Li, Li; Liu, Xuedong; Wu, Zhongliang; Zhao, Gang; Deng, Yanchun
2013-02-18
Lead is a heavy metal and important environmental toxicant and nerve poison that can destruction many functions of the nervous system. Lead poisoning is a medical condition caused by increased levels of lead in the body. Lead interferes with a variety of body processes and is toxic to many organs and issues, including the central nervous system. It interferes with the development of the nervous system, and is therefore particularly toxic to children, causing potentially permanent neural and cognitive impairments. In this study, we investigated the relationship between lead poisoning and the intellectual and neurobehavioral capabilities of children. The background characteristics of the research subjects were collected by questionnaire survey. Blood lead levels were detected by differential potentiometric stripping analysis (DPSA). Intelligence was assessed using the Gesell Developmental Scale. The Achenbach Child Behavior Checklist (CBCL) was used to evaluate each child's behavior. Blood lead levels were significantly negatively correlated with the developmental quotients of adaptive behavior, gross motor performance, fine motor performance, language development, and individual social behavior (P < 0.01). Compared with healthy children, more children with lead poisoning had abnormal behaviors, especially social withdrawal, depression, and atypical body movements, aggressions and destruction. Lead poisoning has adverse effects on the behavior and mental development of 2-4-year-old children, prescribing positive and effective precautionary measures.
Infant and child motor development.
Edwards, Sara L; Sarwark, John F
2005-05-01
Identifying infant and child developmental delay is a skill important for orthopaedic surgeons to master because they often are asked to distinguish between normal and abnormal movement. An emphasis has been placed on early detection and referral for intervention, which has been shown to enhance the lives of the infant or child and his or her family. Appropriate recognition of delay is necessary for referral to early intervention services, which serve to help these children overcome or improve motor dysfunction and to help families grow more confident in caring for children with special needs. We define early intervention, discuss normal and abnormal motor development, and provide useful examination tools to assess motor development.
Pareja, Juan A; Cuadrado, María Luz; García-Morales, Irene; Gil-Nagel, Antonio; Franch, Oriol
2008-08-01
A nondescribed behavioral disorder was observed during wake-sleep transitions in 2 young children. Two boys had episodes of abnormal behavior in hypnagogic-and occasionally hypnopompic-periods for 1 year from the time they were 1 year and several months old. The episodes consisted of irregular body movements, which could be either gentle or violent but never made the children get out of bed. They lasted from a few seconds to 2 hours and were associated with poor reactivity and amnesia of the events. Electroencephalography (EEG) recordings showed wake-state features, with brief bursts of hypnagogic hypersynchrony, and did not display seizure activity. A distinctive behavior disorder occurring during wake-sleep transitions with a wake EEG pattern has been identified in very early childhood. The clinical profile does not fit any of the known parasomnias and might belong to a new category of parasomnia.
Park, Saeyoung; Kim, Eungpil; Koh, Seong-Eun; Maeng, Sungho; Lee, Won-Don; Lim, Jinho; Shim, Insop; Lee, Young-Jay
2012-07-23
Parkinson's disease (PD) is caused by the progressive loss of dopaminergic neurons in the mesencephalic substantia nigra and is accompanied by behavioral abnormalities. Pharmacological administration of L-dihydroxyphenylalanine (l-dopa) improves the abnormalities in the early phase of the illness, but numerous adverse effects hinder long-term administration. Transplantation of fetal mesencephalic tissues has been suggested as an alternative to l-dopa treatment; however, the use of human fetal tissues is controversial. Mesenchymal stem cells (MSCs) are capable of self-renewal and differentiation and are thus a promising substitute for fetal tissue for the replacement of diseased tissues or organs. Previously, this group isolated 17 independent MSCs from the first trimester human placenta (termed first trimester placental MSCs, or fPMSCs) and reported their successful in vitro differentiation into fPMSC-derived neural progenitors (fPMSC-NPs) (Park et al., Placenta 2011; 32:269-276). In the current study, the in vitro-generated fPMSC-NPs were transplanted into the striatum of a rat model of PD to evaluate whether they could undergo terminal differentiation and mediate behavioral recovery. As early as 2 weeks after transplantation, a minor but significant amelioration of rotational asymmetry was observed, and near-normal motor function was achieved at 24weeks. Immunohistochemical and positron emission tomography (PET) analyses provided experimental evidence for the dopaminergic differentiation of the transplanted progenitors. These results show that in vitro-generated fPMSC-NPs are capable of terminal differentiation in vivo and can attenuate motor defects associated with PD. Hence, the placenta is an auspicious source of stem cells for the therapeutic treatment of neurological disorders. Copyright © 2012 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Giusi, Giuseppina; Alo, Raffaella; Crudo, Michele
Recent interests are beginning to be directed towards toxic neurobiological dysfunctions caused by lead (Pb) in aquatic vertebrates. In the present work, treatment with a maximum acceptable toxic concentration of this heavy metal was responsible for highly significant (p < 0.01) abnormal motor behaviors such as hyperactive movements in the teleost Thalassoma pavo and the same treatment accounted for significantly (p < 0.05) enhanced hyperventilating states. On the other hand, greater abnormal motor behaviors were detected in the presence of the histamine (HA) receptor subtype 2 (H{sub 2}R) antagonist cimetidine (Cim), as shown by the very robust (p < 0.001)more » increases of the two behavioral states. Interestingly, elevated expression levels of stress-related factors, i.e. heat shock protein70/90 (HSP90/70) orthologs were reported for the first time in hypothalamic and mesencephalic areas of Pb-treated teleosts. In particular, an up-regulation of HSP70 was readily detected when this heavy metal was given concomitantly with Cim, while the histamine subtype 3 antagonist (H{sub 3}R) thioperamide (Thio), instead, blocked Pb-dependent up-regulatory trends of both chaperones in mostly hypothalamic areas. Moreover, intense neuronal damages of the above brain regions coincided with altered expressions of HSP70 and HSP90 when treated only with Cim. Overall these first results show that distinct H{sub n}R are able to exert a net neuroprotective role arising from their interaction with chaperones in fish exposed to Pb-dependent stressful conditions making this a potentially key interaction especially for T. pavo, aquatic species which plays an important ecological role towards the survival of other commercially vital fishes.« less
2012-01-01
Backgound No disease modifying treatment currently exists for Huntington's disease (HD), a fatal neurodegenerative disorder characterized by the formation of amyloid-like aggregates of the mutated huntingtin protein. Curcumin is a naturally occurring polyphenolic compound with Congo red-like amyloid binding properties and the ability to cross the blood brain barrier. CAG140 mice, a knock-in (KI) mouse model of HD, display abnormal aggregates of mutant huntingtin and striatal transcriptional deficits, as well as early motor, cognitive and affective abnormalities, many months prior to exhibiting spontaneous gait deficits, decreased striatal volume, and neuronal loss. We have examined the ability of life-long dietary curcumin to improve the early pathological phenotype of CAG140 mice. Results KI mice fed a curcumin-containing diet since conception showed decreased huntingtin aggregates and increased striatal DARPP-32 and D1 receptor mRNAs, as well as an amelioration of rearing deficits. However, similar to other antioxidants, curcumin impaired rotarod behavior in both WT and KI mice and climbing in WT mice. These behavioral effects were also noted in WT C57Bl/6 J mice exposed to the same curcumin regime as adults. However, neither locomotor function, behavioral despair, muscle strength or food utilization were affected by curcumin in this latter study. The clinical significance of curcumin's impairment of motor performance in mice remains unclear because curcumin has an excellent blood chemistry and adverse event safety profile, even in the elderly and in patients with Alzheimer's disease. Conclusion Together with this clinical experience, the improvement in several transgene-dependent parameters by curcumin in our study supports a net beneficial effect of dietary curcumin in HD. PMID:22475209
Belluscio, Mariano A; Riquelme, Luis A; Murer, M Gustavo
2007-05-01
During movement, inhibitory neurons in the basal ganglia output nuclei show complex modulations of firing, which are presumptively driven by corticostriatal and corticosubthalamic input. Reductions in discharge should facilitate movement by disinhibiting thalamic and brain stem nuclei while increases would do the opposite. A proposal that nigrostriatal dopamine pathway degeneration disrupts trans-striatal pathways' balance resulting in sustained overactivity of basal ganglia output nuclei neurons and Parkinson's disease clinical signs is not fully supported by experimental evidence, which instead shows abnormal synchronous oscillatory activity in animal models and patients. Yet, the possibility that variation in motor cortex activity drives transient overactivity in output nuclei neurons in parkinsonism has not been explored. In Sprague-Dawley rats with 6-hydroxydopamine (6-OHDA)-induced nigrostriatal lesions, approximately 50% substantia nigra pars reticulata (SNpr) units show abnormal cortically driven slow oscillations of discharge. Moreover, these units selectively show abnormal responses to motor cortex stimulation consisting in augmented excitations of an odd latency, which overlapped that of inhibitory responses presumptively mediated by the trans-striatal direct pathway in control rats. Delivering D1 or D2 dopamine agonists into the striatum of parkinsonian rats by reverse microdialysis reduced these abnormal excitations but had no effect on pathological oscillations. The present study establishes that dopamine-deficiency related changes of striatal function contribute to producing abnormally augmented excitatory responses to motor cortex stimulation in the SNpr. If a similar transient overactivity of basal ganglia output were driven by motor cortex input during movement, it could contribute to impeding movement initiation or execution in Parkinson's disease.
Haupt, Mark; Sheldon, Stephen H; Loghmanee, Darius
2013-10-01
The clinical spectrum of sleep disorders in children is broad, ranging from primary snoring and obstructive sleep apnea (OSA) syndrome to complex sleep-related behaviors and movement disorders. Although snoring and OSA typically receive significant attention and discussion, other biologically based sleep disorders are as common, if not more common, in children. A general pediatrician is frequently presented with the complaint of sleep talking, sleep walking, or abnormal movements during sleep. Even more alarming is the presentation of the child suddenly and explosively screaming during sleep. Such complaints fall under the category of parasomnias. Exclusive to sleep and wake-to-sleep transitions, these parasomnias include arousals with abnormal motor, behavioral, autonomic, or sensory symptoms. Parasomnias can be noticeably dissimilar in clinical manifestations, but most share biologic characteristics. Three parasomnias associated with loud vocalizations associated with sleep that can present to general practitioners include sleep terrors, nightmares, and rapid eye movement sleep behavior disorder (RBD). Although usually benign, these sleep disorders can be disruptive and even potentially dangerous to the patient and can often be threatening to quality of life. In this article, we describe the clinical features of some of these disorders and how to differentiate between their alarming presentations. Copyright 2013, SLACK Incorporated.
Chorna, Olena; Solomon, Jessica E; Slaughter, James C; Stark, Ann R; Maitre, Nathalie L
2014-11-01
Sensory experience is the basis for learning in infancy. In older children, abnormal sensory reactivity is associated with behavioural and developmental disorders. We hypothesised that in preterm infants, abnormal sensory reactivity during infancy would be associated with perinatal characteristics and correlate with 2-year neurodevelopmental outcomes. We conducted a prospective observational study of infants with birth weight ≤1500 g using the Test of Sensory Function in Infants (TSFI) in the first year. Infants with gestational age ≤30 weeks were tested with the Bayley Scales of Infant and Toddler Development III (BSID III) at 24 months. Of the 72 participants evaluated at 4-12 months corrected age (median 8 months), 59 (82%) had a least one TSFI score concerning for abnormal sensory reactivity. Lower gestational age was associated with abnormal reactivity to deep pressure and vestibular stimulation (p<0.001). Poor ocular-motor control predicted worse cognitive and motor scores in early childhood (OR 16.7; p=0.004), but was tightly correlated to the presence of severe white matter injury. Poor adaptive motor function in response to tactile stimuli predicted worse BSID III motor (p=0.01) and language scores (p=0.04) at 2 years, even after adjusting for confounders. Abnormal sensory reactivity is common in preterm infants; is associated with immaturity at birth, severe white matter injury and lower primary caregiver education; and predicts neurodevelopmental delays. Early identification of abnormal sensory reactivity of very preterm infants may promote parental support and education and may facilitate improved neurodevelopment. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Sexuality in patients with Parkinson's disease, Alzheimer's disease, and other dementias.
Bronner, Gila; Aharon-Peretz, Judith; Hassin-Baer, Sharon
2015-01-01
Sexual dysfunction (SD) is common among patients with Parkinson's disease (PD), Alzheimer's disease (AD), and other dementias. Sexual functioning and well-being of patients with PD and their partners are affected by many factors, including motor disabilities, non-motor symptoms (e.g., autonomic dysfunction, sleep disturbances, mood disorders, cognitive abnormalities, pain, and sensory disorders), medication effects, and relationship issues. The common sexual problems are decreased desire, erectile dysfunction, difficulties in reaching orgasm, and sexual dissatisfaction. Hypersexuality is one of a broad range of impulse control disorders reported in PD, attributed to antiparkinsonian therapy, mainly dopamine agonists. Involvement of a multidisciplinary team may enable a significant management of hypersexuality. Data on SD in demented patients are scarce, mainly reporting reduced frequency of sex and erectile dysfunction. Treatment of SD is advised at an early stage. Behavioral problems, including inappropriate sexual behavior (ISB), are distressing for patients and their caregivers and may reflect the prevailing behavior accompanying dementia (disinhibition or apathy associated with hyposexuality). The neurobiologic basis of ISB is still only vaguely understood but assessment and intervention are recommended as soon as ISB is suspected. Management of ISB in dementia demands a thorough evaluation and understanding of the behavior, and can be treated by non-pharmacologic and pharmacologic interventions. © 2015 Elsevier B.V. All rights reserved.
Redle, Erin; Vannest, Jennifer; Maloney, Thomas; Tsevat, Rebecca K; Eikenberry, Sarah; Lewis, Barbara; Shriberg, Lawrence D; Tkach, Jean; Holland, Scott K
2015-02-09
Children with persistent speech disorders (PSD) often present with overt or subtle motor deficits; the possibility that speech disorders and motor deficits could arise from a shared neurological base is currently unknown. Functional MRI (fMRI) was used to examine the brain networks supporting fine motor praxis in children with PSD and without clinically identified fine motor deficits. This case-control study included 12 children with PSD (mean age 7.42 years, four female) and 12 controls (mean age 7.44 years, four female). Children completed behavioral evaluations using standardized motor assessments and parent reported functional measures. During fMRI scanning, participants completed a cued finger tapping task contrasted passive listening. A general linear model approach identified brain regions associated with finger tapping in each group and regions that differed between groups. The relationship between regional fMRI activation and fine motor skill was assessed using a regression analysis. Children with PSD had significantly poorer results for rapid speech production and fine motor praxis skills, but did not differ on classroom functional skills. Functional MRI results showed that children with PSD had significantly more activation in the cerebellum during finger tapping. Positive correlations between performance on a fine motor praxis test and activation multiple cortical regions were noted for children with PSD but not for controls. Over-activation in the cerebellum during a motor task may reflect a subtle abnormality in the non-speech motor neural circuitry in children with PSD. Copyright © 2014 Elsevier B.V. All rights reserved.
Increased IGF-1 in muscle modulates the phenotype of severe SMA mice
Bosch-Marcé, Marta; Wee, Claribel D.; Martinez, Tara L.; Lipkes, Celeste E.; Choe, Dong W.; Kong, Lingling; Van Meerbeke, James P.; Musarò, Antonio; Sumner, Charlotte J.
2011-01-01
Spinal muscular atrophy (SMA) is an inherited motor neuron disease caused by the mutation of the survival motor neuron 1 (SMN1) gene and deficiency of the SMN protein. Severe SMA mice have abnormal motor function and small, immature myofibers early in development suggesting that SMN protein deficiency results in retarded muscle growth. Insulin-like growth factor 1 (IGF-1) stimulates myoblast proliferation, induces myogenic differentiation and generates myocyte hypertrophy in vitro and in vivo. We hypothesized that increased expression of IGF-1 specifically in skeletal muscle would attenuate disease features of SMAΔ7 mice. SMAΔ7 mice overexpressing a local isoform of IGF-1 (mIGF-1) in muscle showed enlarged myofibers and a 40% increase in median survival compared with mIGF-1-negative SMA littermates (median survival = 14 versus 10 days, respectively, log-rank P = 0.025). Surprisingly, this was not associated with a significant improvement in motor behavior. Treatment of both mIGF-1NEG and mIGF-1POS SMA mice with the histone deacetylase inhibitor, trichostatin A (TSA), resulted in a further extension of survival and improved motor behavior, but the combination of mIGF-1 and TSA treatment was not synergistic. These results show that increased mIGF-1 expression restricted to muscle can modulate the phenotype of SMA mice indicating that therapeutics targeted to muscle alone should not be discounted as potential disease-modifying therapies in SMA. IGF-1 may warrant further investigation in mild SMA animal models and perhaps SMA patients. PMID:21325354
Forgacs, Peter B; Conte, Mary M; Fridman, Esteban A; Voss, Henning U; Victor, Jonathan D; Schiff, Nicholas D
2014-12-01
Standard clinical characterization of patients with disorders of consciousness (DOC) relies on observation of motor output and may therefore lead to the misdiagnosis of vegetative state or minimally conscious state in patients with preserved cognition. We used conventional electroencephalographic (EEG) measures to assess a cohort of DOC patients with and without functional magnetic resonance imaging (fMRI)-based evidence of command-following, and correlated the findings with standard clinical behavioral evaluation and brain metabolic activity. We enrolled 44 patients with severe brain injury. Behavioral diagnosis was established using standardized clinical assessments. Long-term EEG recordings were analyzed to determine wakeful background organization and presence of elements of sleep architecture. A subset of patients had fMRI testing of command-following using motor imagery paradigms (26 patients) and resting brain metabolism measurement using (18) fluorodeoxyglucose positron emission tomography (31 patients). All 4 patients with fMRI evidence of covert command-following consistently demonstrated well-organized EEG background during wakefulness, spindling activity during sleep, and relative preservation of cortical metabolic activity. In the entire cohort, EEG organization and overall brain metabolism showed no significant association with bedside behavioral testing, except in a few cases when EEG was severely abnormal. These findings suggest that conventional EEG is a simple strategy that complements behavioral and imaging characterization of DOC patients. Preservation of specific EEG features may be used to assess the likelihood of unrecognized cognitive abilities in severely brain-injured patients with very limited or no motor responses. © 2014 American Neurological Association.
Magrané, Jordi; Sahawneh, Mary Anne; Przedborski, Serge; Estévez, Álvaro G.; Manfredi, Giovanni
2012-01-01
Mutations in Cu,Zn superoxide dismutase (SOD1) cause familial amyotrophic lateral sclerosis (FALS), a rapidly fatal motor neuron disease. Mutant SOD1 has pleiotropic toxic effects on motor neurons, among which mitochondrial dysfunction has been proposed as one of the contributing factors in motor neuron demise. Mitochondria are highly dynamic in neurons; they are constantly reshaped by fusion and move along neurites to localize at sites of high-energy utilization, such as synapses. The finding of abnormal mitochondria accumulation in neuromuscular junctions, where the SOD1-FALS degenerative process is though to initiate, suggests that impaired mitochondrial dynamics in motor neurons may be involved in pathogenesis. We addressed this hypothesis by live imaging microscopy of photo-switchable fluorescent mitoDendra in transgenic rat motor neurons expressing mutant or wild type human SOD1. We demonstrate that mutant SOD1 motor neurons have impaired mitochondrial fusion in axons and cell bodies. Mitochondria also display selective impairment of retrograde axonal transport, with reduced frequency and velocity of movements. Fusion and transport defects are associated with smaller mitochondrial size, decreased mitochondrial density, and defective mitochondrial membrane potential. Furthermore, mislocalization of mitochondria at synapses among motor neurons, in vitro, correlates with abnormal synaptic number, structure, and function. Dynamics abnormalities are specific to mutant SOD1 motor neuron mitochondria, since they are absent in wild type SOD1 motor neurons, they do not involve other organelles, and they are not found in cortical neurons. Taken together, these results suggest that impaired mitochondrial dynamics may contribute to the selective degeneration of motor neurons in SOD1-FALS. PMID:22219285
Caravaglios, Giuseppe; Muscoso, Emma Gabriella; Di Maria, Giulia; Costanzo, Erminio
2015-03-01
There are several evidences indicating that an impairment in attention-executive functions is present in prodromal Alzheimer's disease and predict future global cognitive decline. In particular, the issue of temporal orienting of attention in patients with mild cognitive impairment (MCI) due to Alzheimer's disease has been overlooked. The present research aimed to explore whether subtle deficits of cortical activation are present in these patients early in the course of the disease. We studied the upper-alpha event-related synchronization/desynchronization phenomenon during a paradigm of temporal orientation of attention. MCI patients (n = 27) and healthy elderly controls (n = 15) performed a task in which periodically omitted tones had to be predicted and their virtual onset time had to be marked by pressing a button. Single-trial responses were measured, respectively, before and after the motor response. Then, upper-alpha responses were compared to upper-alpha power during eyes-closed resting state. The time course of the task was characterized by two different behavioral conditions: (1) a pre-event epoch, in which the subject awaited the virtual onset of the omitted tone, (2) a post-event epoch (after button pressing), in which the subject was in a post-motor response condition. The principal findings are: (1) during the waiting epoch, only healthy elderly had an upper-alpha ERD at the level of both temporal and posterior brain regions; (2) during the post-motor epoch, the aMCI patients had a weaker upper-alpha ERS on prefrontal regions; (3) only healthy elderly showed a laterality effect: (a) during the waiting epoch, the upper-alpha ERD was greater at the level of the right posterior-temporal lead; during the post-motor epoch, the upper alpha ERS was greater on the left prefrontal lead. The relevance of these findings is that the weaker upper-alpha response observed in aMCI patients is evident even if the accuracy of the behavioral performance (i.e., button pressing) is still spared. This abnormal upper-alpha response might represent an early biomarker of the attention-executive network impairment in MCI due to Alzheimer's disease.
Chakraborty, Arijit; Anstice, Nicola S.; Jacobs, Robert J.; Paudel, Nabin; LaGasse, Linda L.; Lester, Barry M.; McKinlay, Christopher J. D.; Harding, Jane E.; Wouldes, Trecia A.; Thompson, Benjamin
2017-01-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of gross motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. PMID:28435122
Excessive motor overflow reveals abnormal inter-hemispheric connectivity in Friedreich ataxia.
Low, Sze-Cheen; Corben, Louise A; Delatycki, Martin B; Ternes, Anne-Marie; Addamo, Patricia K; Georgiou-Karistianis, Nellie
2013-07-01
This study sought to characterise force variability and motor overflow in 12 individuals with Friedreich ataxia (FRDA) and 12 age- and gender-matched controls. Participants performed a finger-pressing task by exerting 30 and 70 % of their maximum finger force using the index finger of the right and left hand. Control of force production was measured as force variability, while any involuntary movements occurring on the finger of the other, passive hand, was measured as motor overflow. Significantly greater force variability in individuals with FRDA compared with controls is indicative of cortico-cerebellar disruption affecting motor control. Meanwhile, significantly greater motor overflow in this group provides the first evidence of possible abnormal inter-hemispheric activity that may be attributable to asymmetrical neuronal loss in the dentate nucleus. Overall, this study demonstrated a differential engagement in the underlying default processes of the motor system in FRDA.
Fish, Eric W; Krouse, Michael C; Stringfield, Sierra J; Diberto, Jeffrey F; Robinson, J Elliott; Malanga, C J
2013-01-01
Fragile X syndrome (FXS) is a leading cause of intellectual disability. FXS is caused by loss of function of the FMR1 gene, and mice in which Fmr1 has been inactivated have been used extensively as a preclinical model for FXS. We investigated the behavioral pharmacology of drugs acting through dopaminergic, glutamatergic, and cholinergic systems in fragile X (Fmr1 (-/Y)) mice with intracranial self-stimulation (ICSS) and locomotor activity measurements. We also measured brain expression of tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. Fmr1 (-/Y) mice were more sensitive than wild type mice to the rewarding effects of cocaine, but less sensitive to its locomotor stimulating effects. Anhedonic but not motor depressant effects of the atypical neuroleptic, aripiprazole, were reduced in Fmr1 (-/Y) mice. The mGluR5-selective antagonist, 6-methyl-2-(phenylethynyl)pyridine (MPEP), was more rewarding and the preferential M1 antagonist, trihexyphenidyl, was less rewarding in Fmr1 (-/Y) than wild type mice. Motor stimulation by MPEP was unchanged, but stimulation by trihexyphenidyl was markedly increased, in Fmr1 (-/Y) mice. Numbers of midbrain TH+ neurons in the ventral tegmental area were unchanged, but were lower in the substantia nigra of Fmr1 (-/Y) mice, although no changes in TH levels were found in their forebrain targets. The data are discussed in the context of known changes in the synaptic physiology and pharmacology of limbic motor systems in the Fmr1 (-/Y) mouse model. Preclinical findings suggest that drugs acting through multiple neurotransmitter systems may be necessary to fully address abnormal behaviors in individuals with FXS.
Are high lags of accommodation in myopic children due to motor deficits?
Labhishetty, Vivek; Bobier, William R
2017-01-01
Children with a progressing myopia exhibit an abnormal pattern of high accommodative lags coupled with high accommodative convergence (AC/A) and high accommodative adaptation. This is not predicted by the current models of accommodation and vergence. Reduced accommodative plant gain and reduced sensitivity to blur have been suggested as potential causes for this abnormal behavior. These etiologies were tested by altering parameters (sensory, controller and plant gains) in the Simulink model of accommodation. Predictions were then compared to the static and dynamic blur accommodation (BA) measures taken using a Badal optical system on 12 children (6 emmetropes and 6 myopes, 8-13years) and 6 adults (20-35years). Other critical parameters such as CA/C, AC/A, and accommodative adaptation were also measured. Usable BA responses were classified as either typical or atypical. Typical accommodation data confirmed the abnormal pattern of myopia along with an unchanged CA/C. Main sequence relationship remained invariant between myopic and nonmyopic children. An overall reduction was noted in the response dynamics such as peak velocity and acceleration with age. Neither a reduced plant gain nor reduced blur sensitivity could predict the abnormal accommodative behavior. A model adjustment reflecting a reduced accommodative sensory gain (ASG) coupled with an increased AC cross-link gain and reduced vergence adaptive gain does predict the empirical findings. Empirical measures also showed a greater frequency of errors in accommodative response generation (atypical responses) in both myopic and control children compared to adults. Copyright © 2016 Elsevier Ltd. All rights reserved.
Friedrich, Timo; Lambert, Aaron M.; Masino, Mark A.; Downes, Gerald B.
2012-01-01
SUMMARY Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que) mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellular peripheral nerve recordings show that que mutants demonstrate abnormal locomotor output to the axial muscles used for swimming. Using positional cloning and candidate gene analysis, we reveal that a point mutation disrupts the gene encoding dihydrolipoamide branched-chain transacylase E2 (Dbt), a component of a mitochondrial enzyme complex, to generate the que phenotype. In humans, mutation of the DBT gene causes maple syrup urine disease (MSUD), a disorder of branched-chain amino acid metabolism that can result in mental retardation, severe dystonia, profound neurological damage and death. que mutants harbor abnormal amino acid levels, similar to MSUD patients and consistent with an error in branched-chain amino acid metabolism. que mutants also contain markedly reduced levels of the neurotransmitter glutamate within the brain and spinal cord, which probably contributes to their abnormal spinal cord locomotor output and aberrant motility behavior, a trait that probably represents severe dystonia in larval zebrafish. Taken together, these data illustrate how defects in branched-chain amino acid metabolism can disrupt nervous system development and/or function, and establish zebrafish que mutants as a model to better understand MSUD. PMID:22046030
Rogers, Lynn M.; Brown, David A.; Stinear, James W.
2012-01-01
Objective Paired associative stimulation (PAS) modulates bilateral distal lower limb motor pathways during walking. We assessed the effects of inhibitory PAS applied to the vastus medialis (VM) motor pathways of chronic stroke patients. Methods PAS consisted of 120 electrical stimuli applied to the femoral nerve paired with transcranial magnetic stimulation (TMS) of the lower limb primary motor cortex so that the estimated arrival of the afferent volley occurred 8 ms after delivery of the magnetic stimulus. Stimulus pairs were delivered to the non-paretic VM motor system of 11 chronic stroke patients and the right limb motor system of 11 non-impaired subjects at 0.19 Hz. The effects of PAS on VM motor pathway excitability and muscle activity were assessed during pedaling. TMS-induced motor evoked potential (MEP) amplitudes and the percent of VM activity in the flexion phase of active pedaling (%FLEXVM) was examined before and after PAS. Results Inhibitory PAS reduced VM MEP amplitudes in the target limb (p < 0.05) of both groups, while post-PAS paretic VM MEP amplitudes increased for some patients and decreased for others. Group mean paretic limb %FLEXVM was not altered by inhibitory PAS. Conclusions These results indicate PAS can be used to manipulate motor cortical excitability in proximal lower limb representations, however the sign of induced modulation was unpredictable and cyclic muscle activity was not modified. Significance The study has important implications for the development of therapies involving non-invasive brain stimulation to modify abnormal motor behavior following stroke. PMID:21130032
Rogers, Lynn M; Brown, David A; Stinear, James W
2011-06-01
Paired associative stimulation (PAS) modulates bilateral distal lower limb motor pathways during walking. We assessed the effects of inhibitory PAS applied to the vastus medialis (VM) motor pathways of chronic stroke patients. PAS consisted of 120 electrical stimuli applied to the femoral nerve paired with transcranial magnetic stimulation (TMS) of the lower limb primary motor cortex so that the estimated arrival of the afferent volley occurred 8 ms after delivery of the magnetic stimulus. Stimulus pairs were delivered to the non-paretic VM motor system of 11 chronic stroke patients and the right limb motor system of 11 non-impaired subjects at 0.19 Hz. The effects of PAS on VM motor pathway excitability and muscle activity were assessed during pedaling. TMS-induced motor evoked potential (MEP) amplitudes and the percent of VM activity in the flexion phase of active pedaling (% FLEXVM) was examined before and after PAS. Inhibitory PAS reduced VM MEP amplitudes in the target limb (p<0.05) of both groups, while post-PAS paretic VM MEP amplitudes increased for some patients and decreased for others. Group mean paretic limb % FLEXVM was not altered by inhibitory PAS. These results indicate PAS can be used to manipulate motor cortical excitability in proximal lower limb representations, however the sign of induced modulation was unpredictable and cyclic muscle activity was not modified. The study has important implications for the development of therapies involving non-invasive brain stimulation to modify abnormal motor behavior following stroke. Copyright © 2010 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Inflammation Effects on Motivation and Motor Activity: Role of Dopamine
Felger, Jennifer C; Treadway, Michael T
2017-01-01
Motivational and motor deficits are common in patients with depression and other psychiatric disorders, and are related to symptoms of anhedonia and motor retardation. These deficits in motivation and motor function are associated with alterations in corticostriatal neurocircuitry, which may reflect abnormalities in mesolimbic and mesostriatal dopamine (DA). One pathophysiologic pathway that may drive changes in DAergic corticostriatal circuitry is inflammation. Biomarkers of inflammation such as inflammatory cytokines and acute-phase proteins are reliably elevated in a significant proportion of psychiatric patients. A variety of inflammatory stimuli have been found to preferentially target basal ganglia function to lead to impaired motivation and motor activity. Findings have included inflammation-associated reductions in ventral striatal neural responses to reward anticipation, decreased DA and DA metabolites in cerebrospinal fluid, and decreased availability, and release of striatal DA, all of which correlated with symptoms of reduced motivation and/or motor retardation. Importantly, inflammation-associated symptoms are often difficult to treat, and evidence suggests that inflammation may decrease DA synthesis and availability, thus circumventing the efficacy of standard pharmacotherapies. This review will highlight the impact of administration of inflammatory stimuli on the brain in relation to motivation and motor function. Recent data demonstrating similar relationships between increased inflammation and altered DAergic corticostriatal circuitry and behavior in patients with major depressive disorder will also be presented. Finally, we will discuss the mechanisms by which inflammation affects DA neurotransmission and relevance to novel therapeutic strategies to treat reduced motivation and motor symptoms in patients with high inflammation. PMID:27480574
Ravi, Karthik; Friesen, Laurel; Issaka, Rachel; Kahrilas, Peter J; Pandolfino, John E
2015-08-01
High-resolution manometry (HRM) expands recognition of minor esophageal motor abnormalities, but the clinical significance of these is unclear. We aimed to determine the outcomes of minor esophageal motor abnormalities. We reviewed HRM tracings from patients who underwent esophageal manometry at Northwestern Memorial Hospital from July 2004 through October 2005 by using the Chicago classification (version 2.0). We identified 301 patients with normal findings or minor manometric abnormalities (weak peristalsis, hypertensive peristalsis, frequent failed peristalsis, or rapid contractions with normal latency). Ninety-eight patients participated in a phone survey in which they were asked questions from the impact dysphagia questionnaire (mean follow-up period, 6 years 5 months). Of 301 patients assessed, 166 had normal findings from HRM, 82 had weak peristalsis, 34 had hypertensive peristalsis, 17 had frequent failed peristalsis, and 2 had rapid contractions with normal latency. The primary indications for HRM of dysphagia (44%) and gastroesophageal reflux disease (63%) were unrelated to manometric findings. There were no endoscopic or videofluoroscopic differences between patients with minor manometric abnormalities. Of 98 patients with follow-up, findings from HRM were normal in 63, weak peristalsis was observed in 23, hypertensive peristalsis was observed in 10, and frequent failed peristalsis was observed in 2. No patients underwent surgical myotomy, pneumatic dilation, or botulinum toxin injection. Use of proton pump inhibitors and rates of fundoplication were similar, regardless of manometric findings. Sixteen patients (16%) had significant dysphagia at follow-up; hypertensive peristalsis was the most likely to be symptomatic. Patients with normal and minor esophageal motor abnormalities report minimal symptoms and have few medical interventions related to esophageal dysfunction during long-term follow-up. Therefore, identification of normal and minor motor function is likely a good prognostic indicator. Copyright © 2015 AGA Institute. Published by Elsevier Inc. All rights reserved.
The impact of obstetric mode of delivery on childhood behavior.
Al Khalaf, Sukainah Y; O'Neill, Sinéad M; O'Keeffe, Linda M; Henriksen, Tine B; Kenny, Louise C; Cryan, John F; Khashan, Ali S
2015-10-01
We investigated the hypothesis that mode of delivery affects childhood behavior and motor development and examined whether there are sex-specific associations, i.e., whether males and females have different risk estimates. Families with infants born between December 2007 and May 2008 (N = 11,134) were randomly selected and recruited to the Growing Up in Ireland study. Mode of delivery was classified into spontaneous vaginal delivery; instrumental vaginal delivery; emergency Cesarean section (CS); and elective CS. The 'Ages and Stages Questionnaire' was completed at age 9-months and the 'Strengths and Difficulties Questionnaire' at 3 years. Data were weighted to represent the national sample (N = 73,662) and multivariate logistic regression was used for the statistical analyses. At age 9 months, elective CS was associated with a delay in personal social skills [adjusted odds ratio, aOR 1.24; (95% confidence interval, CI 1.04, 1.48)] and gross motor function [aOR 1.62, (95% CI 1.34, 1.96)], whereas emergency CS was associated with delayed gross motor function [aOR 1.30, (95% CI 1.06, 1.59)]. At age 3 years there was no significantly increased risk of an abnormal total SDQ score across all modes of delivery. Children born by elective CS may face a delay in cognitive and motor development at age 9 months. No increase in total SDQ score was found across all modes of delivery. Further investigation is needed to replicate these findings in other populations and explore the potential biological mechanisms.
[The cerebellum as a major player in motor disturbances related to Autistic Syndrome Disorders].
Jaber, M
2017-04-01
Autism spectrum disorders (ASD) are neurodevelopmental disorders associated with disturbances in communication, social interactions, cognition and affect. ASD are also accompanied by complex movement disorders, including ataxia. A special focus of recent research in this area is made on the striatum and the cerebellum, two structures known not only to control movement but also to be involved in cognitive functions such as memory and language. Dysfunction within the motor system may be associated with abnormal movements in ASD that are translated into ataxia, abnormal pattern of righting, gait sequencing, development of walking, and hand positioning. This line of study may generate new knowledge and understanding of motor symptoms associated with ASD and aims to deliver fresh perspectives for early diagnosis and therapeutic strategies against ASD. Despite the relative paucity of research in this area (compared to the social, linguistic, and behavioural disturbances in ASD), there is evidence that the frontostriatal motor system and/or the cerebellar motor systems may be the site of dysfunction in ASD. Indeed, the cerebellum seems to be essential in the development of basic social capabilities, communication, repetitive/restrictive behaviors, and motor and cognitive behaviors that are all impaired in ASD. Cerebellar neuropathology including cerebellar hypoplasia and reduced cerebellar Purkinje cell numbers are the most consistent neuropathologies linked to ASD. The functional state of the cerebellum and its impact on brain function in ASD is the focus of this review. This review starts by recapitulating historical findings pointing towards an implication of the cerebellum, and to a lesser extent the basal ganglia structures, in TSA. We then detail the structure/function of the cerebellum at the regional and cellular levels before describing human and animal findings indicating a role of the cerebellum and basal ganglia in ASD. Several studies have attempted to identify the nature of the motor system dysfunction in ASD, and it became apparent that the motor fronto-striatal and cerebellar systems are major sites of dysfunction in this psychiatric illness. Anomalies in these structures have been revealed both at the anatomical and functional levels in human patients as well as in animal models. These models are obtained by manipulation of genes that are often implicated in glutamate transmission, by lesions of brain structures among which the cerebellum, by pharmacological treatment with drugs such as the Valproate or by maternal infections with bacterial membrane extracts of double stranded RNA mimicking a viral infection. The "cognitive approach" has dominated ASD research for three decades and led to the design of interventional strategies, which have yielded satisfactory results. Nevertheless, new approaches and alternative hypotheses on the aetiology and diagnosis of ASD are needed. Research focused on motor rather than psychiatric symptoms may have a greater potential to elucidate the neurobiological basis of ASD. Copyright © 2016 L’Encéphale, Paris. Published by Elsevier Masson SAS. All rights reserved.
Behavioral characterization of mouse models of neuroferritinopathy.
Capoccia, Sara; Maccarinelli, Federica; Buffoli, Barbara; Rodella, Luigi F; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca
2015-01-01
Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing specific therapeutic targets.
Behavioral Characterization of Mouse Models of Neuroferritinopathy
Buffoli, Barbara; Rodella, Luigi F.; Cremona, Ottavio; Arosio, Paolo; Cirulli, Francesca
2015-01-01
Ferritin is the main intracellular protein of iron storage with a central role in the regulation of iron metabolism and detoxification. Nucleotide insertions in the last exon of the ferritin light chain cause a neurodegenerative disease known as Neuroferritinopathy, characterized by iron deposition in the brain, particularly in the cerebellum, basal ganglia and motor cortex. The disease progresses relentlessly, leading to dystonia, chorea, motor disability and neuropsychiatry features. The characterization of a good animal model is required to compare and contrast specific features with the human disease, in order to gain new insights on the consequences of chronic iron overload on brain function and behavior. To this aim we studied an animal model expressing the pathogenic human FTL mutant 498InsTC under the phosphoglycerate kinase (PGK) promoter. Transgenic (Tg) mice showed strong accumulation of the mutated protein in the brain, which increased with age, and this was accompanied by brain accumulation of ferritin/iron bodies, the main pathologic hallmark of human neuroferritinopathy. Tg-mice were tested throughout development and aging at 2-, 8- and 18-months for motor coordination and balance (Beam Walking and Footprint tests). The Tg-mice showed a significant decrease in motor coordination at 8 and 18 months of age, with a shorter latency to fall and abnormal gait. Furthermore, one group of aged naïve subjects was challenged with two herbicides (Paraquat and Maneb) known to cause oxidative damage. The treatment led to a paradoxical increase in behavioral activation in the transgenic mice, suggestive of altered functioning of the dopaminergic system. Overall, data indicate that mice carrying the pathogenic FTL498InsTC mutation show motor deficits with a developmental profile suggestive of a progressive pathology, as in the human disease. These mice could be a powerful tool to study the neurodegenerative mechanisms leading to the disease and help developing specific therapeutic targets. PMID:25689865
Feedforward control strategies of subjects with transradial amputation in planar reaching.
Metzger, Anthony J; Dromerick, Alexander W; Schabowsky, Christopher N; Holley, Rahsaan J; Monroe, Brian; Lum, Peter S
2010-01-01
The rate of upper-limb amputations is increasing, and the rejection rate of prosthetic devices remains high. People with upper-limb amputation do not fully incorporate prosthetic devices into their activities of daily living. By understanding the reaching behaviors of prosthesis users, researchers can alter prosthetic devices and develop training protocols to improve the acceptance of prosthetic limbs. By observing the reaching characteristics of the nondisabled arms of people with amputation, we can begin to understand how the brain alters its motor commands after amputation. We asked subjects to perform rapid reaching movements to two targets with and without visual feedback. Subjects performed the tasks with both their prosthetic and nondisabled arms. We calculated endpoint error, trajectory error, and variability and compared them with those of nondisabled control subjects. We found no significant abnormalities in the prosthetic limb. However, we found an abnormal leftward trajectory error (in right arms) in the nondisabled arm of prosthetic users in the vision condition. In the no-vision condition, the nondisabled arm displayed abnormal leftward endpoint errors and abnormally higher endpoint variability. In the vision condition, peak velocity was lower and movement duration was longer in both arms of subjects with amputation. These abnormalities may reflect the cortical reorganization associated with limb loss.
Hamer, Elisa G; Bos, Arend F; Hadders-Algra, Mijna
2011-08-01
Abnormal general movements at around 3 months corrected age indicate a high risk of cerebral palsy (CP). We aimed to determine whether specific movement characteristics can improve the predictive power of definitely abnormal general movements. Video recordings of 46 infants with definitely abnormal general movements at 9 to 13 weeks corrected age (20 males; 26 females; median gestational age 30wks; median birthweight 1200g) were analysed for the following characteristics: presence of fidgety, cramped synchronized, stiff, or jerky movements and asymmetrical tonic neck reflex pattern. Neurological condition (presence or absence of CP), gross motor development (Alberta Infant Motor Scales), quality of motor behaviour (Infant Motor Profile), functional mobility (Pediatric Evaluation of Disability Inventory), and Mental Developmental Index (Bayley Scales) were assessed at 18 months corrected age. Infants were excluded from participating in the study if they had severe congenital anomalies or if their caregivers had an insufficient knowledge of the Dutch language. Of the 46 assessed infants, 10 developed spastic CP (Gross Motor Function Classification System levels I to V; eight bilateral spastic CP, two unilateral spastic CP). The absence of fidgety movements and the presence of predominantly stiff movements were associated with CP (Fisher's exact test, p=0.018 and p=0.007 respectively) and lower Infant Motor Profile scores (Mann-Whitney U test, p=0.015 and p=0.022 respectively); stiff and predominantly stiff movements were associated with lower Alberta Infant Motor Scales scores (Mann-Whitney U test, p=0.01 and p=0.004 respectively). Cramped synchronized movements and the asymmetrical tonic neck reflex pattern were not related to outcome. None of the movement characteristics were associated with Pediatric Evaluation of Disability Inventory scores or the Mental Developmental Index. The assessment of fidgety movements and movement stiffness may improve the predictive power of definitely abnormal general movements for developmental outcome. However, the presence of fidgety movements does not preclude the development of CP. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
Altered striatal intrinsic functional connectivity in pediatric anxiety
Dorfman, Julia; Benson, Brenda; Farber, Madeline; Pine, Daniel; Ernst, Monique
2016-01-01
Anxiety disorders are among the most common psychiatric disorders of adolescence. Behavioral and task-based imaging studies implicate altered reward system function, including striatal dysfunction, in adolescent anxiety. However, no study has yet examined alterations of the striatal intrinsic functional connectivity in adolescent anxiety disorders. The current study examines striatal intrinsic functional connectivity (iFC), using six bilateral striatal seeds, among 35 adolescents with anxiety disorders and 36 healthy comparisons. Anxiety is associated with abnormally low iFC within the striatum (e.g., between nucleus accumbens and caudate nucleus), and between the striatum and prefrontal regions, including subgenual anterior cingulate cortex, posterior insula and supplementary motor area. The current findings extend prior behavioral and task-based imaging research, and provide novel data implicating decreased striatal iFC in adolescent anxiety. Alterations of striatal neurocircuitry identified in this study may contribute to the perturbations in the processing of motivational, emotional, interoceptive, and motor information seen in pediatric anxiety disorders. This pattern of the striatal iFC perturbations can guide future research on specific mechanisms underlying anxiety. PMID:27004799
Ciarlone, Stephanie L; Wang, Xinming; Rogawski, Michael A; Weeber, Edwin J
2017-04-01
Angelman syndrome (AS) is a rare neurogenetic disorder characterized by severe developmental delay, motor impairments, and epilepsy. GABAergic dysfunction is believed to contribute to many of the phenotypic deficits seen in AS. We hypothesized that restoration of inhibitory tone mediated by extrasynaptic GABA A receptors could provide therapeutic benefit. Here, we report that ganaxolone, a synthetic neurosteroid that acts as a positive allosteric modulator of synaptic and extrasynaptic GABA A receptors, was anxiolytic, anticonvulsant, and improved motor deficits in the Ube3a-deficient mouse model of AS when administered by implanted mini-pump for 3 days or 4 weeks. Treatment for 4 weeks also led to recovery of spatial working memory and hippocampal synaptic plasticity deficits. This study demonstrates that ganaxolone ameliorates many of the behavioral abnormalities in the adult AS mouse, and tolerance did not occur to the therapeutic effects of the drug. The results support clinical studies to investigate ganaxolone as a symptomatic treatment for AS. Copyright © 2016 Elsevier Ltd. All rights reserved.
Increased sensorimotor network activity in DYT1 dystonia: a functional imaging study
Argyelan, Miklos; Habeck, Christian; Ghilardi, M. Felice; Fitzpatrick, Toni; Dhawan, Vijay; Pourfar, Michael; Bressman, Susan B.; Eidelberg, David
2010-01-01
Neurophysiological studies have provided evidence of primary motor cortex hyperexcitability in primary dystonia, but several functional imaging studies suggest otherwise. To address this issue, we measured sensorimotor activation at both the regional and network levels in carriers of the DYT1 dystonia mutation and in control subjects. We used 15Oxygen-labelled water and positron emission tomography to scan nine manifesting DYT1 carriers, 10 non-manifesting DYT1 carriers and 12 age-matched controls while they performed a kinematically controlled motor task; they were also scanned in a non-motor audio-visual control condition. Within- and between-group contrasts were analysed with statistical parametric mapping. For network analysis, we first identified a normal motor-related activation pattern in a set of 39 motor and audio-visual scans acquired in an independent cohort of 18 healthy volunteer subjects. The expression of this pattern was prospectively quantified in the motor and control scans acquired in each of the gene carriers and controls. Network values for the three groups were compared with ANOVA and post hoc contrasts. Voxel-wise comparison of DYT1 carriers and controls revealed abnormally increased motor activation responses in the former group (P < 0.05, corrected; statistical parametric mapping), localized to the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and the inferior parietal cortex. Network analysis of the normative derivation cohort revealed a significant normal motor-related activation pattern topography (P < 0.0001) characterized by covarying neural activity in the sensorimotor cortex, dorsal premotor cortex, supplementary motor area and cerebellum. In the study cohort, normal motor-related activation pattern expression measured during movement was abnormally elevated in the manifesting gene carriers (P < 0.001) but not in their non-manifesting counterparts. In contrast, in the non-motor control condition, abnormal increases in network activity were present in both groups of gene carriers (P < 0.001). In this condition, normal motor-related activation pattern expression in non-manifesting carriers was greater than in controls, but lower than in affected carriers. In the latter group, measures of normal motor-related activation pattern expression in the audio-visual condition correlated with independent dystonia clinical ratings (r = 0.70, P = 0.04). These findings confirm that overexcitability of the sensorimotor system is a robust feature of dystonia. The presence of elevated normal motor-related activation pattern expression in the non-motor condition suggests that abnormal integration of audio-visual input with sensorimotor network activity is an important trait feature of this disorder. Lastly, quantification of normal motor-related activation pattern expression in individual cases may have utility as an objective descriptor of therapeutic response in trials of new treatments for dystonia and related disorders. PMID:20207699
Decreased Connectivity and Cerebellar Activity in Autism during Motor Task Performance
ERIC Educational Resources Information Center
Mostofsky, Stewart H.; Powell, Stephanie K.; Simmonds, Daniel J.; Goldberg, Melissa C.; Caffo, Brian; Pekar, James J.
2009-01-01
Although motor deficits are common in autism, the neural correlates underlying the disruption of even basic motor execution are unknown. Motor deficits may be some of the earliest identifiable signs of abnormal development and increased understanding of their neural underpinnings may provide insight into autism-associated differences in parallel…
Luo, Xiaoping; Guo, Linghong; Dai, Xi-Jian; Wang, Qinglai; Zhu, Wenzhong; Miao, Xinjun; Gong, Honghan
2017-01-01
To explore the abnormal intrinsic functional hubs in alcohol dependence using voxelwise degree centrality analysis approach, and their relationships with clinical features. Twenty-four male alcohol dependence subjects free of medicine (mean age, 50.21±9.62 years) and 24 age- and education-matched male healthy controls (mean age, 50.29±8.92 years) were recruited. The alcohol use disorders identification test and the severity of alcohol dependence questionnaire (SADQ) were administered to assess the severity of alcohol craving. Voxelwise degree centrality approach was used to assess the abnormal intrinsic functional hubs features in alcohol dependence. Simple linear regression analysis was performed to investigate the relationships between the clinical features and abnormal intrinsic functional hubs. Compared with healthy controls, alcohol dependence subjects exhibited significantly different degree centrality values in widespread left lateralization brain areas, including higher degree centrality values in the left precentral gyrus (BA 6), right hippocampus (BA 35, 36), and left orbitofrontal cortex (BA 11) and lower degree centrality values in the left cerebellum posterior lobe, bilateral secondary visual network (BA 18), and left precuneus (BA 7, 19). SADQ revealed a negative linear correlation with the degree centrality value in the left precentral gyrus ( R 2 =0.296, P =0.006). The specific abnormal intrinsic functional hubs appear to be disrupted by alcohol intoxication, which implicates at least three principal neural systems: including cerebellar, executive control, and visual cortex, which may further affect the normal motor behavior such as an explicit type of impaired driving behavior. These findings expand our understanding of the functional characteristics of alcohol dependence and may provide a new insight into the understanding of the dysfunction and pathophysiology of alcohol dependence.
Song, Hailong; Konan, Landry M; Cui, Jiankun; Johnson, Catherine E; Langenderfer, Martin; Grant, DeAna; Ndam, Tina; Simonyi, Agnes; White, Tommi; Demirci, Utkan; Mott, David R; Schwer, Doug; Hubler, Graham K; Cernak, Ibolja; DePalma, Ralph G; Gu, Zezong
2018-07-16
Explosive blast-induced mild traumatic brain injury (mTBI), a "signature wound" of recent military conflicts, commonly affects service members. While past blast injury studies have provided insights into TBI with moderate- to high-intensity explosions, the impact of primary low-intensity blast (LIB)-mediated pathobiology on neurological deficits requires further investigation. Our prior considerations of blast physics predicted ultrastructural injuries at nanoscale levels. Here, we provide quantitative data using a primary LIB injury murine model exposed to open field detonation of 350 g of high-energy explosive C4. We quantified ultrastructural and behavioral changes up to 30 days post blast injury (DPI). The use of an open-field experimental blast generated a primary blast wave with a peak overpressure of 6.76 PSI (46.6 kPa) at a 3-m distance from the center of the explosion, a positive phase duration of approximate 3.0 milliseconds (ms), a maximal impulse of 8.7 PSI × ms and a sharp rising time of 9 × 10 -3 ms, with no apparent impact/acceleration in exposed animals. Neuropathologically, myelinated axonal damage was observed in blast-exposed groups at 7 DPI. Using transmission electron microscopy, we observed and quantified myelin sheath defects and mitochondrial abnormalities at 7 and 30 DPI. Inverse correlations between blast intensities and neurobehavioral outcomes including motor activities, anxiety levels, nesting behavior, spatial learning and memory occurred. These observations uncover unique ultrastructural brain abnormalities and associated behavioral changes due to primary blast injury and provide key insights into its pathogenesis and potential treatment. Copyright © 2018 Elsevier B.V. All rights reserved.
The neurological safety of epidural parecoxib in rats.
Kim, Yang Hyun; Lee, Pyung Bok; Park, Jeongmi; Lim, Young Jin; Kim, Yong Chul; Lee, Sang Chul; Ahn, Wonsik
2011-12-01
Epidural injection of cyclooxygenase-2 inhibitors has been suggested as a useful therapeutic modality in pain management in animal studies and clinical settings. Direct epidural administration of parecoxib, a highly selective cyclooxygenase-2 inhibitor, may have advantages over its parenteral administration regarding required dose, side effects, and efficacy. However, no animal studies have been performed to investigate the possible neurotoxicity of epidurally injected parecoxib. Therefore, the present study was performed to assess the neurotoxicity of epidurally injected parecoxib in rats. Rats (n=45) were randomly divided into three groups: normal saline group (group N, n=15), ethanol group (group E, n=15), and parecoxib group (group P, n=15). 0.3 mL of epidural parecoxib (6 mg) and the same volume of epidural ethanol or normal saline were injected into the epidural space. Neurologic assessment was performed 3, 7 and 21 days after the injection by pinch toe testing. Histologic changes were evaluated for vacuolation of the dorsal funiculus, chromatolytic changes of the motor neurons, neuritis, and meningeal inflammation. All rats in groups N and P showed normal response to pinch-toe testing and had a normal gait at each observation point. Histological examination showed no evidence suggestive of neuronal body or axonal lesions, gliosis, or myelin sheet damage in group N or P at any time. However, all rats in group E showed sensory-motor dysfunction, behavioral change, or histopathological abnormalities. No neurotoxicity on the spinal cord or abnormalities in sensorimotor function or behavior was noted in rats that received epidural parecoxib. Copyright © 2011 Elsevier Inc. All rights reserved.
Spine Topographical Distribution of Skin α-Synuclein Deposits in Idiopathic Parkinson Disease.
