Science.gov

Sample records for abnormal nerve conduction

  1. Nerve conduction abnormalities in untreated maturity-onset diabetes: relation to levels of fasting plasma glucose and glycosylated hemoglobin.

    PubMed

    Graf, R J; Halter, J B; Halar, E; Porte, D

    1979-03-01

    The role of metabolic abnormalities in the development of diabetic neuropathy is controversial. To investigate the influence of hyperglycemia on nerve conduction, we studied 20 untreated maturity-onset diabetic patients and 23 normal control subjects of similar age. Nerve conduction velocity of motor (median, peroneal, and tibial) and sensory (median and sural) nerves in diabetic patients was significantly slowed and H-reflex latency time prolonged. Levels of fasting plasma glucose in diabetic subjects were correlated with slowed motor conduction velocity of the median, peroneal, and tibial nerves but not with sensory nerve conduction velocities. Levels of glycosylated hemoglobin, an index of long-term glycemia, were correlated with slowing of peroneal motor conduction velocity in diabetic patients. These associations could not be explained by patient age or duration of diabetes. These findings suggest that the degree of hyperglycemia of untreated maturity-onset diabetes contributes to the motor nerve conduction abnormalities in this disease. PMID:426398

  2. Glycemic control and nerve conduction abnormalities in non-insulin-dependent diabetic subjects.

    PubMed

    Graf, R J; Halter, J B; Pfeifer, M A; Halar, E; Brozovich, F; Porte, D

    1981-03-01

    The influence of therapy of hyperglycemia on the progression of diabetic neuropathy is unclear. We studied variables of glycemia and motor and sensory nerve conduction velocity in a group of 18 non-insulin-dependent diabetic subjects before and after institution of diabetes therapy. Diabetes therapy significantly reduced variables of glycemia after 1, 3, 6, and 12 months. Conduction velocity of the median motor nerve was improved from baseline at each time tested during treatment. In addition, peroneal and tibial motor nerve conduction velocities improved in patients whose levels of hyperglycemia were lowered. Moreover, extent of improvement of conduction velocity of some motor nerves was related to the degree of reduction of hyperglycemia. Sensory nerve conduction velocity was not altered by diabetes therapy. These findings support the hypothesis of a metabolic component to diabetic neuropathy and suggest that optimal glycemic control may be beneficial to patients with this disorder. PMID:7013592

  3. Nerve conduction

    MedlinePlus Videos and Cool Tools

    ... the spinal cord to muscles and sensory receptors. A peripheral nerve is composed of nerve bundles (fascicles) ... two neurons, it must first be converted to a chemical signal, which then crosses a space of ...

  4. Nerve conduction velocity

    MedlinePlus

    Nerve conduction velocity (NCV) is a test to see how fast electrical signals move through a nerve. ... normal body temperature. Being too cold slows nerve conduction. Tell your doctor if you have a cardiac ...

  5. Abnormal Nerve Conduction Study Findings Indicating the Existence of Peripheral Neuropathy in Multiple Sclerosis and Neuromyelitis Optica

    PubMed Central

    Warabi, Yoko; Yamazaki, Mikihiro; Shimizu, Toshio; Nagao, Masahiro

    2013-01-01

    Objective. Chronic inflammatory demyelinating polyneuropathy (CIDP) has been reported in patients with multiple sclerosis (MS). However, there have been limited reports of peripheral neuropathy as a complication of neuromyelitis optica (NMO). In this paper, we showed the characteristics and differences between peripheral neuropathy as a complication of MS and NMO. Method. We analyzed a series of 58 MS and 28 NMO patients and evaluated nerve conduction studies (NCS) in 21 MS and 5 NMO patients. Results. Six of the 58 MS and 3 of the 28 NMO patients revealed abnormal NCS findings. Three (5.2%) of the 58 MS patients fulfilled the criteria for CIDP. One (3.6%) of the 28 NMO patients showed peripheral neuropathy at the same time of NMO relapse, although CIDP was not seen in NMO. The other 5 (3 MS and 2 NMO) patients were complicated with neuropathy caused by concomitant diabetes mellitus and Sjögren's syndrome. Conclusion. Frequency of abnormal NCS findings might exhibit no significant difference between MS and NMO, although the cause and pathophysiology of peripheral neuropathy were different in MS and in NMO. There might be a group of NMO who were affected simultaneously in the central and peripheral nervous tissues. PMID:24308009

  6. Nerve conduction velocity

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/003927.htm Nerve conduction velocity To use the sharing features on this page, please enable JavaScript. Nerve conduction velocity (NCV) is a test to see how ...

  7. Nerve conduction and electromyography studies.

    PubMed

    Kane, N M; Oware, A

    2012-07-01

    Nerve conduction studies (NCS) and electromyography (EMG), often shortened to 'EMGs', are a useful adjunct to clinical examination of the peripheral nervous system and striated skeletal muscle. NCS provide an efficient and rapid method of quantifying nerve conduction velocity (CV) and the amplitude of both sensory nerve action potentials (SNAPs) and compound motor action potentials (cMAPs). The CV reflects speed of propagation of action potentials, by saltatory conduction, along large myelinated axons in a peripheral nerve. The amplitude of SNAPs is in part determined by the number of axons in a sensory nerve, whilst amplitude of cMAPs reflects integrated function of the motor axons, neuromuscular junction and striated muscle. Repetitive nerve stimulation (RNS) can identify defects of neuromuscular junction (NMJ) transmission, pre- or post-synaptic. Needle EMG examination can detect myopathic changes in muscle and signs of denervation. Combinations of these procedures can establish if motor and/or sensory nerve cell bodies or peripheral nerves are damaged (e.g. motor neuronopathy, sensory ganglionopathy or neuropathy), and also indicate if the primary target is the axon or the myelin sheath (i.e. axonal or demyelinating neuropathies). The distribution of nerve damage can be determined as either generalised, multifocal (mononeuropathy multiplex) or focal. The latter often due to compression at the common entrapment sites (such as the carpal tunnel, Guyon's canal, cubital tunnel, radial groove, fibular head and tarsal tunnel, to name but a few of the reported hundred or so 'entrapment neuropathies'). PMID:22614870

  8. Hypoglossal nerve conduction findings in obstructive sleep apnea

    PubMed Central

    Ramchandren, Sindhu; Gruis, Kirsten L.; Chervin, Ronald D.; Lisabeth, Lynda D.; Concannon, Maryann; Wolfe, James; Albers, James W.; Brown, Devin L.

    2010-01-01

    Introduction Denervation of oropharyngeal muscles in obstructive sleep apnea (OSA) has been suggested by needle EMG and muscle biopsy, but little is known about oropharyngeal nerve conduction abnormalities in OSA. We sought to compare hypoglossal nerve conduction studies in patients with and without OSA. Methods Unilateral hypoglossal nerve conduction studies were performed on 20 subjects with OSA and 20 age-matched controls using standard techniques. Results Median age was 48 in OSA subjects and 47 in controls. Hypoglossal compound muscle action potential (CMAP) amplitudes were significantly reduced (Wilcoxon Signed Rank test, p =0.01), but prolongation of latencies in OSA subjects did not reach significance in comparison to those in controls. Among a subgroup of subjects without polyneuropathy (15 pairs), reduced amplitudes in OSA subjects retained borderline significance (p=0.05). Discussion Hypoglossal nerve conduction abnormalities may distinguish patients with OSA from controls. These abnormalities could potentially contribute to, or arise from, OSA. PMID:20544939

  9. Evolution of rapid nerve conduction.

    PubMed

    Castelfranco, Ann M; Hartline, Daniel K

    2016-06-15

    Rapid conduction of nerve impulses is a priority for organisms needing to react quickly to events in their environment. While myelin may be viewed as the crowning innovation bringing about rapid conduction, the evolution of rapid communication mechanisms, including those refined and enhanced in the evolution of myelin, has much deeper roots. In this review, a sequence is traced starting with diffusional communication, followed by transport-facilitated communication, the rise of electrical signaling modalities, the invention of voltage-gated channels and "all-or-none" impulses, the emergence of elongate nerve axons specialized for communication and their fine-tuning to enhance impulse conduction speeds. Finally within the evolution of myelin itself, several innovations have arisen and have been interactively refined for speed enhancement, including the addition and sealing of layers, their limitation by space availability, and the optimization of key parameters: channel density, lengths of exposed nodes and lengths of internodes. We finish by suggesting several design principles that appear to govern the evolution of rapid conduction. This article is part of a Special Issue entitled SI: Myelin Evolution. PMID:26879248

  10. Disruption of myelin leads to ectopic expression of K(V)1.1 channels with abnormal conductivity of optic nerve axons in a cuprizone-induced model of demyelination.

    PubMed

    Bagchi, Bandita; Al-Sabi, Ahmed; Kaza, Seshu; Scholz, Dimitri; O'Leary, Valerie B; Dolly, J Oliver; Ovsepian, Saak V

    2014-01-01

    The molecular determinants of abnormal propagation of action potentials along axons and ectopic conductance in demyelinating diseases of the central nervous system, like multiple sclerosis (MS), are poorly defined. Widespread interruption of myelin occurs in several mouse models of demyelination, rendering them useful for research. Herein, considerable myelin loss is shown in the optic nerves of cuprizone-treated demyelinating mice. Immuno-fluorescence confocal analysis of the expression and distribution of voltage-activated K⁺ channels (K(V)1.1 and 1.2 α subunits) revealed their spread from typical juxta-paranodal (JXP) sites to nodes in demyelinated axons, albeit with a disproportionate increase in the level of K(V)1.1 subunit. Functionally, in contrast to monophasic compound action potentials (CAPs) recorded in controls, responses derived from optic nerves of cuprizone-treated mice displayed initial synchronous waveform followed by a dispersed component. Partial restoration of CAPs by broad spectrum (4-aminopyridine) or K(V)1.1-subunit selective (dendrotoxin K) blockers of K⁺ currents suggest enhanced K(V)1.1-mediated conductance in the demyelinated optic nerve. Biophysical profiling of K⁺ currents mediated by recombinant channels comprised of different K(V)1.1 and 1.2 stoichiometries revealed that the enrichment of K(V)1 channels K(V)1.1 subunit endows a decrease in the voltage threshold and accelerates the activation kinetics. Together with the morphometric data, these findings provide important clues to a molecular basis for temporal dispersion of CAPs and reduced excitability of demyelinated optic nerves, which could be of potential relevance to the patho-physiology of MS and related disorders. PMID:24498366

  11. Palm to Finger Ulnar Sensory Nerve Conduction

    PubMed Central

    Davidowich, Eduardo; Orsini, Marco; Pupe, Camila; Pessoa, Bruno; Bittar, Caroline; Pires, Karina Lebeis; Bruno, Carlos; Coutinho, Bruno Mattos; de Souza, Olivia Gameiro; Ribeiro, Pedro; Velasques, Bruna; Bittencourt, Juliana; Teixeira, Silmar; Bastos, Victor Hugo

    2015-01-01

    Ulnar neuropathy at the wrist (UNW) is rare, and always challenging to localize. To increase the sensitivity and specificity of the diagnosis of UNW many authors advocate the stimulation of the ulnar nerve (UN) in the segment of the wrist and palm. The focus of this paper is to present a modified and simplified technique of sensory nerve conduction (SNC) of the UN in the wrist and palm segments and demonstrate the validity of this technique in the study of five cases of type III UNW. The SNC of UN was performed antidromically with fifth finger ring recording electrodes. The UN was stimulated 14 cm proximal to the active electrode (the standard way) and 7 cm proximal to the active electrode. The normal data from amplitude and conduction velocity (CV) ratios between the palm to finger and wrist to finger segments were obtained. Normal amplitude ratio was 1.4 to 0.76. Normal CV ratio was 0.8 to 1.23.We found evidences of abnormal SNAP amplitude ratio or substantial slowing of UN sensory fibers across the wrist in 5 of the 5 patients with electrophysiological-definite type III UNW. PMID:26788268

  12. Principles and pitfalls of nerve conduction studies.

    PubMed

    Kimura, J

    1984-10-01

    This report reviews the fundamental principles and the changing concepts of nerve stimulation techniques, and discusses the proper application of these techniques in the differential diagnosis of peripheral nerve disorders. Nerve conduction studies help delineate the extent and distribution of the neural lesion and distinguish two major categories of peripheral nerve disease: demyelination and axonal degeneration. Although the method is based on simple principles, pitfalls abound in practice. Variability in nerve conduction measurement may result from temperature change, variations among nerve segments, and the effects of age. Other sources of error include excessive spread of stimulation current, anomalous innervation, temporal dispersion, and inaccuracy of surface measurement. Unlike a bipolar derivation, which selectively records near-field potentials, a referential recording may give rise to stationary far-field peaks from a moving source. Overlooking this possibility can lead to an incorrect interpretation of findings. Conventional nerve conduction studies deal primarily with measurements of the distal nerve segments in an extremity. More recent techniques are applicable to less accessible anatomical regions, as illustrated by elicitation of the blink reflex, F wave, and H reflex, and the use of the inching technique. Other methods used to assess special aspects of nerve conduction include the ischemic test and studies of slow-conducting fibers. PMID:6093680

  13. Intercostal nerve conduction study in man.

    PubMed Central

    Pradhan, S; Taly, A

    1989-01-01

    A new surface technique for the conduction study of the lower intercostal nerves has been developed and applied to 30 normal subjects. The problem of the short available nerve segment of the intercostal nerves and the bizzare compound motor action potential (CMAP) of inconsistent latency while recording over the intercostal muscles, is overcome by applying recording electrodes over the rectus abdominis muscle and stimulating the nerves at two points at a fair distance away. With the use of multiple recording sites over the rectus abdominis, the motor points for different intercostal nerves were delineated. CMAP of reproducible latencies and waveforms with sharp take-off points were obtained. Conduction velocity of the intercostal nerves could be determined. PMID:2526200

  14. Nerve conduction velocity in hypertensive patients.

    PubMed

    Halar, E M; Stewart, D T; Venkatesh, B; Chrissian, S A

    1978-01-01

    Due to conflicting reports in the literature regarding nerve conduction velocities (NCVs) in hypertensives, peroneal and sural NCVs and facial nerve conduction latencies were studied in 30 hypertensives and in 30 controls. An improved technique of NCV measurement was used. Twenty-one of the hypertensives were retested after five weeks, and five of them were tested for motor and sensory NCVs of the median nerve during a short period of partial occlusion of blood flow in the arm. No changes were found that could be related to blood pressure, duration of hypertension, eyeground changes, or partial restriction of blood flow. PMID:619818

  15. Electrochemical Skin Conductance Correlates with Skin Nerve Fiber Density

    PubMed Central

    Novak, Peter

    2016-01-01

    Purpose: Electrochemical skin conductance (ESC) using reverse iontophoresis and chronoamperometry has been used to evaluate abnormal function of small fibers. How ESC correlates with loss of small fibers in skin is unclear. Methods: This was a prospective, blinded study. The primary outcome measure was the correlation between ESC at the feet and results of skin biopsies including epidermal nerve fiber density (ENFD) and sweat gland nerve fiber density (SGNFD) at the distal leg. ESC, ENFD, and SGNFD data were normalized by adjusting for weight. The secondary outcome measures were the correlation between ESC and the following variables: quantitative sudomotor axon reflex test (QSART) and symptom scales (neuropathy, pain and autonomic). Results: Eighty-one patients (mean ± sd): age = 53.3 ± 17.3, men/women = 25/56 were enrolled in the study. ESC was reduced in subjects with abnormally low ENFD (ENFD normal/abnormal, ESC = 1.17 ± 0.27/0.87 ± 0.34 μSiemens/kg, p < 0.0008) and abnormally low SGNFD (SGNFD normal/abnormal ESC = 1.09 ± 0.34/0.78 ± 0.3 μSiemens/kg, p < 0.0003). ESC correlated with ENFD (ρ = 0.73, p = 0.0001) and SGNFD (ρ = 0.64, p = 0.0001). ESC did not correlate with symptom scales. Conclusion: ESC is diminished in subjects who have a reduced number of small fibers in the skin and the ESC reduction is proportional to ENFD and SGNFD. ESC can be useful in detecting loss of small nerve fibers. PMID:27605912

  16. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  17. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  18. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  19. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  20. 21 CFR 882.1550 - Nerve conduction velocity measurement device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Nerve conduction velocity measurement device. 882... conduction velocity measurement device. (a) Identification. A nerve conduction velocity measurement device is a device which measures nerve conduction time by applying a stimulus, usually to a...

  1. Median and ulnar nerve conduction determinations in the Erb's point--axilla segment in normal subjects.

    PubMed Central

    Ginzburg, M; Lee, M; Ginzburg, J; Alba, A

    1978-01-01

    Twenty-one median and 22 ulnar nerves were tested in 12 patients for motor nerve conduction velocity (MNCV) and motor nerve conduction time (MNCT) in the segments from Erb's point (N) to axilla (A) bilaterally. It was found that on this segment for both nerves, MNCV values equal to or smaller than 51 m/s or conduction times equal to or longer than 4 ms are to be considered abnormal. For comparative studies and for checking the normality of the tested nerves in their entire length, the more distally located segments in the same nerve were also tested. For diagnostic purposes, the differences between right and left MNCV or MNCT values determined in the same person on N-A segments of homologous nerves were analysed. Motor nerve conduction velocity or MNCT determinations on the N-A nerve segment are expected to replace MNCV determinations on the longer N-AE (AE=100 mm above elbow) nerve segment, which is now in use, for diagnosis of the thoracic outlet syndrome. Images PMID:660207

  2. Motor nerve conduction velocity (MCV) and lead content in sciatic nerve of lead-exposed rats

    SciTech Connect

    Maehara, N.; Uchino, E.; Terayama, K.; Ohno, H.; Yamamura, K.

    1986-07-01

    There have been many pathological and electrophysiological studies of peripheral nerves in inorganic lead intoxication. Peripheral nerve conduction velocity (NCV) has been used as an objective measure of the effects of lead on the peripheral nerve function and has been examined with blood lead content. There have been few reports on the changes in NCV related to lead content in the peripheral nerve tissue under lead poisoning. In the present study, the authors have examined motor nerve conduction velocity (MCV) of the tail by a non-invasive method and lead content of the peripheral nerve in lead-exposed rats. Furthermore, they have attempted to assess the relationship between these two parameters.

  3. Comparison of Nerve Excitability Testing, Nerve Conduction Velocity, and Behavioral Observations for Acrylamide Induced Peripheral Neuropathy

    EPA Science Inventory

    Nerve excitability (NE) testing is a sensitive method to test for peripheral neurotoxicity in humans,and may be more sensitive than compound nerve action potential (CNAP) or nerve conduction velocity (NCV).We used acrylamide to compare the NE and CNAP/NCV methods. Behavioral test...

  4. Evaluation of Nerve Conduction Studies in Obese Children With Insulin Resistance or Impaired Glucose Tolerance.

    PubMed

    Ince, Hülya; Taşdemir, Haydar Ali; Aydin, Murat; Ozyürek, Hamit; Tilki, Hacer Erdem

    2015-07-01

    The aim of the study was to investigate nerve conduction studies in terms of neuropathic characteristics in obese patients who were in prediabetes stage and also to determine the abnormal findings. The study included 69 obese adolescent patients between April 2009 and December 2010. All patients and control group underwent motor (median, ulnar, tibial, and peroneal) and sensory (median, ulnar, sural, and medial plantar) nerve conduction studies and sympathetic skin response test. Sensory response amplitude of the medial plantar nerve was significantly lower in the patients with impaired glucose tolerance and insulin resistance. To our knowledge, the present study is the first study demonstrating the development of sensory and autonomic neuropathy due to metabolic complications of obesity in adolescent children even in the period without development of diabetes mellitus. We recommend that routine electrophysiological examinations be performed, using medial plantar nerve conduction studies and sympathetic skin response test. PMID:25342307

  5. Aldose reductase inhibition improves nerve conduction velocity in diabetic patients.

    PubMed

    Judzewitsch, R G; Jaspan, J B; Polonsky, K S; Weinberg, C R; Halter, J B; Halar, E; Pfeifer, M A; Vukadinovic, C; Bernstein, L; Schneider, M; Liang, K Y; Gabbay, K H; Rubenstein, A H; Porte, D

    1983-01-20

    To assess the potential role of polyol-pathway activity in diabetic neuropathy, we measured the effects of sorbinil--a potent inhibitor of the key polyol-pathway enzyme aldose reductase--on nerve conduction velocity in 39 stable diabetics in a randomized, double-blind, cross-over trial. During nine weeks of treatment with sorbinil (250 mg per day), nerve conduction velocity was greater than during a nine-week placebo period for all three nerves tested: the peroneal motor nerve (mean increase [+/- S.E.M.], 0.70 +/- 0.24 m per second, P less than 0.008), the median motor nerve (mean increase, 0.66 +/- 0.27, P less than 0.005), and the median sensory nerve (mean increase, 1.16 +/- 0.50, P less than 0.035). Conduction velocity for all three nerves declined significantly within three weeks after cessation of the drug. These effects of sorbinil were not related to glycemic control, which was constant during the study. Although the effect of sorbinil in improving nerve conduction velocity in diabetics was small, the findings suggest that polyol-pathway activity contributes to slowed nerve conduction in diabetics. The clinical applicability of these observations remains to be determined, but they encourage further exploration of this approach to the treatment or prevention of diabetic neuropathy. PMID:6401351

  6. Myelin Abnormalities in the Optic and Sciatic Nerves in Mice With GM1-Gangliosidosis

    PubMed Central

    Heinecke, Karie A.; Luoma, Adrienne; d’Azzo, Alessandra; Kirschner, Daniel A.

    2015-01-01

    GM1-gangliosidosis is a glycosphingolipid lysosomal storage disease involving accumulation of GM1 and its asialo form (GA1) primarily in the brain. Thin-layer chromatography and X-ray diffraction were used to analyze the lipid content/composition and the myelin structure of the optic and sciatic nerves from 7- and 10-month old β-galactosidase (β-gal) +/? and β-gal −/− mice, a model of GM1gangliosidosis. Optic nerve weight was lower in the β-gal −/− mice than in unaffected β-gal +/? mice, but no difference was seen in sciatic nerve weight. The levels of GM1 and GA1 were significantly increased in both the optic nerve and sciatic nerve of the β-gal −/− mice. The content of myelin-enriched cerebrosides, sulfatides, and plasmalogen ethanolamines was significantly lower in optic nerve of β-gal −/− mice than in β-gal +/? mice; however, cholesteryl esters were enriched in the β-gal −/− mice. No major abnormalities in these lipids were detected in the sciatic nerve of the β-gal −/− mice. The abnormalities in GM1 and myelin lipids in optic nerve of β-gal −/− mice correlated with a reduction in the relative amount of myelin and periodicity in fresh nerve. By contrast, the relative amount of myelin and periodicity in the sciatic nerves from control and β-gal −/− mice were indistinguishable, suggesting minimal pathological involvement in sciatic nerve. Our results indicate that the greater neurochemical pathology observed in the optic nerve than in the sciatic nerve of β-gal −/− mice is likely due to the greater glycolipid storage in optic nerve. PMID:25694553

  7. Somatosensory evoked potentials (SSEPs); sensory nerve conduction velocity (SNCV) and motor nerve conduction velocity (MNCV) in chronic renal failure.

    PubMed

    Makkar, R K; Kochar, D K

    1994-01-01

    Somatosensory evoked potentials, sensory and motor nerve conduction velocity were studied in 25 patients of chronic renal failure and the results were compared with 15 healthy persons. The values more than +/- 3 S.D. were considered abnormal. SNCV was reduced in 11/25 patients; average reduction being 18 m/s (highly significant, p < 0.001); MNCV was reduced in 11/25 patients, average reduction being 20 m/s (highly significant, p < 0.001). Both SNCV and MNCV in same person were reduced in 6/25 patients. In SSEP N9, N13 and N20 were delayed in almost all the patients (highly significant, p < 0.001). Amplitude of N20 and N13 were reduced in 1 and 4 patients respectively but amplitude of N9 was normal. Out of different IPLS, Ebw-N9 was delayed in 5/25 patients (p < 0.9, insignificant); N9-N13 was delayed in 8/25 patients (p < 0.001, highly significant); N13-N20 was delayed in 1/25 patients (p < 0.01, significant). The evidence of these neurophysiological abnormalities collectively suggest the presence of central-peripheral axonopathy in this disease. PMID:7956880

  8. SPECIES SPECIFICITY OF GIANT NERVE FIBER CONDUCTION VELOCITY IN OLIGOCHAETES

    EPA Science Inventory

    Giant nerve fiber conduction velocities were studied using noninvasive electrophysiological recording techniques in adults from 12 species of oligochaetes, representing five different families. Two separate and stereotyped all-or-none response patterns to tactile stimulation (cor...

  9. Teaching nerve conduction to undergraduates: the "traveling flame" analogy revisited.

    PubMed

    Sircar, S S; Tandon, O P

    1996-06-01

    A familiar analogy to the propagation of the electric wave in a nerve lies in the burning of a cigarette. This analogy, which has persisted through several editions of popular textbooks of physiology, has never been elaborated beyond a cursory mention. In this article, the analogy is reinvoked and refined to explain the cable properties of nerve, saltatory conduction, and some other factors affecting nerve conduction velocity. Experience in lecture classes and feedback obtained through class tests indicate that the analogy, if suitably elaborated and judiciously applied, can increase the retention of the subject by the students. PMID:8712257

  10. Quality control in nerve conduction studies with coupled knowledge-based system approach.

    PubMed

    Xiang, Y; Eisen, A; MacNeil, M; Beddoes, M P

    1992-02-01

    Contemporary equipment used for nerve conduction studies is usually capable of computerized measurement of latency, amplitude, duration, and area of nerve and muscle action potentials and resulting conduction velocities. Abnormalities can be due to technical error or disease. Identification of technical error is a major element of quality control in electromyography, and artificial intelligence could be useful for this purpose. We have developed a coupled knowledge-based prototype system (QUALICON) to assess the correctness of recording and stimulating characteristics in routine conduction studies. QUALICON extracts numeric features from CMAPs or SNAPs, which are translated into symbolic form to drive a Bayesian network. The network uses high-level knowledge to infer the quality of stimulating and recording electrode placement as well as polarity and stimulus strength making recommendations as to the likely technical error when abnormal potentials are detected. A preliminary assessment shows that QUALICON performs as well as manual assessment performed by professionals. PMID:1549138

  11. A conduction block in sciatic nerves can be detected by magnetic motor root stimulation.

    PubMed

    Matsumoto, Hideyuki; Konoma, Yuko; Fujii, Kengo; Hanajima, Ritsuko; Terao, Yasuo; Ugawa, Yoshikazu

    2013-08-15

    Useful diagnostic techniques for the acute phase of sciatic nerve palsy, an entrapment neuropathy, are not well established. The aim of this paper is to demonstrate the diagnostic utility of magnetic sacral motor root stimulation for sciatic nerve palsy. We analyzed the peripheral nerves innervating the abductor hallucis muscle using both electrical stimulations at the ankle and knee and magnetic stimulations at the neuro-foramina and conus medullaris levels in a patient with sciatic nerve palsy at the level of the piriformis muscle due to gluteal compression related to alcohol consumption. On the fourth day after onset, magnetic sacral motor root stimulation using a MATS coil (the MATS coil stimulation method) clearly revealed a conduction block between the knee and the sacral neuro-foramina. Two weeks after onset, needle electromyography supported the existence of the focal lesion. The MATS coil stimulation method clearly revealed a conduction block in the sciatic nerve and is therefore a useful diagnostic tool for the abnormal neurophysiological findings associated with sciatic nerve palsy even at the acute phase. PMID:23809191

  12. Abnormal trigeminal nerve microstructure and brain white matter in idiopathic trigeminal neuralgia.

    PubMed

    DeSouza, Danielle D; Hodaie, Mojgan; Davis, Karen D

    2014-01-01

    Idiopathic trigeminal neuralgia (TN) is classically associated with neurovascular compression (NVC) of the trigeminal nerve at the root entry zone (REZ), but NVC-induced structural alterations are not always apparent on conventional imaging. Previous studies report lower fractional anisotropy (FA) in the affected trigeminal nerves of TN patients using diffusion tensor imaging (DTI). However, it is not known if TN patients have trigeminal nerve abnormalities of mean, radial, or axial diffusivity (MD, RD, AD - metrics linked to neuroinflammation and edema) or brain white matter (WM) abnormalities. DTI scans in 18 right-sided TN patients and 18 healthy controls were retrospectively analyzed to extract FA, RD, AD, and MD from the trigeminal nerve REZ, and Tract-Based Spatial Statistics (TBSS) was used to assess brain WM. In patients, the affected trigeminal nerve had lower FA, and higher RD, AD, and MD was found bilaterally compared to controls. Group TBSS (P<0.05, corrected) showed patients had lower FA and increased RD, MD, and AD in brain WM connecting areas involved in the sensory and cognitive-affective dimensions of pain, attention, and motor functions, including the corpus callosum, cingulum, posterior corona radiata, and superior longitudinal fasciculus. These data indicate that TN patients have abnormal tissue microstructure in their affected trigeminal nerves, and as a possible consequence, WM microstructural alterations in the brain. These findings suggest that trigeminal nerve structural abnormalities occur in TN, even if not apparent on gross imaging. Furthermore, MD and RD findings suggest that neuroinflammation and edema may contribute to TN pathophysiology. PMID:23999058

  13. Insulin Pump Therapy Is Associated with Lower Rates of Retinopathy and Peripheral Nerve Abnormality

    PubMed Central

    Zabeen, Bedowra; Craig, Maria E.; Virk, Sohaib A.; Pryke, Alison; Chan, Albert K. F.; Cho, Yoon Hi; Benitez-Aguirre, Paul Z.; Hing, Stephen; Donaghue, Kim C.

    2016-01-01

    Objective To compare rates of microvascular complications in adolescents with type 1 diabetes treated with continuous subcutaneous insulin infusion (CSII) versus multiple daily injections (MDI). Research Design and Methods Prospective cohort of 989 patients (aged 12–20 years; diabetes duration >5 years) treated with CSII or MDI for >12 months. Microvascular complications were assessed from 2000–14: early retinopathy (seven-field fundal photography), peripheral nerve function (thermal and vibration threshold testing), autonomic nerve abnormality (heart rate variability analysis of electrocardiogram recordings) and albuminuria (albumin creatinine ratio/timed overnight albumin excretion). Generalized estimating equations (GEE) were used to examine the relationship between treatment and complications rates, adjusting for socio-economic status (SES) and known risk factors including HbA1c and diabetes duration. Results Comparing CSII with MDI: HbA1C was 8.6% [70mmol/mol] vs. 8.7% [72 mmol/mol]) (p = 0.7), retinopathy 17% vs. 22% (p = 0.06); microalbuminuria 1% vs. 4% (p = 0.07), peripheral nerve abnormality 27% vs. 33% (p = 0.108) and autonomic nerve abnormality 24% vs. 28% (p = 0.401). In multivariable GEE, CSII use was associated with lower rates of retinopathy (OR 0.66, 95% CI 0.45–0.95, p = 0.029) and peripheral nerve abnormality (OR 0.63, 95% CI 0.42–0.95, p = 0.026), but not albuminuria (OR 0.46, 95% CI 0.10–2.17, p = 0.33). SES was not associated with any of the complication outcomes. Conclusions In adolescents, CSII use is associated with lower rates of retinopathy and peripheral nerve abnormality, suggesting an apparent benefit of CSII over MDI independent of glycemic control or SES. PMID:27050468

  14. Preliminary Study on the Lesion Location and Prognosis of Cubital Tunnel Syndrome by Motor Nerve Conduction Studies

    PubMed Central

    Liu, Zhu; Jia, Zhi-Rong; Wang, Ting-Ting; Shi, Xin; Liang, Wei

    2015-01-01

    Background: To study lesions’ location and prognosis of cubital tunnel syndrome (CubTS) by routine motor nerve conduction studies (MNCSs) and short-segment nerve conduction studies (SSNCSs, inching test). Methods: Thirty healthy subjects were included and 60 ulnar nerves were studied by inching studies for normal values. Sixty-six patients who diagnosed CubTS clinically were performed bilaterally by routine MNCSs and SSNCSs. Follow-up for 1-year, the information of brief complaints, clinical symptoms, and physical examination were collected. Results: Sixty-six patients were included, 88 of nerves was abnormal by MNCS, while 105 was abnormal by the inching studies. Medial epicondyle to 2 cm above medial epicondyle is the most common segment to be detected abnormally (59.09%), P < 0.01. Twenty-two patients were followed-up, 17 patients’ symptoms were improved. Most of the patients were treated with drugs and modification of bad habits. Conclusions: (1) SSNCSs can detect lesions of compressive neuropathy in CubTS more precisely than the routine motor conduction studies. (2) SSNCSs can diagnose CubTS more sensitively than routine motor conduction studies. (3) In this study, we found that medial epicondyle to 2 cm above the medial epicondyle is the most vulnerable place that the ulnar nerve compressed. (4) The patients had a better prognosis who were abnormal in motor nerve conduction time only, but not amplitude in compressed lesions than those who were abnormal both in velocity and amplitude. Our study suggests that SSNCSs is a practical method in detecting ulnar nerve compressed neuropathy, and sensitive in diagnosing CubTS. The compound muscle action potentials by SSNCSs may predict prognosis of CubTS. PMID:25947398

  15. Conductive PPY/PDLLA conduit for peripheral nerve regeneration

    PubMed Central

    Xu, Haixing; Holzwarth, Jeremy M.; Yan, Yuhua; Xu, Peihu; Zheng, Hua; Yin, Yixia; Li, Shipu; Ma, Peter X.

    2013-01-01

    The significant drawbacks and lack of success associated with current methods to treat critically sized nerve defects have led to increased interest in neural tissue engineering. Conducting polymers show great promise due to their electrical properties, and in the case of polypyrrole (PPY), its cell compatibility as well. Thus, the goal of this study is to synthesize a conducting composite nerve conduit with PPY and poly(D, L-lactic acid) (PDLLA), assess its ability to support the differentiation of rat pheochromocytoma 12 (PC12) cells in vitro, and determine its ability to promote nerve regeneration in vivo. Different amounts of PPY (5%, 10%, and 15%) are used to synthesize the conduits resulting in different conductivities (5.65, 10.40, and 15.56 ms/cm, respectively). When PC12 cells are seeded on these conduits and stimulated with 100 mV for 2 h, there is a marked increase in both the percentage of neurite-bearing cells and the median neurite length as the content of PPY increased. More importantly, when the PPY/PDLLA nerve conduit was used to repair a rat sciatic nerve defect it performed similarly to the gold standard autologous graft. These promising results illustrate the potential that this PPY/PDLLA conducting composite conduit has for neural tissue engineering. PMID:24138830

  16. Nerve conduction studies, skeletal muscle EMG, and sphincter EMG in multiple system atrophy.

    PubMed Central

    Pramstaller, P P; Wenning, G K; Smith, S J; Beck, R O; Quinn, N P; Fowler, C J

    1995-01-01

    Although autonomic failure, parkinsonism, and cerebellar and pyramidal signs are well documented in multiple system atrophy, much less is known about the frequency and severity of involvement of the peripheral nervous system. The frequency and nature of peripheral nerve involvement has therefore been determined in 74 patients with multiple system atrophy using nerve conduction studies and skeletal muscle EMG. These findings were compared with those on sphincter EMG. Ninety per cent of the patients had an abnormal sphincter EMG, indicating denervation and reinnervation consistent with anterior horn cell loss in Onuf's nucleus, but only 40% had either abnormal nerve conduction studies (mixed sensorimotor axonal neuropathy in 17.5%) or abnormal skeletal muscle EMG (suggesting partial denervation in 22.5%). These data indicate a remarkable selective vulnerability of the anterior horn cells of Onuf's nucleus innervating external sphincter muscles relative to those supplying skeletal muscle in patients with multiple system atrophy. If this selective pattern of involvement can be explained it may be a clue to pathogenetic mechanisms in multiple system atrophy. PMID:7745413

  17. Evaluation of sural nerve automated nerve conduction study in the diagnosis of peripheral neuropathy in patients with type 2 diabetes mellitus

    PubMed Central

    Chatzikosma, Georgia; Pafili, Kalliopi; Demetriou, Maria; Vadikolias, Konstantinos; Maltezos, Efstratios

    2016-01-01

    Introduction New tests for improved diagnosis of diabetic peripheral neuropathy (DPN) are useful. Material and methods We evaluated the utility of automated nerve conduction study (NCS) of the sural nerve with a new portable device for the diagnosis of DPN in patients with type 2 diabetes mellitus (T2DM). This study included 114 T2DM patients (58 men) with mean age 64.60 ±8.61 years. Exclusion criteria were B12 depletion, alcohol abuse and other causes of peripheral neuropathy. The reference method was the Neuropathy Disability Score (NDS) with a threshold NDS ≥ 3. Sural nerve automated NCS was carried out with the portable NC-stat DPNCheck device. Sensory nerve conduction velocity and sensory nerve action potential amplitude were measured bilaterally. Automated NCS was considered abnormal when ≥ 1 of the two aforementioned neurophysiological parameters was abnormal in at least one leg. Results Examination with NC-stat DPNCheck exhibited 90.48% sensitivity, 86.11% specificity, 79.17% positive predictive value (PPV) and 93.94% negative predictive value (NPV). The positive likelihood ratio (LR+) was 6.51 and the negative likelihood ratio (LR–) was 0.11. Conclusions Sural nerve automated NCS with the NC-stat DPNCheck device exhibits high sensitivity and specificity for the diagnosis of DPN in T2DM. PMID:27186185

  18. Nerve conduction velocity measurements: improved accuracy using superimposed response waves.

    PubMed

    Halar, E M; Venkatesh, B

    1976-10-01

    A new procedure of serial motor nerve conduction velocity (NCV) measurements with the use of "superimposed response waves" technique (or double stimulus technique) was performed on 29 normal subjects. Six peripheral nerves were tested once a week for four to six weeks. A total of 760 NCV measurements were thus obtained to try to assess the magnitude of error in serial NCV testings. With the double stimulus technique employed, a significant reduction in variations of serial NCV measurements was found. The overall standard deviation of four to six consecutive NCV measurements in the 34 subjects was 1.3 meters per second with a coefficient of variation of 2.4%. These findings obtained with the double stimulus technique have proven to be approximately three times more accurate than results obtained by investigators who studied nerve conduction velocity measurement variation with single stimulus standard NCV testing techniques. PMID:184754

  19. Combined KHFAC + DC nerve block without onset or reduced nerve conductivity after block

    NASA Astrophysics Data System (ADS)

    Franke, Manfred; Vrabec, Tina; Wainright, Jesse; Bhadra, Niloy; Bhadra, Narendra; Kilgore, Kevin

    2014-10-01

    Objective. Kilohertz frequency alternating current (KHFAC) waveforms have been shown to provide peripheral nerve conductivity block in many acute and chronic animal models. KHFAC nerve block could be used to address multiple disorders caused by neural over-activity, including blocking pain and spasticity. However, one drawback of KHFAC block is a transient activation of nerve fibers during the initiation of the nerve block, called the onset response. The objective of this study is to evaluate the feasibility of using charge balanced direct current (CBDC) waveforms to temporarily block motor nerve conductivity distally to the KHFAC electrodes to mitigate the block onset-response. Approach. A total of eight animals were used in this study. A set of four animals were used to assess feasibility and reproducibility of a combined KHFAC + CBDC block. A following randomized study, conducted on a second set of four animals, compared the onset response resulting from KHFAC alone and combined KHFAC + CBDC waveforms. To quantify the onset, peak forces and the force-time integral were measured during KHFAC block initiation. Nerve conductivity was monitored throughout the study by comparing muscle twitch forces evoked by supra-maximal stimulation proximal and distal to the block electrodes. Each animal of the randomized study received at least 300 s (range: 318-1563 s) of cumulative dc to investigate the impact of combined KHFAC + CBDC on nerve viability. Main results. The peak onset force was reduced significantly from 20.73 N (range: 18.6-26.5 N) with KHFAC alone to 0.45 N (range: 0.2-0.7 N) with the combined CBDC and KHFAC block waveform (p < 0.001). The area under the force curve was reduced from 6.8 Ns (range: 3.5-21.9 Ns) to 0.54 Ns (range: 0.18-0.86 Ns) (p < 0.01). No change in nerve conductivity was observed after application of the combined KHFAC + CBDC block relative to KHFAC waveforms. Significance. The distal application of CBDC can significantly reduce or even

  20. Differential fiber-specific block of nerve conduction in mammalian peripheral nerves using kilohertz electrical stimulation

    PubMed Central

    Patel, Yogi A.

    2015-01-01

    Kilohertz electrical stimulation (KES) has been shown to induce repeatable and reversible nerve conduction block in animal models. In this study, we characterized the ability of KES stimuli to selectively block specific components of stimulated nerve activity using in vivo preparations of the rat sciatic and vagus nerves. KES stimuli in the frequency range of 5–70 kHz and amplitudes of 0.1–3.0 mA were applied. Compound action potentials were evoked using either electrical or sensory stimulation, and block of components was assessed through direct nerve recordings and muscle force measurements. Distinct observable components of the compound action potential had unique conduction block thresholds as a function of frequency of KES. The fast component, which includes motor activity, had a monotonically increasing block threshold as a function of the KES frequency. The slow component, which includes sensory activity, showed a nonmonotonic block threshold relationship with increasing KES frequency. The distinct trends with frequency of the two components enabled selective block of one component with an appropriate choice of frequency and amplitude. These trends in threshold of the two components were similar when studying electrical stimulation and responses of the sciatic nerve, electrical stimulation and responses of the vagus nerve, and sensorimotor stimulation and responses of the sciatic nerve. This differential blocking effect of KES on specific fibers can extend the applications of KES conduction block to selective block and stimulation of neural signals for neuromodulation as well as selective control of neural circuits underlying sensorimotor function. PMID:25878155

  1. Morphometric Brain Abnormalities in Boys with Conduct Disorder

    ERIC Educational Resources Information Center

    Huebner, Thomas; Vloet, Timo D.; Marx, Ivo; Konrad, Kerstin; Fink, Gereon R.; Herpertz, Sabine C.; Herpertz-Dahlmann, Beate

    2008-01-01

    Conduct disorder (CD) is associated with antisocial personality behavior that violates the basic rights of others. Results, on examining the structural brain aberrations in boys' CD, show that boys with CD and cormobid attention-deficit/hyperactivity disorder showed abnormalities in frontolimbic areas that could contribute to antisocial…

  2. Peroneal nerve conduction velocity: the importance of temperature correction.

    PubMed

    Halar, E M; DeLisa, J A; Brozovich, F V

    1981-09-01

    The relationship between skin surface temperature, near nerve temperature and nerve conduction velocity (NCV) of the peroneal nerve was studied in normal and diabetic subjects to determine a peroneal NCV-treatment correction factor and to investigate whether temperature correction of NCV reduces its variability. Twenty normal subjects (age 21 to 72 years, mean 44, SD 17) were tested for peroneal NCV, skin and near nerve temperatures bilaterally at ambient temperature (mean 26.6C). Tests were repeated after cooling the lower extremity to a skin temperature of 26C, and at skin temperatures of 28 and 29C as the legs were allowed to gradually warm. An additional 20 normal and 20 diabetic subjects were tested weekly at ambient temperature for peroneal NCV and skin temperature, measured at 15cm above the lateral malleolus. The results showed a linear relationship between skin temperature, near nerve temperature and peroneal NCV (p less than 0.001). Peroneal NCV was altered 2.0 meters per second per degree (C) change in skin and near nerve temperature (p less than 0.001). When using our formula, peroneal motor NCV corrected = 2.0 [32 - skin temp(C)] + NCV (m/sec), for correction of peroneal NCV to a standard skin temperature of 32C, it was found that temperature corrected NCV were less variable (p less than 0.05) than noncorrected NCV in the same diabetic subjects. These results indicate that temperature corrected NCV should be calculated routinely during clinical NCV examinations of patients with peripheral neuropathies. PMID:7283685

  3. Oculomotor nerve and muscle abnormalities in congenital fibrosis of the extraocular muscles.

    PubMed

    Engle, E C; Goumnerov, B C; McKeown, C A; Schatz, M; Johns, D R; Porter, J D; Beggs, A H

    1997-03-01

    Congenital fibrosis of the extraocular muscles is an autosomal dominant congenital disorder characterized by bilateral ptosis, restrictive external ophthalmoplegia with the eyes partially or completely fixed in an infraducted (downward) and strabismic position, and markedly limited and aberrant residual eye movements. It has been generally thought that these clinical abnormalities result from myopathic fibrosis of the extraocular muscles. We describe the intracranial and orbital pathology of 1 and the muscle pathology of 2 other affected members of a family with chromosome 12-linked congenital fibrosis of the extraocular muscles. There is an absence of the superior division of the oculomotor nerve and its corresponding alpha motor neurons, and abnormalities of the levator palpebrae superioris and rectus superior (the muscles innervated by the superior division of the oculomotor nerve). In addition, increased numbers of internal nuclei and central mitochondrial clumping are found in other extraocular muscles, suggesting that the muscle pathology extends beyond the muscles innervated by the superior division of cranial nerve III. This report presents evidence that congenital fibrosis of the extraocular muscles results from an abnormality in the development of the extraocular muscle lower motor neuron system. PMID:9066352

  4. Stretch-induced nerve conduction deficits in guinea pig ex vivo nerve.

    PubMed

    Li, Jianming; Shi, Riyi

    2007-01-01

    In the current communication, we characterized supraphysiologic elongations that elicited short-term nerve dysfunction. This was accomplished by assessing the electrophysiology of guinea pig tibial and peroneal nerves at predetermined elongation magnitudes. Results showed that a longitudinal supraphysiological stretch of lambda = 1.05 caused a 16% reduction in the mean compound action potential (CAP) amplitude. Upon relaxation to physiologic length, a full recovery in the CAP was observed. At lambda = 1.10, the CAP decreased by 50% with an 88% recovery after relaxation. For a supraphysiologic stretch of lambda = 1.20, severe conduction block with minimal acute recovery was observed. Latency also increased during periods of stretch and was proportional to the stretch magnitude. Additional studies showed some electrophysiological recovery during the sustained stretch phase. This attribute may be related to internal stress relaxation mechanisms. Since whole nerve elongations are averaged global deformations, we also used an incremental digital image correlation (DIC) technique to characterize the strain at the micro-tissue level. The DIC analysis revealed considerable heterogeneity in the planar strain field, with some regions exhibiting strains above the macroscale stretch. This non-uniformity in the strain map arises from structural inconsistencies of the nerve and we presume that zones of high local strain may translate into the observed conduction deficits. PMID:16674962

  5. [Physiological approach to peripheral neuropathy. Conventional nerve conduction studies and magnetic motor root stimulation].

    PubMed

    Ugawa, Yoshikazu

    2004-11-01

    In this communication, I first show some points we should mind in the conventional peripheral nerve conduction studies and later present clinical usefulness of motor root stimulation for peripheral neuropathy. CONVENTIONAL NERVE CONDUCTION STUDIES (NCS): The most important point revealed by the conventional NCSs is whether neuropathy is due to axonal degeneration or demyelinating process. Precise clinical examination with this neurophysiological information leads us to a diagnosis and treatment. Poor clinical examination makes these findings useless. Long standing axonal degeneration sometimes induces secondary demyelination at the most distal part of involved nerves. On the other hand, severe segmental demyelination often provokes secondary axonal degeneration at distal parts to the site of demyelination. These secondary changes show the same abnormal neurophysiological findings as those of the primary involvement. We should be careful of this possibility when interpreting the results of NCS. NCS of sensory nerves is not good at revealing demyelinating process. Mild temporal dispersion of potentials often reduces an amplitude of SNAP or loss of responses, which usually suggests axonal degeneration, because of short duration of sensory nerve potentials. MOTOR ROOT STIMULATION IN PERIPHERAL NEUROPATHY: Magnetic stimulation with a coil placed over the spine activates motor roots and evokes EMG responses from upper and lower limb muscles. The site of activation with this method was determined to be where the motor roots exit from the spinal canal (intervertebral foramina) (J Neurol Neurosurg Psychiatry 52 (9): 1025-1032, 1989) because induced currents are very dense at such a foramen made by electric resistant bones. In several kinds of peripheral neuropathy, this method has been used to detect a lesion at a proximal part of the peripheral nerves which can not be detected by the conventional NCSs. I present a few cases in whom motor root stimulation had a clinical

  6. Physical activity: its influence on nerve conduction velocity.

    PubMed

    Halar, E M; Hammond, M C; Dirks, S

    1985-09-01

    In a group of 40 healthy subjects, distal and proximal latencies of the median, tibial, and peroneal motor, and sural sensory nerves and their respective skin surface temperatures (Tsk) were measured before and after walking or bicycling. The baseline tests were performed 30 minutes after resting in a constant room temperature of 24C. The ambulation or bicycling task was continued for 30 minutes at a constant rate. Postactivity tests were performed within 30 minutes and between 45 to 60 minutes after termination of activity. Another test was done 75 to 90 minutes after bicycle exercise. After walking, there was a significant increase in Tsk in all lower extremity nerves tested (p less than 0.01). The increases were accompanied by faster distal and proximal latencies in both testing periods (p less than 0.01). Median nerve Tsk, distal and proximal latencies did not differ significantly from baseline values initially, but 45 minutes after walking Tsk was elevated and proximal latency had become faster (p less than 0.01). Following bicycling, lower extremity Tsk was significantly reduced over tibial, peroneal, and sural nerves by the third testing period (p less than 0.01) but only sural latencies were significantly prolonged (p less than 0.05) by this time. In the upper extremities median Tsk was significantly elevated and distal latency had become significantly faster 45 minutes after bicycling. Our data suggest that activity significantly influences nerve conduction latency results due to tissue temperature alteration. In addition, 30 minutes of rest after activity may not be sufficient time for the lower extremity temperatures to become stable. PMID:4038026

  7. Multidimensional conducting polymer nanotubes for ultrasensitive chemical nerve agent sensing.

    PubMed

    Kwon, Oh Seok; Park, Seon Joo; Lee, Jun Seop; Park, Eunyu; Kim, Taejoon; Park, Hyun-Woo; You, Sun Ah; Yoon, Hyeonseok; Jang, Jyongsik

    2012-06-13

    Tailoring the morphology of materials in the nanometer regime is vital to realizing enhanced device performance. Here, we demonstrate flexible nerve agent sensors, based on hydroxylated poly(3,4-ethylenedioxythiophene) (PEDOT) nanotubes (HPNTs) with surface substructures such as nanonodules (NNs) and nanorods (NRs). The surface substructures can be grown on a nanofiber surface by controlling critical synthetic conditions during vapor deposition polymerization (VDP) on the polymer nanotemplate, leading to the formation of multidimensional conducting polymer nanostructures. Hydroxyl groups are found to interact with the nerve agents. Representatively, the sensing response of dimethyl methylphosphonate (DMMP) as a simulant for sarin is highly sensitive and reversible from the aligned nanotubes. The minimum detection limit is as low as 10 ppt. Additionally, the sensor had excellent mechanical bendability and durability. PMID:22545863

  8. Reversible Nerve Conduction Block Using Kilohertz Frequency Alternating Current

    PubMed Central

    Kilgore, Kevin L.; Bhadra, Niloy

    2013-01-01

    Objectives The features and clinical applications of balanced-charge kilohertz frequency alternating currents (KHFAC) are reviewed. Preclinical studies of KHFAC block have demonstrated that it can produce an extremely rapid and reversible block of nerve conduction. Recent systematic analysis and experimentation utilizing KHFAC block has resulted in a significant increase in interest in KHFAC block, both scientifically and clinically. Materials and Methods We review the history and characteristics of KHFAC block, the methods used to investigate this type of block, the experimental evaluation of block, and the electrical parameters and electrode designs needed to achieve successful block. We then analyze the existing clinical applications of high frequency currents, comparing the early results with the known features of KHFAC block. Results Although many features of KHFAC block have been characterized, there is still much that is unknown regarding the response of neural structures to rapidly fluctuating electrical fields. The clinical reports to date do not provide sufficient information to properly evaluate the mechanisms that result in successful or unsuccessful treatment. Conclusions KHFAC nerve block has significant potential as a means of controlling nerve activity for the purpose of treating disease. However, early clinical studies in the use of high frequency currents for the treatment of pain have not been designed to elucidate mechanisms or allow direct comparisons to preclinical data. We strongly encourage the careful reporting of the parameters utilized in these clinical studies, as well as the development of outcome measures that could illuminate the mechanisms of this modality. PMID:23924075

  9. Conductive PANi/PEGDA macroporous hydrogels for nerve regeneration.

    PubMed

    Guarino, Vincenzo; Alvarez-Perez, Marco Antonio; Borriello, Anna; Napolitano, Teresa; Ambrosio, Luigi

    2013-01-01

    Only recently polymers with intrinsic conductive properties have been studied in relation to their incorporation into bioactive scaffolds for use in tissue engineering. The reason for this interest is that such scaffolds could electrically stimulate cells and thus regulate specific cellular activities, and by this means influence the process of regeneration of those tissues that respond to electrical impulses. In our work, macroporous hydrogels are developed with controlled pore morphology and conductive properties to enable sufficient cell signaling to supply events inherent to nerve regeneration. A hybrid material has been prepared by in situ precipitation of polyaniline (PANi) in polyethyleneglycol diacrylate (PEGDA) solution, followed by crosslinking via UV irradiation. A porous architecture, characterized by macropores from 136 μm to 158 μm in size, has been achieved by sodium chloride particle leaching. In this work, we demonstrate that PANi synthesis and hydrogel crosslinking combine to enable the design of materials with suitable conductive behaviour. The presence of PANi evidently increased the electrical conductivity of the hybrid material from (1.1 ± 0.5) × 10(-3) mS/cm with a PANi content of 3wt%. The hydrophilic nature of PANi also enhanced water retention/proton conductivity by more than one order of magnitude. In vitro studies confirmed that 3 wt% PANi also improve the biological response of PC12 and hMSC cells. Hybrid PANi/PEGDA macroporous hydrogels supplement new functionalities in terms of morphological and conductive properties, both of which are essential prerequisites to drive nerve cells in regenerative processes. PMID:23184787

  10. Fibrosis, Connexin-43, and Conduction Abnormalities in the Brugada Syndrome

    PubMed Central

    Nademanee, Koonlawee; Raju, Hariharan; de Noronha, Sofia V.; Papadakis, Michael; Robinson, Laurence; Rothery, Stephen; Makita, Naomasa; Kowase, Shinya; Boonmee, Nakorn; Vitayakritsirikul, Vorapot; Ratanarapee, Samrerng; Sharma, Sanjay; van der Wal, Allard C.; Christiansen, Michael; Tan, Hanno L.; Wilde, Arthur A.; Nogami, Akihiko; Sheppard, Mary N.; Veerakul, Gumpanart; Behr, Elijah R.

    2015-01-01

    Background The right ventricular outflow tract (RVOT) is acknowledged to be responsible for arrhythmogenesis in Brugada syndrome (BrS), but the pathophysiology remains controversial. Objectives This study assessed the substrate underlying BrS at post-mortem and in vivo, and the role for open thoracotomy ablation. Methods Six whole hearts from male post-mortem cases of unexplained sudden death (mean age 23.2 years) with negative specialist cardiac autopsy and familial BrS were used and matched to 6 homograft control hearts by sex and age (within 3 years) by random risk set sampling. Cardiac autopsy sections from cases and control hearts were stained with picrosirius red for collagen. The RVOT was evaluated in detail, including immunofluorescent stain for connexin-43 (Cx43). Collagen and Cx43 were quantified digitally and compared. An in vivo study was undertaken on 6 consecutive BrS patients (mean age 39.8 years, all men) during epicardial RVOT ablation for arrhythmia via thoracotomy. Abnormal late and fractionated potentials indicative of slowed conduction were identified, and biopsies were taken before ablation. Results Collagen was increased in BrS autopsy cases compared with control hearts (odds ratio [OR]: 1.42; p = 0.026). Fibrosis was greatest in the RVOT (OR: 1.98; p = 0.003) and the epicardium (OR: 2.00; p = 0.001). The Cx43 signal was reduced in BrS RVOT (OR: 0.59; p = 0.001). Autopsy and in vivo RVOT samples identified epicardial and interstitial fibrosis. This was collocated with abnormal potentials in vivo that, when ablated, abolished the type 1 Brugada electrocardiogram without ventricular arrhythmia over 24.6 ± 9.7 months. Conclusions BrS is associated with epicardial surface and interstitial fibrosis and reduced gap junction expression in the RVOT. This collocates to abnormal potentials, and their ablation abolishes the BrS phenotype and life-threatening arrhythmias. BrS is also associated with increased collagen throughout the heart

  11. Spontaneous temporal changes and variability of peripheral nerve conduction analyzed using a random effects model.

    PubMed

    Krøigård, Thomas; Gaist, David; Otto, Marit; Højlund, Dorthe; Selmar, Peter E; Sindrup, Søren H

    2014-08-01

    The reproducibility of variables commonly included in studies of peripheral nerve conduction in healthy individuals has not previously been analyzed using a random effects regression model. We examined the temporal changes and variability of standard nerve conduction measures in the leg. Peroneal nerve distal motor latency, motor conduction velocity, and compound motor action potential amplitude; sural nerve sensory action potential amplitude and sensory conduction velocity; and tibial nerve minimal F-wave latency were examined in 51 healthy subjects, aged 40 to 67 years. They were reexamined after 2 and 26 weeks. There was no change in the variables except for a minor decrease in sural nerve sensory action potential amplitude and a minor increase in tibial nerve minimal F-wave latency. Reproducibility was best for peroneal nerve distal motor latency and motor conduction velocity, sural nerve sensory conduction velocity, and tibial nerve minimal F-wave latency. Between-subject variability was greater than within-subject variability. Sample sizes ranging from 21 to 128 would be required to show changes twice the magnitude of the spontaneous changes observed in this study. Nerve conduction studies have a high reproducibility, and variables are mainly unaltered during 6 months. This study provides a solid basis for the planning of future clinical trials assessing changes in nerve conduction. PMID:25083853

  12. Detecting abnormality in optic nerve head images using a feature extraction analysis

    PubMed Central

    Zhu, Haogang; Poostchi, Ali; Vernon, Stephen A; Crabb, David P

    2014-01-01

    Imaging and evaluation of the optic nerve head (ONH) plays an essential part in the detection and clinical management of glaucoma. The morphological characteristics of ONHs vary greatly from person to person and this variability means it is difficult to quantify them in a standardized way. We developed and evaluated a feature extraction approach using shift-invariant wavelet packet and kernel principal component analysis to quantify the shape features in ONH images acquired by scanning laser ophthalmoscopy (Heidelberg Retina Tomograph [HRT]). The methods were developed and tested on 1996 eyes from three different clinical centers. A shape abnormality score (SAS) was developed from extracted features using a Gaussian process to identify glaucomatous abnormality. SAS can be used as a diagnostic index to quantify the overall likelihood of ONH abnormality. Maps showing areas of likely abnormality within the ONH were also derived. Diagnostic performance of the technique, as estimated by ROC analysis, was significantly better than the classification tools currently used in the HRT software – the technique offers the additional advantage of working with all images and is fully automated. PMID:25071960

  13. Ulnar nerve motor conduction to the first dorsal interosseous muscle.

    PubMed

    Prahlow, Nathan D; Buschbacher, Ralph M

    2006-01-01

    The ulnar motor study to the abductor digiti minimi (ADM) is commonly performed, but does not test the terminal deep palmar branch of the ulnar nerve. Although damage to the ulnar nerve most often occurs at the elbow, the damage may occur elsewhere along the course of the nerve, including damage to the deep palmar branch. Ulnar conduction studies of the deep branch have been performed with recording from the first dorsal interosseous (FDI) muscle. These studies have used differing methodologies and were mostly limited by small sample size. The aim of this study was to develop a normative database for ulnar nerve conduction to the FDI. A new method of recording from the FDI was developed for this study. It utilizes recording with the active electrode over the dorsal first web space, with the reference electrode placed at the fifth metacarpophalangeal joint. This technique reliably yields negative takeoff measurements. An additional comparison was made between ulnar motor latency with recording at the ADM and with recording at the FDI. For this study, 199 subjects with no risk factors for neuropathy were tested. The latency, amplitude, area, and duration were recorded. The upper limit of normal (ULN) was defined as the 97th percentile of observed values. The lower limit of normal (LLN) was defined as the 3rd percentile of observed values. For the FDI, mean latency was 3.8 +/- 0.5 ms, with a ULN of 4.7 ms for males, 4.4 ms for females, and 4.6 ms for all subjects. Mean amplitude was 15.8 +/- 4.9 mV, with a LLN of 5.1 for all subjects. Side-to-side differences in latency to the FDI, from dominant to nondominant hands, was -0.1 +/- 0.4 ms, with a ULN of 0.8 ms. For the amplitude, up to a 52% decrease from side to side was normal. For the same-limb comparison of the FDI and ADM, the mean latency difference was 0.6 +/- 0.4 ms, with a ULN increase of 1.3 ms for latency to the ADM versus the FDI. PMID:17206927

  14. Sensory nerve conduction in branches of common interdigital nerves: a new technique for normal controls and patients with morton's neuroma.

    PubMed

    Uludag, Burhanettin; Tataroglu, Cengiz; Bademkiran, Fikret; Uludag, Irem Fatma; Ertekin, Cumhur

    2010-06-01

    In this article, a new electrodiagnostic approach is described for patients with Morton's neuroma. The new method is based on the anatomic fact that the two branches of the common plantar interdigital nerves innervate the lateral side of one toe and the medial side the next one. This study included 20 normal subjects (aged 28-58 years, 10 men and 10 women) and 4 patients with Morton's neuroma (aged 44-52 years, 4 women). The branches of adjacent common plantar interdigital nerves that innerve one toe were stimulated superficially and separately with half of one toe covered with a piece of medical tape. The recordings were obtained on the posterior tibial nerve at the medial malleolus with needle electrodes. Thus, the difference in latencies of obtained sensory nerve action potentials on the posterior tibial nerve with needle electrode was measured. From normal subjects' data, it was determined that a latency difference value of above 0.17 milliseconds (mean +/- 2.5 SD) in one toe was abnormal. All of the patients with Morton's neuroma showed abnormal interlatency difference values. This new method, which we have developed, is more sensitive, simple to use, does not require extra equipment, and does not cause excessive pain. We suggest that interlatency difference between branches of the common plantar interdigital nerves is a useful and sensitive method for the diagnosis of Morton's neuroma. PMID:20479659

  15. Saltatory conduction and a novel type of excitable fenestra in shrimp myelinated nerve fibers.

    PubMed

    Xu, K; Terakawa, S

    1993-01-01

    The findings of saltatory conduction in the invertebrate giant nerve fibers were mentioned, and the experiments for analyzing the mechanism of impulse conduction in the giant myelinated nerve fibers of Penaeus orientalis and Penaeus japonicus were reviewed. Saltatory conduction was also found in many middle- and small-sized myelinated nerve fibers of, at least, 6 species of Penaeus shrimps. Saltatory conduction with its morphological basis in myelinated nerve fibers of vertebrates and invertebrates were compared, and it was concluded that the myelination of the nerve fibers in vertebrates and invertebrates has occurred independently. PMID:8271510

  16. Nerve conduction studies in upper extremities: skin temperature corrections.

    PubMed

    Halar, E M; DeLisa, J A; Soine, T L

    1983-09-01

    The relationship of skin to near nerve (NN) temperature and to nerve conduction velocity (NCV) and distal latency (DL) was studied in 34 normal adult subjects before and after cooling both upper extremities. Median and ulnar motor and sensory NCV, DL, and NN temperature were determined at ambient temperature (mean X skin temp = 33 C) and after cooling, at approximately 26, 28, and 30 C of forearm skin temperature. Skin temperatures on the volar side of the forearm, wrist, palm, and fingers and NN temperature at the forearm, midpalm, and thenar or hypothenar eminence were compared with respective NCV and DL. Results showed a significant linear correlation between skin temperature and NN temperature at corresponding sites (r2 range, 0.4-0.84; p less than 0.005). Furthermore, both skin and NN temperatures correlated significantly with respective NCV and DL. Midline wrist skin temperature showed the best correlation to NCV and DL. Median motor and sensory NCV were altered 1.5 and 1.4m/sec/C degree and their DL 0.2 msec/C degree of wrist skin temperature change, respectively. Ulnar motor and sensory NCV were changed 2.1 and 1.6m/sec/C degree respectively, and 0.2 msec/C degree wrist temperature for motor and sensory DL. Average ambient skin temperature at the wrist (33 C) was used as a standard skin temperature in the temperature correction formula: NCV or DL(temp corrected) = CF(Tst degree - Tm degree) + obtained NCV or DL, where Tst = 33 C for wrist, Tm = the measured skin temperature, and CF = correction factor of tested nerve. Use of temperature correction formula for NCV and DL is suggested in patients with changed wrist skin temperature outside 29.6-36.4C temperature range. PMID:6615178

  17. A case of optic-nerve hypoplasia and anterior segment abnormality associated with facial cleft

    PubMed Central

    Miyake, Tomoko; Kojima, Shota; Sugiyama, Tetsuya; Ueki, Mari; Sugasawa, Jun; Oku, Hidehiro; Tajiri, Kensuke; Shigemura, Yuka; Ueda, Koichi; Harada, Atsuko; Yamasaki, Mami; Yamanaka, Takumi; Utsunomiya, Hidetsuna; Ikeda, Tsunehiko

    2016-01-01

    Introduction The incidence of facial cleft is rare and ranges between 1.43 and 4.85 per 100,000 births. To date, there have been few reports of detailed ophthalmologic examinations performed in cases of facial cleft. Here, we report a case of optic-nerve hypoplasia and anterior segment abnormality associated with facial cleft. Case report A 9-day-old female infant was delivered by cesarian section at 34 weeks of gestational age (the second baby of twins) and weighed 2,276 g upon presentation. She had a facial cleft and ectrodactyly at birth. Right eye-dominant blepharophimosis was obvious. Examination of the right eye revealed inferior corneal opacity with vascularization, downward corectopia, and optic-nerve hypoplasia. The corneal diameter was 8 mm in both eyes, and tonometry by use of a Tono-Pen® XL (Reichert Technologies, Depew, NY, USA) handheld applanation tonometer revealed that her intraocular pressure was 11–22 mmHg (Oculus Dexter) and 8 mmHg (Oculus Sinister). B-mode echo revealed no differences in axial length between her right and left eyes. When she was 15–16 months old, we attempted to examine her eyes before she underwent plastic surgery under general anesthesia. She had a small optic disc in both eyes and the right-eye disc was tilted. After undergoing canthotomy, gonioscopy and ultrasound biomicroscopy revealed that almost all directions were open except for the peripheral anterior synechia. Since magnetic resonance imaging revealed ventriculomegaly associated with an interhemispheric cyst at birth, a ventriculoperitoneal shunt was inserted at 12 days of age. At 25 months of age, her condition suddenly deteriorated due to occlusion of the ventricular shunt catheter, and she died 5 days later. In this patient, amniotic band syndrome was presumed to be the primary cause due to the clinical findings. Conclusion We experienced a case of optic-nerve hypoplasia and anterior segment abnormality that occurred with facial cleft. The cause of these

  18. Preventive effect of long-term aldose reductase inhibition (ponalrestat) on nerve conduction and sural nerve structure in the spontaneously diabetic Bio-Breeding rat.

    PubMed Central

    Sima, A A; Prashar, A; Zhang, W X; Chakrabarti, S; Greene, D A

    1990-01-01

    To test the hypothesis that aldose reductase inhibition may prevent or delay the development of functional and structural neuropathy in the insulin-deficient diabetic Bio-Breeding rat (BB-rat), hyperglycemic rats were begun on the aldose reductase inhibitor (ARI) ponalrestat 25 mg/kg body wt soon after the onset of diabetes and followed for 4 or 6 mo. Ponalrestat treatment completely prevented the characteristic nerve conduction slowing and structural abnormalities of the node of Ranvier for 4 mo despite only partial preservation of axonal integrity. Ponalrestat treatment for 6 mo achieved a partial but significant prevention of nerve conduction slowing, axoglial dysjunction, and axonal degenerative changes. This incomplete but significant prevention of neuropathy by ponalrestat suggests that additional mechanisms besides polyol-pathway activation may be of importance in the pathogenesis of diabetic neuropathy. Alternatively, the dosage used in the present study may not have been sufficient to achieve a complete prevention. Despite the only partial protective effect of ARI treatment on degenerative peripheral nerve changes in hyperglycemic BB-rats, 6 mo of treatment resulted in a more than threefold increase in regenerating nerve fibers. These data suggest that prophylactic ARI treatment may be efficacious in delaying the development of diabetic neuropathy. Images PMID:2110189

  19. Normal and abnormal retinal projections following the crush of one optic nerve in goldfish (Carassius auratus).

    PubMed

    Springer, A D

    1981-06-10

    Optic nerve regeneration was examined with [3H]proline radioautography in fish that had one nerve crushed. Fibers had not yet grown beyond the crush site at 2 days post-crush (PC) and were at the optic chiasm by 4-5 days PC. By 6 days PC the fibers had reinnervated the rostral pole of the contralateral tectum, the lateral geniculate nucleus and area pretectalis dorsalis and ventralis. Area preopticus, nucleus opticus dorsolateralis and nucleus opticus commissurae posterior were partially reinnervated by 8 days PC. At this time numerous abnormal targets were labeled, including nucleus rotundus, nucleus isthmi, cerebellum, pituitary gland and ipsilateral optic tectum. Optic fibers also entered the posterior, intertectal and horizontal commissures, as well as tractus rotundus, the tectocerebellar, tectobulbar and mesencephalocerebellar tracts. In addition, fibers with the contralateral optic tectum were not restricted to their usual laminae. They were distributed from the superficial edge of the tectum to the ventricle. At 32 days PC only the normal retinal projections were evident, and all of the anomalous projections had disappeared. The anomalous projections may have either retracted or degenerated or become undetectable with radioautography. PMID:7263949

  20. Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination.

    PubMed

    Craner, Matthew J; Lo, Albert C; Black, Joel A; Waxman, Stephen G

    2003-07-01

    Myelinated fibres are characterized by the aggregation of Nav1.6 sodium channels within the axon membrane at nodes of Ranvier, where their presence supports saltatory conduction. In this study, we used immunocytochemical methods to study the organization of sodium channels along axons in experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis. We studied axons within the optic nerve, a CNS tract commonly affected in multiple sclerosis, and their cell bodies of origin (retinal ganglion cells), using subtype-specific antibodies generated against sodium channel subtypes Nav1.1, Nav1.2, Nav1.3 and Nav1.6, which previously have been shown to be expressed by retinal ganglion cells. We demonstrate a significant switch from Nav1.6 to Nav1.2 expression in the optic nerve in EAE; there was a reduction in frequency of Nav1.6-positive nodes (84.5% Nav1.6-immunopositive nodes in control versus 32.9% in EAE) and increased frequency of Nav1.2-positive nodes (11.8% Nav1.2 immunopositive nodes in control versus 74.9% in EAE). Moreover, we observed a significant increase in the number of linear (presumably demyelinated) axonal profiles demonstrating extended diffuse immunostaining for Nav1.2 in EAE versus control optic nerves. These changes within the optic nerve are paralleled by decreased levels of Nav1.6 and increased Nav1.2 protein, together with increased levels of Nav1.2 mRNA, within retinal ganglion cells in EAE. Our findings of a loss of Nav1.6 and increased expression of Nav1.2 suggest that electrogenesis in EAE may revert to a stage similar to that observed in immature retinal ganglion cells in which Nav1.2 channels support conduction of action potentials along axons. PMID:12805113

  1. Different clinical electrodes achieve similar electrical nerve conduction block

    NASA Astrophysics Data System (ADS)

    Boger, Adam; Bhadra, Narendra; Gustafson, Kenneth J.

    2013-10-01

    Objective. We aim to evaluate the suitability of four electrodes previously used in clinical experiments for peripheral nerve electrical block applications. Approach. We evaluated peripheral nerve electrical block using three such clinical nerve cuff electrodes (the Huntington helix, the Case self-sizing Spiral and the flat interface nerve electrode) and one clinical intramuscular electrode (the Memberg electrode) in five cats. Amplitude thresholds for the block using 12 or 25 kHz voltage-controlled stimulation, onset response, and stimulation thresholds before and after block testing were determined. Main results. Complete nerve block was achieved reliably and the onset response to blocking stimulation was similar for all electrodes. Amplitude thresholds for the block were lowest for the Case Spiral electrode (4 ± 1 Vpp) and lower for the nerve cuff electrodes (7 ± 3 Vpp) than for the intramuscular electrode (26 ± 10 Vpp). A minor elevation in stimulation threshold and reduction in stimulus-evoked urethral pressure was observed during testing, but the effect was temporary and did not vary between electrodes. Significance. Multiple clinical electrodes appear suitable for neuroprostheses using peripheral nerve electrical block. The freedom to choose electrodes based on secondary criteria such as ease of implantation or cost should ease translation of electrical nerve block to clinical practice.

  2. Abnormal Junctions and Permeability of Myelin in PMP22-Deficient Nerves

    PubMed Central

    Guo, Jiasong; Wang, Leiming; Zhang, Yang; Wu, Jiawen; Arpag, Sezgi; Hu, Bo; Imhof, Beat A.; Tian, Xinxia; Carter, Bruce D.; Suter, Ueli; Li, Jun

    2014-01-01

    Objective The peripheral myelin protein-22 (PMP22) gene is associated with the most common types of inherited neuropathies, including hereditary neuropathy with liability to pressure palsies (HNPP) caused by PMP22 deficiency. However, the function of PMP22 has yet to be defined. Our previous study has shown that PMP22 deficiency causes an impaired propagation of nerve action potentials in the absence of demyelination. In the present study, we tested an alternative mechanism relating to myelin permeability. Methods Utilizing Pmp22+/− mice as a model of HNPP, we evaluated myelin junctions and their permeability using morphological, electrophysiological, and biochemical approaches. Results We show disruption of multiple types of cell junction complexes in peripheral nerve, resulting in increased permeability of myelin and impaired action potential propagation. We further demonstrate that PMP22 interacts with immunoglobulin domain–containing proteins known to regulate tight/adherens junctions and/or transmembrane adhesions, including junctional adhesion molecule-C (JAM-C) and myelin-associated glycoprotein (MAG). Deletion of Jam-c or Mag in mice recapitulates pathology in HNPP. Interpretation Our study reveals a novel mechanism by which PMP22 deficiency affects nerve conduction not through removal of myelin, but through disruption of myelin junctions. PMID:24339129

  3. Nerve Conduction Block Using Combined Thermoelectric Cooling and High Frequency Electrical Stimulation

    PubMed Central

    Ackermann, D. Michael; Foldes, Emily L.; Bhadra, Niloy; Kilgore, Kevin L.

    2010-01-01

    Conduction block of peripheral nerves is an important technique for many basic and applied neurophysiology studies. To date, there has not been a technique which provides a quickly initiated and reversible “on-demand” conduction block which is both sustainable for long periods of time and does not generate activity in the nerve at the onset of the conduction block. In this study we evaluated the feasibility of a combined method of nerve block which utilizes two well established nerve blocking techniques in a rat and cat model: nerve cooling and electrical block using high frequency alternating currents (HFAC). This combined method effectively makes use of the contrasting features of both nerve cooling and electrical block using HFAC. The conduction block was initiated using nerve cooling, a technique which does not produce nerve “onset response” firing, a prohibitive drawback of HFAC electrical block. The conduction block was then readily transitioned into an electrical block. A long-term electrical block is likely preferential to a long-term nerve cooling block because nerve cooling block generates large amounts of exhaust heat, does not allow for fiber diameter selectivity and is known to be unsafe for prolonged delivery. PMID:20705099

  4. Conduction in ulnar nerve bundles that innervate the proximal and distal muscles: a clinical trial

    PubMed Central

    2010-01-01

    Background This study aims to investigate and compare the conduction parameters of nerve bundles in the ulnar nerve that innervates the forearm muscles and hand muscles; routine electromyography study merely evaluates the nerve segment of distal (hand) muscles. Methods An electrophysiological evaluation, consisting of velocities, amplitudes, and durations of ulnar nerve bundles to 2 forearm muscles and the hypothenar muscles was performed on the same humeral segment. Results The velocities and durations of the compound muscle action potential (CMAP) of the ulnar nerve bundle to the proximal muscles were greater than to distal muscles, but the amplitudes were smaller. Conclusions Bundles in the ulnar nerve of proximal muscles have larger neuronal bodies and thicker nerve fibers than those in the same nerve in distal muscles, and their conduction velocities are higher. The CMAPs of proximal muscles also have smaller amplitudes and greater durations. These findings can be attributed to the desynchronization that is caused by a wider range of distribution in nerve fiber diameters. Conduction parameters of nerve fibers with different diameters in the same peripheral nerve can be estimated. PMID:20836846

  5. Nerve Conduction in the Pre-Medical Physics Course

    ERIC Educational Resources Information Center

    Hobbie, Russell K.

    1973-01-01

    Reviews properties of nerves, analogous networks in propagation of electrical signals in axons, and regenerative changes in membrane permeability due to propagation of the action potential, which can be explained in the noncalculus physics course. (CC)

  6. High frequency electrical conduction block of the pudendal nerve

    NASA Astrophysics Data System (ADS)

    Bhadra, Narendra; Bhadra, Niloy; Kilgore, Kevin; Gustafson, Kenneth J.

    2006-06-01

    A reversible electrical block of the pudendal nerves may provide a valuable method for restoration of urinary voiding in individuals with bladder-sphincter dyssynergia. This study quantified the stimulus parameters and effectiveness of high frequency (HFAC) sinusoidal waveforms on the pudendal nerves to produce block of the external urethral sphincter (EUS). A proximal electrode on the pudendal nerve after its exit from the sciatic notch was used to apply low frequency stimuli to evoke EUS contractions. HFAC at frequencies from 1 to 30 kHz with amplitudes from 1 to 10 V were applied through a conforming tripolar nerve cuff electrode implanted distally. Sphincter responses were recorded with a catheter mounted micro-transducer. A fast onset and reversible motor block was obtained over this range of frequencies. The HFAC block showed three phases: a high onset response, often a period of repetitive firing and usually a steady state of complete or partial block. A complete EUS block was obtained in all animals. The block thresholds showed a linear relationship with frequency. HFAC pudendal nerve stimulation effectively produced a quickly reversible block of evoked urethral sphincter contractions. The HFAC pudendal block could be a valuable tool in the rehabilitation of bladder-sphincter dyssynergia.

  7. Effect of magnesium on nerve conduction velocity during regular dialysis treatment

    PubMed Central

    Fleming, Laura W.; Lenman, J. A. R.; Stewart, W. K.

    1972-01-01

    Serial nerve conduction velocities in the peroneal and ulnar nerves have been measured in 10 patients on regular dialysis treatment over a three year period. Each patient alternated between phases on dialysis with magnesium-containing dialysate (1·5-1·7 m-equiv/l.) and phases on `magnesium-free' dialysate (0·2 m-equiv/l.). Plasma magnesium concentrations were high both pre- and post-dialysis during magnesium-containing dialysis, and normal to low on magnesium-free dialysis. All patients had defects in nerve conduction, mainly asymptomatic. Increases in nerve conduction velocity coincided with magnesium-free dialysis, and decreases occurred when the patients reverted to magnesium-containing dialysate. The significance of the correlation by the sign test was P<0·0005. It is concluded that extracellular magnesium levels can influence the rate of nerve conduction in vivo. PMID:4338446

  8. Femoral nerve dysfunction

    MedlinePlus

    ... An abnormal knee reflex Smaller than normal quadriceps muscles on the front of the thigh Tests that may be done include: Electromyography ( EMG ) Nerve conduction tests ( NCV ), usually done at ...

  9. Diagnosis of Severe Carpal Tunnel Syndrome Using Nerve Conduction Study and Ultrasonography.

    PubMed

    Fujimoto, Kazuhiro; Kanchiku, Tsukasa; Kido, Kenji; Imajo, Yasuaki; Funaba, Masahiro; Taguchi, Toshihiko

    2015-10-01

    This study investigated the correlation between nerve conduction study and ultrasonographic findings for assessment of the usefulness of ultrasonography in determining carpal tunnel syndrome severity. Hands of adults with carpal tunnel syndrome were assessed using ultrasound and nerve conduction studies and grouped according to median nerve cross-sectional area (CSA). There were significant differences (p < 0.01) in mean median nerve CSA between controls, patients with median sensory nerve conduction velocity ≤40 m/s and patients with absent sensory nerve action potential and between controls, patients with median nerve distal motor latency ≥4.5 ms and patients with absent compound muscle action potentials of the abductor pollicis brevis. This is the first report to define median nerve CSA cutoff values (18 mm(2)) for determining carpal tunnel syndrome severity in patients with absent compound muscle action potentials of the abductor pollicis brevis. Median nerve CSA values below the cutoff values should prompt clinicians to consider other disorders, such as cervical compressive myelopathy. PMID:26111913

  10. Microstructural abnormalities of the trigeminal nerve by diffusion-tensor imaging in trigeminal neuralgia without neurovascular compression.

    PubMed

    Neetu, Soni; Sunil, Kumar; Ashish, Awasthi; Jayantee, Kalita; Usha Kant, Misra

    2016-02-01

    Microstructural changes of the trigeminal nerve in trigeminal neuralgia due to neurovascular compression have been reported by using diffusion tensor imaging. Other aetiologies such as primary demyelinating lesions, brain stem infarction and nerve root infiltration by tumour affecting the trigeminal pathway may also present as trigeminal neuralgia. The aim of this study was to evaluate the microstructural tissue abnormalities in the trigeminal nerve in symptomatic trigeminal neuralgia not related to neurovascular compression using diffusion tensor imaging. Mean values of the quantitative diffusion parameters of trigeminal nerve, fractional anisotropy and apparent diffusion coefficient, were measured in a group of four symptomatic trigeminal neuralgia patients without neurovascular compression who showed focal non-enhancing T2-hyperintense lesions in the pontine trigeminal pathway. These diffusion parameters were compared between the affected and unaffected sides in the same patient and with four age-matched healthy controls. Cranial magnetic resonance imaging revealed hyperintense lesions in the dorsolateral part of the pons along the central trigeminal pathway on T2-fluid-attenuated inversion recovery sequences. The mean fractional anisotropy value on the affected side was significantly decreased (P = 0.001) compared to the unaffected side and healthy controls. Similarly, the mean apparent diffusion coefficient value was significantly higher (P = 0.001) on the affected side compared to the unaffected side and healthy controls. The cause of trigeminal neuralgia in our patients was abnormal pontine lesions affecting the central trigeminal pathway. The diffusion tensor imaging results suggest that microstructural tissue abnormalities of the trigeminal nerve also exist even in non-neurovascular compression-related trigeminal neuralgia. PMID:26678753

  11. The Relationship between Nerve Conduction Study and Clinical Grading of Carpal Tunnel Syndrome

    PubMed Central

    Cheluvaiah, Janardhan D.; Agadi, Jagadish B.; Nagaraj, Karthik

    2016-01-01

    Introduction Carpal Tunnel Syndrome (CTS) is the most common nerve entrapment. Subjective sensory symptoms are common place in patients with CTS, but sometimes they are not supported by objective findings in the neurological examination. Electrodiagnostic (EDx) studies are a valid and reliable means of confirming the diagnosis. The amplitudes along with the conduction velocities of the sensory nerve action potential and motor nerve action potential reflect the functional state of axons, and are useful parameters and complement the clinical grading in the assessment of severity of CTS. Aim To conduct median nerve sensory and motor conduction studies on patients with carpal tunnel syndrome and correlate the relationship between nerve conduction study parameters and the clinical severity grading. Materials and Methods Based on clinical assessment, the study patients were divided into 03 groups with mild CTS, moderate CTS and severe CTS respectively as per Mackinnson’s classification. Median and ulnar nerve conduction studies were performed on bilateral upper limbs of 50 patients with symptoms of CTS and 50 age and sex matched healthy control subjects. The relationship between the clinical severity grade and various nerve conduction study parameters were correlated. Results In this prospective case control study, 50 patients with symptoms consistent with CTS and 50 age and sex matched healthy control subjects were examined over a 10 month period. A total of 30 patients had unilateral CTS (right upper limb in 19 and left upper limb in 11) and 20 patients had bilateral CTS. Female to male ratio was 3.54 to 1. Age ranged from 25 to 81 years. The mean age at presentation was 49.68±11.7 years. Tingling paresthesias of hand and first three fingers were the most frequent symptoms 48 (98%). Tinel’s and Phalen’s sign were positive in 36 (72%) and 44 (88%) patients respectively. The mean duration of symptoms at presentation was 52.68±99.81 weeks. 16 patients (32%) had

  12. Development of early postnatal peripheral nerve abnormalities in Trembler-J and PMP22 transgenic mice

    PubMed Central

    ROBERTSON, A. M.; HUXLEY, C.; KING, R. H. M.; THOMAS, P. K.

    1999-01-01

    Mutations in the gene for peripheral myelin protein 22 (PMP22) are associated with peripheral neuropathy in mice and humans. Although PMP22 is strongly expressed in peripheral nerves and is localised largely to the myelin sheath, a dual role has been suggested as 2 differentially expressed promoters have been found. In this study we compared the initial stages of postnatal development in transgenic mouse models which have, in addition to the murine pmp22 gene, 7 (C22) and 4 (C61) copies of the human PMP22 gene and in homozygous and heterozygous Trembler-J (TrJ) mice, which have a point mutation in the pmp22 gene. The number of axons that were singly ensheathed by Schwann cells was the same in all groups indicating that PMP22 does not function in the initial ensheathment and separation of axons. At both P4 and P12 all mutants had an increased proportion of fibres that were incompletely surrounded by Schwann cell cytoplasm indicating that this step is disrupted in PMP22 mutants. C22 and homozygous TrJ animals could be distinguished by differences in the Schwann cell morphology at the initiation of myelination. In homozygous TrJ animals the Schwann cell cytoplasm had failed to make a full turn around the axon whereas in the C22 strain most fibres had formed a mesaxon. It is concluded that PMP22 functions in the initiation of myelination and probably involves the ensheathment of the axon by the Schwann cell, and the extension of this cell along the axon. Abnormalities may result from a failure of differentiation but more probably from defective interactions between the axon and the Schwann cell. PMID:10580849

  13. Abnormal Origin and Course of the Accessory Phrenic Nerve: Case Report.

    PubMed

    Paraskevas, George; Koutsouflianiotis, Konstantinos; Kitsoulis, Panagiotis; Spyridakis, Ioannis

    2016-01-01

    In the current cadaveric study an unusual sizeable accessory phrenic nerve (APN) was encountered emerging from the trunk of the supraclavicular nerves and forming a triangular loop that was anastomosing with the phrenic nerve. That neural loop surrounded the superficial cervical artery which displayed a spiral course. The form of a triangular loop of APN involving the aforementioned artery and originating from the supraclavicular nerve to the best of our knowledge has not been documented previously in the literature. The variable morphological features of the APN along with its clinical applications are briefly discussed. PMID:27526310

  14. Mice Lacking GD3 Synthase Display Morphological Abnormalities in the Sciatic Nerve and Neuronal Disturbances during Peripheral Nerve Regeneration

    PubMed Central

    Ribeiro-Resende, Victor Túlio; Gomes, Tiago Araújo; de Lima, Silmara; Nascimento-Lima, Maiara; Bargas-Rega, Michele; Santiago, Marcelo Felipe; Reis, Ricardo Augusto de Melo; de Mello, Fernando Garcia

    2014-01-01

    The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration. PMID:25330147

  15. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration.

    PubMed

    Ribeiro-Resende, Victor Túlio; Araújo Gomes, Tiago; de Lima, Silmara; Nascimento-Lima, Maiara; Bargas-Rega, Michele; Santiago, Marcelo Felipe; Reis, Ricardo Augusto de Melo; de Mello, Fernando Garcia

    2014-01-01

    The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration. PMID:25330147

  16. Motor nerve conduction velocity is affected in segmental vitiligo lesional limbs.

    PubMed

    Zhou, Jun; Zhong, Zhenyu; Li, Jian; Fu, Wenwen

    2016-06-01

    To evaluate the effects of segmental vitiligo (SV) on nerve conduction velocity (NCV) in different nerves, we compared the patient's lesional side of their body to the contralateral normal side. The 106 participants were selected from outpatients visiting the dermatological clinics of Huashan Hospital, Fudan University, from November 2011 to March 2014. NCVs were measured on the limbs and the face, including both motor and sensory nerves. The parameters for NCVs included motor nerve conduction velocity (MCV) and its distal conduction latency, sensory nerve conduction velocity, sensory nerve action potentials amplitude, and compound muscle action potential amplitude. MCV on the limbs was compromised by SV state, which was significantly slower on the lesional side of the body compared with the normal contralateral side (P = 0.006). Furthermore, SV at the stable stage significantly impaired MCV compared with the SV at progressive stage. There was no significant difference in the other parameters of NCV between lesional and normal sides of the body. Compound muscle action potentials in the face did not differ between lesional and healthy sides. Motor nerves in the limbs were compromised by SV, particularly when the disease was at the stable stage. PMID:26916936

  17. Brain Structure Abnormalities in Adolescent Girls with Conduct Disorder

    ERIC Educational Resources Information Center

    Fairchild, Graeme; Hagan, Cindy C.; Walsh, Nicholas D.; Passamonti, Luca; Calder, Andrew J.; Goodyer, Ian M.

    2013-01-01

    Background: Conduct disorder (CD) in female adolescents is associated with a range of negative outcomes, including teenage pregnancy and antisocial personality disorder. Although recent studies have documented changes in brain structure and function in male adolescents with CD, there have been no neuroimaging studies of female adolescents with CD.…

  18. Sensory conduction in medial and lateral plantar nerves.

    PubMed Central

    Ponsford, S N

    1988-01-01

    A simple and reliable method of recording medial and lateral plantar nerve sensory action potentials is described. Potentials are recorded with surface electrodes at the ankle using surface electrodes stimulating orthodromically at the sole. The normal values obtained are higher in amplitude than those obtained by the method described by Guiloff and Sherratt and are detectable in older subjects aged over 80 years. The procedure is valuable in the diagnosis of early peripheral neuropathy, mononeuritis multiplex, tarsal tunnel syndrome and in differentiation between pre and post ganglionic L5 S1 lesions. PMID:2831304

  19. Investigation on two abnormal phenomena about thermal conductivity enhancement of BN/EG nanofluids

    PubMed Central

    2011-01-01

    The thermal conductivity of boron nitride/ethylene glycol (BN/EG) nanofluids was investigated by transient hot-wire method and two abnormal phenomena was reported. One is the abnormal higher thermal conductivity enhancement for BN/EG nanofluids at very low-volume fraction of particles, and the other is the thermal conductivity enhancement of BN/EG nanofluids synthesized with large BN nanoparticles (140 nm) which is higher than that synthesized with small BN nanoparticles (70 nm). The chain-like loose aggregation of nanoparticles is responsible for the abnormal increment of thermal conductivity enhancement for the BN/EG nanofluids at very low particles volume fraction. And the difference in specific surface area and aspect ratio of BN nanoparticles may be the main reasons for the abnormal difference between thermal conductivity enhancements for BN/EG nanofluids prepared with 140- and 70-nm BN nanoparticles, respectively. PMID:21740586

  20. Signs and Symptoms vs Nerve Conduction Studies to Diagnose Diabetic Sensorimotor Polyneuropathy

    PubMed Central

    2010-01-01

    Introduction Test whether physicians can validly and reproducibly diagnose diabetic sensorimotor polyneuropathy (DSPN). Methods Twelve physicians assessed 24 patients with diabetes mellitus (DM) on consecutive days (576 examinations) with physical features and voice disguised. Results were compared to gold standard 75% group diagnosis and a nerve conduction score (Σ 5 NC nds). Results Masking of patients was achieved. Reproducibility measured by the kappa coefficient and compared to Σ 5 NC nd varied considerably among physicians: median and ranges: signs 0.8 (0.32 to 1.0); symptoms 0.79 (0.36 to 1.0) and diagnoses 0.47 (0.33 to 0.84) – both low and high scores indicating poor performance. There was substantial agreement between 75% group dx and confirmed NC abnormality. As compared to Σ 5 NC, individual physicians’ clinical diagnosis was excessively variable and frequently inaccurate. Discussion Study physician diagnosis from signs and symptoms were excessively variable, often over-estimating DSPN. Specific approaches to improving proficiency should be tested. PMID:20658599

  1. [Effect of narcotic analgesics on impulse conduction along the afferent pathways of visceral nerves].

    PubMed

    Churiukanov, V V; Sinitsyn, L N

    1976-06-01

    Experiments were conducted on chloralose-anesthetized cats. The action of morphine and promedol upon the potentials of the cortical and subcortical structures occurring after the visceral nerve stimulation was studied. Morphine proved to depress the potentials evoked by stimulation of the inferior cardiac and vagus nerves, in the specific, associative and nonspecific structures of the brain; promedol produced an analogous effect. Morphine also inhibited the potentials occurring after the stimulation of the splanchnic nerve in the associative and nonspecific structures; depression of the responses in the specific pathways was less pronounced. PMID:953307

  2. Conduction abnormalities and ventricular arrhythmogenesis: The roles of sodium channels and gap junctions

    PubMed Central

    Tse, Gary; Yeo, Jie Ming

    2015-01-01

    Ventricular arrhythmias arise from disruptions in the normal orderly sequence of electrical activation and recovery of the heart. They can be categorized into disorders affecting predominantly cellular depolarization or repolarization, or those involving action potential (AP) conduction. This article briefly discusses the factors causing conduction abnormalities in the form of unidirectional conduction block and reduced conduction velocity (CV). It then examines the roles that sodium channels and gap junctions play in AP conduction. Finally, it synthesizes experimental results to illustrate molecular mechanisms of how abnormalities in these proteins contribute to such conduction abnormalities and hence ventricular arrhythmogenesis, in acquired pathologies such as acute ischaemia and heart failure, as well as inherited arrhythmic syndromes. PMID:26839915

  3. The use of nerve conduction studies in determining the short-term outcome of Bell's palsy.

    PubMed

    Prakash, K M; Raymond, A A

    2003-03-01

    Bell's palsy is a common neurological problem causing considerable loss of self-esteem among patients. A prospective observational study was conducted to determine the short-term outcome of Bell's palsy at 1 month and 2 months after the onset and the relationship between these outcomes with facial nerve degeneration. We also determined if gender, age, diabetes, systolic and diastolic blood pressure influence the severity of facial nerve degeneration and the clinical outcome at 2 months after the onset. After clinically grading the newly diagnosed unilateral Bell's palsy patients using the House-Brackmann facial nerve grading system, nerve conduction studies of the facial nerve were done to determine the severity of facial nerve degeneration. The recovery of the facial paralysis was clinically graded again at the end of 1 month and 2 months from the onset. A total of 37 patients were recruited. There was a strong positive correlation between facial nerve degeneration and the clinical outcome of Bell's palsy at 1 month (r = 0.794; p < 0.0005) and 2 months (r = 0.732; p < 0.0005) after the onset. There was no significant correlation between either the facial nerve degeneration or the clinical outcome at 2 months with the patients' age (p = 0.288 and p = 0.799 respectively), systolic blood pressure (p = 0.425 and p = 0.933 respectively) or diastolic blood pressure (p = 0.243 and p = 0.579 respectively). Neither the severity of facial nerve degeneration nor the clinical outcome at 2 months were significantly different between male and female patients (p = 0.460 and p = 0.725 respectively) or diabetic and non-diabetic patients (p = 0.655 and p = 0.655 respectively). PMID:14556328

  4. Impairment of repetitive impulse conduction in experimentally demyelinated and pressure-injured nerves 12

    PubMed Central

    Davis, Floyd A.

    1972-01-01

    Repetitive impulse conduction was studied in segmentally demyelinated peripheral nerves in guinea-pigs with experimental allergic neuritis (EAN) and in pressure-injured frog sciatic nerves. Normal guinea-pig sciatic-peroneal nerves maintained at 37°C conducted compound action potentials with only minor amplitude decreases at stimulus frequencies up to 200/sec. In contrast, nerves in EAN guinea-pigs maintained at 37°C demonstrated a rapidly progressive decrease in action potential amplitude when stimulated as slowly as 10-25/sec. The decrease is greater the higher the frequency of stimulation. At 100 stimuli/sec all EAN preparations showed more than a 50% reduction in action potential amplitude. These effects are reversible. In pressure-injured frog sciatic nerves similar effects occurred at stimulus frequencies as low as 50/sec. Normal frog nerves conducted up to 200 impulses/sec with little amplitude decrease. The probable mechanism and clinical significance of these results are discussed. Images PMID:4340434

  5. The non-linear relationship between nerve conduction velocity and skin temperature.

    PubMed Central

    Todnem, K; Knudsen, G; Riise, T; Nyland, H; Aarli, J A

    1989-01-01

    Median motor and sensory nerves were examined in 20 healthy subjects. Superficial stimulating and recording electrodes were used, and the nerves were examined at natural skin temperature, after cooling and after heating of the arm. The conduction velocity for the fastest and slow conducting sensory fibres (temperature range 17-37 degrees C), and for the fastest conducting motor fibres (temperature range 19-38 degrees C) increased non-linearly with increase in skin temperature. Similarly, distal motor latencies increased non-linearly with decrease in skin temperature. The effect of temperature was most pronounced in the low temperature range, and change in conduction velocity per degree centigrade was reduced toward higher skin temperature. Sensory nerve response duration increased linearly with decline in skin temperature. Sensory and motor amplitude did not show any significant relation to skin temperature. PMID:2738592

  6. Effect of Elbow Position on Short-segment Nerve Conduction Study in Cubital Tunnel Syndrome

    PubMed Central

    Liu, Zhu; Jia, Zhi-Rong; Wang, Ting-Ting; Shi, Xin; Liang, Wei

    2016-01-01

    Background: The appropriate elbow position of short-segment nerve conduction study (SSNCS) to diagnose cubital tunnel syndrome (CubTS) is still controversial. The goal of this study was to determine the effect of different elbow positions at full extension and 70° flexion on SSNCS in CubTS. Methods: In this cross-sectional study, the clinical data of seventy elbows from 59 CubTS patients between September, 2011 and December, 2014 in the Peking University First Hospital were included as CubTS group. Moreover, thirty healthy volunteers were included as the healthy group. SSNCS were conducted in all subjects at elbow full extension and 70° elbow flexion. Paired nonparametric test, bivariate correlation, Bland–Altman, and Chi-squared test analysis were used to compare the effectiveness of elbow full extension and 70° flexion elbow positions on SSNCS in CubTS patients. Results: Data of upper limit was calculated from healthy group, and abnormal latency was judged accordingly. CubTS group's latency and compound muscle action potential (CMAP) of each segment at 70° elbow flexion by SSNCS was compared with full extension position, no statistically significant difference were found (all P > 0.05). Latency and CMAP of each segment at elbow full extension and 70° flexion were correlated (all P < 0.01), except the latency of segment of 4 cm to 6 cm above elbow (P = 0.43), and the latency (P = 0.15) and the CMAP (P = 0.06) of segment of 2 cm to 4 cm below elbow. Bivariate correlation and Bland–Altman analysis proved the correlation between elbow full extension and 70° flexion. Especially in segments across the elbow (2 cm above the elbow and 2 cm below it), latency at elbow full extension and 70° flexion were strong direct associated (r = 0.83, P < 0.01; r = 0.55, P < 0.01), and so did the CMAP (r = 0.49, P < 0.01; r = 0.72, P < 0.01). There was no statistically significant difference in abnormality of each segment at full extension as measured by SSNCS compared with

  7. Axo-glial dysjunction. A novel structural lesion that accounts for poorly reversible slowing of nerve conduction in the spontaneously diabetic bio-breeding rat.

    PubMed Central

    Sima, A A; Lattimer, S A; Yagihashi, S; Greene, D A

    1986-01-01

    Biochemical abnormalities in peripheral nerve are thought to precede and condition the development of diabetic neuropathy, but metabolic intervention in chronic diabetic neuropathy produces only limited acute clinical response. The residual, metabolically unresponsive neurological deficits have never been rigorously defined in terms of either persistent metabolic derangements or irreversible structural defects because human nerve tissue is rarely accessible for anatomical and biochemical study and experimentally diabetic animals do not develop the structural hallmarks of human diabetic neuropathy. Detailed neuroanatomical-functional-biochemical correlation was therefore undertaken in long-term spontaneously diabetic BB-Wistar rats that functionally and structurally model human diabetic neuropathy. Vigorous insulin replacement in chronically diabetic BB rats essentially normalized both the sural nerve fiber caliber spectrum and the decreased sciatic nerve myo-inositol and (Na,K)-ATPase levels generally associated with conduction slowing in diabetic animals; yet, nerve conduction was only partially restored toward normal. Morphometric analysis revealed a striking disappearance of paranodal axo-glial junctional complexes that was not corrected by insulin replacement. Loss of these strategic junctional complexes, which are thought to limit lateral migration of axolemmal Na channels away from nodes of Ranvier, correlates with and can account for the diminished nodal Na permeability and resultant nodal conduction delay characteristic of chronic diabetic neuropathy in this animal model. Images PMID:3003160

  8. Preparation and characterization of electrical conductive PVA based materials for peripheral nerve tube-guides.

    PubMed

    Gonçalves, C; Ribeiro, J; Pereira, T; Luís, A L; Mauricio, A C; Santos, J D; Lopes, M A

    2016-08-01

    Peripheral nerve regeneration is a serious clinical problem. Presently, there are several nerve tube-guides available in the market, however with some limitations. The goal of this work was the development of a biomaterial with high electrical conductivity to produce tube-guides for nerve regeneration after neurotmesis injuries whenrver an end-to-end suture without tension is not possible. A matrix of poly(vinyl alcohol) (PVA) was used loaded with the following electrical conductive materials: COOH-functionalized multiwall carbon nanotubes (MWCNTs), poly(pyrrole) (PPy), magnesium chloride (MgCl2 ), and silver nitrate (AgNO3 ). The tube-guide production was carried out by a freezing/thawing process (physical crosslinking) with a final annealing treatment. After producing the tube-guide for nerve regeneration, the physicochemical characterization was performed. The most interesting results were achieved by loading PVA with 0.05% of PPy or COOH- functionalized CNTs. These tubes combined the electrical conductivity of carbon nanotubes (CNTs) and PPy with the biocompatibility of PVA matrix, with potential clinical application for nerve regeneration. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1981-1987, 2016. PMID:27027727

  9. Conduction Mechanisms in Lillie's Iron-Wire Model of Nerve

    PubMed Central

    Wei, Ling Y.; Neuman, R. H.

    1970-01-01

    Based on theory and experiment, we found that the conduction through the oxide film in Lillie's iron-wire model is dominated by Schottky emission at low fields (below 106 v/cm), by electron tunneling from trap to trap at intermediate fields and by direct tunneling (Fowler-Nordheim type) at higher fields (above 3 × 106 v/cm). The trap-to-trap tunneling is considered to give rise to the negative resistance and the fixed position of the current maximum as observed. Some of the nervelike properties of the Lillie's model are interpreted on this tunneling mechanism. ImagesFigure 2Figure 3 PMID:5496904

  10. Sensory nerve conduction deficit in experimental monoclonal gammopathy of undetermined significance (MGUS) neuropathy.

    PubMed

    Lawlor, M W; Richards, M P; Fisher, M A; Stubbs, E B

    2001-06-01

    An emerging body of evidence from in vitro studies and in vivo animal models supports a pathogenic role of antibodies in the development of peripheral neuropathy associated with monoclonal gammopathy of undetermined significance (MGUS). Although the assessment of motor and sensory nerve fiber function is of clinical importance, it is seldom applied experimentally. We describe the application of an electrophysiologic method for the evaluation of motor and sensory nerve fiber function using an experimental model of MGUS neuropathy. Supramaximal stimulation of the tibial nerve elicited an early motor response (M-wave, 1.7 +/- 0.1 ms, n = 10) and a late sensory (H-reflex, 7.8 +/- 0.1 ms, n = 10) response that was recorded from the hind foot of anesthetized rats. Intraneural injection of serum antibodies from a MGUS patient with sensorimotor polyneuropathy, but not from an age-matched control subject, produced a marked attenuation of the H-reflex (P < 0.01, n = 10) without affecting the M-wave. Light and electron microscopy of affected nerve showed myelinoaxonal degeneration with sparing of the smaller unmyelinated nerve fibers. The combined electrophysiologic and morphologic findings presented in this study are consistent with a selective sensory conduction deficit in MGUS neuropathy. Selective injury of afferent nerve fibers by this patient's serum antibodies may result from reactivity to neural antigens uniquely expressed by sensory neurons. PMID:11360265

  11. Effects of high-frequency alternating current on axonal conduction through the vagus nerve

    NASA Astrophysics Data System (ADS)

    Waataja, Jonathan J.; Tweden, Katherine S.; Honda, Christopher N.