Donadio, Vincenzo; Incensi, Alex; Rizzo, Giovanni; Scaglione, Cesa; Capellari, Sabina; Fileccia, Enrico; Avoni, Patrizia; Liguori, Rocco
2017-05-01
Phosphorylated α-synuclein (p-syn) in skin nerves mainly in the proximal sites is a promising neurodegenerative biomarker for idiopathic Parkinson disease (IPD). However, the p-syn spine distribution particularly in patients with unilateral motor dysfunctions remains undefined. This study aimed to investigate in IPD p-syn differences between left and right cervical spine sites in patients with prevalent unilateral motor symptoms, and cervical and thoracic spine sites in patients with bilateral motor symptoms. We enrolled 28 IPD patients fulfilling clinical diagnostic criteria associated with abnormal nigro-striatal DatScan and cardiac MIBG: 15 with prevalently unilateral motor symptoms demonstrated by DatScan; 13 with bilateral motor symptoms and DatScan abnormalities. Patients underwent skin biopsy searching for intraneural p-syn deposits: skin samples were taken from C7 paravertebral left and right sites in unilateral patients and from cervical (C7) and thoracic (Th12) paravertebral spine regions in bilateral patients. Unilateral patients displayed 20% of abnormal p-syn deposits in the affected motor site, 60% in both sites and 20% only in the non-affected site. P-syn was found in all patients in C7 but in only 62% of patients in Th12. Our data showed that cervical p-syn deposits displayed a uniform distribution between both sides not following the motor dysfunction in unilateral patients, and skin nerve p-syn deposits demonstrated a spine gradient with the cervical site expressing the highest positivity. © 2017 American Association of Neuropathologists, Inc. All rights reserved.
Zhong, Jidan; Nantes, Julia C; Holmes, Scott A; Gallant, Serge; Narayanan, Sridar; Koski, Lisa
2016-12-01
Functional reorganization and structural damage occur in the brains of people with multiple sclerosis (MS) throughout the disease course. However, the relationship between resting-state functional connectivity (FC) reorganization in the sensorimotor network and motor disability in MS is not well understood. This study used resting-state fMRI, T1-weighted and T2-weighted, and magnetization transfer (MT) imaging to investigate the relationship between abnormal FC in the sensorimotor network and upper limb motor disability in people with MS, as well as the impact of disease-related structural abnormalities within this network. Specifically, the differences in FC of the left hemisphere hand motor region between MS participants with preserved (n = 17) and impaired (n = 26) right hand function, compared with healthy controls (n = 20) was investigated. Differences in brain atrophy and MT ratio measured at the global and regional levels were also investigated between the three groups. Motor preserved MS participants had stronger FC in structurally intact visual information processing regions relative to motor impaired MS participants. Motor impaired MS participants showed weaker FC in the sensorimotor and somatosensory association cortices and more severe structural damage throughout the brain compared with the other groups. Logistic regression analysis showed that regional MTR predicted motor disability beyond the impact of global atrophy whereas regional grey matter volume did not. More importantly, as the first multimodal analysis combining resting-state fMRI, T1-weighted, T2-weighted and MTR images in MS, we demonstrate how a combination of structural and functional changes may contribute to motor impairment or preservation in MS. Hum Brain Mapp 37:4262-4275, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Abnormal Olfaction in Parkinson's Disease Is Related to Faster Disease Progression.
Cavaco, Sara; Gonçalves, Alexandra; Mendes, Alexandre; Vila-Chã, Nuno; Moreira, Inês; Fernandes, Joana; Damásio, Joana; Teixeira-Pinto, Armando; Bastos Lima, António
2015-01-01
A possible association between olfactory dysfunction and Parkinson's disease (PD) severity has been a topic of contention for the past 40 years. Conflicting reports may be partially explained by procedural differences in olfactory assessment and motor symptom evaluation. One hundred and sixty-six nondemented PD patients performed the Brief-Smell Identification Test and test scores below the estimated 20th percentile as a function of sex, age, and education (i.e., 80% specificity) were considered demographically abnormal. Patients underwent motor examination after 12 h without antiparkinsonian medication. Eighty-two percent of PD patients had abnormal olfaction. Abnormal performance on the Brief-Smell Identification Test was associated with higher disease severity (i.e., Hoehn and Yahr, Unified Parkinson's Disease Rating Scale-III, Freezing of Gait questionnaire, and levodopa equivalent dose), even when disease duration was taken into account. Abnormal olfaction in PD is associated with increased severity and faster disease progression.
Bolkhir, Ahmed; Gyawali, C Prakash
2014-03-01
High-resolution manometry (HRM) has significantly impacted diagnosis and management of achalasia in particular, and has improved characterization of other motor disorders. Achalasia, the most profound esophageal motor disorder, is characterized by esophageal outflow obstruction from abnormal relaxation of the lower esophageal sphincter (LES) during swallowing, and presents with transit symptoms (dysphagia, regurgitation). Esophageal body motor disorders include both inhibitory nerve dysfunction associated with hypermotility or spasm, and hypomotility disorders with poor contraction. The implications of hypermotility disorders are both perceptive and obstructive. On the other hand, hypomotility disorders have reflux implications because of abnormal barrier function at the LES, and abnormal bolus clearance. Esophageal outflow obstruction in achalasia responds favorably to disruption of the LES, and outcome may be predicted by HRM subtyping of achalasia. Identification of dominant (perceptive vs. obstructive) mechanisms of symptom generation help direct therapy of hypermotility disorders, while hypomotility disorders typically require management of concurrent reflux disease.
Non-achalasic motor disorders of the oesophagus.
Sifrim, Daniel; Fornari, Fernando
2007-01-01
Motor abnormalities of the oesophagus are characterised by a chronic impairment of the neuromuscular structures that co-ordinate oesophageal function. The best-defined entity is achalasia, which is discussed in a separate chapter. Other motor disorders with clinical relevance include diffuse oesophageal spasm, oesophageal dysmotility associated with scleroderma, and ineffective oesophageal motility. These non-achalasic motor disorders have variable prevalence but they could be associated with invalidating symptoms such as dysphagia, chest pain and gastro-oesophageal reflux disease. New oesophageal diagnostic techniques, including high-resolution manometry, high-frequency intraluminal ultrasound and intraluminal impedance, allow (1) better definition of peristalsis and sphincter function, (2) assessment of changes in oesophageal wall thickness, and (3) evaluation of pressure gradients within the oesophagus and across the sphincters that can produce normal or abnormal patterns of bolus transport. This chapter discusses recent advances in physiology, pathophysiology, diagnosis and treatment of non-achalasic oesophageal motor disorders.
Mercuri, Eugenio; Barnett, Anna L.
2003-01-01
The aim of this paper is to review (i) the spectrum of neuromotor function at school age in children who had been born full-term and presented with neonatal encephalopathy (NE) and low Apgar scores and (ii) the relation between the presence/absence of such difficulties and neonatal brain MRI. Motor outcome appears to be mainly related to the severity of basal ganglia and internal capsule involvement. Severe basal ganglia lesions were always associated with the most severe outcome, microcephaly, tetraplegia, and severe global delay, whereas more discrete basal ganglia lesions were associated with athetoid cerebral palsy, with normal cognitive development or minor neuro-motor abnormalities. White matter lesions were associated with abnormal motor outcome only if the internal capsule was involved. Children with moderate white matter changes but normal internal capsule, had normal motor outcome at school age. PMID:14640307
NORADRENERGIC CONTROL OF CORTICO-STRIATO-THALAMIC AND MESOLIMBIC CROSS-STRUCTURAL SYNCHRONY
Dzirasa, Kafui; Phillips, H. Westley; Sotnikova, Tatyana D.; Salahpour, Ali; Kumar, Sunil; Gainetdinov, Raul R.; Caron, Marc G.; Nicolelis, Miguel A. L.
2010-01-01
While normal dopaminergic tone has been shown to be essential for the induction of cortico-striatal and mesolimbic theta oscillatory activity, the influence of norepinephrine on these brain networks remains relatively unknown. To address this question, we simultaneously recorded local field potentials (LFPs) and single neuron activity across ten interconnected brain areas (ventral striatum, frontal association cortex hippocampus, primary motor cortex, orbital frontal cortex, prelimbic cortex, dorsal lateral striatum, medial dorsal nucleus of thalamus, substantia nigra pars reticularis, and ventral tegmental area) in a combined genetically and pharmacologically induced mouse model of hyponoradrenergia. Our results show that norepinephrine (NE) depletion induces a novel state in male mice characterized by a profound disruption of coherence across multiple cortico-striatal circuits, and an increase in mesolimbic cross-structural coherence. Moreover, this brain state is accompanied by a complex behavioral phenotype consisting of transient hyperactivity, stereotypic behaviors, and an acute twelve-fold increase in grooming. Notably, treatment with a norepinephrine precursors (L-DOPA 100mg/kg or L-DOPS 5mg/kg), or a selective serotonin reuptake inhibitor (fluoxetine 20mg/kg) attenuates the abnormal behaviors and selectively reverses the circuit changes observed in NE depleted mice. Together, our results demonstrate that norepinephrine modulates the dynamic tuning of coherence across cortico-striatal-thalamic circuits, and they suggest that changes in coherence across these circuits mediate the abnormal generation of hyperactivity and repetitive behaviors. PMID:20445065
Noradrenergic control of cortico-striato-thalamic and mesolimbic cross-structural synchrony.
Dzirasa, Kafui; Phillips, H Westley; Sotnikova, Tatyana D; Salahpour, Ali; Kumar, Sunil; Gainetdinov, Raul R; Caron, Marc G; Nicolelis, Miguel A L
2010-05-05
Although normal dopaminergic tone has been shown to be essential for the induction of cortico-striatal and mesolimbic theta oscillatory activity, the influence of norepinephrine on these brain networks remains relatively unknown. To address this question, we simultaneously recorded local field potentials and single-neuron activity across 10 interconnected brain areas (ventral striatum, frontal association cortex, hippocampus, primary motor cortex, orbital frontal cortex, prelimbic cortex, dorsal lateral striatum, medial dorsal nucleus of thalamus, substantia nigra pars reticularis, and ventral tegmental area) in a combined genetically and pharmacologically induced mouse model of hyponoradrenergia. Our results show that norepinephrine (NE) depletion induces a novel state in male mice characterized by a profound disruption of coherence across multiple cortico-striatal circuits and an increase in mesolimbic cross-structural coherence. Moreover, this brain state is accompanied by a complex behavioral phenotype consisting of transient hyperactivity, stereotypic behaviors, and an acute 12-fold increase in grooming. Notably, treatment with a norepinephrine precursors (l-3,4-dihydroxyphenylalanine at 100 mg/kg or l-threo-dihydroxyphenylserine at 5 mg/kg) or a selective serotonin reuptake inhibitor (fluoxetine at 20 mg/kg) attenuates the abnormal behaviors and selectively reverses the circuit changes observed in NE-depleted mice. Together, our results demonstrate that norepinephrine modulates the dynamic tuning of coherence across cortico-striato-thalamic circuits, and they suggest that changes in coherence across these circuits mediate the abnormal generation of hyperactivity and repetitive behaviors.
Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; LaGasse, Linda L; Lester, Barry M; McKinlay, Christopher J D; Harding, Jane E; Wouldes, Trecia A; Thompson, Benjamin
2017-06-01
Global motion perception is often used as an index of dorsal visual stream function in neurodevelopmental studies. However, the relationship between global motion perception and visuomotor control, a primary function of the dorsal stream, is unclear. We measured global motion perception (motion coherence threshold; MCT) and performance on standardized measures of motor function in 606 4.5-year-old children born at risk of abnormal neurodevelopment. Visual acuity, stereoacuity and verbal IQ were also assessed. After adjustment for verbal IQ or both visual acuity and stereoacuity, MCT was modestly, but significantly, associated with all components of motor function with the exception of fine motor scores. In a separate analysis, stereoacuity, but not visual acuity, was significantly associated with both gross and fine motor scores. These results indicate that the development of motion perception and stereoacuity are associated with motor function in pre-school children. Copyright © 2017 Elsevier Ltd. All rights reserved.
From bench to bed: putative animal models of REM sleep behavior disorder (RBD).
Krenzer, Martina; Lu, Jun; Mayer, Geert; Oertel, Wolfgang
2013-04-01
REM behavior disorder (RBD) is a parasomnia characterized by REM sleep without atonia, leading to abnormal and potentially injurious behavior during REM sleep. It is considered one of the most specific predictors of neurodegenerative disorders, such as Parkinson's disease. In this paper, we provide an overview of animal models contributing to our current understanding of REM-associated atonia, and, as a consequence, the pathophysiology of RBD. The generator of REM-associated atonia is located in glutamatergic neurons of the pontine sublaterodorsal nucleus (SLD), as shown in cats, rats and mice. These findings are supported by clinical cases of patients with lesions of the homologous structure in humans. Glutamatergic SLD neurons, presumably in conjunction with others, project to (a) the ventromedial medulla, where they either directly target inhibitory interneurons to alpha motor neurons or are relayed, and (b) the spinal cord directly. At the spinal level, alpha motor neurons are inhibited by GABAergic and glycinergic interneurons. Our current understanding is that lesions of the glutamatergic SLD are the key factor for REM sleep behavior disorder. However, open questions remain, e.g. other features of RBD (such as the typically aggressive dream content) or the frequent progression from idiopathic RBD to neurodegenerative disorders, to name only a few. In order to elucidate these questions, a constant interaction between basic and clinical researchers is required, which might, ultimately, create an early therapeutic window for neurodegenerative disorders.
Small gray matter volume in orbitofrontal cortex in Prader-Willi syndrome: a voxel-based MRI study.
Ogura, Kaeko; Fujii, Toshikatsu; Abe, Nobuhito; Hosokai, Yoshiyuki; Shinohara, Mayumi; Takahashi, Shoki; Mori, Etsuro
2011-07-01
Prader-Willi syndrome (PWS) is a genetically determined neurodevelopmental disorder presenting with behavioral symptoms including hyperphagia, disinhibition, and compulsive behavior. The behavioral problems in individuals with PWS are strikingly similar to those in patients with frontal pathologies, particularly those affecting the orbitofrontal cortex (OFC). However, neuroanatomical abnormalities in the frontal lobe have not been established in PWS. The aim of this study was to look, using volumetric analysis, for morphological changes in the frontal lobe, especially the OFC, of the brains of individuals with PWS. Twelve adults with PWS and 13 age- and gender-matched control subjects participated in structural magnetic resonance imaging (MRI) scans. The whole-brain images were segmented and normalized to a standard stereotactic space. Regional gray matter volumes were compared between the PWS group and the control group using voxel-based morphometry. The PWS subjects showed small gray-matter volume in several regions, including the OFC, caudate nucleus, inferior temporal gyrus, precentral gyrus, supplementary motor area, postcentral gyrus, and cerebellum. The small gray-matter volume in the OFC remained significant in a separate analysis that included total gray matter volume as a covariate. These preliminary findings suggest that the neurobehavioral symptoms in individuals with PWS are related to structural brain abnormalities in these areas. Copyright © 2010 Wiley-Liss, Inc.
The Puzzle of Visual Development: Behavior and Neural Limits.
Kiorpes, Lynne
2016-11-09
The development of visual function takes place over many months or years in primate infants. Visual sensitivity is very poor near birth and improves over different times courses for different visual functions. The neural mechanisms that underlie these processes are not well understood despite many decades of research. The puzzle arises because research into the factors that limit visual function in infants has found surprisingly mature neural organization and adult-like receptive field properties in very young infants. The high degree of visual plasticity that has been documented during the sensitive period in young children and animals leaves the brain vulnerable to abnormal visual experience. Abnormal visual experience during the sensitive period can lead to amblyopia, a developmental disorder of vision affecting ∼3% of children. This review provides a historical perspective on research into visual development and the disorder amblyopia. The mismatch between the status of the primary visual cortex and visual behavior, both during visual development and in amblyopia, is discussed, and several potential resolutions are considered. It seems likely that extrastriate visual areas further along the visual pathways may set important limits on visual function and show greater vulnerability to abnormal visual experience. Analyses based on multiunit, population activity may provide useful representations of the information being fed forward from primary visual cortex to extrastriate processing areas and to the motor output. Copyright © 2016 the authors 0270-6474/16/3611384-10$15.00/0.
Assessment and evaluation of the high risk neonate: the NICU Network Neurobehavioral Scale.
Lester, Barry M; Andreozzi-Fontaine, Lynne; Tronick, Edward; Bigsby, Rosemarie
2014-08-25
There has been a long-standing interest in the assessment of the neurobehavioral integrity of the newborn infant. The NICU Network Neurobehavioral Scale (NNNS) was developed as an assessment for the at-risk infant. These are infants who are at increased risk for poor developmental outcome because of insults during prenatal development, such as substance exposure or prematurity or factors such as poverty, poor nutrition or lack of prenatal care that can have adverse effects on the intrauterine environment and affect the developing fetus. The NNNS assesses the full range of infant neurobehavioral performance including neurological integrity, behavioral functioning, and signs of stress/abstinence. The NNNS is a noninvasive neonatal assessment tool with demonstrated validity as a predictor, not only of medical outcomes such as cerebral palsy diagnosis, neurological abnormalities, and diseases with risks to the brain, but also of developmental outcomes such as mental and motor functioning, behavior problems, school readiness, and IQ. The NNNS can identify infants at high risk for abnormal developmental outcome and is an important clinical tool that enables medical researchers and health practitioners to identify these infants and develop intervention programs to optimize the development of these infants as early as possible. The video shows the NNNS procedures, shows examples of normal and abnormal performance and the various clinical populations in which the exam can be used.
Adams-Chapman, Ira; Bann, Carla M; Vaucher, Yvonne E; Stoll, Barbara J
2013-09-01
To evaluate the relationship between abnormal feeding patterns and language performance on the Bayley Scales of Infant Development-Third Edition at 18-22 months adjusted age among a cohort of extremely premature infants. This is a descriptive analysis of 1477 preterm infants born ≤ 26 weeks gestation or enrolled in a clinical trial between January 1, 2006 and March 18, 2008 at a National Institute of Child Health and Human Development Neonatal Research Network center who completed the 18-month neurodevelopmental follow-up assessment. At 18-22 months adjusted age, a comprehensive neurodevelopmental evaluation was performed by certified examiners including the Receptive and Expressive Language Subscales of the Bayley Scales of Infant Development-Third Edition and a standardized adjusted age feeding behaviors and nutritional intake. Data were analyzed using bivariate and multilevel linear and logistic regression modeling. Abnormal feeding behaviors were reported in 193 (13%) of these infants at 18-22 months adjusted age. Abnormal feeding patterns, days of mechanical ventilation, hearing impairment, and Gross Motor Functional Classification System level ≥ 2 each independently predicted lower composite language scores. At 18 months adjusted age, premature infants with a history of feeding difficulties are more likely to have language delay. Neuromotor impairment and days of mechanical ventilation are both important risk factors associated with these outcomes. Copyright © 2013 Mosby, Inc. All rights reserved.
Walking deficits and centrophobism in an α-synuclein fly model of Parkinson's disease.
Chen, A Y; Wilburn, P; Hao, X; Tully, T
2014-11-01
Parkinson's disease (PD) is a movement neurodegenerative disorder, characterized by bradykinesia, rigidity and tremor, constituting difficulties in walking and abnormal gait. Previous research shows that Drosophila expressing human α-synuclein A30P (A30P) develop deficits in geotaxis climbing; however, geotaxis climbing is a different movement modality from walking. Whether A30P flies would exhibit abnormal walking in a horizontal plane, a measure more relevant to PD, is not known. In this study, we characterized A30P fly walking using a high-speed camera and an automatic behavior tracking system. We found that old but not young A30P flies exhibited walking abnormalities, specifically decreased total moving distance, distance per movement, velocity, angular velocity and others, compared with old control flies. Those features match the definition of bradykinesia. Multivariate analysis further suggested a synergistic effect of aging and A30P, resulting in a distinct pattern of walking deficits, as seen in aged A30P flies. Psychiatric problems are common in PD patients with anxiety affecting 40-69% of patients. Central avoidance is one assessment of anxiety in various animal models. We found old but not young A30P flies exhibited increased centrophobism, suggesting possible elevated anxiety. Here, we report the first quantitative measures of walking qualities in a PD fly model and propose an alternative behavior paradigm for evaluating motor functions apart from climbing assay. © 2014 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
Zangen, Tsili; Ciarla, Carla; Zangen, Samuel; Di Lorenzo, Carlo; Flores, Alex F; Cocjin, Jose; Reddy, Sarabudla Narasimha; Rowhani, Anita; Schwankovsky, Lenore; Hyman, Paul E
2003-09-01
In chronically ill children who refuse to eat, surgery to correct anatomic problems and behavioral treatments to overcome oral aversion often succeed. A few patients fail with standard treatments. The aims of the study were to: 1) investigate motility and gastric sensory abnormalities and 2) describe treatment that was individualized based on pathophysiology in children who failed surgery and behavioral treatments. We studied 14 patients (age 1.5-6; mean 2.5; M/F: 7/7). All had a lifelong history of food aversion and retching or vomiting persisting after feeding therapy and fundoplication. All were fed through gastrostomy or gastro-jejunostomy tubes. We studied esophageal and antroduodenal manometry, and gastric volume threshold for retching. We identified when gastric antral contractions were associated with retching and pain. A multidisciplinary treatment program included a variable combination of continuous post-pyloric feedings, drugs to decrease visceral pain, drugs for motility disorders, and behavioral, cognitive, and family therapy. We interviewed parents 2-6 months following testing to evaluate symptoms, mode of feeding and emotional health. We found a motility disorder alone in 2, decreased threshold for retching alone in 5 and both motility and sensory abnormalities in 7. After treatment, 6 of 14 (43%) began eating orally and 80% had improved emotional health. Retching decreased from 15 episodes per day to an average of 1.4 per day (p <0.01). Upper gastrointestinal motor and/or sensory disorders contributed to reduced quality of life for a majority of children and families with persistent feeding problems. A multidisciplinary approach improved symptoms and problems in these children
Fellows, Robert P; Byrd, Desiree A; Morgello, Susan
2014-01-01
It is unclear whether or to what degree literacy, aging, and other neurologic abnormalities relate to cognitive deficits among people living with HIV/AIDS in the combined antiretroviral therapy (CART) era. The primary aim of this study was to simultaneously examine the association of age, HIV-associated motor abnormalities, major depressive disorder, and reading level with information processing speed, learning, memory, and executive functions, and to determine whether processing speed mediated any of the relationships between cognitive and noncognitive variables. Participants were 186 racially and ethnically diverse men and women living with HIV/AIDS who underwent comprehensive neurological, neuropsychological, and medical evaluations. Structural equation modeling was utilized to assess the extent to which information processing speed mediated the relationship between age, motor abnormalities, major depressive disorder, and reading level with other cognitive abilities. Age, motor dysfunction, reading level, and current major depressive disorder were all significantly associated with information processing speed. Information processing speed fully mediated the effects of age on learning, memory, and executive functioning and partially mediated the effect of major depressive disorder on learning and memory. The effect of motor dysfunction on learning and memory was fully mediated by processing speed. These findings provide support for information processing speed as a primary deficit, which may account, at least in part, for many of the other cognitive abnormalities recognized in complex HIV/AIDS populations. The association of age and information processing speed may account for HIV/aging synergies in the generation of CART-era cognitive abnormalities.
Hockenberry, Alyson M; Hutchens, Danielle M; Agellon, Al; So, Magdalene
2016-12-06
Retraction of the type IV pilus (Tfp) mediates DNA uptake, motility, and social and infection behavior in a wide variety of prokaryotes. To date, investigations into Tfp retraction-dependent activities have used a mutant deleted of PilT, the ATPase motor protein that causes the pilus fiber to retract. ΔpilT cells are nontransformable, nonmotile, and cannot aggregate into microcolonies. We tested the hypothesis that these retraction-dependent activities are sensitive to the strength of PilT enzymatic activity by using the pathogen Neisseria gonorrhoeae as a model. We constructed an N. gonorrhoeae mutant with an amino acid substitution in the PilT Walker B box (a substitution of cysteine for leucine at position 201, encoded by pilT L201C ). Purified PilT L201C forms a native hexamer, but mutant hexamers hydrolyze ATP at half the maximal rate. N. gonorrhoeae pilT L201C cells produce Tfp fibers, crawl at the same speed as the wild-type (wt) parent, and are equally transformable. However, the social behavior of pilT L201C cells is intermediate between the behaviors of wt and ΔpilT cells. The infection behavior of pilT L201C is also defective, due to its failure to activate the epidermal growth factor receptor (EGFR)-heparin-binding EGF-like growth factor (HB-EGF) pathway. Our study indicates that pilus retraction, per se, is not sufficient for N. gonorrhoeae microcolony formation or infectivity; rather, these activities are sensitive to the strength of PilT enzymatic activity. We discuss the implications of these findings for Neisseria pathogenesis in the context of mechanobiology. Type IV pili are fibers expressed on the surface of many bacteria. Neisseria gonorrhoeae cells crawl, take up DNA, and communicate with each other and with human cells by retracting these fibers. Here, we show that an N. gonorrhoeae mutant expressing an enzymatically weakened type IV pilus retraction motor still crawls and takes up DNA normally. However, mutant cells exhibit abnormal social behavior, and they are less infective because they fail to activate the epidermal growth factor receptor. Our study shows that N. gonorrhoeae social and infection behaviors are sensitive to the strength of the retraction motor enzyme. Copyright © 2016 Hockenberry et al.
Dworkin, Sebastian; Auden, Alana; Partridge, Darren D; Daglas, Maria; Medcalf, Robert L; Mantamadiotis, Theo; Georgy, Smitha R; Darido, Charbel; Jane, Stephen M; Ting, Stephen B
2017-06-01
The highly conserved Grainyhead-like (Grhl) family of transcription factors, comprising three members in vertebrates (Grhl1-3), play critical regulatory roles during embryonic development, cellular proliferation, and apoptosis. Although loss of Grhl function leads to multiple neural abnormalities in numerous animal models, a comprehensive analysis of Grhl expression and function in the mammalian brain has not been reported. Here they show that only Grhl3 expression is detectable in the embryonic mouse brain; particularly within the habenula, an organ known to modulate repressive behaviors. Using both Grhl3-knockout mice (Grhl3 -/- ), and brain-specific conditional deletion of Grhl3 in adult mice (Nestin-Cre/Grhl3 flox/flox ), they performed histological expression analyses and behavioral tests to assess long-term effects of Grhl3 loss on motor co-ordination, spatial memory, anxiety, and stress. They found that complete deletion of Grhl3 did not lead to noticeable structural or cell-intrinsic defects in the embryonic brain; however, aged Grhl3 conditional knockout (cKO) mice showed enlarged lateral ventricles and displayed marked changes in motor function and behaviors suggestive of decreased fear and anxiety. They conclude that loss of Grhl3 in the brain leads to significant alterations in locomotor activity and decreased self-inhibition, and as such, these mice may serve as a novel model of human conditions of impulsive behavior or hyperactivity. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 775-788, 2017. © 2017 Wiley Periodicals, Inc.
Mohaibes, Raheem J; Fiol-deRoque, María A; Torres, Manuel; Ordinas, Margarita; López, David J; Castro, José A; Escribá, Pablo V; Busquets, Xavier
2017-09-01
We have compared the effect of the commonly used ω-3 fatty acid, docosahexaenoic acid ethyl ester (DHA-EE), and of its 2-hydroxylated DHA form (DHA-H), on brain lipid composition, behavior and lifespan in a new human transgenic Drosophila melanogaster model of Alzheimer's disease (AD). The transgenic flies expressed human Aβ42 and tau, and the overexpression of these human transgenes in the CNS of these flies produced progressive defects in motor function (antigeotaxic behavior) while reducing the animal's lifespan. Here, we demonstrate that both DHA-EE and DHA-H increase the longer chain fatty acids (≥18C) species in the heads of the flies, although only DHA-H produced an unknown chromatographic peak that corresponded to a non-hydroxylated lipid. In addition, only treatment with DHA-H prevented the abnormal climbing behavior and enhanced the lifespan of these transgenic flies. These benefits of DHA-H were confirmed in the well characterized transgenic PS1/APP mouse model of familial AD (5xFAD mice), mice that develop defects in spatial learning and in memory, as well as behavioral deficits. Hence, it appears that the modulation of brain lipid composition by DHA-H could have remedial effects on AD associated neurodegeneration. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Copyright © 2017. Published by Elsevier B.V.
ERIC Educational Resources Information Center
Douret, L.
1993-01-01
Full-term infants who had slept in the prone position since birth were followed to detect early postural abnormalities and differentiate potential peripheral abnormality from abnormalities of a central origin. Results showed that disappearance of initial signs of abnormality appeared to be muscular, and symptoms disappeared faster when a motor…
Cerebral morphology and functional sparing after prenatal frontal cortex lesions in rats.
Kolb, B; Cioe, J; Muirhead, D
1998-03-01
Rats were given suction lesions of the presumptive frontal cortex on embryonic day 18 (E18) and subsequently tested, as adults, on tests of spatial navigation (Morris water task, radial arm maze), motor tasks (Whishaw reaching task, beam walking), and locomotor activity. Frontal cortical lesions at E18 affected cerebral morphogenesis, producing unusual morphological structures including abnormal patches of neurons in the cortex and white matter as well as neuronal bridges between the hemispheres. A small sample of E18 operates also had hydrocephaly. The animals with E18 lesions without hydrocephalus were behaviorally indistinguishable from littermate controls. The results demonstrate that animals with focal lesions of the presumptive frontal cortex have gross abnormalities in cerebral morphology but the lesions leave the functions normally subserved by the frontal cortex in adult rats unaffected. The results are discussed in the context of a hypothesis regarding the optimal times for functional recovery from cortical injury.
Bischof, Jocelyn M; Stewart, Colin L; Wevrick, Rachel
2007-11-15
Prader-Willi syndrome (PWS) is an imprinted genetic obesity disorder characterized by abnormalities of growth and metabolism. Multiple mouse models with deficiency of one or more PWS candidate genes have partially correlated individual genes with aspects of the PWS phenotype, although the genetic origin of defects in growth and metabolism has not been elucidated. Gene-targeted mutation of the PWS candidate gene Magel2 in mice causes altered circadian rhythm output and reduced motor activity. We now report that Magel2-null mice exhibit neonatal growth retardation, excessive weight gain after weaning, and increased adiposity with altered metabolism in adulthood, recapitulating fundamental aspects of the PWS phenotype. Magel2-null mice provide an important opportunity to examine the physiological basis for PWS neonatal failure to thrive and post-weaning weight gain and for the relationships among circadian rhythm, feeding behavior, and metabolism.
Zhao, Y; Fung, C; Shin, D; Shin, B-C; Thamotharan, S; Sankar, R; Ehninger, D; Silva, A; Devaskar, S U
2010-03-01
Neuronal glucose transporter (GLUT) isoform 3 deficiency in null heterozygous mice led to abnormal spatial learning and working memory but normal acquisition and retrieval during contextual conditioning, abnormal cognitive flexibility with intact gross motor ability, electroencephalographic seizures, perturbed social behavior with reduced vocalization and stereotypies at low frequency. This phenotypic expression is unique as it combines the neurobehavioral with the epileptiform characteristics of autism spectrum disorders. This clinical presentation occurred despite metabolic adaptations consisting of an increase in microvascular/glial GLUT1, neuronal GLUT8 and monocarboxylate transporter isoform 2 concentrations, with minimal to no change in brain glucose uptake but an increase in lactate uptake. Neuron-specific glucose deficiency has a negative impact on neurodevelopment interfering with functional competence. This is the first description of GLUT3 deficiency that forms a possible novel genetic mechanism for pervasive developmental disorders, such as the neuropsychiatric autism spectrum disorders, requiring further investigation in humans.
Campbell, Andrew W; Thrasher, Jack D; Madison, Roberta A; Vojdani, Aristo; Gray, Michael R; Johnson, Al
2003-08-01
Adverse health effects of fungal bioaerosols on occupants of water-damaged homes and other buildings have been reported. Recently, it has been suggested that mold exposure causes neurological injury. The authors investigated neurological antibodies and neurophysiological abnormalities in patients exposed to molds at home who developed symptoms of peripheral neuropathy (i.e., numbness, tingling, tremors, and muscle weakness in the extremities). Serum samples were collected and analyzed with the enzyme-linked immunosorbent assay (ELISA) technique for antibodies to myelin basic protein, myelin-associated glycoprotein, ganglioside GM1, sulfatide, myelin oligodendrocyte glycoprotein, alpha-B-crystallin, chondroitin sulfate, tubulin, and neurofilament. Antibodies to molds and mycotoxins were also determined with ELISA, as reported previously. Neurophysiologic evaluations for latency, amplitude, and velocity were performed on 4 motor nerves (median, ulnar, peroneal, and tibial), and for latency and amplitude on 3 sensory nerves (median, ulnar, and sural). Patients with documented, measured exposure to molds had elevated titers of antibodies (immunoglobulin [Ig]A, IgM, and IgG) to neural-specific antigens. Nerve conduction studies revealed 4 patient groupings: (1) mixed sensory-motor polyneuropathy (n = 55, abnormal), (2) motor neuropathy (n = 17, abnormal), (3) sensory neuropathy (n = 27, abnormal), and (4) those with symptoms but no neurophysiological abnormalities (n = 20, normal controls). All groups showed significantly increased autoantibody titers for all isotypes (IgA, IgM, and IgG) of antibodies to neural antigens when compared with 500 healthy controls. Groups 1 through 3 also exhibited abnormal neurophysiologic findings. The authors concluded that exposure to molds in water-damaged buildings increased the risk for development of neural autoantibodies, peripheral neuropathy, and neurophysiologic abnormalities in exposed individuals.
ERIC Educational Resources Information Center
Bauer, Sara M.; Jones, Emily A.
2014-01-01
Impairment in exploratory motor (EM) behavior is part of the Down syndrome behavioral phenotype. Exploratory motor behavior may be a pivotal skill for early intervention with infants with Down syndrome. Exploratory motor impairments are often attributed to general delays in motor development in infants with Down syndrome. A behavior analytic…
Ortiz-Abalia, Jon; Sahún, Ignasi; Altafaj, Xavier; Andreu, Núria; Estivill, Xavier; Dierssen, Mara; Fillat, Cristina
2008-01-01
Genetic-dissection studies carried out with Down syndrome (DS) murine models point to the critical contribution of Dyrk1A overexpression to the motor abnormalities and cognitive deficits displayed in DS individuals. In the present study we have used a murine model overexpressing Dyrk1A (TgDyrk1A mice) to evaluate whether functional CNS defects could be corrected with an inhibitory RNA against Dyrk1A, delivered by bilateral intrastriatal injections of adeno-associated virus type 2 (AAVshDyrk1A). We report that AAVshDyrk1A efficiently transduced HEK293 cells and primary neuronal cultures, triggering the specific inhibition of Dyrk1A expression. Injecting the vector into the striata of TgDyrk1A mice resulted in a restricted, long-term transduction of the striatum. This gene therapy was found to be devoid of toxicity and succeeded in normalizing Dyrk1A protein levels in TgDyrk1A mice. Importantly, the behavioral studies of the adult TgDyrk1A mice treated showed a reversal of corticostriatal-dependent phenotypes, as revealed by the attenuation of their hyperactive behavior, the restoration of motor-coordination defects, and an improvement in sensorimotor gating. Taken together, the data demonstrate that normalizing Dyrk1A gene expression in the striatum of adult TgDyrk1A mice, by means of AAVshRNA, clearly reverses motor impairment. Furthermore, these results identify Dyrk1A as a potential target for therapy in DS. PMID:18940310
Dowell, Lauren R.; Mahone, E. Mark; Mostofsky, Stewart H.
2009-01-01
Children with autism often have difficulty performing skilled movements. Praxis performance requires basic motor skill, knowledge of representations of the movement (mediated by parietal regions), and transcoding of these representations into movement plans (mediated by premotor circuits). The goals of this study were: (a) to determine whether dyspraxia in autism is associated with impaired representational (“postural”) knowledge, and (b) to examine the contributions of postural knowledge and basic motor skill to dyspraxia in autism. Thirty-seven children with autism spectrum disorder (ASD) and 50 typically developing (TD) children, ages 8–13, completed: (a) an examination of basic motor skills, (b) a postural knowledge test assessing praxis discrimination, and (c) a praxis examination. Children with ASD showed worse basic motor skill and postural knowledge than controls. The ASD group continued to show significantly poorer praxis than controls after accounting for age, IQ, basic motor skill, and postural knowledge. Dyspraxia in autism appears to be associated with impaired formation of spatial representations, as well as transcoding and execution. Distributed abnormality across parietal, premotor, and motor circuitry, as well as anomalous connectivity may be implicated. PMID:19702410
Erickson, R I; Defensor, E B; Fairchild, D G; Mirsalis, J C; Steinmetz, K L
2011-08-01
The World Health Organization currently recommends combinatorial treatment including artemisinins as first-line therapy against drug-resistant Plasmodium falciparum malaria. Although highly efficacious, artemisinin and its derivatives, including β-arteether (βAE), are associated with ototoxicity, tremors, and other autonomic and motor impairments in the clinic. Similar neurological symptoms, as well as brainstem lesions, have been observed in adult laboratory species (mice, rats, dogs, and non human primates) following acute treatment with βAE; however, few long-term, nonclinical studies have been conducted. Furthermore, the majority of deaths attributed to malarial infection occur in children under age five, yet no laboratory studies have been initiated in neonatal or juvenile animals. In the current study, neonatal 7-day-old rats were administered intramuscular doses of 1-90 mg/kg βAE in sesame oil for up to eight treatment cycles (one cycle=7 days treatment+7 days without treatment). Neonates were tested for changes in sensorimotor function, and the same animals were tested as adults in the Functional Observational Battery, for motor activity, and in the 8-arm radial maze. Pups receiving a single cycle of 60 or 90 mg/kg died within a week of treatment but had few behavioral changes and no brainstem pathology. In the long-term study, behavioral and motor changes and brainstem lesions were observed in a dose- and time-related manner. Rats given repeated cycles of 1 or 5mg/kg βAE showed subtle motor abnormalities (e.g., slight loss of righting reflex) while repeated cycles of 10mg/kg βAE treatment resulted in obvious motor and behavioral changes. Rats receiving 1mg/kg βAE had no brainstem lesions whereas some rats treated with 5mg/kg βAE and all rats treated with 10 mg/kg βAE had brainstem lesions. Brainstem lesions were observed after as few as five cycles and were characterized by gliosis, satellitosis and progressive necrosis in motor neurons of the trapezoid, vestibular, and olivary nuclei. This study shows that repeated treatment with clinically relevant doses of βAE causes motor deficits associated with brainstem damage in rodents and suggests that repeated treatment with βAE in children may elicit neurological damage. Copyright © 2011 Elsevier Inc. All rights reserved.
Enticott, Peter G; Bradshaw, John L; Iansek, Robert; Tonge, Bruce J; Rinehart, Nicole J
2009-10-01
Motor dysfunction is common to both autism and Asperger syndrome, but the underlying neurophysiological impairments are unclear. Neurophysiological examinations of motor dysfunction can provide information about likely sites of functional impairment and can contribute to the debate about whether autism and Asperger syndrome are variants of the same disorder or fundamentally distinct neurodevelopmental conditions. We investigated the neurophysiology of internally determined motor activity in autism and Asperger syndrome via examination of movement-related potentials (MRPs). We used electroencephalography to investigate MRPs, via an internally cued movement paradigm, in the following three groups: (1) individuals with high-functioning autism (14 males, one female; mean age 13 y 1 mo, SD 4 y 2 mo, range 7 y 8 mo to 20 y 9 mo; mean Full-scale IQ 93.40, SD 20.72); (2) individuals with Asperger syndrome (10 males, two females; mean age 13 y 7 mo, SD 3 y 9 mo, range 8 y 11 mo to 20 y 4 mo; mean Full-scale IQ 103.25, SD 19.37), and (3) a healthy control group (13 males, seven females; mean age 14 y 0 mo, SD 3 y 11 mo; range 8 y 4 mo to 21 y 0 mo; mean Full-scale IQ 114.25, SD 11.29). Abnormal MRPs can reflect disruption of motor-related neural networks involving the basal ganglia, thalamus, and supplementary motor area. There was evidence for abnormal MRPs in autism (e.g. increased post-movement cortical activity, abnormal peak time) but not in Asperger syndrome. The results support basal ganglia, thalamus, and supplementary motor area involvement as a likely source of motor dysfunction in autism, and provide further evidence for the neurobiological separateness of autism and Asperger syndrome.
Cerebellar mutism--report of four cases.
Ozimek, A; Richter, S; Hein-Kropp, C; Schoch, B; Gorissen, B; Kaiser, O; Gizewski, E; Ziegler, W; Timmann, D
2004-08-01
The aim of the present study was to investigate the manifestations of mutism after surgery in children with cerebellar tumors. Speech impairment following cerebellar mutism in children was investigated based on standardized acoustic speech parameters and perceptual criteria. Mutistic and non-mutistic children after cerebellar surgery as well as orthopedic controls were tested pre-and postoperatively. Speech impairment was compared with the localization of cerebellar lesions (i. e. affected lobules and nuclei). Whereas both control groups showed no abnormalities in speech and behavior, the mutistic group could be divided into children with dysarthria in post mutistic phase and children with mainly behavioral disturbances. In the mutistic children involvement of dentate and fastigial nuclei tended to be more frequent and extended than in the nonmutistic cerebellar children. Cerebellar mutism is a complex phenomenon of at least two types. Dysarthric symptoms during resolution of mutism support the anarthria hypothesis, while mainly behavioral changes suggest an explanation independent from speech motor control.
Fetal alcohol spectrum disorders: an overview.
Riley, Edward P; Infante, M Alejandra; Warren, Kenneth R
2011-06-01
When fetal alcohol syndrome (FAS) was initially described, diagnosis was based upon physical parameters including facial anomalies and growth retardation, with evidence of developmental delay or mental deficiency. Forty years of research has shown that FAS lies towards the extreme end of what are now termed fetal alcohol spectrum disorders (FASD). The most profound effects of prenatal alcohol exposure are on the developing brain and the cognitive and behavioral effects that ensue. Alcohol exposure affects brain development via numerous pathways at all stages from neurogenesis to myelination. For example, the same processes that give rise to the facial characteristics of FAS also cause abnormal brain development. Behaviors as diverse as executive functioning to motor control are affected. This special issue of Neuropsychology Review addresses these changes in brain and behavior highlighting the relationship between the two. A diagnostic goal is to recognize FAS as a disorder of brain rather than one of physical characteristics.
Behavioral and neurobiological correlates of childhood apraxia of speech in Italian children.
Chilosi, Anna Maria; Lorenzini, Irene; Fiori, Simona; Graziosi, Valentina; Rossi, Giuseppe; Pasquariello, Rosa; Cipriani, Paola; Cioni, Giovanni
2015-11-01
Childhood apraxia of speech (CAS) is a neurogenic Speech Sound Disorder whose etiology and neurobiological correlates are still unclear. In the present study, 32 Italian children with idiopathic CAS underwent a comprehensive speech and language, genetic and neuroradiological investigation aimed to gather information on the possible behavioral and neurobiological markers of the disorder. The results revealed four main aggregations of behavioral symptoms that indicate a multi-deficit disorder involving both motor-speech and language competence. Six children presented with chromosomal alterations. The familial aggregation rate for speech and language difficulties and the male to female ratio were both very high in the whole sample, supporting the hypothesis that genetic factors make substantial contribution to the risk of CAS. As expected in accordance with the diagnosis of idiopathic CAS, conventional MRI did not reveal macrostructural pathogenic neuroanatomical abnormalities, suggesting that CAS may be due to brain microstructural alterations. Copyright © 2015 Elsevier Inc. All rights reserved.
Cerebellum in Levodopa-Induced Dyskinesias: The Unusual Suspect in the Motor Network
Kishore, Asha; Popa, Traian
2014-01-01
The exact mechanisms that generate levodopa-induced dyskinesias (LID) during chronic levodopa therapy for Parkinson’s disease (PD) are not yet fully established. The most widely accepted theories incriminate the non-physiological synthesis, release and reuptake of dopamine generated by exogenously administered levodopa in the striatum, and the aberrant plasticity in the cortico-striatal loops. However, normal motor performance requires the correct recruitment of motor maps. This depends on a high level of synergy within the primary motor cortex (M1) as well as between M1 and other cortical and subcortical areas, for which dopamine is necessary. The plastic mechanisms within M1, which are crucial for the maintenance of this synergy, are disrupted both during “OFF” and dyskinetic states in PD. When tested without levodopa, dyskinetic patients show loss of treatment benefits on long-term potentiation and long-term depression-like plasticity of the intracortical circuits. When tested with the regular pulsatile levodopa doses, they show further impairment of the M1 plasticity, such as inability to depotentiate an already facilitated synapse and paradoxical facilitation in response to afferent input aimed at synaptic inhibition. Dyskinetic patients have also severe impairment of the associative, sensorimotor plasticity of M1 attributed to deficient cerebellar modulation of sensory afferents to M1. Here, we review the anatomical and functional studies, including the recently described bidirectional connections between the cerebellum and the basal ganglia that support a key role of the cerebellum in the generation of LID. This model stipulates that aberrant neuronal synchrony in PD with LID may propagate from the subthalamic nucleus to the cerebellum and “lock” the cerebellar cortex in a hyperactive state. This could affect critical cerebellar functions such as the dynamic and discrete modulation of M1 plasticity and the matching of motor commands with sensory information from the environment during motor performance. We propose that in dyskinesias, M1 neurons have lost the ability to depotentiate an activated synapse when exposed to acute pulsatile, non-physiological, dopaminergic surges and become abnormally receptive to unfiltered, aberrant, and non-salient afferent inputs from the environment. The motor program selection in response to such non-salient and behaviorally irrelevant afferent inputs would be abnormal and involuntary. The motor responses are worsened by the lack of normal subcortico–cortical inputs from cerebellum and basal ganglia, because of the aberrant plasticity at their own synapses. Artificial cerebellar stimulation might help re-establish the cerebellar and basal ganglia control over the non-salient inputs to the motor areas during synaptic dopaminergic surges. PMID:25183959
Jacobson, Sarah L.; Bloomsmith, Mollie A.
2016-01-01
Abnormal behaviors in captive animals are generally defined as behaviors that are atypical for the species and are often considered to be indicators of poor welfare. Although some abnormal behaviors have been empirically linked to conditions related to elevated stress and compromised welfare in primates, others have little or no evidence on which to base such a relationship. The objective of this study was to investigate a recent claim that abnormal behavior is endemic in the captive population by surveying a broad sample of chimpanzees (Pan troglodytes), while also considering factors associated with the origins of these behaviors. We surveyed animal care staff from 26 accredited zoos to assess the prevalence of abnormal behavior in a large sample of chimpanzees in the United States for which we had information on origin and rearing history. Our results demonstrated that 64% of this sample was reported to engage in some form of abnormal behavior in the past two years and 48% of chimpanzees engaged in abnormal behavior other than coprophagy. Logistic regression models were used to analyze the historical variables that best predicted the occurrence of all abnormal behavior, any abnormal behavior that was not coprophagy, and coprophagy. Rearing had opposing effects on the occurrence of coprophagy and the other abnormal behaviors such that mother-reared individuals were more likely to perform coprophagy, whereas non-mother-reared individuals were more likely to perform other abnormal behaviors. These results support the assertion that coprophagy may be classified separately when assessing abnormal behavior and the welfare of captive chimpanzees. This robust evaluation of the prevalence of abnormal behavior in our sample from the U.S. zoo population also demonstrates the importance of considering the contribution of historical variables to present behavior, in order to better understand the causes of these behaviors and any potential relationship to psychological wellbeing. PMID:27478710
Energy Homeostasis and Abnormal RNA Metabolism in Amyotrophic Lateral Sclerosis
Liu, Yu-Ju; Tsai, Po-Yi; Chern, Yijuang
2017-01-01
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease that is clinically characterized by progressive muscle weakness and impaired voluntary movement due to the loss of motor neurons in the brain, brain stem and spinal cord. To date, no effective treatment is available. Ample evidence suggests that impaired RNA homeostasis and abnormal energy status are two major pathogenesis pathways in ALS. In the present review article, we focus on recent studies that report molecular insights of both pathways, and discuss the possibility that energy dysfunction might negatively regulate RNA homeostasis via the impairment of cytoplasmic-nuclear shuttling in motor neurons and subsequently contribute to the development of ALS. PMID:28522961
Developing Gene Silencing for the Study and Treatment of Dystonia
2016-10-01
eliminate the symptoms? Are the motor deficits in DYT1 dystonia reversible? We propose to use a novel rat model of DYT1 dystonia and infuse antisense...suppressing expression of mutant torsinA in striatum or cerebellum using AAV1 reverses the motor phenotype in aged DYT1 rats . 4. IMPACT What was...different areas of the brain, and w e w ill measure if they are able to reverse known abnormalities that occur in the brain of DYT1 rats , including abnormal
Early physiological abnormalities after simian immunodeficiency virus infection.
Horn, T F; Huitron-Resendiz, S; Weed, M R; Henriksen, S J; Fox, H S
1998-12-08
Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction.
Early physiological abnormalities after simian immunodeficiency virus infection
Horn, Thomas F. W.; Huitron-Resendiz, Salvador; Weed, Michael R.; Henriksen, Steven J.; Fox, Howard S.
1998-01-01
Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction. PMID:9844017
Postural sway and regional cerebellar volume in adults with attention-deficit/hyperactivity disorder
Hove, Michael J.; Zeffiro, Thomas A.; Biederman, Joseph; Li, Zhi; Schmahmann, Jeremy; Valera, Eve M.
2015-01-01
Objective Motor abnormalities, including impaired balance and increased postural sway, are commonly reported in children with ADHD, but have yet to be investigated in adults with ADHD. Furthermore, although these abnormalities are thought to stem from cerebellar deficits, evidence for an association between the cerebellum and these motor deficits has yet to be provided for either adults or children with ADHD. Method In this study, we measured postural sway in adults with ADHD and controls, examining the relationship between sway and regional cerebellar gray matter volume. Thirty-two ADHD and 28 control participants completed various standing-posture tasks on a Wii balance board. Results Postural sway was significantly higher for the ADHD group compared to the healthy controls. Higher sway was positively associated with regional gray matter volume in the right posterior cerebellum (lobule VIII/IX). Conclusion These findings show that sway abnormalities commonly reported in children with ADHD are also present in adults, and for the first time show a relationship between postural control atypicalities and the cerebellum in this group. Our findings extend the literature on motor abnormalities in ADHD and contribute to our knowledge of their neural substrate. PMID:26106567
An electrophysiological follow up of patients with n-hexane polyneuropathy.
Chang, Y C
1991-01-01
Electroneurographic (ENeG) and evoked potential (EP) studies were regularly performed on 11 printing workers with n-hexane polyneuropathy after cessation of exposure. At the initial examination, the ENeG studies simulated a demyelinative process. Further slowing of nerve conduction velocity, or further decreasing of action potential amplitude, or both in the follow up ENeG study were found in about half the patients. The motor distal latency did not worsen. Nerve conduction returned to normal earlier in the sensory than in the motor nerves. After the patients had regained full motor capability, conduction velocities in motor nerves were still significantly slowed. These ENeG characteristics correlate with the pathological and pathophysiological changes in experimental hexa-carbon neuropathies. The initial findings from the EP studies indicated a conduction abnormality in the central nervous system (CNS). Delayed worsening occurred in the amplitude of visual EPs in three patients. On serial follow up, the interpeak latency and interpeak amplitude of visual EPs improved little. Residual abnormalities were also found in the interpeak latency of auditory EPs in the brainstem and in the absolute latency of scalp somatosensory EPs from the peroneal nerve. Astroglial proliferation in the CNS probably impedes recovery of the abnormalities in EP. PMID:1993154
Civier, Oren; Bullock, Daniel; Max, Ludo; Guenther, Frank H.
2013-01-01
A typical white-matter integrity and elevated dopamine levels have been reported for individuals who stutter. We investigated how such abnormalities may lead to speech dysfluencies due to their effects on a syllable-sequencing circuit that consists of basal ganglia (BG), thalamus, and left ventral premotor cortex (vPMC). “Neurally impaired” versions of the neurocomputational speech production model GODIVA were utilized to test two hypotheses: (1) that white-matter abnormalities disturb the circuit via corticostriatal projections carrying copies of executed motor commands, and (2) that dopaminergic abnormalities disturb the circuit via the striatum. Simulation results support both hypotheses: in both scenarios, the neural abnormalities delay readout of the next syllable’s motor program, leading to dysfluency. The results also account for brain imaging findings during dysfluent speech. It is concluded that each of the two abnormality types can cause stuttering moments, probably by affecting the same BG-thalamus-vPMC circuit. PMID:23872286
Sauer, Aisha V.; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L.; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S.; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D.; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D’Adamo, Patrizia; Aiuti, Alessandro
2017-01-01
Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency. PMID:28074903
Sauer, Aisha V; Hernandez, Raisa Jofra; Fumagalli, Francesca; Bianchi, Veronica; Poliani, Pietro L; Dallatomasina, Chiara; Riboni, Elisa; Politi, Letterio S; Tabucchi, Antonella; Carlucci, Filippo; Casiraghi, Miriam; Carriglio, Nicola; Cominelli, Manuela; Forcellini, Carlo Alberto; Barzaghi, Federica; Ferrua, Francesca; Minicucci, Fabio; Medaglini, Stefania; Leocani, Letizia; la Marca, Giancarlo; Notarangelo, Lucia D; Azzari, Chiara; Comi, Giancarlo; Baldoli, Cristina; Canale, Sabrina; Sessa, Maria; D'Adamo, Patrizia; Aiuti, Alessandro
2017-01-11
Adenosine Deaminase (ADA) deficiency is an autosomal recessive variant of severe combined immunodeficiency (SCID) caused by systemic accumulation of ADA substrates. Neurological and behavioral abnormalities observed in ADA-SCID patients surviving after stem cell transplantation or gene therapy represent an unresolved enigma in the field. We found significant neurological and cognitive alterations in untreated ADA-SCID patients as well as in two groups of patients after short- and long-term enzyme replacement therapy with PEG-ADA. These included motor dysfunction, EEG alterations, sensorineural hypoacusia, white matter and ventricular alterations in MRI as well as a low mental development index or IQ. Ada-deficient mice were significantly less active and showed anxiety-like behavior. Molecular and metabolic analyses showed that this phenotype coincides with metabolic alterations and aberrant adenosine receptor signaling. PEG-ADA treatment corrected metabolic adenosine-based alterations, but not cellular and signaling defects, indicating an intrinsic nature of the neurological and behavioral phenotype in ADA deficiency.