    2011-10-01

    High-frequency alternating current (HFAC) is known to disrupt axonal conduction in peripheral nerves, and HFAC has much potential as a therapeutic approach for a number of pathological conditions. Many previous studies have utilized motor output as a bioassay of effects of HFAC on conduction through medium- to large-diameter motor axons. However, little is known about the effectiveness of HFAC on smaller, more slowly conducting nerve fibres. The present study tested whether HFAC influences axonal conduction through sub-diaphragmatic levels of the rat vagus nerve, which consists almost entirely of small calibre axons. Using an isolated nerve preparation, we tested the effects of HFAC on electrically evoked compound action potentials (CAPs). We found that delivery of charge-balanced HFAC at 5000 Hz for 1 min was effective in producing reversible blockade of axonal conduction. Both Aδ and C components of the vagus CAP were attenuated, and the degree of blockade as well as time to recovery was proportional to the amount of HFAC current delivered. The Aδ waves were more sensitive than C waves to HFAC blockade, but they required more time to recover.

  12. Effects of high-frequency alternating current on axonal conduction through the vagus nerve.

    PubMed

    Waataja, Jonathan J; Tweden, Katherine S; Honda, Christopher N

    2011-10-01

    High-frequency alternating current (HFAC) is known to disrupt axonal conduction in peripheral nerves, and HFAC has much potential as a therapeutic approach for a number of pathological conditions. Many previous studies have utilized motor output as a bioassay of effects of HFAC on conduction through medium- to large-diameter motor axons. However, little is known about the effectiveness of HFAC on smaller, more slowly conducting nerve fibres. The present study tested whether HFAC influences axonal conduction through sub-diaphragmatic levels of the rat vagus nerve, which consists almost entirely of small calibre axons. Using an isolated nerve preparation, we tested the effects of HFAC on electrically evoked compound action potentials (CAPs). We found that delivery of charge-balanced HFAC at 5000 Hz for 1 min was effective in producing reversible blockade of axonal conduction. Both Aδ and C components of the vagus CAP were attenuated, and the degree of blockade as well as time to recovery was proportional to the amount of HFAC current delivered. The Aδ waves were more sensitive than C waves to HFAC blockade, but they required more time to recover. PMID:21918293

  13. Reversible acute axonal polyneuropathy associated with Wernicke-Korsakoff syndrome: impaired physiological nerve conduction due to thiamine deficiency?

    PubMed

    Ishibashi, S; Yokota, T; Shiojiri, T; Matunaga, T; Tanaka, H; Nishina, K; Hirota, H; Inaba, A; Yamada, M; Kanda, T; Mizusawa, H

    2003-05-01

    Acute axonal polyneuropathy and Wernicke-Korsakoff encephalopathy developed simultaneously in three patients. Nerve conduction studies (NCS) detected markedly decreased compound muscle action potentials (CMAPs) and sensory nerve action potentials (SNAPs) with minimal conduction slowing; sympathetic skin responses (SSRs) were also notably decreased. Sural nerve biopsies showed only mild axonal degeneration with scattered myelin ovoid formation. The symptoms of neuropathy lessened within two weeks after an intravenous thiamine infusion. CMAPs, SNAPs, and SSRs also increased considerably. We suggest that this is a new type of peripheral nerve impairment: physiological conduction failure with minimal conduction delay due to thiamine deficiency. PMID:12700319

  14. Quantitative MRI of the wrist and nerve conduction studies in patients with idiopathic carpal tunnel syndrome

    PubMed Central

    Uchiyama, S; Itsubo, T; Yasutomi, T; Nakagawa, H; Kamimura, M; Kato, H

    2005-01-01

    Objective: To correlate morphological findings of idiopathic carpal tunnel syndrome (CTS) with the function of the median nerve. Methods: In this study, 105 wrists of 105 women patients with idiopathic CTS, and 36 wrists of 36 female volunteers were subjected to nerve conduction studies and MRI. Cross sectional area, signal intensity ratio, and the flattening ratio of the median nerve, carpal tunnel area, flexor tendon area, synovial area, and intersynovial space, and the palmar bowing of the transverse carpal ligament (TCL) were quantified by MRI and correlated with the severity of the disease determined by nerve conduction studies. Results: Cross sectional areas of the median nerve, flexor tendons, and carpal tunnel, and the palmar bowing of the TCL of the CTS groups were greater than in the control group, but differences were not detected among the CTS groups for the area of the flexor tendons and the carpal tunnel. Enlargement, flattening, and high signal intensity of the median nerve at the distal radioulnar joint level were more significant in the advanced than in the earlier stages of the disease. Increase in palmar bowing of the TCL was less prominent in the most advanced group. Linear correlation between the area of the carpal tunnel and palmar bowing of the TCL was noted. Conclusion: Severity of the disease could be judged by evaluating not only longitudinal changes of signal intensity and configuration of the median nerve, but also palmar bowing of the TCL. Increased palmar bowing of the TCL was found to be associated with an increase in the area of the carpal tunnel. PMID:16024888

  15. The Expanded Bead Size of Corneal C-Nerve Fibers Visualized by Corneal Confocal Microscopy Is Associated with Slow Conduction Velocity of the Peripheral Nerves in Patients with Type 2 Diabetes Mellitus.

    PubMed

    Ishibashi, Fukashi; Kojima, Rie; Taniguchi, Miki; Kosaka, Aiko; Uetake, Harumi; Tavakoli, Mitra

    2016-01-01

    This study aims to establish the corneal nerve fiber (CNF) morphological alterations in a large cohort of type 2 diabetic patients and to investigate the association between the bead size, a novel parameter representing composite of accumulated mitochondria, glycogen particles, and vesicles in CNF, and the neurophysiological dysfunctions of the peripheral nerves. 162 type 2 diabetic patients and 45 healthy control subjects were studied in detail with a battery of clinical and neurological examinations and corneal confocal microscopy. Compared with controls, patients had abnormal CNF parameters. In particular the patients had reduced density and length of CNF and beading frequency and increased bead size. Alterations in CNF parameters were significant even in patients without neuropathy. The HbA1c levels were tightly associated with the bead size, which was inversely related to the motor and sensory nerve conduction velocity (NCV) and to the distal latency period of the median nerve positively. The CNF density and length positively correlated with the NCV and amplitude. The hyperglycemia-induced expansion of beads in CNF might be a predictor of slow NCV in peripheral nerves in type 2 diabetic patients. PMID:27563679

  16. The Expanded Bead Size of Corneal C-Nerve Fibers Visualized by Corneal Confocal Microscopy Is Associated with Slow Conduction Velocity of the Peripheral Nerves in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    2016-01-01

    This study aims to establish the corneal nerve fiber (CNF) morphological alterations in a large cohort of type 2 diabetic patients and to investigate the association between the bead size, a novel parameter representing composite of accumulated mitochondria, glycogen particles, and vesicles in CNF, and the neurophysiological dysfunctions of the peripheral nerves. 162 type 2 diabetic patients and 45 healthy control subjects were studied in detail with a battery of clinical and neurological examinations and corneal confocal microscopy. Compared with controls, patients had abnormal CNF parameters. In particular the patients had reduced density and length of CNF and beading frequency and increased bead size. Alterations in CNF parameters were significant even in patients without neuropathy. The HbA1c levels were tightly associated with the bead size, which was inversely related to the motor and sensory nerve conduction velocity (NCV) and to the distal latency period of the median nerve positively. The CNF density and length positively correlated with the NCV and amplitude. The hyperglycemia-induced expansion of beads in CNF might be a predictor of slow NCV in peripheral nerves in type 2 diabetic patients. PMID:27563679

  17. Ultrasound in Dual Nerve Impairment after Proximal Radial Nerve Lesion

    PubMed Central

    Lämmer, Alexandra B; Schwab, Stefan; Schramm, Axel

    2015-01-01

    Introduction Sonography in classical nerve entrapment syndromes is an established and validated method. In contrast, few publications highlight lesions of the radial nerve, particularly of the posterior interosseus nerve (PIN). Method Five patients with a radial nerve lesion were investigated by electromyography, nerve conduction velocity and ultrasound. Further normative values of 26 healthy subjects were evaluated. Results Four patients presented a clinical and electrophysiological proximal axonal radial nerve lesion and one patient showed a typical posterior interosseous nerve syndrome (PINS). The patient with PINS presented an enlargement of the PIN anterior to the supinator muscle. However four patients with proximal lesions showed an unexpected significant enlargement of the PIN within the supinator muscle. Conclusion High-resolution sonography is a feasible method to demonstrate the radial nerve including its distal branches. At least in axonal radial nerve lesions, sonography might reveal abnormalities far distant from a primary proximal lesion site clearly distinct from the appearance in classical PINS. PMID:25992766

  18. Confirmation of Correlation between Brain Nerve Conduction Velocity and Intelligence Level in Normal Adults

    ERIC Educational Resources Information Center

    Reed, T. Edward; Vernon, Philip A.; Johnson, Andrew M.

    2004-01-01

    In 1992, Reed and Jensen ["Intelligence" 16 (1992) 259-272] reported a positive correlation (0.26; "p"= 0.002; 0.37 after correcting for restricted intelligence range) between a brain nerve conduction velocity (NCV) and intelligence level in 147 normal male students. In the first follow-up of their study, we report on a study using similar NCV…

  19. A comparison of nerve conduction velocities and current perception thresholds as correlates of clinical severity of diabetic sensory neuropathy.

    PubMed Central

    Rendell, M S; Katims, J J; Richter, R; Rowland, F

    1989-01-01

    Nerve conduction velocities (NCVs) are the standard measurements used to confirm the presence or absence of diabetic neuropathy. NCVs were contrasted with the newer technique of measurement of alternating current perception thresholds (CPTs) in assessing the quantitative level of correlation with severity of diabetic sensory neuropathy. A very detailed, scored neurological history (symptoms) and physical examination, emphasising sensory assessment, was conducted on 71 individuals with diabetic neuropathy of varying degrees of severity. Sensory and motor NCVs and CPTs at 5, 250, and 2000 Hz of the upper and lower extremities were determined for these individuals. In addition, vibration thresholds (VTs) were measured as a third modality. Twenty eight individuals underwent repeated evaluations at 2, 6, 10 and 12 months after the initial procedures. Using the results of 169 complete evaluations, correlations were determined between physical scores (PS) and symptoms scores (SS) and NCVs. NCV correlations with the SS were weaker than with the PS. The strongest of the correlations were found between the PS and motor NCVs of the median nerve (rho = 0.29) and the tibial nerve (rho = 0.38). Normal NCVs were present in the face of very significant historical and physical abnormality. Correlations of the SS and PS with both VTs and CPTs were higher than with the NCVs. CPTs proved the more effective as predictors of both symptomatic and physical impairment. NCVs appear to lack the resolving power necessary to evaluate subtle differences in clinical state of diabetic sensory neuropathy. The supplementary use of current perception testing may improve the quantitative assessment of this condition. PMID:2738593

  20. Electrical Stimulation to Conductive Scaffold Promotes Axonal Regeneration and Remyelination in a Rat Model of Large Nerve Defect

    PubMed Central

    Zhang, Yongguang; Liang, Wei; Wu, Siyu; Luo, Zhuojing

    2012-01-01

    Background Electrical stimulation (ES) has been shown to promote nerve regeneration when it was applied to the proximal nerve stump. However, the possible beneficial effect of establishing a local electrical environment between a large nerve defect on nerve regeneration has not been reported in previous studies. The present study attempted to establish a local electrical environment between a large nerve defect, and examined its effect on nerve regeneration and functional recovery. Methodology/Findings In the present study, a conductive scaffold was constructed and used to bridge a 15 mm sciatic nerve defect in rats, and intermittent ES (3 V, 20 Hz) was applied to the conductive scaffold to establish an electrical environment at the site of nerve defect. Nerve regeneration and functional recovery were examined after nerve injury repair and ES. We found that axonal regeneration and remyelination of the regenerated axons were significantly enhanced by ES which was applied to conductive scaffold. In addition, both motor and sensory functional recovery was significantly improved and muscle atrophy was partially reversed by ES localized at the conductive scaffold. Further investigations showed that the expression of S-100, BDNF (brain-derived neurotrophic factor), P0 and Par-3 was significantly up-regulated by ES at the conductive scaffold. Conclusions/Significance Establishing an electrical environment with ES localized at the conductive scaffold is capable of accelerating nerve regeneration and promoting functional recovery in a 15 mm nerve defect in rats. The findings provide new directions for exploring regenerative approaches to achieve better functional recovery in the treatment of large nerve defect. PMID:22737243

  1. Molecular regulators of nerve conduction - Lessons from inherited neuropathies and rodent genetic models.

    PubMed

    Li, Jun

    2015-05-01

    Myelinated nerve fibers are highly compartmentalized. Helically wrapped lipoprotein membranes of myelin are integrated with subsets of proteins specifically in each compartment to shape the physiological behavior of these nerve fibers. With the advance of molecular biology and genetics, many functions of these proteins have been revealed over the past decade. In this review, we will first discuss how action potential propagation has been understood by classical electrophysiological studies. In particular, the discussion will be concentrated on how the geometric dimensions of myelinated nerve fibers (such as internodal length and myelin thickness) may affect nerve conduction velocity. This discussion will then extend into how specific myelin proteins may shape these geometric parameters, thereby regulating action potential propagation. For instance, periaxin may specifically affect the internodal length, but not other parameters. In contrast, neuregulin-1 may affect myelin thickness, but not axon diameter or internodal length. Finally, we will discuss how these basic neurobiological observations can be applied to inherited peripheral nerve diseases. PMID:25792482

  2. Molecular Regulators of Nerve Conduction - Lessons from Inherited Neuropathies and Rodent Genetic Models

    PubMed Central

    Li, Jun

    2015-01-01

    Myelinated nerve fibers are highly compartmentalized. Helically wrapped lipoprotein membranes of myelin are integrated with subsets of proteins specifically in each compartment to shape the physiological behavior of these nerve fibers. With the advance of molecular biology and genetics, many functions of these proteins have been revealed over the past decade. In this review, we will first discuss how action potential propagation has been understood by classical electrophysiological studies. In particular, the discussion will be concentrated on how the geometric dimensions of myelinated nerve fibers (such as internodal length and myelin thickness) may affect nerve conduction velocity. This discussion will then extend into how specific myelin proteins may shape these geometric parameters, thereby regulating action potential propagation. For instance, periaxin may specifically affect the internodal length, but not other parameters. In contrast, neuregulin-1 may affect myelin thickness, but not axon diameter or internodal length. Finally, we will discuss how these basic neurobiological observations can be applied to inherited peripheral nerve diseases. PMID:25792482

  3. Fast Conducting Mechanoreceptors Contribute to Withdrawal Behavior in Normal and Nerve Injured Rats

    PubMed Central

    Boada, M. Danilo; Martin, Thomas J.; Peters, Christopher M.; Hayashida, Kenichiro; Harris, Michael H.; Houle, Timothy T.; Boyden, Edward S.; Eisenach, James C.; Ririe, Douglas G.

    2014-01-01

    Fast conducting myelinated high threshold mechanoreceptors (AHTMR) are largely thought to transmit acute nociception from the periphery. However, their roles in normal withdrawal and in nerve injury induced hyperalgesia are less well accepted. Modulation of this subpopulation of peripheral neurons would help define their roles in withdrawal behaviors. The optically active proton pump, ArchT, was placed in an AAV8 viral vector with the CAG promoter and was administered by intrathecal injection resulting in expression in myelinated neurons. Optical inhibition of peripheral neurons at the soma and transcutaneously was possible in the neurons expressing ArchT, but not in neurons from control animals. Receptive field characteristics and electrophysiology determined that inhibition was neuronal subtype specific with only AHTMR neurons being inhibited. One week following nerve injury the AHTMR are hyperexcitable, but can still be inhibited at the soma and transcutaneously. Withdrawal thresholds to mechanical stimuli in normal and in hyperalgesic nerve injured animals were also increased by transcutaneous light to the affected hindpaw. This suggests that AHTMR neurons play a role not only in threshold related withdrawal behavior in the normal animal, but also in sensitized states after nerve injury. This is the first time this subpopulation of neurons has been reversibly modulated to test their contribution to withdrawal related behaviors before and after nerve injury. This technique may prove useful to define the role of selective neuronal populations in different pain states. PMID:25267211

  4. Fast-conducting mechanoreceptors contribute to withdrawal behavior in normal and nerve injured rats.

    PubMed

    Boada, M Danilo; Martin, Thomas J; Peters, Christopher M; Hayashida, Kenichiro; Harris, Michael H; Houle, Timothy T; Boyden, Edward S; Eisenach, James C; Ririe, Douglas G

    2014-12-01

    Fast-conducting myelinated high-threshold mechanoreceptors (AHTMR) are largely thought to transmit acute nociception from the periphery. However, their roles in normal withdrawal and in nerve injury-induced hyperalgesia are less well accepted. Modulation of this subpopulation of peripheral neurons would help define their roles in withdrawal behaviors. The optically active proton pump, ArchT, was placed in an adeno-associated virus-type 8 viral vector with the CAG promoter and was administered by intrathecal injection resulting in expression in myelinated neurons. Optical inhibition of peripheral neurons at the soma and transcutaneously was possible in the neurons expressing ArchT, but not in neurons from control animals. Receptive field characteristics and electrophysiology determined that inhibition was neuronal subtype-specific with only AHTMR neurons being inhibited. One week after nerve injury the AHTMR are hyperexcitable, but can still be inhibited at the soma and transcutaneously. Withdrawal thresholds to mechanical stimuli in normal and in hyperalgesic nerve-injured animals also were increased by transcutaneous light to the affected hindpaw. This suggests that AHTMR neurons play a role not only in threshold-related withdrawal behavior in the normal animal, but also in sensitized states after nerve injury. This is the first time this subpopulation of neurons has been reversibly modulated to test their contribution to withdrawal-related behaviors before and after nerve injury. This technique may prove useful to define the role of selective neuronal populations in different pain states. PMID:25267211

  5. Nerve conduction

    MedlinePlus Videos and Cool Tools

    ... peripheral nervous system (PNS). The CNS contains the brain and the spinal cord and the PNS consists ... the axon. Without this insulation, signals from the brain might never reach the outlying muscle groups in ...

  6. Saltatory conduction of peripheral nerve impulse in clioquinol-treated rats.

    PubMed

    Homma, S; Kotaki, H; Mizote, M; Nakajima, Y; Tamura, Z

    1984-04-01

    By using a new method, unidimensional latency-topography, which shows the saltatory conduction pattern of an impulse along peripheral nerve fibers, the internodal length, internodal conduction time and conduction velocity were determined from the L5 ventral and/or dorsal root filaments of clioquinol-treated rats (CTR). The saltatory conduction pattern was preserved in most of the CTR fibers tested, but was not seen in some fibers. A positive correlation was seen between the conduction velocity and the internodal length in the nerve fibers of both the normal rats and CTR. Although there was no difference in the internodal length between normal rats and CTR, conduction velocities determined in CTR fibers were lower than those in normal rat fibers. Myelin length was calculated from the saltatory conduction pattern in the topography to represent the functional length of the saltatory conduction. The functional myelin length of the CTR fiber was shorter than that of normal rats. Shortening of the functional myelin length in CTR is due to the widening of the Ranvier node, which corresponds to the exposure of the Ranvier node, i.e. demyelination. It was concluded that the decrease in conduction velocity in CTR fibers was due to exposure which caused delayed excitation at the Ranvier nodes. PMID:6233507

  7. Optical determination of impulse conduction velocity during development of embryonic chick cervical vagus nerve bundles.

    PubMed Central

    Sakai, T; Komuro, H; Katoh, Y; Sasaki, H; Momose-Sato, Y; Kamino, K

    1991-01-01

    1. Employing an optical method for multiple-site simultaneous recording of electrical activity, we have determined the conduction velocity in cervical vagus nerve bundles isolated from 5- to 21-day-old chick embryos, and investigated its developmental changes. 2. The preparations were stained with a voltage-sensitive merocyanine-rhodanine dye (NK2761), and action potential- (impulse-) related optical signals were elicited by brief stimuli applied to the end of the vagus nerve bundle with a suction electrode. Optical signals were recorded simultaneously from many contiguous regions using a 12 x 12-element photodiode array. 3. The optical signals spread with small delay from the site of stimulation. From the relationship between the delay and distance from the current-applying electrode, conduction velocities were estimated in each tested preparation: the conduction velocity was very small and increased monotonically from about 0.1 m s-1 at 5 days embryonic age to about 0.4 m s-1 by hatching. The increase in the conduction velocity was closely related to a developmental increase in the diameter of the vagus nerve bundle. 4. In addition, we have examined the spread of electrotonic potentials. The space constant was very small (200-450 microns) and increased as development proceeded. 5. Compound optical action signals having two distinct components were also recorded. They often appeared to be concentrated in the preparations from 8- to 12-day-old embryos. The conduction velocity of the second component was slower than that of the first. We suggest that appearance of the second component reflects degeneration of a subset of axons resulting from 'neural cell death' during the development of the vagus nerve. Images Fig. 1 Fig. 14 (cont.) Fig. 14 PMID:1895241

  8. Cardiac conduction abnormalities and Stokes-Adams attacks in myotonic dystrophy.

    PubMed Central

    Noel, C.; Gagnon, R. M.

    1978-01-01

    Myotonic dystrophy is a well known cause of cardiomyopathy. While various cardiac conduction abnormalities have been described in patients with myotonic dystrophy, so far only sporadic cases of Stokes-Adams attacks have been reported. Of 27 patients with this disease various conduction disturbances were detected in 17 (63%), 5 of whom presented with Stokes-Adams attacks and were found to have intracardiac conduction defects. The prognosis in four of the five patients was greatly improved with permanent pacemaker implantation. Images FIG. 1 FIG. 2 PMID:657033

  9. Reappraisal of Supraorbital Sensory Nerve Conduction Recordings: Orthodromic and Antidromic Techniques

    PubMed Central

    Park, Hyeun Jun; Kim, Sung-Hoon; Lee, Se Kwang; Lee, Hang Jae

    2016-01-01

    Objective To establish a supraorbital nerve sensory conduction recording method and assess its usefulness. Methods Thirty-one healthy subjects without a history of trauma or neurological disease were recruited. For the orthodromic procedure, the recording electrode was attached immediately superior to the supraorbital notch. The stimulation electrode was placed on points along the hairline which evoked the largest sensory nerve action potentials (SNAPs). The antidromic sensory response was recorded after switching the recording and stimulating electrodes. The measured parameters were onset latency, peak latency, and baseline to peak amplitude of the SNAPs. The electrophysiological parameters of the bilateral supraorbital nerves were compared. We also recruited two patients who had sensory deficits on one side of their foreheads because of laceration injuries. Results The parameters of orthodromically recorded SNAPs were as follows: onset latency 1.21±0.22 ms (range, 0.9–1.6 ms), peak latency 1.54±0.23 ms (range, 1.2–2.2 ms), and baseline to peak amplitude 4.16±1.92 µV (range, 1.4–10 µV). Those of antidromically recorded SNAPs were onset latency 1.31±0.27 ms (range, 0.8–1.7 ms), peak latency 1.62±0.29 ms (range, 1.3–2.2 ms), and baseline to peak amplitude 4.00±1.89 µV (range, 1.5–9.0 µV). There was no statistical difference in onset latency, peak latency, or baseline to peak amplitude between the responses obtained using the orthodromic and antidromic methods, and the parameters also revealed no statistical difference between the supraorbital nerves on both sides. Conclusion We have successfully recorded supraorbital SNAPs. This conduction technique could be quite useful in evaluating patients with supraorbital nerve lesions. PMID:26949668

  10. Changes in nerve conduction and Pi/PCr ratio during denervation-reinnervation of the gastrocsoleus muscles of rats

    NASA Technical Reports Server (NTRS)

    Lai, K. S.; Jaweed, M. M.; Seestead, R.; Herbison, G. J.; Ditunno, J. F. Jr; McCully, K.; Chance, B.

    1992-01-01

    The purpose of this investigation was to study the changes in nerve conduction and phosphate metabolites of the gastrocsoleus muscles of rats during denervation-reinnervation. Sixteen male Sprague-Dawley rats underwent unilateral crush-denervation of the left sciatic nerves at the sciatic notch. Six rats were used for measurement of motor conduction latency and action potential amplitude of the gastrocsoleus muscle by stimulating the sciatic nerve at one, two and eight weeks after nerve crush. The other ten rats were designated for evaluation of the ratio of inorganic phosphorous (Pi) to phosphocreatine (PCr) by a 31P-phosphoenergetic spectrometer at two weeks and eight weeks after nerve crush. None of the sciatic nerves showed conduction to the gastrocsoleus at one or two weeks after nerve crush. At eight weeks postcrush, the motor conduction latency returned to within normal limits, whereas the action potential amplitude was only 55% of the normal. For the eight-week period of study, the Pi/PCr ratio of the normal control muscles ranged between 0.09 +/- 0.02 and 0.11 +/- 0.02 (mean +/- SD). The denervated muscles showed an increase of Pi/PCr ratio by 54% at two weeks postcrush, compared to the respective contralateral control sides. The ratios returned to the normal value by eight weeks postcrush. In summary, these data suggested that the metabolic recovery of the crush-denervated muscle followed the same pattern as the parameters of nerve conduction.

  11. Topological Defects at the Graphene/h-BN interface Abnormally Enhance Its Thermal Conductance.

    PubMed

    Liu, Xiangjun; Zhang, Gang; Zhang, Yong-Wei

    2016-08-10

    Low thermal conductance across interface is often the limiting factor in managing heat in many advanced device applications. The most commonly used approach to enhance the thermal conductance is to reduce/eliminate the interfacial structural defects. Using a graphene/h-BN (Gr/h-BN) interface, we show surprisingly that topological defects are able to enhance the thermal conductance across the interface. It is found that the phonon transmission across the Gr/h-BN interface with 5|7 defects is higher than that of the pristine interface, which is in strong contrast to the common notion that interface defects promote phonon scattering. By analyzing the strain distribution and phonon vibrational spectra, we find that this abnormal enhancement in interfacial thermal conductance originates from the localization of the stress fields arising from misfit dislocations and their out-of-plane deformations at the interface. In the presence of the defects, the overall mismatch strain is reduced. In addition, the out-of-plane deformations screen the long-ranged dislocation strain fields, resulting in the stress fields to be localized only at the cores of the defects. This abnormal mechanism provides a new dimension to enhance the interfacial thermal conductance in two-dimensional heterostructures. PMID:27387848

  12. Safety of nerve conduction studies in patients with implanted cardiac devices.

    PubMed

    Schoeck, Andreas P; Mellion, Michelle L; Gilchrist, James M; Christian, Fredric V

    2007-04-01

    Patients with implanted cardiac devices and their physicians may defer important electrodiagnostic testing because of anxiety about potential negative effects on the device. To determine the safety of routine nerve conduction studies (NCS) in this population, 10 patients with permanent dual-chamber pacemakers of various types and five patients with implanted cardiac defibrillators (ICD) underwent nerve stimulation at sites commonly used during NCS. The implanted cardiac device was interrogated before and after the study and there was continuous monitoring of the surface electrocardiogram (ECG) and atrial and ventricular electrograms. Electrical impulses generated during routine NCS were never detected by the sensing amplifier and did not affect the programmed settings of the implanted cardiac device. We conclude that routine NCS is safe in patients with implanted cardiac pacemakers with bipolar sensing configurations and defibrillators. PMID:17094099

  13. Abnormal Anatomical Connectivity between the Amygdala and Orbitofrontal Cortex in Conduct Disorder

    PubMed Central

    Passamonti, Luca; Fairchild, Graeme; Fornito, Alex; Goodyer, Ian M.; Nimmo-Smith, Ian; Hagan, Cindy C.; Calder, Andrew J.

    2012-01-01

    Objective Previous research suggested that structural and functional abnormalities within the amygdala and orbitofrontal cortex contribute to the pathophysiology of Conduct Disorder (CD). Here, we investigated whether the integrity of the white-matter pathways connecting these regions is abnormal and thus may represent a putative neurobiological marker for CD. Methods Diffusion Tensor Imaging (DTI) was used to investigate white-matter microstructural integrity in male adolescents with childhood-onset CD, compared with healthy controls matched in age, sex, intelligence, and socioeconomic status. Two approaches were employed to analyze DTI data: voxel-based morphometry of fractional anisotropy (FA), an index of white-matter integrity, and virtual dissection of white-matter pathways using tractography. Results Adolescents with CD displayed higher FA within the right external capsule relative to controls (T = 6.08, P<0.05, Family-Wise Error, whole-brain correction). Tractography analyses showed that FA values within the uncinate fascicle (connecting the amygdala and orbitofrontal cortex) were abnormally increased in individuals with CD relative to controls. This was in contrast with the inferior frontal-occipital fascicle, which showed no significant group differences in FA. The finding of increased FA in the uncinate fascicle remained significant when factoring out the contribution of attention-deficit/hyperactivity disorder symptoms. There were no group differences in the number of streamlines in either of these anatomical tracts. Conclusions These results provide evidence that CD is associated with white-matter microstructural abnormalities in the anatomical tract that connects the amygdala and orbitofrontal cortex, the uncinate fascicle. These results implicate abnormal maturation of white-matter pathways which are fundamental in the regulation of emotional behavior in CD. PMID:23144970

  14. Microvasculature and incident atrioventricular conduction abnormalities in the Multi-Ethnic Study of Atherosclerosis (MESA).

    PubMed

    Chacko, Billy G; Edwards, Matthew S; Sharrett, A Richey; Qureshi, Waqas T; Klein, Barbara E K; Klein, Ronald; Herrington, David M; Soliman, Elsayed Z

    2015-10-01

    Abnormalities of the microvasculature are linked to major cardiac events, but their role in the development of atrioventricular conduction abnormalities (AVCA) is unknown. We examined the association between central retinal arteriolar equivalent (CRAE), a measure of the microvasculature, and incident AVCA. This analysis included 3975 participants free of AVCA at baseline from the Multi-Ethnic Study of Atherosclerosis (MESA). Incident AVCA was defined as a composite of new heart rate-adjusted PR interval ⩾ 200 ms (first-degree AV block) and advanced block (second-degree or complete AV block) detected from the MESA exam 5 electrocardiogram (ECG). CRAE was measured from retinal photographs at exam 2. Both ECGs and retinal photographs were collected using standardized methods and read and graded at central core labs. Incident AVCA were present in 7.4% (n=290) of the participants, of which 94% were first-degree AV block. Incident AVCA were increasingly more common in participants with narrower CRAE (4.6% in Q4, 6.4% in Q3, 7.0% in Q2 and 10.8% in Q1, p-value for trend < 0.0001). The socio-demographic and cardiovascular disease risk-adjusted odds of incident AVCA in the Q1 group (the group with the narrowest retinal arteriolar diameter) was nearly twice the odds in the Q4 group (OR: 1.68, 95% CI: 1.15-2.51). This association remained significant after adjustment for major ECG abnormalities and incident cardiovascular disease (Q1 vs Q4, OR: 1.65, 95% CI: 1.01-2.71). In conclusion, narrower retinal arteriolar caliber is associated with development of new AV conduction abnormalities. PMID:25999364

  15. Gallic acid and exercise training improve motor function, nerve conduction velocity but not pain sense reflex after experimental sciatic nerve crush in male rats

    PubMed Central

    Hajimoradi, Maryam; Fazilati, Mohammad; Gharib-Naseri, Mohammad Kazem; Sarkaki, Alireza

    2015-01-01

    Objective: The aim of present study was to evaluate the effects of oral administration of gallic acid (GA) for 21 days alone and in combination with exercise on nerve conduction velocity and sensory and motor functions in rats with sciatic nerve crush. Materials and Methods: Seventy adult male Wistar rats (250-300 g) were divided randomly into 7 groups with 10 in each: 1) Control (Cont), 2) Crushed + Vehicle (Cr +Veh), 3-5) Crushed + gallic acid (Cr+GA) (50, 100, and 200 mg/kg/2 mL, orally), 6) Crushed + exercise (Cr+Exe), and 7) Crushed + exercise + effective dose of gallic acid (Cr+Exe +GA200) for 21 days. In order to establish an animal model of sciatic nerve crush, equivalent to 7 kg of force pressed on 2-3 mm of sciatic nerve for 30 s, three times with 30 s intervals. Pain sense reflex in hot plate, motor coordination in rotarod, and sciatic nerve conduction velocity (SNCV) in all groups were tested. Data were analyzed using one-way ANOVA followed by Tukey’s post hoc test and p<0.05 has assigned as the significant difference. Results: Pain threshold was increased significantly in untreated crushed rats while motor function and SNCV were decreased in all groups with nerve crush (p<0.05, p<0.01, p<0.001 vs. control). Pain reflex latency was not changed in treated groups. Motor coordination and SNCV were improved in groups Cr+GA200 and Cr+Exe + GA200 (p<0.05, p<0.01 vs. Cr+Veh). Conclusion: GA, dose-dependently, may have therapeutic potential to improve the peripheral nerve degeneration, which is most likely related, at least in part, to its antioxidant and therapeutic properties. PMID:26445710

  16. Protein-releasing conductive anodized alumina membranes for nerve-interface materials.

    PubMed

    Altuntas, Sevde; Buyukserin, Fatih; Haider, Ali; Altinok, Buket; Biyikli, Necmi; Aslim, Belma

    2016-10-01

    Nanoporous anodized alumina membranes (AAMs) have numerous biomedical applications spanning from biosensors to controlled drug delivery and implant coatings. Although the use of AAM as an alternative bone implant surface has been successful, its potential as a neural implant coating remains unclear. Here, we introduce conductive and nerve growth factor-releasing AAM substrates that not only provide the native nanoporous morphology for cell adhesion, but also induce neural differentiation. We recently reported the fabrication of such conductive membranes by coating AAMs with a thin C layer. In this study, we investigated the influence of electrical stimulus, surface topography, and chemistry on cell adhesion, neurite extension, and density by using PC 12 pheochromocytoma cells in a custom-made glass microwell setup. The conductive AAMs showed enhanced neurite extension and generation with the electrical stimulus, but cell adhesion on these substrates was poorer compared to the naked AAMs. The latter nanoporous material presents chemical and topographical features for superior neuronal cell adhesion, but, more importantly, when loaded with nerve growth factor, it can provide neurite extension similar to an electrically stimulated CAAM counterpart. PMID:27287158

  17. Easy method to examine single nerve fiber excitability and conduction parameters using intact nonanesthetized earthworms

    PubMed Central

    Bauer, Christiane K.

    2014-01-01

    The generation and conduction of neuronal action potentials (APs) were the subjects of a cell physiology exercise for first-year medical students. In this activity, students demonstrated the all-or-none nature of AP generation, measured conduction velocity, and examined the dependence of the threshold stimulus amplitude on stimulus duration. For this purpose, they used the median giant nerve fiber (MGF) in the ventral nerve cord of the common earthworm (Lumbricus terrestris). Here, we introduce a specialized stimulation and recording chamber that the nonanesthetized earthworm enters completely unforced. The worm resides in a narrow round duct with silver electrodes on the bottom such that individual APs of the MGF can be elicited and recorded superficially. Our experimental setup combines several advantages: it allows noninvasive single fiber AP measurements taken from a nonanesthetized animal that is yet restrained. Students performed the experiments with a high success rate. According to the data acquired by the students, the mean conduction velocity of the MGF was 30.2 m/s. From the amplitude-duration relationship for threshold stimulation, rheobase and chronaxie were graphically determined by the students according to Lapicque's method. The mean rheobase was 1.01 V, and the mean chronaxie was 0.06 ms. The acquired data and analysis results are of high quality, as deduced from critical examination based on the law of Weiss. In addition, we provide video material, which was also used in the practical course. PMID:25179616

  18. Easy method to examine single nerve fiber excitability and conduction parameters using intact nonanesthetized earthworms.

    PubMed

    Bähring, Robert; Bauer, Christiane K

    2014-09-01

    The generation and conduction of neuronal action potentials (APs) were the subjects of a cell physiology exercise for first-year medical students. In this activity, students demonstrated the all-or-none nature of AP generation, measured conduction velocity, and examined the dependence of the threshold stimulus amplitude on stimulus duration. For this purpose, they used the median giant nerve fiber (MGF) in the ventral nerve cord of the common earthworm (Lumbricus terrestris). Here, we introduce a specialized stimulation and recording chamber that the nonanesthetized earthworm enters completely unforced. The worm resides in a narrow round duct with silver electrodes on the bottom such that individual APs of the MGF can be elicited and recorded superficially. Our experimental setup combines several advantages: it allows noninvasive single fiber AP measurements taken from a nonanesthetized animal that is yet restrained. Students performed the experiments with a high success rate. According to the data acquired by the students, the mean conduction velocity of the MGF was 30.2 m/s. From the amplitude-duration relationship for threshold stimulation, rheobase and chronaxie were graphically determined by the students according to Lapicque's method. The mean rheobase was 1.01 V, and the mean chronaxie was 0.06 ms. The acquired data and analysis results are of high quality, as deduced from critical examination based on the law of Weiss. In addition, we provide video material, which was also used in the practical course. PMID:25179616

  19. Effects of colistin on the sensory nerve conduction velocity and F-wave in mice.

    PubMed

    Dai, Chongshan; Tang, Shusheng; Li, Jichang; Wang, Jiping; Xiao, Xilong

    2014-12-01

    The aim of this study was to examine the changes of sensory nerve conduction velocity (SNCV) and F-wave for colistin-induced peripheral neurotoxicity using a mouse model. Mice were administered with colistin 5, 7.5 and 15 mg/kg/day via a 3-min. intravenous infusion. The sensory nerve conduction velocity (SNCV) and F-wave were measured using the bipolar recording electrodes. The SNCV and F-wave latency changed in a dose- and time-dependent manner. The significant increase of F-wave latency and significant decrease of SNCV appeared on day 3 (p < 0.05 and 0.01, respectively) in the 15 mg/kg/day group, and they were markedly changed on day 7 in the 7.5 mg/kg/day (p < 0.01 and 0.05, respectively) and 15 mg/kg/day groups (both p < 0.01). In addition, F-wave latency also significantly increased on day 7 in the 5 mg/kg/day group (p < 0.05) without any clinical signs. These results indicate that SNCV and F-wave latency were more sensitive in colistin-induced neurotoxicity in mice, which highlights the early monitoring tool of polymyxins neurotoxicity in the clinic. PMID:24861773

  20. Support of Nerve Conduction by Respiring Myelin Sheath: Role of Connexons.

    PubMed

    Ravera, Silvia; Bartolucci, Martina; Adriano, Enrico; Garbati, Patrizia; Ferrando, Sara; Ramoino, Paola; Calzia, Daniela; Morelli, Alessandro; Balestrino, Maurizio; Panfoli, Isabella

    2016-05-01

    Recently, we have demonstrated that myelin conducts an extramitochondrial oxidative phosphorylation, hypothesizing a novel supportive role for myelin in favor of the axon. We have also hypothesized that the ATP produced in myelin could be transferred thought gap junctions. In this work, by biochemical, immunohistochemical, and electrophysiological techniques, the existence of a connection among myelin to the axon was evaluated, to understand how ATP could be transferred from sheath to the axoplasm. Data confirm a functional expression of oxidative phosphorylation in isolated myelin. Moreover, WB and immunohistochemistry on optic nerve slices show that connexins 32 and 43 are present in myelin and colocalize with myelin basic protein. Interestingly, addition of carbenoxolone or oleamide, two gap junction blockers, causes a decrease in oxidative metabolism in purified myelin, but not in mitochondria. Similar effects were observed on conduction speed in hippocampal Schaffer collateral, in the presence of oleamide. Confocal analysis of optic nerve slices showed that lucifer yellow (that only passes through aqueous pores) signal was found in both the sheath layers and the axoplasma. In the presence of oleamide, but not with oleic acid, signal significantly decreased in the sheath and was lost inside the axon. This suggests the existence of a link among myelin and axons. These results, while supporting the idea that ATP aerobically synthesized in myelin sheath could be transferred to the axoplasm through gap junctions, shed new light on the function of the sheath. PMID:26033217

  1. Development of electrically conductive oligo(polyethylene glycol) fumarate-polypyrrole hydrogels for nerve regeneration.

    PubMed

    Runge, M Brett; Dadsetan, Mahrokh; Baltrusaitis, Jonas; Ruesink, Terry; Lu, Lichun; Windebank, Anthony J; Yaszemski, Michael J

    2010-11-01

    Electrically conductive hydrogel composites consisting of oligo(polyethylene glycol) fumarate (OPF) and polypyrrole (PPy) were developed for applications in nerve regeneration. OPF-PPy scaffolds were synthesized using three different anions: naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), and dioctyl sulfosuccinate sodium salt (DOSS). Scaffolds were characterized by ATR-FTIR, XPS, AFM, dynamic mechanical analysis, electrical resistivity measurements, and swelling experiments. OPF-PPy scaffolds were shown to consist of up to 25 mol % polypyrrole with a compressive modulus ranging from 265 to 323 kPa and a sheet resistance ranging from 6 to 30 × 10(3) Ohms/square. In vitro studies using PC12 cells showed OPF-PPy materials had no cytotoxicity and PC12 cells showed distinctly better cell attachment and an increase in the percent of neurite bearing cells on OPF-PPy materials compared to OPF. The neurite lengths of PC12 cells were significantly higher on OPF-PPyNSA and OPF-PPyDBSA. These results show that electrically conductive OPF-PPy hydrogels are promising candidates for future applications in nerve regeneration. PMID:20942380

  2. Development of Electrically Conductive Oligo(polyethylene Glycol) Fumarate-Polypyrrole Hydrogels for Nerve Regeneration

    PubMed Central

    Runge, M. Brett; Dadsetan, Mahrokh; Baltrusaitis, Jonas; Ruesink, Terry; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.

    2014-01-01

    Electrically conductive hydrogel composites consisting of oligo(polyethylene glycol) fumarate (OPF) and polypyrrole (PPy) were developed for applications in nerve regeneration. OPF-PPy scaffolds were synthesized using three different anions: naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), and dioctyl sulfosuccinate sodium salt (DOSS). Scaffolds were characterized by ATR-FTIR, XPS, AFM, dynamic mechanical analysis, electrical resistivity measurements, and swelling experiments. OPF-PPy scaffolds were shown to consist of up to 25 mol% polypyrrole with a compressive modulus ranging from 265 to 323 kPa and a sheet resistance ranging from 6 to 30 × 103 Ohms/square. In vitro studies using PC12 cells showed OPF-PPy materials had no cytotoxicity and PC12 cells showed distinctly better cell attachment and an increase in the percent of neurite bearing cells on OPF-PPy materials compared to OPF. The neurite lengths of PC12 cells were significantly higher on OPF-PPyNSA and OPF-PPyDBSA. These results show that electrically conductive OPF-PPy hydrogels are promising candidates for future applications in nerve regeneration. PMID:20942380

  3. A TRIAL OF PROFICIENCY OF NERVE CONDUCTION: GREATER STANDARDIZATION STILL NEEDED

    PubMed Central

    Dyck, Peter J.; Albers, James W.; Wolfe, James; Bolton, Charles F.; Walsh, Nancy; Klein, Christopher J.; Zafft, Andrew J.; Russell, James W.; Thomas, Karen; Davies, Jenny L.; Carter, Rickey E.; Melton, L. Joseph; Litchy, William J.

    2014-01-01

    Introduction The aim of this study was to test the proficiency (accuracy among evaluators) of measured attributes of nerve conduction (NC). Methods Expert clinical neurophysiologists, without instruction or consensus development, from 4 different medical centers, independently assessed 8 attributes of NC in 24 patients with diabetes mellitus (DM) on consecutive days. Results No significant intraobserver differences between days 1 and 2 were found, but significant interobserver differences were seen. Use of standard reference values did not correct for these observed differences. Conclusions Interobserver variability was attributed to differences in performance of NC. It was of sufficient magnitude that it is of concern for the conduct of therapeutic trials. To deal with interrater variability in therapeutic trials, the same electromyographers should perform all NC assessments of individual patients or, preferably, NC procedures should be more standardized. A further trial is needed to test whether such standardization would eliminate interobserver variability. PMID:23861198

  4. Motor and sensory ulnar nerve conduction velocities: effect of elbow position.

    PubMed

    Harding, C; Halar, E

    1983-05-01

    Ulnar motor and sensory nerve conduction velocities (NCV) were studied bilaterally in 20 able-bodied subjects for below elbow (BE) and across elbow (AE) segments to assess the effect of 4 different elbow positions on NCV (0 degrees, 45 degrees, 90 degrees, and 135 degrees). Although constant skin stimulation marker points were used, the AE segment length became progressively longer with increased elbow flexion. At 0 degrees flexion the AE segment motor NCV was found to be slower, and at 45 degrees it was found faster than the BE NCV. At each subsequent elbow flexion position (90 degrees and 135 degrees) there was an erroneous increase in motor and sensory NCV for the AE segments (p less than 0.01). This increase in AE NCV with elbow flexion was mostly due to stretching of skin over the flexed elbow. The nerve itself was observed in 4 cadaver specimens to slide distally with respect to the above elbow skin marker. Since 45 degrees elbow flexion was the position of least variation in motor NCV for AE and BE segments, this degree of elbow flexion appears to be optimum. From these measurements and from literature review neither short AE segment length (less than 10 cm) nor long AE segment length (greater than 15 cm) is optimum for measurement of AE NCV in the assessment of compressive neuropathy at the elbow. Short segments are subject to increased NCV variation while long segments may not detect pathological slowing of NCV only occurring over a short portion of the nerve. PMID:6847360

  5. Fabrication and characterization of conductive chitosan/gelatin-based scaffolds for nerve tissue engineering.

    PubMed

    Baniasadi, Hossein; Ramazani S A, Ahmad; Mashayekhan, Shohreh

    2015-03-01

    This paper reports on the development of conductive porous scaffolds by incorporating conductive polyaniline/graphene (PAG) nanoparticles into a chitosan/gelatin matrix for its potential application in peripheral nerve regeneration. The effect of PAG content on the various properties of the scaffold is investigated and the results showed that the electrical conductivity and mechanical properties increased proportional to the increase in the PAG loading, while the porosity, swelling ratio and in vitro biodegradability decreased. In addition, the biocompatibility was evaluated by assessing the adhesion and proliferation of Schwann cells on the prepared scaffolds using SEM and MTT assay, respectively. In summary, this work supports the use of a porous conductive chitosan/gelatin/PAG scaffold with a low amount of PAG (2.5 wt.%) as a suitable material having proper conductivity, mechanical properties and biocompatibility that may be appropriate for different biomedical applications such as scaffold material in tissue engineering for neural repair or other biomedical devices that require electroactivity. PMID:25553968

  6. Nerves, alcohol and drugs, the Adrian-Kato controversy on nervous conduction: deep insights from a "wrong" experiment?

    PubMed

    Piccolino, Marco

    2003-12-01

    Edgar Douglas Adrian, a dominating figure of 20th century electrophysiology, published in 1912 a study on the effects of the conduction block induced by application of alcohol vapours to small segments of nerves from which he derived the conclusion that nerve signals regenerate along the nerve fibre during the conduction process. This conclusion was based on results of experiments in which the time required to produce a conduction block was found to decrease as the length of the nerve segment treated was increased. These results could not be confirmed when similar experiments were performed about 10 years later by Gen'ichi Kato, a leading figure of Japanese physiology and founder of one of the great schools of Japanese electrophysiology. Directly or indirectly, the Adrian-Kato controversy was at the inception of two of the most important advancements of 20th century neurophysiology: the elucidation of the mechanism of nervous conduction in squid giant axon by Hodgkin and Huxley and the discovery of the saltatory conduction in myelinated nerve fibres by Tasaki, Takeuchi, Huxley and Stämpfli. This controversy is also interesting for its epistemological aspects, which is important now to re-evaluate. PMID:14629928

  7. Noninvasive peroneal sensory and motor nerve conduction recordings in the rabbit distal hindlimb: feasibility, variability and neuropathy measure.

    PubMed

    Hotson, John R

    2014-01-01

    The peroneal nerve anatomy of the rabbit distal hindlimb is similar to humans, but reports of distal peroneal nerve conduction studies were not identified with a literature search. Distal sensorimotor recordings may be useful for studying rabbit models of length-dependent peripheral neuropathy. Surface electrodes were adhered to the dorsal rabbit foot overlying the extensor digitorum brevis muscle and the superficial peroneal nerve. The deep and superficial peroneal nerves were stimulated above the ankle and the common peroneal nerve was stimulated at the knee. The nerve conduction studies were repeated twice with a one-week intertest interval to determine measurement variability. Intravenous vincristine was used to produce a peripheral neuropathy. Repeat recordings measured the response to vincristine. A compound muscle action potential and a sensory nerve action potential were evoked in all rabbits. The compound muscle action potential mean amplitude was 0.29 mV (SD ± 0.12) and the fibula head to ankle mean motor conduction velocity was 46.5 m/s (SD ± 2.9). The sensory nerve action potential mean amplitude was 22.8 μV (SD ± 2.8) and the distal sensory conduction velocity was 38.8 m/s (SD ± 2.2). Sensorimotor latencies and velocities were least variable between two test sessions (coefficient of variation  =  2.6-5.9%), sensory potential amplitudes were intermediate (coefficient of variation  =  11.1%) and compound potential amplitudes were the most variable (coefficient of variation  = 19.3%). Vincristine abolished compound muscle action potentials and reduced sensory nerve action potential amplitudes by 42-57% while having little effect on velocity. Rabbit distal hindlimb nerve conduction studies are feasible with surface recordings and stimulation. The evoked distal sensory potentials have amplitudes, configurations and recording techniques that are similar to humans and may be valuable for measuring large sensory fiber function in chronic

  8. Effects of lead acetate on guinea pig - cochear microphonics, action potential, and motor nerve conduction velocity

    SciTech Connect

    Yamamura, K.; Maehara, N.; Terayama, K.; Ueno, N.; Kohyama, A.; Sawada, Y.; Kishi, R.

    1987-04-01

    Segmental demyelination and axonal degeneration of motor nerves induced by lead exposure is well known in man, and animals. The effect of lead acetate exposure to man may involve the cranial nerves, since vertigo and sensory neuronal deafness have been reported among lead workers. However, there are few reports concerning the dose-effects of lead acetate both to the peripheral nerve and the cranial VII nerve with measurement of blood lead concentration. The authors investigated the effects of lead acetate to the cochlea and the VIII nerve using CM (cochlear microphonics) and AP (action potential) of the guinea pigs. The effects of lead acetate to the sciatic nerve were measured by MCV of the sciatic nerve with measurement of blood lead concentration.

  9. Early co-administration of vitamin E acetate and methylcobalamin improves thermal hyperalgesia and motor nerve conduction velocity following sciatic nerve crush injury in rats.

    PubMed

    Morani, Aashish S; Bodhankar, Subhash L

    2010-01-01

    Our previous studies have shown that early administration of vitamin E acetate (50 mg/kg, ip (VEA)) and methylcobalamin (500 microg/kg, ip (MCA)) for 30 days improved conduction velocity and neuropathic pain behavior. Here, we evaluated the effect of early co-administration of VEA and MCA (MVE) on thermal hyperlagesia (TH) and motor nerve conduction velocity (MNCV) in rats with sciatic nerve crush injury (SNCI). Fifteen days post-surgery, a reduction in paw withdrawal latency (PWL) was observed in untreated (UNTR) rats. However, latency improved in MVE-treated animals, comparable to the placebo. On day 15, a decrease in MNCV was observed in the UNTR group of animals, and this effect was not observed for the MVE and placebo groups of animals. The results of this study indicate that early exposure to MVE attenuates the progression of TH and improves MNCV in rats with SNCI. PMID:20508297

  10. The influence of the splanchnic nerves on the external secretion, blood flow and electrical conductance of the cat pancreas

    PubMed Central

    Barlow, T. E.; Greenwell, J. R.; Harper, A. A.; Scratcherd, T.