Motor Abilities in Autism: A Review Using a Computational Context
ERIC Educational Resources Information Center
Gowen, Emma; Hamilton, Antonia
2013-01-01
Altered motor behaviour is commonly reported in Autism Spectrum Disorder, but the aetiology remains unclear. Here, we have taken a computational approach in order to break down motor control into different components and review the functioning of each process. Our findings suggest abnormalities in two areas--poor integration of information for…
Abnormal Behavior in Relation to Cage Size in Rhesus Monkeys
ERIC Educational Resources Information Center
Paulk, H. H.; And Others
1977-01-01
Examines the effects of cage size on stereotyped and normal locomotion and on other abnormal behaviors in singly caged animals, whether observed abnormal behaviors tend to co-occur, and if the development of an abnormal behavior repertoire leads to reduction in the number of normal behavior categories. (Author/RK)
Abada, Yah-se K.; Nguyen, Huu Phuc; Schreiber, Rudy; Ellenbroek, Bart
2013-01-01
Rationale Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies. Objectives The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats. Materials and Methods Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field) and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test. Results Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age. Conclusion The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes. PMID:23874679
Speeded processing of grammar and tool knowledge in Tourette’s syndrome
Walenski, Matthew; Mostofsky, Stewart H.; Ullman, Michael T.
2007-01-01
Tourette’s syndrome (TS) is a developmental disorder characterized by motor and verbal tics. The tics, which are fast and involuntary, result from frontal/basal-ganglia abnormalities that lead to unsuppressed behaviors. Language has not been carefully examined in TS. We tested the processing of two basic aspects of language: idiosyncratic and rule-governed linguistic knowledge. Evidence suggests that idiosyncratic knowledge (e.g., in irregular past-tense formation; bring-brought) is stored in a mental lexicon that depends on the temporal-lobe-based declarative memory system that also underlies conceptual knowledge. In contrast, evidence suggests that rule-governed combination (e.g., in regular past-tenses; walk + -ed) takes place in a mental grammar that relies on the frontal/basal-ganglia based procedural memory system, which also underlies motor skills such as how to use a hammer. We found that TS children were significantly faster than typically-developing control children at producing rule-governed past-tenses (slip-slipped, plim-plimmed, bring-bringed) but not irregular and other unpredictable past-tenses (bring-brought, splim-splam). They were also faster than controls at naming pictures of manipulated (hammer) but not non-manipulated (elephant) items. These data were not explained by a wide range of potentially confounding subject- and item-level factors. The results suggest that the processing of procedurally-based knowledge, both of grammar and of manipulated objects, is particularly speeded in TS. The frontal/basal-ganglia abnormalities may thus lead not only to tics, but to a wider range of rapid behaviors, including in the cognitive processing of rule-governed forms in language and other types of procedural knowledge. PMID:17493643
Reid, Susan M; Ditchfield, Michael R; Bracken, Jenny; Reddihough, Dinah S
2015-01-01
In a population cohort of children with white matter injury (WMI) and cerebral palsy (CP), we aimed to describe the magnetic resonance imaging (MRI) characteristics, identify key structure-function relationships, and classify the severity of WMI in a clinically relevant way. Stratified on MRI laterality/symmetry, variables indicating the extent and location of cerebral abnormalities for 272 children with CP and WMI on chronic-phase MRI were related to gross motor function and motor topography using univariable and multivariable approaches. We found that symmetrical involvement, severe WM loss in the hemispheres and corpus callosum, and cerebellar involvement were the strongest predictors of poor gross motor function, but the final model explained only a small proportion of the variability. Bilateral, extensive WM loss was more likely to result in quadriplegia, whereas volume loss in the posterior-mid WM more frequently resulted in diplegia. The extent and location of MRI abnormalities differed according to laterality/symmetry; asymmetry was associated with less extensive hemispheric involvement than symmetrical WMI, and unilateral lesions were more focal and located more anteriorly. In summary, laterality/symmetry of WMI, possibly reflecting different pathogenic mechanisms, together with extent of WM loss and cerebellar abnormality predicted gross motor function in CP, but to a limited extent. Copyright © 2015 Elsevier Ltd. All rights reserved.
Amitai, Nurith; Powell, Susan; Weber, Martin; Swerdlow, Neal R.
2015-01-01
Negative visuospatial priming (NP) represents a quantifiable measure of inhibitory information processing that is disrupted in several neurodevelopmental and psychiatric disorders, including schizophrenia. We developed a novel rodent NP task to investigate mechanisms underlying NP and its role in various disorders, and to test potential therapeutics. In the present studies, we further characterized this novel paradigm by investigating whether NP is disrupted in rats reared in isolation, a developmental manipulation that produces a range of abnormalities in behavior, neurochemistry, and brain structure that mirror aspects of schizophrenia pathology. We also further explored the role of monoaminergic signaling in NP and the effects of isolation rearing by challenging both socially reared and isolation-reared rats with D-amphetamine during the NP task. Although fewer isolation-reared animals learned the complex NP task, those that learned exhibited unaffected NP compared with socially reared rats. Consistent with previous reports, D-amphetamine impaired NP and increased motor impulsivity in socially reared rats. In contrast, D-amphetamine did not affect NP or motor impulsivity in isolation-reared rats. These data confirm a monoaminergic influence on NP behavior and indicate that rats reared in isolation have altered dopaminergic sensitivity. PMID:26220402
Olsen, Joy E; Allinson, Leesa G; Doyle, Lex W; Brown, Nisha C; Lee, Katherine J; Eeles, Abbey L; Cheong, Jeanie L Y; Spittle, Alicia J
2018-01-01
To examine the associations between Prechtl's General Movements Assessment (GMA), conducted from birth to term-equivalent age, and neurodevelopmental outcomes at 12 months corrected age, in infants born very preterm. One hundred and thirty-seven infants born before 30 weeks' gestation had serial GMA (categorized as 'normal' or 'abnormal') before term and at term-equivalent age. At 12 months corrected age, neurodevelopment was assessed using the Alberta Infant Motor Scale (AIMS); Neurological, Sensory, Motor, Developmental Assessment (NSMDA); and Touwen Infant Neurological Examination (TINE). The relationships between GMA at four time points and 12-month neurodevelopmental assessments were examined using regression models. Abnormal GMA at all time points were associated with worse continuous scores on the AIMS, NSMDA, and TINE (p<0.05). Abnormal GMA before term and at term-equivalent age were associated with increased odds of mild-severe dysfunction on the NSMDA (odds ratio [OR] 4.26, 95% confidence interval [CI] 1.55-11.71, p<0.01; and OR 4.16, 95% CI 1.55-11.17, p<0.01 respectively) and abnormal GMA before term with increased odds of suboptimal-abnormal motor function on the TINE (OR 2.75, 95% CI 1.10-6.85, p=0.03). Abnormal GMA before term and at term-equivalent age were associated with worse neurodevelopment at 12 months corrected age in children born very preterm. Abnormal general movements before term predict developmental deficits at 1 year in infants born very preterm. General Movements Assessment before term identifies at-risk infants born very preterm. © 2017 Mac Keith Press.
Menalled, Liliana B; Kudwa, Andrea E; Miller, Sam; Fitzpatrick, Jon; Watson-Johnson, Judy; Keating, Nicole; Ruiz, Melinda; Mushlin, Richard; Alosio, William; McConnell, Kristi; Connor, David; Murphy, Carol; Oakeshott, Steve; Kwan, Mei; Beltran, Jose; Ghavami, Afshin; Brunner, Dani; Park, Larry C; Ramboz, Sylvie; Howland, David
2012-01-01
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder characterized by motor, cognitive and psychiatric manifestations. Since the mutation responsible for the disease was identified as an unstable expansion of CAG repeats in the gene encoding the huntingtin protein in 1993, numerous mouse models of HD have been generated to study disease pathogenesis and evaluate potential therapeutic approaches. Of these, knock-in models best mimic the human condition from a genetic perspective since they express the mutation in the appropriate genetic and protein context. Behaviorally, however, while some abnormal phenotypes have been detected in knock-in mouse models, a model with an earlier and more robust phenotype than the existing models is required. We describe here for the first time a new mouse line, the zQ175 knock-in mouse, derived from a spontaneous expansion of the CAG copy number in our CAG 140 knock-in colony [1]. Given the inverse relationship typically observed between age of HD onset and length of CAG repeat, since this new mouse line carries a significantly higher CAG repeat length it was expected to be more significantly impaired than the parent line. Using a battery of behavioral tests we evaluated both heterozygous and homozygous zQ175 mice. Homozygous mice showed motor and grip strength abnormalities with an early onset (8 and 4 weeks of age, respectively), which were followed by deficits in rotarod and climbing activity at 30 weeks of age and by cognitive deficits at around 1 year of age. Of particular interest for translational work, we also found clear behavioral deficits in heterozygous mice from around 4.5 months of age, especially in the dark phase of the diurnal cycle. Decreased body weight was observed in both heterozygotes and homozygotes, along with significantly reduced survival in the homozygotes. In addition, we detected an early and significant decrease of striatal gene markers from 12 weeks of age. These data suggest that the zQ175 knock-in line could be a suitable model for the evaluation of therapeutic approaches and early events in the pathogenesis of HD.
Cai, Shanqing; Beal, Deryk S.; Ghosh, Satrajit S.; Tiede, Mark K.; Guenther, Frank H.; Perkell, Joseph S.
2012-01-01
Previous empirical observations have led researchers to propose that auditory feedback (the auditory perception of self-produced sounds when speaking) functions abnormally in the speech motor systems of persons who stutter (PWS). Researchers have theorized that an important neural basis of stuttering is the aberrant integration of auditory information into incipient speech motor commands. Because of the circumstantial support for these hypotheses and the differences and contradictions between them, there is a need for carefully designed experiments that directly examine auditory-motor integration during speech production in PWS. In the current study, we used real-time manipulation of auditory feedback to directly investigate whether the speech motor system of PWS utilizes auditory feedback abnormally during articulation and to characterize potential deficits of this auditory-motor integration. Twenty-one PWS and 18 fluent control participants were recruited. Using a short-latency formant-perturbation system, we examined participants’ compensatory responses to unanticipated perturbation of auditory feedback of the first formant frequency during the production of the monophthong [ε]. The PWS showed compensatory responses that were qualitatively similar to the controls’ and had close-to-normal latencies (∼150 ms), but the magnitudes of their responses were substantially and significantly smaller than those of the control participants (by 47% on average, p<0.05). Measurements of auditory acuity indicate that the weaker-than-normal compensatory responses in PWS were not attributable to a deficit in low-level auditory processing. These findings are consistent with the hypothesis that stuttering is associated with functional defects in the inverse models responsible for the transformation from the domain of auditory targets and auditory error information into the domain of speech motor commands. PMID:22911857
Van Hus, Janeline W P; Jeukens-Visser, Martine; Koldewijn, Karen; Van Sonderen, Loekie; Kok, Joke H; Nollet, Frans; Van Wassenaer-Leemhuis, Aleid G
2013-11-01
Infants with very low birth weight (VLBW) are at increased risk for motor deficits, which may be reduced by early intervention programs. For detection of motor deficits and to monitor intervention, different assessment tools are available. It is important to choose tools that are sensitive to evaluate the efficacy of intervention on motor outcome. The purpose of this study was to compare the Alberta Infant Motor Scale (AIMS) and the Psychomotor Developmental Index (PDI) of the Bayley Scales of Infant Development-Dutch Second Edition (BSID-II-NL) in their ability to evaluate effects of an early intervention, provided by pediatric physical therapists, on motor development in infants with VLBW at 12 months corrected age (CA). This was a secondary study in which data collected from a randomized controlled trial (RCT) were used. At 12 months CA, 116 of 176 infants with VLBW participating in an RCT on the effect of the Infant Behavioral Assessment and Intervention Program were assessed with both the AIMS and the PDI. Intervention effects on the AIMS and PDI were compared. Corrected for baseline differences, significant intervention effects were found for AIMS and PDI scores. The highest effect size was for the AIMS subscale sit. A significant reduction of abnormal motor development in the intervention group was found only with the AIMS. No Dutch norms are available for the AIMS. The responsiveness of the AIMS to detect intervention effects was better than that of the PDI. Therefore, caution is recommended in monitoring infants with VLBW only with the PDI, and the use of both the AIMS and the Bayley Scales of Infant Development is advised when evaluating intervention effects on motor development at 12 months CA.
Motor Development of Premature Infants Born between 32 and 34 Weeks
Prins, S. A.; von Lindern, J. S.; van Dijk, S.; Versteegh, F. G. A.
2010-01-01
Little is known about motor development in late preterm born infants. Our objective was to determine long-term outcome of motor skills of infants born between 32 and 34 weeks. All infants were assessed at corrected ages of 3 and 9 months, using the Alberta Infant Motor Scale. At corrected ages of 4 years, the Movement Assessment Battery for Children was done. Seventy infants were seen at 4 years of age (median of 3 assessments per infant). Abnormal assessment at 3 or 9 months of age resulted in normal outcome in almost 80% at 4 years. On the other hand, a normal outcome in the first year of life resulted in an abnormal outcome at 4 years in 10% of the infants. Our results suggest that long-term followup of these late preterm born infants is necessary, as the assessments in the first year do not predict the long-term outcome. PMID:20885965
New concepts of the reinnervated motor unit revealed by vaccine-associated poliomyelitis.
Wiechers, D O
1988-04-01
A late onset of slowly progressive muscle weakness 30-40 years after acute polio is well known. Previous studies by the author and others have demonstrated transmission abnormalities within the reinnervated motor unit. These transmission abnormalities shown by motor unit action potential (MUAP) instability in size and shape with repetitive discharges occurs in postpolio patients who are and who are not complaining of progressive muscle weakness. Although some reinnervated MUAPs do seem to stabilize their neuromuscular transmission with time in mildly affected muscles, the question arises as to whether or not some MUAPs ever stabilize after polio. Two cases of acute polio personally followed by the author, one over a 9 1/2 year period, are presented. In both cases, in muscles where there are more deinnervated muscle fibers than could possibly be reinnervated, the MUAPs have remained unstable. New concepts of function in the reinnervated motor unit following polio are presented.
Optimal filtering and Bayesian detection for friction-based diagnostics in machines.
Ray, L R; Townsend, J R; Ramasubramanian, A
2001-01-01
Non-model-based diagnostic methods typically rely on measured signals that must be empirically related to process behavior or incipient faults. The difficulty in interpreting a signal that is indirectly related to the fundamental process behavior is significant. This paper presents an integrated non-model and model-based approach to detecting when process behavior varies from a proposed model. The method, which is based on nonlinear filtering combined with maximum likelihood hypothesis testing, is applicable to dynamic systems whose constitutive model is well known, and whose process inputs are poorly known. Here, the method is applied to friction estimation and diagnosis during motion control in a rotating machine. A nonlinear observer estimates friction torque in a machine from shaft angular position measurements and the known input voltage to the motor. The resulting friction torque estimate can be analyzed directly for statistical abnormalities, or it can be directly compared to friction torque outputs of an applicable friction process model in order to diagnose faults or model variations. Nonlinear estimation of friction torque provides a variable on which to apply diagnostic methods that is directly related to model variations or faults. The method is evaluated experimentally by its ability to detect normal load variations in a closed-loop controlled motor driven inertia with bearing friction and an artificially-induced external line contact. Results show an ability to detect statistically significant changes in friction characteristics induced by normal load variations over a wide range of underlying friction behaviors.
Yan, Changhui; Jiao, Lifei; Zhao, Jun; Yang, Haiying; Peng, Shuangqing
2012-07-01
Chlorpyrifos (CPF) is one of the most commonly used insecticides throughout the world and has become one of the major pesticides detected in farm products. Chronic exposures to CPF, especially at the dosages without eliciting any systemic toxicity, require greater attention. The purpose of this study was, therefore, to evaluate the behavioral effects of repeated low doses (doses that do not produce overt signs of cholinergic toxicity) of CPF in adult rats. Male rats were given 0, 1.0, 5.0 or 10.0mg/kg of CPF through intragastric administration daily for 4 consecutive weeks. The behavioral functions were assessed in a series of behavioral tests, including water maze task, open-field test, grip strength and rotarod test. Furthermore, the present study was designed to evaluate the effects of repeated exposures to CPF on water maze recall and not acquisition. The results showed that the selected doses only had mild inhibition effects on cholinesterase activity, and have no effects on weight gain and daily food consumption. Performances in the spatial retention task (Morris water maze) were impaired after the 4-week exposure to CPF, but the performances of grip strength and rotarod test were not affected. Motor activities in the open field were changed, especially the time spent in the central zone increased. The results indicated that repeated exposures to low doses of CPF may lead to spatial recall impairments, behavioral abnormalities. However, the underlying mechanism needs further investigations. Copyright © 2012 Elsevier Inc. All rights reserved.
Neurobehavioral Abnormalities in First-Degree Relatives of Individuals With Autism
Mosconi, Matthew W.; Kay, Margaret; D’Cruz, Anna-Maria; Guter, Stephen; Kapur, Kush; Macmillan, Carol; Stanford, Lisa D.; Sweeney, John A.
2011-01-01
Context Studying sensorimotor and neurocognitive impairments in unaffected family members of individuals with autism may help identify familial pathophysiological mechanisms associated with the disorder. Objective To determine whether atypical sensorimotor or neurocognitive characteristics associated with autism are present in first-degree relatives of individuals with autism. Design Case-control comparison of neurobehavioral functions. Setting University medical center. Participants Fifty-seven first-degree relatives of individuals with autism and 40 age-, sex-, and IQ-matched healthy control participants (aged 8–54 years). Main Outcome Measures Oculomotor tests of sensorimotor responses (saccades and smooth pursuit); procedural learning and response inhibition; neuropsychological tests of motor, memory, and executive functions; and psychological measures of social behavior, communication skills, and obsessive-compulsive behaviors. Results On eye movement testing, family members demonstrated saccadic hypometria, reduced steady-state pursuit gain, and a higher rate of voluntary response inhibition errors relative to controls. They also showed lateralized deficits in procedural learning and open-loop pursuit gain (initial 100 milliseconds of pursuit) and increased variability in the accuracy of large-amplitude saccades that were confined to rightward movements. In neuropsychological studies, only executive functions were impaired relative to those of controls. Family members reported more communication abnormalities and obsessive-compulsive behaviors than controls. Deficits across oculomotor, neuropsychological, and psychological domains were relatively independent from one another. Conclusions Family members of individuals with autism demonstrate oculomotor abnormalities implicating pontocerebellar and frontostriatal circuits and left-lateralized alterations of frontotemporal circuitry and striatum. The left-lateralized alterations have not been identified in other neuropsychiatric disorders and are of interest given atypical brain lateralization and language development associated with the disorder. Similar oculomotor deficits have been reported in individuals with autism, suggesting that they may be familial and useful for studies of neurophysiological and genetic mechanisms in autism. PMID:20679591
Neurobehavioral abnormalities in first-degree relatives of individuals with autism.
Mosconi, Matthew W; Kay, Margaret; D'Cruz, Anna-Maria; Guter, Stephen; Kapur, Kush; Macmillan, Carol; Stanford, Lisa D; Sweeney, John A
2010-08-01
Studying sensorimotor and neurocognitive impairments in unaffected family members of individuals with autism may help identify familial pathophysiological mechanisms associated with the disorder. To determine whether atypical sensorimotor or neurocognitive characteristics associated with autism are present in first-degree relatives of individuals with autism. Case-control comparison of neurobehavioral functions. University medical center. Fifty-seven first-degree relatives of individuals with autism and 40 age-, sex-, and IQ-matched healthy control participants (aged 8-54 years). Oculomotor tests of sensorimotor responses (saccades and smooth pursuit); procedural learning and response inhibition; neuropsychological tests of motor, memory, and executive functions; and psychological measures of social behavior, communication skills, and obsessive-compulsive behaviors. On eye movement testing, family members demonstrated saccadic hypometria, reduced steady-state pursuit gain, and a higher rate of voluntary response inhibition errors relative to controls. They also showed lateralized deficits in procedural learning and open-loop pursuit gain (initial 100 milliseconds of pursuit) and increased variability in the accuracy of large-amplitude saccades that were confined to rightward movements. In neuropsychological studies, only executive functions were impaired relative to those of controls. Family members reported more communication abnormalities and obsessive-compulsive behaviors than controls. Deficits across oculomotor, neuropsychological, and psychological domains were relatively independent from one another. Family members of individuals with autism demonstrate oculomotor abnormalities implicating pontocerebellar and frontostriatal circuits and left-lateralized alterations of frontotemporal circuitry and striatum. The left-lateralized alterations have not been identified in other neuropsychiatric disorders and are of interest given atypical brain lateralization and language development associated with the disorder. Similar oculomotor deficits have been reported in individuals with autism, suggesting that they may be familial and useful for studies of neurophysiological and genetic mechanisms in autism.
Zhu, Wei; Gao, Yufeng; Wan, Jieru; Lan, Xi; Han, Xiaoning; Zhu, Shanshan; Zang, Weidong; Chen, Xuemei; Ziai, Wendy; Hanley, Daniel F; Russo, Scott J; Jorge, Ricardo E; Wang, Jian
2018-03-01
Intracerebral hemorrhage (ICH) is a detrimental type of stroke. Mouse models of ICH, induced by collagenase or blood infusion, commonly target striatum, but not other brain sites such as ventricular system, cortex, and hippocampus. Few studies have systemically investigated brain damage and neurobehavioral deficits that develop in animal models of ICH in these areas of the right hemisphere. Therefore, we evaluated the brain damage and neurobehavioral dysfunction associated with right hemispheric ICH in ventricle, cortex, hippocampus, and striatum. The ICH model was induced by autologous whole blood or collagenase VII-S (0.075 units in 0.5 µl saline) injection. At different time points after ICH induction, mice were assessed for brain tissue damage and neurobehavioral deficits. Sham control mice were used for comparison. We found that ICH location influenced features of brain damage, microglia/macrophage activation, and behavioral deficits. Furthermore, the 24-point neurologic deficit scoring system was most sensitive for evaluating locomotor abnormalities in all four models, especially on days 1, 3, and 7 post-ICH. The wire-hanging test was useful for evaluating locomotor abnormalities in models of striatal, intraventricular, and cortical ICH. The cylinder test identified locomotor abnormalities only in the striatal ICH model. The novel object recognition test was effective for evaluating recognition memory dysfunction in all models except for striatal ICH. The tail suspension test, forced swim test, and sucrose preference test were effective for evaluating emotional abnormality in all four models but did not correlate with severity of brain damage. These results will help to inform future preclinical studies of ICH outcomes. Copyright © 2018 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Kostrubiec, Viviane; Huys, Raoul; Jas, Brunhilde; Kruck, Jeanne
2018-01-01
Abnormal perceptual-motor coordination is hypothesized here to be involved in social deficits of autism spectrum disorder (ASD). To test this hypothesis, high functioning children with ASD and typical controls, similar in age as well as verbal and perceptive performance, performed perceptual-motor coordination tasks and several social competence…
Natural history of Sanfilippo syndrome type A.
Buhrman, Dakota; Thakkar, Kavita; Poe, Michele; Escolar, Maria L
2014-05-01
To describe the natural history of Sanfilippo syndrome type A. We performed a retrospective review of 46 children (21 boys, 25 girls) with Sanfilippo syndrome type A evaluated between January 2000 and April 2013. Assessments included neurodevelopmental evaluations, audiologic testing, and assessment of growth, adaptive behavior, cognitive behavior, motor function, and speech/language skills. Only the baseline evaluation was included for patients who received hematopoietic stem cell transplantation. Median age at diagnosis was 35 months, with a median delay between initial symptoms to diagnosis of 24 months. The most common initial symptoms were speech/language delay (48%), dysmorphology (22%), and hearing loss (20%). Early behavioral problems included perseverative chewing and difficulty with toilet training. All children developed sleep difficulties and behavioral changes (e.g., hyperactivity, aggression). More than 93% of the children experienced somatic symptoms such as hepatomegaly (67%), abnormal dentition (39%), enlarged tongue (37%), coarse facial features (76%), and protuberant abdomen (43%). Kaplan-Meier analysis showed a 60% probability of surviving past 17 years of age. Sanfilippo type A is characterized by severe hearing loss and speech delay, followed by a rapid decline in cognitive skills by 3 years of age. Significant somatic disease occurs in more than half of patients. Behavioral difficulties presented between 2 and 4 years of age during a rapid period of cognitive decline. Gross motor abilities are maintained during this period, which results in an active child with impaired cognition. Sleep difficulties are concurrent with the period of cognitive degeneration. There is currently an unacceptable delay in diagnosis, highlighting the need to increase awareness of this disease among clinicians.
Bachis, Alessia; Forcelli, Patrick; Masliah, Eliezer; Campbell, Lee; Mocchetti, Italo
2016-05-01
Human immunodeficiency virus type 1 (HIV) infection of the brain produces cognitive and motor disorders. In addition, HIV positive individuals exhibit behavioral alterations, such as apathy, and a decrease in spontaneity or emotional responses, typically seen in anxiety disorders. Anxiety can lead to psychological stress, which has been shown to influence HIV disease progression. These considerations underscore the importance of determining if anxiety in HIV is purely psychosocial, or if by contrast, there are the molecular cascades associated directly with HIV infection that may mediate anxiety. The present study had two goals: (1) to determine if chronic exposure to viral proteins would induce anxiety-like behavior in an animal model and (2) to determine if this exposure results in anatomical abnormalities that could explain increased anxiety. We have used gp120 transgenic mice, which display behavior and molecular deficiencies similar to HIV positive subjects with cognitive and motor impairments. In comparison to wild type mice, 6 months old gp120 transgenic mice demonstrated an anxiety like behavior measured by open field, light/dark transition task, and prepulse inhibition tests. Moreover, gp120 transgenic mice have an increased number of spines in the amygdala, as well as higher levels of brain-derived neurotrophic factor and tissue plasminogen activator when compared to age-matched wild type. Our data support the hypothesis that HIV, through gp120, may cause structural changes in the amygdala that lead to maladaptive responses to anxiety. Copyright © 2016 Elsevier Inc. All rights reserved.
Walking deficits and centrophobism in an α-synuclein fly model of Parkinson's disease1
Chen, A Y; Wilburn, P; Hao, X; Tully, T
2014-01-01
Parkinson's disease (PD) is a movement neurodegenerative disorder, characterized by bradykinesia, rigidity and tremor, constituting difficulties in walking and abnormal gait. Previous research shows that Drosophila expressing human α-synuclein A30P (A30P) develop deficits in geotaxis climbing; however, geotaxis climbing is a different movement modality from walking. Whether A30P flies would exhibit abnormal walking in a horizontal plane, a measure more relevant to PD, is not known. In this study, we characterized A30P fly walking using a high-speed camera and an automatic behavior tracking system. We found that old but not young A30P flies exhibited walking abnormalities, specifically decreased total moving distance, distance per movement, velocity, angular velocity and others, compared with old control flies. Those features match the definition of bradykinesia. Multivariate analysis further suggested a synergistic effect of aging and A30P, resulting in a distinct pattern of walking deficits, as seen in aged A30P flies. Psychiatric problems are common in PD patients with anxiety affecting 40–69% of patients. Central avoidance is one assessment of anxiety in various animal models. We found old but not young A30P flies exhibited increased centrophobism, suggesting possible elevated anxiety. Here, we report the first quantitative measures of walking qualities in a PD fly model and propose an alternative behavior paradigm for evaluating motor functions apart from climbing assay. PMID:25113870
The 7q11.23 Microduplication Syndrome: A Clinical Report with Review of Literature
Abbas, Elham; Cox, Devin M.; Smith, Teri; Butler, Merlin G.
2016-01-01
We report a 14-year-old adolescent girl with selective mutism (SM) and a 7q11.23 microduplication detected by chromosomal microarray (CMA) analysis and reviewed the literature from 18 published clinical reports. Our patient had specific phobias, SM, extreme anxiety, obesity, cutis marmorata, and a round appearing face with a short neck and over folded ears. We reviewed the published clinical, cognitive, behavioral, and cytogenetic findings grouped by speech and language delay, growth and development, craniofacial, clinical, and behavior and cognitive features due to the 7q11.23 microduplication. This microduplication syndrome is characterized by speech delay (91%), social anxiety (42%), attention deficit hyperactivity disorder (ADHD, 37%), autism spectrum disorder (29%), and separation anxiety (13%). Other findings include abnormal brain imaging (80%), congenital heart and vascular defects (54%), and mild intellectual disability (38%). We then compared the phenotype with Williams–Beuren syndrome (WBS) which is due to a deletion of the same chromosome region. Both syndromes have abnormal brain imaging, hypotonia, delayed motor development, joint laxity, mild intellectual disability, ADHD, autism, and poor visuospatial skills but opposite or dissimilar findings regarding speech and behavioral patterns, cardiovascular problems, and social interaction. Those with WBS are prone to have hyperverbal speech, lack of stranger anxiety, and supravalvular aortic stenosis while those with the 7q11.23 microduplication have speech delay, SM, social anxiety, and are prone to aortic dilatation. PMID:27617154
The 7q11.23 Microduplication Syndrome: A Clinical Report with Review of Literature.
Abbas, Elham; Cox, Devin M; Smith, Teri; Butler, Merlin G
2016-09-01
We report a 14-year-old adolescent girl with selective mutism (SM) and a 7q11.23 microduplication detected by chromosomal microarray (CMA) analysis and reviewed the literature from 18 published clinical reports. Our patient had specific phobias, SM, extreme anxiety, obesity, cutis marmorata, and a round appearing face with a short neck and over folded ears. We reviewed the published clinical, cognitive, behavioral, and cytogenetic findings grouped by speech and language delay, growth and development, craniofacial, clinical, and behavior and cognitive features due to the 7q11.23 microduplication. This microduplication syndrome is characterized by speech delay (91%), social anxiety (42%), attention deficit hyperactivity disorder (ADHD, 37%), autism spectrum disorder (29%), and separation anxiety (13%). Other findings include abnormal brain imaging (80%), congenital heart and vascular defects (54%), and mild intellectual disability (38%). We then compared the phenotype with Williams-Beuren syndrome (WBS) which is due to a deletion of the same chromosome region. Both syndromes have abnormal brain imaging, hypotonia, delayed motor development, joint laxity, mild intellectual disability, ADHD, autism, and poor visuospatial skills but opposite or dissimilar findings regarding speech and behavioral patterns, cardiovascular problems, and social interaction. Those with WBS are prone to have hyperverbal speech, lack of stranger anxiety, and supravalvular aortic stenosis while those with the 7q11.23 microduplication have speech delay, SM, social anxiety, and are prone to aortic dilatation.
Motor current signature analysis method for diagnosing motor operated devices
Haynes, Howard D.; Eissenberg, David M.
1990-01-01
A motor current noise signature analysis method and apparatus for remotely monitoring the operating characteristics of an electric motor-operated device such as a motor-operated valve. Frequency domain signal analysis techniques are applied to a conditioned motor current signal to distinctly identify various operating parameters of the motor driven device from the motor current signature. The signature may be recorded and compared with subsequent signatures to detect operating abnormalities and degradation of the device. This diagnostic method does not require special equipment to be installed on the motor-operated device, and the current sensing may be performed at remote control locations, e.g., where the motor-operated devices are used in accessible or hostile environments.
A new mouse model of ARX dup24 recapitulates the patients' behavioral and fine motor alterations.
Dubos, Aline; Meziane, Hamid; Iacono, Giovanni; Curie, Aurore; Riet, Fabrice; Martin, Christelle; Loaëc, Nadège; Birling, Marie-Christine; Selloum, Mohammed; Normand, Elisabeth; Pavlovic, Guillaume; Sorg, Tania; Stunnenberg, Henk G; Chelly, Jamel; Humeau, Yann; Friocourt, Gaëlle; Hérault, Yann
2018-06-15
The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment.
A new mouse model of ARX dup24 recapitulates the patients’ behavioral and fine motor alterations
Dubos, Aline; Meziane, Hamid; Iacono, Giovanni; Curie, Aurore; Riet, Fabrice; Martin, Christelle; Loaëc, Nadège; Birling, Marie-Christine; Selloum, Mohammed; Normand, Elisabeth; Pavlovic, Guillaume; Sorg, Tania; Stunnenberg, Henk G; Chelly, Jamel; Humeau, Yann; Friocourt, Gaëlle; Hérault, Yann
2018-01-01
Abstract The aristaless-related homeobox (ARX) transcription factor is involved in the development of GABAergic and cholinergic neurons in the forebrain. ARX mutations have been associated with a wide spectrum of neurodevelopmental disorders in humans, among which the most frequent, a 24 bp duplication in the polyalanine tract 2 (c.428_451dup24), gives rise to intellectual disability, fine motor defects with or without epilepsy. To understand the functional consequences of this mutation, we generated a partially humanized mouse model carrying the c.428_451dup24 duplication (Arxdup24/0) that we characterized at the behavior, neurological and molecular level. Arxdup24/0 males presented with hyperactivity, enhanced stereotypies and altered contextual fear memory. In addition, Arxdup24/0 males had fine motor defects with alteration of reaching and grasping abilities. Transcriptome analysis of Arxdup24/0 forebrains at E15.5 showed a down-regulation of genes specific to interneurons and an up-regulation of genes normally not expressed in this cell type, suggesting abnormal interneuron development. Accordingly, interneuron migration was altered in the cortex and striatum between E15.5 and P0 with consequences in adults, illustrated by the defect in the inhibitory/excitatory balance in Arxdup24/0 basolateral amygdala. Altogether, we showed that the c.428_451dup24 mutation disrupts Arx function with a direct consequence on interneuron development, leading to hyperactivity and defects in precise motor movement control and associative memory. Interestingly, we highlighted striking similarities between the mouse phenotype and a cohort of 33 male patients with ARX c.428_451dup24, suggesting that this new mutant mouse line is a good model for understanding the pathophysiology and evaluation of treatment. PMID:29659809
Jiménez-Urbieta, Haritz; Gago, Belén; de la Riva, Patricia; Delgado-Alvarado, Manuel; Marin, Concepció; Rodriguez-Oroz, María C
2015-09-01
Dopaminergic treatment in Parkinson's disease (PD) reduces the severity of motor symptoms of the disease. However, its chronic use is associated with disabling motor and behavioral side effects, among which levodopa-induced dyskinesias (LID) and impulse control disorders (ICD) are the most common. The underlying mechanisms and pathological substrate of these dopaminergic complications are not fully understood. Recently, the refinement of imaging techniques and the study of the genetics and molecular bases of LID and ICD indicate that, although different, they could share some features. In addition, animal models of parkinsonism with LID have provided important knowledge about mechanisms underlying such complications. In contrast, animal models of parkinsonism and abnormal impulsivity, although useful regarding some aspects of human ICD, do not fully resemble the clinical phenotype of ICD in patients with PD, and until now have provided limited information. Studies on animal models of addiction could complement the previous models and provide some insights into the background of these behavioral complications given that ICD are regarded as behavioral addictions. Here we review the most relevant advances in relation to imaging, genetics, biochemistry and pharmacological interventions to treat LID and ICD in patients with PD and in animal models with a view to better understand the overlapping and unique maladaptations to dopaminergic therapy that are associated with LID and ICD. Copyright © 2015 Elsevier Ltd. All rights reserved.
Alsaeed, Ibrahim; Al-Somali, Faisal; Sakhnini, Lama; Aljarallah, Omar S; Hamdan, Rayan M M; Bubishate, Saleh A; Sarfaraz, Ziyab Khan; Kamal, Amer
2014-10-01
The incidence of autism spectrum disorders (ASD) has been rising, but the causes of ASD remain largely unidentified. Collective data have implicated the increased human exposure to electromagnetic fields (EMF) in the increasing incidence of ASD. There are established biological effects of extremely low-frequency (ELF) EMF, but the relation to ASD is not investigated enough. In this study we examined the effects of perinatal exposure to ELF EMF on some ASD-relevant behavioral parameters in mice. The EMF was delivered via a Helmholtz coil pair. Male BALB/C mice were used and divided into exposed and control groups (n=8 and n=9, respectively). Tests were used to assess sociability, preference for social novelty, locomotion, anxiety, exploratory behavior, motor coordination, and olfaction. The examined mice were all males and exposed to EMF during the last week of gestation and for 7 days after delivery. The exposed mice demonstrated a lack of normal sociability and preference for social novelty while maintaining normal anxiety-like behavior, locomotion, motor coordination, and olfaction. Exposed mice also demonstrated decreased exploratory activity. We concluded that these results are supportive of the hypothesis of a causal link between exposure to ELF-EMF and ASD; however, replications of the study with further tests are recommended. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.
Motor neuronal activity varies least among individuals when it matters most for behavior
Cullins, Miranda J.; Shaw, Kendrick M.; Gill, Jeffrey P.
2014-01-01
How does motor neuronal variability affect behavior? To explore this question, we quantified activity of multiple individual identified motor neurons mediating biting and swallowing in intact, behaving Aplysia californica by recording from the protractor muscle and the three nerves containing the majority of motor neurons controlling the feeding musculature. We measured multiple motor components: duration of the activity of identified motor neurons as well as their relative timing. At the same time, we measured behavioral efficacy: amplitude of grasping movement during biting and amplitude of net inward food movement during swallowing. We observed that the total duration of the behaviors varied: Within animals, biting duration shortened from the first to the second and third bites; between animals, biting and swallowing durations varied. To study other sources of variation, motor components were divided by behavior duration (i.e., normalized). Even after normalization, distributions of motor component durations could distinguish animals as unique individuals. However, the degree to which a motor component varied among individuals depended on the role of that motor component in a behavior. Motor neuronal activity that was essential for the expression of biting or swallowing was similar among animals, whereas motor neuronal activity that was not essential for that behavior varied more from individual to individual. These results suggest that motor neuronal activity that matters most for the expression of a particular behavior may vary least from individual to individual. Shaping individual variability to ensure behavioral efficacy may be a general principle for the operation of motor systems. PMID:25411463
Powell, Joanne L; Pringle, Lydia; Greig, Matt
2017-02-01
Motor stereotypy behaviors are patterned, coordinated, repetitive behaviors that are particularly evident in those with an autistic spectrum disorder and intellectual disabilities. The extent to which motor stereotypy behavior severity is associated with motor skills and maladaptive behavior, measures of adaptive functioning, along with fundamental movement skills and degree of autistic spectrum disorder symptomology is assessed in this preliminary report. Twelve participants, aged 7 to 16 years, with a reported motor stereotypy behavior and either mild or severe intellectual disability comprising developmental or global delay took part in the study. Spearman rho correlational analysis showed that severity of motor stereotypy behavior was significantly positively correlated with autistic spectrum disorder symptomology ( P = .008) and maladaptive behavior ( P = .008) but not fundamental movement skills ( P > .05). An increase in fundamental movement skills score was associated with a decrease in autistic spectrum disorder symptomology ( P = .01) and an increase in motor skills ( P = .002). This study provides evidence showing a significant relationship between motor stereotypy behavior severity with degree of autistic spectrum disorder symptomology and maladaptive behavior.
Peters, Lieke H J; Maathuis, Carel G B; Hadders-Algra, Mijna
2014-12-01
Some evidence suggests that children with specific behavioral problems are at risk for motor problems. It is unclear whether neurological condition plays a role in the propensity of children with behavioral problems to develop motor problems. To examine the relation between behavioral problems, motor performance and neurological condition in school-aged children. Cross-sectional study. 174 children (95 boys) receiving mainstream education and 106 children (82 boys) receiving special education aged 6 to 13 years (mean 9 y 7 m, SD 1 y 10 m). Behavior was assessed with questionnaires: the parental Child Behavior Checklist (CBCL) and Teacher's Report Form (TRF). Motor performance was assessed with the Movement Assessment Battery for Children (MABC). MABC-scores ≥5th percentile were considered as age-adequate and scores <5th percentile indicated definite motor problems. Neurological condition was assessed in terms of Minor Neurological Dysfunction (MND). The majority of specific behavioral problems were associated with definite motor problems, except somatic complaints and rule breaking behavior. Children with externalizing problems, according to the CBCL or TRF, and motor problems had more often MND than children with externalizing problems only. The same holds true for internalizing problems according to the CBCL. The present study demonstrated that various forms of behavioral problems were associated with motor problems. Especially children with motor and behavioral problems showed MND. Copyright © 2014 Elsevier Ltd. All rights reserved.
Autism-Relevant Social Abnormalities and Cognitive Deficits in Engrailed-2 Knockout Mice
Brielmaier, Jennifer; Matteson, Paul G.; Silverman, Jill L.; Senerth, Julia M.; Kelly, Samantha; Genestine, Matthieu; Millonig, James H.
2012-01-01
ENGRAILED 2 (En2), a homeobox transcription factor, functions as a patterning gene in the early development and connectivity of rodent hindbrain and cerebellum, and regulates neurogenesis and development of monoaminergic pathways. To further understand the neurobiological functions of En2, we conducted neuroanatomical expression profiling of En2 wildtype mice. RTQPCR assays demonstrated that En2 is expressed in adult brain structures including the somatosensory cortex, hippocampus, striatum, thalamus, hypothalamus and brainstem. Human genetic studies indicate that EN2 is associated with autism. To determine the consequences of En2 mutations on mouse behaviors, including outcomes potentially relevant to autism, we conducted comprehensive phenotyping of social, communication, repetitive, and cognitive behaviors. En2 null mutants exhibited robust deficits in reciprocal social interactions as juveniles and adults, and absence of sociability in adults, replicated in two independent cohorts. Fear conditioning and water maze learning were impaired in En2 null mutants. High immobility in the forced swim test, reduced prepulse inhibition, mild motor coordination impairments and reduced grip strength were detected in En2 null mutants. No genotype differences were found on measures of ultrasonic vocalizations in social contexts, and no stereotyped or repetitive behaviors were observed. Developmental milestones, general health, olfactory abilities, exploratory locomotor activity, anxiety-like behaviors and pain responses did not differ across genotypes, indicating that the behavioral abnormalities detected in En2 null mutants were not attributable to physical or procedural confounds. Our findings provide new insight into the role of En2 in complex behaviors and suggest that disturbances in En2 signaling may contribute to neuropsychiatric disorders marked by social and cognitive deficits, including autism spectrum disorders. PMID:22829897
Velasques, Bruna; Machado, Sergio; Paes, Flávia; Cunha, Marlo; Sanfim, Antonio; Budde, Henning; Cagy, Mauricio; Anghinah, Renato; Basile, Luis F; Piedade, Roberto; Ribeiro, Pedro
2011-12-01
Recent evidence is reviewed to examine relationships among sensorimotor and cognitive aspects in some important psychiatry disorders. This study reviews the theoretical models in the context of sensorimotor integration and the abnormalities reported in the most common psychiatric disorders, such as Alzheimer's disease, autism spectrum disorder and squizophrenia. The bibliographical search used Pubmed/Medline, ISI Web of Knowledge, Cochrane data base and Scielo databases. The terms chosen for the search were: Alzheimer's disease, AD, autism spectrum disorder, and Squizophrenia in combination with sensorimotor integration. Fifty articles published in English and were selected conducted from 1989 up to 2010. We found that the sensorimotor integration process plays a relevant role in elementary mechanisms involved in occurrence of abnormalities in most common psychiatric disorders, participating in the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of consciously goal-directed motor outputs. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but some studies support a central mechanism. Sensorimotor integration seems to play a significant role in the disturbances of motor control, like deficits in the feedforward mechanism, typically seen in AD, autistic and squizophrenic patients.
Lerer-Goldshtein, Tali; Vatine, Gad David; Appelbaum, Lior
2014-01-01
The mechanisms and treatment of psychomotor retardation, which includes motor and cognitive impairment, are indefinite. The Allan-Herndon-Dudley syndrome (AHDS) is an X-linked psychomotor retardation characterized by delayed development, severe intellectual disability, muscle hypotonia, and spastic paraplegia, in combination with disturbed thyroid hormone (TH) parameters. AHDS has been associated with mutations in the monocarboxylate transporter 8 (mct8/slc16a2) gene, which is a TH transporter. In order to determine the pathophysiological mechanisms of AHDS, MCT8 knockout mice were intensively studied. Although these mice faithfully replicated the abnormal serum TH levels, they failed to exhibit the neurological and behavioral symptoms of AHDS patients. Here, we generated an mct8 mutant (mct8−/−) zebrafish using zinc-finger nuclease (ZFN)-mediated targeted gene editing system. The elimination of MCT8 decreased the expression levels of TH receptors; however, it did not affect the expression of other TH-related genes. Similar to human patients, mct8−/− larvae exhibited neurological and behavioral deficiencies. High-throughput behavioral assays demonstrated that mct8−/− larvae exhibited reduced locomotor activity, altered response to external light and dark transitions and an increase in sleep time. These deficiencies in behavioral performance were associated with altered expression of myelin-related genes and neuron-specific deficiencies in circuit formation. Time-lapse imaging of single-axon arbors and synapses in live mct8−/− larvae revealed a reduction in filopodia dynamics and axon branching in sensory neurons and decreased synaptic density in motor neurons. These phenotypes enable assessment of the therapeutic potential of three TH analogs that can enter the cells in the absence of MCT8. The TH analogs restored the myelin and axon outgrowth deficiencies in mct8−/− larvae. These findings suggest a mechanism by which MCT8 regulates neural circuit assembly, ultimately mediating sensory and motor control of behavioral performance. We also propose that the administration of TH analogs early during embryo development can specifically reduce neurological damage in AHDS patients. PMID:25255244
Song, You Hong; Chang, Hyun Jung; Shin, Yong Beom; Park, Young Sook; Park, Yun Hee; Cho, Eun Sol
2018-04-01
To evaluate the validity of the Test of Infant Motor Performance (TIMP) and general movements (GMs) assessment for predicting Alberta Infant Motor Scale (AIMS) score at 12 months in preterm infants. A total of 44 preterm infants who underwent the GMs and TIMP at 1 month and 3 months of corrected age (CA) and whose motor performance was evaluated using AIMS at 12 months CA were included. GMs were judged as abnormal on basis of poor repertoire or cramped-synchronized movements at 1 month CA and abnormal or absent fidgety movement at 3 months CA. TIMP and AIMS scores were categorized as normal (average and low average and >5th percentile, respectively) or abnormal (below average and far below average or <5th percentile, respectively). Correlations between GMs and TIMP scores at 1 month and 3 months CA and the AIMS classification at 12 months CA were examined. The TIMP score at 3 months CA and GMs at 1 month and 3 months CA were significantly correlated with the motor performance at 12 months CA. However, the TIMP score at 1 month CA did not correlate with the AIMS classification at 12 months CA. For infants with normal GMs at 3 months CA, the TIMP score at 3 months CA correlated significantly with the AIMS classification at 12 months CA. Our findings suggest that neuromotor assessment using GMs and TIMP could be useful to identify preterm infants who are likely to benefit from intervention.
High resolution manometry findings in patients with esophageal epiphrenic diverticula.
Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G
2011-12-01
The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.
Vohr, Betty R; Msall, Michael E; Wilson, Dee; Wright, Linda L; McDonald, Scott; Poole, W Kenneth
2005-07-01
The purpose of this study was to evaluate the relationship between cerebral palsy (CP) diagnoses as measured by the topographic distribution of the tone abnormality with level of function on the Gross Motor Function Classification System (GMFCS) and developmental performance on the Bayley Scales of Infant Development II (BSID-II). It was hypothesized that (1) the greater the number of limbs involved, the higher the GMFCS and the lower the BSID-II Motor Scores and (2) there would be a spectrum of function and skill achievement on the GMFCS and BSID-II Motor Scores for children in each of the CP categories. A multicenter, longitudinal cohort study was conducted of 1860 extremely low birth weight (ELBW) infants who were born between August 1, 1995 and February 1, 1998, and evaluated at 18 to 22 months' corrected age. Children were categorized into impairment groups on the basis of the typography of neurologic findings: spastic quadriplegia, triplegia, diplegia, hemiplegia, monoplegia, hypotonic and/or athetotic CP, other abnormal neurologic findings, and normal. The neurologic category then was compared with GMFCS level and BSID-II Motor Scores. A total of 282 (15.2%) of the 1860 children evaluated had CP. Children with more limbs involved had more abnormal GMFCS levels and lower BSID-II scores, reflecting more severe functional limitations. However, for each CP diagnostic category, there was a spectrum of gross motor functional levels and BSID-II scores. Although more than 1 (26.6%) in 4 of the children with CP had moderate to severe gross motor functional impairment, 1 (27.6%) in 4 had motor functional skills that allowed for ambulation. Given the range of gross motor skill outcomes for specific types of CP, the GMFCS is a better indicator of gross motor functional impairment than the traditional categorization of CP that specifies the number of limbs with neurologic impairment. The neurodevelopmental assessment of young children is optimized by combining a standard neurologic examination with measures of gross and fine motor function (GMFCS and Bayley Psychomotor Developmental Index). Additional studies to examine longer term functional motor and adaptive-functional developmental skills are required to devise strategies that delineate therapies to optimize functional performance.
People With Cerebral Palsy: Effects of and Perspectives for Therapy
Mayston, Margaret J.
2001-01-01
The movement disorder of cerebral palsy (CP) is expressed in a variety of ways and to varying degrees in each individual. The condition has become more complex over the last 20 years with the increasing survival of children born at less than 28 to 30 weeks gestationai age. Impairments present in children with CP as a direct result of the brain injury or occurring indirectly to compensate for underlying problems include abnormal muscle tone; weakness and lack of fitness; limited variety of muscle synergies; contracture and altered biomechanics, the net result being limited functional ability. Other contributors to the motor disorder include sensory, cognitive and perceptual impairments. In recent years understanding of the motor problem has increased, but less is known about effects of therapy. Evidence suggests that therapy can improve functional possibilities for children with cerebral palsy but is inconclusive as to which approach might be most beneficial. The therapist requires an understanding of the interaction of all systems, cognitive/perceptual, motor, musculoskeletal, sensory and behavioral, in the context of the development and plasticity of the CNS. It is necessary to understand the limitations of the damaged immature nervous system, but important to optimize the child's functional possibilities. PMID:11530888
Fisher, M A
1978-01-01
F responses recorded from flexor and extensor muscles were analysed in 18 normal subjects and in 16 patients with motor system abnormalities. The prominence of the F responses was evaluated quantitatively by determining the persistence--that is, the fraction of measurable F responses which actually occur after a series of supramaximal stimuli--and average amplitude of the F responses. In the normal resting state, the data are consistent with the hypothesis that the "central excitatory states" of motoneurones is greater in the antigravity muscles than in those muscles not stretched by gravity. This pattern was disrupted in eight of the 16 patients with motor system abnormalities caused by central nervous system lesions. These changes reflect a clinically testable aspect of the pathophysiology of certain motor system disorders. PMID:690640
Verde, Federico; Del Tredici, Kelly; Braak, Heiko; Ludolph, Albert
2017-12-01
Amyotrophic lateral sclerosis (ALS) is traditionally considered a disease affecting exclusively motor neurons. However, much evidence points towards additional involvement of brain systems other than the motor. As much as half of ALS patients display cognitive-behavioral disturbances. ALS shares with a considerable proportion of FTD cases the same neuropathological substrate, namely, inclusions of abnormally phosphorylated protein TDP-43 (pTDP-43). In analogy with pathological staging systems elaborated in the past decades for Alzheimer's disease (AD) and Parkinson's disease (PD), a model of staging of pTDP-43 pathology in sporadic ALS (sALS) has been recently proposed. According to it, 4 stages can be recognized, where pTDP-43 inclusions are found in the agranular motor cortex and α-motor neurons of the brain stem and spinal cord (stage 1), in prefrontal neocortex (middle frontal gyrus), reticular formation, and precerebellar nuclei (stage 2), in further areas of the prefrontal neocortex (gyrus rectus and orbitofrontal gyri), postcentrally located sensory cortex, and basal ganglia (stage 3), and in the anteromedial temporal lobe including the hippocampus (stage 4). Based on this staging effort, a corticofugal axonal model for spreading of pathology can be hypothesized, whereby pathology starts in the primary motor cortex and spreads from there via axonal projections to lower motor neurons and to subcortical structures. Recent neuroradiological evidence seems to support the proposed staging system. From the clinical standpoint, a proportion of ALS patients display extramotor deficits (namely cognitive-behavioural disturbances, impaired ocular movements, and extrapyramidal alterations), which seem to correspond to the pathological involvement of the relevant cerebral structures. This review describes neuropathological sALS staging and addresses clinical evidence corresponding to this staging, pointing towards the concept of ALS as a multisystem brain degeneration disorder instead of a disease confined to motor neurons.
USDA-ARS?s Scientific Manuscript database
Two wild fledgling kestrels exhibited lack of motor coordination, postural reaction deficits, and abnormal propioception. At necropsy, the cerebellum and brainstem were markedly underdeveloped. Microscopically, there was Purkinje cells heterotopy, abnormal circuitry, and hypoplasia with defective fo...
Lee, Samuel M.; Sha, Di; Mohammed, Anum A.; Asress, Seneshaw; Glass, Jonathan D.; Chin, Lih-Shen; Li, Lian
2013-01-01
Charcot–Marie–Tooth disease type 1C (CMT1C) is a dominantly inherited motor and sensory neuropathy. Despite human genetic evidence linking missense mutations in SIMPLE to CMT1C, the in vivo role of CMT1C-linked SIMPLE mutations remains undetermined. To investigate the molecular mechanism underlying CMT1C pathogenesis, we generated transgenic mice expressing either wild-type or CMT1C-linked W116G human SIMPLE. Mice expressing mutant, but not wild type, SIMPLE develop a late-onset motor and sensory neuropathy that recapitulates key clinical features of CMT1C disease. SIMPLE mutant mice exhibit motor and sensory behavioral impairments accompanied by decreased motor and sensory nerve conduction velocity and reduced compound muscle action potential amplitude. This neuropathy phenotype is associated with focally infolded myelin loops that protrude into the axons at paranodal regions and near Schmidt–Lanterman incisures of peripheral nerves. We find that myelin infolding is often linked to constricted axons with signs of impaired axonal transport and to paranodal defects and abnormal organization of the node of Ranvier. Our findings support that SIMPLE mutation disrupts myelin homeostasis and causes peripheral neuropathy via a combination of toxic gain-of-function and dominant-negative mechanisms. The results from this study suggest that myelin infolding and paranodal damage may represent pathogenic precursors preceding demyelination and axonal degeneration in CMT1C patients. PMID:23359569
Torres-Russotto, Diego; Perlmutter, Joel S.