    1974-01-01

    1. Electrical stimulation of the cut peripheral end of the splanchnic nerves results in a biphasic change in electrical conductance measured across the tail of the pancreas. A phase of decreased conductance is followed by a more prolonged phase of increased conductance. 2. Simultaneous measurements of pancreatic blood flow indicate that the phase of decreased conductance occurs as a result of vasoconstriction, whilst the phase of increased conductance is due to vasodilatation. 3. The initial phase of decreased conductance and vasoconstriction is abolished by α-receptor blocking agents such as phenoxybenzamine and the phase of increased conductance blocked by β-receptor blocking agents such as pronethalol. 4. Short periods of electrical stimulation applied to the splanchnic nerves result in a secretion of amylase and a reduction in the volume rate of secretion. 5. When the vasoconstrictor response was abolished by phenoxybenzamine, nerve stimulation still reduced the rate of secretion, suggesting that the inhibitory effect is in part due to a direct action of the secretory cells. 6. After bretylium tosylate, splanchnic nerve stimulation no longer produced vasomotor changes in the pancreas and the inhibitory effect on the volume response was converted to one of augmentation, but the secretion of enzymes was unaffected. 7. The secretion of amylase on splanchnic stimulation was abolished by intravenous injection of atropine, suggesting that a cholinergic mechanism is involved. 8. Noradrenaline did not mobilize pancreatic enzymes. PMID:16992444

  11. Is it possible to identify infrahissian cardiac conduction abnormalities in myotonic dystrophy by non-invasive methods?

    PubMed Central

    Babuty, D; Fauchier, L; Tena-Carbi, D; Poret, P; Leche, J; Raynaud, M; Fauchier, J; Cosnay, P

    1999-01-01

    OBJECTIVE—To identify intracardiac conduction abnormalities in patients with myotonic dystrophy from their clinical, ECG, and genetic features.
METHODS—39 consecutive patients (mean (SD) age 42.9 (12.1) years; 16 female, 23 male) underwent clinical examination, genetic studies, resting and 24 hour ambulatory ECG, signal averaged ECG, and electrophysiological studies.
RESULTS—23 patients suffered from cardiac symptoms, 23 had one or more cardiac conduction abnormality on resting ECG, one had sinus deficiency, and 21 (53.8%) had prolonged HV intervals. No correlation was found between the severity of the neurological symptoms, onset of disease, cardiac conduction abnormalities on ECG, and the intracardiac conduction abnormalities on electrophysiological study. The size of the DNA mutation was longer in the abnormal HV interval group than in the normal HV interval group (3.5 (1.8) v 2.2 (1.0) kb, p < 0.02). Signal averaged ECG parameters (total QRS duration (QRSD) and duration of low amplitude signals ⩽ 40 µV (LAS 40)) were greater in patients with an abnormal HV interval than in those with a normal HV interval (123.4 (24.6) v 102.8 (12.3) ms and 47.5 (12.8) v 35.3 (8.8) ms, respectively; p < 0.005). Only the association of QRSD ⩾ 100 ms with LAS 40 ⩾ 36 ms identified patients with an abnormal HV interval with good sensitivity (80%) and specificity (83.3%).
CONCLUSIONS—Infrahissian conduction abnormalities are common in myotonic dystrophy and can be identified using signal averaged electrocardiography.


Keywords: myotonic dystrophy; atrioventricular block; genetic factors; signal averaged ECG PMID:10525524

  12. Effects of adenosine and adenosine A2A receptor agonist on motor nerve conduction velocity and nerve blood flow in experimental diabetic neuropathy.

    PubMed

    Kumar, Sokindra; Arun, K H S; Kaul, Chaman L; Sharma, Shyam S

    2005-01-01

    This study examined the effects of chronic administration of adenosine and CGS 21680 hydrochloride (adenosine A(2A) receptor agonist) on motor nerve conduction velocity (MNCV), nerve blood flow (NBF) and histology of sciatic nerve in animal model of diabetic neuropathy. Adenosinergic agents were administered for 2 weeks after 6 weeks of streptozotocin-induced (50 mg/kg i.p.) diabetes in male Sprague-Dawley rats. Significant reduction in sciatic MNCV and NBF were observed after 8 weeks in diabetic animals in comparison with control (non diabetic) rats. Adenosine (10 mg/kg, i.p.) significantly improved sciatic MNCV and NBF in diabetic rats. The protective effect of adenosine on MNCV and NBF was completely reversed by theophylline (50 mg/kg, i.p.), a non-selective adenosine receptor antagonist, suggesting that the adenosine effect was mediated via adenosinergic receptors. CGS 21680 (0.1 mg/kg, i.p.) significantly improved NBF; however, MNCV was not significantly improved in diabetic rats. At a dose of 1 mg/kg, neither MNCV nor NBF was improved by CGS 21680 in diabetic rats. ZM 241385 (adenosine A(2A) receptor antagonist) prevented the effect of CGS 21680 (0.1 mg/kg, i.p.). Histological changes observed in sciatic nerve were partially improved by the adenosinergic agents in diabetic rats. Results of the present study, suggest the potential of adenosinergic agents in the therapy of diabetic neuropathy. PMID:15829161

  13. The development of electrically conductive polycaprolactone fumarate-polypyrrole composite materials for nerve regeneration.

    PubMed

    Runge, M Brett; Dadsetan, Mahrokh; Baltrusaitis, Jonas; Knight, Andrew M; Ruesink, Terry; Lazcano, Eric A; Lu, Lichun; Windebank, Anthony J; Yaszemski, Michael J

    2010-08-01

    Electrically conductive polymer composites composed of polycaprolactone fumarate and polypyrrole (PCLF-PPy) have been developed for nerve regeneration applications. Here we report the synthesis and characterization of PCLF-PPy and in vitro studies showing PCLF-PPy materials support both PC12 cell and dorsal root ganglia (DRG) neurite extension. PCLF-PPy composite materials were synthesized by polymerizing pyrrole in preformed PCLF scaffolds (M(n) 7,000 or 18,000 g mol(-1)) resulting in interpenetrating networks of PCLF-PPy. Chemical compositions and thermal properties were characterized by ATR-FTIR, XPS, DSC, and TGA. PCLF-PPy materials were synthesized with five different anions (naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), dioctyl sulfosuccinate sodium salt (DOSS), potassium iodide (I), and lysine) to investigate effects on electrical conductivity and to optimize chemical composition for cellular compatibility. PCLF-PPy materials have variable electrical conductivity up to 6 mS cm(-1) with bulk compositions ranging from 5 to 13.5 percent polypyrrole. AFM and SEM characterization show microstructures with a root mean squared (RMS) roughness of 1195 nm and nanostructures with RMS roughness of 8 nm. In vitro studies using PC12 cells and DRG show PCLF-PPy materials synthesized with NSA or DBSA support cell attachment, proliferation, neurite extension, and are promising materials for future studies involving electrical stimulation. PMID:20483452

  14. The Development of Electrically Conductive Polycaprolactone Fumarate-Polypyrrole Composite Materials for Nerve Regeneration

    PubMed Central

    Runge, M. Brett; Dadsetan, Mahrokh; Baltrusaitis, Jonas; Knight, Andrew M.; Ruesink, Terry; Lazcano, Eric; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.

    2010-01-01

    Electrically conductive polymer composites composed of polycaprolactone fumarate and polypyrrole (PCLF-PPy) have been developed for nerve regeneration applications. Here we report the synthesis and characterization of PCLF-PPy and in vitro studies showing PCLF-PPy materials support both PC12 cell and dorsal root ganglia (DRG) neurite extension. PCLF-PPy composite materials were synthesized by polymerizing pyrrole in pre-formed PCLF scaffolds (Mn 7,000 or 18,000 g mol−1) resulting in interpenetrating networks of PCLF-PPy. Chemical compositions and thermal properties were characterized by ATR-FTIR, XPS, DSC, and TGA. PCLF-PPy materials were synthesized with five different anions (naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), dioctyl sulfosuccinate sodium salt (DOSS), potassium iodide (I), and lysine) to investigate effects on electrical conductivity and to optimize chemical composition for cellular compatibility. PCLF-PPy materials have variable electrical conductivity up to 6 mS cm−1 with bulk compositions ranging from 5 to 13.5 percent polypyrrole. AFM and SEM characterization show microstructures with a root mean squared (RMS) roughness of 1195 nm and nanostructures with RMS roughness of 8 nm. In vitro studies using PC12 cells and DRG show PCLF-PPy materials synthesized with NSA or DBSA support cell attachment, proliferation, neurite extension, and are promising materials for future studies involving electrical stimulation. PMID:20483452

  15. Conduction block of mammalian myelinated nerve by local cooling to 15-30°C after a brief heating.

    PubMed

    Zhang, Zhaocun; Lyon, Timothy D; Kadow, Brian T; Shen, Bing; Wang, Jicheng; Lee, Andy; Kang, Audry; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2016-03-01

    This study aimed at understanding thermal effects on nerve conduction and developing new methods to produce a reversible thermal block of axonal conduction in mammalian myelinated nerves. In 13 cats under α-chloralose anesthesia, conduction block of pudendal nerves (n = 20) by cooling (5-30°C) or heating (42-54°C) a small segment (9 mm) of the nerve was monitored by the urethral striated muscle contractions and increases in intraurethral pressure induced by intermittent (5 s on and 20 s off) electrical stimulation (50 Hz, 0.2 ms) of the nerve. Cold block was observed at 5-15°C while heat block occurred at 50-54°C. A complete cold block up to 10 min was fully reversible, but a complete heat block was only reversible when the heating duration was less than 1.3 ± 0.1 min. A brief (<1 min) reversible complete heat block at 50-54°C or 15 min of nonblock mild heating at 46-48°C significantly increased the cold block temperature to 15-30°C. The effect of heating on cold block fully reversed within ∼40 min. This study discovered a novel method to block mammalian myelinated nerves at 15-30°C, providing the possibility to develop an implantable device to block axonal conduction and treat many chronic disorders. The effect of heating on cold block is of considerable interest because it raises many basic scientific questions that may help reveal the mechanisms underlying cold or heat block of axonal conduction. PMID:26740534

  16. Recovery of nerve conduction after a pneumatic tourniquet: observations on the hind-limb of the baboon1

    PubMed Central

    Fowler, T. J.; Danta, G.; Gilliatt, R. W.

    1972-01-01

    A small pneumatic cuff inflated around the knee was used to produce tourniquet paralysis in baboons. A cuff pressure of 1,000 mm Hg maintained for one to three hours produced paralysis of distal muscles lasting up to three months. Nerve conduction studies showed that most of the motor fibres to the abductor hallucis muscle were blocked at the level of the cuff and that they conducted impulses normally in their distal parts. There was a significant correlation between the duration of compression and that of the subsequent conduction block. When tested two to three weeks after the tourniquet, the amplitude of the response of m. abductor hallucis to nerve stimulation distal to the cuff was usually slightly reduced compared with the precompression figure. This was assumed to mean that a small proportion of the motor fibres had undergone Wallerian degeneration as a result of compression. Maximal motor conduction velocity was reduced in recovering nerves. It was also reduced when a cuff pressure of 500 mm Hg was used, which was insufficient to produce persistent conduction block. In such cases a reduced velocity without evidence of block could be demonstrated 24 hours after compression. Ascending nerve action potentials were recorded from the sciatic nerve in the thigh, with stimulation at the ankle. Before compression the fastest afferent fibres had a significantly higher velocity than the fastest motor fibres in the same nerve trunk. Results after compression suggested that the high-velocity afferent fibres had a susceptibililty to the procedure similar to that of the fastest motor fibres. PMID:4628467

  17. Implementation and evaluation of a statistical framework for nerve conduction study reference range calculation.

    PubMed

    Kong, Xuan; Schoenfeld, David A; Lesser, Eugene A; Gozani, Shai N

    2010-01-01

    Nerve conduction studies (NCS) play a central role in the clinical evaluation of neuropathies. Their clinical utilization depends on reference ranges that define the expected parameter values in disease-free individuals. In this paper, a statistical framework is proposed and described in detail for deriving NCS parameter reference ranges. The bootstrap technique is used to identify demographic and physiologic covariates that influence the NCS measurements. Multi-variate linear regression is used to improve the accuracy and effectiveness of NCS interpretation by reducing parameter variance. Non-linear mappings are used to transform parameters into a Gaussian distribution in order to minimize the influence of outliers. Modeling of heteroscedasticity observed in this and other studies leads to more sensible normal limits for several parameters. The proposed reference range method is automated using the MATLAB programming language. Data from a large sample of healthy subjects are used to establish reference ranges for 24 commonly measured NCS parameters. All but three parameters follow Gaussian distributions in their respective transformed domains. Excluding the distal motor latency difference between median and ulnar nerves, the reduction of the parameter variance as a result of regression in the transform domain is greater than 50% for all F-wave latency parameters and at least 10% for all other NCS parameters. Subject age is found to influence normal limits of all but one parameter and height has a statistically significant impact on all but three parameters. These reference range specifications provide clinicians with an alternative to developing their own reference ranges as long as their NCS techniques are consistent with those described in this paper. The proposed method should also be applicable to reference range development for other NCS techniques and physiological measurements. PMID:19497634

  18. Psychological performance in relation to central and peripheral nerve conduction in workers exposed to lead, zinc, and copper

    SciTech Connect

    Araki, S.; Yokoyama, K.; Aono, H.; Murata, K.

    1986-01-01

    Psychological performance was examined in relation to central and peripheral nerve conduction by means of the Wechsler Adult Intelligence Scale test, short-latency somatosensory-evoked potential (SSEP), and median nerve conduction velocity in 19 male gun-metal foundry workers exposed to lead, zinc, and copper. (Their blood lead concentrations--ie, 16-64 micrograms/dl with a mean of 42--and plasma zinc and copper concentrations were significantly higher than those of control subjects). In these workers, the score of picture completion (psychological performance) was significantly low; indicators of lead absorption, but no indicators of zinc and copper absorption, were significantly correlated with this score. The score of picture completion was significantly correlated with the N11-N13 latency of SSEP (conduction time in the spinobulbar region) in the workers; their N11-N13 latency, together with the N9 and N9-N11 latencies, was significantly prolonged and was significantly correlated with indicators of lead absorption. Furthermore, their maximal motor and sensory conduction velocities of the median nerve were significantly slowed. It is concluded that both psychological performance and central and peripheral nerve conduction may be impaired in lead-exposed workers with BPb's below approximately 60 micrograms/dl.

  19. Serial nerve conduction studies in vitamin B12 deficiency-associated polyneuropathy.

    PubMed

    Huang, Chi-Ren; Chang, Wen-Neng; Tsai, Nai-Wen; Lu, Cheng-Hsien

    2011-02-01

    This report is on a 22-year-old male vegetarian with acute polyneuropathy secondary to vitamin B(12) deficiency. He presented with weakness and numbness of the distal limbs and absent deep tendon reflex in all four extremities. Nerve conduction study (NCS) showed an axonal type sensori-motor polyneuropathy. Serum biochemical studies revealed vitamin B(12) level of 119 pg/mL (reference range 185-710 pg/mL), with elevated creatine kinase (CK) (719 U/L) and homocysteine (Hcy) (24.04 μmol/L) levels. Anti-parietal cell antibody test was positive. The patient received both oral and intramuscular injection of vitamin B(12). The amplitude of the median and ulnar motor NCS increased 2.5 months later, while muscle power of the ankle plantar flexion and dorsiflexion recovered after 3.5 and 5.5 months, respectively. Follow-up NCS after 14.5 months showed response in sural NCS, but not the peroneal NCS. Follow-up also showed decreased serum Hcy and CK to 9.6 μmol/L and 198 U/L, respectively, and increasing amplitude of response. Recovery sequence involved muscle power of the proximal muscles, hands, plantar flexion, and dorsiflexion of the feet, and followed by sensory conduction. PMID:20890625

  20. Cordycepin Decreases Compound Action Potential Conduction of Frog Sciatic Nerve In Vitro Involving Ca (2+) -Dependent Mechanisms.

    PubMed

    Yao, Li-Hua; Yu, Hui-Min; Xiong, Qiu-Ping; Sun, Wei; Xu, Yan-Liang; Meng, Wei; Li, Yu-Ping; Liu, Xin-Ping; Yuan, Chun-Hua

    2015-01-01

    Cordycepin has been widely used in oriental countries to maintain health and improve physical performance. Compound nerve action potential (CNAP), which is critical in signal conduction in the peripheral nervous system, is necessary to regulate physical performance, including motor system physiological and pathological processes. Therefore, regulatory effects of cordycepin on CNAP conduction should be elucidated. In this study, the conduction ability of CNAP in isolated frog sciatic nerves was investigated. Results revealed that cordycepin significantly decreased CNAP amplitude and conductive velocity in a reversible and concentration-dependent manner. At 50 mg/L cordycepin, CNAP amplitude and conductive velocity decreased by 62.18 ± 8.06% and 57.34% ± 6.14% compared with the control amplitude and conductive velocity, respectively. However, the depressive action of cordycepin on amplitude and conductive velocity was not observed in Ca(2+)-free medium or in the presence of Ca(2+) channel blockers (CdCl2/LaCl3). Pretreatment with L-type Ca(2+) channel antagonist (nifedipine/deltiazem) also blocked cordycepin-induced responses; by contrast, T-type and P-type Ca(2+) channel antagonists (Ni(2+)) failed to block such responses. Therefore, cordycepin decreased the conduction ability of CNAP in isolated frog sciatic nerves via L-type Ca(2+) channel-dependent mechanism. PMID:26078886

  1. Exercise and DHA prevent the negative effects of hypoxia on EEG and nerve conduction velocity.

    PubMed

    Erken, Haydar Ali; Erken, Gülten; Colak, Rıdvan; Genç, Osman

    2013-12-01

    It is known that hypoxia has a negative effect on nervous system functions, but exercise and DHA (docosahexaenoic acid) have positive effect. In this study, it was investigated whether exercise and/or DHA can prevent the effects of hypoxia on EEG and nerve conduction velocity (NCV). 35 adult Wistar albino male rats were divided into five groups (n=7): control (C), hypoxia (H), hypoxia and exercise (HE), hypoxia and DHA (HD), and hypoxia and exercise and DHA (HED) groups. During the 28-day hypoxia exposure, the HE and HED groups of rats were exercised (0% incline, 30 m/min speed, 20 min/day, 5 days a week). In addition, DHA (36 mg/kg/day) was given by oral gavage to rats in the HD and HED groups. While EEG records were taken before and after the experimental period, NCV records were taken after the experimental period from anesthetized rats. Data were analyzed by paired t-test, one-way ANOVA, and post hoc Tukey test. In this study, it was shown that exposure to hypoxia decreased theta activity and NCV, but exercise and DHA reduced the delta activity, while theta, alpha, beta activities, and NCV were increased. These results have shown that the effects of hypoxia exposure on EEG and NCV can be prevented by exercise and/or DHA. PMID:24377343

  2. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction.

    PubMed

    Patzig, Julia; Erwig, Michelle S; Tenzer, Stefan; Kusch, Kathrin; Dibaj, Payam; Möbius, Wiebke; Goebbels, Sandra; Schaeren-Wiemers, Nicole; Nave, Klaus-Armin; Werner, Hauke B

    2016-01-01

    Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity. PMID:27504968

  3. Septin/anillin filaments scaffold central nervous system myelin to accelerate nerve conduction

    PubMed Central

    Patzig, Julia; Erwig, Michelle S; Tenzer, Stefan; Kusch, Kathrin; Dibaj, Payam; Möbius, Wiebke; Goebbels, Sandra; Schaeren-Wiemers, Nicole; Nave, Klaus-Armin; Werner, Hauke B

    2016-01-01

    Myelination of axons facilitates rapid impulse propagation in the nervous system. The axon/myelin-unit becomes impaired in myelin-related disorders and upon normal aging. However, the molecular cause of many pathological features, including the frequently observed myelin outfoldings, remained unknown. Using label-free quantitative proteomics, we find that the presence of myelin outfoldings correlates with a loss of cytoskeletal septins in myelin. Regulated by phosphatidylinositol-(4,5)-bisphosphate (PI(4,5)P2)-levels, myelin septins (SEPT2/SEPT4/SEPT7/SEPT8) and the PI(4,5)P2-adaptor anillin form previously unrecognized filaments that extend longitudinally along myelinated axons. By confocal microscopy and immunogold-electron microscopy, these filaments are localized to the non-compacted adaxonal myelin compartment. Genetic disruption of these filaments in Sept8-mutant mice causes myelin outfoldings as a very specific neuropathology. Septin filaments thus serve an important function in scaffolding the axon/myelin-unit, evidently a late stage of myelin maturation. We propose that pathological or aging-associated diminishment of the septin/anillin-scaffold causes myelin outfoldings that impair the normal nerve conduction velocity. DOI: http://dx.doi.org/10.7554/eLife.17119.001 PMID:27504968

  4. Self-consistent analyses for potential conduction block in nerves by an ultrashort high-intensity electric pulse

    NASA Astrophysics Data System (ADS)

    Joshi, R. P.; Mishra, A.; Hu, Q.; Schoenbach, K. H.; Pakhomov, A.

    2007-06-01

    Simulation studies are presented that probe the possibility of using high-field (>100kV/cm) , short-duration (˜50ns) electrical pulses for nonthermal and reversible cessation of biological electrical signaling pathways. This would have obvious applications in neurophysiology, clinical research, neuromuscular stimulation therapies, and even nonlethal bioweapons development. The concept is based on the creation of a sufficiently high density of pores on the nerve membrane by an electric pulse. This modulates membrane conductance and presents an effective “electrical short” to an incident voltage wave traveling across a nerve. Net blocking of action potential propagation can then result. A continuum approach based on the Smoluchowski equation is used to treat electroporation. This is self-consistently coupled with a distributed circuit representation of the nerve dynamics. Our results indicate that poration at a single neural segment would be sufficient to produce an observable, yet reversible, effect.

  5. Comparison of short-term effects of insulin and essential fatty acids on the slowed nerve conduction of streptozotocin diabetes in rats.

    PubMed

    Julu, P O; Mutamba, A

    1991-11-01

    Early effects of insulin and essential fatty acids on nerve conduction were studied. Insulin-dependent diabetes was induced in rats using streptozocin (65 mg/kg, i.p.); control rats were treated with buffer. Five weeks later, diabetic rats were divided into 5 groups. Two groups were given oral essential fatty acids (75% linoleic and 9% gamma-linolenic acids) for a further 3 and 5 days, respectively. Two other groups received subcutaneous insulin for a further 3 or 5 days. A group of diabetic rats were left without further treatment. Motor nerve conduction velocity was measured terminally in all rats by stimulating the sciatic nerve and recording EMGs in the gastrocnemius muscle under urethane anaesthesia. Sensory nerve conduction velocity was measured by stimulating and recording from the saphenous nerve trunk. Diabetic rats had significantly slowed motor and sensory nerve conduction velocities after 5 weeks (16.7%, P less than 0.001). Three days treatment with either insulin or fatty acids corrected the slowed motor nerve conduction velocity to a normal level. Conduction velocity in myelinated sensory nerves was still 10% slower in diabetic rats treated with insulin for 3 days (P less than 0.01). It was above the control level by 11% in diabetic rats treated with fatty acids for the same period (P less than 0.01). Conduction velocities in both sensory and motor nerves were normal in diabetic rats treated with either insulin or fatty acids for 5 days. It was concluded that both insulin and essential fatty acids had early effects on nerve conduction in diabetic rats. The speed of their actions, and the magnitudes of responses were different in sensory and motor nerves. PMID:1663993

  6. [Electrophysiologic analysis of the lumbosacral radiculopathy using nerve root conduction velocity (NRCV) and cauda equina action potentials (CEAP)].

    PubMed

    Kamitani, K; Baba, H; Shimada, T; Chiba, H

    1993-07-01

    Nerve root conduction velocity (NRCV) and cauda equina action potential (CEAP) have been measured to assess the severity of lumbosacral radiculopathy, the level-specific diagnosis of the symptomatic roots, and to predict the outcome. This study included 71 patients (40 males, 31 females, average age of 54 years at the time of surgery) who underwent decompressive surgery for lumbar radiculopathy. The NRCV and CEAP were directly measured during the operation. The NRCV decreased significantly with progression of radicular symptoms. The NRCV showed a marked reduction in the nerve roots of the patients with a two years or longer history of radicular symptoms; or those with compression of the nerve roots on the imaging examinations; or nerve roots that were considered to have been subjected to persistent compression over a prolonged period with severe inflammation and adhesions. Multivariative analyses suggested that the NRCV correlated closely to the postoperative neurologic recovery, and the outcome of the lumbosacral radiculopathy could be predicted to some extent by measurements of NRCV. The level-specific diagnosis of the radiculopathy could be determined when the CEAP showed a more than 30% left-right potentials difference. PMID:8409633

  7. Cytocompatibility of a conductive nanofibrous carbon nanotube/poly (L-Lactic acid) composite scaffold intended for nerve tissue engineering

    PubMed Central

    Kabiri, Mahboubeh; Oraee-Yazdani, Saeed; Dodel, Masumeh; Hanaee-Ahvaz, Hana; Soudi, Sara; Seyedjafari, Ehsan; Salehi, Mohammad; Soleimani, Masoud

    2015-01-01

    The purpose of this study was to fabricate a conductive aligned nanofibrous substrate and evaluate its suitability and cytocompatibility with neural cells for nerve tissue engineering purposes. In order to reach these goals, we first used electrospinning to fabricate single-walled carbon-nanotube (SWCNT) incorporated poly(L-lactic acid) (PLLA) nanofibrous scaffolds and then assessed its cytocompatibility with olfactory ensheathing glial cells (OEC). The plasma treated scaffolds were characterized using scanning electron microscopy and water contact angle. OECs were isolated from olfactory bulb of GFP Sprague-Dawley rats and characterized using OEC specific markers via immunocytochemistry and flow cytometery. The cytocompatibility of the conductive aligned nano-featured scaffold was assessed using microscopy and MTT assay. We indicate that doping of PLLA polymer with SWCNT can augment the aligned nanosized substrate with conductivity, making it favorable for nerve tissue engineering. Our results demonstrated that SWCNT/PLLA composite scaffold promote the adhesion, growth, survival and proliferation of OEC. Regarding the ideal physical, topographical and electrical properties of the scaffold and the neurotrophic and migratory features of the OECs, we suggest this scaffold and the cell/scaffold construct as a promising platform for cell delivery to neural defects in nerve tissue engineering approaches. PMID:26600751

  8. Α-Dendrotoxin-sensitive Kv1 channels contribute to conduction failure of polymodal nociceptive C-fibers from rat coccygeal nerve.

    PubMed

    Wang, Xiu-Chao; Wang, Shan; Zhang, Ming; Gao, Fang; Yin, Chun; Li, Hao; Zhang, Ying; Hu, San-Jue; Duan, Jian-Hong

    2016-02-01

    It is known that some patients with diabetic neuropathy are usually accompanied by abnormal painful sensations. Evidence has accumulated that diabetic neuropathic pain is associated with the hyperexcitability of peripheral nociceptors. Previously, we demonstrated that reduced conduction failure of polymodal nociceptive C-fibers and enhanced voltage-dependent sodium currents of small dorsal root ganglion (DRG) neurons contribute to diabetic hyperalgesia. To further investigate whether and how potassium channels are involved in the conduction failure, α-dendrotoxin (α-DTX), a selective blocker of the low-threshold sustained Kv1 channel, was chosen to examine its functional capability in modulating the conduction properties of polymodal nociceptive C-fibers and the excitability of sensory neurons. We found that α-DTX reduced the conduction failure of C-fibers from coccygeal nerve in vivo accompanied by an increased initial conduction velocity but a decreased activity-dependent slowing of conduction velocity. In addition, the number of APs evoked by step currents was significantly enhanced after the treatment with α-DTX in small-diameter sensory neurons. Further study of the mechanism indicates α-DTX-sensitive K(+) current significantly reduced and the activation of this current in peak and steady state shifted to depolarization for diabetic neurons. Expression of Kv channel subunits Kv1.2 and Kv1.6 was downregulated in both small dorsal root ganglion neurons and peripheral C-fibers. Taken together, these results suggest that α-DTX-sensitive Kv1 channels might play an important role in regulating the conduction properties of polymodal nociceptive C-fibers and firing properties of sensory neurons. PMID:26609114

  9. Material properties and electrical stimulation regimens through polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits

    PubMed Central

    Moroder, Philipp; Wang, Huan; Ruesink, Terry; Lu, Lichun; Windebank, Anthony J.; Yaszemski, Michael J.; Runge, M. Brett

    2010-01-01

    Mechanical and electrical properties of polycaprolactone fumarate-polypyrrole (PCLF-PPy) scaffolds were studied under physiological conditions to evaluate their ability to maintain material properties necessary for application as conductive nerve conduits. PC12 cells cultured on PCLF-PPy scaffolds were stimulated with regimens of 10 μA of constant or 20 Hz frequency current passed through the scaffolds for 1 h/day. PC12 cellular morphologies were analyzed by fluorescence microscopy after 48 h. PCLF-PPy scaffolds exhibited excellent mechanical properties at 37°C which would allow suturing and flexibility. The surface resistivity of the scaffolds was 2kΩ and the scaffolds were electrically stable during application of electrical stimulation (ES). In vitro studies showed significant increases in percentage of neurite bearing cells, number of neurites per cell and neurite length in the presence of ES compared to no ES. Additionally, extending neurites were observed to align in the direction of the applied current. This study shows that electrically conductive PCLF-PPy scaffolds possess material properties necessary for application as nerve conduits. Additionally, the capability to significantly enhance and direct neurite extension by passing electrical current through PCLF-PPy scaffolds renders them even more promising as future therapeutic treatments for severe nerve injuries. PMID:20965280

  10. Association of interatrial septal abnormalities with cardiac impulse conduction disorders in adult patients: experience from a tertiary center in Kosovo

    PubMed Central

    Bakalli, Aurora; Pllana, Ejup; Koçinaj, Dardan; Bekteshi, Tefik; Dragusha, Gani; Gashi, Masar; Musliu, Nebih; Gashi, Zaim

    2011-01-01

    Interatrial septal disorders, which include: atrial septal defect, patent foramen ovale and atrial septal aneurysm, are frequent congenital anomalies found in adult patients. Early detection of these anomalies is important to prevent their hemodynamic and/or thromboembolic consequences. The aims of this study were: to assess the association between impulse conduction disorders and anomalies of interatrial septum; to determine the prevalence of different types of interatrial septum abnormalities; to assess anatomic, hemodynamic, and clinical consequences of interatrial septal pathologies. Fifty-three adult patients with impulse conduction disorders and patients without ECG changes but with signs of interatrial septal abnormalities, who were referred to our center for echocardiography, were included in a prospective transesophageal echocardiography study. Interatrial septal anomalies were detected in around 85% of the examined patients. Patent foramen ovale was encountered in 32% of the patients, and in combination with atrial septal aneurysm in an additional 11.3% of cases. Atrial septal aneurysm and atrial septal defect were diagnosed with equal frequency in 20.7% of our study population. Impulse conduction disorders were significantly more suggestive of interatrial septal anomalies than clinical signs and symptoms observed in our patients (84.91% vs 30.19%, P=0.002). Right bundle branch block was the most frequent impulse conduction disorder, found in 41 (77.36%) cases. We conclude that interatrial septal anomalies are highly associated with impulse conduction disorders, particularly with right bundle branch block. Impulse conduction disorders are more indicative of interatrial septal abnormalities in earlier stages than can be understood from the patient’s clinical condition. PMID:21977304

  11. Association of interatrial septal abnormalities with cardiac impulse conduction disorders in adult patients: experience from a tertiary center in Kosovo.

    PubMed

    Bakalli, Aurora; Pllana, Ejup; Koçinaj, Dardan; Bekteshi, Tefik; Dragusha, Gani; Gashi, Masar; Musliu, Nebih; Gashi, Zaim

    2011-01-01

    INTERATRIAL SEPTAL DISORDERS, WHICH INCLUDE: atrial septal defect, patent foramen ovale and atrial septal aneurysm, are frequent congenital anomalies found in adult patients. Early detection of these anomalies is important to prevent their hemodynamic and/or thromboembolic consequences. The aims of this study were: to assess the association between impulse conduction disorders and anomalies of interatrial septum; to determine the prevalence of different types of interatrial septum abnormalities; to assess anatomic, hemodynamic, and clinical consequences of interatrial septal pathologies. Fifty-three adult patients with impulse conduction disorders and patients without ECG changes but with signs of interatrial septal abnormalities, who were referred to our center for echocardiography, were included in a prospective transesophageal echocardiography study. Interatrial septal anomalies were detected in around 85% of the examined patients. Patent foramen ovale was encountered in 32% of the patients, and in combination with atrial septal aneurysm in an additional 11.3% of cases. Atrial septal aneurysm and atrial septal defect were diagnosed with equal frequency in 20.7% of our study population. Impulse conduction disorders were significantly more suggestive of interatrial septal anomalies than clinical signs and symptoms observed in our patients (84.91% vs 30.19%, P=0.002). Right bundle branch block was the most frequent impulse conduction disorder, found in 41 (77.36%) cases. We conclude that interatrial septal anomalies are highly associated with impulse conduction disorders, particularly with right bundle branch block. Impulse conduction disorders are more indicative of interatrial septal abnormalities in earlier stages than can be understood from the patient's clinical condition. PMID:21977304

  12. Motor nerve inexcitability in Guillain-Barré syndrome. The spectrum of distal conduction block and axonal degeneration.

    PubMed

    Triggs, W J; Cros, D; Gominak, S C; Zuniga, G; Beric, A; Shahani, B T; Ropper, A H; Roongta, S M

    1992-10-01

    We studied 34 patients with the Guillain-Barré syndrome (GBS) to clarify the clinical significance of inexcitable motor nerves and of low amplitude compound muscle action potentials (CMAPs). The patients were subdivided into two groups. Group 1 included eight patients who had electrically inexcitable motor nerves within 2 wks of the first symptom. (Two patients without extensive conduction studies had only one inexcitable motor nerve.) The outcome in this group at 1 yr varied from complete recovery (five patients) to severe motor sequelae (three patients). Group 2 included 26 patients who had two electrophysiological assessments, and in whom the serial changes in CMAP amplitudes were analysed and correlated to outcome. Fourteen of these 26 sets of serial studies were performed within 1 mth. Twelve of 26 patients in Group 2 showed decrease in the amplitude of CMAPs between serial studies; only six of these had a good outcome at 1 yr. Nine of 26 patients showed increase in CMAP amplitude between serial studies, of these eight had a good clinical outcome. Low-amplitude CMAPs or inexcitable motor nerves in the initial stages of GBS are due to distal pathology of the motor axons, either distal conduction block or axonal degeneration. The nature of these changes cannot be predicted by the results of the initial electrophysiological evaluation, including the presence or absence of active denervation. However, improvement of CMAP amplitude on sequential studies suggests a good outcome at 1 yr. We believe that, in the absence of a biological marker for GBS, individualization of an 'axonal variant' of the syndrome is not warranted at the present time. PMID:1422789

  13. Investigation of effects of two-different treatment modalities on nerve conduction in patients with ankylosing spondylitis.

    PubMed

    Capkin, Erhan; Karkucak, Murat; Kose, Muammer Muslim; Çakmak, Vildan Altunayoğlu; Turkyilmaz, Aysegul Kucukali; Tosun, Mehmet

    2012-02-01

    The objective of this study was to investigate any relationship between peripheral neuropathy and anti-TNF-α therapy used in ankylosing spondylitis (AS). Thirty-nine patients monitored in our clinic with a diagnosis of AS and without neuropathic symptoms were enrolled in the study. Patients were divided into two groups. The first consisted of 21 patients using biological agents for more than one year. The control group was made up of 18 patients of similar age and demographic characteristics receiving non-biological therapy. Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) scores were calculated, and sedimentation rate and C-reactive protein (CRP) levels measured. Motor and sensory nerve conduction analysis for the median, tibial, and sural nerves was performed. The nerve conduction results of the biological therapy group were then compared with those of the non-biological therapy group. Thirty-nine patients with a mean age of 37.05 ± 8.1 were enrolled. Patients were divided into two groups, depending on drugs used. The first group (using anti-TNF-α) consisted of 21 patients with a mean age of 42.2 ± 8.8, and the second (the non-biological group) of 18 patients with a mean age of 35.8 ± 7.5. There was no statistically significant difference between the groups in terms of age, sex, drug use, or duration of disease (p = 0.052, p = 0.55, p = 0.33, and p = 0.72, respectively). Sedimentation rate, CRP, and BASDAI scores were statistically significantly higher in the second group (p = 0.04, p = 0.03, and p = 0.009, respectively). No statistically significant difference was determined in any parameters at nerve conduction analysis between the two groups (p > 0.05). There was a positive correlation between sedimentation rate and median sensory conduction velocity (p = 0.02, r = 0.48) and tibial conduction velocity (p = 0.07, r = 0.43). A negative correlation was determined between duration of disease and median distal motor

  14. Fenestration in the myelin sheath of nerve fibers of the shrimp: a novel node of excitation for saltatory conduction.

    PubMed

    Hsu, K; Terakawa, S

    1996-07-01

    Giant nerve fibers of the shrimp family Penaeidae conduct impulses at the velocity highest among all animal species (approximately 210 m/s; highest in mammals = 120 m/s). We examined these giant and other small nerve fibers morphologically using a differential interference contrast microscope as well as an electron microscope, and found a very specialized form of excitable membrane that functions as a node for saltatory conduction of the impulse. This node appeared under the light microscope as a characteristic pattern of concentrically aligned rings in a very small spot of the myelin sheath. The diameter of the innermost ring of the node was about 5 microns, and the distance between these nodes was as long as 12 mm. Via an electron microscope, these nodes were characterized by a complete lack of the myelin sheath, forming a fenestration that has a tight junction with an axonal membrane. Voltage clamp measurements by a sucrose gap technique demonstrated that the axonal membrane at these fenestration nodes is exclusively excitable and that the large submyelinic space is a unique conductive pathway for loop currents for saltatory conduction through such fenestration nodes. PMID:8807532

  15. Structural and Functional Abnormalities of Retinal Ganglion Cells Measured In Vivo at the Onset of Optic Nerve Head Surface Change in Experimental Glaucoma

    PubMed Central

    Fortune, Brad; Burgoyne, Claude F.; Cull, Grant A.; Reynaud, Juan; Wang, Lin

    2012-01-01

    Purpose. To compare peripapillary retinal nerve fiber layer thickness (RNFLT), RNFL retardance, and retinal function at the onset of optic nerve head (ONH) surface topography change in experimental glaucoma (EG). Methods. Thirty-three rhesus macaques had three or more weekly baseline measurements in both eyes of ONH surface topography, peripapillary RNFLT, RNFL retardance, and multifocal electroretinography (mfERG). Laser photocoagulation was then applied to the trabecular meshwork of one eye to induce chronic elevation of IOP and weekly recordings continued alternating between ONH surface topography and RNFLT during one week and RNFL retardance and mfERG the next week. Data were pooled for the group at the onset of ONH surface topography change in each EG eye, which was defined as the first date when either the mean position of the disc (MPD) fell below the 95% confidence limit of each eye's individual baseline range and/or when the topographic change analysis (TCA) map was subjectively judged as having demonstrated change, whichever came first. Analysis of variance with post hoc tests corrected for multiple comparisons were used to assess parameter changes. Results. At onset of ONH surface topography change, there was no significant difference for RNFLT versus baseline or fellow control eyes. RNFL retardance and mfERG were significantly reduced in the recordings just prior (median of 9 days) to ONH onset (P < 0.01) and had progressed significantly (P < 0.001) an average of 17 days later (median of 7 days after ONH onset). RNFLT did not exhibit significant thinning until 15 days after onset of ONH surface topography change (P < 0.001). Conclusions. These results support the hypothesis that during the course of glaucomatous neurodegeneration, axonal cytoskeletal and retinal ganglion cell functional abnormalities exist before thinning of peripapillary RNFL axon bundles begins. PMID:22589428

  16. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    NASA Astrophysics Data System (ADS)

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-08-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys.

  17. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound

    PubMed Central

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-01-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys. PMID:27488621

  18. Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound.

    PubMed

    Han, Seung Zeon; Lim, Sung Hwan; Kim, Sangshik; Lee, Jehyun; Goto, Masahiro; Kim, Hyung Giun; Han, Byungchan; Kim, Kwang Ho

    2016-01-01

    The precipitation strengthening of Cu alloys inevitably accompanies lowering of their electric conductivity and ductility. We produced bulk Cu alloys arrayed with nanofibers of stiff intermetallic compound through a precipitation mechanism using conventional casting and heat treatment processes. We then successfully elongated these arrays of nanofibers in the bulk Cu alloys to 400% of original length without breakage at room temperature using conventional rolling process. By inducing such an one-directional array of nanofibers of intermetallic compound from the uniform distribution of fine precipitates in the bulk Cu alloys, the trade-off between strength and conductivity and between strength and ductility could be significantly reduced. We observed a simultaneous increase in electrical conductivity by 1.3 times and also tensile strength by 1.3 times in this Cu alloy bulk compared to the conventional Cu alloys. PMID:27488621

  19. CNS involvement in CMTX1 caused by a novel connexin 32 mutation: a 6-year follow-up in neuroimaging and nerve conduction.

    PubMed

    Xie, Chong; Zhou, Xiajun; Zhu, Desheng; Liu, Wei; Wang, Xiaoqing; Yang, Hong; Li, Zezhi; Hao, Yong; Zhang, Guang-Xian; Guan, Yangtai

    2016-07-01

    X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) is one of the most common inherited neurological disorders. Obvious CNS involvement is relatively rare in CMTX1 patients. A 24-year-old male with CMTX1 presented with three transient stroke-like attacks, and was followed up regularly for 6 years with brain MRI and electrophysiological examination. Transient symmetrical high signals on T2 imaging and restricted diffusion were found in bilateral deep white matter. Electrophysiological measurement revealed a sensorimotor peripheral neuropathy with slightly reduced nerve conduction velocities. A novel thymine to cytosine mutation at nucleotide position 445 in the connexin 32 allele of the GJB1 gene was identified. During the 6-year longitudinal study, patient's motor and sensory function did not worsen; radiological abnormalities correlated with episodes of CNS dysfunction and resolved after clinical recovery; electrophysiological records showed no obvious change. Little change in the patient's clinical, radiological and electrophysiological results over the follow-up reflected a slow disease progression. PMID:27098243

  20. Pycnogenol efficiency on glycaemia, motor nerve conduction velocity and markers of oxidative stress in mild type diabetes in rats.

    PubMed

    Jankyova, S; Kucera, P; Goldenberg, Z; Yaghi, D; Navarova, J; Kyselova, Z; Stolc, S; Klimas, J; Racanska, E; Matyas, S

    2009-08-01

    The aim of this study was to describe the effects of Pycnogenol at various doses on preprandial and postprandial glucose levels, the levels of thiobarbituric acid reactive substances (TBARs) and N-acetyl-beta-d-glucosaminidase (NAGA) and on motor nerve conduction velocity (MNCV) in streptozotocin (STZ)-induced diabetic rats. Pycnogenol treatment (10, 20, 50 mg/kg body weight (b.w.)/day) lasted for 8 weeks after induction of diabetes. Pycnogenol significantly decreased elevated levels of preprandial glycaemia in treated animals at all doses. At doses of 10 mg/kg b.w./day and 20 mg/kg b.w./day it significantly decreased elevated levels of postprandial glycaemia compared with diabetic non-treated animals. Pycnogenol failed to induce a significant decrease of postprandial glycaemia at a dose of 50 mg/kg b.w./day. Pycnogenol improved significantly the impaired MNCV at doses of 10 and 20 mg/kg b.w./day compared with non-treated animals. The levels of TBARs were elevated in diabetic rats. The levels of NAGA increased gradually despite the treatment. Pycnogenol failed to affect the increased levels of TBARs and NAGA. Pycnogenollowered the elevated levels of glycaemia and reduced the decline in motor nerve conduction velocity in STZ-induced diabetic rats. The effect of Pycnogenol on postprandial glycaemic levels and MNCV was not dose-dependent. PMID:19165752

  1. Saltatory conduction revealed by unidimensional latency-topography of peripheral nerve impulse.

    PubMed

    Homma, S; Mizote, M; Nakajima, Y

    1983-09-01

    The ventral or dorsal root of the rat was placed on 12 electrodes arranged side by side at 0.4 mm intervals. Impulse conduction along the fiber was displayed using unidimensional latency-topography, which corresponds to the relation between latency and electrode distance. The relation revealed step-like displacement, which implies saltatory conduction of the impulse. Since the distance between the plateaux correspond to internodal length, the conduction velocity could be calculated from the length and the time differences between plateaux. It was found from 36 observations that : (i) mean internodal length was 0.92 +/- 0.13 mm (range 0.70--1.25 mm); (ii) mean conduction velocity was 76.1 +/- 20.7 m/s; and (iii) the correlation coefficient of conduction velocity and internodal length was statistically significant at r = 0.38 (P less than 0.025), so the longer the internodal length, the higher the conduction velocity. PMID:6633955

  2. Easy Method to Examine Single Nerve Fiber Excitability and Conduction Parameters Using Intact Nonanesthetized Earthworms

    ERIC Educational Resources Information Center

    Bähring, Robert; Bauer, Christiane K.

    2014-01-01

    The generation and conduction of neuronal action potentials (APs) were the subjects of a cell physiology exercise for first-year medical students. In this activity, students demonstrated the all-or-none nature of AP generation, measured conduction velocity, and examined the dependence of the threshold stimulus amplitude on stimulus duration. For…

  3. Effects of IDPN-induced axonal swellings on conduction in motor nerve fibers.

    PubMed

    Stanley, E F; Griffin, J W; Fahnestock, K E

    1985-07-01

    Paranodal demyelination produces a reduction of conduction velocity and conduction block. The relative proportions of these changes appear to vary among different demyelinating disorders. In this study we have examined the effects on conduction of paranodal demyelination produced by giant axonal swellings. The axonal swellings were induced in rats by administration of beta, beta'-iminodipropionitrile (IDPN). In this experimental model synchronous axonal swellings occur in the proximal region of virtually every alpha-motorneuron without evidence of segmental demyelination or fiber loss. Conduction across the motor neuron was evaluated by two methods: a monosynaptic reflex pathway and intracellular recording from single motor neurons. Increases in the delay across the central region of the monosynaptic reflex pathway began between 2 and 4 days after toxin administration. Intracellular studies confirmed that the slowing occurred across the proximal regions of the motor axons; more distal regions of the motor axons were unaffected. The substantial reduction in conduction velocity over the swollen segment occurs with only moderate evidence of conduction block, as assayed by a reduction in the H-reflex/M-response amplitude ratio. Parallel morphological studies showed that in the enlarged fibers the myelin terminal loops maintained contact with the axon but were displaced from the paranodal region into the internode. The appearance of this "passive" paranodal demyelination correlated closely with the increase in conduction delay. We suggest that the contact maintained by the displaced myelin terminal loops with the axolemma allows saltatory conduction to continue, and explains the paucity of conduction block in this model despite the prominent conduction slowing. PMID:2993531

  4. In situ synthesis of robust conductive cellulose/polypyrrole composite aerogels and their potential application in nerve regeneration.

    PubMed

    Shi, Zhuqun; Gao, Huichang; Feng, Jiao; Ding, Beibei; Cao, Xiaodong; Kuga, Shigenori; Wang, Yingjun; Zhang, Lina; Cai, Jie

    2014-05-19

    Nanostructured conductive polymers can offer analogous environments for extracellular matrix and induce cellular responses by electric stimulation, however, such materials often lack mechanical strength and tend to collapse under small stresses. We prepared electrically conductive nanoporous materials by coating nanoporous cellulose gels (NCG) with polypyrrole (PPy) nanoparticles, which were synthesized in situ from pyrrole monomers supplied as vapor. The resulting NCG/PPy composite hydrogels were converted to aerogels by drying with supercritical CO2, giving a density of 0.41-0.53 g cm(-3), nitrogen adsorption surface areas of 264-303 m(2) g(-1), and high mechanical strength. The NCG/PPy composite hydrogels exhibited an electrical conductivity of up to 0.08 S cm(-1). In vitro studies showed that the incorporation of PPy into an NCG enhances the adhesion and proliferation of PC12 cells. Electrical stimulation demonstrated that PC12 cells attached and extended longer neurites when cultured on NCG/PPy composite gels with DBSA dopant. These materials are promising candidates for applications in nerve regeneration, carbon capture, catalyst supports, and many others. PMID:24711342

  5. Loss of Cystic Fibrosis Transmembrane Conductance Regulator Function Produces Abnormalities in Tracheal Development in Neonatal Pigs and Young Children

    PubMed Central

    Meyerholz, David K.; Stoltz, David A.; Namati, Eman; Ramachandran, Shyam; Pezzulo, Alejandro A.; Smith, Amanda R.; Rector, Michael V.; Suter, Melissa J.; Kao, Simon; McLennan, Geoffrey; Tearney, Guillermo J.; Zabner, Joseph; McCray, Paul B.; Welsh, Michael J.

    2010-01-01

    Rationale: Although airway abnormalities are common in patients with cystic fibrosis (CF), it is unknown whether they are all secondary to postnatal infection and inflammation, which characterize the disease. Objectives: To learn whether loss of the cystic fibrosis transmembrane conductance regulator (CFTR) might affect major airways early in life, before the onset of inflammation and infection. Methods: We studied newborn CFTR−/− pig trachea, using computed tomography (CT) scans, pathology, and morphometry. We retrospectively analyzed trachea CT scans in young children with CF and also previously published data of infants with CF. Measurements and Main Results: We discovered three abnormalities in the porcine CF trachea. First, the trachea and mainstem bronchi had a uniformly small caliber and cross-sections of trachea were less circular than in controls. Second, trachealis smooth muscle had an altered bundle orientation and increased transcripts in a smooth muscle gene set. Third, submucosal gland units occurred with similar frequency in the mucosa of CF and control airways, but CF submucosal glands were hypoplastic and had global reductions in tissue-specific transcripts. To learn whether any of these changes occurred in young patients with CF, we examined CT scans from children 2 years of age and younger, and found that CF tracheas were less circular in cross-section, but lacked differences in lumen area. However, analysis of previously published morphometric data showed reduced tracheal lumen area in neonates with CF. Conclusions: Our findings in newborn CF pigs and young patients with CF suggest that airway changes begin during fetal life and may contribute to CF pathogenesis and clinical disease during postnatal life. PMID:20622026

  6. Electrodiagnostic study of peripheral nerves in high-voltage electrical injury.

    PubMed

    Kwon, Ki Han; Kim, Se Hoon; Minn, Yang Ki

    2014-01-01

    It is well known that peripheral nerves are very vulnerable to electricity. However, only a small portion of individuals who have had high-voltage electrical injury exhibit peripheral nerve damage. The aim of this study was to investigate peripheral nerve damage in high-voltage electrical injury, which often occurs in the industrial field. The authors reviewed the medical records of patients who were admitted to their hospital from January 2009 to December 2011, because of electrical injuries. The results of nerve conduction studies (NCSs) were reviewed retrospectively. NCS data of the injured site were compared with those of the opposite noninjured site and follow-up data. Thirty-seven extremities were reviewed. The authors found that 18 of 33 median nerves (48.6%) showed abnormalities in at least one parameter and 15 of 36 ulnar nerves (41.7%) exhibited abnormalities. There was no evidence of demyelination. Eight patients had undergone NCS on the opposite normal extremities. The compound muscle action potential and nerve conduction velocity were higher at the normal site. Follow-up NCS were performed in 14 patients: the compound muscle action potential and nerve conduction velocity values of all patients were improved. High-voltage electricity damaged peripheral nerves by causing axonal injury rather than demyelinating injury. Hence, even if NCSs yield normal findings, peripheral nerves may be damaged. F/U studies and opposite examinations are required for the exact evaluation of peripheral nerve damage. PMID:23877148

  7. Defects responsible for abnormal n-type conductivity in Ag-excess doped PbTe thermoelectrics

    SciTech Connect

    Ryu, Byungki Lee, Jae Ki; Lee, Ji Eun; Joo, Sung-Jae; Kim, Bong-Seo; Min, Bok-Ki; Lee, Hee-Woong; Park, Su-Dong; Oh, Min-Wook

    2015-07-07

    Density functional calculations have been performed to investigate the role of Ag defects in PbTe thermoelectric materials. Ag-defects can be either donor, acceptor, or isovalent neutral defect. When Ag is heavily doped in PbTe, the neutral (Ag-Ag) dimer defect at Pb-site is formed and the environment changes to the Pb-rich/Te-poor condition. Under Pb-rich condition, the ionized Ag-interstitial defect (Ag{sub I}{sup +}) becomes the major donor. The formation energy of Ag{sub I}{sup +} is smaller than other native and Ag-related defects. Also it is found that Ag{sub I}{sup +} is an effective dopant. There is no additional impurity state near the band gap and the conduction band minimum. The charge state of Ag{sub I}{sup +} defect is maintained even when the Fermi level is located above the conduction band minimum. The diffusion constant of Ag{sub I}{sup +} is calculated based on the temperature dependent Fermi level, formation energy, and migration energy. When T > 550 K, the diffusion length of Ag within a few minutes is comparable to the grain size of the polycrystalline PbTe, implying that Ag is dissolved into PbTe and this donor defect is distributed over the whole lattice in Ag-excess doped polycrystalline PbTe. The predicted solubility of Ag{sub I}{sup +} well explains the increased electron carrier concentration and electrical conductivity reported in Ag-excess doped polycrystalline PbTe at T = 450–750 K [Pei et al., Adv. Energy Mater. 1, 291 (2011)]. In addition, we suggest that this abnormal doping behavior is also found for Au-doped PbTe.

  8. Electrophysiology and nerve biopsy in men exposed to lead

    PubMed Central

    Buchthal, F.; Behse, F.

    1979-01-01

    ABSTRACT Twenty lead-exposed men were selected on the basis of a maximum level of lead in the blood of 70-140 μg/100 ml within the past year. There was no clinical evidence of neuropathy attributable to lead and haemoglobin levels were normal. In individuals, maximum motor and sensory conduction and the amplitude of the evoked potentials were normal or borderline in the median, peroneal and sural nerves, except in the distal portion of the deep peroneal nerve. In this nerve, motor conduction was slowed because of compression by metal-lined safety shoes; changes in this segment are not included in the findings. When the average conduction velocity in lead-exposed men was compared with the average in nerves of controls matched for age, distal motor latency was slightly prolonged in the median nerve. The average latency for proximal muscle supplied by the peroneal nerve was prolonged, and the maximum motor conduction velocity was slowed in the median nerve from elbow to wrist (0·01 > p <0·001). In addition, the average maximum sensory conduction was slightly slowed along the distal and intermediate portion of the superficial peroneal and sural nerves (p <0·001). The average minimum sensory conduction velocities were normal, as were the average amplitudes of the evoked muscle action potentials and the average ratio of amplitude of the muscle action potential evoked by stimuli at a proximal and a distal nerve site. The average amplitude of the sensory potentials recorded in the median and the superficial peroneal nerves tended to be increased. Electromyography of the abductor pollicis brevis and anterior tibial muscles showed that the only abnormality was an increased incidence of polyphasic potentials in the anterior tibial muscle of seven men. Neither the slowing in conduction nor the histological findings in the sural nerves of eight men were related to the level of lead in the blood. The slight slowing in conduction suggests a minor defect in the excitable

  9. Postoperative improvement in DASH score, clinical findings, and nerve conduction velocity in patients with cubital tunnel syndrome

    PubMed Central

    Ido, Yoshikazu; Uchiyama, Shigeharu; Nakamura, Koichi; Itsubo, Toshiro; Hayashi, Masanori; Hata, Yukihiko; Imaeda, Toshihiko; Kato, Hiroyuki

    2016-01-01

    We investigated a recovery pattern in subjective and objective measures among 52 patients with cubital tunnel syndrome after anterior subcutaneous transposition of the ulnar nerve. Disabilities of the Arm, Shoulder and Hand (DASH) score (primary outcome), numbness score, grip and pinch strength, Semmes-Weinstein (SW) score, static 2-point discrimination (2PD) score, and motor conduction velocity (MCV) stage were examined preoperatively and 1, 3, 6, 12, and ≥24 months postoperatively. Statistical analyses were conducted to evaluate how each variable improved after surgery. A linear mixed-effects model was used for continuous variables (DASH score, numbness, grip and pinch strength), and a proportional odds model was used for categorical variables (SW and 2PD tests and MCV stages). DASH score significantly improved by 6 months. Significant recovery in numbness and SW test scores occurred at 1 month. Grip and pinch strength, 2PD test scores, and MCV stage improved by 3 months. DASH scores and numbness recovered regardless of age, sex, or disease severity. It was still unclear if both subjective and objective measures improved beyond 1-year postoperatively. These data are helpful for predicting postoperative recovery patterns and tend to be most important for patients prior to surgery. PMID:27263860

  10. Effects of 90 min of manual repetitive work on skin temperature and median and ulnar nerve conduction parameters: a pilot study in normal subjects.

    PubMed

    Bonfiglioli, Roberta; Mussoni, Patrizia; Graziosi, Francesca; Calabrese, Monica; Farioli, Andrea; Marinelli, Francesco; Violante, Francesco S

    2013-02-01

    To test whether the influence of manual activity should be considered when interpreting the results of nerve conduction study (NCS) of the upper limbs performed during work shifts, we evaluated the short-term effect of 90-min repetitive manual work on NCS parameters. Twenty-eight healthy volunteers underwent NCS of the dominant limb at the end of an interview (T(0)), after a 30-min rest in sitting position (T(1)) and after performing a standardized 90-min manual task (T(2)). The task was designed to simulate typical assembly and packing activities. No significant differences were observed for skin temperature (Ts) and NCS parameters between T(0) and T(1). Significantly (p < 0.001) higher Ts mean values were found at T(2) as compared to the previous tests for both females and males. The regression analysis showed an association between temperature variation and nerve conduction velocity values for the median and ulnar nerve at T(2) as compared to T(1). In females, a reduction of the mean sensory nerve action potential (SNAP) amplitude at T(2) was recorded, whereas an opposite trend was observed among males. Manual work is able to influence hand Ts and to modify NCS parameters. SNAP amplitudes changes suggest gender differences in peripheral nerve characteristics that deserve further investigation. PMID:23063257

  11. Heart rate, conduction and ultrasound abnormalities in adults with joint hypermobility syndrome/Ehlers-Danlos syndrome, hypermobility type.

    PubMed

    Camerota, Filippo; Castori, Marco; Celletti, Claudia; Colotto, Marco; Amato, Silvia; Colella, Alessandra; Curione, Mario; Danese, Chiara

    2014-07-01

    Joint hypermobility syndrome (JHS) and Ehlers-Danlos syndrome, hypermobility type (EDS-HT) are two clinically overlapping heritable connective tissue disorders strongly associating with pain, fatigue and other secondary aspects. Though not considered a diagnostic criterion for most EDS subtypes, cardiovascular involvement is a well-known complication in EDS. A case-control study was carried out on 28 adults with JHS/EDS-HT diagnosed according to current criteria, compared to 29 healthy subjects evaluating resting electrocardiographic (ECG), 24-h ECG and resting heart ultrasound data. Results obtained in the ECG studies showed a moderate excess in duration of the PR interval and P wave, an excess of heart conduction and rate abnormalities and an increased rate of mitral and tricuspid valve insufficiency often complicating with "true" mitral valve prolapse in the ecocardiographic study. These variable ECG subclinical anomalies reported in our sample may represent the resting surrogate of such a subnormal cardiovascular response to postural changes that are known to be present in patients with JHS/EDS-HT. Our findings indicate the usefulness of a full cardiologic evaluation of adults with JHS/EDS-HT for the correct management. PMID:24752348

  12. Ionic currents of the nodal membrane underlying the fastest saltatory conduction in myelinated giant nerve fibers of the shrimp Penaeus japonicus.

    PubMed

    Terakawa, S; Hsu, K

    1991-06-01

    The myelinated giant nerve fiber of the shrimp, Penaeus japonicus, is known to have the fastest velocity of saltatory impulse conduction among all nerve fibers so far studied, owing to its long distances between nodal regions and large diameter. For a better understanding of the basis of this fast conduction, a medial giant fiber of the ventral nerve cord of the shrimp was isolated, and ionic currents of its presynaptic membrane (a functional node) were examined using the sucrose-gap voltage-clamp method. Inward currents induced by depolarizing voltage pulses had a maximum value of 0.5 microA and a reversal potential of 120 mV. These currents were completely suppressed by tetrodotoxin and greatly prolonged by scorpion toxin, suggesting that they are the Na current. Both activation and inactivation kinetics of the Na current were unusually rapid in comparison with those of vertebrate nodes. According to a rough estimation of the excitable area, the density of Na current reached 500 mA/cm2. In many cases, the late outward currents were induced only by depolarizing pulses larger than 50 mV in amplitude. The slope conductance measured from late currents were mostly smaller than that measured from the Na current, suggesting a low density of K channels in the synaptic membrane. These characteristics are in good harmony with the fact that the presynaptic membrane plays a role as functional node in the fastest impulse conduction of this nerve fiber. PMID:1716299

  13. Peripheral nerve injuries in the athlete.

    PubMed

    Feinberg, J H; Nadler, S F; Krivickas, L S

    1997-12-01

    Peripheral nerves are susceptible to injury in the athlete because of the excessive physiological demands that are made on both the neurological structures and the soft tissues that protect them. The common mechanisms of injury are compression, traction, ischaemia and laceration. Seddon's original classification system for nerve injuries based on neurophysiological changes is the most widely used. Grade 1 nerve injury is a neuropraxic condition, grade 2 is axonal degeneration and grade 3 is nerve transection. Peripheral nerve injuries are more common in the upper extremities than the lower extremities, tend to be sport specific, and often have a biomechanical component. While the more acute and catastrophic neurological injuries are usually obvious, many remain subclinical and are not recognised before neurological damage is permanent. Early detection allows initiation of a proper rehabilitation programme and modification of biomechanics before the nerve injury becomes irreversible. Recognition of nerve injuries requires an understanding of peripheral neuroanatomy, knowledge of common sites of nerve injury and an awareness of the types of peripheral nerve injuries that are common and unique to each sport. The electrodiagnostic exam, usually referred to as the 'EMG', consists of nerve conduction studies and the needle electrode examination. It is used to determine the site and degree of neurological injury and to predict outcome. It should be performed by a neurologist or physiatrist (physician specialising in physical medicine and rehabilitation), trained and skilled in this procedure. Timing is essential if the study is to provide maximal information. Findings such as decreased recruitment after injury and conduction block at the site of injury may be apparent immediately after injury but other findings such as abnormal spontaneous activity may take several weeks to develop. The electrodiagnostic test assists with both diagnosis of the injury and in predicting

  14. Diagnostic Significance of Ultrasonographic Measurements and Median-Ulnar Ratio in Carpal Tunnel Syndrome: Correlation with Nerve Conduction Studies

    PubMed Central

    Mesci, Nilgün; Çetinkaya, Yilmaz; Geler Külcü, Duygu

    2016-01-01

    Background and Purpose We determined the reliability of ultrasonography (US) measurements for diagnosing carpal tunnel syndrome (CTS) and their correlation with symptom duration and electrophysiology findings. We determined whether the ratio of the median-to-ulnar cross-sectional areas (CSAs) can support CTS diagnoses. Methods The pisiform CSA (CSApisiform), swelling ratio (SR), palmar bowing, and CSApisiform/ulnar CSA (CSAulnar) measurements made in two subgroups of CTS patients (having sensory affection alone or having both sensory and motor affection) were compared with controls. CSAulnar was measured in Guyon's canal at the level of most-protuberant portion of the pisiform bone. Results The values of all of the measured US parameters were higher in patients with CTS (n=50) than in controls (n=62). CSApisiform could be used to diagnose CTS of mild severity. All of the parameters were positively correlated with the distal latency of the compound muscle action potential, and all of them except for SR were negatively correlated with the sensory nerve conduction velocity. A CSApisiform/CSAulnar ratio of ≥1.79 had a sensitivity of 70% and a specificity of 76% for diagnosing CTS. Conclusions Only CSApisiform measurements were reliable for diagnosing early stages of CTS, and CSApisiform/CSAulnar had a lower diagnostic value for diagnosing CTS. PMID:27095524

  15. The role of skin conductivity in a low frequency exposure assessment for peripheral nerve tissue according to the ICNIRP 2010 guidelines

    NASA Astrophysics Data System (ADS)

    Schmid, Gernot; Cecil, Stefan; Überbacher, Richard

    2013-07-01

    Based on numerical computations using commercially available finite difference time domain code and a state-of-the art anatomical model of a 5-year old child, the influence of skin conductivity on the induced electric field strength inside the tissue for homogeneous front-to-back magnetic field exposure and homogeneous vertical electric field exposure was computed. Both ungrounded as well as grounded conditions of the body model were considered. For electric field strengths induced inside CNS tissue the impact of skin conductivity was found to be less than 15%. However, the results demonstrated that the use of skin conductivity values as obtainable from the most widely used data base of dielectric tissue properties and recommended by safety standards are not suitable for exposure assessment with respect to peripheral nerve tissue according to the ICNIRP 2010 guidelines in which the use of the induced electric field strengths inside the skin is suggested as a conservative surrogate for peripheral nerve exposure. This is due to the fact that the skin conductivity values derived from these data bases refer to the stratum corneum, the uppermost layer of the skin, which does not contain any nerve or receptor cells to be protected from stimulation effects. Using these skin conductivity values which are approximately a factor 250-500 lower than skin conductivity values used in studies on which the ICNIRP 2010 guidelines are based on, may lead to overestimations of the induced electric field strengths inside the skin by substantially more than a factor of 10. However, reliable conductivity data of deeper skin layers where nerve and preceptor cells are located is very limited. It is therefore recommended to include appropriate background information in the ICNIRP guidelines and the dielectric tissue property databases, and to put some emphasis on a detailed layer-specific characterization of skin conductivity in near future.

  16. The role of skin conductivity in a low frequency exposure assessment for peripheral nerve tissue according to the ICNIRP 2010 guidelines.

    PubMed

    Schmid, Gernot; Cecil, Stefan; Überbacher, Richard

    2013-07-01

    Based on numerical computations using commercially available finite difference time domain code and a state-of-the art anatomical model of a 5-year old child, the influence of skin conductivity on the induced electric field strength inside the tissue for homogeneous front-to-back magnetic field exposure and homogeneous vertical electric field exposure was computed. Both ungrounded as well as grounded conditions of the body model were considered. For electric field strengths induced inside CNS tissue the impact of skin conductivity was found to be less than 15%. However, the results demonstrated that the use of skin conductivity values as obtainable from the most widely used data base of dielectric tissue properties and recommended by safety standards are not suitable for exposure assessment with respect to peripheral nerve tissue according to the ICNIRP 2010 guidelines in which the use of the induced electric field strengths inside the skin is suggested as a conservative surrogate for peripheral nerve exposure. This is due to the fact that the skin conductivity values derived from these data bases refer to the stratum corneum, the uppermost layer of the skin, which does not contain any nerve or receptor cells to be protected from stimulation effects. Using these skin conductivity values which are approximately a factor 250-500 lower than skin conductivity values used in studies on which the ICNIRP 2010 guidelines are based on, may lead to overestimations of the induced electric field strengths inside the skin by substantially more than a factor of 10. However, reliable conductivity data of deeper skin layers where nerve and preceptor cells are located is very limited. It is therefore recommended to include appropriate background information in the ICNIRP guidelines and the dielectric tissue property databases, and to put some emphasis on a detailed layer-specific characterization of skin conductivity in near future. PMID:23774744

  17. Nerve conduction, visual evoked responses and electroretinography in tunnel workers previously exposed to acrylamide and N-methylolacrylamide containing grouting agents.

    PubMed

    Goffeng, Lars Ole; Heier, Mona Skard; Kjuus, Helge; Sjöholm, Hans; Sørensen, Kjell Aage; Skaug, Vidar

    2008-01-01

    The study examines possible persisting effects on the peripheral nervous system and visual system in tunnel workers previously exposed to acrylamide and N-methylolacrylamide during grouting work. We compared neurophysiological function in 44 tunnel workers previously exposed during grouting operations (2-10 years post exposure), with 49 tunnel workers with no history of exposure to acrylamide. Nerve conduction velocities (NCV), distal delay, F-response and amplitude in median and ulnar nerves of the right arm, peroneal, sural and tibial nerves of the right leg, visual evoked response (VER) and electroretinography (ERG) were measured. VER and ERG were also performed in 24 subjects more recently exposed to acrylamide grout (16 months post exposure). Exposure to acrylamide containing grouts was assessed by questionnaires. A statistically significant reduction in the mean sensory NCV of the sural nerve (p=0.005), as well as a non-significant reduction of sural amplitude was found in the previously exposed group compared to the control group. VER latencies to the onset of the occipital potential (N75) were prolonged in both exposed groups compared to the control group (p<0.05). ERG 30 Hz flicker amplitude was reduced in the recently exposed group compared to the referents (p<0.05). The results indicate slight subclinical, but persistent toxic effects in the sural nerve and the visual system in tunnel workers exposed to N-methylolacrylamide and acrylamide during grouting operations. PMID:18353610

  18. A transgenic zebrafish model of a human cardiac sodium channel mutation exhibits bradycardia, conduction-system abnormalities and early death.

    PubMed

    Huttner, Inken G; Trivedi, Gunjan; Jacoby, Arie; Mann, Stefan A; Vandenberg, Jamie I; Fatkin, Diane

    2013-08-01

    The recent exponential increase in human genetic studies due to the advances of next generation sequencing has generated unprecedented numbers of new gene variants. Determining which of these are causative of human disease is a major challenge. In-vitro studies and murine models have been used to study inherited cardiac arrhythmias but have several limitations. Zebrafish models provide an attractive alternative for modeling human heart disease due to similarities in cardiac electrophysiology and contraction, together with ease of genetic manipulation, external development and optical transparency. Although zebrafish cardiac mutants and morphants have been widely used to study loss and knockdown of zebrafish gene function, the phenotypic effects of human dominant-negative gene mutations expressed in transgenic zebrafish have not been evaluated. The aim of this study was to generate and characterize a transgenic zebrafish arrhythmia model harboring the pathogenic human cardiac sodium channel mutation SCN5A-D1275N, that has been robustly associated with a range of cardiac phenotypes, including conduction disease, sinus node dysfunction, atrial and ventricular arrhythmias, and dilated cardiomyopathy in humans and in mice. Stable transgenic fish with cardiac expression of human SCN5A were generated using Tol2-mediated transgenesis and cardiac phenotypes were analyzed using video microscopy and ECG. Here we show that transgenic zebrafish expressing the SCN5A-D1275N mutation, but not wild-type SCN5A, exhibit bradycardia, conduction-system abnormalities and premature death. We furthermore show that SCN5A-WT, and to a lesser degree SCN5A-D1275N, are able to compensate the loss of endogenous zebrafish cardiac sodium channels, indicating that the basic pathways, through which SCN5A acts, are conserved in teleosts. This proof-of-principle study suggests that zebrafish may be highly useful in vivo models to differentiate functional from benign human genetic variants in cardiac

  19. Altered Active Zones, Vesicle Pools, Nerve Terminal Conductivity, and Morphology during Experimental MuSK Myasthenia Gravis

    PubMed Central

    Patel, Vishwendra; Oh, Anne; Voit, Antanina; Sultatos, Lester G.; Babu, Gopal J.; Wilson, Brenda A.; Ho, Mengfei; McArdle, Joseph J.

    2014-01-01

    Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG. PMID:25438154

  20. The Effect of the Silicone Ring Tourniquet and Standard Pneumatic Tourniquet on the Motor Nerve Conduction, Pain and Grip Strength in Healthy Volunteers

    PubMed Central

    Drosos, Georgios I.; Kiziridis, Georgios; Aggelopoulou, Cristina; Galiatsatos, Dimitrios; Anastassopoulos, George; Ververidis, Athanasios; Kazakos, Konstantinos

    2016-01-01

    Background: The pneumatic tourniquet (PT) is routinely used in upper and lower limb operations by most orthopaedic surgeons. The silicone ring tourniquet (SRT) was introduced in clinical practice over the last decade. Clinical as well as comparative studies have been published in volunteers concerning its safety and efficacy. The aim of this study was to investigate the postoperative effect of the silicone ring tourniquet (SRT), primarily on the motor nerve conduction, and secondarily on the pain and grip strength, in comparison to the effect of the pneumatic tourniquet (PT) in healthy volunteers. Methods: Both tourniquets were applied in the forearm of the dominant arm in 20 healthy volunteers and were kept on for 10 minutes. Pain was measured using the visual analogue scale and grip strength was measured with a hand dynamometer. We evaluated the following parameters of median nerve conduction: motor conduction velocity (MCV), latency (LAT) and amplitude (AMP). Results: Pain score at the time of tourniquet application was higher in SRT group but the alteration in pain scores in PT group was higher, with statistical significance (P<0.05). The grip strength was reduced by the application of both tourniquets; however there was a significantly higher reduction in the SRT group (P<0.05). The conduction impairment of the median nerve was worse in the PT group than in the SRT one, according to the changes in MCV (P<0.05). Conclusion: Median nerve conduction was affected more after PT application as compared to the SRT. Nevertheless, the reduction of grip strength was higher after the SRT application. PMID:26894213

  1. Role of cardiotoxin and phospholipase A in the blockade of nerve conduction and depolarization of skeletal muscle induced by cobra venom

    PubMed Central

    Chang, C. C.; Chuang, Sing-Tai; Lee, C. Y.; Wei, J. W.

    1972-01-01

    1. The effects of phospholipase A (PhA), cardiotoxin (CTX) and neurotoxin (cobrotoxin) isolated from Formosan cobra (Naja naja atra) venom on conduction of the rat phrenic nerve and membrane potential of the rat diaphragm were studied. 2. Phospholipase A, lysolecithin and cobrotoxin were without effect on the axonal conduction. Cardiotoxin was the only active agent in cobra venom, but it was less potent than the crude venom. 3. The blocking action of cardiotoxin was markedly accelerated by the simultaneous administration of phospholipase A. However, the minimum effective concentration of cardiotoxin (100 μg/ml), was not decreased by phospholipase A. Pretreatment of the nerve with phospholipase A, followed by washout, did not alter the activity of cardiotoxin. 4. Cardiotoxin (3 μg/ml) completely depolarized the membrane of superficial muscle fibres within 60 min, being 3 times more potent than the crude venom. Phospholipase A, on the other hand, needed a dose 30 times higher and a prolonged period of incubation to induce depolarization of similar extent. Cobrotoxin was without effect on membrane potentials. 5. CaCl2 (10 mM) effectively antagonized the nerve blocking as well as the depolarizing effect of the crude venom, cardiotoxin or cardiotoxin plus phospholipase A. By contrast, the slow depolarizing effect of phospholipase A was enhanced by high concentrations of calcium. 6. Cardiotoxic fractions of Indian cobra venom affected both nerve conduction and diaphragm membrane potential in exactly the same way as cardiotoxin. Toxin A of the same venom was without effect. 7. It is concluded that the active agent in cobra venoms either on axonal conduction or on muscle membrane is cardiotoxin. The synergistic effect of phospholipase A on cardiotoxin appears to be due to acceleration rather than potentiation of its action. The mechanism of action of cardiotoxin and its synergism by phospholipase A are discussed. PMID:5041453

  2. Optic nerve hypoplasia in children.

    PubMed Central

    Zeki, S. M.; Dutton, G. N.

    1990-01-01

    Optic nerve hypoplasia (ONH) is characterised by a diminished number of optic nerve fibres in the optic nerve(s) and until recently was thought to be rare. It may be associated with a wide range of other congenital abnormalities. Its pathology, clinical features, and the conditions associated with it are reviewed. Neuroendocrine disorders should be actively sought in any infant or child with bilateral ONH. Early recognition of the disorder may in some cases be life saving. Images PMID:2191713

  3. Normalization of sonographical multifocal nerve enlargements in a MADSAM patient following a good clinical response to intravenous immunoglobulin.

    PubMed

    Tanaka, Kanta; Ota, Natsuko; Harada, Yuzuru; Wada, Ikko; Suenaga, Toshihiko

    2016-09-01

    Focal nerve enlargements at sites of conduction blocks can be visualized sonographically in patients with multifocal acquired demyelinating sensory and motor neuropathy (MADSAM). However, little is known about association between nerve morphological changes and treatment responses. Here we present a 73-year-old female MADSAM patient whose sonographical multifocal nerve enlargements normalized following a good treatment response. She was admitted to our department with progressive asymmetrical muscle weakness and sensory disturbances for 6 months. Ultrasonography revealed multifocal nerve enlargements at sites of electrophysiological demyelination. Intravenous immunoglobulin improved her symptoms and electrophysiological abnormalities. Six months later, ultrasonography revealed normalization of multifocal nerve enlargements. Contrary to our observations, one previous report described a MADSAM patient with persistent nerve enlargements at the sites of resolved conduction blocks. In this earlier patient, however, the time from onset to remission was approximately 30 months. Morphological changes of nerve enlargements in MADSAM may vary with treatment response. PMID:27460345

  4. Hypoglossal nerve dysfunction and sleep-disordered breathing after stroke

    PubMed Central

    Chervin, Ronald D.; Wolfe, James; Hughes, Rebecca; Concannon, MaryAnn; Lisabeth, Lynda D.; Gruis, Kristen L.

    2014-01-01

    Objective: This cross-sectional study of acute ischemic stroke patients examined relationships between hypoglossal nerve conduction, sleep-disordered breathing (SDB), and its severity. Methods: Patients within 7 days of stroke underwent nocturnal respiratory monitoring with the ApneaLink device and hypoglossal nerve conduction studies. Results: Eighteen of 52 subjects (35% [95% confidence interval: 22%, 49%]) had an abnormal hypoglossal amplitude and 23 (44% [95% confidence interval: 30%, 59%]) had an abnormal hypoglossal latency. No differences were identified in hypoglossal nerve latency or amplitude between those with (n = 26) and without (n = 26) significant SDB, defined by an apnea-hypopnea index ≥15. However, hypoglossal nerve conduction latency was associated (linear regression p < 0.05) with SDB severity as reflected by the apnea-hypopnea index. Conclusions: Acute ischemic stroke patients have a high prevalence of hypoglossal nerve dysfunction. Further studies are needed to explore whether hypoglossal nerve dysfunction may be a cause or consequence of SDB in stroke patients and whether this association can provide further insight into the pathophysiology of SDB in this population. PMID:24587476

  5. Assessing nerves in leprosy.

    PubMed

    Garbino, José Antonio; Heise, Carlos Otto; Marques, Wilson

    2016-01-01

    Leprosy neuropathy is dependent on the patient's immune response and expresses itself as a focal or multifocal neuropathy with asymmetric involvement. Leprosy neuropathy evolves chronically but recurrently develops periods of exacerbation during type 1 or type 2 reactions, leading to acute neuropathy. Nerve enlargement leading to entrapment syndromes is also a common manifestation. Pain may be either of inflammatory or neuropathic origin. A thorough and detailed evaluation is mandatory for adequate patient follow-up, including nerve palpation, pain assessment, graded sensory mapping, muscle power testing, and autonomic evaluation. Nerve conduction studies are a sensitive tool for nerve dysfunction, including new lesions during reaction periods or development of entrapment syndromes. Nerve ultrasonography is also a very promising method for nerve evaluation in leprosy. The authors propose a composite nerve clinical score for nerve function assessment that can be useful for longitudinal evaluation. PMID:26773623

  6. Effects of pyrethroid molecules on rat nerves in vitro: potential to reverse temperature-sensitive conduction block of demyelinated peripheral axons

    PubMed Central

    Lees, George

    1998-01-01

    Prolongation of action potentials by cooling or pharmacological treatment can restore conduction in demyelinated axons. We have assessed the ability of pyrethroids (in vitro) to modify action potential kinetics and to reverse conduction block in lesioned peripheral nerve. Fast Na+ currents were isolated in mammalian neuroblastoma (NIE115). Pyrethroids (4 μM) concurrently slowed inactivation and produced a spectrum of pronounced tail currents: s-bioallethrin (duration 12.2±7 ms), permethrin (24.2±3 ms) and deltamethrin (2230±100 ms). Deltamethrin (5 μM) effected a slowly developing depression of compound action potential (CAP) amplitude in peroneal nerve trunks (P<0.05). Permethrin produced no net effect on CAP amplitude, area or repolarization time. s-Bioallethrin (5 μM) enhanced CAP area, time for 90% repolarization and induced regenerative activity in a subpopulation of axons. Tibial nerve trunks were demyelinated by lysolecithin (2 μl) injection: 6–14 days later, slowly-conducting axons in the CAP (and peri-axonal microelectrode recordings) were selectively blocked by warming to 37°C. At 37°C, s-bioallethrin (45 min, 5 μM) produced much greater after-potentials in lesioned nerves than in uninjected controls: area (P<0.05) and relative amplitude ratios (P<0.0001) were significantly altered. In 3 of 4 cells (single-unit recording), s-bioallethrin restored conduction through axons exhibiting temperature-dependent block by raising blocking temperature (by 1.5 to >3°C) and reducing refractory period. s-Bioallethrin induced temperature-dependent regenerative activity only in a sub-population of axons even after prolonged superfusion (>1 h). It was concluded that pyrethroids differentially alter Na+ current kinetics and action potential kinetics. The effects of s-bioallethrin are consistent with reversal of conduction block by demyelinated axons but regenerative/ectopic firing even in normal cells is likely to underpin its acknowledged

  7. EFFECTS OF HYPERGLYCEMIA ON RAT CAVERNOUS NERVE AXONS: A FUNCTIONAL AND ULTRASTRUCTURAL STUDY

    PubMed Central

    Zotova, Elena G.; Schaumburg, Herbert H.; Raine, Cedric S.; Cannella, Barbara; Tar, Moses; Melman, Arnold; Arezzo, Joseph C.

    2008-01-01

    The present study explored parallel changes in the physiology and structure of myelinated (Aδ) and unmyelinated (C) small diameter axons in the cavernous nerve of rats associated with streptozotocin-induced hyperglycemia. Damage to these axons is thought to play a key role in diabetic autonomic neuropathy and erectile dysfunction, but their pathophysiology has been poorly studied. Velocities in slow conducting fibers were measured by applying multiple unit procedures; histopathology was evaluated with both light and electron microscopy. To our knowledge, these are the initial studies of slow nerve conduction velocities in the distal segments of the cavernous nerve. We report that hyperglycemia is associated with a substantial reduction in the amplitude of the slow conducting response, as well as a slowing of velocities within this very slow range (<2.5 m/sec). Even with prolonged hyperglycemia (> 4 months), histopathological abnormalities were mild and limited to the distal segments of the cavernous nerve. Structural findings included dystrophic changes in nerve terminals, abnormal accumulations of glycogen granules in unmyelinated and preterminal axons, and necrosis of scattered smooth muscle fibers. The onset of slowing of velocity in the distal cavernous nerve occurred subsequent to slowing in somatic nerves in the same rats. The functional changes in the cavernous nerve anticipated and exceeded the axonal degeneration detected by morphology. The physiologic techniques outlined in these studies are feasible in most electrophysiologic laboratories and could substantially enhance our sensitivity to the onset and progression of small fiber diabetic neuropathy. PMID:18687329

  8. Aminoguanidine effects on nerve blood flow, vascular permeability, electrophysiology, and oxygen free radicals

    SciTech Connect

    Kihara, Mikihiro; Schmelzer, J.D.; Poduslo, J.F.; Curran, G.L.; Nickander, K.K.; Low, P.A. )

    1991-07-15

    Since advanced glycosylation end products have been suggested to mediate hyperglycemia-induced microvascular atherogenesis and because aminoguanidine (AG) prevents their generation, the authors examined whether AG could prevent or ameliorate the physiologic and biochemical indices of streptozotocin (STZ)-induced experimental diabetic neuropathy. Four groups of adult Sprague-Dawley rats were studied: group I received STZ plus AG, group II received STZ plus AG, group III received STZ alone, and group IV was a control. They monitored conduction and action potential amplitudes serially in sciatic-tibial and caudal nerves, nerve blood flow, oxygen free radical activity (conjugated dienes and hydroperoxides), and the product of the permeability coefficient and surface area to {sup 125}I-labeled albumin. STZ-induced diabetes (group III) caused a 57% reduction in nerve blood flow and in abnormal nerve conduction and amplitudes and a 60% increase in conjugated dienes. Nerve blood flow was normalized by 8 weeks with AG (groups I and II) and conduction was significantly improved, in a dose-dependent manner, by 16 and 24 weeks in sciatic-tibial and caudal nerves, respectively. The permeability coefficient was not impaired, suggesting a normal blood-nerve barrier function for albumin, and the oxygen free-radical indices were not ameliorated by AG. They suggest that AG reverses nerve ischemia and more gradually improves their electrophysiology by an action on nerve microvessels. AG may have potential in the treatment of diabetic neuropathy.

  9. Pinched Nerve

    MedlinePlus

    ... Enhancing Diversity Find People About NINDS NINDS Pinched Nerve Information Page Table of Contents (click to jump ... being done? Clinical Trials Organizations What is Pinched Nerve? The term "pinched nerve" is a colloquial term ...

  10. Nerve biopsy

    MedlinePlus

    Nerve biopsy may be done to help diagnose: Axon degeneration (destruction of the axon portion of the nerve cell) Damage to the ... Demyelination Inflammation of the nerve Leprosy Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis

  11. Longitudinal changes of nerve conduction velocity, distal motor latency, compound motor action potential duration, and skin temperature during prolonged exposure to cold in a climate chamber.

    PubMed

    Maetzler, Walter; Klenk, Jochen; Becker, Clemens; Zscheile, Julia; Gabor, Kai-Steffen; Lindemann, Ulrich

    2012-09-01

    Changes of nerve conduction velocity (NCV), distal motor latency (DML), compound motor action potential (CMAP) duration, and skin temperature with regard to cold have been investigated by use of ice packs or cold water baths, but not after cooling of environmental temperature which has higher ecological validity. The aim of this study was to investigate these parameters during cooled room temperature. NCV, DML, and CMAP duration of the common fibular nerve, and skin temperature were measured in 20 healthy young females during exposure to 15°C room temperature, coming from 25°C room. We found that NCV decreased and DML increased linearly during 45 min observation time, in contrast to CMAP duration and skin temperature which changes followed an exponential curve. To the best of our knowledge, this is the first study investigating changes of these parameters during exposure to environmental cold. The results may pilot some new hypotheses and studies on physiological and pathological changes of the peripheral nervous system and skin to environmental cold, e.g., in elderly with peripheral neuropathies. PMID:22510085

  12. Autonomic nervous system dysfunction in workers exposed to lead, zinc, and copper in relation to peripheral nerve conduction: a study of R-R interval variability

    SciTech Connect

    Murata, K.; Araki, S. )

    1991-01-01

    Quantitative assessment of the autonomic neurotoxicity due to lead was undertaken by measuring variability in the electrocardiographic R-R interval (CVRR) in 16 male workers exposed to lead, zinc, copper, and tin and in 16 unexposed control subjects. Two component coefficients of variation in the R-R interval, the C-CVRSA (respiratory sinus arrhythmia) and C-CVMWSA (Mayer wave related sinus arrhythmia), were examined; these indices are considered to reflect parasympathetic and sympathetic activities, respectively. Maximal motor and sensory conduction velocities (MCV and SCV) in the median nerve were also measured. In the 16 exposed workers, blood lead concentrations ranged from 16 to 60 (mean 34) micrograms/dl. The CVRR and C-CVRSA were found to be significantly reduced in the workers with elevated lead, zinc, and copper absorption as compared to unexposed control subjects; also, the MCV and SCV were significantly slowed. The C-CVMWSA was not significantly reduced, and was positively related to plasma zinc concentrations. No significant relationships were found between indicators of lead and copper absorption and these electrophysiological measurements. These data suggest that subclinical toxicity of lead occurs in the parasympathetic component of the autonomic nervous system as well as in the peripheral nerves. Zinc may antagonize the autonomic nervous dysfunction caused by lead.

  13. Evaluation of left atrial mechanical function and atrial conduction abnormalities in Maras powder (smokeless tobacco) users and smokers

    PubMed Central

    Akcay, Ahmet; Naci Aydin, M; Acar, Gurkan; Akgungor, Mehmet; Cabioglu, Eren; Ardic, İdris; Mese, Bulent; Bozoglan, Orhan; Çetin, Mustafa; Çakıcı, Musa

    2015-01-01

    Summary Objective In Turkey, a type of smokeless tobacco called Maras powder (MP) is widely used in the south-eastern region. Smokeless tobacco is found in preparations for chewing and for absorption by the nasal and oral mucosae. The purpose of this study was to investigate whether MP damages intra- and inter-atrial conduction delay and left atrial (LA) mechanical function as much as cigarette smoking. Method A total of 150 chronic MP users (50 males, 32.5 ± 5.4 years), smokers (50 males, 32.1 ± 6.0 years) and controls (50 males, 30.1 ± 5.8 years) were included in the study. LA volumes were measured echocardiographically according to the biplane area–length method. Atrial electromechanical coupling was measured with tissue Doppler imaging and LA mechanical function parameters were calculated. Results The LA passive emptying fraction was significantly decreased and LA active emptying volume (LAAEV) was significantly increased in the MP group (p = 0.012 and p = 0.024, respectively), and the LA active emptying fraction (LAAEF) was significantly increased in the smokers (p = 0.003). There was a positive correlation between the amount of MP used and smoking (pack years) with LAAEV and LAAEF (r = 0.26, p = 0.009 and r = 0.25, p = 0.013, respectively). Lateral atrial electromechanical intervals (PA) were significantly higher in MP users, and the septal mitral PA was statistically higher in the smokers (p = 0.05 and p = 0.04, respectively). Conclusion We suggest that atrial electromechanical coupling intervals were prolonged and LA mechanical function was impaired in MP users and smokers, but there was no significant difference between the MP users and smokers. These findings may be markers of subclinical cardiac involvement and tendency for atrial fibrillation. PMID:26592906

  14. Cystic fibrosis transmembrane conductance regulator (CFTR) gene abnormalities in Indian males with congenital bilateral absence of vas deferens & renal anomalies

    PubMed Central

    Gajbhiye, Rahul; Kadam, Kaushiki; Khole, Aalok; Gaikwad, Avinash; Kadam, Seema; Shah, Rupin; Kumaraswamy, Rangaswamy; Khole, Vrinda

    2016-01-01

    Background & objectives: The role of cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in congenital bilateral absence of vas deferens and unilateral renal agenesis (CBAVD-URA) has been controversial. Here, we report the cases of five Indian males with CBAVD-URA. The objective was to evaluate the presence or absence of CFTR gene mutations and variants in CBAVD-URA. The female partners of these males were also screened for cystic fibrosis (CF) carrier status. Methods: Direct DNA sequencing of CFTR gene was carried out in five Indian infertile males having CBAVD-URA. Female partners (n=5) and healthy controls (n=32) were also screened. Results: Three potential regulatory CFTR gene variants (c.1540A>G, c.2694T>G and c.4521G>A) were detected along with IVS8-5T mutation in three infertile males with CBAVD-URA. Five novel CFTR gene variants (c.621+91A>G, c.2752+106A>T, c.2751+85_88delTA, c.3120+529InsC and c.4375-69C>T), four potential regulatory CFTR gene variants (M470V, T854T, P1290P, Q1463Q) and seven previously reported CFTR gene variants (c.196+12T>C, c.875+40A>G, c.3041-71G>C, c.3271+42A>T, c.3272-93T>C, c.3500-140A>C and c.3601-65C>A) were detected in infertile men having CBAVD and renal anomalies Interpretation & conclusions: Based on our findings, we speculate that CBAVD-URA may also be attributed to CFTR gene mutations and can be considered as CFTR-related disorder (CFTR-RD). The CFTR gene mutation screening may be offered to CBAVD-URA men and their female partners undergoing ICSI. Further studies need to be done in a large sample to confirm the findings. PMID:27488005

  15. Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy

    PubMed Central

    2013-01-01

    Background In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. Results We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Conclusions Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities. PMID:23937664

  16. A composite SWNT-collagen matrix: characterization and preliminary assessment as a conductive peripheral nerve regeneration matrix

    NASA Astrophysics Data System (ADS)

    Tosun, Z.; McFetridge, P. S.

    2010-12-01

    Unique in their structure and function, single-walled carbon nanotubes (SWNTs) have received significant attention due to their potential to create unique conductive materials. For neural applications, these conductive materials hold promise as they may enhance regenerative processes. However, like other nano-scaled biomaterials it is important to have a comprehensive understanding how these materials interact with cell systems and how the biological system responds to their presence. These investigations aim to further our understanding of SWNT-cell interactions by assessing the effect SWNT/collagen hydrogels have on PC12 neuronal-like cells seeded within and (independently) on top of the composite material. Two types of collagen hydrogels were prepared: (1) SWNTs dispersed directly within the collagen (SWNT/COL) and (2) albumin-coated SWNTs prepared using the surfactant 'sodium cholate' to improve dispersion (AL-SWNT/COL) and collagen alone serving as a control (COL). SWNT dispersion was significantly improved when using surfactant-assisted dispersion. The enhanced dispersion resulted in a stiffer, more conductive material with an increased collagen fiber diameter. Short-term cell interactions with PC12 cells and SWNT composites have shown a stimulatory effect on cell proliferation relative to plain collagen controls. In parallel to these results, p53 gene displayed normal expression levels, which indicates the absence of nanoparticle-induced DNA damage. In summary, these mechanically tunable SWNT-collagen scaffolds show the potential for enhanced electrical activity and have shown positive in vitro biocompatibility results offering further evidence that SWNT-based materials have an important role in promoting neuronal regeneration.

  17. Optic nerve hypoplasia.

    PubMed

    Kaur, Savleen; Jain, Sparshi; Sodhi, Harsimrat B S; Rastogi, Anju; Kamlesh

    2013-05-01

    Optic nerve hypoplasia (ONH) is a congenital anomaly of the optic disc that might result in moderate to severe vision loss in children. With a vast number of cases now being reported, the rarity of ONH is obviously now refuted. The major aspects of ophthalmic evaluation of an infant with possible ONH are visual assessment, fundus examination, and visual electrophysiology. Characteristically, the disc is small, there is a peripapillary double-ring sign, vascular tortuosity, and thinning of the nerve fiber layer. A patient with ONH should be assessed for presence of neurologic, radiologic, and endocrine associations. There may be maternal associations like premature births, fetal alcohol syndrome, maternal diabetes. Systemic associations in the child include endocrine abnormalities, developmental delay, cerebral palsy, and seizures. Besides the hypoplastic optic nerve and chiasm, neuroimaging shows abnormalities in ventricles or white- or gray-matter development, septo-optic dysplasia, hydrocephalus, and corpus callosum abnormalities. There is a greater incidence of clinical neurologic abnormalities in patients with bilateral ONH (65%) than patients with unilateral ONH. We present a review on the available literature on the same to urge caution in our clinical practice when dealing with patients with ONH. Fundus photography, ocular coherence tomography, visual field testing, color vision evaluation, neuroimaging, endocrinology consultation with or without genetic testing are helpful in the diagnosis and management of ONH. (Method of search: MEDLINE, PUBMED). PMID:24082663

  18. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients

    PubMed Central

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-01-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. PMID:27512251

  19. An association between phantom limb sensations and stump skin conductance during transcutaneous electrical nerve stimulation (TENS) applied to the contralateral leg: a case study.

    PubMed

    Katz, J; France, C; Melzack, R

    1989-03-01

    This report describes a placebo-controlled study of transcutaneous electrical nerve stimulation (TENS) applied to the contralateral lower leg and outer ears of an amputee with non-painful phantom sensations. The subject received TENS or placebo stimulation on separate sessions in which baseline periods of no stimulation alternated with periods of TENS (or placebo). Throughout the two sessions, continuous measures of stump skin conductance, surface skin temperature and phantom intensity were obtained. The results showed that TENS applied to the contralateral leg was significantly more effective than a placebo in decreasing the intensity of phantom sensations, whereas stimulation of the outer ears led to a non-significant increase. The pattern of electrodermal activity on the TENS session was consistently linear during baseline periods, indicating a progressive increase in sympathetic sudomotor activity. In contrast, during periods of electrical stimulation the pattern of electrodermal activity was consistently curvilinear indicating an initial decrease followed by an increase in sudomotor responses. Changes in stump skin conductance correlated significantly with changes in phantom sensations both in TENS and placebo sessions suggesting a relationship between sympathetic activity at the stump and paresthesias referred to the phantom. Two hypotheses are presented to account for these findings. PMID:2785260

  20. Effect of high-frequency repetitive transcranial magnetic stimulation on motor cortical excitability and sensory nerve conduction velocity in subacute-stage incomplete spinal cord injury patients.

    PubMed

    Cha, Hyun Gyu; Ji, Sang-Goo; Kim, Myoung-Kwon

    2016-07-01

    [Purpose] The aim of the present study was to determine whether repetitive transcranial magnetic stimulation can improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. [Subjects and Methods] This study was conducted on 20 subjects with diagnosed paraplegia due to spinal cord injury. These 20 subjects were allocated to an experimental group of 10 subjects that underwent active repetitive transcranial magnetic stimulation or to a control group of 10 subjects that underwent sham repetitive transcranial magnetic stimulation. The SCI patients in the experimental group underwent active repetitive transcranial magnetic stimulation and conventional rehabilitation therapy, whereas the spinal cord injury patients in the control group underwent sham repetitive transcranial magnetic stimulation and conventional rehabilitation therapy. Participants in both groups received therapy five days per week for six-weeks. Latency, amplitude, and sensory nerve conduction velocity were assessed before and after the six week therapy period. [Results] A significant intergroup difference was observed for posttreatment velocity gains, but no significant intergroup difference was observed for amplitude or latency. [Conclusion] repetitive transcranial magnetic stimulation may be improve sensory recovery of the lower extremities in subacute-stage spinal cord injury patients. PMID:27512251

  1. Nerve biopsy

    MedlinePlus

    ... Loss of axon tissue Metabolic neuropathies Necrotizing vasculitis Sarcoidosis Risks Allergic reaction to the local anesthetic Discomfort ... Neurosarcoidosis Peripheral neuropathy Primary amyloidosis Radial nerve dysfunction Sarcoidosis Tibial nerve dysfunction Update Date 6/1/2015 ...

  2. Ultrasonography for nerve compression syndromes of the upper extremity

    PubMed Central

    Choi, Soo-Jung; Ahn, Jae Hong; Ryu, Dae Shik; Kang, Chae Hoon; Jung, Seung Mun; Park, Man Soo; Shin, Dong-Rock

    2015-01-01

    Nerve compression syndromes commonly involve the nerves in the upper extremity. High-resolution ultrasonography (US) can satisfactorily assess these nerves and may detect the morphological changes of the nerves. US can also reveal the causes of nerve compression when structural abnormalities or space-occupying lesions are present. The most common US finding of compression neuropathy is nerve swelling proximal to the compression site. This article reviews the normal anatomic location and US appearances of the median, ulnar, and radial nerves. Common nerve compression syndromes in the upper extremity and their US findings are also reviewed. PMID:25682987

  3. Nerve and muscle involvement in mitochondrial disorders: an electrophysiological study.

    PubMed

    Mancuso, Michelangelo; Piazza, Selina; Volpi, Leda; Orsucci, Daniele; Calsolaro, Valeria; Caldarazzo Ienco, Elena; Carlesi, Cecilia; Rocchi, Anna; Petrozzi, Lucia; Calabrese, Rosanna; Siciliano, Gabriele

    2012-04-01

    Involvement of the peripheral nervous system in mitochondrial disorders (MD) has been previously reported. However, the exact prevalence of peripheral neuropathy and/or myopathy in MD is still unclear. In order to evaluate the prevalence of neuropathy and myopathy in MD, we performed sensory and motor nerve conduction studies (NCS) and concentric needle electromyography (EMG) in 44 unselected MD patients. NCS were abnormal in 36.4% of cases, and were consistent with a sensori-motor axonal multineuropathy (multifocal neuropathy), mainly affecting the lower limbs. EMG evidence of myopathy was present in 54.5% of patients, again mainly affecting the lower limbs. Nerve and muscle involvement was frequently subclinical. Peripheral nerve and muscle involvement is common in MD patients. Our study supports the variability of the clinical expression of MD. Further studies are needed to better understand the molecular basis underlying the phenotypic variability among MD patients. PMID:21751099

  4. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  5. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    PubMed Central

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  6. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects.

    PubMed

    Liu, Huawei; Wen, Weisheng; Hu, Min; Bi, Wenting; Chen, Lijie; Liu, Sanxia; Chen, Peng; Tan, Xinying

    2013-11-25

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as well as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation illustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits. PMID:25206635

  7. Congenital Abnormalities

    MedlinePlus

    ... serious health problems (e.g. Down syndrome ). Single-Gene Abnormalities Sometimes the chromosomes are normal in number, ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase ...

  8. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  9. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  10. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  11. Nail abnormalities

    MedlinePlus

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  12. The Diagnostic Value of Nerve Ultrasound in an Atypical Palmar Cutaneous Nerve Lesion.

    PubMed

    Zanette, Giampietro; Tamburin, Stefano

    2016-07-01

    Detailed knowledge of the fascicular anatomy of peripheral nerves is important for microsurgical repair and functional electrostimulation.We report a patient with a lesion on the left palmar cutaneous branch of the median nerve (PCBMN) and sensory signs expanding outside the PCBMN cutaneous innervation territory. Nerve conduction study showed the absence of left PCBMN sensory nerve action potential, but apparently, no median nerve (MN) involvement. Nerve ultrasound documented a neuroma of the left PCBMN and a coexistent lateral neuroma of the left MN in the carpal tunnel after the PCBMN left the main nerve trunk.Nerve ultrasound may offer important information in patients with peripheral nerve lesions and atypical clinical and/or nerve conduction study findings. The present case may shed some light on the somatotopy of MN fascicles at the wrist. PMID:26945219

  13. Diabetes-induced myelin abnormalities are associated with an altered lipid pattern: protective effects of LXR activation[S

    PubMed Central

    Cermenati, Gaia; Abbiati, Federico; Cermenati, Solei; Brioschi, Elisabetta; Volonterio, Alessandro; Cavaletti, Guido; Saez, Enrique; De Fabiani, Emma; Crestani, Maurizio; Garcia-Segura, Luis M.; Melcangi, Roberto C.; Caruso, Donatella; Mitro, Nico

    2012-01-01

    Diabetic peripheral neuropathy (DPN) is characterized by myelin abnormalities; however, the molecular mechanisms underlying such deficits remain obscure. To uncover the effects of diabetes on myelin alterations, we have analyzed myelin composition. In a streptozotocin-treated rat model of diabetic neuropathy, analysis of sciatic nerve myelin lipids revealed that diabetes alters myelin's phospholipid, FA, and cholesterol content in a pattern that can modify membrane fluidity. Reduced expression of relevant genes in the FA biosynthetic pathway and decreased levels of the transcriptionally active form of the lipogenic factor sterol-regulatory element binding factor-1c (SREBF-1c) were found in diabetic sciatic nerve. Expression of myelin's major protein, myelin protein zero (P0), was also suppressed by diabetes. In addition, we confirmed that diabetes induces sciatic nerve myelin abnormalities, primarily infoldings that have previously been associated with altered membrane fluidity. In a diabetic setting, synthetic activator of the nuclear receptor liver X receptor (LXR) increased SREBF-1c function and restored myelin lipid species and P0 expression levels to normal. These LXR-modulated improvements were associated with restored myelin structure in sciatic nerve and enhanced performance in functional tests such as thermal nociceptive threshold and nerve conduction velocity. These findings demonstrate an important role for the LXR-SREBF-1c axis in protection from diabetes-induced myelin abnormalities. PMID:22158827

  14. Electrophysiological evaluation of nerve function in inferior alveolar nerve injury: relationship between nerve action potentials and histomorphometric observations.

    PubMed

    Murayama, M; Sasaki, K; Shibahara, T

    2015-12-01

    The objective of this study was to improve the accuracy of diagnosis of inferior alveolar nerve (IAN) injury by determining degrees of nerve disturbance using the sensory nerve action potential (SNAP) and sensory nerve conduction velocity (SCV). Crush and partial and complete nerve amputation injuries were applied to the IAN of rabbits, then SNAPs and histomorphometric observations were recorded at 1, 5, and 10 weeks. For crush injury, most nerves were smaller in diameter at 5 weeks than at 1 week, however after 10 weeks, extensive nerve regeneration was observed. The SNAP showed a decrease in SCV at weeks 1 and 5, followed by an increase at week 10. For partial nerve amputation, small to medium-sized nerve fibres were observed at weeks 1 and 5, then larger nerves were seen at week 10. Minimal changes in SCV were observed at weeks 1 and 5, however SCV increased at week 10. For complete nerve amputation, nerve fibres were sparse at week 1, but gradual nerve regeneration was observed at weeks 5 and 10. SNAPs were detectable from week 10, however the SCV was extremely low. This study showed SCV to be an effective factor in the evaluation of nerve injury and regeneration. PMID:26433750

  15. Radiation-induced malignant and atypical peripheral nerve sheath tumors

    SciTech Connect

    Foley, K.M.; Woodruff, J.M.; Ellis, F.T.; Posner, J.B.