2009-01-01
Task-specific dystonias are primary focal dystonias characterized by excessive muscle contractions producing abnormal postures during selective motor activities that often involve highly skilled, repetitive movements. Historically these peculiar postures were considered psychogenic but have now been classified as forms of dystonia. Writer’s cramp is the most commonly identified task-specific dystonia and has features typical of this group of disorders. Symptoms may begin with lack of dexterity during performance of a specific motor task with increasingly abnormal posturing of the involved body part as motor activity continues. Initially, the dystonia may manifest only during the performance of the inciting task, but as the condition progresses it may also occur during other activities or even at rest. Neurological exam is usually unremarkable except for the dystonia-related abnormalities. Although the precise pathophysiology remains unclear, increasing evidence suggests reduced inhibition at different levels of the sensorimotor system. Symptomatic treatment options include oral medications, botulinum toxin injections, neurosurgical procedures, and adaptive strategies. Prognosis may vary depending upon body part involved and specific type of task affected. Further research may reveal new insights into the etiology, pathophysiology, natural history, and improved treatment of these conditions. PMID:18990127
Skranes, J; Vik, T; Nilsen, G; Smevik, O; Andersson, H W; Brubakk, A M
1998-04-01
This follow-up study reports on cerebral MRI findings in 20 very-low-birthweight (VLBW) infants without disabilities at age 1 year in relation to motor, intellectual, and perceptual function at age 6 years. MRI findings, anthropometrics, and Bayley Scales of Infant Development scores at age 1 year as predictors of psychomotor status at age 6 years are also evaluated and compared. Outcome parameters were the Peabody Developmental Motor Scales and the Wechsler Preschool and Primary Scale of Intelligence. The results show that infants with myelin hyperintensities including the centrum semiovale or with occipital hyperintensities with associated ventricular dilatation at age 1 scored lower on the Peabody Gross Motor Locomotion Scale at age 6 than infants with normal myelination or with isolated occipital hyperintensities. This may indicate damage to motor fibers caused by perinatal periventricular leukomalacia. No relation was found between abnormal MRI findings at age 1 and later fine motor, intellectual, and perceptual function. Comparing different age 1-year predictors, an abnormality score defined by MRI was used as an independent predictor of gross motor locomotion function at age 6 years. However, the Bayley Mental Development Index scores and weight at age 1 were more important predictors of later motor and intellectual outcome, respectively, than MRI findings. It is recommended that cerebral MRI should not be used routinely to examine VLBW infants without disabilities at 1 year of age.
Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance
Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.
2011-01-01
We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521
Kerr, Bredford; Silva, Pamela A.; Walz, Katherina; Young, Juan I.
2010-01-01
Background Rett syndrome (RTT) is an X-linked postnatal neurodevelopmental disorder caused by mutations in the gene encoding methyl-CpG binding protein 2 (MeCP2) and one of the leading causes of mental retardation in females. RTT is characterized by psychomotor retardation, purposeless hand movements, autistic-like behavior and abnormal gait. We studied the effects of environmental enrichment (EE) on the phenotypic manifestations of a RTT mouse model that lacks MeCP2 (Mecp2 −/y). Principal Findings We found that EE delayed and attenuated some neurological alterations presented by Mecp2 −/y mice and prevented the development of motor discoordination and anxiety-related abnormalities. To define the molecular correlate of this beneficial effect of EE, we analyzed the expression of several synaptic marker genes whose expression is increased by EE in several mouse models. Conclusions/Significance We found that EE induced downregulation of several synaptic markers, suggesting that the partial prevention of RTT-associated phenotypes is achieved through a non-conventional transcriptional program. PMID:20634955
Physiologic and behavioral effects of gentle human touch on preterm infants.
Harrison, L L; Williams, A K; Berbaum, M L; Stem, J T; Leeper, J
2000-12-01
The purpose of this study was to evaluate the effects of a gentle human touch (GHT) intervention provided to 42 preterm infants (27-33 weeks gestational age), for 10 min, three times daily for 10 days. There was no significant difference in mean HR levels or in percent of abnormal heart rate (HR) or O2 saturation comparing 10-min baseline (B), GHT, and 10-min post-touch (PT) phases. There were significantly lower levels of active sleep, motor activity, and behavioral distress during GHT compared to B and P phases. There were no differences among the 42 infants in the GHT group and 42 infants in a randomly assigned control group on any outcome variable including weight gain, morbidity status, or behavioral organization. The findings suggest that GHT generally is a safe and soothing type of touch to provide to young preterm infants, but that individual infant responses to touch need to be continuously monitored by NICU staff and parents.
Staff, Nathan P.; Amrami, Kimberly K.; Howe, Benjamin M.
2015-01-01
Introduction MRI of peripheral nerve and muscle in patients with ALS may be performed to investigate alternative diagnoses including multifocal motor neuropathy (MMN). MRI findings of peripheral nerve and muscle are not well described in these conditions, making interpretation of results difficult. Methods We examined systematically the peripheral nerve and muscle MRI findings in patients with ALS (n=60) and MMN (n=8). Results In patients with ALS and MMN, abnormal MRIs were common (85% and 75%, respectively) but did not correlate with disease severity. Peripheral nerve MRI abnormalities were similar in frequency (ALS: 58% vs. MMN: 63%) with most changes being of mild-to-moderate severity. Muscle MRI changes were more common in ALS (57% vs. 33%), and no muscle atrophy was seen in patients with MMN. Discussion MRI abnormalities of peripheral nerve and muscle in ALS and MMN are common and share some features. PMID:25736373
Links between motor control and classroom behaviors: Moderation by low birth weight
Razza, Rachel A.; Martin, Anne; Brooks-Gunn, Jeanne
2016-01-01
It is unclear from past research on effortful control whether one of its components, motor control, independently contributes to adaptive classroom behaviors. The goal of this study was to identify associations between early motor control, measured by the walk-a-line task at age 3, and teacher-reported learning-related behaviors (approaches to learning and attention problems) and behavior problems in kindergarten classrooms. Models tested whether children who were vulnerable to poorer learning behaviors and more behavior problems due to having been born low birth weight benefited more, less, or the same as other children from better motor control. Data were drawn from the national Fragile Families and Child-Wellbeing Study (n = 751). Regression models indicated that motor control was significantly associated with better approaches to learning and fewer behavior problems. Children who were low birth weight benefitted more than normal birth weight children from better motor control with respect to their approaches to learning, but equally with respect to behavior problems. Additionally, for low but not normal birth weight children, better motor control predicted fewer attention problems. These findings suggest that motor control follows a compensatory model of development for low birth weight children and classroom behaviors. PMID:27594776
The development of motor behavior
Adolph, Karen E.; Franchak, John M.
2016-01-01
This article reviews research on the development of motor behavior from a developmental systems perspective. We focus on infancy when basic action systems are acquired. Posture provides a stable base for locomotion, manual actions, and facial actions. Experience facilitates improvements in motor behavior and infants accumulate immense amounts of experience with all of their basic action systems. At every point in development, perception guides motor behavior by providing feedback about the results of just prior movements and information about what to do next. Reciprocally, the development of motor behavior provides fodder for perception. More generally, motor development brings about new opportunities for acquiring knowledge about the world, and burgeoning motor skills can instigate cascades of developmental changes in perceptual, cognitive, and social domains. PMID:27906517
Li, Min; Wang, Ke; Su, Wen-Ting; Jia, Jun; Wang, Xiao-Min
2017-10-06
To explore the possible underlying mechanism by investigating the effect of electroacupuncture (EA) treatment on the primary motor cortex and striatum in a unilateral 6-hydroxydopamine (6-OHDA) induced rat Parkinson's disease (PD) model. Male Sprague-Dawley rats were randomly divided into sham group (n=16), model group (n=14), and EA group (n=14). EA stimulation at Dazhui (GV 14) and Baihui (GV20) was applied to PD rats in the EA group for 4 weeks. Behavioral tests were conducted to evaluate the effectiveness of EA treatment. Metabolites were detected by 7.0 T proton nuclear magnetic resonance. Following 4 weeks of EA treatment in PD model rats, the abnormal behavioral impairment induced by 6-OHDA was alleviated. In monitoring changes in metabolic activity, ratios of myoinositol/creatine (Cr) and N-acetyl aspartate (NAA)/Cr in the primary motor cortex were significantly lower at the injected side than the non-injected side in PD rats (P=0.024 and 0.020). The ratios of glutamate + glutamine (Glx)/Cr and NAA/Cr in the striatum were higher and lower, respectively, at the injected side than the non-injected side (P=0.046 and 0.008). EA treatment restored the balance of metabolic activity in the primary motor cortex and striatum. In addition, the taurine/Cr ratio and Glx/Cr ratio were elevated in the striatum of PD model rats compared to sham-lesioned rats (P=0.026 and 0.000). EA treatment alleviated the excessive glutamatergic transmission by down-regulating the striatal Glx/Cr ratio (P=0.001). The Glx/Cr ratio was negatively correlated with floor plane spontaneous locomotion in PD rats (P=0.027 and P=0.0007). EA treatment is able to normalize the metabolic balance in the primary motor cortex and striatum of PD rats, which may contribute to its therapeutic effect on motor deficits. The striatal Glx/Cr ratio may serve as a potential indicator of PD and a therapeutic target of EA treatment.
Neuropsychiatry of 18q{sup {minus}} syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mahr, R.N.; Moberg, P.J.; Campbell, H.
Our understanding of neuropsychiatric abnormalities in patients with deletions of the long arm of chromosome 18 (18q{sup {minus}} syndrome) is based mainly on sporadic case reports. We characterized the neuropsychiatric phenotype in 27 patients across a wide age range (2-47 years) with breakpoints ranging from 18q22.3-18q21.2. Adaptive behavior scores (Vineland Composite) were significantly higher in females than in males (62 {+-} 5 vs. 43 {+-} 3). Intelligence ranged from borderline to severely deficient (IQ, 73-<40), with academic achievement similarly impaired. Performance in specific neuropsychological functions, including attention, novel problem solving, memory, language, visuomotor integration, and fine motor dexterity, was consistentlymore » in the moderately-to-severely impaired range. Behavioral problems were common in both sexes, including aggressivity, hyperactivity, and temper tantrums. Contrary to the few previous reports, we found no evidence of psychosis in any patient. In a subset of patients selected on the basis of no prior knowledge of behavioral problems, 1 of 16 patients (61%) had autism, as defined by the Autistic Diagnostic Interview-Revised (ADI-R). Thus, the prevalence of autism in 18q{sup {minus}} syndrome is probably no greater than that in other developmental disabilities with a similar level of cognitive impairment. In contrast to what has been believed since 18q{sup {minus}} was first described 30 years ago, we found no relationship between chromosome deletion size and any measure of cognition or behavior; nor were there any correlations between any of these measures with the presence or absence of abnormalities on MRI or somatosensory-evoked potentials. 38 refs., 3 figs., 2 tabs.« less
Brimberg, L; Mader, S; Jeganathan, V; Berlin, R; Coleman, T R; Gregersen, P K; Huerta, P T; Volpe, B T; Diamond, B
2016-12-01
Autism spectrum disorder (ASD) occurs in 1 in 68 births, preferentially affecting males. It encompasses a group of neurodevelopmental abnormalities characterized by impaired social interaction and communication, stereotypic behaviors and motor dysfunction. Although recent advances implicate maternal brain-reactive antibodies in a causative role in ASD, a definitive assessment of their pathogenic potential requires cloning of such antibodies. Here, we describe the isolation and characterization of monoclonal brain-reactive antibodies from blood of women with brain-reactive serology and a child with ASD. We further demonstrate that male but not female mice exposed in utero to the C6 monoclonal antibody, binding to contactin-associated protein-like 2 (Caspr2), display abnormal cortical development, decreased dendritic complexity of excitatory neurons and reduced numbers of inhibitory neurons in the hippocampus, as well as impairments in sociability, flexible learning and repetitive behavior. Anti-Caspr2 antibodies are frequent in women with brain-reactive serology and a child with ASD. Together these studies provide a methodology for obtaining monclonal brain-reactive antibodies from blood B cells, demonstrate that ASD can result from in utero exposure to maternal brain-reactive antibodies of single specificity and point toward the exciting possibility of prognostic and protective strategies.
Hockenberry, Marilyn J; Krull, Kevin R; Insel, Kathleen C; Harris, Lynnette L; Gundy, Patricia M; Adkins, Kristin B; Pasvogel, Alice E; Taylor, Olga A; Koerner, Kari M; Montgomery, David W; Ross, Adam K; Hill, Adam; Moore, Ida M
2015-09-01
To examine associations among oxidative stress, fine and visual-motor abilities, and behavioral adjustment in children receiving chemotherapy for acute lymphoblastic leukemia (ALL) . A prospective, repeated-measures design . Two pediatric oncology settings in the southwestern United States. 89 children with ALL were followed from diagnosis to the end of chemotherapy. Serial cerebrospinal fluid samples were collected during scheduled lumbar punctures and analyzed for oxidative stress biomarkers. Children completed fine motor dexterity, visual processing speed, and visual-motor integration measures at three time points. Parents completed child behavior ratings at the same times. Oxidative stress, fine motor dexterity, visual processing, visual-motor integration, and behavioral adjustment . Children with ALL had below-average fine motor dexterity, visual processing speed, and visual-motor integration following the induction phase of ALL therapy. By end of therapy, visual processing speed normalized, and fine motor dexterity and visual-motor integration remained below average. Oxidative stress measures correlated with fine motor dexterity and visual-motor integration. Decreased motor functioning was associated with increased hyperactivity and anxiety . Oxidative stress occurs following chemo-therapy for childhood ALL and is related to impaired fine motor skills and visual symptoms . Early intervention should be considered to prevent fine motor and visual-spatial deficits, as well as behavioral problems.
Wang, Yan; Li, Yanzhong; Wang, Xin
2009-12-01
To explore the pathogenesis of abnormal behavior in children with obstructive sleep apnea-hypopnea syndrome (OSAHS). The behavioral problems and C-reactive protein were measured in 40 children with OSAHS and 30 children with habitual snoring who underwent overnight Polysomnography, 40 cases of healthy children for the control group. The ratio of abnormal behavior in OSAHS and habitual snoring children was significantly higher than that of the healthy control group, while no significant difference between the two groups. The content of C-reactive protein in OSAHS children (4.24 mg/L) was significantly higher than habitual snoring (2.76 mg/L) and healthy control group (1.27 mg/L); in habitual snoring children C-reactive protein was higher than in healthy control group. The content of serum C-reactive protein in OSAHS children accompanied by abnormal behavior (4.63 mg/L) was significantly higher than that without abnormal behavior (3.23 mg/L). The content of serum C-reactive protein content in habitual snoring children accompanied by abnormal behavior (3.63 mg/L) was significantly higher than that without abnormal behavior (1.76 mg/L). OSAHS and habitual snoring children have more behavior problems. C-reactive protein levels are higher in children with OSAHS and habitual snoring, and the levels of C-reactive protein are related to the abnormal behavior in these children.
Effect of the home environment on motor and cognitive behavior of infants.
Miquelote, Audrei F; Santos, Denise C C; Caçola, Priscila M; Montebelo, Maria Imaculada de L; Gabbard, Carl
2012-06-01
Although information is sparse, research suggests that affordances in the home provide essential resources that promote motor and cognitive skills in young children. The present study assessed over time, the association between motor affordances in the home and infant motor and cognitive behavior. Thirty-two (32) infants were assessed for characteristics of their home using the Affordances in the Home Environment for Motor Development--Infant Scale and motor and cognitive behavior with the Bayley Scales of Infant and Toddler Development--III. Infant's home and motor behavior were assessed at age 9 months and 6 months later with the inclusion of cognitive ability. Results for motor ability indicated that there was an overall improvement in performance from the 1st to the 2nd assessment. We found significant positive correlations between the dimensions of the home (daily activities and play materials) and global motor performance (1st assessment) and fine-motor performance on the 2nd assessment. In regard to cognitive performance (2nd assessment), results indicated a positive association with fine-motor performance. Our results suggest that motor affordances can have a positive impact on future motor ability and speculatively, later cognitive behavior in infants. Copyright © 2012 Elsevier Inc. All rights reserved.
Cognitive inflexibility in obsessive-compulsive disorder
Gruner, Patricia; Pittenger, Christopher
2016-01-01
Obsessive-Compulsive Disorder (OCD) is characterized by maladaptive patterns of repetitive, inflexible cognition and behavior that suggest a lack of cognitive flexibility. Consistent with this clinical observation, many neurocognitive studies suggest behavioral and neurobiological abnormalities in cognitive flexibility in individuals with OCD. Meta-analytic reviews support a pattern of cognitive inflexibility, with effect sizes generally in the medium range. Heterogeneity in assessments and the way underlying constructs have been operationalized point to the need for better standardization across studies, as well as more refined overarching models of cognitive flexibility and executive function. Neuropsychological assessments of cognitive flexibility include measures of attentional set shifting, reversal and alternation, cued task switching paradigms, cognitive control measures such as the Trail-Making and Stroop tasks, and several measures of motor inhibition. Differences in the cognitive constructs and neural substrates associated with these measures suggest that performance within these different domains should be examined separately. Additional factors, such as the number of consistent trials prior to a shift and whether a shift is explicitly signaled or must be inferred from a change in reward contingencies, may influence performance, and thus mask or accentuate deficits. Several studies have described abnormalities in neural activation in the absence of differences in behavioral performance, suggesting that our behavioral probes may not be adequately sensitive, but also offering important insights into potential compensatory processes. The fact that deficits of moderate effect size are seen across a broad range of classic neuropsychological tests in OCD presents a conceptual challenge, as clinical symptomatology suggests greater specificity. Traditional cognitive probes may not be sufficient to delineate specific domains of deficit in this and other neuropsychiatric disorders; a new generation of behavioral tasks that test more specific underlying constructs, supplemented by neuroimaging to provide greater insight into the underlying processes, may be needed. PMID:27491478
Children and encephalitis lethargica: a historical review.
Vilensky, Joel A; Foley, Paul; Gilman, Sid
2007-08-01
Between 1917 and the late 1920s, encephalitis lethargica was an epidemic and often lethal neurologic disease. In adults, it typically elicited severe somatic effects, and in particular, various forms of cranial nerve and motor dysfunction. In children, the psychiatric effects were often as severe as the physical consequences. Approximately one third of affected children underwent a rapid transformation from normal behavior to delinquency, often leading to institutionalization. Many neurologic and psychological theories were advanced to explain these severe behavioral changes, and the therapeutic approaches employed ranged from training in dedicated schools to frontal leucotomy. Whereas epidemiologic associations provide both positive and negative support for an etiologic relationship between encephalitis lethargica and the approximately contemporaneous "Spanish" influenza epidemic, previously unutilized data from children provide some of the strongest links between influenza and encephalitis lethargica. Encephalitis lethargica triggered behavioral changes in children that are not duplicated by any other neurologic condition, with the possible exception of traumatic brain injury. These unique behavioral abnormalities may provide the earliest clear indication of new encephalitis lethargica cases, whether alone or in concert with an influenza epidemic.
Endogenous neuropeptide S tone influences sleep-wake rhythm in rats.
Oishi, Masafumi; Kushikata, Tetsuya; Niwa, Hidetomo; Yakoshi, Chihiro; Ogasawara, Chihiro; Calo, Girolamo; Guerrini, Remo; Hirota, Kazuyoshi
2014-10-03
Neuropeptide S (NPS) is an endogenous peptide that exerts wakefulness promoting, analgesic, and anxiolytic effects when administered exogenously. However, it remains to be determined if endogenous NPS tone is involved in the control of the diurnal sleep-wake cycle, or spontanous behavior. In this study, we examined the effects of the NPS receptor antagonist [D-Cys((t)Bu)(5)]NPS (2 and 20 nmol, icv) on physiological sleep and spontaneous locomotor behavior. The higher dose of [D-Cys((t)Bu)(5)]NPS decreased the amount of time spent in wakefulness [control 782.5 ± 25.5 min, treatment 751.7 ± 28.1 min; p<0.05] and increased the time spent in NREMS [control 572.6 ± 17.2 min, treatment 600.2 ± 26.1 min; p<0.05]. There was no statistically significant difference in time spent in REMS. There were no behavioral changes including abnormal gross motor behavior in response to [D-Cys((t)Bu)(5)]NPS administration. Collectively these data suggest an involvement of the endogenous NPS/NPS receptor system in physiological sleep architecture. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Perceptual and Motor Development in Infants and Children. Second Edition.
ERIC Educational Resources Information Center
Cratty, Bryant J.
Motor behavior, motor performance, and motor learning are discussed at length within the context of infant and child development. Individual chapters focus on the following: the sensory-motor behavior of infants; analysis of selected perceptual-motor programs; beginnings of movement in infants; gross motor attributes in early childhood; visual…
Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review
Fineberg, Naomi A; Potenza, Marc N; Chamberlain, Samuel R; Berlin, Heather A; Menzies, Lara; Bechara, Antoine; Sahakian, Barbara J; Robbins, Trevor W; Bullmore, Edward T; Hollander, Eric
2010-01-01
Failures in cortical control of fronto-striatal neural circuits may underpin impulsive and compulsive acts. In this narrative review, we explore these behaviors from the perspective of neural processes and consider how these behaviors and neural processes contribute to mental disorders such as obsessive–compulsive disorder (OCD), obsessive–compulsive personality disorder, and impulse-control disorders such as trichotillomania and pathological gambling. We present findings from a broad range of data, comprising translational and human endophenotypes research and clinical treatment trials, focussing on the parallel, functionally segregated, cortico-striatal neural projections, from orbitofrontal cortex (OFC) to medial striatum (caudate nucleus), proposed to drive compulsive activity, and from the anterior cingulate/ventromedial prefrontal cortex to the ventral striatum (nucleus accumbens shell), proposed to drive impulsive activity, and the interaction between them. We suggest that impulsivity and compulsivity each seem to be multidimensional. Impulsive or compulsive behaviors are mediated by overlapping as well as distinct neural substrates. Trichotillomania may stand apart as a disorder of motor-impulse control, whereas pathological gambling involves abnormal ventral reward circuitry that identifies it more closely with substance addiction. OCD shows motor impulsivity and compulsivity, probably mediated through disruption of OFC-caudate circuitry, as well as other frontal, cingulate, and parietal connections. Serotonin and dopamine interact across these circuits to modulate aspects of both impulsive and compulsive responding and as yet unidentified brain-based systems may also have important functions. Targeted application of neurocognitive tasks, receptor-specific neurochemical probes, and brain systems neuroimaging techniques have potential for future research in this field. PMID:19940844
Barry, J. E.; Hopkins, I. J.; Neal, B. W.
1974-01-01
Two infants with sporadic congenital sensory neuropathy are described. The criteria of generalized lack of superficial sensory appreciation, hypotonia, areflexia, together with histological evidence of abnormalities of sensory neural structures in skin and peripheral nerves have been met. No abnormality of motor or autonomic nerves was shown. ImagesFIG. PMID:4131674
Benammi, Hind; Erazi, Hasna; El Hiba, Omar; Vinay, Laurent
2017-01-01
Lead poisoning is one of the most significant health problem of environmental origin. It is known to cause different damages in the central and peripheral nervous system which could be represented by several neurophysiological and behavioral symptoms. In this study we firstly investigated the effect of lead prenatal exposure in rats to (3g/L), from neonatal to young age, on the motor/sensory performances, excitability of the spinal cord and gaits during development. Then we evaluated neuroprotective effects of curcumin I (Cur I) against lead neurotoxicity, by means of grasping and cliff avoidance tests to reveal the impairment of the sensorimotor functions in neonatal rats exposed prenatally to lead. In addition, extracellular recordings of motor output in spinal cord revealed an hyper-excitability of spinal networks in lead treated rats. The frequency of induced fictive locomotion was also increased in treated rats. At the young age, rats exhibited an impaired locomotor gait. All those abnormalities were attenuated by Cur I treatment at a dose of 16g/kg. Based on our finding, Cur I has shown features of a potent chemical compound able to restore the neuronal and the relative locomotor behaviors disturbances induced by lead intoxication. Therefore, this chemical can be recommended as a new therapeutic trial against lead induced neurotoxicity. PMID:28267745
Temporal Expectation in Focal Hand Dystonia
ERIC Educational Resources Information Center
Avanzino, Laura; Martino, Davide; Martino, Isadora; Pelosin, Elisa; Vicario, Carmelo M.; Bove, Marco; Defazio, Gianni; Abbruzzese, Giovanni
2013-01-01
Patients with writer's cramp present sensory and representational abnormalities relevant to motor control, such as impairment in the temporal discrimination between tactile stimuli and in pure motor imagery tasks, like the mental rotation of corporeal and inanimate objects. However, only limited information is available on the ability of patients…
How to Diagnose and Treat Functional Chest Pain.
Remes-Troche, Jose M
2016-12-01
Chest pain that is not explained by reflux disease or cardiac, musculoskeletal, mucosal, or motor esophageal abnormalities is classified as functional chest pain (FCP). Although several mechanisms are involved, esophageal hypersensitivity plays a major role and it could be considered a biomarker for FCP. Psychologic comorbidity such as anxiety, neuroticism, depression, and somatization is common. When the diagnosis of FCP is suspected, patients should undergo evaluation with esophageal motility testing, endoscopy, 24-h esophageal pH monitoring, and in some cases, sensory tests. Once the diagnosis of FCP has been established, treatment options rely on controlling patients' symptoms. Medical treatment has focused predominantly on medications that target pain, such as antidepressants and other pain neuromodulators. Non-pharmacologic interventions with complementary behavioral treatments, such as cognitive behavioral therapy, biofeedback, and hypnosis, have recently been recognized as useful in FCP patients. The latest findings on the evaluation and treatment of FCP are outlined herein.
Experience and the developing prefrontal cortex
Kolb, Bryan; Mychasiuk, Richelle; Muhammad, Arif; Li, Yilin; Frost, Douglas O.; Gibb, Robbin
2012-01-01
The prefrontal cortex (PFC) receives input from all other cortical regions and functions to plan and direct motor, cognitive, affective, and social behavior across time. It has a prolonged development, which allows the acquisition of complex cognitive abilities through experience but makes it susceptible to factors that can lead to abnormal functioning, which is often manifested in neuropsychiatric disorders. When the PFC is exposed to different environmental events during development, such as sensory stimuli, stress, drugs, hormones, and social experiences (including both parental and peer interactions), the developing PFC may develop in different ways. The goal of the current review is to illustrate how the circuitry of the developing PFC can be sculpted by a wide range of pre- and postnatal factors. We begin with an overview of prefrontal functioning and development, and we conclude with a consideration of how early experiences influence prefrontal development and behavior. PMID:23045653
Sotnikova, Tatyana D; Beaulieu, Jean-Martin; Barak, Larry S; Wetsel, William C; Gainetdinov, Raul R
2005-01-01
Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs. PMID:16050778
Esophageal hypomotility and spastic motor disorders: current diagnosis and treatment.
Valdovinos, Miguel A; Zavala-Solares, Monica R; Coss-Adame, Enrique
2014-11-01
Esophageal hypomotility (EH) is characterized by abnormal esophageal peristalsis, either from a reduction or absence of contractions, whereas spastic motor disorders (SMD) are characterized by an increase in the vigor and/or propagation velocity of esophageal body contractions. Their pathophysiology is not clearly known. The reduced excitation of the smooth muscle contraction mediated by cholinergic neurons and the impairment of inhibitory ganglion neuronal function mediated by nitric oxide are likely mechanisms of the peristaltic abnormalities seen in EH and SMD, respectively. Dysphagia and chest pain are the most frequent clinical manifestations for both of these dysfunctions, and gastroesophageal reflux disease (GERD) is commonly associated with these motor disorders. The introduction of high-resolution manometry (HRM) and esophageal pressure topography (EPT) has significantly enhanced the ability to diagnose EH and SMD. Novel EPT metrics in particular the development of the Chicago Classification of esophageal motor disorders has enabled improved characterization of these abnormalities. The first step in the management of EH and SMD is to treat GERD, especially when esophageal testing shows pathologic reflux. Smooth muscle relaxants (nitrates, calcium channel blockers, 5-phosphodiesterase inhibitors) and pain modulators may be useful in the management of dysphagia or pain in SMD. Endoscopic Botox injection and pneumatic dilation are the second-line therapies. Extended myotomy of the esophageal body or peroral endoscopic myotomy (POEM) may be considered in highly selected cases but lack evidence.
Finno, Carrie J; Eaton, Joshua Seth; Aleman, Monica; Hollingsworth, Steven R
2010-07-01
A 23-year-old female mule was presented for bilateral ocular abnormalities and an abnormal pelvic limb gait. Anisocoria, unilateral enophthalmos, medial strabismus, ptosis, pupillary light reflex deficits, and bilateral reticulated pigmentary retinopathy were observed on ophthalmic examination. Neurologic abnormalities included right-sided facial nerve paralysis, extensive symmetric muscle atrophy, and asymmetric pelvic limb ataxia with an abnormal pelvic limb gait. A positive titer (1:40) for equine protozoal myeloencephalitis (EPM) associated with Neospora hughesi was obtained from cerebrospinal fluid with minimal (<1 red blood cell/microL) blood contamination. Muscle biopsies of the sacrocaudalis dorsalis medialis muscle revealed predominantly type I neurogenic muscle atrophy, consistent with a diagnosis of equine motor neuron disease (EMND). Treatment included a 2-month course of ponazuril (5 mg/kg PO q24 h), vitamin E (8000 IU PO q24 h), and selenium (2 mg PO q24 h). Clinical improvement was not observed after 2 months although the mule remained stable. Clinical deterioration was reported upon discontinuation of the ponazuril after a 2-month course. Concurrent disease with EPM associated with N. hughesi and EMND should be considered in cases demonstrating cranial nerve abnormalities, pronounced symmetric muscle atrophy, unusual asymmetric gait abnormalities, and reticulated pigmentary retinopathy.
Frontotemporal white matter changes in amyotrophic lateral sclerosis.
Abrahams, Sharon; Goldstein, Laura H; Suckling, John; Ng, Virginia; Simmons, Andy; Chitnis, Xavier; Atkins, Louise; Williams, Steve C R; Leigh, P N
2005-03-01
Cognitive dysfunction can occur in some patients with amyotrophic lateral sclerosis (ALS) who are not suffering from dementia. The most striking and consistent cognitive deficit has been found using tests of verbal fluency. ALS patients with verbal fluency deficits have shown functional imaging abnormalities predominantly in frontotemporal regions using positron emission tomography (PET). This study used automated volumetric voxel-based analysis of grey and white matter densities of structural magnetic resonance imaging (MRI) scans to explore the underlying pattern of structural cerebral change in nondemented ALS patients with verbal fluency deficits. Two groups of ALS patients, defined by the presence or absence of cognitive impairment on the basis of the Written Verbal Fluency Test (ALSi, cognitively impaired, n=11; ALSu, cognitively unimpaired n=12) were compared with healthy age matched controls (n=12). A comparison of the ALSi group with controls revealed significantly (p<0.002) reduced white matter volume in extensive motor and non-motor regions, including regions corresponding to frontotemporal association fibres. These patients demonstrated a corresponding cognitive profile of executive and memory dysfunction. Less extensive white matter reductions were revealed in the comparison of the ALSu and control groups in regions corresponding to frontal association fibres. White matter volumes were also found to correlate with performance on memory tests. There were no significant reductions in grey matter volume in the comparison of either patient group with controls. The structural white matter abnormalities in frontal and temporal regions revealed here may underlie the cognitive and functional imaging abnormalities previously reported in non-demented ALS patients. The results also suggest that extra-motor structural abnormalities may be present in ALS patients with no evidence of cognitive change. The findings support the hypothesis of a continuum of extra-motor cerebral and cognitive change in this disorder.
Grey matter abnormalities in children and adolescents with functional neurological symptom disorder.
Kozlowska, Kasia; Griffiths, Kristi R; Foster, Sheryl L; Linton, James; Williams, Leanne M; Korgaonkar, Mayuresh S
2017-01-01
Functional neurological symptom disorder refers to the presence of neurological symptoms not explained by neurological disease. Although this disorder is presumed to reflect abnormal function of the brain, recent studies in adults show neuroanatomical abnormalities in brain structure . These structural brain abnormalities have been presumed to reflect long-term adaptations to the disorder, and it is unknown whether child and adolescent patients, with illness that is typically of shorter duration, show similar deficits or have normal brain structure. High-resolution, three-dimensional T1-weighted magnetic resonance images (MRIs) were acquired in 25 patients (aged 10-18 years) and 24 healthy controls. Structure was quantified in terms of grey matter volume using voxel-based morphometry. Post hoc, we examined whether regions of structural difference related to a measure of motor readiness to emotional signals and to clinical measures of illness duration, illness severity, and anxiety/depression. Patients showed greater volumes in the left supplementary motor area (SMA) and right superior temporal gyrus (STG) and dorsomedial prefrontal cortex (DMPFC) (corrected p < 0.05). Previous studies of adult patients have also reported alterations of the SMA. Greater SMA volumes correlated with faster reaction times in identifying emotions but not with clinical measures. The SMA, STG, and DMPFC are known to be involved in the perception of emotion and the modulation of motor responses. These larger volumes may reflect the early expression of an experience-dependent plasticity process associated with increased vigilance to others' emotional states and enhanced motor readiness to organize self-protectively in the context of the long-standing relational stress that is characteristic of this disorder.
Lane, E L; Cheetham, S C; Jenner, P
2005-01-01
BTS 74 398 (1-[1-(3,4-dichlorophenyl)cyclobutyl]-2-(3-diaminethylaminopropylthio)ethanone monocitrate) is a monoamine reuptake inhibitor that reverses motor deficits in MPTP-treated (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) common marmosets without provoking established dyskinesia. However, it is not known whether BTS 74 398 primes the basal ganglia for dyskinesia induction. In this study, the ability of BTS 74 398 to sensitize 6-hydroxydopamine (6-OHDA)-lesioned rats for the production of abnormal motor behaviours and the induction of striatal DeltaFosB were determined in comparison with l-3,4-dihydroxyphenylalanine methyl ester (L-dopa). Acute administration of BTS 74 398 induced a dose-dependent ipsilateral circling response in unilaterally 6-OHDA-lesioned rats whereas L-dopa produced dose-dependent contraversive rotation. The ipsilateral circling response to BTS 74 398 did not alter during 21 days of administration. In contrast, L-dopa treatment for 21 days caused a marked increase in rotational response. Repeated administration of both L-dopa and BTS 74 398 increased general motor activity and stereotypic behaviour. In L-dopa-treated rats, orolingual, locomotive, forelimb and axial abnormal movements developed whereas BTS 74 398 produced only locomotion with a side bias but no other abnormal movements. Sensitization of circling responses and the development of abnormal movements in 6-OHDA-lesioned rats have been associated with the potential of dopaminergic drugs to induce dyskinesia. Furthermore, striatal DeltaFosB immunoreactivity, shown to correlate with dyskinesia induction, was increased by L-dopa but was unaffected by repeated BTS 74 398 administration. The lack of such changes following repeated BTS 74 398 treatment suggests that it may be an effective antiparkinsonian therapy that is unlikely to produce involuntary movements.
Yokoi, Fumiaki; Dang, Mai Tu; Li, Jianyong; Standaert, David G.; Li, Yuqing
2011-01-01
DYT1 early-onset generalized dystonia is a hyperkinetic movement disorder caused by mutations in DYT1 (TOR1A), which codes for torsinA. Recently, significant progress has been made in studying pathophysiology of DYT1 dystonia using targeted mouse models. Dyt1 ΔGAG heterozygous knock-in (KI) and Dyt1 knock-down (KD) mice exhibit motor deficits and alterations of striatal dopamine metabolisms, while Dyt1 knockout (KO) and Dyt1 ΔGAG homozygous KI mice show abnormal nuclear envelopes and neonatal lethality. However, it has not been clear whether motor deficits and striatal abnormality are caused by Dyt1 mutation in the striatum itself or the end results of abnormal signals from other brain regions. To identify the brain region that contributes to these phenotypes, we made a striatum-specific Dyt1 conditional knockout (Dyt1 sKO) mouse. Dyt1 sKO mice exhibited motor deficits and reduced striatal dopamine receptor 2 (D2R) binding activity, whereas they did not exhibit significant alteration of striatal monoamine contents. Furthermore, we also found normal nuclear envelope structure in striatal medium spiny neurons (MSNs) of an adult Dyt1 sKO mouse and cerebral cortical neurons in cerebral cortex-specific Dyt1 conditional knockout (Dyt1 cKO) mice. The results suggest that the loss of striatal torsinA alone is sufficient to produce motor deficits, and that this effect may be mediated, at least in part, through changes in D2R function in the basal ganglia circuit. PMID:21931745
Deng, Jiahui; Lv, E; Yang, Jian; Gong, Xiaoli; Zhang, Wenzhong; Liang, Xibin; Wang, Jiazeng; Jia, Jun; Wang, Xiaomin
2015-05-28
The acupuncture or electroacupuncture (EA) shows the therapeutic effect on various neurodegenerative diseases. This effect was thought to be partially achieved by its ability to alleviate existing neuroinflammation and glial dysfunction. In this study, we systematically investigated the effect of EA on abnormal neurochemical changes and motor symptoms in a mouse neurodegenerative disease model. The transgenic mouse which expresses a mutant α-synuclein (α-syn) protein, A53T α-syn, in brain astrocytic cells was used. These mice exhibit extensive neuroinflammatory and motor phenotypes of neurodegenerative disorders. In this study, the effects of EA on these phenotypic changes were examined in these mice. EA improved the movement detected in multiple motor tests in A53T mutant mice. At the cellular level, EA significantly reduced the activation of microglia and prevented the loss of dopaminergic neurons in the midbrain and motor neurons in the spinal cord. At the molecular level, EA suppressed the abnormal elevation of proinflammatory factors (tumor necrosis factor-α and interleukin-1β) in the striatum and midbrain of A53T mice. In contrast, EA increased striatal and midbrain expression of a transcription factor, nuclear factor E2-related factor 2, and its downstream antioxidants (heme oxygenase-1 and glutamate-cysteine ligase modifier subunits). These results suggest that EA possesses the ability to ameliorate mutant α-syn-induced motor abnormalities. This ability may be due to that EA enhances both anti-inflammatory and antioxidant activities and suppresses aberrant glial activation in the diseased sites of brains.
Browning, Zoe S; Wilkes, Allison A; Moore, Erica J; Lancon, Trevor W; Clubb, Fred J
2012-01-01
Captive-raised red drum fish were observed with phenotypic abnormalities, including deformities of the spine, jaw, and cephalic region, that were consistent with vitamin C deficiency during the larval stage. In light of their visible exterior skeletal abnormalities, we suspected that the affected fish would also have abnormal otoliths. Otoliths are dense calcareous structures that function in fish hearing. We hypothesized that abnormal fish would have irregular otoliths that would alter behavior and cortisol levels as compared with those of phenotypically normal fish. The normal and abnormal fish had statistically significant differences in behavior, cortisol levels, and otolith volume and density. MicroCT assessment of abnormal fish revealed operculum abnormalities, malocclusions, and several types of otolith malformations. Therefore, the affected fish had not only an abnormal skeletal appearance but also significantly abnormal behavior and cortisol responses. PMID:23043776
Symptoms of Persistent Behavior Problems in Children With Mild Traumatic Brain Injury.
Taylor, H Gerry; Orchinik, Leah J; Minich, Nori; Dietrich, Ann; Nuss, Kathryn; Wright, Martha; Bangert, Barbara; Rusin, Jerome; Yeates, Keith Owen
2015-01-01
To investigate the effects of mild traumatic brain injury (mTBI) in children on symptom ratings of behavior problems across the first-year postinjury. Emergency departments of 2 regional children's hospitals. Parents of 176 children with mTBI and 90 children with orthopedic injury aged 8 to 15 years. Group comparisons of postinjury parent and teacher ratings of child behavior problems controlling for background factors. Child Behavior Checklist and Teacher's Report Form. For younger but not older children in the sample, children with mTBI compared with children with orthopedic injury had higher postinjury ratings on the Child Behavior Checklist Total Behavior Problem scale (t264 = 3.34, P < .001) and higher rates of T-scores of 60 or more on this scale (odds ratio = 3.00; 95% confidence interval, 1.33-6.77; P = .008). For children with mTBI, hospitalization, motor vehicle accidents, loss of consciousness, and magnetic resonance imaging abnormality were associated with higher parent or teacher ratings. School-aged children with mTBI are at risk for persistent symptoms of behavior problems, especially if mTBI is more severe or occurs at a younger age. The findings justify monitoring of behavior long after injury and further research to identify risk factors for these symptoms and their association with clinical disorders.
Motor-Behavioral Episodes in REM Sleep Behavior Disorder and Phasic Events During REM Sleep
Manni, Raffaele; Terzaghi, Michele; Glorioso, Margaret
2009-01-01
Study Objectives: To investigate if sudden-onset motor-behavioral episodes in REM sleep behavior disorder (RBD) are associated with phasic events of REM sleep, and to explore the potential meaning of such an association. Design: Observational review analysis. Setting: Tertiary sleep center. Patients: Twelve individuals (11 males; mean age 67.6 ± 7.4 years) affected by idiopathic RBD, displaying a total of 978 motor-behavioral episodes during nocturnal in-laboratory video-PSG. Interventions: N/A Measurements and Results: The motor activity displayed was primitive in 69.1% and purposeful/semi-purposeful in 30.9% of the motor-behavioral episodes recorded. Sleeptalking was significantly more associated with purposeful/semi-purposeful motor activity than crying and/or incomprehensible muttering (71.0% versus 21.4%, P < 0.005). In 58.2% of the motor-behavioral episodes, phasic EEG-EOG events (rapid eye movements [REMs], α bursts, or sawtooth waves [STWs]) occurred simultaneously. Each variable (REMs, STWs, α bursts) was associated more with purposeful/semi-purposeful than with primitive movements (P < 0.05). Conclusions: Motor-behavioral episodes in RBD were significantly more likely to occur in association with phasic than with tonic periods of REM sleep. The presence of REMs, α bursts and STWs was found to be more frequent in more complex episodes. We hypothesize that motor-behavioral episodes in RBD are likely to occur when the brain, during REM sleep, is in a state of increased instability (presence of α bursts) and experiencing stronger stimulation of visual areas (REMs). Citation: Manni R; Terzaghi M; Glorioso M. Motor-behavioral episodes in REM sleep behavior disorder and phasic events during REM sleep. SLEEP 2009;32(2):241–245. PMID:19238811
Hitzert, Marrit M; Roze, Elise; Van Braeckel, Koenraad N J A; Bos, Arend F
2014-09-01
To determine whether motor development at 3 months of age is associated with cognitive, motor, and behavioural outcomes in healthy children at early school age. In this cohort study, we included 74 term-born, healthy children (44 males, 30 females; median gestational age 40.1 wks, range 38.0-42.6 wks). From video recordings (median 12.9 wks, range 9.3-18.6 wks), we assessed the quality of fidgety movements, and calculated a motor optimality score. At school age (median 5 y 11 mo, range 5 y 8 mo-7 y 6 mo), we performed detailed cognitive, motor, and behavioural assessments. We examined whether aspects of motor development were associated with functional outcomes. An age-adequate motor repertoire, in particular the presence of antigravity, midline leg, and manipulation movements, was related to poorer cognition, whereas variable finger postures was related to better cognition. Children with a monotonous concurrent motor repertoire had better ball skills but experienced more behavioural problems. The presence of antigravity movements tended to be associated with abnormal recognition (odds ratio [OR] 4.4, 95% confidence interval [CI], 0.9-21; R(2) =0.17; p=0.070), where the absence of variable finger postures was associated with borderline and abnormal visual-spatial perception (OR 20, 95% CI, 1.7-238; R(2) =0.39; p=0.018). Detailed aspects of motor development at 3 months of age are associated with cognition and behaviour, but not with motor outcome, in healthy children at early school age. Our findings suggest that early motor development may be the basis for later cognitive and behavioural performance. Since the associations were only moderate, possible environmental influences should be acknowledged. © 2014 Mac Keith Press.
Engagement of the Rat Hindlimb Motor Cortex across Natural Locomotor Behaviors.
DiGiovanna, Jack; Dominici, Nadia; Friedli, Lucia; Rigosa, Jacopo; Duis, Simone; Kreider, Julie; Beauparlant, Janine; van den Brand, Rubia; Schieppati, Marco; Micera, Silvestro; Courtine, Grégoire
2016-10-05
Contrary to cats and primates, cortical contribution to hindlimb locomotor movements is not critical in rats. However, the importance of the motor cortex to regain locomotion after neurological disorders in rats suggests that cortical engagement in hindlimb motor control may depend on the behavioral context. To investigate this possibility, we recorded whole-body kinematics, muscle synergies, and hindlimb motor cortex modulation in freely moving rats performing a range of natural locomotor procedures. We found that the activation of hindlimb motor cortex preceded gait initiation. During overground locomotion, the motor cortex exhibited consistent neuronal population responses that were synchronized with the spatiotemporal activation of hindlimb motoneurons. Behaviors requiring enhanced muscle activity or skilled paw placement correlated with substantial adjustment in neuronal population responses. In contrast, all rats exhibited a reduction of cortical activity during more automated behavior, such as stepping on a treadmill. Despite the facultative role of the motor cortex in the production of locomotion in rats, these results show that the encoding of hindlimb features in motor cortex dynamics is comparable in rats and cats. However, the extent of motor cortex modulations appears linked to the degree of volitional engagement and complexity of the task, reemphasizing the importance of goal-directed behaviors for motor control studies, rehabilitation, and neuroprosthetics. We mapped the neuronal population responses in the hindlimb motor cortex to hindlimb kinematics and hindlimb muscle synergies across a spectrum of natural locomotion behaviors. Robust task-specific neuronal population responses revealed that the rat motor cortex displays similar modulation as other mammals during locomotion. However, the reduced motor cortex activity during more automated behaviors suggests a relationship between the degree of engagement and task complexity. This relationship emphasizes the importance of the behavioral procedure to engage the motor cortex during motor control studies, gait rehabilitation, and locomotor neuroprosthetic developments in rats. Copyright © 2016 the authors 0270-6474/16/3610440-16$15.00/0.
Pump Coupling & Motor bearing damage detection using Condition Monitoring at DTPS
NASA Astrophysics Data System (ADS)
Bari, H. M.; Deshpande, A. A.; Jalkote, P. S.; Patil, S. S.
2012-05-01
This paper shares a success story out of the implementation of Co-ordinated Condition Monitoring techniques at DTPS, wherein imminent Mis-alignment of HT auxiliary BFP - 1B and Motor bearing failure of ID FAN - 1B was diagnosed. On 30/12/2010, Booster Pump DE horizontal reading increased from 4.8 to 5.1 and then upto 5.9 mm/sec. It was suspected that Booster pump was mis-aligned with Motor. To confirm misalignment, Phase Analysis was also done which showed that Coupling phase difference was 180 Degrees. Vibration & Phase Analysis helped in diagnosing the exact root cause of abnormity in advance, saving plant from huge losses which could have caused total cost of £ 104,071. On 06/01/2011, ID fan 1B Motor NDE & DE horizontal vibration readings deviated from 0.5 to 0.8 and 0.6 to 0.8 mm/sec (RMS) respectively. Noise level increased from 99.1 to 101.9 db. It was suspected that Motor bearings had loosened over the shaft. Meanwhile, after opening of Motor, Inner race of NDE side was found cracked and loosened over the shaft. Vibration Analysis & Noise Monitoring helped in diagnosing the exact root cause of abnormity in advance, saving plant from huge losses which could have caused total cost of £ 308,857.
Vollmar, Christian; O'Muircheartaigh, Jonathan; Barker, Gareth J; Symms, Mark R; Thompson, Pamela; Kumari, Veena; Duncan, John S; Janz, Dieter; Richardson, Mark P; Koepp, Matthias J
2011-06-01
Juvenile myoclonic epilepsy is the most frequent idiopathic generalized epilepsy syndrome. It is characterized by predominant myoclonic jerks of upper limbs, often provoked by cognitive activities, and typically responsive to treatment with sodium valproate. Neurophysiological, neuropsychological and imaging studies in juvenile myoclonic epilepsy have consistently pointed towards subtle abnormalities in the medial frontal lobes. Using functional magnetic resonance imaging with an executive frontal lobe paradigm, we investigated cortical activation patterns and interaction between cortical regions in 30 patients with juvenile myoclonic epilepsy and 26 healthy controls. With increasing cognitive demand, patients showed increasing coactivation of the primary motor cortex and supplementary motor area. This effect was stronger in patients still suffering from seizures, and was not seen in healthy controls. Patients with juvenile myoclonic epilepsy showed increased functional connectivity between the motor system and frontoparietal cognitive networks. Furthermore, we found impaired deactivation of the default mode network during cognitive tasks with persistent activation in medial frontal and central regions in patients. Coactivation in the motor cortex and supplementary motor area with increasing cognitive load and increased functional coupling between the motor system and cognitive networks provide an explanation how cognitive effort can cause myoclonic jerks in juvenile myoclonic epilepsy. The supplementary motor area represents the anatomical link between these two functional systems, and our findings may be the functional correlate of previously described structural abnormalities in the medial frontal lobe in juvenile myoclonic epilepsy.
Abnormal interhemispheric connectivity in male psychopathic offenders.
Hoppenbrouwers, Sylco S; De Jesus, Danilo R; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J; Schutter, Dennis J L G
2014-01-01
Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders.
Abnormal interhemispheric connectivity in male psychopathic offenders
Hoppenbrouwers, Sylco S.; De Jesus, Danilo R.; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J.; Schutter, Dennis J.L.G.
2014-01-01
Background Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. Methods We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. Results We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. Limitations The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. Conclusion To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders. PMID:23937798
Absence of Prenatal Forebrain Defects in the Dp(16)1Yey/+ Mouse Model of Down Syndrome
Goodliffe, Joseph W.; Olmos-Serrano, Jose Luis; Aziz, Nadine M.; Pennings, Jeroen L.A.; Guedj, Faycal; Bianchi, Diana W.
2016-01-01
Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16. SIGNIFICANCE STATEMENT Down syndrome (DS) leads to intellectual disability. Several mouse models have increased our understanding of the neuropathology of DS and are currently being used to test therapeutic strategies. A new mouse model that contains an expanded number of DS-related genes, known as Dp(16)1Yey/+ (Dp16), has been generated recently. We sought to determine whether the extended triplication creates a better phenocopy of DS-related brain pathologies. We measured embryonic development, forebrain maturation, and perinatal/adult behavior and revealed an absence of prenatal phenotypes in Dp16 fetal brain, but specific cellular and behavioral deficits after the first 2 postnatal weeks. These results uncover important differences in prenatal phenotype between Dp16 animals and humans with DS and other DS mouse models. PMID:26961948
Paumier, Katrina L.; Sukoff Rizzo, Stacey J.; Berger, Zdenek; Chen, Yi; Gonzales, Cathleen; Kaftan, Edward; Li, Li; Lotarski, Susan; Monaghan, Michael; Shen, Wei; Stolyar, Polina; Vasilyev, Dmytro; Zaleska, Margaret; D. Hirst, Warren; Dunlop, John
2013-01-01
Parkinson's disease (PD) pathology is characterized by the formation of intra-neuronal inclusions called Lewy bodies, which are comprised of alpha-synuclein (α-syn). Duplication, triplication or genetic mutations in α-syn (A53T, A30P and E46K) are linked to autosomal dominant PD; thus implicating its role in the pathogenesis of PD. In both PD patients and mouse models, there is increasing evidence that neuronal dysfunction occurs before the accumulation of protein aggregates (i.e., α-syn) and neurodegeneration. Characterization of the timing and nature of symptomatic dysfunction is important for understanding the impact of α-syn on disease progression. Furthermore, this knowledge is essential for identifying pathways and molecular targets for therapeutic intervention. To this end, we examined various functional and morphological endpoints in the transgenic mouse model expressing the human A53T α-syn variant directed by the mouse prion promoter at specific ages relating to disease progression (2, 6 and 12 months of age). Our findings indicate A53T mice develop fine, sensorimotor, and synaptic deficits before the onset of age-related gross motor and cognitive dysfunction. Results from open field and rotarod tests show A53T mice develop age-dependent changes in locomotor activity and reduced anxiety-like behavior. Additionally, digigait analysis shows these mice develop an abnormal gait by 12 months of age. A53T mice also exhibit spatial memory deficits at 6 and 12 months, as demonstrated by Y-maze performance. In contrast to gross motor and cognitive changes, A53T mice display significant impairments in fine- and sensorimotor tasks such as grooming, nest building and acoustic startle as early as 1–2 months of age. These mice also show significant abnormalities in basal synaptic transmission, paired-pulse facilitation and long-term depression (LTD). Combined, these data indicate the A53T model exhibits early- and late-onset behavioral and synaptic impairments similar to PD patients and may provide useful endpoints for assessing novel therapeutic interventions for PD. PMID:23936403
Obsessive-compulsive disorder: a disorder of pessimal (non-functional) motor behavior.
Zor, R; Keren, H; Hermesh, H; Szechtman, H; Mort, J; Eilam, D
2009-10-01
To determine whether in addition to repetitiveness, the motor rituals of patients with obsessive-compulsive disorder (OCD) involve reduced functionality due to numerous and measurable acts that are irrelevant and unnecessary for task completion. Comparing motor rituals of OCD patients with behavior of non-patient control individuals who were instructed to perform the same motor task. Obsessive-compulsive disorder behavior comprises abundant acts that were not performed by the controls. These acts seem unnecessary or even irrelevant for the task that the patients were performing, and therefore are termed 'non-functional'. Non-functional acts comprise some 60% of OCD motor behavior. Moreover, OCD behavior consists of short chains of functional acts bounded by long chains of non-functional acts. The abundance of irrelevant or unnecessary acts in OCD motor rituals represents reduced functionality in terms of task completion, typifying OCD rituals as pessimal behavior (antonym of optimal behavior).