    1980-04-01

    The reported peripheral nerve complications of therapeutic irradiation in humans include brachial and lumbar plexus fibrosis and cranial and peripheral nerve atrophy. We have encountered 9 patients with malignant (7) and atypical (2) peripheral nerve tumors occurring in an irradiated site suggesting that such tumors represent another delayed effect of radiation treatment on peripheral nerve. In all instances the radio-theray was within an acceptable radiation dosage, yet 3 patients developed local radiation-induced skin and bony abnormalities. The malignant peripheral nerve sheath tumors developed only in the radiation port. Animal studies support the clinical observation that malignant peripheral nerve sheath tumors can occur as a delayed effect of irradiation.

  16. Magnetic resonance imaging of the optic nerves and chiasm

    SciTech Connect

    Daniels, D.L.; Herfkins, R.; Gager, W.E.; Meyer, G.A.; Koehler, P.R.; Williams, A.L.; Haughton, V.M.

    1984-07-01

    Magnetic resonance imaging (MR) of the optic nerves and chiasm was compared with computed tomography (CT) in 4 healthy volunteers, 4 patients without orbital or chiasmal abnormalities, and 4 patients with tumor (anterior clinoid meningioma in 2, optic nerve glioma in 1, and optic nerve sheath meningioma in 1). MR was found to be effective in demonstrating the optic nerves and related structures, particularly the intracanalicular portion of the nerve which is difficult to see with CT. Best results were achieved with partial saturation recovery (SR) images. As axial views cannot always distinguish the ethmoid sinus tissue from the optic nerve, it may be necessary to employ both axial and coronal images.

  17. Ion Channels in Nerve Membranes

    ERIC Educational Resources Information Center

    Ehrenstein, Gerald

    1976-01-01

    Discusses research that indicates that nerve membranes, which play a key role in the conduction of impulses, are traversed by protein channels with ion pathways opened and closed by the membrane electric field. (Author/MLH)

  18. The cutaneous nerve biopsy: technical aspects, indications, and contribution.

    PubMed

    Mellgren, Svein Ivar; Nolano, Maria; Sommer, Claudia

    2013-01-01

    Skin biopsy with a 3mm disposable circular punch is easy to perform and allows, after proper processing, the visualization of epidermal, dermal, and sweat gland nerve fibers. A technique of sampling the epidermis alone by applying a suction capsule, the "blister" technique, has also been developed. It is most common to stain immunohistochemically for the pan-axonal marker protein gene product 9.5 (PGP 9.5), an ubiquitin C-terminal hydroxylase. The sections are then observed and analyzed with bright-field microscopy or with indirect immunofluorescence with or without confocal microscopy. Most studies report quantification of intraepidermal nerve fiber density displayed in bright-field microscopy. Normative values have been established, particularly from the distal part of the leg, 10cm above the external malleolus. In diabetes mellitus early degeneration of intraepidermal nerve fibers is induced and there is slower regeneration even when there is no evidence of neuropathy. Skin biopsy is of particular value in the diagnosis of small fiber neuropathy when nerve conduction studies are normal. It may also be repeated in order to study the progressive nature of the disease and also has the potential of studying regeneration of nerve fibers and thus the effects of treatment. Inflammatory demyelinating neuropathies may also involve loss of small-diameter nerve fibers and IgM deposits in dermal myelinated nerve fibers in anti-MAG neuropathy. In some cases the presence of vasculitis in skin may indicate a nonsystemic vasculitic neuropathy and in HIV neuropathy intraepidermal nerve fiber density is reduced in a length-dependent manner. In several hereditary neuropathies intraepidermal nerve fiber density may be reduced but other abnormalities can also be demonstrated in dermal myelinated fibers. Some small swellings and varicosities may be present in the distal leg skin biopsy of healthy individuals but large axonal swellings are considered as evidence of a pathological

  19. Schwann cell mitochondrial metabolism supports long-term axonal survival and peripheral nerve function

    PubMed Central

    Viader, Andreu; Golden, Judith P.; Baloh, Robert H.; Schmidt, Robert E.; Hunter, Daniel A.; Milbrandt, Jeffrey

    2011-01-01

    Mitochondrial dysfunction is a common cause of peripheral neuropathies. While the role of neuron and axonal mitochondria in peripheral nerve disease is well appreciated, whether Schwann cell (SC) mitochondrial deficits contribute to peripheral neuropathies is unclear. Here we examine how SC mitochondrial dysfunction affects axonal survival and contributes to the decline of peripheral nerve function by generating mice with SC-specific mitochondrial deficits. These mice (Tfam-SCKOs) were produced through the tissue-specific deletion of the mitochondrial transcription factor A gene (Tfam), which is essential for mitochondrial DNA (mtDNA) transcription and maintenance. Tfam-SCKOs were viable but, as they aged, they developed a progressive peripheral neuropathy characterized by nerve conduction abnormalities as well as extensive muscle denervation. Morphological examination of Tfam-SCKO nerves revealed early preferential loss of small unmyelinated fibers followed by prominent demyelination and degeneration of larger-caliber axons. Tfam-SCKOs displayed sensory and motor deficits consistent with this pathology. Remarkably, the severe mtDNA depletion and respiratory chain abnormalities in Tfam-SCKO mice did not affect SC proliferation or survival. Mitochondrial function in SCs is therefore essential for maintenance of axonal survival and normal peripheral nerve function, suggesting that SC mitochondrial dysfunction contributes to human peripheral neuropathies. PMID:21752989

  20. Nerve injuries due to obstetric trauma.

    PubMed

    Bhat, V; Ravikumara; Oumachigui, A

    1995-01-01

    The incidence of nerve injuries among 32,637 deliveries over a period of ten years was 1.81/1000. Brachial plexus injury (1/1000) and facial nerve injury (0.74/1000) accounted for 98% of nerve injuries. Both the right and left side were involved equally. Bilateral nerve injury was not seen. Lack of antenatal care, macrosomia, abnormal presentations, and operative vaginal deliveries significantly increased the risk of nerve injuries. These babies had significantly higher incidence of meconium stained liquor and intrapartum asphyxia. Parity of the mother, gestational age and sex of the baby did not have significant role in the causation of nerve injuries. Injuries to brachial plexus and facial nerve were seen even in babies born by caesarean section, when it was performed for obstructed labour caused by cephalo-pelvic disproportion and abnormal presentations. Three babies with injuries expired and forty-three could be followed up for varying periods. None of the babies had residual defects. Detection of cephalopelvic disproportion and abnormal lie in the third trimester and their appropriate management would decrease the incidence of obstetric palsies to a significant extent. PMID:10829869

  1. Tuning PAK Activity to Rescue Abnormal Myelin Permeability in HNPP.

    PubMed

    Hu, Bo; Arpag, Sezgi; Zhang, Xuebao; Möbius, Wiebke; Werner, Hauke; Sosinsky, Gina; Ellisman, Mark; Zhang, Yang; Hamilton, Audra; Chernoff, Jonathan; Li, Jun

    2016-09-01

    Schwann cells in the peripheral nervous systems extend their membranes to wrap axons concentrically and form the insulating sheath, called myelin. The spaces between layers of myelin are sealed by myelin junctions. This tight insulation enables rapid conduction of electric impulses (action potentials) through axons. Demyelination (stripping off the insulating sheath) has been widely regarded as one of the most important mechanisms altering the action potential propagation in many neurological diseases. However, the effective nerve conduction is also thought to require a proper myelin seal through myelin junctions such as tight junctions and adherens junctions. In the present study, we have demonstrated the disruption of myelin junctions in a mouse model (Pmp22+/-) of hereditary neuropathy with liability to pressure palsies (HNPP) with heterozygous deletion of Pmp22 gene. We observed a robust increase of F-actin in Pmp22+/- nerve regions where myelin junctions were disrupted, leading to increased myelin permeability. These abnormalities were present long before segmental demyelination at the late phase of Pmp22+/- mice. Moreover, the increase of F-actin levels correlated with an enhanced activity of p21-activated kinase (PAK1), a molecule known to regulate actin polymerization. Pharmacological inhibition of PAK normalized levels of F-actin, and completely prevented the progression of the myelin junction disruption and nerve conduction failure in Pmp22+/- mice. Our findings explain how abnormal myelin permeability is caused in HNPP, leading to impaired action potential propagation in the absence of demyelination. We call it "functional demyelination", a novel mechanism upstream to the actual stripping of myelin that is relevant to many demyelinating diseases. This observation also provides a potential therapeutic approach for HNPP. PMID:27583434

  2. Optic nerve atrophy

    MedlinePlus

    Optic nerve atrophy is damage to the optic nerve. The optic nerve carries images of what the eye sees to ... problem most often affects older adults. The optic nerve can also be damaged by shock, toxins, radiation, ...

  3. Nerve biopsy (image)

    MedlinePlus

    Nerve biopsy is the removal of a small piece of nerve for examination. Through a small incision, a sample ... is removed and examined under a microscope. Nerve biopsy may be performed to identify nerve degeneration, identify ...

  4. Peripheral Nerve Disorders

    MedlinePlus

    ... spinal cord. Like static on a telephone line, peripheral nerve disorders distort or interrupt the messages between the brain ... body. There are more than 100 kinds of peripheral nerve disorders. They can affect one nerve or many nerves. ...

  5. Congenital optic nerve anomalies and hereditary optic neuropathies

    PubMed Central

    Heidary, Gena

    2014-01-01

    Congenital and hereditary optic nerve anomalies represent a significant cause of visual dysfunction. While some optic nerve abnormalities affect the visual system alone, others may be associated with neurologic and systemic findings. Correct identification of the optic nerve disease therefore is crucial both for developing a treatment plan with respect to visual rehabilitation, but also for initiating the appropriate multidisciplinary evaluation. The purpose of this review is to highlight common examples of congenital and inherited optic nerve abnormalities in an effort to familiarize the clinician with salient clinical features of these diseases and to review important systemic testing when relevant.

  6. Dissecting aneurysm of vertebral artery manifestating as contralateral abducens nerve palsy.

    PubMed

    Jeon, Jin Sue; Lee, Sang Hyung; Son, Young-Je; Chung, Young Seob

    2013-03-01

    Isolated abducens nerve paresis related to ruptured vertebral artery (VA) aneurysm is rare. It usually occurs bilaterally or ipsilaterally to the pathologic lesions. We report the case of a contralateral sixth nerve palsy following ruptured dissecting VA aneurysm. A 38-year-old man was admitted for the evaluation of a 6-day history of headache. Abnormalities were not seen on initial computed tomography (CT). On admission, the patient was alert and no signs reflecting neurologic deficits were noted. Time of flight magnetic resonance angiography revealed a fusiform dilatation of the right VA involving origin of the posterior inferior cerebellar artery. The patient suddenly suffered from severe headache with diplopia the day before the scheduled cerebral angiography. Neurologic examination disclosed nuchal rigidity and isolated left abducens nerve palsy. Emergent CT scan showed high density in the basal and prepontine cistern compatible with ruptured aneurismal hemorrhage. Right vertebral angiography illustrated a right VA dissecting aneurysm with prominent displaced vertebrobasilar artery to inferiorly on left side. Double-stent placement was conducted for the treatment of ruptured dissecting VA aneurysm. No diffusion restriction signals were observed in follow-up magnetic resonance imaging of the brain stem. Eleven weeks later, full recovery of left sixth nerve palsy was documented photographically. In conclusion, isolated contralateral abducens nerve palsy associated with ruptured VA aneurysm may develop due to direct nerve compression by displaced verterobasilar artery triggered by primary thick clot in the prepontine cistern. PMID:23634273

  7. Distribution of sodium channels during nerve elongation in rat peripheral nerve.

    PubMed

    Ichimura, Harumitsu; Shiga, Takashi; Abe, Ichiro; Hara, Yuki; Terui, Naoto; Tsujino, Akihito; Ochiai, Naoyuki

    2005-01-01

    A number of studies have investigated electrophysiological and morphological changes of peripheral nerves during gradual elongation. There has been, however, no report on the distribution of sodium channels at Ranvier's nodes during peripheral nerve elongation. We investigated peripheral nerve injury after the gradual elongation of rat sciatic nerves. Indirect nerve elongation was induced by leg lengthening at a rate of 3 mm/day by 15 or 30 mm. At 7 days after the leg lengthening, the electrophysiological properties of sciatic nerves, the ultrastructures of the Ranvier's nodes and axons, and the distribution of voltage-dependent sodium channels were examined. In the control nerves, most sodium channels were localized at Ranvier's nodes in myelinated axons, providing the physiological basis of saltatory conduction. In the elongated nerves, both the amplitude and conduction velocity of compound nerve action potential decreased following leg lengthening. The elongated nerves also showed paranodal demyelination in Ranvier's nodes longer than those in the control group. In addition, the distribution of sodium channels became diffuse or disappeared at Ranvier's nodes of elongated nerves. The diffuse distribution and/or disappearance of sodium channels may underlie the electrophysiological changes in compound nerve action potential induced by nerve elongation. PMID:15815871

  8. The longitudinal epineural incision and complete nerve transection method for modeling sciatic nerve injury

    PubMed Central

    Cheng, Xing-long; Wang, Pei; Sun, Bo; Liu, Shi-bo; Gao, Yun-feng; He, Xin-ze; Yu, Chang-yu

    2015-01-01

    Injury severity, operative technique and nerve regeneration are important factors to consider when constructing a model of peripheral nerve injury. Here, we present a novel peripheral nerve injury model and compare it with the complete sciatic nerve transection method. In the experimental group, under a microscope, a 3-mm longitudinal incision was made in the epineurium of the sciatic nerve to reveal the nerve fibers, which were then transected. The small, longitudinal incision in the epineurium was then sutured closed, requiring no stump anastomosis. In the control group, the sciatic nerve was completely transected, and the epineurium was repaired by anastomosis. At 2 and 4 weeks after surgery, Wallerian degeneration was observed in both groups. In the experimental group, at 8 and 12 weeks after surgery, distinct medullary nerve fibers and axons were observed in the injured sciatic nerve. Regular, dense myelin sheaths were visible, as well as some scarring. By 12 weeks, the myelin sheaths were normal and intact, and a tight lamellar structure was observed. Functionally, limb movement and nerve conduction recovered in the injured region between 4 and 12 weeks. The present results demonstrate that longitudinal epineural incision with nerve transection can stably replicate a model of Sunderland grade IV peripheral nerve injury. Compared with the complete sciatic nerve transection model, our method reduced the difficulties of micromanipulation and surgery time, and resulted in good stump restoration, nerve regeneration, and functional recovery. PMID:26692866

  9. Promotion of peripheral nerve regeneration and prevention of neuroma formation by PRGD/PDLLA/β-TCP conduit: report of two cases

    PubMed Central

    Yin, Yixia; Li, Binbin; Yan, Qiongjiao; Dai, Honglian; Wang, Xinyu; Huang, Jifeng; Li, Shipu

    2015-01-01

    In the field of nerve repair, one major challenge is the formation of neuroma. However, reports on both the promotion of nerve regeneration and prevention of traumatic neuroma in the clinical settings are rare in the field of nerve repair. One of the reasons could be the insufficiency in the follow-up system. We have conducted 33 cases of nerve repair using PRGD/PDLLA/β-TCP conduit without any sign of adverse reaction, especially no neuroma formation. Among them, we have selected two cases as representatives to report in this article. The first case was a patient with an upper limb nerve wound was bridged by PRGD/PDLLA/β-TCP conduit and a plate fixation was given. After nearly 3-years’ follow-up, the examination results demonstrated that nerve regeneration effect was very good. When the reoperation was performed to remove the steel plate we observed a uniform structure of the regenerated nerve without the formation of neuroma, and to our delight, the implanted conduit was completely degraded 23 months after the implantation. The second case had an obsolete nerve injury with neuroma formation. After removal of the neuroma, the nerve was bridged by PRGD/PDLLA/β-TCP conduit. Follow-up examinations showed that the structure and functional recovery were improved gradually in the 10-month follow-up; no end-enlargement and any other abnormal reaction associated with the characteristic of neuroma were found. Based on our 33-case studies, we have concluded that PRGD/PDLLA/β-TCP nerve conduit could both promote nerve regeneration and prevent neuroma formation; therefore, it is a good alternative for peripheral nerve repair. PMID:26816636

  10. Abnormal thermal conductivity in tetragonal tungsten bronze Ba{sub 6−x}Sr{sub x}Nb{sub 10}O{sub 30}

    SciTech Connect

    Kolodiazhnyi, T. Sakurai, H.; Vasylkiv, O.; Borodianska, H.; Mozharivskyj, Y.

    2014-03-17

    Ba{sub 6−x}Sr{sub x}Nb{sub 10}O{sub 30} solid solution with 0 ≤ x ≤ 6 crystallizes in centrosymmetric tetragonal “tungsten bronze” structure (space group P4/mbm). We report on the x dependence of thermal conductivity of polycrystalline samples measured in the 2–400 K temperature interval. Substitution of Sr for Ba brings about a significant decrease in thermal conductivity at x ≥ 3 accompanied by development of a low-temperature (T ≈ 10–30 K) “plateau” region reminiscent of a glass-like compounds. We explain this behaviour based on a size-driven site occupancy and atomic displacement parameters associated with an alkaline earth atomic positions in the title compounds.

  11. [The nerve agent sarin: history, clinical manifestations, and treatment].

    PubMed

    Yanagisawa, Nobuo

    2014-05-01

    Organic phosphate pesticides were used worldwide after World War II and experiences on poisoning and treatment have been accumulated. An organic phosphate "nerve agent" Sarin was used in two terrorist attacks in Japan in the 1990s. Sarin effects on humans were well documented in these two incidents. Sarin gas inhalation caused instantaneous death by respiratory arrest in several victims in Matsumoto. Severely injured victims presenting with coma and generalized convulsion were resuscitated and recovered rapidly without sequelae. Miosis and blurred-dark vision, ocular pain, copious secretions from respiratory and gastrointestinal tract (muscarinic effects), and headache were common in severely to slightly affected victims. Plasma cholinesterase (ChE) activity decreased in parallel with the severity of signs and symptoms in victims. Oximes, atropine sulphate, diazepam, and ample intravenous infusion were effective treatments. Follow-up examinations on victims were conducted up to 10 years in Matsumoto, and 5 years in Tokyo. No neurological sequelae or abnormalities were observed after 1 year, except for a few EEG abnormalities or delay in sensory nerve conduction velocity. Posttraumatic stress disorder (PTSD) was observed in several of the victims in the 5-year follow up, irrespective of the severity of poisoning at Matsumoto. Psychological symptoms continue in victims of both incidents. PMID:24807372

  12. Amniotic membrane covering for facial nerve repair☆

    PubMed Central

    Karaman, Murat; Tuncel, Arzu; Sheidaei, Shahrouz; Şenol, Mehmet Güney; Karabulut, Murat Hakan; Deveci, Ildem; Karaman, Nihan

    2013-01-01

    Amniotic membranes have been widely used in ophthalmology and skin injury repair because of their anti-inflammatory properties. In this study, we measured therapeutic efficacy and determined if amniotic membranes could be used for facial nerve repair. The facial nerves of eight rats were dissected and end-to-end anastomosis was performed. Amniotic membranes were covered on the anastomosis sites in four rats. Electromyography results showed that, at the end of the 3rd and 8th weeks after amniotic membrane covering, the latency values of the facial nerves covered by amniotic membranes were significantly shortened and the amplitude values were significantly increased. Compared with simple facial nerve anastomosis, after histopathological examination, facial nerve anastomosed with amniotic membrane showed better continuity, milder inflammatory reactions, and more satisfactory nerve conduction. These findings suggest that amniotic membrane covering has great potential in facial nerve repair. PMID:25206390

  13. BMI, HOMA-IR, and Fasting Blood Glucose Are Significant Predictors of Peripheral Nerve Dysfunction in Adult Overweight and Obese Nondiabetic Nepalese Individuals: A Study from Central Nepal

    PubMed Central

    Thapa, Lekhjung; Rana, P. V. S.

    2016-01-01

    Objective. Nondiabetic obese individuals have subclinical involvement of peripheral nerves. We report the factors predicting peripheral nerve function in overweight and obese nondiabetic Nepalese individuals. Methodology. In this cross-sectional study, we included 50 adult overweight and obese nondiabetic volunteers without features of peripheral neuropathy and 50 healthy volunteers to determine the normative nerve conduction data. In cases of abnormal function, the study population was classified on the basis of the number of nerves involved, namely, “<2” or “≥2.” Multivariable logistic regression analysis was carried out to predict outcomes. Results. Fasting blood glucose (FBG) was the significant predictor of motor nerve dysfunction (P = 0.039, 95% confidence interval (CI) = 1.003–1.127). Homeostatic model assessment of insulin resistance (HOMA-IR) was the significant predictor (P = 0.019, 96% CI = 1.420–49.322) of sensory nerve dysfunction. Body mass index (BMI) was the significant predictor (P = 0.034, 95% CI = 1.018–1.577) in case of ≥2 mixed nerves' involvement. Conclusion. FBG, HOMA-IR, and BMI were significant predictors of peripheral nerve dysfunction in overweight and obese Nepalese individuals. PMID:27200189

  14. BMI, HOMA-IR, and Fasting Blood Glucose Are Significant Predictors of Peripheral Nerve Dysfunction in Adult Overweight and Obese Nondiabetic Nepalese Individuals: A Study from Central Nepal.

    PubMed

    Thapa, Lekhjung; Rana, P V S

    2016-01-01

    Objective. Nondiabetic obese individuals have subclinical involvement of peripheral nerves. We report the factors predicting peripheral nerve function in overweight and obese nondiabetic Nepalese individuals. Methodology. In this cross-sectional study, we included 50 adult overweight and obese nondiabetic volunteers without features of peripheral neuropathy and 50 healthy volunteers to determine the normative nerve conduction data. In cases of abnormal function, the study population was classified on the basis of the number of nerves involved, namely, "<2" or "≥2." Multivariable logistic regression analysis was carried out to predict outcomes. Results. Fasting blood glucose (FBG) was the significant predictor of motor nerve dysfunction (P = 0.039, 95% confidence interval (CI) = 1.003-1.127). Homeostatic model assessment of insulin resistance (HOMA-IR) was the significant predictor (P = 0.019, 96% CI = 1.420-49.322) of sensory nerve dysfunction. Body mass index (BMI) was the significant predictor (P = 0.034, 95% CI = 1.018-1.577) in case of ≥2 mixed nerves' involvement. Conclusion. FBG, HOMA-IR, and BMI were significant predictors of peripheral nerve dysfunction in overweight and obese Nepalese individuals. PMID:27200189

  15. Peripheral neuropathy in chronic liver disease: clinical, electrodiagnostic, and nerve biopsy findings

    PubMed Central

    Knill-Jones, R. P.; Goodwill, C. J.; Dayan, A. D.; Williams, Roger

    1972-01-01

    In a prospective study of 70 unselected patients with chronic liver disease, clinical signs of a peripheral neuropathy were observed in 13 patients. Abnormal nerve conduction was demonstrated in nine of these and in one further patient who had no abnormal neurological signs. The occurrence of a neuropathy (in patients with cryptogenic cirrhosis, haemochromatosis, active chronic hepatitis as well as in alcoholic cirrhosis) could not be related to liver function, although it was associated with higher IgA and IgM values. Clinical diabetes was present in six of the 14 patients with neuropathy but there was no relation in the non-diabetic patients between neuropathy and minor impairment of carbohydrate tolerance. Those with neuropathy had a significantly higher incidence of oesophageal varices and there was also a relationship to a history of previous encephalopathy. Sural nerve biopsy was carried out on 14 patients, eight of whom had clinical or electrodiagnostic evidence of neuropathy. Single nerve fibres were examined by teasing and in all nerves histological evidence was found of an indolent process which had damaged whole Schwann cells and which resulted in demyelination and remyelination. Diabetic angiopathy was not seen and axonal degeneration, which was never severe, was found in all disease groups equally. Images PMID:4337271

  16. Femoral nerve damage (image)

    MedlinePlus

    The femoral nerve is located in the leg and supplies the muscles that assist help straighten the leg. It supplies sensation ... leg. One risk of damage to the femoral nerve is pelvic fracture. Symptoms of femoral nerve damage ...

  17. Ulnar nerve damage (image)

    MedlinePlus

    The ulnar nerve originates from the brachial plexus and travels down arm. The nerve is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near the surface of the body where ...

  18. Diabetes and nerve damage

    MedlinePlus

    ... hot or cold When the nerves that control digestion are affected, you may have trouble digesting food. ... harder to control. Damage to nerves that control digestion almost always occurs in people with severe nerve ...

  19. Paclitaxel alters sensory nerve biomechanical properties.

    PubMed

    Bober, Brian G; Shah, Sameer B

    2015-10-15

    Paclitaxel is an effective chemotherapeutic that, despite its common use, frequently causes debilitating peripheral sensory neuropathy. Paclitaxel binds to and stabilizes microtubules, and through unknown mechanisms, causes abnormal microtubule aggregation. Given that microtubules contribute to the mechanical properties of cells, we tested the hypothesis that paclitaxel treatment would alter the stiffness of sensory nerves. Rat sural nerves were excised and soaked in Ringer's solution with or without paclitaxel. Nerves were secured between a force transducer and actuator, and linearly strained. Stress-strain curves were generated, from which elastic moduli were calculated. Paclitaxel treated nerves exhibited significantly higher moduli in both linear and transition regions of the curve. A composite-tissue model was then generated to estimate the stiffness increase in the cellular fraction of the nerve following paclitaxel treatment. This model was supported experimentally by data on mechanical properties of sural nerves stripped of their epineurium, and area fractions of the cellular and connective tissue components of the rat sural nerve, calculated from immunohistochemical images. Model results revealed that the cellular components of the nerve must stiffen 12x to 115x, depending on the initial axonal modulus assumed, in order to achieve the observed tissue level mechanical changes. Consistent with such an increase, electron microscopy showed increased microtubule aggregation and cytoskeletal packing, suggestive of a more cross-linked cytoskeleton. Overall, our data suggests that paclitaxel treatment induces increased microtubule bundling in axons, which leads to alterations in tissue-level mechanical properties. PMID:26321364

  20. Luteolin improves the impaired nerve functions in diabetic neuropathy: behavioral and biochemical evidences

    PubMed Central

    Li, Ming; Li, Qiang; Zhao, Qingsong; Zhang, Jinchao; Lin, Jiang

    2015-01-01

    Peripheral neuropathies are a major cause of morbidity in patients with diabetes mellitus. Up to now, drugs for improving the impaired nerve functions has been lacking for diabetic neuropathy. The antioxidant and neuroprotective effects of luteolin make it an attractive candidate for diabetic neuropathy. The present study was designed to investigate the putative beneficial effect of luteolin on diabetic neuropathy. Diabetic rats were intraperitoneally treated with daily luteolin (50 mg/kg, 100 mg/kg and 200 mg/kg) or vehicle for 3 weeks from the 28th day after streptozotocin injection. Behavioral, electrophysiological and biochemical studies were performed to evaluate the effect of luteolin on the impaired nerve functions in diabetic neuropathy. It was found that luteolin dose dependently alleviated abnormal sensation, improved nerve conduction velocities and nerve blood flow in diabetic rats. Biochanical analysis showed that luteolin significantly lowered the reactive oxygen species production and malondialdehyde level, as well as increased antioxidants activities in a dose dependent manner. In addition, luteolin significantly up-regulated the protein levels of nuclear factor-E2-related factor-2 (Nrf2) and heme oxygenase-1 (HO-1) in diabetic nerves. Taken together, luteolin is capable of improving diabetes-induced deficit in motor and sensory functions, which could be attributable, at least in part, to its Nrf2-dependent antioxidant capacity. The findings in the present study highlight the therapeutic value of luteolin for diabetic neuropathy. PMID:26617718

  1. A comparative study of acellular nerve xenografts and allografts in repairing rat facial nerve defects.

    PubMed

    Huang, Haitao; Xiao, Hongxi; Liu, Huawei; Niu, Yu; Yan, Rongzeng; Hu, Min

    2015-10-01

    Acellular nerves are composed of a basal lamina tube, which retains sufficient bioactivity to promote axon regeneration, thereby repairing peripheral nerve gaps. However, the clinical application of acellular allografts has been restricted due to its limited availability. To investigate whether xenografts, a substitute to allograft acellular nerves in abundant supply, could efficiently promote nerve regeneration, rabbit and rat acellular nerve grafts were used to reconstruct 1 cm defects in Wistar rat facial nerves. Autologous peroneal nerve grafts served as a positive control group. A total of 12 weeks following the surgical procedure, the axon number, myelinated axon number, myelin sheath thickness, and nerve conduction velocity of the rabbit and rat‑derived acellular nerve grafts were similar, whereas the fiber diameter of the rabbit‑derived acellular xenografts decreased, as compared with those of rat‑derived acellular allografts. Autografts exerted superior effects on nerve regeneration; however, no significant difference was observed between the axon number in the autograft group, as compared with the two acellular groups. These results suggested that autografts perform better than acellular nerve grafts, and chemically extracted acellular allografts and xenografts have similar effects on the regeneration of short facial nerve defects. PMID:26239906

  2. A simple model of radial nerve injury in the rhesus monkey to evaluate peripheral nerve repair.

    PubMed

    Wang, Dong; Huang, Xijun; Fu, Guo; Gu, Liqiang; Liu, Xiaolin; Wang, Honggang; Hu, Jun; Yi, Jianhua; Niu, Xiaofeng; Zhu, Qingtang

    2014-05-15

    Current research on bone marrow stem cell transplantation and autologous or xenogenic nerve transplantation for peripheral nerve regeneration has mainly focused on the repair of peripheral nerve defects in rodents. In this study, we established a standardized experimental model of radial nerve defects in primates and evaluated the effect of repair on peripheral nerve injury. We repaired 2.5-cm lesions in the radial nerve of rhesus monkeys by transplantation of autografts, acellular allografts, or acellular allografts seeded with autologous bone marrow stem cells. Five months after surgery, regenerated nerve tissue was assessed for function, electrophysiology, and histomorphometry. Postoperative functional recovery was evaluated by the wrist-extension test. Compared with the simple autografts, the acellular allografts and allografts seeded with bone marrow stem cells facilitated remarkable recovery of the wrist-extension functions in the rhesus monkeys. This functional improvement was coupled with radial nerve distal axon growth, a higher percentage of neuron survival, increased nerve fiber density and diameter, increased myelin sheath thickness, and increased nerve conduction velocities and peak amplitudes of compound motor action potentials. Furthermore, the quality of nerve regeneration in the bone marrow stem cells-laden allografts group was comparable to that achieved with autografts. The wrist-extension test is a simple behavioral method for objective quantification of peripheral nerve regeneration. PMID:25206757

  3. Notalgia paresthetica with a significant increase in the number of intradermal nerves.

    PubMed

    Inaloz, H Serhat; Kirtak, Necmettin; Erguven, H Gulcin; Karakok, Metin; Inaloz, Serap S

    2002-11-01

    Notalgia paresthetica is an isolated mononeuropathy involving the skin over or near the scapula. The cause remains unknown. We histologically observed a significant increase in the number of dermal nerves in a case of notalgia paresthetica. Immunohistochemical examination using a neural marker, S-100, positively stained the nerves. Interestingly, a biopsy from perilesional skin also showed an abnormal nerve proliferation. PMID:12484438

  4. Optic nerve hypoplasia, encephalopathy, and neurodevelopmental handicap.

    PubMed Central

    Burke, J P; O'Keefe, M; Bowell, R

    1991-01-01

    Abnormalities of the central nervous system are frequently described in optic nerve hypoplasia. In a longitudinal study of 46 consecutive children (32 term, 14 preterm) with bilateral optic nerve hypoplasia 32 (69.5%) had associated neurodevelopmental handicap. Of these, 90% had structural central nervous system abnormalities on computed tomographic brain scans. Neurodevelopmental handicap occurred in 62.5% of the term and 86% of the preterm infants respectively. Term infants had a greater incidence of ventral developmental midline defects and proportionately fewer maternal and/or neonatal complications throughout pregnancy, while encephaloclastic lesions were commoner among the premature infants. An association of optic nerve hypoplasia with the twin transfusion syndrome and prenatal vascular encephalopathies is described. PMID:2021594

  5. Use new PLGL-RGD-NGF nerve conduits for promoting peripheral nerve regeneration

    PubMed Central

    2012-01-01

    Background Nerve conduits provide a promising strategy for peripheral nerve injury repair. However, the efficiency of nerve conduits to enhance nerve regeneration and functional recovery is often inferior to that of autografts. Nerve conduits require additional factors such as cell adhesion molecules and neurotrophic factors to provide a more conducive microenvironment for nerve regeneration. Methods In the present study, poly{(lactic acid)-co-[(glycolic acid)-alt-(L-lysine)]} (PLGL) was modified by grafting Gly-Arg-Gly-Asp-Gly (RGD peptide) and nerve growth factor (NGF) for fabricating new PLGL-RGD-NGF nerve conduits to promote nerve regeneration and functional recovery. PLGL-RGD-NGF nerve conduits were tested in the rat sciatic nerve transection model. Rat sciatic nerves were cut off to form a 10 mm defect and repaired with the nerve conduits. All of the 32 Wistar rats were randomly divided into 4 groups: group PLGL-RGD-NGF, group PLGL-RGD, group PLGL and group autograft. At 3 months after surgery, the regenerated rat sciatic nerve was evaluated by footprint analysis, electrophysiology, and histologic assessment. Experimental data were processed using the statistical software SPSS 10.0. Results The sciatic function index value of groups PLGL-RGD-NGF and autograft was significantly higher than those of groups PLGL-RGD and PLGL. The nerve conduction velocities of groups PLGL-RGD-NGF and autograft were significantly faster than those of groups PLGL-RGD and PLGL. The regenerated nerves of groups PLGL-RGD-NGF and autograft were more mature than those of groups PLGL-RGD and PLGL. There was no significant difference between groups PLGL-RGD-NGF and autograft. Conclusions PLGL-RGD-NGF nerve conduits are more effective in regenerating nerves than both PLGL-RGD nerve conduits and PLGL nerve conduits. The effect is as good as that of an autograft. This work established the platform for further development of the use of PLGL-RGD-NGF nerve conduits for clinical nerve repair

  6. Cranial nerve palsies in childhood

    PubMed Central

    Lyons, C J; Godoy, F; ALQahtani, E

    2015-01-01

    We review ocular motor cranial nerve palsies in childhood and highlight many of the features that differentiate these from their occurrence in adulthood. The clinical characteristics of cranial nerve palsies in childhood are affected by the child's impressive ability to repair and regenerate after injury. Thus, aberrant regeneration is very common after congenital III palsy; Duane syndrome, the result of early repair after congenital VI palsy, is invariably associated with retraction of the globe in adduction related to the innervation of the lateral rectus by the III nerve causing co-contraction in adduction. Clinical features that may be of concern in adulthood may not be relevant in childhood; whereas the presence of mydriasis in III palsy suggests a compressive aetiology in adults, this is not the case in children. However, the frequency of associated CNS abnormalities in III palsy and the risk of tumour in VI palsy can be indications for early neuroimaging depending on presenting features elicited through a careful history and clinical examination. The latter should include the neighbouring cranial nerves. We discuss the impact of our evolving knowledge of congenital cranial dysinnervation syndromes on this field. PMID:25572578

  7. Neurophysiological approach to disorders of peripheral nerve.

    PubMed

    Crone, Clarissa; Krarup, Christian

    2013-01-01

    Disorders of the peripheral nerve system (PNS) are heterogeneous and may involve motor fibers, sensory fibers, small myelinated and unmyelinated fibers and autonomic nerve fibers, with variable anatomical distribution (single nerves, several different nerves, symmetrical affection of all nerves, plexus, or root lesions). Furthermore pathological processes may result in either demyelination, axonal degeneration or both. In order to reach an exact diagnosis of any neuropathy electrophysiological studies are crucial to obtain information about these variables. Conventional electrophysiological methods including nerve conduction studies and electromyography used in the study of patients suspected of having a neuropathy and the significance of the findings are discussed in detail and more novel and experimental methods are mentioned. Diagnostic considerations are based on a flow chart classifying neuropathies into eight categories based on mode of onset, distribution, and electrophysiological findings, and the electrophysiological characteristics in each type of neuropathy are discussed. PMID:23931776

  8. Sciatic nerve enlargement in the Klippel-Trenaunay-Weber syndrome.

    PubMed

    Meirer, Romed; Huemer, Georg M; Shafighi, Maziar; Kamelger, Florian S; Hussl, Heribert; Piza-Katzer, Hildegunde

    2005-06-01

    The case of a 35-year-old woman with Klippel-Trenaunay-Weber syndrome (KTWS) showing clinical symptoms of a peroneal nerve lesion is presented. An immense nerve enlargement along most of the sciatic, peroneal and tibial nerve was found to be due to a lipoma arising from the epi- and perineurium. Treatment consisted of extensive microsurgical neurolysis and excision of the tumor resulting in decompression of the affected nerves. Although rare, a perineural lipoma should be kept in mind in patients with KTWS showing neurological abnormalities. PMID:15897045

  9. Peripheral nerve disease in pregnancy.

    PubMed

    Klein, Autumn

    2013-06-01

    Neuropathies during pregnancy and the postpartum period are common and are usually due to compression around pregnancy and childbirth. The most common peripheral neuropathies are Bell's palsy, carpal tunnel syndrome (CTS), and lower extremity neuropathies. Although most neuropathies are usually reversible, associated disabilities or morbidities can limit functioning and require therapy. Nerve conduction study tests and imaging should only be considered if symptoms are unusual or prolonged. Some neuropathies may be associated with preeclampsia or an inherent underlying neuropathy that increases the risk of nerve injury. All neuropathies in pregnancy should be followed as some may be persistent and require follow-up. PMID:23563878

  10. Cranial Nerve Disorders in Children: MR Imaging Findings.

    PubMed

    Hwang, Jae-Yeon; Yoon, Hye-Kyung; Lee, Jeong Hyun; Yoon, Hee Mang; Jung, Ah Young; Cho, Young Ah; Lee, Jin Seong; Yoon, Chong Hyun

    2016-01-01

    Cranial nerve disorders are uncommon disease conditions encountered in pediatric patients, and can be categorized as congenital, inflammatory, traumatic, or tumorous conditions that involve the cranial nerve itself or propagation of the disorder from adjacent organs. However, determination of the normal course, as well as abnormalities, of cranial nerves in pediatric patients is challenging because of the small caliber of the cranial nerve, as well as the small intracranial and skull base structures. With the help of recently developed magnetic resonance (MR) imaging techniques that provide higher spatial resolution and fast imaging techniques including three-dimensional MR images with or without the use of gadolinium contrast agent, radiologists can more easily diagnose disease conditions that involve the small cranial nerves, such as the oculomotor, abducens, facial, and hypoglossal nerves, as well as normal radiologic anatomy, even in very young children. If cranial nerve involvement is suspected, careful evaluation of the cranial nerves should include specific MR imaging protocols. Localization is an important consideration in cranial nerve imaging, and should cover entire pathways and target organs as much as possible. Therefore, radiologists should be familiar not only with the various diseases that cause cranial nerve dysfunction, and the entire course of each cranial nerve including the intra-axial nuclei and fibers, but also the technical considerations for optimal imaging of pediatric cranial nerves. In this article, we briefly review normal cranial nerve anatomy and imaging findings of various pediatric cranial nerve dysfunctions, as well as the technical considerations of pediatric cranial nerve imaging. Online supplemental material is available for this article. (©)RSNA, 2016. PMID:27399242

  11. Visualization of nerve fibers and their relationship to peripheral nerve tumors by diffusion tensor imaging.

    PubMed

    Cage, Tene A; Yuh, Esther L; Hou, Stephanie W; Birk, Harjus; Simon, Neil G; Noss, Roger; Rao, Anuradha; Chin, Cynthia T; Kliot, Michel

    2015-09-01

    OBJECT The majority of growing and/or symptomatic peripheral nerve tumors are schwannomas and neurofibromas. They are almost always benign and can usually be resected while minimizing motor and sensory deficits if approached with the proper expertise and techniques. Intraoperative electrophysiological stimulation and recording techniques allow the surgeon to map the surface of the tumor in an effort to identify and thus avoid damaging functioning nerve fibers. Recently, MR diffusion tensor imaging (DTI) techniques have permitted the visualization of axons, because of their anisotropic properties, in peripheral nerves. The object of this study was to compare the distribution of nerve fibers as revealed by direct electrical stimulation with that seen on preoperative MR DTI. METHODS The authors conducted a retrospective chart review of patients with a peripheral nerve or nerve root tumor between March 2012 and January 2014. Diffusion tensor imaging and intraoperative data had been prospectively collected for patients with peripheral nerve tumors that were resected. Preoperative identification of the nerve fiber location in relation to the nerve tumor surface as seen on DTI studies was compared with the nerve fiber's intraoperative localization using electrophysiological stimulation and recordings. RESULTS In 23 patients eligible for study there was good correlation between nerve fiber location on DTI and its anatomical location seen intraoperatively. Diffusion tensor imaging demonstrated the relationship of nerve fibers relative to the tumor with 95.7% sensitivity, 66.7% specificity, 75% positive predictive value, and 93.8% negative predictive value. CONCLUSIONS Preoperative DTI techniques are useful in helping the peripheral nerve surgeon to both determine the risks involved in resecting a nerve tumor and plan the safest surgical approach. PMID:26323818

  12. Inner Ear Conductive Hearing Loss and Unilateral Pulsatile Tinnitus Associated with a Dural Arteriovenous Fistula: Case Based Review and Analysis of Relationship between Intracranial Vascular Abnormalities and Inner Ear Fluids

    PubMed Central

    Cassandro, Ettore; Cassandro, Claudia; Sequino, Giuliano; Scarpa, Alfonso; Petrolo, Claudio; Chiarella, Giuseppe

    2015-01-01

    While pulsatile tinnitus (PT) and dural arteriovenous fistula (DAVF) are not rarely associated, the finding of a conductive hearing loss (CHL) in this clinical picture is unusual. Starting from a case of CHL and PT, diagnosed to be due to a DAVF, we analyzed relationship between intracranial vascular abnormalities and inner ear fluids. DAVF was treated with endovascular embolization. Following this, there was a dramatic recovery of PT and of CHL, confirming their cause-effect link with DAVF. We critically evaluated the papers reporting this association. This is the first case of CHL associated with PT and DAVF. We describe the most significant experiences and theories reported in literature, with a personal analysis about the possible relationship between vascular intracranial system and labyrinthine fluids. In conclusion, we believe that this association may be a challenge for otolaryngologists. So we suggest to consider the possibility of a DAVF or other AVMs when PT is associated with CHL, without alterations of tympanic membrane and middle ear tests. PMID:26693371

  13. In vitro correction of impaired Na+-K+-ATPase in diabetic nerve by protein kinase C agonists.

    PubMed

    Lattimer, S A; Sima, A A; Greene, D A

    1989-02-01

    Diminished Na+-K+-ATPase activity in diabetic peripheral nerve plays a central role in the early electrophysiological, metabolic, and morphological abnormalities of experimental diabetic neuropathy. The defect in Na+-K+-adenosinetriphosphatase (ATPase) regulation in diabetic nerve is linked experimentally to glucose- and sorbitol-induced depletion of nerve myo-inositol but is not fully understood at a molecular level. Therefore, regulation of nerve Na+-K+-ATPase activity by phosphoinositide-derived diacylglycerol was explored as the putative link between myo-inositol depletion and the Na+-K+-ATPase impairment responsible for slowed saltatory conduction in diabetic animal models. In vitro exposure of endoneurial preparations from alloxan-diabetic rabbits to two protein kinase C agonists, 4 beta-phorbol 12 beta-myristate 13 alpha-acetate and 1,2-(but not 1,3-) dioctanoyl-sn-glycerol, for as little as 1 min completely and specifically corrected the 40% decreased enzymatically measured ouabain-sensitive ATPase activity. Neither of these agonists affected ouabain-sensitive ATPase activity in endoneurial preparations derived from nondiabetic controls. These observations are compatible with the hypothesis that metabolites of electrically stimulated phosphoinositide turnover such as diacylglycerol acutely regulate nerve Na+-K+-ATPase activity, probably via protein kinase C, thereby tightly coupling energy-dependent Na+-K+-antiport with impulse conduction in peripheral nerve. Glucose-induced depletion of myo-inositol presumably limits phosphoinositide turnover and diacylglycerol production, thereby disrupting this putative regulatory mechanism for Na+-K+-ATPase in diabetic peripheral nerve. PMID:2537578

  14. Interfascicular neurolysis in chronic ulnar nerve lesions at the elbow: an electrophysiological study.

    PubMed Central

    Nielsen, V K; Osgaard, O; Trojaborg, W

    1980-01-01

    Interfascicular neurolysis of the ulnar nerve at the elbow was performed in nine consecutive patients with moderate to severe ulnar palsy. Sensory and motor conduction velocities were determined before and up to six times after the operation, and a follow-up period of three years or more in all but two patients. None of the patients recovered after the operation, and all developed severe and sometimes persistent paraesthesiae. Electrophysiologically there was no evidence of improvement immediately following the operation. On the contrary in some patients there were changes suggesting deterioration. At the final investigation most electrophysiological parameters were still abnormal. The only significant change was an increase in the amplitude of sensory action potentials at the wrist and just below the elbow. Only one patient showed a more synchronised sensory potential after operation. It is our conclusion that interfascicular neurolysis of the ulnar nerve should be abandoned. Images PMID:7373325

  15. Mechanical sensitivity of muscle afferents in a nerve treated with colchicine.

    PubMed

    Proske, U; Luff, A R

    1998-04-01

    The experiments reported here demonstrate that the mechanical sensitivity of peripheral nerve fibres typically seen after injury can be induced without overtly injuring the nerve, but by simply applying colchicine topically to the nerve. In cats anaesthetised with pentobarbitone sodium, the medial gastrocnemius nerve was exposed and 10 mM colchicine applied topically for 15 min. The animals recovered from the operation normally and showed no subsequent motor deficit. Six days later animals were re-anaesthetised, a laminectomy carried out and responses recorded in single afferents at the level of the dorsal root. It was found that many afferents, particularly those with conduction velocities in the group II-III range, had become sensitive to local mechanical stimulation of the nerve in the region treated with colchicine and showed slowly adapting responses to stretch of the nerve. Many of the smaller fibres exhibited spontaneous activity. Mechanically sensitive afferents exhibited impulse conduction blocks at the colchicine-treated site. Some afferents, which appeared to conduct impulses normally through the treated region, were associated with muscle receptors having normal response properties. However, other muscle receptors were clearly abnormal and were insensitive to muscle stretch or contraction or exhibited only phasic responses. When the nerve was cut proximal to the colchicine-treated site, some, but not all, spontaneous activity was abolished. It was subsequently shown using a collision technique that the activity in some axons had its origin in the cell body in the dorsal root ganglion. In one experiment, it was shown that after nerve section proximal to the colchicine-treated region three of five axons switched their activity from a peripheral to a central origin. It is postulated that colchicine disrupts fast axonal transport of mechanically sensitive or voltage-sensitive ion channels, from the cell body to the peripheral terminals of the axons, leading

  16. Using Eggshell Membrane as Nerve Guide Channels in Peripheral Nerve Regeneration

    PubMed Central

    Farjah, Gholam Hossein; Heshmatian, Behnam; Karimipour, Mojtaba; Saberi, Ali

    2013-01-01

    Objective(s): The aim of this study was to evaluate the final outcome of nerve regeneration across the eggsell membrane (ESM) tube conduit in comparison with autograft. Materials and Methods: Thirty adult male rats (250-300 g) were randomized into (1) ESM conduit, (2) autograft, and (3) sham surgery groups. The eggs submerged in 5% acetic acid. The decalcifying membranes were cut into four pieces, rotated over the teflon mandrel and dried at 37°C. The left sciatic nerve was surgically cut. A 10-mm nerve segment was cut and removed. In the ESM group, the proximal and distal cut ends of the sciatic nerve were telescoped into the nerve guides. In the autograft group, the 10 mm nerve segment was reversed and used as an autologous nerve graft. All animals were evaluated by sciatic functional index (SFI) and electrophysiology testing. Results: The improvement in SFI from the first to the last evalution in ESM and autograft groups were evaluated. On days 49 and 60 post-operation, the mean SFI of ESM group was significantly greater than the autograft group (P< 0.05). On day 90, the mean nerve conduction velocity (NCV) of ESM group was greater than autograft group, although the difference was not statistically significant (P> 0.05). Conclusion: These findings demonstrate that ESM effectively enhances nerve regeneration and promotes functional recovery in injured sciatic nerve of rat. PMID:24106593

  17. Ulnar nerve damage (image)

    MedlinePlus

    ... arm. The nerve is commonly injured at the elbow because of elbow fracture or dislocation. The ulnar nerve is near ... surface of the body where it crosses the elbow, so prolonged pressure on the elbow or entrapment ...

  18. Nerve Injuries in Athletes.

    ERIC Educational Resources Information Center

    Collins, Kathryn; And Others

    1988-01-01

    Over a two-year period this study evaluated the condition of 65 athletes with nerve injuries. These injuries represent the spectrum of nerve injuries likely to be encountered in sports medicine clinics. (Author/MT)

  19. Radial nerve dysfunction (image)

    MedlinePlus

    The radial nerve travels down the arm and supplies movement to the triceps muscle at the back of the upper arm. ... the wrist and hand. The usual causes of nerve dysfunction are direct trauma, prolonged pressure on the ...

  20. Tibial nerve dysfunction

    MedlinePlus

    ... a loss of movement or sensation in the foot from damage to the tibial nerve. ... Tibial nerve dysfunction is an unusual form of peripheral ... the calf and foot muscles. A problem in function with a single ...

  1. Electromechanical Nerve Stimulator

    NASA Technical Reports Server (NTRS)

    Tcheng, Ping; Supplee, Frank H., Jr.; Prass, Richard L.

    1993-01-01

    Nerve stimulator applies and/or measures precisely controlled force and/or displacement to nerve so response of nerve measured. Consists of three major components connected in tandem: miniature probe with spherical tip; transducer; and actuator. Probe applies force to nerve, transducer measures force and sends feedback signal to control circuitry, and actuator positions force transducer and probe. Separate box houses control circuits and panel. Operator uses panel to select operating mode and parameters. Stimulator used in research to characterize behavior of nerve under various conditions of temperature, anesthesia, ventilation, and prior damage to nerve. Also used clinically to assess damage to nerve from disease or accident and to monitor response of nerve during surgery.

  2. Radial nerve dysfunction

    MedlinePlus

    ... nerve leads to problems with movement in the arm and wrist and with sensation in the back of the arm or hand. ... to the radial nerve, which travels down the arm and controls movement of the triceps muscle at ...

  3. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many ... viruses. Sometimes the cause is not known. Degenerative nerve diseases include Alzheimer's disease Amyotrophic lateral sclerosis Friedreich's ...

  4. Cold and post-traumatic pain: modeling of the peripheral nerve message.

    PubMed

    de Medinaceli, L; Hurpeau, J; Merle, M; Begorre, H

    1997-01-01

    Hypersensitivity to cold is a relatively frequent sequel of peripheral nerve injuries but its mechanism is not well understood. We suggested that incomplete recovery of diameter of regenerated fibers is one of the factors involved in cold intolerance after nerve damage. Conduction velocity is correlated to fiber diameter, and is slowed down by cold. In normal subjects, cold does not desynchronize the volleys of sensory impulses sufficiently to change the intelligibility of the peripheral 'messages'. Sensory perceptions remain accurate although they acquire a characteristic numbness. On the other hand, post-traumatic reduction in fiber diameters causes a permanent distortion of the messages. We considered that when the distortion is severe, the resulting messages may be perceived by the centers as containing nociceptive components. We further hypothesized that, even in cases of moderate permanent distortion, cold acts by increasing the post-traumatic abnormalities of impulse synchronization. In winter, decompensation is observed when a threshold of desynchronization is reached. We constructed a model of peripheral nerve messages in an attempt to represent and quantitate the desynchronizations produced by cold and crush damage lesions in peripheral nerve messages. A number of parameters concerning fiber anatomy, exposure to cold, and type of nerve damage were taken into consideration. Four elementary types of desynchronization could be recognized by considering the times of arrival of pairs of impulses at the nervous centers. The difference between a normal and a distorted message could be expressed by eight variables. Thus, although our model was quite simple, a large amount of data was obtained and a preliminary statistical study was necessary in order to orient the final analysis. Then, we used factor analysis in an attempt to obtain a satisfactory interpretation of the data. The results indicated that peripheral desynchronization might explain, at least in part

  5. Laryngeal nerve damage

    MedlinePlus

    Laryngeal nerve damage is injury to one or both of the nerves that are attached to the voice box. ... Injury to the laryngeal nerves is uncommon. When it does occur, it can be from: A complication of neck or chest surgery (especially thyroid, lung, ...

  6. Echocardiographic abnormalities in the mucopolysaccharide storage diseases.

    PubMed

    Gross, D M; Williams, J C; Caprioli, C; Dominguez, B; Howell, R R

    1988-01-01

    The mucopolysaccharide storage diseases express themselves clinically with a wide variety of abnormalities, including growth and mental retardation, skeletal abnormalities, clouded corneas, nerve compression syndromes, upper airway obstruction and cardiovascular involvement, to name the most common. In most cases the cause of early death is cardiorespiratory failure secondary to cardiovascular involvement and upper airway obstruction. The findings of cardiac ultrasound examination in 29 children, adolescents and young adults are presented. In addition to the previously well-described abnormalities of the mitral and aortic valves in several types of mucopolysaccharide storage disease, we report patchy involvement in some cases, 3 instances of asymmetric septal hypertrophy not previously reported in mucopolysaccharide storage diseases, cardiac involvement in half of our patients with Sanfilippo syndrome and a lack of age-related severity of cardiac involvement even within the specific syndromes. PMID:3122547

  7. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  8. Urine - abnormal color

    MedlinePlus

    ... straw-yellow. Abnormally colored urine may be cloudy, dark, or blood-colored. Causes Abnormal urine color may ... red blood cells, or mucus in the urine. Dark brown but clear urine is a sign of ...

  9. Transient facial nerve palsy after occipital nerve block: a case report.

    PubMed

    Strauss, Lauren; Loder, Elizabeth; Rizzoli, Paul

    2014-01-01

    Occipital nerve blocks are commonly performed to treat a variety of headache syndromes and are generally believed to be safe and well tolerated. We report the case of an otherwise healthy 24-year-old woman with left side-locked occipital, parietal, and temporal pain who was diagnosed with probable occipital neuralgia. She developed complete left facial nerve palsy within minutes of blockade of the left greater and lesser occipital nerves with a solution of bupivicaine and triamcinolone. Magnetic resonance imaging of the brain with gadolinium contrast showed no abnormalities, and symptoms had completely resolved 4-5 hours later. Unintended spread of the anesthetic solution along tissue planes seems the most likely explanation for this adverse event. An aberrant course of the facial nerve or connections between the facial and occipital nerves also might have played a role, along with the patient's prone position and the use of a relatively large injection volume of a potent anesthetic. Clinicians should be aware that temporary facial nerve palsy is a possible complication of occipital nerve block. PMID:24913733

  10. Evaluation of Tookad-mediated photodynamic effect on peripheral nerve and pelvic nerve in a canine model

    NASA Astrophysics Data System (ADS)

    Hetzel, Fred W.; Chen, Qun; Dole, Kenneth C.; Blanc, Dominique; Whalen, Lawrence R.; Gould, Daniel H.; Huang, Zheng

    2006-02-01

    Photodynamic therapy (PDT) mediated with a novel vascular targeting photosensitizer pd-bacteriopheophorbide (Tookad) has been investigated as an alternative modality for the treatment of prostate cancer and other diseases. This study investigated, for the first time, the vascular photodynamic effects of Tookad-PDT on nerve tissues. We established an in situ canine model using the cutaneous branches of the saphenous nerve to evaluate the effect of Tookad-PDT secondary to vascular damage on compound-action potentials. With Tookad dose of 2 mg/kg, treatment with 50 J/cm2 induced little change in nerve conduction. However, treatment with 100 J/cm2 resulted in decreases in nerve conduction velocities, and treatment with 200 J/cm2 caused a total loss of nerve conduction. Vasculature surrounding the saphenous nerve appeared irritated. The nerve itself looked swollen and individual fibers were not as distinct as they were before PDT treatment. Epineurium had mild hemorrhage, leukocyte infiltration, fibroplasias and vascular hypertrophy. However, the nerve fascicles and nerve fibers were free of lesions. We also studied the effect of Tookad-PDT secondary to vascular damage on the pelvic nerve in the immediate vicinity of the prostate gland. The pelvic nerve and saphenous nerve showed different sensitivity and histopathological responses to Tookad-PDT. Degeneration nerve fibers and necrotic neurons were seen in the pelvic nerve at a dose level of 1 mg/kg and 50 J/cm2. Adjacent connective tissue showed areas of hemorrhage, fibrosis and inflammation. Our preliminary results suggest that possible side effects of interstitial PDT on prostate nerve tissues need to be further investigated.

  11. Unilateral optical nerve hypoplasia in a Beagle dog.

    PubMed

    Negishi, H; Hoshiya, T; Tsuda, Y; Doi, K; Kanemaki, N

    2008-07-01

    Unilateral (left eye) optic nerve hypoplasia was detected in a six-month-old male Beagle dog. Vision testing indicated that the left eye had poor vision and testing the pupillary light reflex showed the left eye to have an absence of the afferent pathway of the reflex but it had a normal efferent pathway. Ophthalmoscopy revealed a small-sized optic disc, winding retinal artery and dilated retinal vasculature in the left globe. Electroretinography showed no abnormal findings even in the left globe. Histopathologically, the left optic nerve was markedly hypoplastic and was composed of sparse neural elements and a moderate amount of connective and glial tissues. In the retina of the left globe, the nerve fibre layer and the ganglion cell layer were reduced in thickness, although a small number of ganglion cells were still present. There were no abnormal findings detected in the right globe and the right optic nerve. The brain appeared normal macroscopically. PMID:18625594

  12. High Median Nerve Injuries.

    PubMed

    Isaacs, Jonathan; Ugwu-Oju, Obinna

    2016-08-01

    The median nerve serves a crucial role in extrinsic and intrinsic motor and sensory function to the radial half of the hand. High median nerve injuries, defined as injuries proximal to the anterior interosseous nerve origin, therefore typically result in significant functional loss prompting aggressive surgical management. Even with appropriate recognition and contemporary nerve reconstruction, however, motor and sensory recovery may be inadequate. With isolated persistent high median nerve palsies, a variety of available tendon transfers can improve key motor functions and salvage acceptable use of the hand. PMID:27387077

  13. Clinical and electrophysiological assessment of inferior alveolar nerve function after lateral nerve transposition.

    PubMed

    Nocini, P F; De Santis, D; Fracasso, E; Zanette, G

    1999-04-01

    Inferior alveolar nerve (IAN) transposition surgery may cause some degree of sensory impairment. Accurate and reproducible tests are mandatory to assess IAN conduction capacity following nerve transposition. In this study subjective (heat, pain and tactile-discriminative tests) and objective (electrophysiological) assessments were performed in 10 patients receiving IAN transposition (bilaterally in 8 cases) in order to evaluate any impairment of the involved nerves one year post-operatively. All patients reported a tingling, well-tolerated sensation in the areas supplied by the mental nerve with no anaesthesia or burning paresthesia. Tactile discrimination was affected the most (all but 1 patient). No action potential was recorded in 4 patients' sides (23.5%); 12 sides showed a decreased nerve conduction velocity (NCV) (70.5%) and 1 side normal NCV values (6%). There was no significant difference in NCV decrease between partial and total transposition sides, if examined separately. Nerve conduction findings were related 2-point discrimination scores, but not to changes in pain and heat sensitivity. These findings show that lateral nerve transposition, though resulting in a high percentage of minor IAN injuries, as determined by electrophysiological testing, provides a viable surgical procedure to allow implant placement in the posterior mandible without causing severe sensory complaints. Considering ethical and forensic implications, patients should be fully informed that a certain degree of nerve injury might be expected to occur from the procedure. Electrophysiological evaluation is a reliable way to assess the degree of IAN dysfunction, especially if combined with a clinical examination. Intraoperative monitoring of IAN conduction might help identify the pathogenetic mechanisms of nerve injury and the surgical steps that are most likely to harm nerve integrity. PMID:10219131

  14. [Ganglia of peripheral nerves].

    PubMed

    Tatagiba, M; Penkert, G; Samii, M

    1993-01-01

    The authors present two different types of ganglion affecting the peripheral nerves: extraneural and intraneural ganglion. Compression of peripheral nerves by articular ganglions is well known. The surgical management involves the complete removal of the lesion with preservation of most nerve fascicles. Intraneural ganglion is an uncommon lesion which affects the nerve diffusely. The nerve fascicles are usually intimately involved between the cysts, making complete removal of all cysts impossible. There is no agreement about the best surgical management to be applied in these cases. Two possibilities are available: opening of the epineural sheath lengthwise and pressing out the lesion; or resection of the affected part of the nerve and performing a nerve reconstruction. While in case of extraneural ganglion the postoperative clinical evolution is very favourable, only long follow up studies will reveal in case of intraneural ganglion the best surgical approach. PMID:8128785

  15. Effects of Laser Irradiation on Peripheral Nerve

    NASA Astrophysics Data System (ADS)

    Baxter, G. D.; Chow, R.; Armati, P.; Bjordal, J. M.; Laakso, L.

    2009-06-01

    A literature review was undertaken to determine the electrophysiological effects of Laser Irradiation (LI) on peripheral mammalian nerves, as a means of elucidating the potential mechanisms underlying pain relief associated with laser therapy. Relevant computerized databases and reference lists were searched, and experts consulted for further articles. A total of 38 studies, comprising 82 separate experiments were identified. In human studies, all types of LI (red and infrared, pulsed and cw) slowed nerve conduction velocity, and reduced compound action potential of irradiated nerves. In animal studies, infrared LI suppressed conduction velocity, as well as noxious stimulation evoked potential. This review thus indicates the potential of laser irradiation to inhibit activity in peripheral nerves, and highlights one potential mechanism of action for laser-mediated pain relief.

  16. A baby with a lot of nerve.

    PubMed

    Ramkumar, Hema L; Verma, Rohan; Crow, Janet; Robbins, Shira; Granet, David B; Sheldon, Claire A; Henretig, Fred M; Liu, Grant T

    2016-01-01

    An infant presented with bilateral disk edema and an acute left sixth cranial nerve (CN VI) palsy because of pseudotumor cerebri (PTC). PTC is rare in infants where it is often associated with endocrine abnormalities, medications, viral infections, systemic conditions, and nutritional etiologies such as vitamin A toxicity. We report a case of PTC in an infant associated with hypervitaminosis A with an unlikely source-a common prenatal vitamin. PMID:26656927

  17. Assessment of nerve morphology in nerve activation during electrical stimulation

    NASA Astrophysics Data System (ADS)

    Gomez-Tames, Jose; Yu, Wenwei

    2013-10-01

    The distance between nerve and stimulation electrode is fundamental for nerve activation in Transcutaneous Electrical Stimulation (TES). However, it is not clear the need to have an approximate representation of the morphology of peripheral nerves in simulation models and its influence in the nerve activation. In this work, depth and curvature of a nerve are investigated around the middle thigh. As preliminary result, the curvature of the nerve helps to reduce the simulation amplitude necessary for nerve activation from far field stimulation.

  18. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure

    PubMed Central

    Lu, Jian

    2014-01-01

    Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF. PMID:24913185

  19. The role of median nerve terminal latency index in the diagnosis of carpal tunnel syndrome in comparison with other electrodiagnostic parameters

    PubMed Central

    Vahdatpour, Babak; Khosrawi, Saeid; Chatraei, Maryam

    2016-01-01

    Background: Carpal tunnel syndrome (CTS) considers the most common compression neuropathy, which nerve conduction studies (NCSs) used for its detection routinely and universally. This study was performed to determine the value of the median TLI and other NCS variables and to investigate their sensitivity and specificity in the diagnosis of CTS. Materials and Methods: The study was carried out among 100 hands of healthy volunteers and 50 hands of patients who had a positive history of paresthesia and numbness in upper extremities. Information including age, gender, and result of sensory and motor nerve conduction velocity (MNCV), peak latency difference of median and ulnar nerves of fourth digit (M4-U4 peak latency difference), and TLI were recorded for analysis. Sensitivity and specificity of electro diagnostic parameters in the diagnosis of CTS was investigated. Results: Normal range of the median nerve TLI was 0.43 ± 0.077. There was no significant difference between two groups for MNCV means (P = 0. 45). Distal sensory latency and distal motor latency (DML) of median nerve and fourth digit median-ulnar peak latency differences (PM4-PU4) for CTS group was significantly higher (P < 0.001) and mean for sensory nerve conduction velocity was significantly higher in control group (P < 0.001). The most sensitive electrophysiological finding in CTS patients was median TLI (82%), but the most specific one was DML (98%). Conclusion: Although in early stages of CTS, we usually expect only abnormalities in the sensory studies, but TLI may better demonstrate the effect on median nerve motor fiber even in mild cases of CTS. PMID:27376049

  20. A Biosynthetic Nerve Guide Conduit Based on Silk/SWNT/Fibronectin Nanocomposite for Peripheral Nerve Regeneration

    PubMed Central

    Mottaghitalab, Fatemeh; Farokhi, Mehdi; Zaminy, Arash; Kokabi, Mehrdad; Soleimani, Masoud; Mirahmadi, Fereshteh

    2013-01-01

    As a contribution to the functionality of nerve guide conduits (NGCs) in nerve tissue engineering, here we report a conduit processing technique through introduction and evaluation of topographical, physical and chemical cues. Porous structure of NGCs based on freeze-dried silk/single walled carbon nanotubes (SF/SWNTs) has shown a uniform chemical and physical structure with suitable electrical conductivity. Moreover, fibronectin (FN) containing nanofibers within the structure of SF/SWNT conduits produced through electrospinning process have shown aligned fashion with appropriate porosity and diameter. Moreover, fibronectin remained its bioactivity and influenced the adhesion and growth of U373 cell lines. The conduits were then implanted to 10 mm left sciatic nerve defects in rats. The histological assessment has shown that nerve regeneration has taken places in proximal region of implanted nerve after 5 weeks following surgery. Furthermore, nerve conduction velocities (NCV) and more myelinated axons were observed in SF/SWNT and SF/SWNT/FN groups after 5 weeks post implantation, indicating a functional recovery for the injured nerves. With immunohistochemistry, the higher S-100 expression of Schwann cells in SF/SWNT/FN conduits in comparison to other groups was confirmed. In conclusion, an oriented conduit of biocompatible SF/SWNT/FN has been fabricated with acceptable structure that is particularly applicable in nerve grafts. PMID:24098649

  1. Direct Cranial Nerve Involvement by Gliomas: Case Series and Review of the Literature.

    PubMed

    Mabray, M C; Glastonbury, C M; Mamlouk, M D; Punch, G E; Solomon, D A; Cha, S

    2015-07-01

    Malignant gliomas are characterized by infiltrative growth of tumor cells, including along white matter tracts. This may result in clinical cranial neuropathy due to direct involvement of a cranial nerve rather than by leptomeningeal spread along cranial nerves. Gliomas directly involving cranial nerves III-XII are rare, with only 11 cases reported in the literature before 2014, including 8 with imaging. We present 8 additional cases demonstrating direct infiltration of a cranial nerve by a glioma. Asymmetric cisternal nerve expansion compared with the contralateral nerve was noted with a mean length of involvement of 9.4 mm. Based on our case series, the key imaging feature for recognizing direct cranial nerve involvement by a glioma is the detection of an intra-axial mass in the pons or midbrain that is directly associated with expansion, signal abnormality, and/or enhancement of the adjacent cranial nerves. PMID:25857757

  2. Abnormal Neuroimaging in a Case of Infant Botulism

    PubMed Central

    Good, Ryan J.; Messacar, Kevin; Stence, Nicholas V.; Press, Craig A.; Carpenter, Todd C.

    2015-01-01

    We present the first case of abnormal neuroimaging in a case of infant botulism. The clinical findings of the patient with constipation, bulbar weakness, and descending, symmetric motor weakness are consistent with the classic findings of infant botulism. Magnetic resonance imaging (MRI), however, revealed restricted diffusion in the brain and enhancement of the cervical nerve roots. Traditionally, normal neuroimaging was used to help differentiate infant botulism from other causes of weakness in infants. Abnormal neuroimaging is seen in other causes of weakness in an infant including metabolic disorders and hypoxic–ischemic injury, but these diagnoses did not fit the clinical findings in this case. The explanation for the MRI abnormalities in the brain and cervical nerve roots is unclear as botulinum toxin acts at presynaptic nerve terminals and does not cross the blood–brain barrier. Possible explanations for the findings include inflammation from the botulinum toxin at the synapse, alterations in sensory signaling and retrograde transport of the botulinum toxin. The patient was treated with human botulism immune globulin and had rapid recovery in weakness. A stool sample from the patient was positive for Type A Clostridium botulinum toxin eventually confirming the diagnosis of infant botulism. The findings in this case support use of human botulism immune globulin when the clinical findings are consistent with infant botulism despite the presence of MRI abnormalities in the brain and cervical nerve roots. PMID:26697417

  3. Successful Treatment of Occipital Neuralgia with Implantable Peripheral Nerve Stimulation in a Pacemaker-Dependent Patient

    PubMed Central

    Chaiban, Gassan; Tolba, Reda; Eissa, Hazem; Lirette, Lesley Smallwood; Almualim, Mohammed; Malaty, Adham; Atallah, Joseph

    2014-01-01

    Background Peripheral nerve stimulation has been used to treat patients with occipital nerve–related chronic headaches who have been unsuccessful with less invasive therapeutic approaches. Patients with pacemaker-dependent cardiac conduction abnormalities require unique consideration prior to the implantation of peripheral nerve stimulators because the placement of the devices may lead to failure of the systems secondary to electromagnetic interference or crosstalk between the devices. Case Report An 86-year-old female who suffered from chronic right-sided cervicogenic headaches and neck pain had received only temporary relief from previous treatments. Additional comorbidities included longstanding pacemaker-dependent atrioventricular node conduction disease. Because the extent to which nerve stimulators electrically interact with pacemakers is unclear, we tunneled the leads to the lumbar region of the back and placed the generator on the contralateral side to the pacemaker to minimize the chance that the 2 devices would interfere. The patient has remained pain free for 1 year since implantation. Conclusion Although no current published trials evaluate the degree of interference between medical devices, case reports increasingly suggest that simultaneous implantation of a spinal cord stimulator and pacemaker is safe as long as precautions are taken and the devices are checked periodically, particularly when the devices are adjusted. PMID:24688344

  4. The Furcal Nerve Revisited

    PubMed Central

    Dabke, Harshad V.

    2014-01-01

    Atypical sciatica and discrepancy between clinical presentation and imaging findings is a dilemma for treating surgeon in management of lumbar disc herniation. It also constitutes ground for failed back surgery and potential litigations thereof. Furcal nerve (Furcal = forked) is an independent nerve with its own ventral and dorsal branches (rootlets) and forms a link nerve that connects lumbar and sacral plexus. Its fibers branch out to be part of femoral and obturator nerves in-addition to the lumbosacral trunk. It is most commonly found at L4 level and is the most common cause of atypical presentation of radiculopathy/sciatica. Very little is published about the furcal nerve and many are unaware of its existence. This article summarizes all the existing evidence about furcal nerve in English literature in an attempt to create awareness and offer insight about this unique entity to fellow colleagues/professionals involved in spine care. PMID:25317309

  5. Sciatic nerve injection injury.

    PubMed

    Jung Kim, Hyun; Hyun Park, Sang

    2014-06-11

    Nerve injury is a common complication following intramuscular injection and the sciatic nerve is the most frequently affected nerve, especially in children, the elderly and underweight patients. The neurological presentation may range from minor transient pain to severe sensory disturbance and motor loss with poor recovery. Management of nerve injection injury includes drug treatment of pain, physiotherapy, use of assistive devices and surgical exploration. Early recognition of nerve injection injury and appropriate management are crucial in order to reduce neurological deficit and to maximize recovery. Sciatic nerve injection injury is a preventable event. Total avoidance of intramuscular injection is recommended if other administration routes can be used. If the injection has to be administered into the gluteal muscle, the ventrogluteal region (gluteal triangle) has a more favourable safety profile than the dorsogluteal region (the upper outer quadrant of the buttock). PMID:24920643

  6. Abnormal neurological exam findings in individuals with mild traumatic brain injury (mTBI) versus psychiatric and healthy controls.

    PubMed

    Silva, Marc A; Donnell, Alison J; Kim, Michelle S; Vanderploeg, Rodney D

    2012-01-01

    In those with a history of mild traumatic brain injury (mTBI), cognitive and emotional disturbances are often misattributed to that preexisting injury. However, causal determinations of current symptoms cannot be conclusively determined because symptoms are often nonspecific to etiology and offer virtually no differential diagnostic value in postacute or chronic phases. This population-based study examined whether the presence of abnormalities during neurological examination would distinguish between mTBI (in the chronic phase), healthy controls, and selected psychiatric conditions. Retrospective analysis of data from 4462 community-dwelling Army veterans was conducted. Diagnostically unique groups were compared on examination of cranial nerve function and other neurological signs. Results demonstrated that individuals with mTBI were no more likely than those with a major depressive disorder, generalized anxiety disorder, posttraumatic stress disorder, or somatoform disorder to show any abnormality. Thus, like self-reported cognitive and emotional symptoms, the presence of cranial nerve or other neurological abnormalities offers no differential diagnostic value. Clinical implications and study limitations are presented. PMID:23020281

  7. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...

  8. Tooth - abnormal shape

    MedlinePlus

    Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... from many different conditions. Specific diseases can affect tooth shape, tooth color, time of appearance, or absence ...

  9. Endoscopic Facial Nerve Surgery.

    PubMed

    Marchioni, Daniele; Soloperto, Davide; Rubini, Alessia; Nogueira, João Flávio; Badr-El-Dine, Mohamed; Presutti, Livio

    2016-10-01

    Tympanic facial nerve segment surgery has been traditionally performed using microscopic approaches, but currently, exclusive endoscopic approaches have been performed for traumatic, neoplastic, or inflammatory diseases, specially located at the geniculate ganglion, greater petrosal nerve, and second tract of the facial nerve, until the second genu. The tympanic segment of the facial nerve can be reached and visualized using an exclusive transcanal endoscopic approach, even in poorly accessible regions such as the second genu and geniculate ganglion, avoiding mastoidectomy, bony demolition, and meningeal or cerebral lobe tractions, with low complication rates using a minimally invasive surgical route. PMID:27468633

  10. Electrical stimulation accelerates nerve regeneration and functional recovery in delayed peripheral nerve injury in rats.

    PubMed

    Huang, Jinghui; Zhang, Yongguang; Lu, Lei; Hu, Xueyu; Luo, Zhuojing

    2013-12-01

    The present study aims to investigate the potential of brief electrical stimulation (ES; 3 V, 20 Hz, 20 min) in improving functional recovery in delayed nerve injury repair (DNIR). The sciatic nerve of Sprague Dawley rats was transected, and the repair of nerve injury was delayed for different time durations (2, 4, 12 and 24 weeks). Brief depolarizing ES was applied to the proximal nerve stump when the transected nerve stumps were bridged with a hollow nerve conduit (5 mm in length) after delayed periods. We found that the diameter and number of regenerated axons, the thickness of myelin sheath, as well as the number of Fluoro-Gold retrograde-labeled motoneurons and sensory neurons were significantly increased by ES, suggesting that brief ES to proximal nerve stumps is capable of promoting nerve regeneration in DNIR with different delayed durations, with the longest duration of 24 weeks. In addition, the amplitude of compound muscle action potential (gastrocnemius muscle) and nerve conduction velocity were also enhanced, and gastrocnemius muscle atrophy was partially reversed by brief ES, indicating that brief ES to proximal nerve stump was able to improve functional recovery in DNIR. Furthermore, brief ES was capable of increasing brain-derived neurotrophic factor (BDNF) expression in the spinal cord in DNIR, suggesting that BDNF-mediated neurotrophin signaling might be one of the contributing factors to the beneficial effect of brief ES on DNIR. In conclusion, the present findings indicate the potential of using brief ES as a useful method to improve functional recovery for delayed repair of peripheral nerve lesions. PMID:24118464

  11. Loudness adaptation accompanying ribbon synapse and auditory nerve disorders

    PubMed Central

    Zeng, Fan-Gang; Michalewski, Henry J.; Starr, Arnold

    2013-01-01

    Abnormal auditory adaptation is a standard clinical tool for diagnosing auditory nerve disorders due to acoustic neuromas. In the present study we investigated auditory adaptation in auditory neuropathy owing to disordered function of inner hair cell ribbon synapses (temperature-sensitive auditory neuropathy) or auditory nerve fibres. Subjects were tested when afebrile for (i) psychophysical loudness adaptation to comfortably-loud sustained tones; and (ii) physiological adaptation of auditory brainstem responses to clicks as a function of their position in brief 20-click stimulus trains (#1, 2, 3 … 20). Results were compared with normal hearing listeners and other forms of hearing impairment. Subjects with ribbon synapse disorder had abnormally increased magnitude of loudness adaptation to both low (250 Hz) and high (8000 Hz) frequency tones. Subjects with auditory nerve disorders had normal loudness adaptation to low frequency tones; all but one had abnormal adaptation to high frequency tones. Adaptation was both more rapid and of greater magnitude in ribbon synapse than in auditory nerve disorders. Auditory brainstem response measures of adaptation in ribbon synapse disorder showed Wave V to the first click in the train to be abnormal both in latency and amplitude, and these abnormalities increased in magnitude or Wave V was absent to subsequent clicks. In contrast, auditory brainstem responses in four of the five subjects with neural disorders were absent to every click in the train. The fifth subject had normal latency and abnormally reduced amplitude of Wave V to the first click and abnormal or absent responses to subsequent clicks. Thus, dysfunction of both synaptic transmission and auditory neural function can be associated with abnormal loudness adaptation and the magnitude of the adaptation is significantly greater with ribbon synapse than neural disorders. PMID:23503620

  12. Causes of Secondary Radial Nerve Palsy and Results of Treatment.

    PubMed

    Reichert, Pawel; Wnukiewicz, Witold; Witkowski, Jarosław; Bocheńska, Aneta; Mizia, Sylwia; Gosk, Jerzy; Zimmer, Krzysztof

    2016-01-01

    BACKGROUND The aim of this study was to analyze the causes that lead to secondary damage of the radial nerve and to discuss the results of reconstructive treatment. MATERIAL AND METHODS The study group consisted of 33 patients treated for radial nerve palsy after humeral fractures. Patients were diagnosed based on clinical examinations, ultrasonography, electromyography, or nerve conduction velocity. During each operation, the location and type of nerve damage were analyzed. During the reconstructive treatment, neurolysis, direct neurorrhaphy, or reconstruction with a sural nerve graft was used. The outcomes were evaluated using the Medical Research Council (MRC) scales and the quick DASH score. RESULTS Secondary radial nerve palsy occurs after open reduction and internal fixation (ORIF) by plate, as well as by closed reduction and internal fixation (CRIF) by nail. In the case of ORIF, it most often occurs when the lateral approach is used, as in the case of CRIF with an insertion interlocking screws. The results of the surgical treatment were statistically significant and depended on the time between nerve injury and revision (reconstruction) surgery, type of damage to the radial nerve, surgery treatment, and type of fixation. Treatment results were not statistically significant, depending on the type of fracture or location of the nerve injury. CONCLUSIONS The potential risk of radial nerve neurotmesis justifies an operative intervention to treat neurological complications after a humeral fracture. Adequate surgical treatment in many of these cases allows for functional recovery of the radial nerve. PMID:26895570

  13. Causes of Secondary Radial Nerve Palsy and Results of Treatment

    PubMed Central

    Reichert, Paweł; Wnukiewicz, Witold; Witkowski, Jarosław; Bocheńska, Aneta; Mizia, Sylwia; Gosk, Jerzy; Zimmer, Krzysztof

    2016-01-01

    Background The aim of this study was to analyze the causes that lead to secondary damage of the radial nerve and to discuss the results of reconstructive treatment. Material/Methods The study group consisted of 33 patients treated for radial nerve palsy after humeral fractures. Patients were diagnosed based on clinical examinations, ultrasonography, electromyography, or nerve conduction velocity. During each operation, the location and type of nerve damage were analyzed. During the reconstructive treatment, neurolysis, direct neurorrhaphy, or reconstruction with a sural nerve graft was used. The outcomes were evaluated using the Medical Research Council (MRC) scales and the quick DASH score. Results Secondary radial nerve palsy occurs after open reduction and internal fixation (ORIF) by plate, as well as by closed reduction and internal fixation (CRIF) by nail. In the case of ORIF, it most often occurs when the lateral approach is used, as in the case of CRIF with an insertion interlocking screws. The results of the surgical treatment were statistically significant and depended on the time between nerve injury and revision (reconstruction) surgery, type of damage to the radial nerve, surgery treatment, and type of fixation. Treatment results were not statistically significant, depending on the type of fracture or location of the nerve injury. Conclusions The potential risk of radial nerve neurotmesis justifies an operative intervention to treat neurological complications after a humeral fracture. Adequate surgical treatment in many of these cases allows for functional recovery of the radial nerve. PMID:26895570

  14. A study of axonal degeneration in the optic nerves of aging mice

    NASA Technical Reports Server (NTRS)

    Johnson, J. E., Jr.; Philpott, D. E.; Miquel, J.

    1978-01-01

    The optic nerves of C57BL/6J mice ranging from 3 to 30 months were examined by electron microscopy. At all ages investigated, optic nerve axons contained enlarged mitochondria with abnormal cristae. With increasing age, a large number of necrotic axons were observed and were in the process of being phagocytized. The abnormal mitochondria may represent preliminary changes that eventually lead to necrosis of the axon.

  15. Repair of peripheral nerve with vein wrapping*

    PubMed Central

    LEUZZI, S.; ARMENIO, A.; LEONE, L.; DE SANTIS, V.; DI TURI, A.; ANNOSCIA, P.; BUFANO, L.; PASCONE, M.

    2014-01-01

    Objective The post–traumatic neuro-anastomosis must be protected from the surrounding environment. This barrier must be biologically inert, biodegradable, not compressing but protecting the nerve. Formation of painful neuroma is one of the major issues with neuro-anastomosis; currently there is no consensus on post-repair neuroma prevention. Aim of this study is to evaluate the efficacy of neuroanastomosis performed with venous sheath to reduce painful neuromas formation, improve the electrical conductivity of the repaired nerve, and reduce the discrepancies of the sectioned nerve stumps. Patients and methods From a trauma population of 320 patients treated in a single centre between January 2008 and December 2011, twenty-six patients were identified as having an injury to at least one of the peripheral nerves of the arm and enrolled in the study. Patients were divided into two groups. In the group A (16 patients) the end-to-end nerve suture was wrapped in a vein sheath and compared with the group B (10 patients) in which a simple end-to-end neurorrhaphy was performed. The venous segment used to cover the nerve micro-suture was harvested from the superficial veins of the forearm. The parameters analyzed were: functional recovery of motor nerves, sensitivity and pain. Results Average follow-up was 14 months (range: 12–24 months). The group A showed a more rapid motor and sensory recovery and a reduction of the painful symptoms compared to the control group (B). Conclusions The Authors demonstrated that, in their experience, the venous sheath provides a valid solution to avoid the dispersion of the nerve fibres, to prevent adherent scars and painful neuromas formation. Moreover it can compensate the different size of two nerve stumps, allowing, thereby, a more rapid functional and sensitive recovery without expensive devices. PMID:24841688

  16. Use of Vein Conduit and Isolated Nerve Graft in Peripheral Nerve Repair: A Comparative Study

    PubMed Central

    Ahmad, Imran; Akhtar, Md. Sohaib

    2014-01-01

    Aims and Objectives. The aim of this study was to evaluate the effectiveness of vein conduit in nerve repair compared with isolated nerve graft. Materials and Methods. This retrospective study was conducted at author's centre and included a total of 40 patients. All the patients had nerve defect of more than 3 cm and underwent nerve repair using nerve graft from sural nerve. In 20 cases, vein conduit (study group) was used whereas no conduit was used in other 20 cases. Patients were followed up for 2 years at the intervals of 3 months. Results. Patients had varying degree of recovery. Sensations reached to all the digits at 1 year in study groups compared to 18 months in control group. At the end of second year, 84% patients of the study group achieved 2-point discrimination of <10 mm compared to 60% only in control group. In terms of motor recovery, 82% patients achieved satisfactory hand function in study group compared to 56% in control group (P < .05). Conclusions. It was concluded that the use of vein conduit in peripheral nerve repair is more effective method than isolated nerve graft providing good sensory and motor recovery. PMID:25405029

  17. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  18. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect.

    PubMed

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  19. Neurodiagnostic Abnormalities in Patients with Acute Renal Failure

    PubMed Central

    Cooper, Jerry D.; Lazarowitz, Virginia C.; Arieff, Allen I.

    1978-01-01

    Neurological abnormalities are a major cause of morbidity in patients with renal failure. The pathophysiology of these neurological changes is unclear, and the effects on them of dialysis and return of renal function have not been well studied. Studies were done in 31 patients who had acute renal failure (ARF), all of whom were either treated with dialysis within 5 days or did not survive. Studies on these patients included the electroencephalogram (EEG), motor nerve conduction velocity, and plasma Ca++ and parathyroid hormone (PTH) levels. Studies were done at the time ARF was diagnosed, after stabilization on dialysis, during the diuretic phase of ARF, and 3 mo after recovery from ARF. In 16 patients with acute or chronic renal failure who did not survive and in nine patients without renal disease who died, measurements were made in brain of content of Na+, K+, Cl−, Ca++, Mg++, and water. In patients with ARF for less than 48 h, despite the fact that there were only modest increases in plasma urea and creatinine, there were striking abnormalities in the EEG. The percent EEG power < 5 Hz±SE was 41±8% (normal = 2±1%), whereas the percent of frequencies > 9 Hz was only 22±6% (normal = 62±3%). These changes were unaffected by dialysis, but became normal with return of renal function and remained normal at 3 mo follow-up. The motor nerve conduction velocity was unaffected by either ARF or dialysis. In patients with ARF, the brain Ca++ was 46.5±3.2 meq/kg dry wt, almost twice the normal value of 26.9±1.0 meq/kg dry wt (P < 0.001). The plasma PTH level was 3.2±0.6 ng/ml (normal < 1.5 ng/ml, P < 0.01). The increased brain Ca++ was not related to an increased plasma (Ca++) (PO4−−−) product (r2 = 0.14, P > 0.05). There was a small but significant decrement in brain Na+ (P < 0.05), but brain water, K+, and Mg++ were unaffected by ARF. Thus, in patients with ARF for less than 48 h, the EEG is grossly abnormal and there are elevated levels of PTH in plasma

  20. Water excitation MPRAGE MRI of VII and VIII cranial nerves

    SciTech Connect

    Litt, A.W.; Licata, P.; Knopp, E.A.; Thomasson, D.M.

    1996-03-01

    Our goal was to compare magnetization prepared rapid gradient echo-water excitation (MPR-AGE-WE) with conventional spin echo (CSE) in the evaluation of the VII and VIII cranial nerves. One hundred three consecutive patients with symptoms referable to the VII/VIII nerves were studied with CSE T1 and MPRAGE-WE following intravenous gadolinium, contrast agent. Each right and left nerve pair was independently evaluated for the presence of an enhancing mass and for visualization of the nerves. On the CSE images, 26 definite and 2 possible lesions were identified, whereas 28 definite and 2 possible abnormalities were seen on the MPRAGE-WE. Four cases were better identified on the MPRAGE-WE and one better seen on the CSE. This difference was not statistically significant (p = 0. 19). CSE demonstrated the nerves partially in 23 instances and completely in 6; MPRAGE-WE showed the nerves partially in 35 and completely in 73. This was highly significant (p < 0.001). With equivalent or slightly improved lesion detection and better visualization of the nerves, MPRAGE-WE may replace CSE in studying the VII/VIII nerves. 14 refs., 7 figs., 3 tabs.

  1. Intraoperative vagal nerve monitoring.

    PubMed

    Leonetti, J P; Jellish, W S; Warf, P; Hudson, E

    1996-08-01

    A variety of benign and malignant neoplasms occur in the superior cervical neck, parapharyngeal space or the infratemporal fossa. The surgical resection of these lesions may result in postoperative iatrogenic injury to the vagus nerve with associated dysfunctional swallowing and airway protection. Anatomic and functional preservation of this critical cranial nerve will contribute to a favorable surgical outcome. Fourteen patients with tumors of the cervical neck or adjacent skull base underwent intraoperative vagal nerve monitoring in an attempt to preserve neural integrity following tumor removal. Of the 11 patients with anatomically preserved vagal nerves in this group, seven patients had normal vocal cord mobility following surgery and all 11 patients demonstrated normal vocal cord movement by six months. In an earlier series of 23 patients with tumors in the same region who underwent tumor resection without vagal nerve monitoring, 18 patients had anatomically preserved vagal nerves. Within this group, five patients had normal vocal cord movement at one month and 13 patients demonstrated normal vocal cord movement at six months. This paper will outline a technique for intraoperative vagal nerve monitoring utilizing transcricothyroid membrane placement of bipolar hook-wire electrodes in the vocalis muscle. Our results with the surgical treatment of cervical neck and lateral skull base tumors for patients with unmonitored and monitored vagal nerves will be outlined. PMID:8828272

  2. Inferior alveolar nerve repositioning.

    PubMed

    Louis, P J

    2001-09-01

    Nerve repositioning is a viable alternative for patients with an atrophic edentulous posterior mandible. Patients, however, should be informed of the potential risks of neurosensory disturbance. Documentation of the patient's baseline neurosensory function should be performed with a two-point discrimination test or directional brush stroke test preoperatively and postoperatively. Recovery of nerve function should be expected in 3 to 6 months. The potential for mandibular fracture when combining nerve repositioning with implant placement also should be discussed with the patient. This can be avoided by minimizing the amount of buccal cortical plate removal during localization of the nerve and maintaining the integrity of the inferior cortex of the mandible. Additionally, avoid overseating the implant, thus avoiding stress along the inferior border of the mandible. The procedure does allow for the placement of longer implants, which should improve implant longevity. Patients undergoing this procedure have expressed overall satisfaction with the results. Nerve repositioning also can be used to preserve the inferior alveolar nerve during resection of benign tumors or cysts of the mandible. This procedure allows the surgeon to maintain nerve function in situations in which the nerve would otherwise have to be resected. PMID:11665379

  3. Distal median nerve dysfunction

    MedlinePlus

    ... Names Neuropathy - distal median nerve Images Central nervous system and peripheral nervous system References Jarvik JG, Comstock BA, Kliot M, et al. Surgery versus non-surgical therapy for carpal tunnel syndrome: a randomized ... D. Disorders of peripheral nerves. In: Daroff RB, Fenichel GM, Jankovic J, ...

  4. Optic Nerve Decompression

    MedlinePlus

    ... canals). The optic nerve is the “nerve of vision” and extends from the brain, through your skull, and into your eye. A ... limited to, the following: loss of vision, double vision, inadequate ... leakage of brain fluid (CSF), meningitis, nasal bleeding, infection of the ...

  5. Six3 regulates optic nerve development via multiple mechanisms

    PubMed Central

    Samuel, Anat; Rubinstein, Ariel M.; Azar, Tehila T.; Ben-Moshe Livne, Zohar; Kim, Seok-Hyung; Inbal, Adi

    2016-01-01

    Malformations of the optic nerve lead to reduced vision or even blindness. During optic nerve development, retinal ganglion cell (RGC) axons navigate across the retina, exit the eye to the optic stalk (OS), and cross the diencephalon midline at the optic chiasm en route to their brain targets. Many signalling molecules have been implicated in guiding various steps of optic nerve pathfinding, however much less is known about transcription factors regulating this process. Here we show that in zebrafish, reduced function of transcription factor Six3 results in optic nerve hypoplasia and a wide repertoire of RGC axon pathfinding errors. These abnormalities are caused by multiple mechanisms, including abnormal eye and OS patterning and morphogenesis, abnormal expression of signalling molecules both in RGCs and in their environment and anatomical deficiency in the diencephalic preoptic area, where the optic chiasm normally forms. Our findings reveal new roles for Six3 in eye development and are consistent with known phenotypes of reduced SIX3 function in humans. Hence, the new zebrafish model for Six3 loss of function furthers our understanding of the mechanisms governing optic nerve development and Six3-mediated eye and forebrain malformations. PMID:26822689

  6. Six3 regulates optic nerve development via multiple mechanisms.

    PubMed

    Samuel, Anat; Rubinstein, Ariel M; Azar, Tehila T; Ben-Moshe Livne, Zohar; Kim, Seok-Hyung; Inbal, Adi

    2016-01-01

    Malformations of the optic nerve lead to reduced vision or even blindness. During optic nerve development, retinal ganglion cell (RGC) axons navigate across the retina, exit the eye to the optic stalk (OS), and cross the diencephalon midline at the optic chiasm en route to their brain targets. Many signalling molecules have been implicated in guiding various steps of optic nerve pathfinding, however much less is known about transcription factors regulating this process. Here we show that in zebrafish, reduced function of transcription factor Six3 results in optic nerve hypoplasia and a wide repertoire of RGC axon pathfinding errors. These abnormalities are caused by multiple mechanisms, including abnormal eye and OS patterning and morphogenesis, abnormal expression of signalling molecules both in RGCs and in their environment and anatomical deficiency in the diencephalic preoptic area, where the optic chiasm normally forms. Our findings reveal new roles for Six3 in eye development and are consistent with known phenotypes of reduced SIX3 function in humans. Hence, the new zebrafish model for Six3 loss of function furthers our understanding of the mechanisms governing optic nerve development and Six3-mediated eye and forebrain malformations. PMID:26822689

  7. Preoperative transcutaneous electrical nerve stimulation for localizing superficial nerve paths.

    PubMed

    Natori, Yuhei; Yoshizawa, Hidekazu; Mizuno, Hiroshi; Hayashi, Ayato

    2015-12-01

    During surgery, peripheral nerves are often seen to follow unpredictable paths because of previous surgeries and/or compression caused by a tumor. Iatrogenic nerve injury is a serious complication that must be avoided, and preoperative evaluation of nerve paths is important for preventing it. In this study, transcutaneous electrical nerve stimulation (TENS) was used for an in-depth analysis of peripheral nerve paths. This study included 27 patients who underwent the TENS procedure to evaluate the peripheral nerve path (17 males and 10 females; mean age: 59.9 years, range: 18-83 years) of each patient preoperatively. An electrode pen coupled to an electrical nerve stimulator was used for superficial nerve mapping. The TENS procedure was performed on patients' major peripheral nerves that passed close to the surgical field of tumor resection or trauma surgery, and intraoperative damage to those nerves was apprehensive. The paths of the target nerve were detected in most patients preoperatively. The nerve paths of 26 patients were precisely under the markings drawn preoperatively. The nerve path of one patient substantially differed from the preoperative markings with numbness at the surgical region. During surgery, the nerve paths could be accurately mapped preoperatively using the TENS procedure as confirmed by direct visualization of the nerve. This stimulation device is easy to use and offers highly accurate mapping of nerves for surgical planning without major complications. The authors conclude that TENS is a useful tool for noninvasive nerve localization and makes tumor resection a safe and smooth procedure. PMID:26420473

  8. Effects of natural free radical scavengers on peripheral nerve and neurovascular function in diabetic rats.

    PubMed

    Cotter, M A; Love, A; Watt, M J; Cameron, N E; Dines, K C

    1995-11-01

    Increased generation of reactive oxygen species, coupled with impaired endogenous scavenging mechanisms, plays a prominent role in the aetiology of neurovascular abnormalities in experimental diabetes mellitus. We examined the efficacy of the natural anti-oxidants vitamins C, E and beta-carotene in preventing nerve conduction and nutritive blood flow deficits in streptozotocin-diabetic rats. One month of diabetes caused a 19.1% reduction in sciatic motor conduction velocity (p < 0.001). This was approximately prevented 80-90% by high-dose (1000 mg.kg-1.day-1) vitamin E and beta-carotene treatments (p < 0.001). Vitamin C had lesser effects; the maximum protection found for motor conduction velocity was 36% using a dose of 150 mg.kg-1.day-1 (p < 0.001). High dose (500 mg.kg-1.day-1 (p < 0.001). High dose (500 mg.kg-1.day-1) vitamin C had a lesser effect on conduction than intermediate doses. Joint vitamin C and lower dose (500 mg.kg-1.day-1) vitamin E treatment had a predominantly additive preventive effect against nerve dysfunction. Resistance to hypoxic conduction failure for sciatic nerve in vitro was markedly increased by diabetes and this remained relatively unaffected by treatment. Sciatic nutritive endoneurial blood flow, measured using microelectrode polarography and hydrogen clearance, was reduced 46.1% by 1 month of diabetes (p < 0.001). This was prevented to the extent of 87%, 36% and 98% by vitamins E, C and beta-carotene, respectively (p < 0.01). These data emphasize the role of oxidative stress in the development of early neurovascular changes in experimental diabetes and show that naturally available scavengers have a neuroprotective action. PMID:8582537

  9. A novel Caspr mutation causes the shambling mouse phenotype by disrupting axoglial interactions of myelinated nerves.

    PubMed

    Sun, Xiao-yang; Takagishi, Yoshiko; Okabe, Erina; Chishima, Yûko; Kanou, Yasuhiko; Murase, Shiori; Mizumura, Kazue; Inaba, Mie; Komatsu, Yukio; Hayashi, Yoshitaka; Peles, Elior; Oda, Sen-ichi; Murata, Yoshiharu

    2009-11-01

    The neurological mouse mutation shambling (shm) exhibits ataxia and hindlimb paresis. Positional cloning of shm showed that it encodes contactin-associated protein (Caspr), which is required for formation of the paranodal junction in myelinated nerves. The shm mutation is a TT insertion in the Caspr gene that results in a frame shift and a premature stop codon at the COOH-terminus. The truncated Caspr protein that is generated lacks the transmembrane and cytoplasmic domains. Here, we found that the nodal/paranodal axoplasm of shm mice lack paranodal junctions and contain large mitochondria and abnormal accumulations of cytoplasmic organelles that indicate altered axonal transport. Immunohistochemical analysis of mutant mice showed reduced expression of Caspr, contactin, and neurofascin 155, which are thought to form a protein complex in the paranodal region; protein 4.1B, however, was normally distributed. The mutant mice had aberrant localization of voltage-gated ion channels on the axolemma of nodal/paranodal regions. Electrophysiological analysis demonstrated that the velocity of saltatory conduction was reduced in sciatic nerves and that the visual response was attenuated in the primary visual cortex. These abnormalities likely contribute to the neurological phenotype of the mutant mice. PMID:19816196

  10. Exacerbation of Charcot-Marie-Tooth type 2E neuropathy following traumatic nerve injury.

    PubMed

    Villalón, Eric; Dale, Jeffrey M; Jones, Maria; Shen, Hailian; Garcia, Michael L

    2015-11-19

    Charcot-Marie-Tooth disease (CMT) is the most commonly inherited peripheral neuropathy. CMT disease signs include distal limb neuropathy, abnormal gait, sensory defects, and deafness. We generated a novel line of CMT2E mice expressing hNF-L(E397K), which displayed muscle atrophy of the lower limbs without denervation, proximal reduction in large caliber axons, and decreased nerve conduction velocity. In this study, we challenged wild type, hNF-L and hNF-L(E397K) mice with crush injury to the sciatic nerve. We analyzed functional recovery by measuring toe spread and analyzed gait using the Catwalk system. hNF-L(E397K) mice demonstrated reduced recovery from nerve injury consistent with increased susceptibility to neuropathy observed in CMT patients. In addition, hNF-L(E397K) developed a permanent reduction in their ability to weight bear, increased mechanical allodynia, and premature gait shift in the injured limb, which led to increasingly disrupted interlimb coordination in hNF-L(E397K). Exacerbation of neuropathy after injury and identification of gait alterations in combination with previously described pathology suggests that hNF-L(E397K) mice recapitulate many of clinical signs associated with CMT2. Therefore, hNF-L(E397K) mice provide a model for determining the efficacy of novel therapies. PMID:26423936

  11. Central Mechanisms of Abnormal Sympathoexcitation in Chronic Heart Failure

    PubMed Central

    Kishi, Takuya; Hirooka, Yoshitaka

    2012-01-01

    It has been recognized that the sympathetic nervous system is abnormally activated in chronic heart failure, and leads to further worsening chronic heart failure. In the treatment of chronic heart failure many clinical studies have already suggested that the inhibition of the abnormal sympathetic hyperactivity by beta blockers is beneficial. It has been classically considered that abnormal sympathetic hyperactivity in chronic heart failure is caused by the enhancement of excitatory inputs including changes in peripheral baroreceptor and chemoreceptor reflexes and chemical mediators that control sympathetic outflow. Recently, the abnormalities in the central regulation of sympathetic nerve activity mediated by brain renin angiotensin system-oxidative stress axis and/or proinflammatory cytokines have been focused. Central renin angiotensin system, proinflammatory cytokines, and the interaction between them have been determined as the target of the sympathoinhibitory treatment in experimental animal models with chronic heart failure. In conclusion, we must recognize that chronic heart failure is a syndrome with an abnormal sympathoexcitation, which is caused by the abnormalities in the central regulation of sympathetic nerve activity. PMID:22919539

  12. Physiological and pharmacologic aspects of peripheral nerve blocks

    PubMed Central

    Vadhanan, Prasanna; Tripaty, Debendra Kumar; Adinarayanan, S.

    2015-01-01

    A successful peripheral nerve block not only involves a proper technique, but also a thorough knowledge and understanding of the physiology of nerve conduction and pharmacology of local anesthetics (LAs). This article focuses on what happens after the block. Pharmacodynamics of LAs, underlying mechanisms of clinically observable phenomena such as differential blockade, tachyphylaxis, C fiber resistance, tonic and phasic blockade and effect of volume and concentration of LAs. Judicious use of additives along with LAs in peripheral nerve blocks can prolong analgesia. An entirely new group of drugs-neurotoxins has shown potential as local anesthetics. Various methods are available now to prolong the duration of peripheral nerve blocks. PMID:26330722

  13. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  14. Abnormal Uterine Bleeding

    MedlinePlus

    ... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...

  15. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...

  16. Magnetic field of the cardiac conduction system (invited)

    NASA Astrophysics Data System (ADS)

    Tripp, J. H.; Farrell, D. E.

    1981-03-01

    An overview is given of recent progress in our understanding of the magnetic field of the human cardiac conduction system. This field, of the order of 0.5 pT, has been mapped with a first-order SQUID gradiometer in a rural location having the very low overall noise level of 6×10-3 pT/√Hz. Measurements of similar sensitivity in an ordinary clinical environment have not yet been attempted but we discuss a new approach to noise reduction which should permit this to be achieved. A theoretical model, based on an electrophysiological description of the nerve fibers of the cardiac conduction system accounts quantitatively for the principal features of the existing observations. This constitutes a first step toward the extraction of clinically useful information from magnetic measurements of the conduction system. An extension of this approach is discussed, which promises to supply useful information on abnormal as well as normal subjects.