30 CFR 18.48 - Circuit-interrupting devices.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., AND APPROVAL OF MINING PRODUCTS ELECTRIC MOTOR-DRIVEN MINE EQUIPMENT AND ACCESSORIES Construction and.... Such a switch shall be designed to prevent electrical connection to the machine frame when the cable is... motor in the event the belt is stopped, or abnormally slowed down. Note: Short transfer-type conveyors...
Shokouhi, Mahsa; Davis, Karen D; Moulin, Dwight E; Morley-Forster, Pat; Nielson, Warren R; Bureau, Yves; St Lawrence, Keith
2016-06-01
Pain disability is a major impediment to fibromyalgia (FM) patients' quality of life. Neuroimaging studies have demonstrated abnormal pain processing in FM. However, it is not known whether there are brain abnormalities linked to pain disability. Understanding neural correlates of pain disability in FM, independent from pain intensity, could provide a framework to guide future more efficient therapy strategies to improve patients' functional ability. We used arterial spin labeling to image cerebral blood flow (CBF) in 23 FM patients and 16 controls. Functional connectivity was also estimated using blood oxygenation level-dependent imaging to further investigate the possible underpinnings of the observed CBF changes. Among patients, CBF in the basal ganglia correlated negatively with pain disability index and positively with the overall impact of FM (Fibromyalgia Impact Questionnaire) but did not correlate with pain intensity. Whole-brain analysis revealed no CBF differences between the 2 groups; however, post hoc analysis in the basal ganglia showed CBF reductions mainly in the right putamen and right lateral globus pallidus in patients, likely reflecting the negative correlation with the pain disability index. However, the connectivity of the corresponding corticobasal ganglia-thalamus loop, that is, motor network (the connection between supplementary motor area, putamen, and thalamus) remained intact. Basal ganglia perfusion reflects long-term symptoms, including somatic and psychological components of FM rather than pain intensity. These CBF findings may reflect differences in behavioral and psychological responses between patients.
Motor neuronopathy with dropped hands and downbeat nystagmus: a distinctive disorder? A case report.
Thakore, Nimish J; Pioro, Erik P; Rucker, Janet C; Leigh, R John
2006-01-12
Eye movements are clinically normal in most patients with motor neuron disorders until late in the disease course. Rare patients are reported to show slow vertical saccades, impaired smooth pursuit, and gaze-evoked nystagmus. We report clinical and oculomotor findings in three patients with motor neuronopathy and downbeat nystagmus, a classic sign of vestibulocerebellar disease. All patients had clinical and electrodiagnostic features of anterior horn cell disease. Involvement of finger and wrist extensors predominated, causing finger and wrist drop. Bulbar or respiratory dysfunction did not occur. All three had clinically evident downbeat nystagmus worse on lateral and downgaze, confirmed on eye movement recordings using the magnetic search coil technique in two patients. Additional oculomotor findings included alternating skew deviation and intermittent horizontal saccadic oscillations, in one patient each. One patient had mild cerebellar atrophy, while the other two had no cerebellar or brainstem abnormality on neuroimaging. The disorder is slowly progressive, with survival up to 30 years from the time of onset. The combination of motor neuronopathy, characterized by early and prominent wrist and finger extensor weakness, and downbeat nystagmus with or without other cerebellar eye movement abnormalities may represent a novel motor neuron syndrome.
Motor neuronopathy with dropped hands and downbeat nystagmus: A distinctive disorder? A case report
Thakore, Nimish J; Pioro, Erik P; Rucker, Janet C; Leigh, R John
2006-01-01
Background Eye movements are clinically normal in most patients with motor neuron disorders until late in the disease course. Rare patients are reported to show slow vertical saccades, impaired smooth pursuit, and gaze-evoked nystagmus. We report clinical and oculomotor findings in three patients with motor neuronopathy and downbeat nystagmus, a classic sign of vestibulocerebellar disease. Case presentation All patients had clinical and electrodiagnostic features of anterior horn cell disease. Involvement of finger and wrist extensors predominated, causing finger and wrist drop. Bulbar or respiratory dysfunction did not occur. All three had clinically evident downbeat nystagmus worse on lateral and downgaze, confirmed on eye movement recordings using the magnetic search coil technique in two patients. Additional oculomotor findings included alternating skew deviation and intermittent horizontal saccadic oscillations, in one patient each. One patient had mild cerebellar atrophy, while the other two had no cerebellar or brainstem abnormality on neuroimaging. The disorder is slowly progressive, with survival up to 30 years from the time of onset. Conclusion The combination of motor neuronopathy, characterized by early and prominent wrist and finger extensor weakness, and downbeat nystagmus with or without other cerebellar eye movement abnormalities may represent a novel motor neuron syndrome. PMID:16409626
van Schie, Petra E M; Becher, Jules G; Dallmeijer, Annet J; Barkhof, Frederik; Van Weissenbruch, Mirjam M; Vermeulen, R Jeroen
2010-01-01
To investigate the predictive value of motor testing at 1 year for motor and mental outcome at 2 years after perinatal hypoxic-ischaemic encephalopathy (HIE) in term neonates. Motor and mental outcome at 2 years was assessed with the Bayley Scales of Infant Development, 2nd edition (BSID-II) in 32 surviving children (20 males, 12 females; mean gestational age 40.2 wk, SD 1.4; mean birthweight 3217g, SD 435) participating in a prospective cohort study of HIE. The predictive value of three motor tests (Alberta Infant Motor Scale [AIMS], BSID-II, and the Neurological Optimality Score [NOS]) at 1 year was analysed, in addition to predictions based on neonatal Sarnat staging and magnetic resonance imaging (MRI). Poor motor test results were defined as an AIMS z-score of <-2, a psychomotor developmental index of the BSID-II of <70, or a NOS of <26. Poor motor and poor mental outcome at 2 years was defined as a psychomotor developmental index or mental developmental index of the BSID-II of <70. Twelve children, all with Sarnat grade II, had a poor motor outcome and 12 children, of whom one had Sarnat grade I, had a poor mental outcome at 2 years. Nine children had cerebral palsy, of whom five had quadriplegia, three had dyskinesia, and one had hemiplegia. Poor motor tests at 1 year increased the probability of a poor motor outcome from 71% (range 92 to 100%), and a poor mental outcome from 59% (range 77 to 100%) in children with Sarnat grade II and abnormal MRI, assessed with the AIMS and BSID-II or NOS respectively. Additional motor testing at 1 year improves the prediction of motor and mental outcome at 2 years in children with Sarnat grade II and abnormal MRI.
Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment
Zhou, Joanne; Butler, Erin E.; Rose, Jessica
2017-01-01
Cerebral palsy (CP) is the most common movement disorder in children. A diagnosis of CP is often made based on abnormal muscle tone or posture, a delay in reaching motor milestones, or the presence of gait abnormalities in young children. Neuroimaging of high-risk neonates and of children diagnosed with CP have identified patterns of neurologic injury associated with CP, however, the neural underpinnings of common gait abnormalities remain largely uncharacterized. Here, we review the nature of the brain injury in CP, as well as the neuromuscular deficits and subsequent gait abnormalities common among children with CP. We first discuss brain injury in terms of mechanism, pattern, and time of injury during the prenatal, perinatal, or postnatal period in preterm and term-born children. Second, we outline neuromuscular deficits of CP with a focus on spastic CP, characterized by muscle weakness, shortened muscle-tendon unit, spasticity, and impaired selective motor control, on both a microscopic and functional level. Third, we examine the influence of neuromuscular deficits on gait abnormalities in CP, while considering emerging information on neural correlates of gait abnormalities and the implications for strategic treatment. This review of the neural basis of gait abnormalities in CP discusses what is known about links between the location and extent of brain injury and the type and severity of CP, in relation to the associated neuromuscular deficits, and subsequent gait abnormalities. Targeted treatment opportunities are identified that may improve functional outcomes for children with CP. By providing this context on the neural basis of gait abnormalities in CP, we hope to highlight areas of further research that can reduce the long-term, debilitating effects of CP. PMID:28367118
Esophageal motor activity in children with gastro-esophageal reflux disease and esophagitis.
Chitkara, Denesh K; Fortunato, Christine; Nurko, Samuel
2005-01-01
To evaluate esophageal body motor contractions occurring during esophageal reflux in pediatric patients with gastro-esophageal reflux disease (GERD). Patients referred for the evaluation of GERD who were evaluated with combined 24-hour pH probe and esophageal manometry test (MP24) were included. Patients were separated into the following groups: Group C -- normal pH probe and normal EGD; Group 1 -- abnormal pH probe and normal EGD; and Group 2 -- abnormal pH probe and EGD with histologic esophagitis. Esophageal motor function during reflux episodes was analyzed. Twenty-five patients were included. All had a normal stationary esophageal manometry. Patients in Groups 1 and 2 had significantly more gastroesophageal reflux by pH probe than Group C (P < 0.01). During the MP24, patients in Group 1 and 2 had significantly fewer contractions per minute pre-, during, and post-GER (P < 0.05). There were significant differences in the number of isolated and prolonged contractions (>7 sec) during prolonged GERD episodes >5 minutes (P < 0.05). Children with GERD have a decreased number and abnormal esophageal body contractions with esophageal reflux. This suggests that children with GERD with and without esophagitis have impaired esophageal body acid clearance.
Steinhausen, Hans-Christoph; Gavez, Silvia; Winkler Metzke, Christa
2005-03-01
The current study investigated psychosocial correlates of abnormal adolescent eating behavior at three times during adolescence and young adulthood and its association with psychiatric diagnosis in young adulthood in a community sample. Sixty-four (10.5%) high-risk subjects (mean age 15 years) with abnormal eating behavior were identified at Time 1, another 252 (16.9%) were identified at Time 2 (mean age 16.2 years), and 164 (16.9%) were identified at Time 3 (mean age 19.7 years) and compared with three control groups matched for age and gender. Dependent measures included emotional and behavioral problems, life events, coping capacities, self-related cognition, social network, and family functions. Outcome was measured additionally by structured psychiatric interviews, and stability of abnormal eating behavior was studied in a longitudinal sample of 330 subjects. Few subjects showed more than one of five criteria of abnormal eating behavior. High-risk subjects shared a very similar pattern at all three times. They were characterized by higher scores for emotional and behavioral problems, more life events including more negative impact, less active coping, lower self-esteem, and less family cohesion. Among 10 major psychiatric disorders, only clinical eating disorders at Time 3 shared a significant association with abnormal eating disorder at the same time whereas high-risk status at Times 1 and 2 did not predict any psychiatric disorder at Time 3. Stability of abnormal eating behavior across time was very low. Stability of abnormal eating behavior across time was very low. Abnormal eating behavior in adolescence and young adulthood is clearly associated with various indicators of psychosocial maladaption. In adolescence, it does not significantly predict any psychiatric disorder including eating disorder in young adulthood and it is predominantly a transient feature. (c) 2005 by Wiley Periodicals, Inc.
Caeyenberghs, Karen; Taymans, Tom; Wilson, Peter H; Vanderstraeten, Guy; Hosseini, Hadi; van Waelvelde, Hilde
2016-07-01
Children with autism spectrum disorders (ASD) often exhibit motor clumsiness (Developmental Coordination Disorder, DCD), i.e. they struggle with everyday tasks that require motor coordination like dressing, self-care, and participating in sport and leisure activities. Previous studies in these neurodevelopmental disorders have demonstrated functional abnormalities and alterations of white matter microstructural integrity in specific brain regions. These findings suggest that the global organization of brain networks is affected in DCD and ASD and support the hypothesis of a 'dys-connectivity syndrome' from a network perspective. No studies have compared the structural covariance networks between ASD and DCD in order to look for the signature of DCD independent of comorbid autism. Here, we aimed to address the question of whether abnormal connectivity in DCD overlaps that seen in autism or comorbid DCD-autism. Using graph theoretical analysis, we investigated differences in global and regional topological properties of structural brain networks in 53 children: 8 ASD children with DCD (DCD+ASD), 15 ASD children without DCD (ASD), 11 with DCD only, and 19 typically developing (TD) children. We constructed separate structural correlation networks based on cortical thickness derived from Freesurfer. The children were assessed on the Movement-ABC and the Beery Test of Visual Motor Integration. Behavioral results demonstrated that the DCD group and DCD+ASD group scored on average poorer than the TD and ASD groups on various motor measures. Furthermore, although the brain networks of all groups exhibited small-world properties, the topological architecture of the networks was significantly altered in children with ASD compared with DCD and TD. ASD children showed increased normalized path length and higher values of clustering coefficient. Also, paralimbic regions exhibited nodal clustering coefficient alterations in singular disorders. These changes were disorder-specific, and included alterations in clustering coefficient in the isthmus of the right cingulate gyrus and the pars orbitalis of the right inferior frontal gyrus in ASD children, and DCD-related increases in the lateral orbitofrontal cortex. Children meeting criteria for both DCD and ASD exhibited topological changes that were more widespread from those seen in children with only DCD, i.e. children with DCD+ASD showed alterations of clustering coefficient in (para)limbic regions, primary areas, and association areas. The DCD+ASD group showed changes in clustering coefficient in the left association cortex relative to the ASD group. Finally, the DCD+ASD group shared ASD-specific abnormalities in the pars orbitalis of right inferior frontal gyrus, which was hypothesized to reflect atypical emotional-cognitive processing. Our results provide evidence that DCD and ASD are neurodevelopmental disorders with a low degree of overlap in abnormalities in connectivity. The co-occurrence of DCD+ASD was also associated with a distinct topological pattern, highlighting the unique neural signature of comorbid neurodevelopmental disorders. © 2016 John Wiley & Sons Ltd.
Ang, D; Blondeau, K; Sifrim, D; Tack, J
2009-01-01
Barrett's esophagus has traditionally been regarded as the most severe end of the spectrum of gastroesophageal reflux disease and is of great clinical importance in view of the association with esophageal adenocarcinoma. Studies have documented high levels of esophageal acid exposure in Barrett's esophagus. Various pathogenetic mechanisms underlie this phenomenon. These include abnormalities in esophageal peristalsis, defective lower esophageal sphincter pressures, gastric dysmotility and bile reflux. Whilst these factors provide evidence for an acquired cause of Barrett's esophagus, an underlying genetic predisposition cannot be ruled out. Although the past decade has brought about many new discoveries in the pathogenesis of Barrett's esophagus, it has also added further controversy to this complex disorder. A detailed analysis of the gastrointestinal motor abnormalities occurring in Barrett's esophagus follows, with a review of the currently available literature and an update on this condition that continues to be of interest to the gastroenterologist.
Gaughan, Thomas; Buckley, Ashura; Hommer, Rebecca; Grant, Paul; Williams, Kyle; Leckman, James F.; Swedo, Susan E.
2016-01-01
Study Objectives: Polysomnographic investigation of sleep architecture in children presenting with pediatric acute-onset neuropsychiatric syndrome (PANS). Methods: Fifteen consecutive subjects meeting criteria for PANS (mean age = 7.2 y; range 3–10 y) underwent single-night full polysomnography (PSG) read by a pediatric neurologist. Results: Thirteen of 15 subjects (87%) had abnormalities detected with PSG. Twelve of 15 had evidence of rapid eye movement (REM) sleep motor disinhibition, as characterized by excessive movement, laughing, hand stereotypies, moaning, or the continuation of periodic limb movements during sleep (PLMS) into REM sleep. Conclusions: This study shows various forms of REM sleep motor disinhibition present in a population of children with PANS. Citation: Gaughan T, Buckley A, Hommer R, Grant P; Williams K, Leckman JF, Swedo SE. Rapid eye movement sleep abnormalities in children with pediatric acute-onset neuropsychiatric syndrome (PANS). J Clin Sleep Med 2016;12(7):1027–1032. PMID:27166296
Computerized measures of finger tapping: reliability, malingering and traumatic brain injury.
Hubel, Kerry A; Yund, E William; Herron, Timothy J; Woods, David L
2013-01-01
We analyzed computerized finger tapping metrics in four experiments. Experiment 1 showed tapping-rate differences associated with hand dominance, digits, sex, and fatigue that replicated those seen in a previous, large-scale community sample. Experiment 2 revealed test-retest correlations (r = .91) that exceeded those reported in previous tapping studies. Experiment 3 investigated subjects simulating symptoms of traumatic brain injury (TBI); 62% of malingering subjects produced abnormally slow tapping rates. A tapping-rate malingering index, based on rate-independent tapping patterns, provided confirmatory evidence of malingering in 48% of the subjects with abnormal tapping rates. Experiment 4 compared tapping in 24 patients with mild TBI (mTBI) and a matched control group; mTBI patients showed slowed tapping without evidence of malingering. Computerized finger tapping measures are reliable measures of motor speed, useful in detecting subjects performing with suboptimal effort, and are sensitive to motor abnormalities following mTBI.
Recording In Vivo Human Colonic Motility: What Have We Learnt Over the Past 100 Years?
Dinning, Phil G
To understand the abnormalities that underpin functional gut disorders we must first gain insight into the normal patterns of gut motility. While detailed information continually builds on the motor patterns (and mechanisms that control them) of the human esophagus and anorectum, our knowledge of normal and abnormal motility in the more inaccessible regions of the gut remains poor. This particularly true of the human colon. Investigation of in vivo colonic motor patterns is achieved through measures of transit (radiology, scintigraphy and, more recently, "smart pills") or by direct real-time recording of colonic contractility (intraluminal manometry). This short review will provide an overview of findings from the past and present and attempt to piece together the complex nature of colonic motor patterns. In doing so it will build a profile of human colonic motility and determine the likely mechanisms that control this motility.
Discharge rates in electromyography distinguish early between peripheral and central paresis.
Jürgens, Tim P; Puchner, Christoph; Schulte-Mattler, Wilhelm J
2012-10-01
Abnormally increased discharge rates (DRs) of motor unit potentials on concentric needle electromyography (CNEMG) indicate a loss of motor units in peripheral neurogenic lesions. To determine when increased DRs occur during the course of a peripheral nerve lesion, we retrospectively analyzed CNEMG recordings of 19 patients with acute weakness of peripheral origin. The initial CNEMG studies took place from 3.7 hours to 10 days after the onset of the lesion. Abnormally increased DRs (≥20/s) were found in all but 1 of the muscles in which MRC grade was <4. Peripheral neurogenic damage was confirmed in all patients thereafter. The DRs depended on neither the kind of lesion nor the time between onset and CNEMG examination. The measurement of DRs of motor unit potentials is helpful immediately after a sudden paresis of MRC grade 3 or worse to differentiate between a central and a peripheral lesion. Copyright © 2012 Wiley Periodicals, Inc.
Nucleus prepositus hypoglossi lesions produce a unique ocular motor syndrome
Kim, Sung-Hee; Zee, David S.; du Lac, Sascha; Kim, Hyo Jung
2016-01-01
Objective: To describe the ocular motor abnormalities in 9 patients with a lesion involving the nucleus prepositus hypoglossi (NPH), a key constituent of a vestibular-cerebellar-brainstem neural network that ensures that the eyes are held steady in all positions of gaze. Methods: We recorded eye movements, including the vestibulo-ocular reflex during head impulses, in patients with vertigo and a lesion involving the NPH. Results: Our patients showed an ipsilesional-beating spontaneous nystagmus, horizontal gaze-evoked nystagmus more intense on looking toward the ipsilesional side, impaired pursuit more to the ipsilesional side, central patterns of head-shaking nystagmus, contralateral eye deviation, and decreased vestibulo-ocular reflex gain during contralesionally directed head impulses. Conclusions: We attribute these findings to an imbalance in the NPH–inferior olive–flocculus–vestibular nucleus loop, and the ocular motor abnormalities provide a new brainstem localization for patients with acute vertigo. PMID:27733568
Sung, Hyun; Tandarich, Lauren C; Nguyen, Kenny; Hollenbeck, Peter J
2016-07-13
In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. Copyright © 2016 the authors 0270-6474/16/367375-17$15.00/0.
Sung, Hyun; Tandarich, Lauren C.; Nguyen, Kenny
2016-01-01
In neurons, the normal distribution and selective removal of mitochondria are considered essential for maintaining the functions of the large asymmetric cell and its diverse compartments. Parkin, a E3 ubiquitin ligase associated with familial Parkinson's disease, has been implicated in mitochondrial dynamics and removal in cells including neurons. However, it is not clear how Parkin functions in mitochondrial turnover in vivo, or whether Parkin-dependent events of the mitochondrial life cycle occur in all neuronal compartments. Here, using the live Drosophila nervous system, we investigated the involvement of Parkin in mitochondrial dynamics, distribution, morphology, and removal. Contrary to our expectations, we found that Parkin-deficient animals do not accumulate senescent mitochondria in their motor axons or neuromuscular junctions; instead, they contain far fewer axonal mitochondria, and these displayed normal motility behavior, morphology, and metabolic state. However, the loss of Parkin did produce abnormal tubular and reticular mitochondria restricted to the motor cell bodies. In addition, in contrast to drug-treated, immortalized cells in vitro, mature motor neurons rarely displayed Parkin-dependent mitophagy. These data indicate that the cell body is the focus of Parkin-dependent mitochondrial quality control in neurons, and argue that a selection process allows only healthy mitochondria to pass from cell bodies to axons, perhaps to limit the impact of mitochondrial dysfunction. SIGNIFICANCE STATEMENT Parkin has been proposed to police mitochondrial fidelity by binding to dysfunctional mitochondria via PTEN (phosphatase and tensin homolog)-induced putative kinase 1 (PINK1) and targeting them for autophagic degradation. However, it is unknown whether and how the PINK1/Parkin pathway regulates the mitochondrial life cycle in neurons in vivo. Using Drosophila motor neurons, we show that parkin disruption generates an abnormal mitochondrial network in cell bodies in vivo and reduces the number of axonal mitochondria without producing any defects in their axonal transport, morphology, or metabolic state. Furthermore, while cultured neurons display Parkin-dependent axonal mitophagy, we find this is vanishingly rare in vivo under normal physiological conditions. Thus, both the spatial distribution and mechanism of mitochondrial quality control in vivo differ substantially from those observed in vitro. PMID:27413149
Machado, Sergio; Cunha, Marlo; Velasques, Bruna; Minc, Daniel; Teixeira, Silmar; Domingues, Clayton A; Silva, Julio G; Bastos, Victor H; Budde, Henning; Cagy, Mauricio; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro
2010-10-01
Sensorimotor integration is defined as the capability of the central nervous system to integrate different sources of stimuli, and parallelly, to transform such inputs in motor actions. To review the basic principles of sensorimotor integration, such as, its neural bases and its elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects, and the abnormalities reported in the most common movement disorders, such as, Parkinson' disease, dystonia and stroke, like the cortical reorganization-related mechanisms. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but most of the data support a central mechanism. We found that the sensorimotor integration process plays a potential role in elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects and in occurrence of abnormalities in most common movement disorders and, moreover, play a potential role on the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of motor outputs consciously goal-directed.
Gastric motor dysfunctions in Parkinson's disease: Current pre-clinical evidence.
Pellegrini, Carolina; Antonioli, Luca; Colucci, Rocchina; Ballabeni, Vigilio; Barocelli, Elisabetta; Bernardini, Nunzia; Blandizzi, Corrado; Fornai, Matteo
2015-12-01
Parkinson's disease (PD) is associated with several non-motor symptoms, such as behavioral changes, urinary dysfunction, sleep disorders, fatigue and, above all, gastrointestinal (GI) dysfunction, including gastric dysmotility, constipation and anorectal dysfunction. Delayed gastric emptying, progressing to gastroparesis, is reported in up to 100% of patients with PD, and it occurs at all stages of the disease with severe consequences to the patient's quality of life. The presence of α-synuclein (α-syn) aggregates in myenteric neurons throughout the digestive tract, as well as morpho-functional alterations of the enteric nervous system (ENS), have been documented in PD. In particular, gastric dysmotility in PD has been associated with an impairment of the brain-gut axis, involving the efferent fibers of the vagal pathway projecting directly to the gastric myenteric plexus. The present review intends to provide an integrated overview of available knowledge on the possible role played by the ENS, considered as a semi-autonomous nervous network, in the pathophysiology of gastric dysmotility in PD. Particular attention has been paid review how translational evidence in humans and studies in pre-clinical models are allowing a better understanding of the functional, neurochemical and molecular alterations likely underlying gastric motor abnormalities occurring in PD. Copyright © 2015 Elsevier Ltd. All rights reserved.
The compensatory interaction between motor unit firing behavior and muscle force during fatigue
De Luca, Carlo J.; Kline, Joshua C.
2016-01-01
Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. PMID:27385798
The compensatory interaction between motor unit firing behavior and muscle force during fatigue.
Contessa, Paola; De Luca, Carlo J; Kline, Joshua C
2016-10-01
Throughout the literature, different observations of motor unit firing behavior during muscle fatigue have been reported and explained with varieties of conjectures. The disagreement amongst previous studies has resulted, in part, from the limited number of available motor units and from the misleading practice of grouping motor unit data across different subjects, contractions, and force levels. To establish a more clear understanding of motor unit control during fatigue, we investigated the firing behavior of motor units from the vastus lateralis muscle of individual subjects during a fatigue protocol of repeated voluntary constant force isometric contractions. Surface electromyographic decomposition technology provided the firings of 1,890 motor unit firing trains. These data revealed that to sustain the contraction force as the muscle fatigued, the following occurred: 1) motor unit firing rates increased; 2) new motor units were recruited; and 3) motor unit recruitment thresholds decreased. Although the degree of these adaptations was subject specific, the behavior was consistent in all subjects. When we compared our empirical observations with those obtained from simulation, we found that the fatigue-induced changes in motor unit firing behavior can be explained by increasing excitation to the motoneuron pool that compensates for the fatigue-induced decrease in muscle force twitch reported in empirical studies. Yet, the fundamental motor unit control scheme remains invariant throughout the development of fatigue. These findings indicate that the central nervous system regulates motor unit firing behavior by adjusting the operating point of the excitation to the motoneuron pool to sustain the contraction force as the muscle fatigues. Copyright © 2016 the American Physiological Society.
ERIC Educational Resources Information Center
Kirby, Kimberly C.; Holborn, Stephen W.
1986-01-01
Three preschool children participated in a behavioral training program to improve their gross-motor skills. Results indicated that the program improved the 10 targeted gross-motor skills and that improvements sometimes generalized to other settings. The program did not produce changes in fine-motor skills or social behaviors. Implications are…
Parkinson's disease: increased motor network activity in the absence of movement.
Ko, Ji Hyun; Mure, Hideo; Tang, Chris C; Ma, Yilong; Dhawan, Vijay; Spetsieris, Phoebe; Eidelberg, David
2013-03-06
We used a network approach to assess systems-level abnormalities in motor activation in humans with Parkinson's disease (PD). This was done by measuring the expression of the normal movement-related activation pattern (NMRP), a previously validated activation network deployed by healthy subjects during motor performance. In this study, NMRP expression was prospectively quantified in (15)O-water PET scans from a PD patient cohort comprised of a longitudinal early-stage group (n = 12) scanned at baseline and at two or three follow-up visits two years apart, and a moderately advanced group scanned on and off treatment with either subthalamic nucleus deep brain stimulation (n = 14) or intravenous levodopa infusion (n = 14). For each subject and condition, we measured NMRP expression during both movement and rest. Resting expression of the abnormal PD-related metabolic covariance pattern was likewise determined in the same subjects. NMRP expression was abnormally elevated (p < 0.001) in PD patients scanned in the nonmovement rest state. By contrast, network activity measured during movement did not differ from normal (p = 0.34). In the longitudinal cohort, abnormal increases in resting NMRP expression were evident at the earliest clinical stages (p < 0.05), which progressed significantly over time (p = 0.003). Analogous network changes were present at baseline in the treatment cohort (p = 0.001). These abnormalities improved with subthalamic nucleus stimulation (p < 0.005) but not levodopa (p = 0.25). In both cohorts, the changes in NMRP expression that were observed did not correlate with concurrent PD-related metabolic covariance pattern measurements (p > 0.22). Thus, the resting state in PD is characterized by changes in the activity of normal as well as pathological brain networks.
ERIC Educational Resources Information Center
Silva, V.; Campos, C.; Sá, A.; Cavadas, M.; Pinto, J.; Simões, P.; Machado, S.; Murillo-Rodríguez, E.; Barbosa-Rocha, N.
2017-01-01
Background: People with Down syndrome (DS) usually display reduced physical fitness (aerobic capacity, muscle strength and abnormal body composition), motor proficiency impairments (balance and postural control) and physical functional limitations. Exergames can be an appealing alternative to enhance exercise engagement and compliance, whilst…
Stimulus Timing by People with Parkinson's Disease
ERIC Educational Resources Information Center
Wearden, J. H.; Smith-Spark, J. H.; Cousins, Rosanna; Edelstyn, N. M. J.; Cody, F. W. J.; O'Boyle, D. J.
2008-01-01
Previous literature suggests that Parkinson's disease is marked by deficits in timed behaviour. However, the majority of studies of central timing mechanisms in patients with Parkinson's disease have used timing tasks with a motor component. Since the motor abnormalities are a defining feature of the condition, the status of timing in Parkinson's…
Implicit Procedural Learning in Fragile X and Down Syndrome
ERIC Educational Resources Information Center
Bussy, G.; Charrin, E.; Brun, A.; Curie, A.; des Portes, V.
2011-01-01
Background: Procedural learning refers to rule-based motor skill learning and storage. It involves the cerebellum, striatum and motor areas of the frontal lobe network. Fragile X syndrome, which has been linked with anatomical abnormalities within the striatum, may result in implicit procedural learning deficit. Methods: To address this issue, a…
ERIC Educational Resources Information Center
Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.
2010-01-01
Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…
Alaverdashvili, Mariam; Hackett, Mark J; Caine, Sally; Paterson, Phyllis G
2017-04-01
While protein-energy malnutrition in the adult has been reported to induce motor abnormalities and exaggerate motor deficits caused by stroke, it is not known if alterations in mature cortical neurons contribute to the functional deficits. Therefore, we explored if PEM in adult rats provoked changes in the biochemical profile of neurons in the forelimb and hindlimb regions of the motor cortex. Fourier transform infrared spectroscopic imaging using a synchrotron generated light source revealed for the first time altered lipid composition in neurons and subcellular domains (cytosol and nuclei) in a cortical layer and region-specific manner. This change measured by the area under the curve of the δ(CH 2 ) band may indicate modifications in membrane fluidity. These PEM-induced biochemical changes were associated with the development of abnormalities in forelimb use and posture. The findings of this study provide a mechanism by which PEM, if not treated, could exacerbate the course of various neurological disorders and diminish treatment efficacy. Copyright © 2017 Elsevier Inc. All rights reserved.
Neuropathology and Neurochemistry of Nonmotor Symptoms in Parkinson's Disease
Ferrer, Isidro
2011-01-01
Parkinson disease (PD) is no longer considered a complex motor disorder characterized by Parkinsonism but rather a systemic disease with variegated non-motor deficits and neurological symptoms, including impaired olfaction, autonomic failure, cognitive impairment, and psychiatric symptoms. Many of these alterations appear before or in parallel with motor deficits and then worsen with disease progression. Although there is a close relation between motor symptoms and the presence of Lewy bodies (LBs) and neurites filled with abnormal α-synuclein, other neurological alterations are independent of the amount of α-synuclein inclusions in neurons and neurites, thereby indicating that different mechanisms probably converge in the degenerative process. Involvement of the cerebral cortex that may lead to altered behaviour and cognition are related to several convergent factors such as (a) abnormal α-synuclein and other proteins at the synapses, rather than LBs and neurites, (b) impaired dopaminergic, noradrenergic, cholinergic and serotoninergic cortical innervation, and (c) altered neuronal function resulting from reduced energy production and increased energy demands. These alterations appear at early stages of the disease and may precede by years the appearance of cell loss and cortical atrophy. PMID:21403906
Tyramine Actions on Drosophila Flight Behavior Are Affected by a Glial Dehydrogenase/Reductase.
Ryglewski, Stefanie; Duch, Carsten; Altenhein, Benjamin
2017-01-01
The biogenic amines octopamine (OA) and tyramine (TA) modulate insect motor behavior in an antagonistic manner. OA generally enhances locomotor behaviors such as Drosophila larval crawling and flight, whereas TA decreases locomotor activity. However, the mechanisms and cellular targets of TA modulation of locomotor activity are incompletely understood. This study combines immunocytochemistry, genetics and flight behavioral assays in the Drosophila model system to test the role of a candidate enzyme for TA catabolism, named Nazgul (Naz), in flight motor behavioral control. We hypothesize that the dehydrogenase/reductase Naz represents a critical step in TA catabolism. Immunocytochemistry reveals that Naz is localized to a subset of Repo positive glial cells with cell bodies along the motor neuropil borders and numerous positive Naz arborizations extending into the synaptic flight motor neuropil. RNAi knock down of Naz in Repo positive glial cells reduces Naz protein level below detection level by Western blotting. The resulting consequence is a reduction in flight durations, thus mimicking known motor behavioral phenotypes as resulting from increased TA levels. In accord with the interpretation that reduced TA degradation by Naz results in increased TA levels in the flight motor neuropil, the motor behavioral phenotype can be rescued by blocking TA receptors. Our findings indicate that TA modulates flight motor behavior by acting on central circuitry and that TA is normally taken up from the central motor neuropil by Repo-positive glial cells, desaminated and further degraded by Naz.
Tyramine Actions on Drosophila Flight Behavior Are Affected by a Glial Dehydrogenase/Reductase
Ryglewski, Stefanie; Duch, Carsten; Altenhein, Benjamin
2017-01-01
The biogenic amines octopamine (OA) and tyramine (TA) modulate insect motor behavior in an antagonistic manner. OA generally enhances locomotor behaviors such as Drosophila larval crawling and flight, whereas TA decreases locomotor activity. However, the mechanisms and cellular targets of TA modulation of locomotor activity are incompletely understood. This study combines immunocytochemistry, genetics and flight behavioral assays in the Drosophila model system to test the role of a candidate enzyme for TA catabolism, named Nazgul (Naz), in flight motor behavioral control. We hypothesize that the dehydrogenase/reductase Naz represents a critical step in TA catabolism. Immunocytochemistry reveals that Naz is localized to a subset of Repo positive glial cells with cell bodies along the motor neuropil borders and numerous positive Naz arborizations extending into the synaptic flight motor neuropil. RNAi knock down of Naz in Repo positive glial cells reduces Naz protein level below detection level by Western blotting. The resulting consequence is a reduction in flight durations, thus mimicking known motor behavioral phenotypes as resulting from increased TA levels. In accord with the interpretation that reduced TA degradation by Naz results in increased TA levels in the flight motor neuropil, the motor behavioral phenotype can be rescued by blocking TA receptors. Our findings indicate that TA modulates flight motor behavior by acting on central circuitry and that TA is normally taken up from the central motor neuropil by Repo-positive glial cells, desaminated and further degraded by Naz. PMID:29021745
Tormos, José María; Barrios, Carlos; Pascual-Leone, Alvaro
2009-01-01
The aetiology of idiopathic scoliosis (IS) remains unknown; however, there is a growing body of evidence suggesting that the spine deformity could be the expression of a subclinical nervous system disorder. A defective sensory input or an anomalous sensorimotor integration may lead to an abnormal postural tone and therefore the development of a spine deformity. Inhibition of the motor cortico-cortical excitability is abnormal in dystonia. Therefore, the study of cortico-cortical inhibition may shed some insight into the dystonia hypothesis regarding the pathophysiology of IS. Paired pulse transcranial magnetic stimulation was used to study cortico-cortical inhibition and facilitation in nine adolescents with IS, five teenagers with congenital scoliosis (CS) and eight healthy age-matched controls. The effect of a previous conditioning stimulus (80% intensity of resting motor threshold) on the amplitude of the motor-evoked potential induced by the test stimulus (120% of resting motor threshold) was examined at various interstimulus intervals (ISIs) in both abductor pollicis brevis muscles. The results of healthy adolescents and those with CS showed a marked inhibitory effect of the conditioning stimulus on the response to the test stimulus at interstimulus intervals shorter than 6 ms. These findings do not differ from those reported for normal adults. However, children with IS revealed an abnormally reduced cortico-cortical inhibition at the short ISIs. Cortico-cortical inhibition was practically normal on the side of the scoliotic convexity while it was significantly reduced on the side of the scoliotic concavity. In conclusion, these findings support the hypothesis that a dystonic dysfunction underlies in IS. Asymmetrical cortical hyperexcitability may play an important role in the pathogenesis of IS and represents an objective neurophysiological finding that could be used clinically. PMID:20033462
Nurko, Samuel; Rosen, Rachel; Furuta, Glenn T
2009-12-01
The pathophysiology of dysphagia in patients with eosinophilic esophagitis (EoE) is unknown but may be related to abnormal esophageal motor function. Symptoms rarely occur during stationary esophageal manometry, so it has been difficult to establish an association between symptoms and motor events. Our aim was to evaluate esophageal motor function in children with EoE with the use of stationary manometry and ambulatory prolonged esophageal manometry and pH-metry (PEMP). PEMP was performed in children with EoE and compared with controls and children with gastroesophageal reflux disease (GERD). Peristalsis was considered effective when the esophageal contractions had a normal amplitude and propagation. Results are expressed as mean+/-s.e. Seventeen patients with EoE, 13 with GERD, and 11 controls were studied. Values are expressed as mean+/-s.e. Stationary manometry identified abnormal peristalsis in 41% of children with EoE. During PEMP, children with EoE had an increased number of isolated (16.7+/-3.8 vs. 9.5+/-1.6 vs. 6.5+/-1.1; P<0.03) and high-amplitude contractions (4.1+/-1.2 vs. 1.8+/-0.8 vs. 0.1+/-0.1; P<0.03), and higher percentage ineffective peristalsis both during fasting (70.5%+/-2.5 vs. 57.8%+/-3.0 vs. 53.8%+/-1.9; P<0.05) and during meals (68.4+/-3.4 vs. 55.3+/-2.8 vs. 48.1+/-2.8; P<0.05) when compared with children with GERD and controls. Thirteen patients with EoE experienced 21 episodes of dysphagia, and all correlated with simultaneous abnormal motor function. PEMP allowed the detection of ineffective peristalsis in children with EoE. Symptoms observed in children with EoE may be related to esophageal motor dysfunction.
Abnormal cortical synaptic plasticity in primary motor area in progressive supranuclear palsy.
Conte, Antonella; Belvisi, Daniele; Bologna, Matteo; Ottaviani, Donatella; Fabbrini, Giovanni; Colosimo, Carlo; Williams, David R; Berardelli, Alfredo
2012-03-01
No study has yet investigated whether cortical plasticity in primary motor area (M1) is abnormal in patients with progressive supranuclear palsy (PSP). We studied M1 plasticity in 15 PSP patients and 15 age-matched healthy subjects. We used intermittent theta-burst stimulation (iTBS) to investigate long-term potentiation (LTP) and continuous TBS (cTBS) to investigate long-term depression (LTD)-like cortical plasticity in M1. Ten patients underwent iTBS again 1 year later. We also investigated short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in M1 with paired-pulse transcranial magnetic stimulation, tested H reflex from upper limb flexor muscles before and after iTBS, and measured motor evoked potential (MEP) input-output (I/O) curves before and after iTBS. iTBS elicited a significantly larger MEP facilitation after iTBS in patients than in healthy subjects. Whereas in healthy subjects, cTBS inhibited MEP, in patients it significantly facilitated MEPs. In patients, SICI was reduced, whereas ICF was normal. H reflex size remained unchanged after iTBS. Patients had steeper MEP I/O slopes than healthy subjects at baseline and became even more steeper after iTBS only in patients. The iTBS-induced abnormal MEP facilitation in PSP persisted at 1-year follow-up. In conclusion, patients with PSP have abnormal M1 LTP/LTD-like plasticity. The enhanced LTP-like cortical synaptic plasticity parallels disease progression.
Nair, Aarti; Treiber, Jeffrey M; Shukla, Dinesh K; Shih, Patricia; Müller, Ralph-Axel
2013-06-01
The thalamus plays crucial roles in the development and mature functioning of numerous sensorimotor, cognitive and attentional circuits. Currently limited evidence suggests that autism spectrum disorder may be associated with thalamic abnormalities, potentially related to sociocommunicative and other impairments in this disorder. We used functional connectivity magnetic resonance imaging and diffusion tensor imaging probabilistic tractography to study the functional and anatomical integrity of thalamo-cortical connectivity in children and adolescents with autism spectrum disorder and matched typically developing children. For connectivity with five cortical seeds (prefontal, parieto-occipital, motor, somatosensory and temporal), we found evidence of both anatomical and functional underconnectivity. The only exception was functional connectivity with the temporal lobe, which was increased in the autism spectrum disorders group, especially in the right hemisphere. However, this effect was robust only in partial correlation analyses (partialling out time series from other cortical seeds), whereas findings from total correlation analyses suggest that temporo-thalamic overconnectivity in the autism group was only relative to the underconnectivity found for other cortical seeds. We also found evidence of microstructural compromise within the thalamic motor parcel, associated with compromise in tracts between thalamus and motor cortex, suggesting that the thalamus may play a role in motor abnormalities reported in previous autism studies. More generally, a number of correlations of diffusion tensor imaging and functional connectivity magnetic resonance imaging measures with diagnostic and neuropsychological scores indicate involvement of abnormal thalamocortical connectivity in sociocommunicative and cognitive impairments in autism spectrum disorder.
Wali, Ahmad; Kanwar, Dureshahwar; Khan, Safoora A; Khan, Sara
2017-12-01
Acute inflammatory demyelinating polyradiculoneuropathy (AIDP) and acute motor axonal neuropathy are the most common variants of Guillian-Barre syndrome documented in the Asian population. However, the variability of early neurophysiologic findings in the Asian population compared to western data has not been documented. Eighty-seven cases of AIDP were retrospectively reviewed for their demographic, clinical, electrophysiological, and laboratory data. Mean age of subjects was 31 ± 8 years with males more commonly affected. Motor symptoms (97%) at presentation predominated. Common early nerve conduction findings included low motor amplitudes (85%), recordable sural sensory responses (85%), and absent H-reflex responses (65%). Prolonged F-latencies were found most commonly in posterior tibial nerves (23%) in the lower limbs and median and ulnar nerves (18%) in the upper limbs. Blink reflex (BR) studies were performed in 57 patients and were abnormal in 80% of those with clinical facial weakness and in 17 of 52 patients (33%) with no clinical cranial nerve signs, suggesting subclinical cranial nerve involvement. Abnormal motor and sensory amplitudes are seen early. Prolonged distal latencies, temporal dispersion/conduction blocks and sural sparing pattern are other common early nerve conduction study findings of AIDP seen in the Pakistani population. There are no significant differences in abnormalities of conduction velocities and delayed reflex responses compared to published data. The BR can help in the early diagnosis of AIDP. © 2017 Peripheral Nerve Society.
Wandschneider, Britta; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Duncan, John S.
2014-01-01
Juvenile myoclonic epilepsy is a heritable idiopathic generalized epilepsy syndrome, characterized by myoclonic jerks and frequently triggered by cognitive effort. Impairment of frontal lobe cognitive functions has been reported in patients with juvenile myoclonic epilepsy and their unaffected siblings. In a recent functional magnetic resonance imaging study we reported abnormal co-activation of the motor cortex and increased functional connectivity between the motor system and prefrontal cognitive networks during a working memory paradigm, providing an underlying mechanism for cognitively triggered jerks. In this study, we used the same task in 15 unaffected siblings (10 female; age range 18–65 years, median 40) of 11 of those patients with juvenile myoclonic epilepsy (six female; age range 22–54 years, median 35) and compared functional magnetic resonance imaging activations with 20 age- and gender-matched healthy control subjects (12 female; age range 23–46 years, median 30.5). Unaffected siblings showed abnormal primary motor cortex and supplementary motor area co-activation with increasing cognitive load, as well as increased task-related functional connectivity between motor and prefrontal cognitive networks, with a similar pattern to patients (P < 0.001 uncorrected; 20-voxel threshold extent). This finding in unaffected siblings suggests that altered motor system activation and functional connectivity is not medication- or seizure-related, but represents a potential underlying mechanism for impairment of frontal lobe functions in both patients and siblings, and so constitutes an endophenotype of juvenile myoclonic epilepsy. PMID:25001494
Primary motor cortex of the parkinsonian monkey: altered encoding of active movement
Pasquereau, Benjamin; DeLong, Mahlon R.
2016-01-01
Abnormalities in the movement-related activation of the primary motor cortex (M1) are thought to be a major contributor to the motor signs of Parkinson’s disease. The existing evidence, however, variably indicates that M1 is under-activated with movement, overactivated (due to a loss of functional specificity) or activated with abnormal timing. In addition, few models consider the possibility that distinct cortical neuron subtypes may be affected differently. Those gaps in knowledge were addressed by studying the extracellular activity of antidromically-identified lamina 5b pyramidal-tract type neurons (n = 153) and intratelencephalic-type corticostriatal neurons (n = 126) in the M1 of two monkeys as they performed a step-tracking arm movement task. We compared movement-related discharge before and after the induction of parkinsonism by administration of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and quantified the spike rate encoding of specific kinematic parameters of movement using a generalized linear model. The fraction of M1 neurons with movement-related activity declined following MPTP but only marginally. The strength of neuronal encoding of parameters of movement was reduced markedly (mean 29% reduction in the coefficients from the generalized linear model). This relative decoupling of M1 activity from kinematics was attributable to reductions in the coefficients that estimated the spike rate encoding of movement direction (−22%), speed (−40%), acceleration (−49%) and hand position (−33%). After controlling for MPTP-induced changes in motor performance, M1 activity related to movement itself was reduced markedly (mean 36% hypoactivation). This reduced activation was strong in pyramidal tract-type neurons (−50%) but essentially absent in corticostriatal neurons. The timing of M1 activation was also abnormal, with earlier onset times, prolonged response durations, and a 43% reduction in the prevalence of movement-related changes beginning in the 150-ms period that immediately preceded movement. Overall, the results are consistent with proposals that under-activation and abnormal timing of movement-related activity in M1 contribute to parkinsonian motor signs but are not consistent with the idea that a loss of functional specificity plays an important role. Given that pyramidal tract-type neurons form the primary efferent pathway that conveys motor commands to the spinal cord, the dysfunction of movement-related activity in pyramidal tract-type neurons is likely to be a central factor in the pathophysiology of parkinsonian motor signs. PMID:26490335
Behavioural and neural basis of anomalous motor learning in children with autism.
Marko, Mollie K; Crocetti, Deana; Hulst, Thomas; Donchin, Opher; Shadmehr, Reza; Mostofsky, Stewart H
2015-03-01
Autism spectrum disorder is a developmental disorder characterized by deficits in social and communication skills and repetitive and stereotyped interests and behaviours. Although not part of the diagnostic criteria, individuals with autism experience a host of motor impairments, potentially due to abnormalities in how they learn motor control throughout development. Here, we used behavioural techniques to quantify motor learning in autism spectrum disorder, and structural brain imaging to investigate the neural basis of that learning in the cerebellum. Twenty children with autism spectrum disorder and 20 typically developing control subjects, aged 8-12, made reaching movements while holding the handle of a robotic manipulandum. In random trials the reach was perturbed, resulting in errors that were sensed through vision and proprioception. The brain learned from these errors and altered the motor commands on the subsequent reach. We measured learning from error as a function of the sensory modality of that error, and found that children with autism spectrum disorder outperformed typically developing children when learning from errors that were sensed through proprioception, but underperformed typically developing children when learning from errors that were sensed through vision. Previous work had shown that this learning depends on the integrity of a region in the anterior cerebellum. Here we found that the anterior cerebellum, extending into lobule VI, and parts of lobule VIII were smaller than normal in children with autism spectrum disorder, with a volume that was predicted by the pattern of learning from visual and proprioceptive errors. We suggest that the abnormal patterns of motor learning in children with autism spectrum disorder, showing an increased sensitivity to proprioceptive error and a decreased sensitivity to visual error, may be associated with abnormalities in the cerebellum. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wolf, R C; Sambataro, F; Vasic, N; Depping, M S; Thomann, P A; Landwehrmeyer, G B; Süssmuth, S D; Orth, M
2014-11-01
Functional magnetic resonance imaging (fMRI) of multiple neural networks during the brain's 'resting state' could facilitate biomarker development in patients with Huntington's disease (HD) and may provide new insights into the relationship between neural dysfunction and clinical symptoms. To date, however, very few studies have examined the functional integrity of multiple resting state networks (RSNs) in manifest HD, and even less is known about whether concomitant brain atrophy affects neural activity in patients. Using MRI, we investigated brain structure and RSN function in patients with early HD (n = 20) and healthy controls (n = 20). For resting-state fMRI data a group-independent component analysis identified spatiotemporally distinct patterns of motor and prefrontal RSNs of interest. We used voxel-based morphometry to assess regional brain atrophy, and 'biological parametric mapping' analyses to investigate the impact of atrophy on neural activity. Compared with controls, patients showed connectivity changes within distinct neural systems including lateral prefrontal, supplementary motor, thalamic, cingulate, temporal and parietal regions. In patients, supplementary motor area and cingulate cortex connectivity indices were associated with measures of motor function, whereas lateral prefrontal connectivity was associated with cognition. This study provides evidence for aberrant connectivity of RSNs associated with motor function and cognition in early manifest HD when controlling for brain atrophy. This suggests clinically relevant changes of RSN activity in the presence of HD-associated cortical and subcortical structural abnormalities.
A dual-learning paradigm can simultaneously train multiple characteristics of walking
Toliver, Alexis; Bastian, Amy J.
2016-01-01
Impairments in human motor patterns are complex: what is often observed as a single global deficit (e.g., limping when walking) is actually the sum of several distinct abnormalities. Motor adaptation can be useful to teach patients more normal motor patterns, yet conventional training paradigms focus on individual features of a movement, leaving others unaddressed. It is known that under certain conditions, distinct movement components can be simultaneously adapted without interference. These previous “dual-learning” studies focused solely on short, planar reaching movements, yet it is unknown whether these findings can generalize to a more complex behavior like walking. Here we asked whether a dual-learning paradigm, incorporating two distinct motor adaptation tasks, can be used to simultaneously train multiple components of the walking pattern. We developed a joint-angle learning task that provided biased visual feedback of sagittal joint angles to increase peak knee or hip flexion during the swing phase of walking. Healthy, young participants performed this task independently or concurrently with another locomotor adaptation task, split-belt treadmill adaptation, where subjects adapted their step length symmetry. We found that participants were able to successfully adapt both components of the walking pattern simultaneously, without interference, and at the same rate as adapting either component independently. This leads us to the interesting possibility that combining rehabilitation modalities within a single training session could be used to help alleviate multiple deficits at once in patients with complex gait impairments. PMID:26961100
Chen, Chien-Yi; Noble-Haeusslein, Linda J; Ferriero, Donna; Semple, Bridgette D
2013-01-01
Traumatic brain injury in children commonly involves the frontal lobes and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here, we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p)21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 or 7 days later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to the bregma. While cell death and accumulated β-amyloid precursor protein were characteristic features of the pericontusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory likely reflects several variables, including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development. © 2013 S. Karger AG, Basel.
Chen, Chien-Yi; Noble-Haeusslein, Linda J; Ferriero, Donna; Semple, Bridgette D
2014-01-01
Traumatic brain injury in children commonly involves the frontal lobes, and is associated with distinct structural and behavioral changes. Despite the clinical significance of injuries localized to this region during brain development, the mechanisms underlying secondary damage and long-term recovery are poorly understood. Here we have characterized the first model of unilateral focal traumatic injury to the developing frontal lobe. Male C57Bl/6J mice at postnatal day (p) 21, an age approximating a toddler-aged child, received a controlled cortical impact or sham surgery to the left frontal lobe and were euthanized 1 and 7 d later. A necrotic cavity and local inflammatory response were largely confined to the unilateral frontal lobe, dorsal corpus callosum and striatum anterior to Bregma. While cell death and accumulated beta-amyloid precursor protein were characteristic features of the peri-contusional motor cortex, corpus callosum, cingulum and dorsal striatum, underlying structures including the hippocampus showed no overt pathology. To determine the long-term functional consequences of injury at p21, two additional cohorts were subjected to a battery of behavioral tests in adolescence (p35-45) or adulthood (p70-80). In both cohorts, brain-injured mice showed normal levels of anxiety, sociability, spatial learning and memory. The signature phenotypic features were deficits in motor function and motor learning, coincident with a reduction in ipsilateral cortical brain volumes. Together, these findings demonstrate classic morphological features of a focal traumatic injury, including early cell death and axonal injury, and long-term volumetric loss of cortical volumes. The presence of deficits in sensorimotor function and coordination in the absence of abnormal findings related to anxiety, sociability and memory, likely reflect several variables including the unique location of the injury and the emergence of favorable compensatory mechanisms during subsequent brain development. PMID:24247103
Rebound nystagmus: EOG analysis of a case with a floccular tumour.
Yamazaki, A; Zee, D S
1979-01-01
Eye movements were recorded and quantitatively analysed in a patient with a tumour initially involving the cerebellar flocculus. Ocular motor abnormalities included (1) impaired smooth pursuit, (2) impaired cancellation of the vestibulo-ocular reflex when fixating an object rotating with the head, and (3) gaze paretic and rebound nystagmus. Comparable findings have been reported in monkeys with experimental floccular lesions. The rebound nystagmus (but not the other ocular motor abnormalities) disappeared when the tumour appeared to invade the brain stem in the region near the vestibular nuclei. This finding suggests that the floccular lesion unmasked a bias which created rebound nystagmus and that the bias probably arose in the vestibular nuclei. PMID:508695
Chen, Chao-Ying; Lo, Warren D; Heathcock, Jill C
2013-03-01
Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD) were assessed from 2 to 7 months of age. The following variables were analyzed: percentage of time in midline and fine and gross motor scores on the Bayley Scales of Infant Development (BSID-III). Infants with neonatal stroke demonstrated poor performance in midline behaviors and fine and gross motor scores on the BSID-III. These results suggest that infants with NS have poor midline behaviors and motor skill development early in infancy. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pedapati, Ernest V; Gilbert, Donald L; Erickson, Craig A; Horn, Paul S; Shaffer, Rebecca C; Wink, Logan K; Laue, Cameron S; Wu, Steve W
2016-09-01
This case-control study investigated the use of a low-intensity repetitive transcranial magnetic stimulation (rTMS) protocol to measure motor cortex (M1) plasticity in youth with autism spectrum disorder (ASD) compared with typically developing children (TDC). We hypothesized that impairments in long-term potentiation-like properties represent a neurophysiological biomarker of abnormal cortical function in ASD. We studied youth with ASD aged 11-18 years and matched controls (TDC). Intermittent theta burst stimulation (iTBS) was delivered to the dominant M1 at an intensity of 70% of resting motor threshold. Suprathreshold single-pulse TMS was performed to compare amplitudes of motor-evoked potentials (MEP) measured from surface electromyography electrodes on a target muscle before (20 pulses) and after (10 pulses/time point) iTBS at predefined timepoints (up to 30 minutes) to measure any potentiation effects. A linear mixed model was used to examine group differences in MEP amplitudes over time following iTBS. Nine youth with ASD (mean age 15.6; 7 males; 6 right-hand dominant) and 9 TDC (mean age 14.5; 5 males; 9 right-hand dominant) participated. All subjects tolerated the procedure well. Both groups had a mean increase in excitability after iTBS for 30 minutes; however, the time course of excitability changes differed (F9,144 = 2.05; p = 0.038). Post-hoc testing identified a significant decrease in amplitude of the ASD group at 20 minutes following iTBS compared with the TDC after correcting for multiple comparisons. In this study, we demonstrate early evidence for a potential physiological biomarker of cortical plasticity in youth with ASD using a rapid low-intensity rTMS protocol with a discriminate measure at 20 minutes following stimulation. The procedure was well tolerated by all 18 participants. Future work will include modification of the protocol to improve the ability to distinguish subtypes of ASD based on behavioral and cognitive testing.
Neurological soft signs in individuals with pathological gambling.
Elman, Igor; Gurvits, Tamara V; Tschibelu, Evelyne; Spring, Justin D; Lasko, Natasha B; Pitman, Roger K
2013-01-01
Increased neurological soft signs (NSSs) have been found in a number of neuropsychiatric syndromes, including chemical addiction. The present study examined NSSs related to perceptual-motor and visuospatial processing in a behavioral addiction viz., pathological gambling (PG). As compared to mentally healthy individuals, pathological gamblers displayed significantly poorer ability to copy two- and three-dimensional figures, to recognize objects against a background noise, and to orient in space on a road-map test. Results indicated that PG is associated with subtle cerebral cortical abnormalities. Further prospective clinical research is needed to address the NSSs' origin and chronology (e.g., predate or follow the development of PG) as well as their response to therapeutic interventions and/or their ability to predict such a response.
ERIC Educational Resources Information Center
Sapir, Shimon
2014-01-01
Purpose: Motor speech abnormalities are highly common and debilitating in individuals with idiopathic Parkinson's disease (IPD). These abnormalities, collectively termed hypokinetic dysarthria (HKD), have been traditionally attributed to hypokinesia and bradykinesia secondary to muscle rigidity and dopamine deficits. However, the role of…
Functional Disturbances Within Frontostriatal Circuits Across Multiple Childhood Psychopathologies
Marsh, Rachel; Maia, Tiago V.; Peterson, Bradley S.
2009-01-01
Objective Neuroimaging studies of healthy individuals inform us about the normative maturation of the frontostriatal circuits that subserve self-regulatory control processes. Findings from these studies can be used as a reference frame against which to compare the aberrant development of these processes in individuals across a wide range of childhood psychopathologies. Method The authors reviewed extensive neuroimaging evidence for the presence of abnormalities in frontostriatal circuits in children and adults with Tourette’s syndrome and obsessive-compulsive disorder (OCD) as well as a more limited number of imaging studies of adolescents and adults with anorexia nervosa or bulimia nervosa that, together, implicate dysregulation of frontostriatal control systems in the pathogenesis of these eating disorders. Results The presence of an impaired capacity for self-regulatory control that derives from abnormal development of frontostriatal circuits likely interacts in similar ways with normally occurring somatic sensations and motor urges, intrusive thoughts, sensations of hunger, and preoccupation with body shape and weight to contribute, respectively, to the development of the tics of Tourette’s syndrome, the obsessions of OCD, the binge eating behaviors of bulimia, and the self-starvation of anorexia. Conclusions Analogous brain mechanisms in parallel frontostriatal circuits, or even in differing portions of the same frontostriatal circuit, may underlie the differing behavioral disturbances in these multiple disorders, although further research is needed to confirm this hypothesis. PMID:19448188
Uncovering the Social Deficits in the Autistic Brain. A Source-Based Morphometric Study
Grecucci, Alessandro; Rubicondo, Danilo; Siugzdaite, Roma; Surian, Luca; Job, Remo
2016-01-01
Autism is a neurodevelopmental disorder that mainly affects social interaction and communication. Evidence from behavioral and functional MRI studies supports the hypothesis that dysfunctional mechanisms involving social brain structures play a major role in autistic symptomatology. However, the investigation of anatomical abnormalities in the brain of people with autism has led to inconsistent results. We investigated whether specific brain regions, known to display functional abnormalities in autism, may exhibit mutual and peculiar patterns of covariance in their gray-matter concentrations. We analyzed structural MRI images of 32 young men affected by autistic disorder (AD) and 50 healthy controls. Controls were matched for sex, age, handedness. IQ scores were also monitored to avoid confounding. A multivariate Source-Based Morphometry (SBM) was applied for the first time on AD and controls to detect maximally independent networks of gray matter. Group comparison revealed a gray-matter source that showed differences in AD compared to controls. This network includes broad temporal regions involved in social cognition and high-level visual processing, but also motor and executive areas of the frontal lobe. Notably, we found that gray matter differences, as reflected by SBM, significantly correlated with social and behavioral deficits displayed by AD individuals and encoded via the Autism Diagnostic Observation Schedule scores. These findings provide support for current hypotheses about the neural basis of atypical social and mental states information processing in autism. PMID:27630538
Validation of the Preverbal Visual Assessment (PreViAs) questionnaire.
García-Ormaechea, Inés; González, Inmaculada; Duplá, María; Andres, Eva; Pueyo, Victoria
2014-10-01
Visual cognitive integrative functions need to be evaluated by a behavioral assessment, which requires an experienced evaluator. The Preverbal Visual Assessment (PreViAs) questionnaire was designed to evaluate these functions, both in general pediatric population or in children with high risk of visual cognitive problems, through primary caregivers' answers. We aimed to validate the PreViAs questionnaire by comparing caregiver reports with results from a comprehensive clinical protocol. A total of 220 infants (<2 years old) were divided into two groups according to visual development, as determined by the clinical protocol. Their primary caregivers completed the PreViAs questionnaire, which consists of 30 questions related to one or more visual domains: visual attention, visual communication, visual-motor coordination, and visual processing. Questionnaire answers were compared with results of behavioral assessments performed by three pediatric ophthalmologists. Results of the clinical protocol classified 128 infants as having normal visual maturation, and 92 as having abnormal visual maturation. The specificity of PreViAs questionnaire was >80%, and sensitivity was 64%-79%. More than 80% of the infants were correctly classified, and test-retest reliability exceeded 0.9 for all domains. The PreViAs questionnaire is useful to detect abnormal visual maturation in infants from birth to 24months of age. It improves the anamnesis process in infants at risk of visual dysfunctions. Copyright © 2014. Published by Elsevier Ireland Ltd.
Locomotor differences in mice expressing wild-type human α-synuclein.
Giraldo, Genesys; Brooks, Mieu; Giasson, Benoit I; Janus, Christopher
2018-05-01
Parkinson's disease manifests as a progressive movement disorder with underlying degeneration of dopaminergic neurons in the substantia nigra, consequent depletion of dopamine levels, and the accumulation of Lewy bodies in the brain. Because α-synuclein (α-Syn) protein is the major component of Lewy bodies, mouse models expressing wild-type or mutant SNCA/α-Syn genes provide a useful tool to investigate canonical characteristics of the disease. We evaluated a mouse model (denoted M20) that expresses human wild-type SNCA gene. The M20 mice showed abnormal locomotor behavior and reduced species-specific home cage activity. However, the direction of behavioral changes was task specific. In comparison with their control littermates, the M20 mice exhibited shorter grip endurance, and longer times to traverse elevated beams, but they descended the vertical pole faster and stayed longer on the accelerated rod than the control mice. The M20 mice were also impaired in burrowing and nest building activities. These results indicate a possible role of α-Syn in motor coordination and the motivation to perform species-specific behaviors in the presymptomatic model of synucleinopathy. Published by Elsevier Inc.
No Proprioceptive Deficits in Autism despite Movement-Related Sensory and Execution Impairments
ERIC Educational Resources Information Center
Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.
2011-01-01
Autism spectrum disorder (ASD) often involves sensory and motor problems, yet the proprioceptive sense of limb position has not been directly assessed. We used three tasks to assess proprioception in adolescents with ASD who had motor and sensory perceptual abnormalities, and compared them to age- and IQ-matched controls. Results showed no group…
ERIC Educational Resources Information Center
Raman, Lakshmi; Georgieff, Michael K.; Rao, Raghavendra
2006-01-01
Bronchopulmonary dysplasia is the most common pulmonary morbidity in preterm infants and is associated with chronic hypoxia. Animal studies have demonstrated structural, neurochemical and functional alterations due to chronic hypoxia in the developing brain. Long-term impairments in visual-motor, gross and fine motor, articulation, reading,…
Zhou, Wenbo; Milder, Julie B; Freed, Curt R
2008-04-11
Abnormal aggregation of human alpha-synuclein in Lewy bodies and Lewy neurites is a pathological hallmark of Parkinson disease and dementia with Lewy bodies. Studies have shown that oxidation and nitration of alpha-synuclein lead to the formation of stable dimers and oligomers through dityrosine cross-linking. Previously we have reported that tyrosine-to-cysteine mutations, particularly at the tyrosine 39 residue (Y39C), significantly enhanced alpha-synuclein fibril formation and neurotoxicity. In the current study, we have generated transgenic mice expressing the Y39C mutant human alpha-synuclein gene controlled by the mouse Thy1 promoter. Mutant human alpha-synuclein was widely expressed in transgenic mouse brain, resulting in 150% overexpression relative to endogenous mouse alpha-synuclein. At age 9-12 months, transgenic mice began to display motor dysfunction in rotarod testing. Older animals aged 15-18 months showed progressive accumulation of human alpha-synuclein oligomers, associated with worse motor function and cognitive impairment in the Morris water maze. By age 21-24 months, alpha-synuclein aggregates were further increased, accompanied by severe behavioral deficits. At this age, transgenic mice developed neuropathology, such as Lewy body-like alpha-synuclein and ubiquitin-positive inclusions, phosphorylation at Ser(129) of human alpha-synuclein, and increased apoptotic cell death. In summary, Y39C human alpha-synuclein transgenic mice show age-dependent, progressive neuronal degeneration with motor and cognitive deficits similar to diffuse Lewy body disease. The time course of alpha-synuclein oligomer accumulation coincided with behavioral and pathological changes, indicating that these oligomers may initiate protein aggregation, disrupt cellular function, and eventually lead to neuronal death.
Inter-cortical Modulation from Premotor to Motor Plasticity.
Huang, Ying-Zu; Chen, Rou-Shayn; Fong, Po-Yu; Rothwell, John C; Chuang, Wen-Li; Weng, Yi-Hsin; Lin, Wey-Yil; Lu, Chin-Song
2018-06-11
Plasticity is involved in daily activities but abnormal plasticity may be deleterious. In this study, we found that motor plasticity could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Such changes in motor plasticity were associated with reduced learning of a simple motor task. We postulate that the premotor cortex adjusts the amount of motor plasticity to modulate motor learning through heterosynaptic metaplasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. This concept could be employed to intervene in diseases with abnormal plasticity. Primary motor cortex (M1) plasticity is known to be influenced by the excitability and prior activation history of M1 itself. However, little is known about how its plasticity is influenced by other areas of the brain. In the present study on humans of either sex who were known to respond to theta burst stimulation from previous studies, we found plasticity of M1 could be modulated by suppressing the premotor cortex with the theta burst form of repetitive transcranial magnetic stimulation. Motor plasticity was distorted and disappeared 30 min and 120 min respectively after premotor excitability was suppressed. Further evaluation revealed that such changes in motor plasticity were associated with impaired learning of a simple motor task. We postulate that the premotor cortex modulates the amount of plasticity within M1 through heterosynaptic metaplasticity, and that this may impact on learning of a simple motor task previously shown to be directly affected by M1 plasticity. The present results provide an insight into how the brain physiologically coordinates two different areas to bring them into a functional network. Furthermore, such concepts could be translated into therapeutic approaches for diseases with aberrant plasticity. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Evaluation of afferent pain pathways in adrenomyeloneuropathic patients.
Yagüe, Sara; Veciana, Misericordia; Casasnovas, Carlos; Ruiz, Montserrat; Pedro, Jordi; Valls-Solé, Josep; Pujol, Aurora
2018-03-01
Patients with adrenomyeloneuropathy may have dysfunctions of visual, auditory, motor and somatosensory pathways. We thought on examining the nociceptive pathways by means of laser evoked potentials (LEPs), to obtain additional information on the pathophysiology of this condition. In 13 adrenomyeloneuropathic patients we examined LEPs to leg, arm and face stimulation. Normative data were obtained from 10 healthy subjects examined in the same experimental conditions. We also examined brainstem auditory evoked potentials (BAEPs), pattern reversal full-field visual evoked potentials (VEPs), motor evoked potentials (MEPs) and somatosensory evoked potentials (SEPs). Upper and lower limb MEPs and SEPs, as well as BAEPs, were abnormal in all patients, while VEPs were abnormal in 3 of them (23.1%). LEPs revealed abnormalities to stimulation of the face in 4 patients (30.7%), the forearm in 4 patients (30.7%) and the leg in 10 patients (76.9%). The pathologic process of adrenomyeloneuropathy is characterized by a preferential involvement of auditory, motor and somatosensory tracts and less severely of the visual and nociceptive pathways. This non-inflammatory distal axonopathy preferably damages large myelinated spinal tracts but there is also partial involvement of small myelinated fibres. LEPs studies can provide relevant information about afferent pain pathways involvement in adrenomyeloneuropathic patients. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Rolke, Roman; Rolke, Silke; Vogt, Thomas; Birklein, Frank; Geber, Christian; Treede, Rolf-Detlef; Letzel, Stephan; Voelter-Mahlknecht, Susanne
2013-08-01
Workers exposed to vibrating tools may develop hand-arm vibration syndrome (HAVS). We assessed the somatosensory phenotype using quantitative sensory testing (QST) in comparison to electrophysiology to characterize (1) the most sensitive QST parameter for detecting sensory loss, (2) the correlation of QST and electrophysiology, and (3) the frequency of a carpal tunnel syndrome (CTS) in HAVS. QST, cold provocation tests, fine motor skills, and median nerve neurography were used. QST included thermal and mechanical detection and pain thresholds. Thirty-two patients were examined (54 ± 11 years, 91% men) at the more affected hand compared to 16 matched controls. Vibration detection threshold was the most sensitive parameter to detect sensory loss that was more pronounced in the sensitivity range of Pacinian (150 Hz, x12) than Meissner's corpuscles (20 Hz, x3). QST (84% abnormal) was more sensitive to detect neural dysfunction than conventional electrophysiology (37% abnormal). Motor (34%) and sensory neurography (25%) were abnormal in HAVS. CTS frequency was not increased (9.4%). Findings are consistent with a mechanically-induced, distally pronounced motor and sensory neuropathy independent of CTS. HAVS involves a neuropathy predominantly affecting large fibers with a sensory damage related to resonance frequencies of vibrating tools. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Speech and oromotor outcome in adolescents born preterm: relationship to motor tract integrity.
Northam, Gemma B; Liégeois, Frédérique; Chong, Wui K; Baker, Kate; Tournier, Jacques-Donald; Wyatt, John S; Baldeweg, Torsten; Morgan, Angela
2012-03-01
To assess speech abilities in adolescents born preterm and investigate whether there is an association between specific speech deficits and brain abnormalities. Fifty adolescents born prematurely (<33 weeks' gestation) with a spectrum of brain injuries were recruited (mean age, 16 years). Speech examination included tests of speech-sound processing and production and speech and oromotor control. Conventional magnetic resonance imaging and diffusion-weighted imaging was acquired in all adolescents born preterm and 30 term-born control subjects. Radiological ratings of brain injury were recorded and the integrity of the primary motor projections was measured (corticospinal tract and speech-motor corticobulbar tract [CST/CBT]). There were no clinical diagnoses of developmental dysarthria, dyspraxia, or a speech-sound disorder, but difficulties in speech and oromotor control were common. A regression analysis revealed that presence of a neurologic impairment, and diffusion-weighted imaging abnormalities in the left CST/CBT were significant independent predictors of poor speech and oromotor outcome. These left-lateralized abnormalities were most evident at the level of the posterior limb of the internal capsule. Difficulties in speech and oromotor control are common in adolescents born preterm, and adolescents with injury to the CST/CBT pathways in the left-hemisphere may be most at risk. Copyright © 2012 Mosby, Inc. All rights reserved.
Cussen, Victoria A; Mench, Joy A
2015-01-01
Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long-term effect on behavior, as evidenced by behavioral changes that persisted despite re-enrichment. Ours is the first study evaluating the relationship between personality dimensions, environment, and abnormal behaviors in an avian species.
Cussen, Victoria A.; Mench, Joy A.
2015-01-01
Parrots are popular companion animals, but are frequently relinquished because of behavioral problems, including abnormal repetitive behaviors like feather damaging behavior and stereotypy. In addition to contributing to pet relinquishment, these behaviors are important as potential indicators of diminished psychological well-being. While abnormal behaviors are common in captive animals, their presence and/or severity varies between animals of the same species that are experiencing the same environmental conditions. Personality differences could contribute to this observed individual variation, as they are known risk factors for stress sensitivity and affective disorders in humans. The goal of this study was to assess the relationship between personality and the development and severity of abnormal behaviors in captive-bred orange-winged Amazon parrots (Amazona amazonica). We monitored between-individual behavioral differences in enrichment-reared parrots of known personality types before, during, and after enrichment deprivation. We predicted that parrots with higher scores for neurotic-like personality traits would be more susceptible to enrichment deprivation and develop more abnormal behaviors. Our results partially supported this hypothesis, but also showed that distinct personality dimensions were related to different forms of abnormal behavior. While neuroticism-like traits were linked to feather damaging behavior, extraversion-like traits were negatively related to stereotypic behavior. More extraverted birds showed resiliency to environmental stress, developing fewer stereotypies during enrichment deprivation and showing lower levels of these behaviors following re-enrichment. Our data, together with the results of the few studies conducted on other species, suggest that, as in humans, certain personality types render individual animals more susceptible or resilient to environmental stress. Further, this susceptibility/resiliency can have a long-term effect on behavior, as evidenced by behavioral changes that persisted despite re-enrichment. Ours is the first study evaluating the relationship between personality dimensions, environment, and abnormal behaviors in an avian species. PMID:26114423
DeMaro, Joseph A.; Knoten, Amanda; Hoshi, Masato; Pehek, Elizabeth; Johnson, Eugene M.; Gereau, Robert W.
2013-01-01
The loss of dopaminergic neurons in the substantia nigra pars compacta (SNc) and consequent depletion of striatal dopamine are known to underlie the motor deficits observed in Parkinson's disease (PD). Adaptive changes in dopaminergic terminals and in postsynaptic striatal neurons can compensate for significant losses of striatal dopamine, resulting in preservation of motor behavior. In addition, compensatory changes independent of striatal dopamine have been proposed based on PD therapies that modulate nondopaminergic circuits within the basal ganglia. We used a genetic strategy to selectively destroy dopaminergic neurons in mice during development to determine the necessity of these neurons for the maintenance of normal motor behavior in adult and aged mice. We find that loss of 90% of SNc dopaminergic neurons and consequent depletion of >95% of striatal dopamine does not result in changes in motor behavior in young-adult or aged mice as evaluated by an extensive array of motor behavior tests. Treatment of aged mutant mice with the dopamine receptor antagonist haloperidol precipitated motor behavior deficits in aged mutant mice, indicating that <5% of striatal dopamine is sufficient to maintain motor function in these mice. We also found that mutant mice exhibit an exaggerated response to l-DOPA compared with control mice, suggesting that preservation of motor function involves sensitization of striatal dopamine receptors. Our results indicate that congenital loss of dopaminergic neurons induces remarkable adaptions in the nigrostriatal system where limited amounts of dopamine in the dorsal striatum can maintain normal motor function. PMID:24155314
Animal behavioral assessments in current research of Parkinson's disease.
Asakawa, Tetsuya; Fang, Huan; Sugiyama, Kenji; Nozaki, Takao; Hong, Zhen; Yang, Yilin; Hua, Fei; Ding, Guanghong; Chao, Dongman; Fenoy, Albert J; Villarreal, Sebastian J; Onoe, Hirotaka; Suzuki, Katsuaki; Mori, Norio; Namba, Hiroki; Xia, Ying
2016-06-01
Parkinson's disease (PD), a neurodegenerative disorder, is traditionally classified as a movement disorder. Patients typically suffer from many motor dysfunctions. Presently, clinicians and scientists recognize that many non-motor symptoms are associated with PD. There is an increasing interest in both motor and non-motor symptoms in clinical studies on PD patients and laboratory research on animal models that imitate the pathophysiologic features and symptoms of PD patients. Therefore, appropriate behavioral assessments are extremely crucial for correctly understanding the mechanisms of PD and accurately evaluating the efficacy and safety of novel therapies. This article systematically reviews the behavioral assessments, for both motor and non-motor symptoms, in various animal models involved in current PD research. We addressed the strengths and weaknesses of these behavioral tests and their appropriate applications. Moreover, we discussed potential mechanisms behind these behavioral tests and cautioned readers against potential experimental bias. Since most of the behavioral assessments currently used for non-motor symptoms are not particularly designed for animals with PD, it is of the utmost importance to greatly improve experimental design and evaluation in PD research with animal models. Indeed, it is essential to develop specific assessments for non-motor symptoms in PD animals based on their characteristics. We concluded with a prospective view for behavioral assessments with real-time assessment with mobile internet and wearable device in future PD research. Copyright © 2016 Elsevier Ltd. All rights reserved.
Binkley, Candace
2016-06-01
Pseudocholinesterase abnormalities are a genetic cause of aberrant metabolism of the depolarizing muscle relaxant succinylcholine. This article examines a case where succinylcholine was chosen to facilitate intubation due to its ultra short duration and the request of the surgeon to monitor motor evoked potentials. Following succinylcholine administration the neurophysiologist was unable to obtain motor evoked potentials. This case study highlights the intraoperative and postoperative management of an elderly patient with an unknown pseudocholinesterase deficiency.
Kantor, Sandor; Varga, Janos; Morton, A Jennifer
2016-06-01
Sleep and electroencephalogram abnormalities are prominent early features of Huntington's disease (HD) that typically appear before the onset of characteristic motor symptoms. The changes in sleep and electroencephalogram seen in HD patients are largely recapitulated in mouse models of HD such as transgenic R6/2 lines. To test whether or not drugs with hypnotic properties can correct the sleep and electroencephalogram abnormalities seen in HD mice, we treated male wild-type (WT; N = 7) and R6/2 mice (N = 9) acutely with intraperitoneal injections of vehicle, zolpidem (5, 10 or 20 mg/kg) or amitriptyline (5, 10 or 20 mg/kg), and then monitored their sleep-wake behavior. In R6/2 mice, both zolpidem and amitriptyline suppressed the abnormally high REM sleep amount and electroencephalographic gamma (30-46 Hz) oscillations in a dose-dependent manner. Amitriptyline's effect on sleep was similar in both genotypes, whereas zolpidem showed significant genotype differences. Zolpidem exerted a strong hypnotic effect in WT mice by increasing electroencephalographic delta power, doubling the mean bout duration and the total amount of non-rapid eye movement sleep. However, no such effect was seen in R6/2 mice. Our study demonstrates that the pathophysiological changes seen in sleep and electroencephalogram are not 'hard-wired' in HD brain and can be reversed even at late stages of the disease. The diminished hypnotic effect of zolpidem suggests that the GABAergic control of sleep-wake states is impaired in HD mice. A better understanding of the neurochemical basis underlying these abnormalities should lead to more effective and rational therapies for HD. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mondelli, M; Aretini, A; Arrigucci, U; Ginanneschi, F; Greco, G; Sicurelli, F
2013-10-01
This prospective study aim to examine whether clinical findings and electrodiagnostic testing (EDX) in patients with lumbosacral monoradiculopathy due to herniated disc (HD) differ as a function of root involvement level (L5 vs. S1) and HD zone (paramedian vs. intraforaminal). All patients with L4, L5 or S1 monoradiculopathy were prospectively enrolled at four electromyography (EMG) labs over a 2-year period. The diagnosis was based on a congruence between patient history and MRI evidence of HD. We compared the sensitivities of clinical findings and EDX with respect to both root involvement level and HD zone. Multivariate logistic regression was performed in order to verify the association between abnormal EMG, clinical, and neuroradiological findings. One hundred and eight patients (mean age 47.7 years, 55% men) were consecutively enrolled. Sensory loss in the painful dermatome was the most frequent finding at physical examination (56% of cases). EMG was abnormal in at least one muscle supplied by femoral and sciatic nerves in 45 cases (42%). Inclusion of paraspinal muscles increased sensitivity to only 49% and that of proximal muscles was useless. Motor and sensory neurography was seldom abnormal. The most frequent motor neurographic abnormalities were a delay of F-wave minimum latency and decrease in the compound muscle action potential amplitude from extensor digitorum brevis and abductor hallucis in L5 and S1 radiculopathies, respectively. Sensory neurography was usually normal, the amplitude of sensory nerve action potential was seldom reduced when HD injured dorsal root ganglion or postganglionic root fibres. Multivariate logistic regression analysis showed that EMG abnormalities could be predicted by myotomal muscular weakness, abnormal deep reflexes, and paraesthesiae. The only clinical and electrophysiological differences with respect to root involvement level concerned deep reflexes and motor neurography of deep peroneal and tibial nerves. Only some EDX parameters are helpful for the diagnosis of lumbosacral radiculopathy. EMG was abnormal in less than 50% of cases and its abnormalities could be predicted by some clinical findings. However, neurography is useful as a tool for differential diagnosis between radiculopathy and more diffuse disorders of the peripheral nervous system (polyneuropathy, plexopathy). Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Müller, Sean; Vallence, Ann-Maree; Winstein, Carolee
2017-12-14
A framework is presented of how theoretical predictions can be tested across the expert athlete to disabled patient skill continuum. Common-coding theory is used as the exemplar to discuss sensory and motor system contributions to perceptual-motor behavior. Behavioral and neural studies investigating expert athletes and patients recovering from cerebral stroke are reviewed. They provide evidence of bi-directional contributions of visual and motor systems to perceptual-motor behavior. Majority of this research is focused on perceptual-motor performance or learning, with less on transfer. The field is ripe for research designed to test theoretical predictions across the expert athlete to disabled patient skill continuum. Our view has implications for theory and practice in sports science, physical education, and rehabilitation.
Auriat, Angela M.; Neva, Jason L.; Peters, Sue; Ferris, Jennifer K.; Boyd, Lara A.
2015-01-01
Following stroke, the brain undergoes various stages of recovery where the central nervous system can reorganize neural circuitry (neuroplasticity) both spontaneously and with the aid of behavioral rehabilitation and non-invasive brain stimulation. Multiple neuroimaging techniques can characterize common structural and functional stroke-related deficits, and importantly, help predict recovery of function. Diffusion tensor imaging (DTI) typically reveals increased overall diffusivity throughout the brain following stroke, and is capable of indexing the extent of white matter damage. Magnetic resonance spectroscopy (MRS) provides an index of metabolic changes in surviving neural tissue after stroke, serving as a marker of brain function. The neural correlates of altered brain activity after stroke have been demonstrated by abnormal activation of sensorimotor cortices during task performance, and at rest, using functional magnetic resonance imaging (fMRI). Electroencephalography (EEG) has been used to characterize motor dysfunction in terms of increased cortical amplitude in the sensorimotor regions when performing upper limb movement, indicating abnormally increased cognitive effort and planning in individuals with stroke. Transcranial magnetic stimulation (TMS) work reveals changes in ipsilesional and contralesional cortical excitability in the sensorimotor cortices. The severity of motor deficits indexed using TMS has been linked to the magnitude of activity imbalance between the sensorimotor cortices. In this paper, we will provide a narrative review of data from studies utilizing DTI, MRS, fMRI, EEG, and brain stimulation techniques focusing on TMS and its combination with uni- and multimodal neuroimaging methods to assess recovery after stroke. Approaches that delineate the best measures with which to predict or positively alter outcomes will be highlighted. PMID:26579069
Sarimski, Klaus; Ebner, Sarah; Wördemann, Claudia
2012-01-01
Parents of 64 children and youths with Prader-Willi syndrome (PWS) describe their children's behaviour on the "Temperament and Atypical Behavior Scale" (TABS) and the German version of the "Developmental Behavior Checklist" (VFE). In the younger age group, there are no specific behavioural abnormalities which characterize a behavioral phenotype. In the older age group the data reveal elevated levels of abnormal behaviors (communication disturbance, social relations and disruptive behaviors). Parents stress ritualistic behaviors as especially challenging. The results concerning form and age-dependency of abnormal behaviors are discussed in the context of prevention and treatment options.
Aliaga, Leonardo; Lai, Chen; Yu, Jia; Chub, Nikolai; Shim, Hoon; Sun, Lixin; Xie, Chengsong; Yang, Wan-Jou; Lin, Xian; O'Donovan, Michael J.; Cai, Huaibin
2013-01-01
The substitution of Proline with Serine at residue 56 (P56S) of vesicle-associated membrane protein-associated protein B (VAPB) has been linked to an atypical autosomal dominant form of familial amyotrophic lateral sclerosis 8 (ALS8). To investigate the pathogenic mechanism of P56S VAPB in ALS, we generated transgenic (Tg) mice that heterologously express human wild-type (WT) and P56S VAPB under the control of a pan-neuronal promoter Thy1.2. While WT VAPB Tg mice did not exhibit any overt motor behavioral phenotypes, P56S VAPB Tg mice developed progressive hyperactivities and other motor abnormalities. VAPB protein was accumulated as large punctate in the soma and proximal dendrites of both corticospinal motor neurons (CSMNs) and spinal motor neurons (SMNs) in P56S VAPB Tg mice. Concomitantly, a significant increase of endoplasmic reticulum stress and unfolded protein response and the resulting up-regulation of pro-apoptotic factor CCAAT/enhancer-binding protein homologous protein expression were observed in the CSMNs and SMNs of P56S VAPB Tg mice. However, only a progressive loss of CSMNs but not SMNs was found in P56S VAPB Tg mice. In SMNs, P56S VAPB promoted a rather selective translocation of VAPB protein onto the postsynaptic site of C-boutons that altered the morphology of C-boutons and impaired the spontaneous rhythmic discharges of SMNs. Therefore, these findings provide new pathophysiological mechanisms of P56S VAPB that differentially affect the function and survival of CSMNs and SMNs in ALS8. PMID:23771029
... the treating primary physician, neurologist, or psychiatrist including: Treating physician records documenting progression of motor, cognitive, and psychiatric symptoms, family history, and abnormal neurological exam findings consistent with ...
Haagensen, Brian N.; Christensen, Mark S.; Madsen, Kristoffer H.; Rowe, James B.; Løkkegaard, Annemette; Siebner, Hartwig R.
2015-01-01
Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy alleviates basal ganglia dysfunction in Parkinson's disease, it often elicits involuntary movements, referred to as levodopa-induced peak-of-dose dyskinesias. Here, we used a novel pharmacodynamic neuroimaging approach to identify the changes in cortico-basal ganglia connectivity that herald the emergence of levodopa-induced dyskinesias. Twenty-six patients with Parkinson's disease (age range: 51–84 years; 11 females) received a single dose of levodopa and then performed a task in which they had to produce or suppress a movement in response to visual cues. Task-related activity was continuously mapped with functional magnetic resonance imaging. Dynamic causal modelling was applied to assess levodopa-induced modulation of effective connectivity between the pre-supplementary motor area, primary motor cortex and putamen when patients suppressed a motor response. Bayesian model selection revealed that patients who later developed levodopa-induced dyskinesias, but not patients without dyskinesias, showed a linear increase in connectivity between the putamen and primary motor cortex after levodopa intake during movement suppression. Individual dyskinesia severity was predicted by levodopa-induced modulation of striato-cortical feedback connections from putamen to the pre-supplementary motor area (Pcorrected = 0.020) and primary motor cortex (Pcorrected = 0.044), but not feed-forward connections from the cortex to the putamen. Our results identify for the first time, aberrant dopaminergic modulation of striatal-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an aberrant reinforcement signal producing an abnormal motor drive that ultimately triggers involuntary movements. PMID:25882651
Yin, Zhuoran; Valkenburg, Femke; Hornix, Betty E; Mantingh-Otter, Ietje; Zhou, Xingdong; Mari, Muriel; Reggiori, Fulvio; Van Dam, Debby; Eggen, Bart J L; De Deyn, Peter P; Boddeke, Erik
2017-01-01
Tauopathies include a variety of neurodegenerative diseases associated with the pathological aggregation of hyperphosphorylated tau, resulting in progressive cognitive decline and motor impairment. The underlying mechanism for motor deficits related to tauopathy is not yet fully understood. Here, we use a novel transgenic tau mouse line, Tau 58/4, with enhanced neuron-specific expression of P301S mutant tau to investigate the motor abnormalities in association with the peripheral nervous system. Using stationary beam, gait, and rotarod tests, motor deficits were found in Tau 58/4 mice already 3 months after birth, which deteriorated during aging. Hyperphosphorylated tau was detected in the cell bodies and axons of motor neurons. At the age of 9 and 12 months, significant denervation of the neuromuscular junction in the extensor digitorum longus muscle was observed in Tau 58/4 mice, compared to wild-type mice. Muscle hypotrophy was observed in Tau 58/4 mice at 9 and 12 months. Using electron microscopy, we observed ultrastructural changes in the sciatic nerve of 12-month-old Tau 58/4 mice indicative of the loss of large axonal fibers and hypomyelination (assessed by g-ratio). We conclude that the accumulated hyperphosphorylated tau in the axon terminals may induce dying-back axonal degeneration, myelin abnormalities, neuromuscular junction denervation, and muscular atrophy, which may be the mechanisms responsible for the deterioration of the motor function in Tau 58/4 mice. Tau 58/4 mice represent an interesting neuromuscular degeneration model, and the pathological mechanisms might be responsible for motor signs observed in some human tauopathies.
Writer's cramp: increased dorsal premotor activity during intended writing.
Delnooz, Cathérine C S; Helmich, Rick C; Medendorp, W P; Van de Warrenburg, Bart P C; Toni, Ivan
2013-03-01
Simple writer's cramp (WC) is a task-specific form of dystonia, characterized by abnormal movements and postures of the hand during writing. It is extremely task-specific, since dystonic symptoms can occur when a patient uses a pencil for writing, but not when it is used for sharpening. Maladaptive plasticity, loss of inhibition, and abnormal sensory processing are important pathophysiological elements of WC. However, it remains unclear how those elements can account for its task-specificity. We used fMRI to isolate cerebral alterations associated with the task-specificity of simple WC. Subjects (13 simple WC patients, 20 matched controls) imagined grasping a pencil to either write with it or sharpen it. On each trial, we manipulated the pencil's position and the number of imagined movements, while monitoring variations in motor output with electromyography. We show that simple WC is characterized by abnormally increased activity in the dorsal premotor cortex (PMd) when imagined actions are specifically related to writing. This cerebral effect was independent from the known deficits in dystonia in generating focal motor output and in processing somatosensory feedback. This abnormal activity of the PMd suggests that the task-specific element of simple WC is primarily due to alterations at the planning level, in the computations that transform a desired action outcome into the motor commands leading to that action. These findings open the way for testing the therapeutic value of interventions that take into account the computational substrate of task-specificity in simple WC, e.g. modulations of PMd activity during the planning phase of writing. Copyright © 2011 Wiley Periodicals, Inc.
Flores, Priscila Pollo; Lemme, Eponina Maria de Oliveira; Coelho, Henrique Sérgio Moraes
2005-01-01
The hepatic cirrhosis has as one of the main morbid-mortality causes, the portal hypertension with the development of esophageal varices, the possibility of a digestive hemorrhage and worsening of hepatic insufficiency. It is important to identify causal predictive or aggravating factors and if possible to prevent them. In the last years, it has been observed the association of esophageal motor disorders and gastro-esophageal reflux in cirrhotic patients with esophageal varices. To study the prevalence of the esophageal motility disorders and among them, the ineffective esophageal motility, in patients with hepatic cirrhosis and esophageal varices, without previous endoscopic therapeutic and the predictive factors. Prospectively, it has been evaluate 74 patients suffering from liver cirrhosis and esophagic varices, without previous endoscopic treatment. All of them were submitted to a clinical protocol, esophageal manometry and 55 patients also held the ambulatory esophageal pHmetry. Esophageal motility disorders have been found in 44 patients (60%). The most prevalent was the ineffective esophageal motility, observed in 28%. The abnormal reflux disease was diagnosed through the pHmetry in 35% of the patients. There were no correlation between the manometrical abnormality in general and the ineffective esophageal motility in particular and the esophageal or gastroesophageal reflux disease symptoms, the abnormal reflux, the disease seriousness, the ascites presence and the gauge of the varices. The majority of cirrhotic patients with non-treated esophageal varices present esophageal motor disorders. No predictive factor was found. The clinical relevance of these findings need more researches in the scope to define the real meaning of theses abnormalities.
Kang, Min Jung; Hansen, Timothy J.; Mickiewicz, Monique; Kaczynski, Tadeusz J.; Fye, Samantha; Gunawardena, Shermali
2014-01-01
Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases. PMID:25127478
Long-term training modifies the modular structure and organization of walking balance control
Allen, Jessica L.
2015-01-01
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. PMID:26467521
Long-term training modifies the modular structure and organization of walking balance control.
Sawers, Andrew; Allen, Jessica L; Ting, Lena H
2015-12-01
How does long-term training affect the neural control of movements? Here we tested the hypothesis that long-term training leading to skilled motor performance alters muscle coordination during challenging, as well as nominal everyday motor behaviors. Using motor module (a.k.a., muscle synergy) analyses, we identified differences in muscle coordination patterns between professionally trained ballet dancers (experts) and untrained novices that accompanied differences in walking balance proficiency assessed using a challenging beam-walking test. During beam walking, we found that experts recruited more motor modules than novices, suggesting an increase in motor repertoire size. Motor modules in experts had less muscle coactivity and were more consistent than in novices, reflecting greater efficiency in muscle output. Moreover, the pool of motor modules shared between beam and overground walking was larger in experts compared with novices, suggesting greater generalization of motor module function across multiple behaviors. These differences in motor output between experts and novices could not be explained by differences in kinematics, suggesting that they likely reflect differences in the neural control of movement following years of training rather than biomechanical constraints imposed by the activity or musculoskeletal structure and function. Our results suggest that to learn challenging new behaviors, we may take advantage of existing motor modules used for related behaviors and sculpt them to meet the demands of a new behavior. Copyright © 2015 the American Physiological Society.
ERIC Educational Resources Information Center
Gika, Artemis D.; Siddiqui, Ata; Hulse, Anthony J.; Edward, Selvakumari; Fallon, Penny; McEntagart, Meriel E.; Jan, Wajanat; Josifova, Dragana; Lerman-Sagie, Tally; Drummond, James; Thompson, Edward; Refetoff, Samuel; Bonnemann, Carsten G.; Jungbluth, Heinz
2010-01-01
Aim: Mutations in the "SLC16A2" gene have been implicated in Allan-Herndon-Dudley syndrome (AHDS), an X-linked learning disability syndrome associated with thyroid function test (TFT) abnormalities. Delayed myelination is a non-specific finding in individuals with learning disability whose genetic basis is often uncertain. The aim of this study…
Manometric abnormalities of the oesophagus in patients with Parkinson's disease.
Castell, J A; Johnston, B T; Colcher, A; Li, Q; Gideon, R M; Castell, D O
2001-08-01
Dysphagia in Parkinson's disease (PD) is known to correlate with abnormalities of oropharyngeal function. Oesophageal abnormalities have not been previously demonstrated to correlate with dysphagia. The aim of the study was to determine if motor dysfunction of the oesophageal body correlates with dysphagia or disease severity in PD. Twenty-two patients with PD were assessed for the severity of their dysphagia (scale of 1-7) and severity of PD (Hoehn and Yahr scale 1-4). All underwent oesophageal manometry. Dysphagia was present daily in 10 patients (45%). Parkinson's disease was graded as severe (Hoehn and Yahr > or =3) in eight (36%) patients. Oesophageal manometry was abnormal in 16 (73%) patients. Thirteen patients had either complete aperistalsis or multiple simultaneous contractions (diffuse oesophageal spasm). These findings were significantly more common in patients with daily dysphagia (90% vs. 33%; P < 0.005), and were not related to duration or severity of PD. We conclude that the presence of aperistalsis or multiple simultaneous contractions in the oesophagus does correlate with dysphagia and is independent of PD severity or duration. This may reflect selective involvement of either the dorsal motor nucleus of the vagus or the oesophageal myenteric plexus.
Lower urinary tract dysfunction in critical illness polyneuropathy.
Reitz, André
2013-01-01
Critical illness polyneuropathy is a frequent complication of critical illness in intensive care units. Reports on autonomic systems like lower urinary tract and bowel functions in patients with CIP are not available in medical literature. This study performed during primary rehabilitation of patients with critical illness polyneuropathy explores if sensory and motor pathways controlling the lower urinary tract function are affected from the disease. Neurourological examinations, urodynamics, electromyography and lower urinary tract imaging were performed in 28 patients with critical illness polyneuropathy. Sacral sensation was impaired in 1 patient (4%). Sacral reflexes were absent in 8 patients (30%). Anal sphincter resting tone was reduced in 3 (12%), anal sphincter voluntary contraction was absent or reduced in 8 patients (30%). Urodynamic findings were detrusor overactivity and detrusor overactivity incontinence in 9 (37.5%), incomplete voiding in 8 (30%), abnormal sphincter activity in 4 (16%), abnormal bladder sensation in 4 (16%) and detrusor acontractility in 2 patients (8.3%). Morphological abnormalities of the lower urinary tract had 10 patients (41.6%). Sensory and motor pathways controlling the lower urinary tract might be affected from CIP. During urodynamics dysfunctions of the storage as well as the voiding phase were found. Morphological lower urinary tract abnormalities were common.
Symptoms of Persistent Behavior Problems in Children with Mild Traumatic Brain Injury
Taylor, H. Gerry; Orchinik, Leah J.; Minich, Nori; Dietrich, Ann; Nuss, Kathryn; Wright, Martha; Bangert, Barbara; Rusin, Jerome; Yeates, Keith Owen
2014-01-01
Objective To investigate the effects of mild traumatic brain injury (mTBI) in children on symptom ratings of behavior problems across the first year post injury. Setting Emergency departments of two regional children’s hospitals. Participants Parents of 176 children with mTBI and 90 with orthopedic injury (OI) ages 8–15 years. Design Group comparisons of post-injury parent and teacher ratings of child behavior problems controlling for background factors. Main Measures Child Behavior Checklist (CBCL) and Teacher’s Report Form (TRF). Results For younger but not older children in the sample, children with mTBI compared to those with OI had higher post-injury ratings on the CBCL Total Behavior Problem scale, t (264) = 3.34, p<.001, and higher rates of T-scores ≥ 60 on this scale, OR (CI) = 3.00 (1.33, 6.77), p=.008. For children with mTBI, hospitalization, motor vehicle accidents, loss of consciousness, and MRI abnormality were associated with higher parent or teacher ratings. Conclusions School-age children with mTBI are at risk for persistent symptoms of behavior problems, especially if mTBI is more severe or occurs at a younger age. The findings justify monitoring of behavior long after injury and further research to identify risk factors for these symptoms and their association with clinical disorders. PMID:25629259
Reuter, Benedikt; Elsner, Björn; Möllers, David; Kathmann, Norbert
2016-11-01
Clinical and theoretical models suggest deficient volitional initiation of action in schizophrenia patients. Recent research provided an experimental model of testing this assumption using saccade tasks. However, inconsistent findings necessitate a specification of conditions on which the deficit may occur. The present study sought to detect mechanisms that may contribute to poor performance. Sixteen schizophrenia patients and 16 healthy control participants performed visually guided and two types of volitional saccade tasks. All tasks varied as to whether the initial fixation stimulus disappeared (fixation stimulus offset) or continued during saccade initiation, and whether a direction cue allowed motor preparation of the specific saccade. Saccade latencies of the two groups were differentially affected by task type, fixation stimulus offset, and cueing, suggesting abnormal volitional saccade generation, fixation release, and motor preparation in schizophrenia. However, substantial performance deficits may only occur if all affected processes are required in a task. © 2016 Society for Psychophysiological Research.
ERIC Educational Resources Information Center
Hanaie, Ryuzo; Mohri, Ikuko; Kagitani-Shimono, Kuriko; Tachibana, Masaya; Matsuzaki, Junko; Watanabe, Yoshiyuki; Fujita, Norihiko; Taniike, Masako
2014-01-01
In addition to social and communicative deficits, many studies have reported motor deficits in autism spectrum disorder (ASD). This study investigated the macro and microstructural properties of the corpus callosum (CC) of 18 children with ASD and 12 typically developing controls using diffusion tensor imaging tractography. We aimed to explore…
Triple stimulation technique in patients with spinocerebellar ataxia type 6.
Sakuma, Kenji; Adachi, Yoshiki; Fukuda, Hiroki; Kai, Tohru; Nakashima, Kenji
2005-11-01
To establish further evidence that SCA6 may not be a pure cerebellar syndrome. Seven patients with genetically confirmed SCA6 and 9 age-matched normal controls were studied. Recordings of the CMAP were obtained from the right first dorsal interosseus muscle. Transcranial magnetic stimulation of the left motor cortex was applied to the contralateral scalp with a plane figure-of-8 coil. Conventional transcranial magnetic stimulation (TMS), central motor conduction time (CMCT) by F-wave method and the triple stimulation technique (TST) amplitude ratio (TST test/TST control) were investigated. The mean resting motor threshold and mean CMCT did not show significant differences between normal controls and patients, but the mean TST amplitude ratio was significantly smaller in patients than in controls. An abnormal TST represents upper motor neuron loss, central axon lesions or conduction blocks, or inexcitability in response to TMS. The lack of pathological changes in the corticospinal tract of patients with SCA6 indicates that this abnormality may be caused by crossed cerebellar diaschisis, or a functional disorder in the brain resulting from CACNA1A mutations. TST is a useful method for quantifying corticospinal tract dysfunction.
The usefulness of videomanometry for studying pediatric esophageal motor disease.
Kawahara, Hisayoshi; Kubota, Akio; Okuyama, Hiroomi; Oue, Takaharu; Tazuke, Yuko; Okada, Akira
2004-12-01
Abnormalities in esophageal motor function underlie various symptoms in the pediatric population. Manometry remains an important tool for studying esophageal motor function, whereas its analyses have been conducted with considerable subjective interpretation. The usefulness of videomanometry with topographic analysis was examined in the current study. Videomanometry was conducted in 5 patients with primary gastroesophageal reflux disease (GERD), 4 with postoperative esophageal atresia (EA), 1 with congenital esophageal stenosis (CES), and 1 with diffuse esophageal spasms (DES). Digitized videofluoroscopic images were recorded synchronously with manometric digital data in a personal computer. Manometric analysis was conducted with a view of concurrent esophageal contour and bolus transit. Primary GERD patients showed esophageal flow proceeding into the stomach during peristaltic contractions recorded manometrically, whereas patients with EA/CES frequently showed impaired esophageal transit during defective esophageal peristaltic contractions. A characteristic corkscrew appearance and esophageal flow in a to-and-fro fashion were seen with high-amplitude synchronous esophageal contractions in a DES patient. The topographic analysis showed distinctive images characteristic of each pathological condition. Videomanometry is helpful in interpreting manometric data by analyzing concurrent fluoroscopic images. Topographic analyses provide characteristic images reflecting motor abnormalities in pediatric esophageal disease.
Cell death cascade and molecular therapy in ADAR2-deficient motor neurons of ALS.
Yamashita, Takenari; Kwak, Shin
2018-06-23
TAR DNA-binding protein (TDP-43) pathology in the motor neurons is the most reliable pathological hallmark of amyotrophic lateral sclerosis (ALS), and motor neurons bearing TDP-43 pathology invariably exhibit failure in RNA editing at the GluA2 glutamine/arginine (Q/R) site due to down-regulation of adenosine deaminase acting on RNA 2 (ADAR2). Conditional ADAR2 knockout (AR2) mice display ALS-like phenotype, including progressive motor dysfunction due to loss of motor neurons. Motor neurons devoid of ADAR2 express Q/R site-unedited GluA2, and AMPA receptors with unedited GluA2 in their subunit assembly are abnormally permeable to Ca 2+ , which results in progressive neuronal death. Moreover, analysis of AR2 mice has demonstrated that exaggerated Ca 2+ influx through the abnormal AMPA receptors overactivates calpain, a Ca 2+ -dependent protease, that cleaves TDP-43 into aggregation-prone fragments, which serve as seeds for TDP-43 pathology. Activated calpain also disrupts nucleo-cytoplasmic transport and gene expression by cleaving molecules involved in nucleocytoplasmic transport, including nucleoporins. These lines of evidence prompted us to develop molecular targeting therapy for ALS by normalization of disrupted intracellular environment due to ADAR2 down-regulation. In this review, we have summarized the work from our group on the cell death cascade in sporadic ALS and discussed a potential therapeutic strategy for ALS. Copyright © 2018 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Gyawali, C P; Roman, S; Bredenoord, A J; Fox, M; Keller, J; Pandolfino, J E; Sifrim, D; Tatum, R; Yadlapati, R; Savarino, E
2017-12-01
High-resolution manometry (HRM) has resulted in new revelations regarding the pathophysiology of gastro-esophageal reflux disease (GERD). The impact of new HRM motor paradigms on reflux burden needs further definition, leading to a modern approach to motor testing in GERD. Focused literature searches were conducted, evaluating pathophysiology of GERD with emphasis on HRM. The results were discussed with an international group of experts to develop a consensus on the role of HRM in GERD. A proposed classification system for esophageal motor abnormalities associated with GERD was generated. Physiologic gastro-esophageal reflux is inherent in all humans, resulting from transient lower esophageal sphincter (LES) relaxations that allow venting of gastric air in the form of a belch. In pathological gastro-esophageal reflux, transient LES relaxations are accompanied by reflux of gastric contents. Structural disruption of the esophagogastric junction (EGJ) barrier, and incomplete clearance of the refluxate can contribute to abnormally high esophageal reflux burden that defines GERD. Esophageal HRM localizes the LES for pH and pH-impedance probe placement, and assesses esophageal body peristaltic performance prior to invasive antireflux therapies and antireflux surgery. Furthermore, HRM can assess EGJ and esophageal body mechanisms contributing to reflux, and exclude conditions that mimic GERD. Structural and motor EGJ and esophageal processes contribute to the pathophysiology of GERD. A classification scheme is proposed incorporating EGJ and esophageal motor findings, and contraction reserve on provocative tests during HRM. © 2017 John Wiley & Sons Ltd.
Torregrossa, Mary M; Taylor, Jane R
2016-01-01
Identifying effective pharmacological treatments for addictive disorders has remained an elusive goal. Many different classes of drugs have shown some efficacy in preclinical models, but the number of effective clinical therapeutics has remained stubbornly low. The persistence of drug use and the high frequency of relapse is at least partly attributable to the enduring ability of environmental stimuli associated with drug use to maintain behavioral patterns of drug use and induce craving during abstinence. We propose that stimuli associated with drug use exert such powerful control over behavior through the development of abnormally strong memories, and their ability to initiate subconscious sequences of motor actions (habits) that promote uncontrolled drug use. In this chapter, we will review the evidence suggesting that drugs of abuse strengthen associations with cues in the environment and facilitate habit formation. We will also discuss potential mechanisms for disrupting memories associated with drug use to help improve treatments for addiction. © 2016 Elsevier B.V. All rights reserved.
Masliah, Eliezer; Rockenstein, Edward; Mante, Michael; Crews, Leslie; Spencer, Brian; Adame, Anthony; Patrick, Christina; Trejo, Margarita; Ubhi, Kiren; Rohn, Troy T; Mueller-Steiner, Sarah; Seubert, Peter; Barbour, Robin; McConlogue, Lisa; Buttini, Manuel; Games, Dora; Schenk, Dale
2011-04-29
Dementia with Lewy bodies (DLB) and Parkinson's Disease (PD) are common causes of motor and cognitive deficits and are associated with the abnormal accumulation of alpha-synuclein (α-syn). This study investigated whether passive immunization with a novel monoclonal α-syn antibody (9E4) against the C-terminus (CT) of α-syn was able to cross into the CNS and ameliorate the deficits associated with α-syn accumulation. In this study we demonstrate that 9E4 was effective at reducing behavioral deficits in the water maze, moreover, immunization with 9E4 reduced the accumulation of calpain-cleaved α-syn in axons and synapses and the associated neurodegenerative deficits. In vivo studies demonstrated that 9E4 traffics into the CNS, binds to cells that display α-syn accumulation and promotes α-syn clearance via the lysosomal pathway. These results suggest that passive immunization with monoclonal antibodies against the CT of α-syn may be of therapeutic relevance in patients with PD and DLB.
The rate of transient beta frequency events predicts behavior across tasks and species
Law, Robert; Tsutsui, Shawn; Moore, Christopher I; Jones, Stephanie R
2017-01-01
Beta oscillations (15-29Hz) are among the most prominent signatures of brain activity. Beta power is predictive of healthy and abnormal behaviors, including perception, attention and motor action. In non-averaged signals, beta can emerge as transient high-power 'events'. As such, functionally relevant differences in averaged power across time and trials can reflect changes in event number, power, duration, and/or frequency span. We show that functionally relevant differences in averaged beta power in primary somatosensory neocortex reflect a difference in the number of high-power beta events per trial, i.e. event rate. Further, beta events occurring close to the stimulus were more likely to impair perception. These results are consistent across detection and attention tasks in human magnetoencephalography, and in local field potentials from mice performing a detection task. These results imply that an increased propensity of beta events predicts the failure to effectively transmit information through specific neocortical representations. PMID:29106374
Amblyopia and Binocular Vision
Birch, Eileen E.
2012-01-01
Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3% to 3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. PMID:23201436
Seven, Yasin B; Mantilla, Carlos B; Sieck, Gary C
2014-12-01
Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. Copyright © 2014 the American Physiological Society.
Seven, Yasin B.; Mantilla, Carlos B.
2014-01-01
Phrenic motor neurons are recruited across a range of motor behaviors to generate varying levels of diaphragm muscle (DIAm) force. We hypothesized that DIAm motor units are recruited in a fixed order across a range of motor behaviors of varying force levels, consistent with the Henneman Size Principle. Single motor unit action potentials and compound DIAm EMG activities were recorded in anesthetized, neurally intact rats across different motor behaviors, i.e., eupnea, hypoxia-hypercapnia (10% O2 and 5% CO2), deep breaths, sustained airway occlusion, and sneezing. Central drive [estimated by root-mean-squared (RMS) EMG value 75 ms after the onset of EMG activity (RMS75)], recruitment delay, and onset discharge frequencies were similar during eupnea and hypoxia-hypercapnia. Compared with eupnea, central drive increased (∼25%) during deep breaths, and motor units were recruited ∼12 ms earlier (P < 0.01). During airway occlusion, central drive was ∼3 times greater, motor units were recruited ∼30 ms earlier (P < 0.01), and motor unit onset discharge frequencies were significantly higher (P < 0.01). Recruitment order of motor unit pairs observed during eupnea was maintained for 98%, 87%, and 84% of the same pairs recorded during hypoxia-hypercapnia, deep breaths, and airway occlusion, respectively. Reversals in motor unit recruitment order were observed primarily if motor unit pairs were recruited <20 ms apart. These results are consistent with DIAm motor unit recruitment order being determined primarily by the intrinsic size-dependent electrophysiological properties of phrenic motor neurons. PMID:25257864
Spittle, Alicia J; McGinley, Jennifer L; Thompson, Deanne; Clark, Ross; FitzGerald, Tara L; Mentiplay, Benjamin F; Lee, Katherine J; Olsen, Joy E; Burnett, Alice; Treyvaud, Karli; Josev, Elisha; Alexander, Bonnie; Kelly, Claire E; Doyle, Lex W; Anderson, Peter J; Cheong, Jeanie Ly
2016-10-01
Motor impairments are one of the most frequently reported adverse neurodevelopmental consequences in children born < 30 weeks' gestation. Up to 15% of children born at < 30 weeks have cerebral palsy and an additional 50% have mild to severe motor impairment at school age. The first 5 years of life are critical for the development of fundamental motor skills. These skills form the basis for more complex skills that are required to competently and confidently participate in schooling, sporting and recreational activities. In children born at < 30 weeks' gestation, the trajectory of motor development from birth to 5 years is not fully understood. The neural alterations that underpin motor impairments in these children are also unclear. It is essential to determine if early clinical evaluations and neuroimaging biomarkers can predict later motor impairment and associated functional problems at 5 years of age. This will help to identify children who will benefit the most from early intervention and improve functional outcomes at school age. The primary aim of this study is to compare the prevalence of motor impairment from birth to 5 years of age between children born at < 30 weeks and term-born controls, and to determine whether persistent abnormal motor assessments in the newborn period in those born at < 30 weeks predict abnormal motor functioning at 5 years of age. Secondary aims for children born at < 30 weeks and term-born children are: 1) to determine whether novel early magnetic resonance imaging-based structural or functional biomarkers that can predict motor impairments at 5 years are detectable in the neonatal period; 2) to investigate the association between motor impairments and concurrent deficits in body structure and function at 5 years of age; and 3) to explore how motor impairments at 5 years (including abnormalities of gait, postural control and strength) are associated with concurrent functional outcomes, including physical activity, cognitive ability, learning ability, and behavioural and emotional problems. Prospective longitudinal cohort study. 150 preterm children (born at < 30 weeks' gestation) and 151 term-born children (born at > 36 completed weeks' gestation and weighing > 2499g) admitted to the Royal Women's Hospital, Melbourne, were recruited at birth and will be invited to participate in a 5-year follow-up study. This study will examine previously collected data (from birth to 2 years) that comprise detailed motor assessments, and structural and functional brain MRI images. At 5 years, preterm and term, children will be examined using comprehensive motor assessments, including: the Movement Assessment Battery for Children (2nd edition) and measures of gait function through spatiotemporal (assessed with the GAITRite® Walkway) and dynamic postural control (assessed with Microsoft Kinect) variables; and hand grip strength (assessed with a dynamometer); and measures of physical activity (assessed using accelerometry), cognitive development (assessed with Wechsler Preschool and Primary Scale of Intelligence), and emotional and behavioural status (assessed with the Strengths and Difficulties Questionnaire and the Developmental and Wellbeing Assessment). At the 5-year assessment, parents/caregivers will be asked to complete questionnaires on demographics, physical activity, activities of daily living, behaviour, additional therapy (eg, physiotherapy and occupational therapy), and motor function (assessed with Pediatric Evaluation of Disability Inventory, Pediatric Quality of Life Questionnaire, the Little Developmental Co-ordination Questionnaire and an activity diary). For the primary aim, the prevalence of motor impairment from birth to 5 years will be compared between children born at < 30 weeks and at term, using the proportion of children classified as abnormal at each of the time points (term age, 1, 2 and 5 years). Persistent motor impairments during the neonatal period will be assessed as a predictor of severity of motor impairment at 5 years of age in children born < 30 weeks using linear regression. Models will be fitted using generalised estimating equations to allow for the clustering of multiple births. Analysis will be repeated with adjustment for predictors of motor outcome, including additional therapy, sex, brain injury and chronic lung disease. Understanding the developmental precursors of motor impairment in children born before 30 weeks is essential for limiting disruption to skill development, and potential secondary impacts on physical activity, participation, academic achievement, self-esteem and associated outcomes (such as obesity, poor physical fitness and social isolation). An improved understanding of motor skill development will enable targeting of interventions and streamlining of services to children at highest risk of motor impairments. Copyright © 2016 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.
Cognitive inflexibility in Obsessive-Compulsive Disorder.
Gruner, Patricia; Pittenger, Christopher
2017-03-14
Obsessive-Compulsive Disorder (OCD) is characterized by maladaptive patterns of repetitive, inflexible cognition and behavior that suggest a lack of cognitive flexibility. Consistent with this clinical observation, many neurocognitive studies suggest behavioral and neurobiological abnormalities in cognitive flexibility in individuals with OCD. Meta-analytic reviews support a pattern of cognitive inflexibility, with effect sizes generally in the medium range. Heterogeneity in assessments and the way underlying constructs have been operationalized point to the need for better standardization across studies, as well as more refined overarching models of cognitive flexibility and executive function (EF). Neuropsychological assessments of cognitive flexibility include measures of attentional set shifting, reversal and alternation, cued task-switching paradigms, cognitive control measures such as the Trail-Making and Stroop tasks, and several measures of motor inhibition. Differences in the cognitive constructs and neural substrates associated with these measures suggest that performance within these different domains should be examined separately. Additional factors, such as the number of consistent trials prior to a shift and whether a shift is explicitly signaled or must be inferred from a change in reward contingencies, may influence performance, and thus mask or accentuate deficits. Several studies have described abnormalities in neural activation in the absence of differences in behavioral performance, suggesting that our behavioral probes may not be adequately sensitive, but also offering important insights into potential compensatory processes. The fact that deficits of moderate effect size are seen across a broad range of classic neuropsychological tests in OCD presents a conceptual challenge, as clinical symptomatology suggests greater specificity. Traditional cognitive probes may not be sufficient to delineate specific domains of deficit in this and other neuropsychiatric disorders; a new generation of behavioral tasks that test more specific underlying constructs, supplemented by neuroimaging to provide insight into the underlying processes, may be needed. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Sugiyama, Taisei; Liew, Sook-Lei
2017-01-01
Modifying sensory aspects of the learning environment can influence motor behavior. Although the effects of sensory manipulations on motor behavior have been widely studied, there still remains a great deal of variability across the field in terms of how sensory information has been manipulated or applied. Here, the authors briefly review and integrate the literature from each sensory modality to gain a better understanding of how sensory manipulations can best be used to enhance motor behavior. Then, they discuss 2 emerging themes from this literature that are important for translating sensory manipulation research into effective interventions. Finally, the authors provide future research directions that may lead to enhanced efficacy of sensory manipulations for motor learning and rehabilitation.
Impaired eye movements in presymptomatic spinocerebellar ataxia type 6.
Christova, Peka; Anderson, John H; Gomez, Christopher M
2008-04-01
Early detection of impaired neurological function in neurodegenerative diseases may aid in understanding disease pathogenesis and timing of therapeutic trials. To identify early abnormalities of ocular motor function in individuals who have the spinocerebellar ataxia type 6 (SCA6) gene (CACNA1A) but no clinical symptoms. Physiological techniques were used to record and analyze eye movements and postural sway. Four presymptomatic and 5 ataxic patients with SCA6, genetically identified, and 10 healthy controls. Presymptomatic individuals had normal postural sway but definite ocular motor abnormalities. Two had a low-amplitude horizontal gaze-evoked nystagmus, 1 of whom had a significantly decreased eye velocity for upward saccades and an abnormal frequency of square-wave jerks. Another had abnormal square-wave jerks and a fourth had a reduced gain for pursuit tracking. Not all of the presymptomatic patients had the same findings, but a multivariate analysis discriminated the presymptomatic patients, as a group, from healthy controls and the ataxic patients. Among the earliest functional deficits in SCA6 are eye movement abnormalities, including impaired saccade velocity, saccade metrics, and pursuit gain. This suggests that early functional impairments are caused by cellular dysfunction and/or loss in the posterior cerebellar vermis and flocculus. These findings might help to determine the timing of a treatment and to define variables that could be used as outcome measures for the efficacy of therapeutic trials.
Developmental antecedents of abnormal eating attitudes and behaviors in adolescence.
Le Grange, Daniel; O'Connor, Meredith; Hughes, Elizabeth K; Macdonald, Jacqui; Little, Keriann; Olsson, Craig A
2014-11-01
This study capitalizes on developmental data from an Australian population-based birth cohort to identify developmental markers of abnormal eating attitudes and behaviors in adolescence. The aims were twofold: (1) to develop a comprehensive path model identifying infant and childhood developmental correlates of Abnormal Eating Attitudes and Behaviors in adolescence, and (2) to explore potential gender differences. Data were drawn from a 30-year longitudinal study that has followed the health and development of a population based cohort across 15 waves of data collection from infancy since 1983: The Australian Temperament Project. Participants in this analysis were the 1,300 youth who completed the 11th survey at 15-16 years (1998) and who completed the eating disorder inventory at this time point. Developmental correlates of Abnormal Eating Attitudes and Behaviors in mid-adolescence were temperamental persistence, early gestational age, persistent high weight, teen depression, stronger peer relationships, maternal dieting behavior, and pubertal timing. Overall, these factors accounted for 28% of the variance in Abnormal Eating Attitudes and Behaviors at 15-16 years of age. Depressive symptoms, maternal dieting behavior, and early puberty were more important factors for girls. Late puberty was a more important factor for boys. Findings address an important gap in our understanding of the etiology of Abnormal Eating Attitudes and Behaviors in adolescence and suggest multiple targets for preventive intervention. © 2014 Wiley Periodicals, Inc.
Nakano, Takashi; Okumura, Akihisa; Tanabe, Takuya; Niwa, Shimpei; Fukushima, Masato; Yonemochi, Rie; Eda, Hisano; Tsutsumi, Hiroyuki
2013-06-01
Abnormal behavior and delirium are common in children with influenza. While abnormal behavior and delirium are considered to be associated with influenza encephalopathy, an increased risk of such neuropsychiatric symptoms in patients receiving neuraminidase inhibitor treatment is suspected. Laninamivir octanoate hydrate, recently approved in Japan, is a long-acting neuraminidase inhibitor. It is important to establish a safety profile for laninamivir early, based on post-marketing experiences. Spontaneous safety reports collected in the early post-marketing phase vigilance were analyzed. Adverse events of interest such as abnormal behavior/delirium, dizziness/vertigo, respiratory disorders, shock/syncope, and any other serious events were intensively reviewed by the Safety Evaluation Committee. Abnormal behavior/delirium was a frequently reported event. Almost all the reported cases were considered to be due to influenza and not laninamivir. There were 32 cases of abnormal behavior/delirium that could lead to dangerous accidents, and these were observed more frequently in males and teenagers. Syncope probably related to the act of inhalation per se of laninamivir was reported during this survey. This safety review revealed that the safety profile of laninamivir for abnormal behavior/delirium and syncope was similar to that of other neuraminidase inhibitors. As stated in the labeling, teenage patients inhaling laninamivir should remain under constant parental supervision for at least 2 days and should be closely monitored for behavioral changes to prevent serious accidents associated with abnormal behavior/delirium. Furthermore, to avoid syncope because of inhalation, patients should be instructed to inhale in a relaxed sitting position.
Movement disorder symptoms associated with Unified ...
Objectives: The UPDRS is a commonly used neurological measurement to assess the presence and severity of parkinsonian symptoms. It has also been used to assess symptoms associated with Mn exposure. Objectives: to determine 1) if movement disorder symptoms were associated with UPDRS: Activities of Daily Living (ADL) and Motor abnormalities; and 2) which symptoms were most related to increased abnormalities on these UPDRS subscales. Participants & Methods: Correlations between self-reported movement disorder symptoms from a health questionnaire and scores obtained on UPDRS: ADL and Motor subscales, and the Bradykinesia domain of the Motor subscale, were assessed during a medical examination among 185 Mn-exposed participants from two Ohio towns. Partial correlations were used for statistical analyses, controlling for age, sex, education and a history of musculoskeletal disease.Results: The presence of movement disorder symptoms was positively associated with ADL (pr =0.647, p = <0.001), Motor (pr =0.449, p = <0.001), and Bradykinesia (pr =0.418, p = <0.001) domains on the UPDRS. Specific movement disorder symptoms most strongly associated with increased ADL and Motor scores included having difficulty getting out of chairs (pr =0.458, p = <0.001), writing (pr =0.481, p = <0.001), skilled movements (pr =0.478, p = <0.001), loss of coordination/balance (pr =0.457, p = <0.001), changes in walking (pr =0.412, p = <0.001) and slowness of movement (pr =0.539, p = <0.0
Association between vestibular function and motor performance in hearing-impaired children.
Maes, Leen; De Kegel, Alexandra; Van Waelvelde, Hilde; Dhooge, Ingeborg
2014-12-01
The clinical balance performance of normal-hearing (NH) children was compared with the balance performance of hearing-impaired (HI) children with and without vestibular dysfunction to identify an association between vestibular function and motor performance. Prospective study. Tertiary referral center. Thirty-six children (mean age, 7 yr 5 mo; range, 3 yr 8 mo-12 yr 11 mo) divided into three groups: NH children with normal vestibular responses, HI children with normal vestibular responses, and HI children with abnormal vestibular function. A vestibular test protocol (rotatory and collic vestibular evoked myogenic potential testing) in combination with three clinical balance tests (balance beam walking, one-leg hopping, one-leg stance). Clinical balance performance. HI children with abnormal vestibular test results obtained the lowest quotients of motor performance, which were significantly lower compared with the NH group (p < 0.001 for balance beam walking and one-leg stance; p = 0.003 for one-leg hopping). The balance performance of the HI group with normal vestibular responses was better in comparison with the vestibular impaired group but still significantly lower compared with the NH group (p = 0.020 for balance beam walking; p = 0.001 for one-leg stance; not significant for one-leg hopping). These results indicate an association between vestibular function and motor performance in HI children, with a more distinct motor deterioration if a vestibular impairment is superimposed to the auditory dysfunction.
Training based on mirror visual feedback influences transcallosal communication.
Avanzino, Laura; Raffo, Alessia; Pelosin, Elisa; Ogliastro, Carla; Marchese, Roberta; Ruggeri, Piero; Abbruzzese, Giovanni
2014-08-01
Mirror visual feedback (MVF) therapy has been demonstrated to be successful in neurorehabilitation, probably inducing neuroplasticity changes in the primary motor cortex (M1). However, it is not known whether MVF training influences the hemispheric balance between the M1s. This topic is of extreme relevance when MVF training is applied to stroke rehabilitation, as the competitive interaction between the two hemispheres induces abnormal interhemispheric inhibition (IHI) that weakens motor function in stroke patients. In the present study, we evaluated, in a group of healthy subjects, the effect of motor training and MVF training on the excitability of the two M1s and the IHI between M1s. The IHI from the 'active' M1 to the opposite M1 (where 'active' means the M1 contralateral to the moving hand in the motor training and the M1 of the seen hand in the MVF training) increased, after training, in both the experimental conditions. Only after motor training did we observe an increase in the excitability of the active M1. Our findings show that training based on MVF may influence the excitability of the transcallosal pathway and support its use in disorders where abnormal IHI is a potential target, such as stroke, where an imbalance between the affected and unaffected M1s has been documented. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Complex movement disorders at disease onset in childhood narcolepsy with cataplexy
Pizza, Fabio; Palaia, Vincenzo; Franceschini, Christian; Poli, Francesca; Moghadam, Keivan K.; Cortelli, Pietro; Nobili, Lino; Bruni, Oliviero; Dauvilliers, Yves; Lin, Ling; Edwards, Mark J.; Mignot, Emmanuel; Bhatia, Kailash P.
2011-01-01
Narcolepsy with cataplexy is characterized by daytime sleepiness, cataplexy (sudden loss of bilateral muscle tone triggered by emotions), sleep paralysis, hypnagogic hallucinations and disturbed nocturnal sleep. Narcolepsy with cataplexy is most often associated with human leucocyte antigen-DQB1*0602 and is caused by the loss of hypocretin-producing neurons in the hypothalamus of likely autoimmune aetiology. Noting that children with narcolepsy often display complex abnormal motor behaviours close to disease onset that do not meet the classical definition of cataplexy, we systematically analysed motor features in 39 children with narcolepsy with cataplexy in comparison with 25 age- and sex-matched healthy controls. We found that patients with narcolepsy with cataplexy displayed a complex array of ‘negative’ (hypotonia) and ‘active’ (ranging from perioral movements to dyskinetic–dystonic movements or stereotypies) motor disturbances. ‘Active’ and ‘negative’ motor scores correlated positively with the presence of hypotonic features at neurological examination and negatively with disease duration, whereas ‘negative’ motor scores also correlated negatively with age at disease onset. These observations suggest that paediatric narcolepsy with cataplexy often co-occurs with a complex movement disorder at disease onset, a phenomenon that may vanish later in the course of the disease. Further studies are warranted to assess clinical course and whether the associated movement disorder is also caused by hypocretin deficiency or by additional neurochemical abnormalities. PMID:21930661
WiiPD--an approach for the objective home assessment of Parkinson's disease.
Synnott, J; Chen, L; Nugent, C D; Moore, G
2011-01-01
This paper introduces WiiPD, an approach to home-based objective assessment of Parkinson's disease. WiiPD aims to make use of the many capabilities of the Nintendo Wii Remote in combination with a number of bespoke data gathering methods to provide a rich and engaging user experience that can capture a wide range of motor and non-motor metrics. In this paper we discuss the architecture of the approach, and provide details of the implementation and testing of the motor-assessment component of the system. Initial results of testing on 6 users indicate that the system is able to differentiate between normal and abnormal motor performance, suggesting that the system has the potential to monitor the motor fluctuations associated with Parkinson's disease.
Nakamura, Yuuki; Sugawara, Tamie; Ohkusa, Yasushi; Taniguchi, Kiyosu; Miyazaki, Chiaki; Momoi, Mariko; Okabe, Nobuhiko
2018-03-01
An earlier study using the number of abnormal behaviors reported to the study group as the numerator and the number of influenza patient prescribed each neuraminidase inhibitor (NI) estimated by respective pharmaceutical companies found no significant difference among incidence rates of the most severe abnormal behaviors by type of NI throughout Japan. However, the dataset for the denominator used in that earlier study was the estimated number of prescriptions. In the present study, to compare the incidence rates of abnormal behavior more precisely among influenza patients administered several sorts of NI or administered no NI, we used data obtained from the National Database of Electronic Medical Claims (NDBEMC) as the denominator to reach a definitive conclusion. Results show that patients not administered any NI (hereinafter un-administered) or those administered peramivir sometimes showed higher risk of abnormal behavior than those administered oseltamivir, zanamivir, or laninamivir. However, the un-administered or peramivir patients were fewer than those taking other NI. Therefore, accumulation of data through continued research is expected to be necessary to reach a definitive conclusion about the relation between abnormal behavior and NI in influenza patients. Since severe abnormal behaviors with all types of NI or of un-administered patients have been reported, there are some risks in the administration of NI or even in un-administered cases. Therefore, we infer that the policy mandating package inserts in all types of NI. Copyright © 2017. Published by Elsevier Ltd.
Lim, M. A.; Selak, M. A.; Xiang, Z.; Krainc, D.; Neve, R. L.; Kraemer, B. C.; Watts, J. L.
2012-01-01
A growing body of research indicates that amyotrophic lateral sclerosis (ALS) patients and mouse models of ALS exhibit metabolic dysfunction. A subpopulation of ALS patients possesses higher levels of resting energy expenditure and lower fat-free mass compared to healthy controls. Similarly, two mutant copper zinc superoxide dismutase 1 (mSOD1) mouse models of familial ALS possess a hypermetabolic phenotype. The pathophysiological relevance of the bioenergetic defects observed in ALS remains largely elusive. AMP-activated protein kinase (AMPK) is a key sensor of cellular energy status and thus might be activated in various models of ALS. Here, we report that AMPK activity is increased in spinal cord cultures expressing mSOD1, as well as in spinal cord lysates from mSOD1 mice. Reducing AMPK activity either pharmacologically or genetically prevents mSOD1-induced motor neuron death in vitro. To investigate the role of AMPK in vivo, we used Caenorhabditis elegans models of motor neuron disease. C. elegans engineered to express human mSOD1 (G85R) in neurons develops locomotor dysfunction and severe fecundity defects when compared to transgenic worms expressing human wild-type SOD1. Genetic reduction of aak-2, the ortholog of the AMPK α2 catalytic subunit in nematodes, improved locomotor behavior and fecundity in G85R animals. Similar observations were made with nematodes engineered to express mutant tat-activating regulatory (TAR) DNA-binding protein of 43 kDa molecular weight. Altogether, these data suggest that bioenergetic abnormalities are likely to be pathophysiologically relevant to motor neuron disease. PMID:22262909
Simpson-Golabi-Behmel syndrome types I and II.
Tenorio, Jair; Arias, Pedro; Martínez-Glez, Víctor; Santos, Fernando; García-Miñaur, Sixto; Nevado, Julián; Lapunzina, Pablo
2014-09-20
Simpson-Golabi-Behmel syndrome (SGBS) is a rare overgrowth syndrome clinically characterized by multiple congenital abnormalities, pre/postnatal overgrowth, distinctive craniofacial features, macrocephaly, and organomegaly. Abnormalities of the skeletal system, heart, central nervous system, kidney, and gastrointestinal tract may also be observed. Intellectual disability, early motor milestones and speech delay are sometimes present; however, there are a considerable number of individuals with normal intelligence.
Kwinta, Przemko; Klimek, Małgorzata; Grudzień, Andrzej; Nitecka, Magdalena; Profus, Krzysztof; Gasińska, Monika; Pawlik, Dorota; Lauterbach, Ryszard; Olechowski, Wiesław; Pietrzyk, Jacek Józef
2012-01-01
A better understanding of the developmental problems in extremely low birth weight (ELBW) preterm infants may enhance their chances of proper adaptation to their environment and make it possible to retrospectively assess perinatal and neonatal methods of treatment. The aim of the study was to evaluate the cognitive and motor development of ELBW children born from 2002 to 2004 in the 7th year of life. Based on these results and perinatal mortality data, it was established what chance the children have to live free of severe complications. Two hundred and four alive newborns with birth weight .1000 g were born in the Malopolska voivodship between 1.09.2002 and 31.08.2004. One hundred and fifteen children (56%) died in early infancy. The study included 81 (91%) children out of the 89 surviving ones. Their mean gestational age at birth was 27.3 weeks. (SD: 2.1 weeks) and their mean birth weight was 840g (SD: 130g). Neurosensory disturbances were assessed in all the children and their cognitive development was evaluated with the use of the WISC-R (Wechsler Intelligence Scale for Children . Revised) scale. The children were divided into 3 groups: group I . normal development (full motor capacity and IQ >84 points and no vision or hearing impairment), group II . mild or moderate impairment (cerebral palsy level I, II or III according to the Gross Motor Function Classification System [GMCS], or IQ 40-84 points, or abnormal vision or hearing, or signs of the hyperactivity syndrome), group III . severe impairment (cerebral palsy level IV, and/or IQ <40 points, or deafness/blindness). Forty-five (56%) children were included in group I, 25 (30%) in group II and 11 (14%) in group III. Moreover, other neurologic abnormalities, such as uneven development, problems with concentration, or abnormal grapho-motor ability were highly prevalent in the group of ELBW children. The incidence of cerebral palsy in the population studied was 16%, the incidence of deafness and severe hearing impairment was 11%, and blindness and severe vision impairment . 12%. In general, the chance of survival free of severe complications was merely 15% in children with birthweight .700 g, 28% in children with birth weight 701- 800 g, 45% in children with birth weight 801-900 g, and 62% in children with birth weight 901-1000 g. 1. The data gathered in a regional study may yield valuable information useful in assessing the prognosis of the general health status of ELBW newborns. 2. Most of the children present uneven development, problems with concentration, or abnormal grapho-motor ability, which may be a cause of learning problems and abnormal relationships with peers. 3. A follow-up study up to adulthood is required for this group of ELBW newborns.
Traboulsi, Elias I
2004-01-01
ABSTRACT Purpose The clinical and molecular genetic classification of syndromes with congenital limitation of eye movements and evidence of cranial nerve dysgenesis continues to evolve. This monograph details clinical and molecular genetic data on a number of families and isolated patients with congenital fibrosis of the extraocular muscles (CFEOM) and related disorders, and presents an overview of the mechanisms of abnormal patterns of motor and sensory cranial nerve development in these rare syndromes. Methods Clinical examination of one patient with CFEOM1, one family with clinical features of CFEOM2, one family with recessive CFEOM3, one family with horizontal gaze palsy and progressive scoliosis (HGPPS), and four patients with various combinations of congenital cranial nerve abnormalities. Genotyping of families with CFEOM and HGPPS for polymorphic markers in the regions of the three known CFEOM loci and in the HGPPS region, and mutation analysis of the ARIX and KIF21A genes in patients with CFEOM were performed according to standard published protocols. Results The patient with CFEOM1 had the second most common mutation in KIF21A, a 2861 G>A mutation that resulted in an R954Q substitution. The family with CFEOM2 phenotype did not map to the CFEOM2 locus. The family with recessive CFEOM3 did not map to any of the known loci. The HGPPS family mapped to 11q23–q25. One patient had optic nerve hypoplasia and fifth nerve dysfunction. Two patients had the rare combination of Möbius syndrome and CFEOM. One patient had Möbius syndrome and fifth nerve dysfunction. Conclusions There is genetic heterogeneity in CFEOM2 and CFEOM3. Abnormalities in sensory nerves can also accompany abnormalities of motor nerves, further substantiating the effect of individual mutations on developing motor as well as sensory cranial nerve nuclei. PMID:15747768
Social behavioral changes in MPTP-treated monkey model of Parkinson's disease
Durand, Elodie; Petit, Odile; Tremblay, Léon; Zimmer, Cédric; Sgambato-Faure, Véronique; Chassain, Carine; Laurent, Marlène; Pereira, Bruno; Silberberg, Céline; Durif, Franck
2015-01-01
Parkinsonian patients experience not only the physical discomfort of motor disorders but also the considerable psychological distress caused by cognitive deficits and behavioral disorders. These two factors can result in a disruption of social relationships during the symptomatic and even the presymptomatic motor states of the disease. However, it remains difficult, if not impossible, to evaluate social relationships in presymptomatic patients. The present study focused on the evaluation of social relationships within a group of female long-tailed macaques during presymptomatic and symptomatic motor states induced by Chronic Low-Dose (CLD) and then Chronic High-Dose (CHD) systemic administration of 1-methyl-4-phenyl-l,2,3,6-tetrahydropyridine (MPTP). Dopaminergic denervation within basal ganglia and cortical areas was evaluated using Positron Emission Tomography (PET) scans with 18F-DOPA (6-[18F]-fluoro-L-3,4-dihydroxyphenylalanine) radiotracer. Interestingly, social behavioral changes could be identified in the presymptomatic motor state before any motor and/or cognitive impairment occurred. Stronger effects were observed in subordinate animals compared to dominant animals. From baseline state to CLD-presymptomatic motor state, the frequency of emitted affiliative and aggressive behaviors increased. From CLD-presymptomatic to CHD-presymptomatic motor states, the frequency of the three categories of social behaviors (aggressive, submissive and affiliative) decreased. At this time, quantitative data analysis in PET scans highlighted a dopaminergic denervation in the insula and the posterior caudate nucleus. Finally, the frequency of the three categories of social behaviors decreased during the stable-symptomatic motor state compared to baseline and presymptomatic motor states; this was also associated with motor and cognitive disorders and a dopaminergic denervation in all the evaluated cortical and subcortical structures. PMID:25767440
Unusual early-onset Huntingtons disease.
Vargas, Antonio P; Carod-Artal, Francisco J; Bomfim, Denise; Vázquez-Cabrera, Carolina; Dantas-Barbosa, Carmela
2003-06-01
Huntington's disease is an autosomal dominant progressive neurodegenerative disorder characterized by involuntary movements, cognitive decline, and behavioral disorders leading to functional disability. In contrast to patients with adult onset, in which chorea is the major motor abnormality, children often present with spasticity, rigidity, and significant intellectual decline associated with a more rapidly progressive course. An unusual early-onset Huntington's disease case of an 11-year-old boy with severe hypokinetic/rigid syndrome appearing at the age of 2.5 years is presented. Clinical diagnosis was confirmed by polymerase chain reaction study of the expanded IT-15 allele with a compatible size of 102 cytosine-adenosine-guanosine repeats L-Dopa mildly ameliorated rigidity, bradykinesia, and dystonia. We conclude that Huntington's disease should be included in the differential diagnoses of regressive syndromes of early childhood.
Mäenpää, Heidi; Häkkinen, Arja; Sarajuuri, Anne
2016-01-01
To compare changes in motor development from 1 to 5 years of age among 18 children with hypoplastic left heart syndrome and 12 with univentricular heart to 42 children without heart defect. Motor development was assessed with the Alberta Infant Motor Scale and Movement Assessment Battery for Children (Movement ABC). Children with hypoplastic left heart syndrome or univentricular heart had significantly lower scores on the Alberta Infant Motor Scale test at the age of 1 and on the Movement ABC test at the age of 5 years compared with controls. Children with clear abnormalities on brain magnetic resonance imaging had lower scores compared with those with normal images or mild changes, and their relative motor scores decreased during follow-up. Some children with univentricular heart defects may benefit from physiotherapeutic interventions to support their motor development.
MacDonald, Megan; Ross, Samantha; McIntyre, Laura Lee; Tepfer, Amanda
2017-04-01
Young children with developmental disabilities experience known deficits in salient child behaviors, such as social behaviors, communication, and aspects of daily living, behaviors that generally improve with chronological age. The purpose of this study was to examine the mediating effects of motor skills on relations of age and salient child behaviors in a group of young children with developmental disabilities, thus tapping into the potential influences of motor skills in the development of salient child behaviors. One hundred thirteen young children with developmental disabilities participated in this study. Independent mediation analysis, with gender as a moderator between the mediating and outcome variable, indicated that motor skills meditated relations between age and socialization, communication, and daily living skills in young male children with developmental disabilities, but not female participants. Findings suggest motor skill content needs to be considered in combination with other child behaviors commonly focused on in early intervention.
Bechard, Allison R.; Cacodcar, Nadia; King, Michael A.; Lewis, Mark H.
2015-01-01
Repetitive motor behaviors are observed in many neurodevelopmental and neurological disorders (e.g. autism spectrum disorders, Tourette syndrome, fronto-temporal dementia). Despite their clinical importance, the neurobiology underlying these highly stereotyped, apparently functionless behaviors is poorly understood. Identification of mechanisms that mediate the development of repetitive behaviors will aid in the discovery of new therapeutic targets and treatment development. Using a deer mouse model, we have shown that decreased indirect basal ganglia pathway activity is associated with high levels of repetitive behavior. Environmental enrichment (EE) markedly attenuates the development of such aberrant behaviors in mice, although mechanisms driving this effect are unknown. We hypothesized that EE would reduce repetitive motor behaviors by increasing indirect basal ganglia pathway function. We assessed neuronal activation and dendritic spine density in basal ganglia of adult deer mice reared in EE and standard housing. Significant increases in neuronal activation and dendritic spine densities were observed only in the subthalamic nucleus (STN) and globus pallidus (GP), and only for those mice that exhibited an EE-induced decrease in repetitive motor behavior. As the STN and GP lie within the indirect pathway, these data suggest that EE-induced attenuation of repetitive motor behaviors is associated with increased functional activation of the indirect basal ganglia pathway. These results are consistent with our other findings highlighting the importance of the indirect pathway in mediating repetitive motor behaviors. PMID:26620495
Fukushima, Wakaba; Ozasa, Kotaro; Okumura, Akihisa; Mori, Masaaki; Hosoya, Mitsuaki; Nakano, Takashi; Tanabe, Takuya; Yamaguchi, Naoto; Suzuki, Hiroshi; Mori, Mitsuru; Hatayama, Hideaki; Ochiai, Hirotaka; Kondo, Kyoko; Ito, Kazuya; Ohfuji, Satoko; Nakamura, Yosikazu; Hirota, Yoshio
2017-08-24
Since the 1990s, self-controlled designs including self-controlled case series (SCCS) studies have been occasionally used in post-marketing evaluation of drug or vaccine safety. An SCCS study was tentatively applied to evaluate the relationship between oseltamivir use and abnormal behavior Type A (serious abnormal behavior potentially leading to an accident or harm to another person) in influenza patients. From the original prospective cohort study with approximately 10,000 Japanese children and adolescents with influenza (aged <18years), 28 subjects (mean age: 7.3years) who developed abnormal behavior Type A after the first visit to the collaborating hospitals/clinics were analyzed. We hypothesized four combination patterns of the effect period (i.e., the period that effect of oseltamivir on occurrence of abnormal behavior Type A is likely) and the control period. Mantel-Haenszel rate ratio (M-H RR) and its 95% confidence interval (CI) were calculated as the relative risk estimate. Among 28 subjects in the SCCS study, 24 subjects (86%) were administered oseltamivir and 4 subjects (14%) were not. Abnormal behavior Type A was more likely to occur in the effect period than the control period in every pattern (M-H RR: 1.90-29.1). We observed the highest estimate when the effect period was set between the initial intake of oseltamivir and T max (M-H RR: 29.1, 95% CI: 4.21-201). Abnormal behavior Type A was more likely to develop up to approximately 30 times during the period between the initial intake of oseltamivir and T max . However, this period overlapped with the early period of influenza where high fever was observed. Since useful approaches to control the influence of the natural disease course of influenza were not available in this study, we could not deny the possibility that abnormal behavior was induced by influenza itself. The SCCS study was not an optimal method to evaluate the relationship between oseltamivir use and abnormal behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.
Kahr, Walter H A; Savoia, Anna; Pluthero, Fred G; Li, Ling; Christensen, Hilary; De Rocco, Daniela; Traivaree, Chanchai; Butchart, Sheila E; Curtin, Julie; Stollar, Elliott J; Forman-Kay, Julie D; Blanchette, Victor S
2009-12-01
Heterozygous mutations in MYH9, which encodes non-muscle myosin heavy chain IIA (MHC-IIA), result in autosomal dominant inherited MYH9-related disorders characterised by macro-thrombocytopenia, granulocyte inclusions, variable sensorineural deafness, cataracts and nephritis. MHC-IIA is assembled into a complex consisting of two pairs of light chains and two heavy chains, where the latter contain a neck region, SH3-like, motor and rod domains. We describe a patient with a Trp33Cys missense mutation in the SH3-like domain of MHC-IIA. Abnormal platelet function was observed using platelet aggregometry with the agonists epinephrine and adenosine diphosphate (ADP). Patient granulocytes and megakaryocytes, but not platelets, contained abnormal MHC-IIA inclusions visualised by confocal immunofluorescence or electron microscopy. Megakaryocytes grown in culture were smaller and contained hypolobulated nuclei compared to controls. Bone marrow-derived megakaryocytes revealed a preponderance of immature forms, the presence of structurally diverse inclusion bodies, and frequent emperipolesis as assessed by electron microscopy. Platelets and leukocytes contained indistinguishable amounts of total MHC-IIA determined by immunoblotting. Molecular modelling studies indicated that mutation of Trp33 destabilises the interface between the SH3-like and motor domain of MHC-IIA, which is close to previously described motor domain mutations, implying an important structural and/or functional role for this region in MHC-IIA.
Motor pathway convergence predicts syllable repertoire size in oscine birds
Moore, Jordan M.; Székely, Tamás; Büki, József; DeVoogd, Timothy J.
2011-01-01
Behavioral specializations are frequently associated with expansions of the brain regions controlling them. This principle of proper mass spans sensory, motor, and cognitive abilities and has been observed in a wide variety of vertebrate species. Yet, it is unknown if this concept extrapolates to entire neural pathways or how selection on a behavioral capacity might otherwise shape circuit structure. We investigate these questions by comparing the songs and neuroanatomy of 49 species from 17 families of songbirds, which vary immensely in the number of unique song components they produce and possess a conserved neural network dedicated to this behavior. We find that syllable repertoire size is strongly related to the degree of song motor pathway convergence. Repertoire size is more accurately predicted by the number of neurons in higher motor areas relative to that in their downstream targets than by the overall number of neurons in the song motor pathway. Additionally, the convergence values along serial premotor and primary motor projections account for distinct portions of the behavioral variation. These findings suggest that selection on song has independently shaped different components of this hierarchical pathway, and they elucidate how changes in pathway structure could have underlain elaborations of this learned motor behavior. PMID:21918109
Effect of one anesthetic exposure on long-term behavioral changes in children.
Chemaly, Maen; El-Rajab, Mariam A; Ziade, Fouad M; Naja, Zoher M
2014-11-01
To determine the association between one anesthetic exposure and behavioral outcome at age 10 to 12 years. Retrospective comparative study. University-affiliated pediatrics department. The medical records of children who underwent anesthesia between January 2004 and December 2005 at our institution were reviewed. The records of 292 children were included in the study group and 300 children in the control group. The study group involved children who had one anesthetic exposure before age of 4 years and the control group had children who were not exposed to anesthesia. The primary outcome was behavioral change as assessed by the Eyberg Child Behavior Inventory (ECBI) questionnaire. The rate of behavioral abnormalities before the age of 11 years was 28.4% in the study group (P<0.001) and 5.7% in the control group. The risk of developing behavioral abnormalities was prominent in children being exposed to surgery versus those exposed during a diagnostic procedure (32.4% vs 4.8%; P<0.0001). Eighty-three point nine percent of the children who were exposed to longer duration anesthesia (more than 3 hrs) had behavioral abnormalities (P<0.0001), while 48.8% of children who received anesthesia at younger ages (0 - 6 mos) had behavioral abnormalities (P<0.0001). Exposure to multiple anesthetic agents versus one anesthetic agent was a significant risk factor for development of behavioral abnormalities (P<0.0001). The incidence of behavioral abnormalities increased when anesthesia and surgery were accompanied by younger age, longer duration of surgery, and use of multiple anesthetic agents. Copyright © 2014 Elsevier Inc. All rights reserved.
Motor Behavior: From Telegraph Keys and Twins to Linear Slides and Stepping
ERIC Educational Resources Information Center
Thomas, Jerry R.
2006-01-01
Motor behavior is a significant area of scholarship with 64 Fellows from the American Academy of Kinesiology and Physical Education engaged in that work since 1930. This paper provides a brief overview of the history of research in motor development and motor control/learning, particularly noting the contributions to scholarship of Academy…
Obesity Reduces Cognitive and Motor Functions across the Lifespan
Wang, Chuanming; Chan, John S. Y.; Ren, Lijie; Yan, Jin H.
2016-01-01
Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised. PMID:26881095
Obesity Reduces Cognitive and Motor Functions across the Lifespan.
Wang, Chuanming; Chan, John S Y; Ren, Lijie; Yan, Jin H
2016-01-01
Due to a sedentary lifestyle, more and more people are becoming obese nowadays. In addition to health-related problems, obesity can also impair cognition and motor performance. Previous results have shown that obesity mainly affects cognition and motor behaviors through altering brain functions and musculoskeletal system, respectively. Many factors, such as insulin/leptin dysregulation and inflammation, mediate the effect of obesity and cognition and motor behaviors. Substantial evidence has suggested exercise to be an effective way to improve obesity and related cognitive and motor dysfunctions. This paper aims to discuss the association of obesity with cognition and motor behaviors and its underlying mechanisms. Following this, mechanisms of exercise to improve obesity-related dysfunctions are described. Finally, implications and future research direction are raised.
Andrews, Jane M; Heddle, Richard; Hebbard, Geoffrey S; Checklin, Helen; Besanko, Laura; Fraser, Robert J
2009-01-01
Awareness of patient demographics, common diagnoses and associations between these may improve the use and interpretation of manometric investigations. The aim of the present study therefore was to determine whether age and/or gender affect manometric diagnosis in a clinical motility service. An audit of all 452 clinical manometry reports issued from December 2003 to July 2005 with respect to age, gender and diagnosis was carried out. Patients were divided by age (17-24 years n = 14, 25-44 years n = 87, 45-64 years n = 216 and >or=65 years n = 135), and gender and data compared using contingency tables. Women were more commonly referred overall (59%) and in each age bracket except <25 years (64% male). Men were more likely to have 'hypotensive' motor problems P = 0.01. With aging, normal motor function became less common (P = 0.013), with non-specific motor disorder, ineffective/hypotensive peristalsis and 'achalasia-like' conditions each more common (individual P = NS). Increasing age showed a trend for increased spastic motor disorders (P = 0.06). Gender did not, however, influence whether motility was abnormal (P = 0.5), spastic (P = 0.7) or whether a non-specific motor disorder was present (P = 0.1). In the total cohort, the principal manometric diagnoses were: non-specific motor disorder 33%, normal motility 29%, low basal lower esophageal sphincter pressure 18%, hypotensive/ineffective peristalsis 10%, achalasia/achalasia-like 6%, diffuse esophageal spasm 3% and other 1%. Aging leads to increasing esophageal motor abnormalities. Men and women have similar rates of dysfunction, although 'low-pressure problems' were more common in men.
Amblyopia and binocular vision.
Birch, Eileen E
2013-03-01
Amblyopia is the most common cause of monocular visual loss in children, affecting 1.3%-3.6% of children. Current treatments are effective in reducing the visual acuity deficit but many amblyopic individuals are left with residual visual acuity deficits, ocular motor abnormalities, deficient fine motor skills, and risk for recurrent amblyopia. Using a combination of psychophysical, electrophysiological, imaging, risk factor analysis, and fine motor skill assessment, the primary role of binocular dysfunction in the genesis of amblyopia and the constellation of visual and motor deficits that accompany the visual acuity deficit has been identified. These findings motivated us to evaluate a new, binocular approach to amblyopia treatment with the goals of reducing or eliminating residual and recurrent amblyopia and of improving the deficient ocular motor function and fine motor skills that accompany amblyopia. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kas, Martien J H; de Mooij-van Malsen, Annetrude J G; Olivier, Berend; Spruijt, Berry M; van Ree, Jan M
2008-08-01
Traditional behavioral tests, such as the open field test, measure an animal's responsiveness to a novel environment. However, it is generally difficult to assess whether the behavioral response obtained from these tests relates to the expression level of motor activity and/or to avoidance of anxiogenic areas. Here, an automated home cage environment for mice was designed to obtain independent measures of motor activity levels and of sheltered feeding preference during three consecutive days. Chronic treatment with the anxiolytic drug chlordiazepoxide (5 and 10 mg/kg/day) in C57BL/6J mice reduced sheltered feeding preference without altering motor activity levels. Furthermore, two distinct chromosome substitution strains, derived from C57BL/6J (host strain) and A/J (donor strain) inbred strains, expressed either increased sheltering preference in females (chromosome 15) or reduced motor activity levels in females and males (chromosome 1) when compared to C57BL/6J. Longitudinal behavioral monitoring revealed that these phenotypic differences maintained after adaptation to the home cage. Thus, by using new automated behavioral phenotyping approaches, behavior can be dissociated into distinct behavioral domains (e.g., anxiety-related and motor activity domains) with different underlying genetic origin and pharmacological responsiveness.
Lee, Yangchool; Jeoung, Bogja
2016-12-01
The purpose of this study was to determine the relationship between the motor skills and the behavior problems of students with intellectual disabilities. The study participants were 117 students with intellectual disabilities who were between 7 and 25 years old (male, n=79; female, n=38) and attending special education schools in South Korea. Motor skill abilities were assessed by using the second version of the Bruininks-Oseretsky test of motor proficiency, which includes subtests in fine motor control, manual coordination, body coordination, strength, and agility. Data were analyzed with SPSS IBM 21 by using correlation and regression analyses, and the significance level was set at P <0.05. The results showed that fine motor precision and integration had a statistically significant influence on aggressive behavior. Manual dexterity showed a statistically significant influence on somatic complaint and anxiety/depression, and bilateral coordination had a statistically significant influence on social problems, attention problem, and aggressive behavior. Our results showed that balance had a statistically significant influence on social problems and aggressive behavior, and speed and agility had a statistically significant influence on social problems and aggressive behavior. Upper limb coordination and strength had a statistically significant influence on social problems.
Luo, Guo; Yi, Jianxun; Ma, Changling; Xiao, Yajuan; Yi, Frank; Yu, Tian; Zhou, Jingsong
2013-01-01
Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A) harboring a superoxide dismutase mutation (SOD1(G93A)). Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1(G93A) in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1(G93A) forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) caused abnormalities in mitochondrial dynamics similar to that in the SOD1(G93A) model muscle. A specific mitochondrial fission inhibitor (Mdivi-1) reversed the SOD1(G93A) action on mitochondrial dynamics, indicating SOD1(G93A) likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1(G93A) inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and may actively promote ALS progression.
Aberrant cerebellar connectivity in motor and association networks in schizophrenia
Shinn, Ann K.; Baker, Justin T.; Lewandowski, Kathryn E.; Öngür, Dost; Cohen, Bruce M.
2015-01-01
Schizophrenia is a devastating illness characterized by disturbances in multiple domains. The cerebellum is involved in both motor and non-motor functions, and the “cognitive dysmetria” and “dysmetria of thought” models propose that abnormalities of the cerebellum may contribute to schizophrenia signs and symptoms. The cerebellum and cerebral cortex are reciprocally connected via a modular, closed-loop network architecture, but few schizophrenia neuroimaging studies have taken into account the topographical and functional heterogeneity of the cerebellum. In this study, using a previously defined 17-network cerebral cortical parcellation system as the basis for our functional connectivity seeds, we systematically investigated connectivity abnormalities within the cerebellum of 44 schizophrenia patients and 28 healthy control participants. We found selective alterations in cerebro-cerebellar functional connectivity. Specifically, schizophrenia patients showed decreased cerebro-cerebellar functional connectivity in higher level association networks (ventral attention, salience, control, and default mode networks) relative to healthy control participants. Schizophrenia patients also showed increased cerebro-cerebellar connectivity in somatomotor and default mode networks, with the latter showing no overlap with the regions found to be hypoconnected within the same default mode network. Finally, we found evidence to suggest that somatomotor and default mode networks may be inappropriately linked in schizophrenia. The relationship of these dysconnectivities to schizophrenia symptoms, such as neurological soft signs and altered sense of agency, is discussed. We conclude that the cerebellum ought to be considered for analysis in all future studies of network abnormalities in SZ, and further suggest the cerebellum as a potential target for further elucidation, and possibly treatment, of the underlying mechanisms and network abnormalities producing symptoms of schizophrenia. PMID:25852520
Subthalamic nucleus modulates social and anxogenic-like behaviors.
Reymann, Jean-Michel; Naudet, Florian; Pihan, Morgane; Saïkali, Stephan; Laviolle, Bruno; Bentué-Ferrer, Danièle
2013-09-01
In Parkinson's disease, global social maladjustment and anxiety are frequent after subthalamic nucleus (STN) stimulation and are generally considered to be linked with sociofamilial alterations induced by the motor effects of stimulation. We hypothesized that the STN is per se involved in these changes and aimed to explore the role of STN in social and anxogenic-like behaviors using an animal model. Nineteen male Wistar rats with bilateral lesions of the STN were compared with 26 sham-lesioned rats by synchronizing an ethological approach based upon direct observation of social behaviors and a standardized approach, the elevated plus maze (EPM). Comparisons between groups were performed by a Mann-Whitney-Wilcoxon test. Lesioned rats showed impairments in their social (P=0.05) and aggressive behaviors with a diminution of attacking (P=0.04) and chasing (P=0.06). In the EPM, concerning the open arms, the percentage of distance, time, inactive time, and entry were significantly decreased in lesioned rats (P=0.02, P=0.01, P=0.04, and P=0.05). The time spent in non-protected head dips was also diminished in the lesioned rats (P=0.01). These results strongly implicate the STN in social behavior and anxogenic-like behavior. In human, as DBS induces changes in the underlying dynamics of the stimulated brain networks, it could create an abnormal brain state in which anxiety and social behavior are altered. These results highlight another level of complexity of the behavioral changes after stimulation. Copyright © 2013 Elsevier B.V. All rights reserved.
Gaig, Carles; Iranzo, Alex; Pujol, Montserrat; Perez, Hernando; Santamaria, Joan
2017-03-01
To describe a group of patients referred because of abnormal sleep behaviors that were suggestive of rapid eye movement (REM) sleep behavior disorder (RBD) in whom video-polysomnography ruled out RBD and showed the reported behaviors associated with vigorous periodic limb movements during sleep (PLMS). Clinical history and video-polysomnography review of patients identified during routine visits in a sleep center. Patients were 15 men and 2 women with a median age of 66 (range: 48-77) years. Reported sleep behaviors were kicking (n = 17), punching (n = 16), gesticulating (n = 8), falling out of bed (n = 5), assaulting the bed partner (n = 2), talking (n = 15), and shouting (n = 10). Behaviors resulted in injuries in 3 bed partners and 1 patient. Twelve (70.6%) patients were not aware of displaying abnormal sleep behaviors that were only noticed by their bed partners. Ten (58.8%) patients recalled unpleasant dreams such as being attacked or chased. Video-polysomnography showed (1) frequent and vigorous stereotyped PLMS involving the lower limbs, upper limbs, and trunk (median PLMS index 61.2; median PLMS index in NREM sleep 61.9; during REM sleep only 8 patients had PLMS and their median PLMS index in REM sleep was 39.5); (2) abnormal behaviors (e.g., punching, groaning) during some of the arousals that immediately followed PLMS in NREM sleep; and (3) ruled out RBD and other sleep disorders such as obstructive sleep apnea. Dopaminergic agents were prescribed in 14 out of the 17 patients and resulted in improvement of abnormal sleep behaviors and unpleasant dreams in all of them. After dopaminergic treatment, follow-up video-polysomnography in 7 patients showed a decrease in the median PLMS index from baseline (108.9 vs. 19.2, p = .002) and absence of abnormal behaviors during the arousals. Abnormal sleep behaviors and unpleasant dreams simulating RBD symptomatology may occur in patients with severe PLMS. In these cases, video-polysomnography ruled out RBD and identified prominent PLMS followed by arousals containing abnormal behaviors. Our cases represent an objectively documented subtype of periodic limb movement disorder causing abnormal sleep behaviors. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Manometric evaluation of the esophagus in patients with Behçet's disease.
Bektas, Mehmet; Altan, Mehmet; Alkan, Murat; Ormeci, Necati; Soykan, Irfan
2007-01-01
Gastrointestinal (GI) involvement in Behçet's disease (BD) mainly appears in mucosa and affects 5-40% of patients, however the effects of the disease on lower esophageal sphincter (LES) pressure and esophageal contractions are not well known. The aims of this study were to evaluate esophageal motor function and to identify whether there was any specific motility pattern for patients with BD who had upper GI symptoms without endoscopic abnormality. 25 patients with BD, with a mean age of 43.1 (range 20-66) years, were admitted to our clinic whose main complaints were dyspeptic such as reflux, epigastric pain, vomiting and bloating. 25 healthy and age-matched individuals were also included in the study as controls. After one night fasting, LES pressure and esophageal contractions were measured. Esophageal motor abnormalities were detected in 16% (4/25) of these patients with manometric studies (non-specific esophageal motor disorder in 1, esophageal hypomotility in 2, and LES hypotension in 1 patient); 16% (4/25) of these patients had endoscopic findings and overall 32% (8/25) of the cases showed esophageal pathology. All cases with esophageal motor abnormalities were suffering from reflux and endoscopy showed grade B esophagitis in 2 of these cases. Median LES pressure and LES relaxation were significantly lower in patients with BD compared to the control group (16.8 +/- 10.5 vs. 20.4 +/- 6.1, p = 0.02, and 92.1 +/- 10.1 vs. 96.4 +/- 4.5, p = 0.03 respectively). Esophageal involvement in BD is significantly high. We propose manometric studies are necessary to evaluate esophageal manifestations in BD patients with esophageal symptoms even without endoscopic findings.
Iascone, C; Di Giulio, E; Maffi, C; Ruperto, M
2004-01-01
The purposes of this study were to assess the esophageal clearance of a radioisotopic bolus in patients with symptoms of reflux and evaluate the impact of manometric abnormalities on scintigraphic esophageal transit. Esophageal clearance was assessed in a supine position and indicated by the retained radioactivity in the esophagus at 10, 20, 30 and 40 s after the ingestion of a liquid bolus labeled with 2 mCi 99 mTc-SC. The study included 214 consecutive patients with symptoms of reflux and 11 normal controls. The results were compared to the motility findings detected on manometry performed on a separate occasion. Esophageal manometry was normal in 93 patients. Nonspecific esophageal motor disorders were identified in 121 patients and were classified into: 'predominantly nonpropagated activity', 'predominantly low-amplitude peristaltic contractions' and 'miscellaneous disorders' diagnosed in 27, 47 and 47 patients, respectively. The radionuclide clearance was significantly delayed in the overall group of patients compared with that of normal controls (P < 0.001); in patients with reflux symptoms and nonspecific esophageal motor disorders compared with patients with reflux symptoms and 'normal manometry' (P < 0.01 at 20 s); and in patients with reflux symptoms and 'normal manometry' compared with the control group (P < 0.01 at 20 s). Abnormal radioisotope clearances were detected in 88% of patients with 'predominantly nonpropagated activity', in 70% of patients with 'predominantly low-amplitude peristaltic contractions' and in 57% of patients with 'miscellaneous disorders'. Radioisotopic esophageal clearance abnormalities are frequently observed in patients with reflux symptoms and are more likely to be associated to hypomotility disorders, i.e. nonpropagated motor activity or low-amplitude contractions.
White Matter Injury and General Movements in High-Risk Preterm Infants.
Peyton, C; Yang, E; Msall, M E; Adde, L; Støen, R; Fjørtoft, T; Bos, A F; Einspieler, C; Zhou, Y; Schreiber, M D; Marks, J D; Drobyshevsky, A
2017-01-01
Very preterm infants (birth weight, <1500 g) are at increased risk of cognitive and motor impairment, including cerebral palsy. These adverse neurodevelopmental outcomes are associated with white matter abnormalities on MR imaging at term-equivalent age. Cerebral palsy has been predicted by analysis of spontaneous movements in the infant termed "General Movement Assessment." The goal of this study was to determine the utility of General Movement Assessment in predicting adverse cognitive, language, and motor outcomes in very preterm infants and to identify brain imaging markers associated with both adverse outcomes and aberrant general movements. In this prospective study of 47 preterm infants of 24-30 weeks' gestation, brain MR imaging was performed at term-equivalent age. Infants underwent T1- and T2-weighted imaging for volumetric analysis and DTI. General movements were assessed at 10-15 weeks' postterm age, and neurodevelopmental outcomes were evaluated at 2 years by using the Bayley Scales of Infant and Toddler Development III. Nine infants had aberrant general movements and were more likely to have adverse neurodevelopmental outcomes, compared with infants with normal movements. In infants with aberrant movements, Tract-Based Spatial Statistics analysis identified significantly lower fractional anisotropy in widespread white matter tracts, including the corpus callosum, inferior longitudinal and fronto-occipital fasciculi, internal capsule, and optic radiation. The subset of infants having both aberrant movements and abnormal neurodevelopmental outcomes in cognitive, language, and motor skills had significantly lower fractional anisotropy in specific brain regions. Aberrant general movements at 10-15 weeks' postterm are associated with adverse neurodevelopmental outcomes and specific white matter microstructure abnormalities for cognitive, language, and motor delays. © 2017 by American Journal of Neuroradiology.
Increased task-uncorrelated muscle activity in childhood dystonia.
Lunardini, Francesca; Maggioni, Serena; Casellato, Claudia; Bertucco, Matteo; Pedrocchi, Alessandra L G; Sanger, Terence D
2015-06-12
Even if movement abnormalities in dystonia are obvious on observation-based examinations, objective measures to characterize dystonia and to gain insights into its pathophysiology are still strongly needed. We hypothesize that motor abnormalities in childhood dystonia are partially due to the inability to suppress involuntary variable muscle activity irrelevant to the achievement of the desired motor task, resulting in the superposition of unwanted motion components on the desired movement. However, it is difficult to separate and quantify appropriate and inappropriate motor signals combined in the same muscle, especially during movement. We devise an innovative and practical method to objectively measure movement abnormalities during the performance of a continuous figure-eight writing task in 7 children with dystonia and 9 age-matched healthy controls. During the execution of a continuous writing task, muscle contractions should occur at frequencies that match the frequencies of the writing outcome. We compare the power spectra of kinematic trajectories and electromyographic signals of 8 upper limb muscles to separate muscle activity with the same frequency content of the figure-eight movement (task-correlated) from activity occurring at frequencies extraneous to the task (task-uncorrelated). Children with dystonia present a greater magnitude of task-uncorrelated muscle components. The motor performance achieved by children with dystonia is characterized by an overall lower quality, with high spatial and temporal variability and an altered trade-off between speed and accuracy. Findings are consistent with the hypothesis that, in childhood dystonia, the ability to appropriately suppress variable and uncorrelated elements of movement is impaired. Here we present a proof-of-concept of a promising tool to characterize the phenomenology of movement disorders and to inform the design of neurorehabilitation therapies.
Gleitz, Hélène F. E.; O’Leary, Claire; Holley, Rebecca J.
2017-01-01
Severe mucopolysaccharidosis type II (MPS II) is a progressive lysosomal storage disease caused by mutations in the IDS gene, leading to a deficiency in the iduronate-2-sulfatase enzyme that is involved in heparan sulphate and dermatan sulphate catabolism. In constitutive form, MPS II is a multi-system disease characterised by progressive neurocognitive decline, severe skeletal abnormalities and hepatosplenomegaly. Although enzyme replacement therapy has been approved for treatment of peripheral organs, no therapy effectively treats the cognitive symptoms of the disease and novel therapies are in development to remediate this. Therapeutic efficacy and subsequent validation can be assessed using a variety of outcome measures that are translatable to clinical practice, such as behavioural measures. We sought to consolidate current knowledge of the cognitive, skeletal and motor abnormalities present in the MPS II mouse model by performing time course behavioural examinations of working memory, anxiety, activity levels, sociability and coordination and balance, up to 8 months of age. Cognitive decline associated with alterations in spatial working memory is detectable at 8 months of age in MPS II mice using spontaneous alternation, together with an altered response to novel environments and anxiolytic behaviour in the open-field. Coordination and balance on the accelerating rotarod were also significantly worse at 8 months, and may be associated with skeletal changes seen in MPS II mice. We demonstrate that the progressive nature of MPS II disease is also seen in the mouse model, and that cognitive and motor differences are detectable at 8 months of age using spontaneous alternation, the accelerating rotarod and the open-field tests. This study establishes neurological, motor and skeletal measures for use in pre-clinical studies to develop therapeutic approaches in MPS II. PMID:28207863
Changes in Motor Vehicle Buyer Attitudes and Market Behavior
DOT National Transportation Integrated Search
1980-12-01
An analysis is made of the impact of fuel-efficient motor vehicle design changes on the attitudes and market behavior of buyers of new motor vehicles. Car buyer profiles for selected makes of automobiles describe demographic characteristics, owner sa...
BEHAVIORAL AND LEARNING DISABILITIES ASSOCIATED WITH COGNITIVE-MOTOR DYSFUNCTION. INTERIM REPORT.
ERIC Educational Resources Information Center
BRAUN, JEAN S.; RUBIN, ELI Z.
THIS REPORT EXAMINES THE RELATIONSHIP BETWEEN BEHAVIORAL AND ACADEMIC DISABILITIES AND COGNITIVE-MOTOR DYSFUNCTION AS REVEALED BY DATA ON 400 ELEMENTARY SCHOOL CHILDREN. THE BEHAVIOR CHECKLIST WAS USED AS A BASIS FOR SAMPLE SELECTION. BEHAVIOR CLUSTERS REFLECTING BOTH ANTI-SOCIAL TENDENCIES AND UNASSERTIVE, WITHDRAWN BEHAVIOR WERE IDENTIFIED. A…
Abnormal Eye Movements in Creutzfeldt-Jakob Disease
NASA Technical Reports Server (NTRS)
Grant, Michael P.; Cohen, Mark; Petersen, Robert B.; Halmagyi, G. Michael; McDougall, Alan; Tusa, Ronald J.; Leigh, R. John
1993-01-01
We report 3 patients with autopsy-proven Creutzfeldt-Jakob disease who, early in their course, developed abnormal eye movements that included periodic alternating nystagmus and slow vertical saccades. These findings suggested involvement of the cerebellar nodulus and uvula, and the brainstem reticular formation, respectively. Cerebellar ataxia was also an early manifestation and, in one patient, a frontal lobe brain biopsy was normal at a time when ocular motor and cerebellar signs were conspicuous. As the disease progressed, all saccades and quick phases of nystagmus were lost, but periodic alternating gaze deviation persisted. At autopsy, 2 of the 3 patients had pronounced involvement of the cerebellum, especially of the midline structures. Creutzfeldt-Jakob disease should be considered in patients with subacute progressive neurological disease when cognitive changes are overshadowed by ocular motor findings or ataxia.
Iriki, Atsushi; Isoda, Masaki
2015-01-01
Abnormalities in cortico-basal ganglia (CBG) networks can cause a variety of movement disorders ranging from hypokinetic disorders, such as Parkinson's disease (PD), to hyperkinetic conditions, such as Tourette syndrome (TS). Each condition is characterized by distinct patterns of abnormal neural discharge (dysrhythmia) at both the local single-neuron level and the global network level. Despite divergent etiologies, behavioral phenotypes, and neurophysiological profiles, high-frequency deep brain stimulation (HF-DBS) in the basal ganglia has been shown to be effective for both hypo- and hyperkinetic disorders. The aim of this review is to compare and contrast the electrophysiological hallmarks of PD and TS phenotypes in nonhuman primates and discuss why the same treatment (HF-DBS targeted to the globus pallidus internus, GPi-DBS) is capable of ameliorating both symptom profiles. Recent studies have shown that therapeutic GPi-DBS entrains the spiking of neurons located in the vicinity of the stimulating electrode, resulting in strong stimulus-locked modulations in firing probability with minimal changes in the population-scale firing rate. This stimulus effect normalizes/suppresses the pathological firing patterns and dysrhythmia that underlie specific phenotypes in both the PD and TS models. We propose that the elimination of pathological states via stimulus-driven entrainment and suppression, while maintaining thalamocortical network excitability within a normal physiological range, provides a common therapeutic mechanism through which HF-DBS permits information transfer for purposive motor behavior through the CBG while ameliorating conditions with widely different symptom profiles. PMID:26180116
Neurodevelopmental behavioral and cognitive disorders.
Jeste, Shafali Spurling
2015-06-01
Neurodevelopmental disorders are a group of heterogeneous conditions characterized by a delay or disturbance in the acquisition of skills in a variety of developmental domains, including motor, social, language, and cognition. This article reviews the most commonly diagnosed neurodevelopmental disorders, which include attention deficit hyperactivity disorder (ADHD), autism spectrum disorder, global developmental delay, and intellectual disability and also provides updates on diagnosis, neurobiology, treatment, and issues surrounding the transition to adulthood. Although symptoms emerge at discrete points in childhood, these disorders result from abnormal brain maturation that likely precedes clinical impairment. As a result, research has focused on the identification of predictive biological and behavioral markers, with the ultimate goal of initiating treatments that may either alter developmental trajectories or lessen clinical severity. Advances in the methods used to identify genetic variants, from chromosomal microarray analysis to whole exome sequencing, have facilitated the characterization of many genetic mutations and syndromes that share common pathways to abnormal circuit formation and brain development. Not only do genetic discoveries enrich our understanding of mechanisms underlying atypical development, but they also allow us to identify more homogeneous subgroups within this spectrum of conditions. Impairments do continue into adulthood, with challenges in the transition to adulthood including the management of comorbidities and the provision of educational and vocational supports. Advances in our understanding of the neurobiology and developmental trajectories of these disorders will pave the way for tremendous advances in treatment. Mechanism-based therapies for genetic syndromes are being studied with the goal of expanding targeted treatments to nonsyndromic forms of neurodevelopmental disorders.
Cognitive deficits in a murine model of the eosinophilia-myalgia syndrome: a preliminary report.
Middaugh, L D; Nussbaum, R; Ludwicka, A; Bolster, M B; Silver, R M
1996-01-01
The described study was to determine the effects of chronic exposure to 1,1'-ethylidenebis[L-tryptophan] (EBT), a tryptophan contaminant, on cognitive behavior of female C57BL/6 (C57) mice. EBT (also designated as "peak E" or "peak 97") is one of several compounds that are suspect in the eosinophilia-myalgia syndrome (EMS). Groups of female C57 mice (12/group) were injected IP with saline (SAL), tryptophan (TRY), EBT, or an EBT + tryptophan combination (EBT + TRY) over a 6-week period. Previous experiments established that the dosing conditions produce several characteristics of EMS, including dermal inflammation and fibrosis, increased dermal mast cells, and increased levels of quinolinic acid. The mice exposed to EBT + TRY were abnormal during the solution of a Morris water maze problem. First, they had a shorter latency to locate the submerged platform goal during the initial day of training compared to SAL or TRY mice; secondly, they did not show the systematic reduction in latency to locate the platform goal across days of training noted for SAL or TRY mice. These abnormalities occurred in the absence of altered body weight or gross motor activity during the treatment procedure, or in the animal's swim speeds at the time of testing, 3 days after termination of treatment. The results suggest that prolonged exposure to EBT + TRY can alter the reaction to a stressful environment and can alter cognitive behavior.
Sankaranarayani, R; Nalini, A; Rao Laxmi, T; Raju, T R
2010-01-05
Although definite evidences are available to state that, neuronal activity is a prime determinant of animal behavior, the specific relationship between local field potentials of the motor cortex after intervention with CSF from human patients and animal behavior have remained opaque. The present study has investigated whether cerebrospinal fluid from sporadic amyotrophic lateral sclerosis (sALS) patients could disrupt neuronal activity of the motor cortex, which could be associated with disturbances in the motor performance of adult rats. CSF from ALS patients (ALS-CSF) was infused into the lateral ventricle of Wistar rats. After 24h, the impact of ALS-CSF on the local field potentials (LFPs) of the motor cortex and on the motor behavior of animals were examined. The results indicate that ALS-CSF produced a bivariate distribution on the relative power values of the LFPs of the motor cortex 24h following infusion. However, the behavioral results did not show bimodality, instead showed consistent decrease in motor performance: on rotarod and grip strength meter. The neuronal activity of the motor cortex negatively correlated with the duration of ALS symptoms at the time of lumbar puncture. Although the effect of ALS-CSF was more pronounced at 24h following infusion, the changes observed in LFPs and motor performance appeared to revert to baseline values at later time points of testing. In the current study, we have shown that, ALS-CSF has the potential to perturb neuronal activity of the rat motor cortex which was associated with poor performance on motor function tests.
Farrell, Kaitlin F; Krishnamachari, Sesha; Villanueva, Ernesto; Lou, Haiyan; Alerte, Tshianda N M; Peet, Eloise; Drolet, Robert E; Perez, Ruth G
2014-02-01
Aging, the main risk factor for Parkinson's disease (PD), is associated with increased α-synuclein levels in substantia nigra pars compacta (SNc). Excess α-synuclein spurs Lewy-like pathology and dysregulates the activity of protein phosphatase 2A (PP2A). PP2A dephosphorylates many neuroproteins, including the catecholamine rate-limiting enzyme, tyrosine hydroxylase (TH). A loss of nigral dopaminergic neurons induces PD movement problems, but before those abnormalities occur, behaviors such as olfactory loss, anxiety, and constipation often manifest. Identifying mouse models with early PD behavioral changes could provide a model in which to test emerging therapeutic compounds. To this end, we evaluated mice expressing A53T mutant human (A53T) α-synuclein for behavior and α-synuclein pathology in olfactory bulb, adrenal gland, and gut. Aging A53T mice exhibited olfactory loss and anxiety that paralleled olfactory and adrenal α-synuclein aggregation. PP2A activity was also diminished in olfactory and adrenal tissues harboring insoluble α-synuclein. Low adrenal PP2A activity co-occurred with TH hyperactivity, making this the first study to link adrenal synucleinopathy to anxiety and catecholamine dysregulation. Aggregated A53T α-synuclein recombinant protein also had impaired stimulatory effects on soluble recombinant PP2A. Collectively, the data identify an excellent model in which to screen compounds for their ability to block the spread of α-synuclein pathology associated with pre-motor stages of PD. © 2013 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of The International Society for Neurochemistry.
Zaman, Vandana; Boger, Heather A.; Granholm, Ann-Charlotte; Rohrer, Baerbel; Moore, Alfred; Buhusi, Mona; Gerhardt, Greg A.; Hoffer, Barry J.; Middaugh, Lawrence D.
2009-01-01
Given the established importance of glial cell line-derived neurotrophic factor (GDNF) in maintaining dopaminergic neurotransmitter systems, the nigrostriatal system and associated behaviors of mice with genetic reduction of its high-affinity receptor, GDNF receptor (GFR)α-1 (GFRα-1+/−), were compared with wild-type controls. Motor activity and the stimulatory effects of a dopamine (DA) D1 receptor agonist (SKF 82958) were assessed longitudinally at 8 and 18 months of age. Monoamine concentrations and dopaminergic nerve terminals in the striatum and the number of dopaminergic neurons in the substantia nigra (SN) were assessed. The results support the importance of GFRα-1 in maintaining normal function of the nigrostriatal dopaminergic system, with deficits being observed for GFRα-1+/− mice at both ages. Motor activity was lower and the stimulatory effects of the DA agonist were enhanced for the older GFRα-1+/− mice. DA in the striatum was reduced in the GFRα-1+/− mice at both ages, and tyrosine hydroxylase-positive cell numbers in the SN were reduced most substantially in the older GFRα-1+/− mice. The combined behavioral, pharmacological probe, neurochemical and morphological measures provide evidence of abnormalities in GFRα-1+/− mice that are indicative of an exacerbated aging-related decline in dopaminergic system function. The noted deficiencies, in turn, suggest that GFRα-1 is necessary for GDNF to maintain normal function of the nigrostriatal dopaminergic system. Although the precise mechanism(s) for the aging-related changes in the dopaminergic system remain to be established, the present study clearly establishes that genetic reductions in GFRα-1 can contribute to the degenerative changes observed in this system during the aging process. PMID:18973577
Zumbrennen-Bullough, Kimberly B.; Becker, Lore; Garrett, Lillian; Hölter, Sabine M.; Calzada-Wack, Julia; Mossbrugger, Ilona; Quintanilla-Fend, Leticia; Racz, Ildiko; Rathkolb, Birgit; Klopstock, Thomas; Wurst, Wolfgang; Zimmer, Andreas; Wolf, Eckhard; Fuchs, Helmut; Gailus-Durner, Valerie; de Angelis, Martin Hrabě; Romney, Steven J.; Leibold, Elizabeth A.
2014-01-01
Iron Regulatory Protein 2 (Irp2, Ireb2) is a central regulator of cellular iron homeostasis in vertebrates. Two global knockout mouse models have been generated to explore the role of Irp2 in regulating iron metabolism. While both mouse models show that loss of Irp2 results in microcytic anemia and altered body iron distribution, discrepant results have drawn into question the role of Irp2 in regulating brain iron metabolism. One model shows that aged Irp2 deficient mice develop adult-onset progressive neurodegeneration that is associated with axonal degeneration and loss of Purkinje cells in the central nervous system. These mice show iron deposition in white matter tracts and oligodendrocyte soma throughout the brain. A contrasting model of global Irp2 deficiency shows no overt or pathological signs of neurodegeneration or brain iron accumulation, and display only mild motor coordination and balance deficits when challenged by specific tests. Explanations for conflicting findings in the severity of the clinical phenotype, brain iron accumulation and neuronal degeneration remain unclear. Here, we describe an additional mouse model of global Irp2 deficiency. Our aged Irp2−/− mice show marked iron deposition in white matter and in oligodendrocytes while iron content is significantly reduced in neurons. Ferritin and transferrin receptor 1 (TfR1, Tfrc), expression are increased and decreased, respectively, in the brain from Irp2−/− mice. These mice show impairments in locomotion, exploration, motor coordination/balance and nociception when assessed by neurological and behavioral tests, but lack overt signs of neurodegenerative disease. Ultrastructural studies of specific brain regions show no evidence of neurodegeneration. Our data suggest that Irp2 deficiency dysregulates brain iron metabolism causing cellular dysfunction that ultimately leads to mild neurological, behavioral and nociceptive impairments. PMID:24896637
Singh, Shamsher; Jamwal, Sumit; Kumar, Puneet
2015-08-01
3-Nitropropionic acid (3-NP) is a fungal toxin well established model used for inducing symptoms of Huntington's disease. Curcumin a natural polyphenol has been reported to possess neuroprotective activity by decreasing oxidative stress. The aim of present study was to investigate neuroprotective effect of curcumin with piperine (bioavailability enhancer) against 3-NP induced neurotoxicity in rats. Administration of 3-NP (10 mg/kg for 21 days) showed loss in body weight, declined motor function and changes in biochemical (LPO, nitrite and glutathione level), neuroinflammatory (TNF-α and IL-1β level) and neurochemical (DA, NE, 5-HT, DOPAC, 5-HIAA and HVA). Chronic treatment with curcumin (25 and 50 mg/kg) and curcumin (25 mg/kg) with piperine (2.5 mg/kg) once daily for 21 days prior to 3-NP administration. All the behavioral parameters were studied at 1st, 7th, 14th, and 21st day. On 22nd day all the animals was scarified and striatum was separated. Curcumin alone and combination (25 mg/kg) with piperine (2.5 mg/kg) showed beneficial effect against 3-NP induced motor deficit, biochemical and neurochemical abnormalities in rats. Piperine (2.5 mg/kg) with curcumin (25 mg/kg) significantly enhances its protective effect as compared with curcumin alone treated group. The results of the present study indicate that protective effect of curcumin potentiated in the presence of piperine (bioavailability enhancer) against 3-NP-induced behavioral and molecular alteration.
ERIC Educational Resources Information Center
Chen, Chao-Ying; Lo, Warren D.; Heathcock, Jill C.
2013-01-01
Upper extremity movements, midline behaviors, fine, and gross motor skills are frequently impaired in hemiparesis and cerebral palsy. We investigated midline toy exploration and fine and gross motor skills in infants at risk for hemiplegic cerebral palsy. Eight infants with neonatal stroke (NS) and thirteen infants with typical development (TD)…
Perceptual-Motor Behavior and Educational Processes.
ERIC Educational Resources Information Center
Cratty, Bryant J.
Addressed to elementary school and special class teachers, the text presents research-based information on perceptual-motor behavior and education, including movement and the human personality, research guidelines, and movement activities in general education. Special education is considered and perceptual motor abilities are discussed with…
Understanding the role of the primary somatosensory cortex: Opportunities for rehabilitation
Borich, M.R.; Brodie, S.M.; Gray, W.A.; Ionta, S.; Boyd, L.A.
2016-01-01
Emerging evidence indicates impairments in somatosensory function may be a major contributor to motor dysfunction associated with neurologic injury or disorders. However, the neuroanatomical substrates underlying the connection between aberrant sensory input and ineffective motor output are still under investigation. The primary somatosensory cortex (S1) plays a critical role in processing afferent somatosensory input and contributes to the integration of sensory and motor signals necessary for skilled movement. Neuroimaging and neurostimulation approaches provide unique opportunities to non-invasively study S1 structure and function including connectivity with other cortical regions. These research techniques have begun to illuminate casual contributions of abnormal S1 activity and connectivity to motor dysfunction and poorer recovery of motor function in neurologic patient populations. This review synthesizes recent evidence illustrating the role of S1 in motor control, motor learning and functional recovery with an emphasis on how information from these investigations may be exploited to inform stroke rehabilitation to reduce motor dysfunction and improve therapeutic outcomes. PMID:26164474
Loss of PAFR prevents neuroinflammation and brain dysfunction after traumatic brain injury
Yin, Xiang-Jie; Chen, Zhen-Yan; Zhu, Xiao-Na; Hu, Jin-Jia
2017-01-01
Traumatic brain injury (TBI) is a principal cause of death and disability worldwide, which is a major public health problem. Death caused by TBI accounts for a third of all damage related illnesses, which 75% TBI occurred in low and middle income countries. With the increasing use of motor vehicles, the incidence of TBI has been at a high level. The abnormal brain functions of TBI patients often show the acute and long-term neurological dysfunction, which mainly associated with the pathological process of malignant brain edema and neuroinflammation in the brain. Owing to the neuroinflammation lasts for months or even years after TBI, which is a pivotal causative factor that give rise to neurodegenerative disease at late stage of TBI. Studies have shown that platelet activating factor (PAF) inducing inflammatory reaction after TBI could not be ignored. The morphological and behavioral abnormalities after TBI in wild type mice are rescued by general knockout of PAFR gene that neuroinflammation responses and cognitive ability are improved. Our results thus define a key inflammatory molecule PAF that participates in the neuroinflammation and helps bring about cerebral dysfunction during the TBI acute phase. PMID:28094295
Mahon, Katie; Burdick, Katherine E; Wu, Jinghui; Ardekani, Babak A; Szeszko, Philip R
2012-01-01
Background Impulsivity is characteristic of individuals with bipolar disorder and may be a contributing factor to the high rate of suicide in patients with this disorder. Although white matter abnormalities have been implicated in the pathophysiology of bipolar disorder, their relationship to impulsivity and suicidality in this disorder has not been well-investigated. Methods Diffusion tensor imaging scans were acquired in 14 bipolar disorder patients with a prior suicide attempt, 15 bipolar disorder patients with no prior suicide attempt, and 15 healthy volunteers. Bipolar disorder patients received clinical assessments including measures of impulsivity, depression, mania, and anxiety. Images were processed using the Tract-Based Spatial Statistics method in the FSL software package. Results Bipolar disorder patients with a prior suicide attempt had lower fractional anisotropy (FA) within the left orbital frontal white matter (p < 0.05, corrected) and higher overall impulsivity compared to patients without a previous suicide attempt. Among patients with a prior suicide attempt, FA in the orbital frontal white matter region correlated inversely with motor impulsivity. Conclusions Abnormal orbital frontal white matter may play a role in impulsive and suicidal behavior among patients with bipolar disorder. PMID:22329475
Attenuation of acoustic and tactile startle responses of vitamin B-6 deficient rats.
Schaeffer, M C
1987-01-01
Vitamin B-6 deficient rats exhibit changes in behavior, sensory function, and other nervous system abnormalities such as convulsive seizures and motor disturbances. Sensorimotor reactivity was evaluated quantitatively by measuring auditory and tactile startle responses in 12 week old female Long-Evans rats fed a diet devoid of added vitamin B-6 (DEF) or a control diet, either ad lib (AL-CON) or pair-fed to deficient rats (PF-CON). Deficiency was confirmed with a tryptophan-load test administered to a separate group of rats fed simultaneously according to the same protocol. At week 18, body weight and feed efficiency were different among groups (p less than 0.001), and were lowest in DEF. Amplitude of response to both acoustic and tactile stimuli was depressed in DEF compared to both control groups, which generally did not differ in response. This effect was seen most dramatically in responses to the acoustic stimulus (p = 0.034), and especially to the first presentation (p = 0.017). Latency to maximum response was not affected by diet. Possible mechanisms for this nervous system abnormality, not previously reported in vitamin B-6 deficiency, are discussed.
Hedgecock, James B; Dannemiller, Lisa A; Shui, Amy M; Rapport, Mary Jane; Katz, Terry
2018-04-01
Young children with autism spectrum disorder (ASD) often have gross motor delays that may accentuate problem daytime behavior and health-related quality of life (QoL). The objective of this study was to describe the degree of gross motor delays in young children with ASD and associations of gross motor delays with problem daytime behavior and QoL. The primary hypothesis was that Gross motor delays significantly modifies the associations between internalizing or externalizing problem daytime behavior and QoL. This study used a cross-sectional, retrospective analysis. Data from 3253 children who were 2 to 6 years old and who had ASD were obtained from the Autism Speaks Autism Treatment Network and analyzed using unadjusted and adjusted linear regression. Measures included the Vineland Adaptive Behavior Scales, 2nd edition, gross motor v-scale score (VABS-GM) (for Gross motor delays), the Child Behavior Checklist (CBCL) (for Problem daytime behavior), and the Pediatric Quality of Life Inventory (PedsQL) (for QoL). The mean VABS-GM was 12.12 (SD = 2.2), representing performance at or below the 16th percentile. After adjustment for covariates, the internalizing CBCL t score decreased with increasing VABS-GM (β = - 0.64 SE = 0.12). Total and subscale PedsQL scores increased with increasing VABS-GM (for total score: β = 1.79 SE = 0.17; for subscale score: β = 0.9-2.66 SE = 0.17-0.25). CBCL internalizing and externalizing t scores decreased with increasing PedsQL total score (β = - 0.39 SE = 0.01; β = - 0.36 SE = 0.01). The associations between CBCL internalizing or externalizing t scores and PedsQL were significantly modified by VABSGM (β = - 0.026 SE = 0.005]; β = - 0.019 SE = 0.007). The study lacked ethnic and socioeconomic diversity. Measures were collected via parent report without accompanying clinical assessment. Cross motor delay was independently associated with Problem daytime behavior and QoL in children with ASD. Gross motor delay modified the association between Problem daytime behavior and QoL. Children with ASD and co-occurring internalizing Problem daytime behavior had greater Gross motor delays than children without internalizing Problem daytime behavior; therefore, these children may be most appropriate for early physical therapist evaluation.
Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo
2013-09-30
Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
The neuropathology of traumatic brain injury.
Mckee, Ann C; Daneshvar, Daniel H
2015-01-01
Traumatic brain injury, a leading cause of mortality and morbidity, is divided into three grades of severity: mild, moderate, and severe, based on the Glasgow Coma Scale, the loss of consciousness, and the development of post-traumatic amnesia. Although mild traumatic brain injury, including concussion and subconcussion, is by far the most common, it is also the most difficult to diagnose and the least well understood. Proper recognition, management, and treatment of acute concussion and mild traumatic brain injury are the fundamentals of an emerging clinical discipline. It is also becoming increasingly clear that some mild traumatic brain injuries have persistent, and sometimes progressive, long-term debilitating effects. Evidence indicates that a single traumatic brain injury can precipitate or accelerate multiple age-related neurodegenerations, increase the risk of developing Alzheimer's disease, Parkinson's disease, and motor neuron disease, and that repetitive mild traumatic brain injuries can provoke the development of a tauopathy, chronic traumatic encephalopathy. Clinically, chronic traumatic encephalopathy is associated with behavioral changes, executive dysfunction, memory loss, and cognitive impairments that begin insidiously and progress slowly over decades. Pathologically, chronic traumatic encephalopathy produces atrophy of the frontal and temporal lobes, thalamus, and hypothalamus, septal abnormalities, and abnormal deposits of hyperphosphorylated tau (τ) as neurofibrillary tangles and disordered neurites throughout the brain. The incidence and prevalence of chronic traumatic encephalopathy and the genetic risk factors critical to its development are currently unknown. Chronic traumatic encephalopathy frequently occurs as a sole diagnosis, but may be associated with other neurodegenerative disorders, including Alzheimer's disease, Lewy body disease, and motor neuron disease. Currently, chronic traumatic encephalopathy can be diagnosed only at autopsy; however, promising efforts to develop imaging, spinal fluid, and peripheral blood biomarkers are underway to diagnose and monitor the course of disease in living subjects. © 2015 Elsevier B.V. All rights reserved.
McConnell, George C; So, Rosa Q; Grill, Warren M
2016-06-01
Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established treatment for the motor symptoms of Parkinson's disease (PD). However, the mechanisms of action of DBS are unknown. Random temporal patterns of DBS are less effective than regular DBS, but the neuronal basis for this dependence on temporal pattern of stimulation is unclear. Using a rat model of PD, we quantified the changes in behavior and single-unit activity in globus pallidus externa and substantia nigra pars reticulata during high-frequency STN DBS with different degrees of irregularity. Although all stimulus trains had the same average rate, 130-Hz regular DBS more effectively reversed motor symptoms, including circling and akinesia, than 130-Hz irregular DBS. A mixture of excitatory and inhibitory neuronal responses was present during all stimulation patterns, and mean firing rate did not change during DBS. Low-frequency (7-10 Hz) oscillations of single-unit firing times present in hemiparkinsonian rats were suppressed by regular DBS, and neuronal firing patterns were entrained to 130 Hz. Irregular patterns of DBS less effectively suppressed 7- to 10-Hz oscillations and did not regularize firing patterns. Random DBS resulted in a larger proportion of neuron pairs with increased coherence at 7-10 Hz compared with regular 130-Hz DBS, which suggested that long pauses (interpulse interval >50 ms) during random DBS facilitated abnormal low-frequency oscillations in the basal ganglia. These results suggest that the efficacy of high-frequency DBS stems from its ability to regularize patterns of neuronal firing and thereby suppress abnormal oscillatory neural activity within the basal ganglia. Copyright © 2016 the American Physiological Society.
2017-12-01
Development of Persistent Pain and psychological Morbidity after Motor Vehicle Collision: Integrating the Potential Role of Stress Response Systems... abnormalities of quantitative EEG which suggest a THE LONG-TERM COSTS OF TRAUMATIC STRESS: INTERTWINED PHYSICAL AND PSYCHOLOGICAL CONSEQUENCES STO-TR-HFM...S.A., Clauw, D.J., Abelson, J.L. et al., The development of persistent pain and psychological morbidity after motor vehicle collision: integrating
Savarino, Edoardo; de Bortoli, Nicola; Bellini, Massimo; Galeazzi, Francesca; Ribolsi, Mentore; Salvador, Renato; Savarino, Vincenzo; Penagini, Roberto
2016-10-01
Patients with esophageal symptoms potentially associated to esophageal motor disorders such as dysphagia, chest pain, heartburn and regurgitation, represent one of the most frequent reasons for referral to gastroenterological evaluation. The utility of esophageal manometry in clinical practice is: (1) to accurately define esophageal motor function, (2) to identify abnormal motor function, and (3) to establish a treatment plan based on motor abnormalities. With this in mind, in the last decade, investigations and technical advances, with the introduction of high-resolution esophageal manometry, have enhanced our understanding and management of esophageal motility disorders. The following recommendations were developed to assist physicians in the appropriate use of esophageal manometry in modern patient care. They were discussed and approved after a comprehensive review of the medical literature pertaining to manometric techniques and their recent application. This position statement created under the auspices of the Gruppo Italiano di Studio per la Motilità dell'Apparato Digerente (GISMAD), Società Italiana di Gastroenterologia ed Endoscopia Digestiva (SIGE) and Associazione Italiana Gastroenterologi ed Endoscopisti Digestivi Ospedalieri (AIGO) is intended to help clinicians in applying manometric studies in the most fruitful manner within the context of their patients with esophageal symptoms. Copyright © 2016 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.
Latash, M L; Gutman, S R
1994-01-01
Until now, the equilibrium-point hypothesis (lambda model) of motor control has assumed nonintersecting force-length characteristics of the tonic stretch reflex for individual muscles. Limited data from animal experiments suggest, however, that such intersections may occur. We have assumed the possibility of intersection of the characteristics of the tonic stretch reflex and performed a computer simulation of movement trajectories and electromyographic patterns. The simulation has demonstrated, in particular, that a transient change in the slope of the characteristic of an agonist muscle may lead to temporary movement reversals, hesitations, oscillations, and multiple electromyographic bursts that are typical of movements of patients with dystonia. The movement patterns of three patients with idiopathic dystonia during attempts at fast single-joint movements (in the elbow, wrist, and ankle) were recorded and compared with the results of the computer simulation. This approach considers that motor disorders in dystonia result from faulty control patterns that may not correlate with any morphological or neurophysiological changes. It provides a basis for the high variability of dystonic movements. The uniqueness of abnormal motor patterns in dystonia, that precludes statistical analysis across patients, may result from subtle differences in the patterns of intersecting characteristics of the tonic stretch reflex. The applicability of our analysis to disordered multijoint movement patterns is discussed.
Chaudhry, A; Noor, A; Degagne, B; Baker, K; Bok, L A; Brady, A F; Chitayat, D; Chung, B H; Cytrynbaum, C; Dyment, D; Filges, I; Helm, B; Hutchison, H T; Jeng, L J B; Laumonnier, F; Marshall, C R; Menzel, M; Parkash, S; Parker, M J; Raymond, L F; Rideout, A L; Roberts, W; Rupps, R; Schanze, I; Schrander-Stumpel, C T R M; Speevak, M D; Stavropoulos, D J; Stevens, S J C; Thomas, E R A; Toutain, A; Vergano, S; Weksberg, R; Scherer, S W; Vincent, J B; Carter, M T
2015-09-01
Studies of genomic copy number variants (CNVs) have identified genes associated with autism spectrum disorder (ASD) and intellectual disability (ID) such as NRXN1, SHANK2, SHANK3 and PTCHD1. Deletions have been reported in PTCHD1 however there has been little information available regarding the clinical presentation of these individuals. Herein we present 23 individuals with PTCHD1 deletions or truncating mutations with detailed phenotypic descriptions. The results suggest that individuals with disruption of the PTCHD1 coding region may have subtle dysmorphic features including a long face, prominent forehead, puffy eyelids and a thin upper lip. They do not have a consistent pattern of associated congenital anomalies or growth abnormalities. They have mild to moderate global developmental delay, variable degrees of ID, and many have prominent behavioral issues. Over 40% of subjects have ASD or ASD-like behaviors. The only consistent neurological findings in our cohort are orofacial hypotonia and mild motor incoordination. Our findings suggest that hemizygous PTCHD1 loss of function causes an X-linked neurodevelopmental disorder with a strong propensity to autistic behaviors. Detailed neuropsychological studies are required to better define the cognitive and behavioral phenotype. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Relationships between non-pathological dream-enactment and mirror behaviors.
Nielsen, Tore; Kuiken, Don
2013-09-01
Dream-enacting behaviors (DEBs) are behavioral expressions of forceful dream images often occurring during sleep-to-wakefulness transitions. We propose that DEBs reflect brain activity underlying social cognition, in particular, motor-affective resonance generated by the mirror neuron system. We developed a Mirror Behavior Questionnaire (MBQ) to assess some dimensions of mirror behaviors and investigated relationships between MBQ scores and DEBs in a large of university undergraduate cohort. MBQ scores were normally distributed and described by a four-factor structure (Empathy/Emotional Contagion, Behavioral Imitation, Sleepiness/Anger Contagion, Motor Skill Imitation). DEB scores correlated positively with MBQ total and factor scores even with social desirability, somnambulism and somniloquy controlled. Emotion-specific DEB items correlated with corresponding emotion-specific MBQ items, especially crying and smiling. Results provide preliminary evidence for cross-state relationships between propensities for dream-enacting and mirror behaviors--especially behaviors involving motor-affective resonance--and our suggestion that motor-affective resonance mediates dream-enactment imagery during sleep and emotional empathy during waking. Copyright © 2013 Elsevier Inc. All rights reserved.
Genetic epileptic encephalopathies: is all written into the DNA?
Striano, Pasquale; de Jonghe, Peter; Zara, Federico
2013-11-01
Epileptic encephalopathy is a condition in which epileptic activity, clinical or subclinical, is thought to be responsible for any disturbance of cognition, behavior, or motor control. However, experimental evidence supporting this clinical observation are still poor and the causal relationship between pharmacoresistant seizures and cognitive outcome is controversial. In the past two decades, genetic studies shed new light onto complex mechanisms underlying different severe epileptic conditions associated with intellectual disability and behavioral abnormalities, thereby providing important clues on the relationship between seizures and cognitive outcome. Dravet syndrome is a childhood disorder associated with loss-of-function mutations in SCN1A and is characterized by frequent seizures and severe cognitive impairment, thus well illustrating the concept of epileptic encephalopathy. However, it is difficult to determine the causative role of the underlying sodium channel dysfunction and that of the consequent seizures in influencing cognitive outcome in these children. It is also difficult to demonstrate whether a recognizable profile of cognitive impairment or a definite behavioral phenotype exists. Data from the laboratory and the clinics may provide greater insight into the degree to which epileptic activity may contribute to cognitive impairment in individual syndromes. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Weisel-Eichler, A; Libersat, F
2002-05-01
The venom of the parasitoid wasp Ampulex compressa induces long-lasting hypokinesia in the cockroach prey. Previous work indicates that the venom acts in the subesophageal ganglion to indirectly affect modulation of thoracic circuits for locomotion. However, the target of the venom in the subesophageal ganglion, and the mechanism by which the venom achieves its effects are as yet unknown. While the stung cockroaches appear generally lethargic, not all behaviors were affected, indicating that the venom targets specific motor systems and not behavior in general. Stung cockroaches were observed "freezing" in abnormal positions. Reserpine, which depletes monoamines, mimics the behavioral effects of the venom. We treated cockroaches with antagonists to dopamine and octopamine receptors, and found that the dopamine system is required for normal escape response. Dopamine injection induces prolonged grooming in normal cockroaches, but not in stung, suggesting that the venom is affecting dopamine receptors, or targets downstream of these receptors, in the subesophageal ganglion. This dopamine blocking effect fades slowly over the course of several weeks, similar to the time course of recovery from hypokinesia. The similarity in the time courses suggests that the mechanism underlying the hypokinesia may be the block of the dopamine receptors.
A Framework to Describe, Analyze and Generate Interactive Motor Behaviors
Jarrassé, Nathanaël; Charalambous, Themistoklis; Burdet, Etienne
2012-01-01
While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks. PMID:23226231
Hagmann-von Arx, Priska; Manicolo, Olivia; Lemola, Sakari; Grob, Alexander
2016-01-01
Age-dependent gait characteristics and associations with cognition, motor behavior, injuries, and psychosocial functioning were investigated in 138 typically developing children aged 6.7–13.2 years (M = 10.0 years). Gait velocity, normalized velocity, and variability were measured using the walkway system GAITRite without an additional task (single task) and while performing a motor or cognitive task (dual task). Assessment of children’s cognition included tests for intelligence and executive functions; parents reported on their child’s motor behavior, injuries, and psychosocial functioning. Gait variability (an index of gait regularity) decreased with increasing age in both single- and dual-task walking. Dual-task gait decrements were stronger when children walked in the motor compared to the cognitive dual-task condition and decreased with increasing age in both dual-task conditions. Gait alterations from single- to dual-task conditions were not related to children’s cognition, motor behavior, injuries, or psychosocial functioning. PMID:27014158
A framework to describe, analyze and generate interactive motor behaviors.
Jarrassé, Nathanaël; Charalambous, Themistoklis; Burdet, Etienne
2012-01-01
While motor interaction between a robot and a human, or between humans, has important implications for society as well as promising applications, little research has been devoted to its investigation. In particular, it is important to understand the different ways two agents can interact and generate suitable interactive behaviors. Towards this end, this paper introduces a framework for the description and implementation of interactive behaviors of two agents performing a joint motor task. A taxonomy of interactive behaviors is introduced, which can classify tasks and cost functions that represent the way each agent interacts. The role of an agent interacting during a motor task can be directly explained from the cost function this agent is minimizing and the task constraints. The novel framework is used to interpret and classify previous works on human-robot motor interaction. Its implementation power is demonstrated by simulating representative interactions of two humans. It also enables us to interpret and explain the role distribution and switching between roles when performing joint motor tasks.
Consensus Paper: Pathological Role of the Cerebellum in Autism
Fatemi, S. Hossein; Aldinger, Kimberly A.; Ashwood, Paul; Bauman, Margaret L.; Blaha, Charles D.; Blatt, Gene J.; Chauhan, Abha; Chauhan, Ved; Dager, Stephen R.; Dickson, Price E.; Estes, Annette M.; Goldowitz, Dan; Heck, Detlef H.; Kemper, Thomas L.; King, Bryan H.; Martin, Loren A.; Millen, Kathleen J.; Mittleman, Guy; Mosconi, Matthew W.; Persico, Antonio M.; Sweeney, John A.; Webb, Sara J.; Welsh, John P.
2013-01-01
There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation. PMID:22370873
Consensus paper: pathological role of the cerebellum in autism.
Fatemi, S Hossein; Aldinger, Kimberly A; Ashwood, Paul; Bauman, Margaret L; Blaha, Charles D; Blatt, Gene J; Chauhan, Abha; Chauhan, Ved; Dager, Stephen R; Dickson, Price E; Estes, Annette M; Goldowitz, Dan; Heck, Detlef H; Kemper, Thomas L; King, Bryan H; Martin, Loren A; Millen, Kathleen J; Mittleman, Guy; Mosconi, Matthew W; Persico, Antonio M; Sweeney, John A; Webb, Sara J; Welsh, John P
2012-09-01
There has been significant advancement in various aspects of scientific knowledge concerning the role of cerebellum in the etiopathogenesis of autism. In the current consensus paper, we will observe the diversity of opinions regarding the involvement of this important site in the pathology of autism. Recent emergent findings in literature related to cerebellar involvement in autism are discussed, including: cerebellar pathology, cerebellar imaging and symptom expression in autism, cerebellar genetics, cerebellar immune function, oxidative stress and mitochondrial dysfunction, GABAergic and glutamatergic systems, cholinergic, dopaminergic, serotonergic, and oxytocin-related changes in autism, motor control and cognitive deficits, cerebellar coordination of movements and cognition, gene-environment interactions, therapeutics in autism, and relevant animal models of autism. Points of consensus include presence of abnormal cerebellar anatomy, abnormal neurotransmitter systems, oxidative stress, cerebellar motor and cognitive deficits, and neuroinflammation in subjects with autism. Undefined areas or areas requiring further investigation include lack of treatment options for core symptoms of autism, vermal hypoplasia, and other vermal abnormalities as a consistent feature of autism, mechanisms underlying cerebellar contributions to cognition, and unknown mechanisms underlying neuroinflammation.
NASA Astrophysics Data System (ADS)
Khan, Bilal; Tian, Fenghua; Behbehani, Khosrow; Romero, Mario I.; Delgado, Mauricio R.; Clegg, Nancy J.; Smith, Linsley; Reid, Dahlia; Liu, Hanli; Alexandrakis, George
2010-05-01
We demonstrate the utility of functional near-infrared spectroscopy (fNIRS) as a tool for physicians to study cortical plasticity in children with cerebral palsy (CP). Motor cortex activation patterns were studied in five healthy children and five children with CP (8.4+/-2.3 years old in both groups) performing a finger-tapping protocol. Spatial (distance from center and area difference) and temporal (duration and time-to-peak) image metrics are proposed as potential biomarkers for differentiating abnormal cortical activation in children with CP from healthy pediatric controls. In addition, a similarity image-analysis concept is presented that unveils areas that have similar activation patterns as that of the maximum activation area, but are not discernible by visual inspection of standard activation images. Metrics derived from the images presenting areas of similarity are shown to be sensitive identifiers of abnormal activation patterns in children with CP. Importantly, the proposed similarity concept and related metrics may be applicable to other studies for the identification of cortical activation patterns by fNIRS.
Risk-Sensitivity in Sensorimotor Control
Braun, Daniel A.; Nagengast, Arne J.; Wolpert, Daniel M.
2011-01-01
Recent advances in theoretical neuroscience suggest that motor control can be considered as a continuous decision-making process in which uncertainty plays a key role. Decision-makers can be risk-sensitive with respect to this uncertainty in that they may not only consider the average payoff of an outcome, but also consider the variability of the payoffs. Although such risk-sensitivity is a well-established phenomenon in psychology and economics, it has been much less studied in motor control. In fact, leading theories of motor control, such as optimal feedback control, assume that motor behaviors can be explained as the optimization of a given expected payoff or cost. Here we review evidence that humans exhibit risk-sensitivity in their motor behaviors, thereby demonstrating sensitivity to the variability of “motor costs.” Furthermore, we discuss how risk-sensitivity can be incorporated into optimal feedback control models of motor control. We conclude that risk-sensitivity is an important concept in understanding individual motor behavior under uncertainty. PMID:21283556
Cognitive slowing in Parkinson disease is accompanied by hypofunctioning of the striatum.
Sawamoto, N; Honda, M; Hanakawa, T; Aso, T; Inoue, M; Toyoda, H; Ishizu, K; Fukuyama, H; Shibasaki, H
2007-03-27
To investigate whether cognitive slowing in Parkinson disease (PD) reflects disruption of the basal ganglia or dysfunction of the frontal lobe by excluding an influence of abnormal brain activity due to motor deficits. We measured neuronal activity during a verbal mental-operation task with H(2)(15)O PET. This task enabled us to evaluate brain activity change associated with an increase in the cognitive speed without an influence on motor deficits. As the speed of the verbal mental-operation task increased, healthy controls exhibited proportional increase in activities in the anterior striatum and medial premotor cortex, suggesting the involvement of the corticobasal ganglia circuit in normal performance of the task. By contrast, patients with PD lacked an increase in the striatal activity, whereas the medial premotor cortex showed a proportional increase. Although the present study chose a liberal threshold and needs subsequent confirmation, the findings suggest that striatal disruption resulting in abnormal processing in the corticobasal ganglia circuit may contribute to cognitive slowing in Parkinson disease, as is the case in motor slowing.
Mallet, Luc; Schüpbach, Michael; N'Diaye, Karim; Remy, Philippe; Bardinet, Eric; Czernecki, Virginie; Welter, Marie-Laure; Pelissolo, Antoine; Ruberg, Merle; Agid, Yves; Yelnik, Jérôme
2007-01-01
Two parkinsonian patients who experienced transient hypomanic states when the subthalamic nucleus (STN) was stimulated during postoperative adjustment of the electrical parameters for antiparkinsonian therapy agreed to have the mood disorder reproduced, in conjunction with motor, cognitive, and behavioral evaluations and concomitant functional neuroimaging. During the experiment, STN stimulation again induced a hypomanic state concomitant with activation of cortical and thalamic regions known to process limbic and associative information. This observation suggests that the STN plays a role in the control of a complex behavior that includes emotional as well as cognitive and motor components. The localization of the four contacts of the quadripolar electrode was determined precisely with an interactive brain atlas. The results showed that (i) the hypomanic state was caused only by stimulation through one contact localized in the anteromedial STN; (ii) both this contact and the contact immediately dorsal to it improved the parkinsonian motor state; (iii) the most dorsal and ventral contacts, located at the boundaries of the STN, neither induced the behavioral disorder nor improved motor performance. Detailed analysis of these data led us to consider a model in which the three functional modalities, emotional, cognitive, and motor, are not processed in a segregated manner but can be subtly combined in the small volume of the STN. This nucleus would thus serve as a nexus that integrates the motor, cognitive, and emotional components of behavior and might consequently be an effective target for the treatment of behavioral disorders that combine emotional, cognitive, and motor impairment. PMID:17556546
Voltage directive drive with claw pole motor and control without rotor position indicator
NASA Astrophysics Data System (ADS)
Stroenisch, Volker Ewald
Design and testing of a voltage directive drive for synchronous variable speed claw pole motor and control without rotor position indicator is described. Economic analysis of the designed regulation is performed. Computations of stationary and dynamic behavior are given and experimental operational behavior is determined. The motors can be used for electric transportation vehicles, diesel motors, and electric railway engines.
Neural correlates of self-injurious behavior in Prader-Willi syndrome.
Klabunde, Megan; Saggar, Manish; Hustyi, Kristin M; Hammond, Jennifer L; Reiss, Allan L; Hall, Scott S
2015-10-01
Individuals with Prader-Willi syndrome (PWS), a genetic disorder caused by mutations to the q11-13 region on chromosome 15, commonly show severe skin-picking behaviors that can cause open wounds and sores on the body. To our knowledge, however, no studies have examined the potential neural mechanisms underlying these behaviors. Seventeen individuals with PWS, aged 6-25 years, who showed severe skin-picking behaviors, were recruited and scanned on a 3T scanner. We used functional magnetic resonance imaging (fMRI) while episodes of skin picking were recorded on an MRI-safe video camera. Three participants displayed skin picking continuously throughout the scan, three participants did not display skin picking, and the data for one participant evidenced significant B0 inhomogeneity that could not be corrected. The data for the remaining 10 participants (six male, four female) who displayed a sufficient number of picking and nonpicking episodes were subjected to fMRI analysis. Results showed that regions involved in interoceptive, motor, attention, and somatosensory processing were activated during episodes of skin-picking behavior compared with nonpicking episodes. Scores obtained on the Self-Injury Trauma scale were significantly negatively correlated with mean activation within the right insula and left precentral gyrus. These data indicate that itch and pain processes appear to underlie skin-picking behaviors in PWS, suggesting that interoceptive disturbance may contribute to the severity and maintenance of abnormal skin-picking behaviors in PWS. Implications for treatments are discussed. © 2015 Wiley Periodicals, Inc.
Child Behaviors of Young Children With Autism Spectrum Disorder Across Play Settings.
MacDonald, Megan; Hatfield, Bridget; Twardzik, Erica
2017-01-01
The hallmark characteristics of a diagnosis of autism spectrum disorder (ASD) are deficits in social communicative skills and the use of repetitive and/or stereotyped behaviors. In addition, children with ASD experience known motor-skill delays. The purpose of this study was to examine salient child behaviors of young children with and without ASD in 2 distinctly different play settings: a traditional social-play-based setting and a motor-behavior-based play setting. Child behavior (engagement toward parent, negativity, and attention) and dyad characteristics (connectedness) were examined in 2 distinctly different play settings. Results indicated that children with ASD performed more like their peers without ASD in a social-play-based setting and less like their peers in a motor-behavior-based play setting. Aspects of our results shed light on the critical need to develop creative methods of early intervention that combine efforts in all aspects of child development, including motor-skill development.
Kinematical analysis of handwriting movements in depressed patients.
Mergl, R; Juckel, G; Rihl, J; Henkel, V; Karner, M; Tigges, P; Schröter, A; Hegerl, U
2004-05-01
Motor disturbances are a relevant aspect of depression. Kinematical analysis of movements can be applied to explore which type of motor dysfunction is associated with depression. We hypothesized that depressed patients draw and write significantly slower than controls and that motor disturbances become more pronounced under bi-manual demands. We examined 37 depressed patients and 37 healthy controls using a digitizing graphic tablet and subsequent kinematical analysis of handwriting and rapid drawing movements. Depressed patients performed drawing with significantly less regular velocity than controls (P < 0.001), but normal velocity. Motor differences between patients and controls did not increase under bi-manual demands. Handwriting of patients was abnormally slow (P = 0.04). Irregular patterns of velocity peaks in depressed patients point to basal ganglia dysfunction and/or deficient activity of the sensorimotor cortex and the supplementary motor area as a possible substrate of hand-motor disturbances in depression.