  17. Radial Nerve Tendon Transfers.

    PubMed

    Cheah, Andre Eu-Jin; Etcheson, Jennifer; Yao, Jeffrey

    2016-08-01

    Radial nerve palsy typically occurs as a result of trauma or iatrogenic injury and leads to the loss of wrist extension, finger extension, thumb extension, and a reduction in grip strength. In the absence of nerve recovery, reconstruction of motor function involves tendon transfer surgery. The most common donor tendons include the pronator teres, wrist flexors, and finger flexors. The type of tendon transfer is classified based on the donor for the extensor digitorum communis. Good outcomes have been reported for most methods of radial nerve tendon transfers as is typical for positional tendon transfers not requiring significant power. PMID:27387076

  18. Chromosomal Abnormalities and Schizophrenia

    PubMed Central

    BASSETT, ANNE S.; CHOW, EVA W.C.; WEKSBERG, ROSANNA

    2011-01-01

    Schizophrenia is a common and serious psychiatric illness with strong evidence for genetic causation, but no specific loci yet identified. Chromosomal abnormalities associated with schizophrenia may help to understand the genetic complexity of the illness. This paper reviews the evidence for associations between chromosomal abnormalities and schizophrenia and related disorders. The results indicate that 22q11.2 microdeletions detected by fluorescence in-situ hybridization (FISH) are significantly associated with schizophrenia. Sex chromosome abnormalities seem to be increased in schizophrenia but insufficient data are available to indicate whether schizophrenia or related disorders are increased in patients with sex chromosome aneuploidies. Other reports of chromosomal abnormalities associated with schizophrenia have the potential to be important adjuncts to linkage studies in gene localization. Advances in molecular cytogenetic techniques (i.e., FISH) have produced significant increases in rates of identified abnormalities in schizophrenia, particularly in patients with very early age at onset, learning difficulties or mental retardation, or dysmorphic features. The results emphasize the importance of considering behavioral phenotypes, including adult onset psychiatric illnesses, in genetic syndromes and the need for clinicians to actively consider identifying chromosomal abnormalities and genetic syndromes in selected psychiatric patients. PMID:10813803

  19. Intraoperative nerve monitoring during total shoulder arthroplasty surgery

    PubMed Central

    Aresti, Nick; Plumb, Karen; Cowan, Joseph; Higgs, Deborah; Lambert, Simon; Falworth, Mark

    2014-01-01

    Background Nerve injury is an acknowledged complication of total shoulder arthroplasty (TSA). Although the incidence of postoperative neurological deficit has been reported to be between 1% and 16%, the true incidence of nerve damage is considered to be higher. The present study aimed to identify the rate of intraoperative nerve injury during total shoulder arthroplasty and to determine potential risk factors. Methods A prospective study of nerve conduction in 21 patients who underwent primary or revision TSA was carried out over a 12-month period. Nerve conduction was monitored by measuring intraoperative sensory evoked potentials (SEP). A significant neurophysiological signal change was defined as either a unilateral or bilateral decrease in SEP signal of ≥50%, a latency increase of ≥10% or a change in waveform morphology, not caused by operative or anaesthetic technique. Results Seven (33%) patients had a SEP signal change. The only significant risk factor identified for signal change was male sex (odds ratio 15.00, 95% confidence interval). The median nerve was the most affected nerve in the operated arm. All but one signal change returned to normal before completion of the operation and no patient had a persisting postoperative clinical neurological deficit. Conclusions The incidence of intraoperative nerve damage may be more common than previously reported. However, the loss of SEP signal is reversible and does not correlate with persisting clinical neurological deficits. The median nerve appears to be most at risk. Monitoring SEPs in the operated limb during TSA may be a valuable tool during TSA.

  20. Reversible differential block of saphenous nerve by cold

    PubMed Central

    Byck, R.; Goldfarb, J.; Schaumburg, H. H.; Sharpless, S. K.

    1972-01-01

    1. This report is concerned with the question of whether the alpha and delta groups of myelinated A fibres show conduction failure at different temperatures. 2. The experiments were done on cat saphenous nerve in vitro. Stimuli were applied to both ends of the nerve and biphasic recordings were taken adjacent to an 11 mm segment of nerve, whose temperature was varied. Before cooling commenced, the stimuli were adjusted so that the action potential which passed through the cold zone and was recorded, collided with the action potential initiated at the opposite end of the nerve. 3. Upon cooling the nerve, it was always observed that the delta peak of the action potential which had been previously occluded by collision reappeared at a temperature at which the alpha peak remained occluded. 4. The reappearance of the delta peak was reversible upon warming the nerve and was not affected by increasing the interstimulus interval. 5. The mean temperature for reappearance of the delta peak was 13·5° C, for reappearance of the alpha peak, 5·3° C. 6. In any given nerve, the blocking temperature was replicable and was dependent on the temperature of the cooled segment rather than the gradient between that segment and the remainder of the nerve. 7. We conclude that in cat saphenous nerve, the delta group of myelinated A fibres shows conduction failure at a higher temperature than does the alpha group. PMID:5037067

  1. Case report: Double nerve transfer of the anterior and posterior interosseous nerves to treat a high ulnar nerve defect at the elbow.

    PubMed

    Delclaux, S; Aprédoaei, C; Mansat, P; Rongières, M; Bonnevialle, P

    2014-10-01

    Double neurotization of the deep branch of ulnar nerve (DBUN) and superficial branch of ulnar nerve using the anterior interosseous nerve (AIN) and the recurrent (thenar) branch of the median nerve was first described by Battiston and Lanzetta. This article details the postoperative results after 18 months of a patient who underwent this technique using the posterior interosseous nerve (PIN) instead of the recurrent branch of the median nerve for sensory reconstruction. A 35-year-old, right-handed man suffered major trauma to his right upper limb following a serious motor vehicle accident. One year later, a pseudocystic neuroma of the ulnar nerve was evident on ultrasound examination and MRI. After the neuroma had been resected, the nerve defect was estimated at 8 cm. One and a half years after the initial trauma, with the patient still at M0/S0, we transferred the AIN and PIN onto the deep and superficial branches of the ulnar nerve respectively. Nerve recovery was monitored clinically every month and by electromyography (EMG) every three months initially and then every six months. At 18 months postoperative, 5th digit abduction/adduction was 28 mm. Sensation was present at the base of the 5th digit. The patient was graded M3/S2. Clear re-innervation of the abductor digiti minimi was demonstrated by EMG (motor conduction velocity 50 m/s). Given that the ulnar nerve could not be excited at the elbow, this re-innervation had to be the result of the double nerve transfer. Neurotization of the DBUN using the AIN produces functional results as early as 1 year after surgery. Using PIN for sensory neurotization is easy to perform, has no negative consequences for the donor site, and leads to good recovery of sensation (graded as S2) after 18 months. PMID:25260763

  2. Loss of osteoprotegerin expression in the inner ear causes degeneration of the cochlear nerve and sensorineural hearing loss.

    PubMed

    Kao, Shyan-Yuan; Kempfle, Judith S; Jensen, Jane B; Perez-Fernandez, Deborah; Lysaght, Andrew C; Edge, Albert S; Stankovic, Konstantina M

    2013-08-01

    Osteoprotegerin (OPG) is a key regulator of bone remodeling. Mutations and variations in the OPG gene cause many human diseases that are characterized by not only skeletal abnormalities but also poorly understood hearing loss: Paget's disease, osteoporosis, and celiac disease. To gain insight into the mechanisms of hearing loss in OPG deficiency, we studied OPG knockout (Opg(-/-)) mice. We show that they develop sensorineural hearing loss, in addition to conductive hearing loss due to abnormal middle-ear bones. OPG deficiency caused demyelination and degeneration of the cochlear nerve in vivo. It also activated ERK, sensitized spiral ganglion cells (SGC) to apoptosis, and inhibited proliferation and survival of cochlear stem cells in vitro, which could be rescued by treatment with exogenous OPG, an ERK inhibitor, or bisphosphonate. Our results demonstrate a novel role for OPG in the regulation of SGC survival, and suggest a mechanism for sensorineural hearing loss in OPG deficiency. PMID:23607938

  3. Early Electrophysiological Abnormalities and Clinical Neuropathy

    PubMed Central

    Hyllienmark, Lars; Alstrand, Nils; Jonsson, Björn; Ludvigsson, Johnny; Cooray, Gerald; Wahlberg-Topp, Jeanette

    2013-01-01

    OBJECTIVE The aim of this study was to elucidate whether subclinical nerve dysfunction as reflected by neurophysiological testing predicts the development of clinical neuropathy in patients with type 1 diabetes. RESEARCH DESIGN AND METHODS Fifty-nine patients were studied twice with neurophysiological measurements at baseline and at follow-up. At baseline, patients were 15.5 ± 3.22 years (range 7–22 years) of age, and duration of diabetes was 6.8 ± 3.3 years. At follow-up, patients were 20–35 years of age, and disease duration was 20 ± 5.3 years (range 10–31 years). RESULTS At baseline, patients showed modestly reduced nerve conduction velocities and amplitudes compared with healthy subjects, but all were free of clinical neuropathy. At follow-up, clinical neuropathy was present in nine (15%) patients. These patients had a more pronounced reduction in peroneal motor nerve conduction velocity (MCV), median MCV, and sural sensory nerve action potential at baseline (P < 0.010–0.003). In simple logistic regression analyses, the predictor with the strongest association with clinical neuropathy was baseline HbA1c (R2 = 48%, odds ratio 7.9, P < 0.002) followed by peroneal MCV at baseline (R2 = 38%, odds ratio 0.6, P < 0.006). With the use of a stepwise forward analysis that included all predictors, first baseline HbA1c and then only peroneal MCV at baseline entered significantly (R2 = 61%). Neuropathy impairment assessment showed a stronger correlation with baseline HbA1c (ρ = 0.40, P < 0.002) than with follow-up HbA1c (ρ = 0.034, P < 0.007). CONCLUSIONS Early defects in nerve conduction velocity predict the development of diabetic neuropathy. However, the strongest predictor was HbA1c during the first years of the disease. PMID:23723354

  4. Nerve growth factor released from a novel PLGA nerve conduit can improve axon growth

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Min; Shea, Jill; Gale, Bruce K.; Sant, Himanshu; Larrabee, Patti; Agarwal, Jay

    2016-04-01

    Nerve injury can occur due to penetrating wounds, compression, traumatic stretch, and cold exposure. Despite prompt repair, outcomes are dismal. In an attempt to help resolve this challenge, in this work, a poly-lactic-co-glycolic acid (PLGA) nerve conduit with associated biodegradable drug reservoir was designed, fabricated, and tested. Unlike current nerve conduits, this device is capable of fitting various clinical scenarios by delivering different drugs without reengineering the whole system. To demonstrate the potential of this device for nerve repair, a series of experiments were performed using nerve growth factor (NGF). First, an NGF dosage curve was developed to determine the minimum NGF concentration for optimal axonal outgrowth on chick dorsal root ganglia (DRG) cells. Next, PLGA devices loaded with NGF were evaluated for sustained drug release and axon growth enhancement with the released drug. A 20 d in vitro release test was conducted and the nerve conduit showed the ability to meet and maintain the minimum NGF requirement determined previously. Bioactivity assays of the released NGF showed that drug released from the device between the 15th and 20th day could still promote axon growth (76.6-95.7 μm) in chick DRG cells, which is in the range of maximum growth. These novel drug delivery conduits show the ability to deliver NGF at a dosage that efficiently promotes ex vivo axon growth and have the potential for in vivo application to help bridge peripheral nerve gaps.

  5. High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.

    PubMed

    Patterson, Jennifer Megan M

    2016-05-01

    Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. PMID:27094893

  6. Optic Nerve Aplasia: Case Report and Literature Review

    PubMed Central

    Ghassemi, Fariba; Bazvand, Fatemeh; Hosseini, Seyedeh Simindokht; Karkhaneh, Reza; Ebrahimiadib, Nazanin; Shekarchi, Babak

    2015-01-01

    Purpose: To report three cases of optic nerve aplasia (ONA). Case Report: Herein three subjects with ONA are described, two subjects had unilateral involvement. In one of these cases, the fellow eye had an associated persistent hyperplastic primary vitreous (PHPV). The third patient had bilateral ONA with multiple intracranial anomalies. Previous reports are reviewed and reported findings are summarized. Orbital and brain magnetic resonance imaging (MRI) were normal in two of our cases and loss of corpus callosum in the third case. Narrow optic nerve was observed on the right side and normal appearance in other two patients. Conclusion: The diagnosis of optic nerve abnormalities in children requires a thorough ophthalmic examination and proper ancillary testing. Although MRI is valuable in the diagnosis of associated central nervous system anomalies, the optic nerve may appear in normal size and course on MRI images and thus one may not be able to diagnose ONA in eyes with opaque media. PMID:26425324

  7. Construction of nerve guide conduits from cellulose/soy protein composite membranes combined with Schwann cells and pyrroloquinoline quinone for the repair of peripheral nerve defect

    SciTech Connect

    Luo, Lihua; Gan, Li; Liu, Yongming; Tian, Weiqun; Tong, Zan; Wang, Xiong; Huselstein, Celine; Chen, Yun

    2015-02-20

    Regeneration and functional reconstruction of peripheral nerve defects remained a significant clinical challenge. Nerve guide conduits, with seed cells or neurotrophic factors (NTFs), had been widely used to improve the repair and regeneration of injured peripheral nerve. Pyrroloquinoline quinone (PQQ) was an antioxidant that can stimulate nerve growth factors (NGFs) synthesis and accelerate the Schwann cells (SCs) proliferation and growth. In present study, three kinds of nerve guide conduits were constructed: one from cellulose/SPI hollow tube (CSC), another from CSC combined with SCs (CSSC), and the third one from CSSC combined with PQQ (CSSPC), respectively. And then they were applied to bridge and repair the sciatic nerve defect in rats, using autograft as control. Effects of different nerve guide conduits on the nerve regeneration were comparatively evaluated by general analysis, sciatic function index (SFI) and histological analysis (HE and TEM). Newly-formed regenerative nerve fibers were observed and running through the transparent nerve guide conduits 12 weeks after surgery. SFI results indicated that the reconstruction of motor function in CSSPC group was better than that in CSSC and CSC groups. HE images from the cross-sections and longitudinal-sections of the harvested regenerative nerve indicated that regenerative nerve fibers had been formed and accompanied with new blood vessels and matrix materials in the conduits. TEM images also showed that lots of fresh myelinated and non-myelinated nerve fibers had been formed. Parts of vacuolar, swollen and abnormal axons occurred in CSC and CSSC groups, while the vacuolization and swell of axons was the least serious in CSSPC group. These results indicated that CSSPC group had the most ability to repair and reconstruct the nerve structure and functions due to the comprehensive contributions from hollow CSC tube, SCs and PQQ. As a result, the CSSPC may have the potential for the applications as nerve guide

  8. Bicycling induced pudendal nerve pressure neuropathy.

    PubMed

    Silbert, P L; Dunne, J W; Edis, R H; Stewart-Wynne, E G

    1991-01-01

    Pudendal neuropathies are well recognised as part of more generalised peripheral neuropathies; however, focal abnormalities of the pudendal nerve due to cycling-related injuries have been infrequently reported. We describe two patients who developed pudendal neuropathies secondary to pressure effects on the perineum from racing-bicycle saddles. Both were male competitive athletes, one of whom developed recurrent numbness of the penis and scrotum after prolonged cycling; the other developed numbness of the penis, an altered sensation of ejaculation, with disturbance of micturition and reduced awareness of defecation. Both patients improved with alterations in saddle position and riding techniques. We conclude that pudendal nerve pressure neuropathy can result from prolonged cycling, particularly when using a poor riding technique. PMID:1821826

  9. Mandibular Branch of the Facial Nerve in Wistar Rats: New Experimental Model to Assess Facial Nerve Regeneration

    PubMed Central

    Bento, Ricardo Ferreira; Salomone, Raquel; Nascimento, Silvia Bona do; Ferreira, Ricardo Jose Rodriguez; Silva, Ciro Ferreira da; Costa, Heloisa Juliana Zabeu Rossi

    2014-01-01

    Introduction The ideal animal model for nerve regeneration studies is the object of controversy, because all models described by the literature have advantages and disadvantages. Objective To describe the histologic and functional patterns of the mandibular branch of the facial nerve of Wistar rats to create a new experimental model of facial nerve regeneration. Methods Forty-two male rats were submitted to a nerve conduction test of the mandibular branch to obtain the compound muscle action potential. Twelve of these rats had the mandibular branch surgically removed and submitted to histologic analysis (number, partial density, and axonal diameter) of the proximal and distal segments. Results There was no statistically significant difference in the functional and histologic variables studied. Conclusion These new histologic and functional standards of the mandibular branch of the facial nerve of rats establish an objective, easy, and greatly reproducible model for future facial nerve regeneration studies. PMID:25992106

  10. Mandibular branch of the facial nerve in wistar rats: new experimental model to assess facial nerve regeneration.

    PubMed

    Bento, Ricardo Ferreira; Salomone, Raquel; Nascimento, Silvia Bona do; Ferreira, Ricardo Jose Rodriguez; Silva, Ciro Ferreira da; Costa, Heloisa Juliana Zabeu Rossi

    2014-07-01

    Introduction The ideal animal model for nerve regeneration studies is the object of controversy, because all models described by the literature have advantages and disadvantages. Objective To describe the histologic and functional patterns of the mandibular branch of the facial nerve of Wistar rats to create a new experimental model of facial nerve regeneration. Methods Forty-two male rats were submitted to a nerve conduction test of the mandibular branch to obtain the compound muscle action potential. Twelve of these rats had the mandibular branch surgically removed and submitted to histologic analysis (number, partial density, and axonal diameter) of the proximal and distal segments. Results There was no statistically significant difference in the functional and histologic variables studied. Conclusion These new histologic and functional standards of the mandibular branch of the facial nerve of rats establish an objective, easy, and greatly reproducible model for future facial nerve regeneration studies. PMID:25992106

  11. Vascularized Nerve Bypass Graft: A Case Report of an Additional Treatment for Poor Sensory Recovery.

    PubMed

    Usami, Satoshi; Tanaka, Kentaro; Ohkubo, Alisa; Okazaki, Mutsumi

    2016-04-01

    End-to-side neurorrhaphy has proven effective in basic research and in clinical application. One of the methods of end-to-side neurorrhaphy, nerve bypass technique, has been reported and axon regeneration has been proven. In clinical application, the utility of the nerve bypass technique has been revealed in some cases; however, these bypasses were performed using nonvascularized nerves. We initially used the vascularized nerve bypass graft technique with the sural nerve as a secondary clinical procedure after median nerve injury in a 61-year-old patient and achieved motor and sensory nerve regeneration, as supported by a nerve conduction study and clinical sensory test. This technique has the potential to become one of the choices for salvage procedure of severe nerve injury. PMID:27200248

  12. Vascularized Nerve Bypass Graft: A Case Report of an Additional Treatment for Poor Sensory Recovery

    PubMed Central

    Tanaka, Kentaro; Ohkubo, Alisa; Okazaki, Mutsumi

    2016-01-01

    Summary: End-to-side neurorrhaphy has proven effective in basic research and in clinical application. One of the methods of end-to-side neurorrhaphy, nerve bypass technique, has been reported and axon regeneration has been proven. In clinical application, the utility of the nerve bypass technique has been revealed in some cases; however, these bypasses were performed using nonvascularized nerves. We initially used the vascularized nerve bypass graft technique with the sural nerve as a secondary clinical procedure after median nerve injury in a 61-year-old patient and achieved motor and sensory nerve regeneration, as supported by a nerve conduction study and clinical sensory test. This technique has the potential to become one of the choices for salvage procedure of severe nerve injury. PMID:27200248

  13. Serial anthropometry predicts peripheral nerve dysfunction in a community cohort

    PubMed Central

    Ylitalo, Kelly R.; Herman, William H.; Harlow, Siobán D.

    2012-01-01

    Background Obesity is a risk factor for glucose intolerance, but the independent role of obesity in the development of peripheral neuropathy is unclear. This study assessed the impact of body size trajectories on prevalent nerve dysfunction in community-dwelling women with and without glucose intolerance. Methods Annual (1996–2008) anthropometric measures of weight, height, waist circumference, and body mass index (BMI, weight[kg]/height[m2]) were assessed in the Study of Women's Health Across the Nation – Michigan site. Glucose intolerance was defined annually based on current use of diabetes medications, self-reported diabetes diagnosis, and, when available, fasting glucose. Peripheral nerve dysfunction in 2008 was defined as abnormal monofilament testing or ≥4 symptoms or signs. Linear mixed models were used to determine trajectories of anthropometry by subsequently-identified nerve dysfunction status. Results Mean BMI was 32.4 kg/m2 at baseline and 27.8% of women had nerve dysfunction in 2008. BMI, weight, and waist circumference increased over time. Women who would have nerve dysfunction were significantly larger than women without dysfunction, independent of glucose intolerance. At mean baseline age of 46, BMI, weight, and waist circumference differed significantly (p-value<0.01) by subsequent nerve dysfunction status, independent of glucose intolerance and hypertension. These body size differences were maintained but not exacerbated over time. Conclusions Peripheral nerve dysfunction is prevalent among community-dwelling women. Twelve years before the nerve assessment, anthropometry differed between women who would and would not have nerve dysfunction, differences that were maintained over time. Obesity deserves attention as an important and potentially modifiable risk factor for peripheral nerve dysfunction. PMID:23161607

  14. Ulnar nerve dysfunction

    MedlinePlus

    ... pressure on the elbow An elbow fracture or dislocation Temporary pain and tingling of this nerve can ... Saunders; 2011:chap 428. Read More Broken bone Dislocation Mononeuritis multiplex Mononeuropathy Myelin Peripheral neuropathy Systemic Update ...

  15. Diabetic Nerve Problems

    MedlinePlus

    ... at the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get ... you change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. ...

  16. Ulnar nerve dysfunction

    MedlinePlus

    ... surface of the body where it crosses the elbow. The damage destroys the nerve covering ( myelin sheath) ... be caused by: Long-term pressure on the elbow An elbow fracture or dislocation Temporary pain and ...

  17. Degenerative Nerve Diseases

    MedlinePlus

    Degenerative nerve diseases affect many of your body's activities, such as balance, movement, talking, breathing, and heart function. Many of these diseases are genetic. Sometimes the cause is a medical ...

  18. Common peroneal nerve dysfunction

    MedlinePlus

    ... people: Who are very thin (for example, from anorexia nervosa ) Who have certain autoimmune conditions, such as ... Elsevier; 2013:chap 22. Read More Alertness - decreased Anorexia Broken bone Diabetes and nerve damage Mononeuritis multiplex ...

  19. Femoral nerve dysfunction

    MedlinePlus

    Neuropathy - femoral nerve; Femoral neuropathy ... Craig EJ, Clinchot DM. Femoral neuropathy. In: Frontera WR, Silver JK, Rizzo TD Jr, eds. Essentials of Physical Medicine and Rehabilitation: Musculoskeletal Disorders, Pain, and Rehabilitation . 3rd ...

  20. Diabetic Nerve Problems

    MedlinePlus

    ... the wrong times. This damage is called diabetic neuropathy. Over half of people with diabetes get it. ... change positions quickly Your doctor will diagnose diabetic neuropathy with a physical exam and nerve tests. Controlling ...

  1. Schwannoma of Extraocular Nerves

    PubMed Central

    Niazi, Wasim; Boggan, James E.

    1994-01-01

    An unusual case of schwannoma arising from the third cranial nerve in a thirteen year old male is reported. The patient presented with paresis of the right oculomotor nerve and ipsilateral hemiparesis. The clinical features of this case are discussed and the pertinent medical literature reviewed. ImagesFigure 1p220-bFigure 2Figure 3Figure 4Figure 5Figure 6 PMID:17171175

  2. Resolution of third nerve palsy despite persistent aneurysmal mass effect after flow diversion embolization of posterior communicating artery aneurysms.

    PubMed

    Binyamin, Tamar R; Dahlin, Brian C; Waldau, Ben

    2016-09-01

    Posterior communicating artery (PCOM) aneurysms may cause third nerve palsies. The optimal treatment with clipping versus coiling remains controversial. Here we report on two cases of resolution of third nerve palsy after flow diversion embolization of large and giant PCOM aneurysms without adjuvant coil placement. The resolution of third nerve palsy was not preceded by significant shrinkage of the aneurysmal sac on MRI. However, one patient showed resolution of T2-weighted signal abnormalities in the midbrain and mesial temporal lobe despite a similar size of the aneurysm. Therefore, flow diversion embolization of a PCOM aneurysm may resolve oculomotor nerve palsies through decreasing arterial pulsations against the nerve or midbrain. PMID:27183957

  3. Sural nerve defects after nerve biopsy or nerve transfer as a sensory regeneration model for peripheral nerve conduit implantation.

    PubMed

    Radtke, C; Kocsis, J D; Reimers, K; Allmeling, C; Vogt, P M

    2013-09-01

    Nerve repair after injury can be effectively accomplished by direct suture approximation of the proximal and distal segments. This is more successful if coadaptation can be achieved without tension. Currently, the gold standard repair of larger deficits is the transplantation of an autologous sensory sural nerve graft. However, a significant disadvantage of this technique is the inevitable donor morbidity (sensory loss, neuroma and scar formation) after harvesting of the sural nerve. Moreover, limitation of autologous donor nerve length and fixed diameter of the available sural nerve are major drawbacks of current autograft treatment. Another approach that was introduced for nerve repair is the implantation of alloplastic nerve tubes made of, for example, poly-L-lactide. In these, nerve stumps of the transected nerves are surgically bridged using the biosynthetic conduit. A number of experimental studies, primarily in rodents, indicate axonal regeneration and remyelination after implantation of various conduits. However, only limited clinical studies with conduit implantation have been performed in acute peripheral nerve injuries particularly on digital nerves. Clinical transfer of animal studies, which can be carefully calibrated for site and extent of injury, to humans is difficult to interpret due to the intrinsic variability in human nerve injuries. This prevents effective quantification of improvement and induces bias in the study. Therefore, standardization of lesion/repair in human studies is warranted. Here we propose to use sural nerve defects, induced due to nerve graft harvesting or from diagnostic nerve biopsies as a model site to enable standardization of nerve conduit implantation. This would help better with the characterization of the implants and its effectiveness in axonal regeneration and remyelination. Nerve regeneration can be assessed, for example, by recovery of sensation, measured non-invasively by threshold to von Frey filaments and cold

  4. Nerve Growth Factor and Diabetic Neuropathy

    PubMed Central

    Vinik, Aaron

    2003-01-01

    Neuropathy is one of the most debilitating complications of both type 1 and type 2 diabetes, with estimates of prevalence between 50–90% depending on the means of detection. Diabetic neuropathies are heterogeneous and there is variable involvement of large myelinated fibers and small, thinly myelinated fibers. Many of the neuronal abnormalities in diabetes can be duplicated by experimental depletion of specific neurotrophic factors, their receptors or their binding proteins. In experimental models of diabetes there is a reduction in the availability of these growth factors, which may be a consequence of metabolic abnormalities, or may be independent of glycemic control. These neurotrophic factors are required for the maintenance of the neurons, the ability to resist apoptosis and regenerative capacity. The best studied of the neurotrophic factors is nerve growth factor (NGF) and the related members of the neurotrophin family of peptides. There is increasing evidence that there is a deficiency of NGF in diabetes, as well as the dependent neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) that may also contribute to the clinical symptoms resulting from small fiber dysfunction. Similarly, NT3 appears to be important for large fiber and IGFs for autonomic neuropathy. Whether the observed growth factor deficiencies are due to decreased synthesis, or functional, e.g. an inability to bind to their receptor, and/or abnormalities in nerve transport and processing, remains to be established. Although early studies in humans on the role of neurotrophic factors as a therapy for diabetic neuropathy have been unsuccessful, newer agents and the possibilities uncovered by further studies should fuel clinical trials for several generations. It seems reasonable to anticipate that neurotrophic factor therapy, specifically targeted at different nerve fiber populations, might enter the therapeutic armamentarium. PMID:14668049

  5. Successful Reconstruction of Nerve Defects Using Distraction Neurogenesis with a New Experimental Device

    PubMed Central

    Yousef, Mohamed Abdelhamid Ali; Dionigi, Paolo; Marconi, Stefania; Calligaro, Alberto; Cornaglia, Antonia Icaro; Alfonsi, Enrico; Auricchio, Ferdinando

    2015-01-01

    Introduction: Repair of peripheral nerve injuries is an intensive area of challenge and research in modern reconstructive microsurgery. Intensive research is being carried out to develop effective alternatives to the standard nerve autografting, avoiding its drawbacks. The aim of the study was to evaluate the effectiveness of a newly designed mechanical device for the reconstruction of the sciatic nerve in rats in comparison to nerve autografting and to assess the pain during the period of distraction neurogenesis. Methods: Fourteen Sprague Dawley rats were used and randomly assigned into 2 groups with 7 rats in each group; group A (Nerve Autografting group) in which a 10-mm segment of the sciatic nerve was resected and rotated 180 degrees, then primary end-to-end neurorrhaphy was performed in the reverse direction; group B (Nerve Lengthening group) in which the mechanical device was inserted after surgical resection of 10 mm of the sciatic nerve, then secondary end-to-end neurorrhaphy was performed after completing the nerve lengthening. Thirteen weeks later, assessment of the functional sciatic nerve recovery using static sciatic index (SSI) was performed. Furthermore, fourteen weeks after the nerve resection, assessment of the nerve regeneration with electrophysiological study and histological analysis were performed. Also, gastrocnemius wet weight was measured. For pain assessment in group B, Rat Grimace Scale (RGS) score was used. Results: Significantly better functional recovery rate (using the SSI) was reported in the nerve lengthening group in comparison to autografting group. Also, a statistically significant higher nerve conduction velocity was detected in the nerve lengthening group. On histological analysis of the distal nerve section at 3 mm distal to the nerve repair site, significant myelin sheath thickness was detected in the nerve lengthening group. Discussion: Distraction neurogenesis with the new experimental device is a reliable therapeutic

  6. The effects of evening primrose oil on nerve function and capillarization in streptozotocin-diabetic rats: modulation by the cyclo-oxygenase inhibitor flurbiprofen.

    PubMed Central

    Cameron, N. E.; Cotter, M. A.; Dines, K. C.; Robertson, S.; Cox, D.

    1993-01-01

    1. The aims of this study were first, to examine whether deficits in nerve conduction in streptozotocin-diabetic rats could be reversed by a 10% dietary supplement of evening primrose oil. Second, to determine the time-course of reversal, and third, to assess whether the effects could be blocked by the cyclo-oxygenase inhibitor flurbiprofen (5 mg kg-1 day-1). 2. One-month diabetes produced 20% and 15% deficits in sciatic motor and saphenous sensory conduction velocity respectively, which were maintained over 2 months diabetes. 3. The effect of 1-month evening primrose oil treatment on abnormalities caused by an initial month of untreated diabetes was examined. Motor and sensory nerve conduction velocity were restored to the non-diabetic level. 4. Resistance to hypoxic conduction failure was investigated for sciatic nerve trunk in vitro. The 80% conduction failure times were 29% and 55% prolonged by 1- and 2-month diabetes respectively. Evening primrose oil did not reverse the increased hypoxic resistance following 1-month untreated diabetes. 5. Sciatic nerve endoneurial capillary density was not significantly affected by diabetes, but was 16% increased in diabetic rats with reversal by evening primrose oil treatment for 1 month compared to 2-month untreated diabetes. 6. Serial motor conduction velocity measurement after 3-month untreated diabetes revealed complete normalization by evening primrose oil within 4 days. Cessation of treatment resulted in a rapid decline in conduction velocity over 24 h. 7. In a preventive study of 2-month duration, 6 groups of rats were used.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8401950

  7. Clinical applications of diffusion magnetic resonance imaging of the lumbar foraminal nerve root entrapment

    PubMed Central

    Ohtori, Seiji; Yamashita, Masaomi; Yamauchi, Kazuyo; Suzuki, Munetaka; Orita, Sumihisa; Kamoda, Hiroto; Arai, Gen; Ishikawa, Tetsuhiro; Miyagi, Masayuki; Ochiai, Nobuyasu; Kishida, Shunji; Masuda, Yoshitada; Ochi, Shigehiro; Kikawa, Takashi; Takaso, Masashi; Aoki, Yasuchika; Toyone, Tomoaki; Suzuki, Takane; Takahashi, Kazuhisa

    2010-01-01

    Diffusion-weighted imaging (DWI) can provide valuable structural information about tissues that may be useful for clinical applications in evaluating lumbar foraminal nerve root entrapment. Our purpose was to visualize the lumbar nerve root and to analyze its morphology, and to measure its apparent diffusion coefficient (ADC) in healthy volunteers and patients with lumbar foraminal stenosis using 1.5-T magnetic resonance imaging. Fourteen patients with lumbar foraminal stenosis and 14 healthy volunteers were studied. Regions of interest were placed at the fourth and fifth lumbar root at dorsal root ganglia and distal spinal nerves (at L4 and L5) and the first sacral root and distal spinal nerve (S1) on DWI to quantify mean ADC values. The anatomic parameters of the spinal nerve roots can also be determined by neurography. In patients, mean ADC values were significantly higher in entrapped roots and distal spinal nerve than in intact ones. Neurography also showed abnormalities such as nerve indentation, swelling and running transversely in their course through the foramen. In all patients, leg pain was ameliorated after selective decompression (n = 9) or nerve block (n = 5). We demonstrated the first use of DWI and neurography of human lumbar nerves to visualize and quantitatively evaluate lumbar nerve entrapment with foraminal stenosis. We believe that DWI is a potential tool for diagnosis of lumbar nerve entrapment. PMID:20632042

  8. Assessment of the Optic Nerve Head Parameters Using Heidelberg Retinal Tomography III in Preterm Children

    PubMed Central

    Alshaarawi, Salem; Shatriah, Ismail; Zunaina, Embong; Wan Hitam, Wan Hazabbah

    2014-01-01

    Background Variations in optic nerve head morphology and abnormal retinal vascular pattern have been described in preterm children using digital image analysis of fundus photograph, optical coherence tomograph and serial funduscopy. We aimed to compare the optic nerve head parameters in preterm and term Malay children using Heidelberg Retinal Tomograph III. Design A cross sectional study. Methodology/Principal Findings Thirty-two preterm Malay children who were born at up to 32 weeks postconception, and 32 term Malay children aged 8–16 years old were recruited into this cross sectional study, which was conducted in the Hospital Universiti Sains Malaysia, Malaysia from January to December 2011. Their optic nerves were scanned and analyzed using a Heidelberg Retinal Tomography (HRT) III (Heidelberg Engineering, Germany). Preterm children showed an increased rim volume (SD) (0.56 (0.26) vs 0.44 (0.18) mm3, respectively), smaller cup shape (SD) (0.18 (0.07) vs 0.25 (0.06) mm, respectively), increased height variation contour (SD) (0.44 (0.14) vs 0.35 (0.08) mm, respectively), and increased cup depth (SD) (0.24 (0.11) vs 0.17 (0.05) mm3, respectively) when compared to their normal peers (p<0.05). There were no significant differences in the mean disc area, cup area, cup to disc ratio or rim area between the preterm and term children (p>0.05) in our study. Conclusions/Significance Preterm children exhibit different characteristics of optic nerve head parameters with HRT III analysis. Increased cup depth in preterm children suggests a need for close observation and monitoring. It may raise suspicion of pediatric glaucoma when proper documentation of intraocular pressure and clinical funduscopy are unsuccessful in uncooperative children. PMID:24551076

  9. [Biophysics of nerve excitation].

    PubMed

    Kol'e, O R; Maksimov, G V

    2010-01-01

    The studies testifying to the presence of the interrelation between the physiological functions of the organism and physical and chemical processes in nerves are discussed. Changes in some physical and chemical parameters observed both upon elicited rhythmic exaltation of nerves and during the spontaneous rhythmic activity of neurons are analyzed. Upon rhythmic exaltation, a complex of physical and chemical processes is triggered, and reversible structural and metabolic rearrangements at the subcellular and molecular levels occur that do not take place during the generation of a single action potential. Thus, only in conditions of rhythmic exaltation of a nerve, it is possible to reveal those processes that provide exaltation of nerves in the organism. The future possibilities of the investigations combining the biophysical and physiological approaches are substantiated. Characteristic changes in physicochemical parameters are observed in nerves during the generation of a series of action potentials of different frequency and duration ("frequency dependence") under normal physiological conditions, as well as in extreme situations and in nerve pathology. The structural and metabolic rearrangements are directly related to the mode of rhythmic exaltation and proceed both in the course of rhythmic exaltation and after its termination. Participation and the basic components of the nervous fulcrum (an axon, Shwan cell, myelin, subcellular organelles) in the realization of rhythmic exaltation is shown. In the coordination of all processes involved in rhythmic exaltation, the main role is played by the systems of redistribution and transport of intercellular and endocellular calcium. The idea is put forward that myelin of nerve fibers is not only an isolator, but also an "intercellular depot" of calcium and participates in the redistribution of different ions. Thus, the rhythmic excitation is of great importance in the realization of some physiological functions, the

  10. Abnormalities in Hippocampal Functioning with Persistent Pain

    PubMed Central

    Mutso, Amelia A.; Radzicki, Daniel; Baliki, Marwan N.; Huang, Lejian; Banisadr, Ghazal; Centeno, Maria Virginia; Radulovic, Jelena; Martina, Marco; Miller, Richard J.; Apkarian, A. Vania

    2012-01-01

    Chronic pain patients exhibit increased anxiety, depression, and deficits in learning and memory. Yet how persistent pain affects the key brain area regulating these behaviors, the hippocampus, has remained minimally explored. In this study we investigated the impact of spared nerve injury (SNI) neuropathic pain in mice on hippocampal-dependent behavior and underlying cellular and molecular changes. In parallel, we measured the hippocampal volume of three groups of chronic pain patients. We found that SNI animals were unable to extinguish to contextual fear and showed increased anxiety-like behavior. Additionally, SNI mice in comparison to sham animals exhibited hippocampal 1) reduced extracellular signal-regulated kinase (ERK) expression and phosphorylation, 2) decreased neurogenesis and 3) altered short-term synaptic plasticity. In order to relate the observed hippocampal abnormalities with human chronic pain, we measured the volume of human hippocampus in chronic back pain (CBP), complex regional pain syndrome (CRPS), and osteoarthritis patients (OA). Compared to controls, CBP and CRPS, but not OA, had significantly less bilateral hippocampal volume. These results indicate that hippocampus-mediated behavior, synaptic plasticity and neurogenesis are abnormal in neuropathic rodents. The changes may be related to the reduction in hippocampal volume we see in chronic pain patients, and these abnormalities may underlie learning and emotional deficits commonly observed in such patients. PMID:22539837

  11. Discrete impulses in ephaptically coupled nerve fibers.

    PubMed

    Maïna, I; Tabi, C B; Ekobena Fouda, H P; Mohamadou, A; Kofané, T C

    2015-04-01

    We exclusively analyze the condition for modulated waves to emerge in two ephaptically coupled nerve fibers. Through the multiple scale expansion, it is shown that a set of coupled cable-like Hodgkin-Huxley equations can be reduced to a single differential-difference nonlinear equation. The standard approach of linear stability analysis of a plane wave is used to predict regions of parameters where nonlinear structures can be observed. Instability features are shown to be importantly controlled not only by the ephaptic coupling parameter, but also by the discreteness parameter. Numerical simulations, to verify our analytical predictions, are performed, and we explore the longtime dynamics of slightly perturbed plane waves in the coupled nerve fibers. On initially exciting only one fiber, quasi-perfect interneuronal communication is discussed along with the possibility of recruiting damaged or non-myelinated nerve fibers, by myelinated ones, into conduction. PMID:25933666

  12. Effect of long-term implanted nerve cuff electrodes on the electrophysiological properties of human sensory nerves.

    PubMed

    Slot, P J; Selmar, P; Rasmussen, A; Sinkjaer, T

    1997-03-01

    During a long-term implantation (307 days) of a tripolar split cuff electrode around the palmar digital nerve to the radial side of the left index finger, branching off the median nerve in a medullary lesioned C6 patient, the physiological state of the nerve was intensively monitored. The resulting sensory nerve action potential (SNAP) amplitude was recorded, using both near-nerve electrodes and the implanted cuff electrode. The SNAP amplitude declined within 10 days to approximately 50% of the first SNAP cuff amplitude measured on Day 2 after implantation and recovered to the initial amplitude within 3 months. The SNAP amplitude measurements made with near-nerve electrodes were consistent with the cuff results; the SNAP conduction velocity (CV) recorded by the near-nerve electrodes and the cuff electrode was constant during the whole implantation period. This is in agreement with the results from two other patients: one with a cuff implanted around the sural nerve, and the other with a cuff implanted around a branch of the tibial nerve. These results and animals studies show that the cuff electrode is an electrically stable neural-electrical transducer. PMID:9148706

  13. Injection nerve palsy

    PubMed Central

    Kakati, Arindhom; Bhat, Dhananjaya; Devi, Bhagavathula Indira; Shukla, Dhaval

    2013-01-01

    Objective: To study the clinical profile and outcome of surgery for injection nerve palsies. Materials and Methods: This is a retrospective study of patients with INP who were treated at our institute during May 2000 to May 2009. Clinical, electroneuromyography (ENMG), and operative findings were noted. Intraoperative nerve action potential monitoring was not used in any case. Outcome of patients who were followed was reviewed. Results: INP comprised 92 (11%) of 837 nerve injury patients. Seventy one patients were children less than 16 years. The nerves involved were sciatic in 80 patients, radial in 8, and others in four. Fifty seven patients had power, grade 0/5. ENMG studies revealed absent compound muscle action potential in 64 and absent sensory nerve action potential in 67 patients. Thirty nine (42.3%) of 92 patients underwent surgery. The mean duration since injury in these patients was 5.2 months (3 months to 11 months). All underwent neurolysis. Only 18 patients who underwent surgery had a follow up of more than 3 months. Ten (55.5%) patients had good or fair outcome after surgery. Except for grade of motor deficit prior to surgery, none of the variables were found to significantly affect the outcome. Conclusion: The outcome of INP is generally good and many patients recover spontaneously. The outcome of surgery is dependent on preoperative motor power. PMID:23546341

  14. Biological and Electrophysiologic Effects of Poly(3,4-ethylenedioxythiophene) on Regenerating Peripheral Nerve Fibers

    PubMed Central

    Baghmanli, Ziya; Sugg, Kristoffer B.; Wei, Benjamin; Shim, Bong S.; Martin, David C.; Cederna, Paul S.; Urbanchek, Melanie G.

    2014-01-01

    Background Uninjured peripheral nerves in upper-limb amputees represent attractive sites for connectivity with neuroprostheses because their predictable internal topography allows for precise sorting of motor and sensory signals. The inclusion of poly(3,4-ethylenedioxythiophene) reduces impedance and improves charge transfer at the biotic-abiotic interface. This study evaluates the in vivo performance of poly(3,4-ethylenedioxythiophene)–coated interpositional decellularized nerve grafts across a critical nerve conduction gap, and examines the long-term effects of two different poly(3,4-ethylenedioxythiophene) formulations on regenerating peripheral nerve fibers. Methods In 48 rats, a 15-mm gap in the common peroneal nerve was repaired using a nerve graft of equivalent length, including (1) decellularized nerve chemically polymerized with poly(3,4-ethylenedioxythiophene) (dry); (2) decellularized nerve electrochemically polymerized with poly(3,4-ethylenedioxythiophene) (wet); (3) intact nerve; (4) autogenous nerve graft; (5) decellularized nerve alone; and (6) unrepaired nerve gap controls. All groups underwent electrophysiologic characterization at 3 months, and nerves were harvested for histomorphometric analysis. Results Conduction velocity was significantly faster in the dry poly(3,4-ethylenedioxythiophene) group compared with the sham, decellularized nerve, and wet poly(3,4-ethylenedioxythiophene) groups. Maximum specific force for the dry poly(3,4-ethylenedioxythiophene) group was more similar to sham than were decellularized nerve controls. Evident neural regeneration was demonstrated in both dry and wet poly(3,4-ethylenedioxythiophene) groups by the presence of normal regenerating axons on histologic cross-section. Conclusions Both poly(3,4-ethylenedioxythiophene) formulations were compatible with peripheral nerve regeneration at 3 months. This study supports poly(3,4-ethylenedioxythiophene) as a promising adjunct for peripheral nerve interfaces for

  15. Bilateral duplication of the abducens nerves: an incidental finding on magnetic resonance imaging.

    PubMed

    Yamashiro, Tsuneo; Yonahara, Michiko; Yonaha, Ayano; Kinoshita, Ryo; Tsubakimoto, Maho; Iraha, Rin; Murayama, Sadayuki

    2015-12-01

    Although anomaly of the abducens nerve, including duplication, has been reported in anatomical papers, no radiological report exists regarding a duplicated abducens nerve observed on magnetic resonance (MR) imaging. We encountered a case of bilateral duplication of the abducens nerves, which was found incidentally on MR scans from an 11-year-old boy. He did not have any symptoms of eye movement related to abducens nerve abnormality; thus, the duplication was considered to be a normal variant in this patient. Radiologists should be aware that duplication of the abducens nerve may occur and can be diagnosed on MR, particularly when diagnosing symptomatic patients or as a preoperative assessment for microsurgery of the nerve. PMID:26507983

  16. Barriers of the peripheral nerve

    PubMed Central

    Peltonen, Sirkku; Alanne, Maria; Peltonen, Juha

    2013-01-01

    This review introduces the traditionally defined anatomic compartments of the peripheral nerves based on light and electron microscopic topography and then explores the cellular and the most recent molecular basis of the different barrier functions operative in peripheral nerves. We also elucidate where, and how, the homeostasis of the normal human peripheral nerve is controlled in situ and how claudin-containing tight junctions contribute to the barriers of peripheral nerve. Also, the human timeline of the development of the barriers of the peripheral nerve is depicted. Finally, potential future therapeutic modalities interfering with the barriers of the peripheral nerve are discussed. PMID:24665400

  17. Reversible motor and sensory neurophysiological abnormalities in cauda equina claudication.

    PubMed Central

    Saadeh, I K; Illis, L S; Jamshidi Fard, A R; Hughes, P J; Sedgwick, E M

    1994-01-01

    A case of cauda equina claudication with canal stenosis is presented. Neurophysiological studies show reversible changes during symptomatic and asymptomatic phases. The somatosensory evoked potential from the tibial nerve was reduced in amplitude. Central motor conduction time (CMCT) after transcranial magnetic stimulation of the brain was reversibly prolonged in the symptomatic phase. Reversible CMCT changes have not been previously shown. The findings are discussed in the light of the pathophysiology of ischaemic nerve. Images PMID:7931390

  18. Malignant granular cell tumor of the lateral femoral cutaneous nerve: report of a case with cytogenetic analysis.

    PubMed

    Di Tommaso, Luca; Magrini, Elisabetta; Consales, Alessandro; Poppi, Massimo; Pasquinelli, Gianandrea; Dorji, Tsering; Benedetti, Giovanni; Baccarini, Paola

    2002-12-01

    Malignant granular cell tumors (MGCTs) are rare neoplasms of uncertain histogenesis. We report a case of MGCT involving a peripheral nerve with peritoneal and omental dissemination in which cytogenetic findings are available. Our results show that MGCTs share some cytogenetic abnormalities with malignant peripheral nerve sheath tumors (MPNSTs), supporting the hypothesis that they may represent histogenetically related lesions. PMID:12514794

  19. Vagal nerve stimulator: Evolving trends

    PubMed Central

    Ogbonnaya, Sunny; Kaliaperumal, Chandrasekaran

    2013-01-01

    Over three decades ago, it was found that intermittent electrical stimulation from the vagus nerve produces inhibition of neural processes, which can alter brain activity and terminate seizures. This paved way for the concept of vagal nerve stimulator (VNS). We describe the evolution of the VNS and its use in different fields of medicine. We also review the literature focusing on the mechanism of action of VNS producing desired effects in different conditions. PUBMED and EMBASE search was performed for ‘VNS’ and its use in refractory seizure management, depression, obesity, memory, and neurogenesis. VNS has been in vogue over for the past three decades and has proven to reduce the intensity and frequency of seizure by 50% in the management of refractory seizures. Apart from this, VNS has been shown to promote neurogenesis in the dentate gyrus of rat hippocampus after 48 hours of stimulation of the vagus nerve. Improvement has also been observed in non-psychotic major depression from a randomized trial conducted 7 years ago. The same concept has been utilized to alter behavior and cognition in rodents, and good improvement has been observed. Recent studies have proven that VNS is effective in obesity management in patients with depression. Several hypotheses have been postulated for the mechanism of action of VNS contributing to its success. VNS has gained significant popularity with promising results in epilepsy surgery and treatment-resistant depression. The spectrum of its use has also extended to other fields of medicine including obesity, memory, and neurogenesis, and there is still a viable scope for its utility in the future. PMID:23633829

  20. A novel electrospun nerve conduit enhanced by carbon nanotubes for peripheral nerve regeneration

    NASA Astrophysics Data System (ADS)

    Yu, Wenwen; Jiang, Xinquan; Cai, Ming; Zhao, Wen; Ye, Dongxia; Zhou, Yong; Zhu, Chao; Zhang, Xiuli; Lu, Xiaofeng; Zhang, Zhiyuan

    2014-04-01

    For artificial nerve conduits, great improvements have been achieved in mimicking the structures and components of autologous nerves. However, there are still some problems in conduit construction, especially in terms of mechanical properties, biomimetic surface tomography, electrical conductivity and sustained release of neurotrophic factors or cells. In this study, we designed and fabricated a novel electrospun nerve conduit enhanced by multi-walled carbon nanotubes (MWNTs) on the basis of a collagen/poly(ɛ-caprolactone) (collagen/PCL) fibrous scaffold. Our aim was to provide further knowledge about the mechanical effects and efficacy of MWNTs on nerve conduits as well as the biocompatibility and toxicology of MWNTs when applied in vivo. The results showed that as one component, carboxyl MWNTs could greatly alter the composite scaffold’s hydrophilicity, mechanical properties and degradability. The electrospun fibers enhanced by MWNTs could support Schwann cell adhesion and elongation as a substrate in vitro. In vivo animal studies demonstrated that the MWNT-enhanced collagen/PCL conduit could effectively promote nerve regeneration of sciatic nerve defect in rats and prevent muscle atrophy without invoking body rejection or serious chronic inflammation. All of these results showed that this MWNT-enhanced scaffold possesses good biocompatibility and MWNTs might be excellent candidates as engineered nanocarriers for further neurotrophic factor delivery research.

  1. Fibrolipomatous hamartoma of the inferior calcaneal nerve (Baxter nerve).

    PubMed

    Zeng, Rong; Frederick-Dyer, Katherine; Ferguson, N Lynn; Lewis, James; Fu, Yitong

    2012-09-01

    Fibrolipomatous hamartoma (FLH) is a rare, benign lesion of the peripheral nerves most frequently involving the median nerve and its digital branches (80 %). Pathognomonic MR features of FLH such as coaxial-cable-like appearance on axial planes and a spaghetti-like appearance on coronal planes have been described by Marom and Helms, obviating the need for diagnostic biopsy. We present a case of fibrolipomatous hamartoma of the inferior calcaneal nerve (Baxter nerve) with associated subcutaneous fat proliferation. PMID:22526881

  2. Improved Peripheral Nerve Regeneration Using Acellular Nerve Allografts Loaded with Platelet-Rich Plasma

    PubMed Central

    Zheng, Canbin; Huang, Xijun; He, Caifeng; Jiang, Li; Quan, Daping

    2014-01-01

    Acellular nerve allografts (ANAs) behave in a similar manner to autografts in supporting axonal regeneration in the repair of short peripheral nerve defects but fail in larger defects. The objective of this article is to evaluate the effect of ANA supplemented with platelet-rich plasma (PRP) to improve nerve regeneration after surgical repair and to discuss the mechanisms that underlie this approach. Autologous PRP was obtained from rats by double-step centrifugation and was characterized by determining platelet numbers and the release of growth factors. Forty-eight Sprague–Dawley rats were randomly divided into 4 groups (12/group), identified as autograft, ANA, ANA loaded with PRP (ANA+PRP), and ANA loaded with platelet-poor plasma (PPP, ANA+PPP). All grafts were implanted to bridge long-gap (15 mm) sciatic nerve defects. We found that PRP with a high platelet concentration exhibited a sustained release of growth factors. Twelve weeks after surgery, the autograft group displayed the highest level of reinnervation, followed by the ANA+PRP group. The ANA+PRP group showed a better electrophysiology response for amplitude and conduction velocity than the ANA and ANA+PPP groups. Based on histological evaluation, the ANA+PRP and autograft groups had higher numbers of regenerating nerve fibers. Quantitative real-time polymerase chain reaction (qRT-PCR) demonstrated that PRP boosted expression of neurotrophins in the regenerated nerves. Moreover, the ANA+PRP and autograft groups showed excellent physiological outcomes in terms of the prevention of muscle atrophy. In conclusion, ANAs loaded with PRP as tissue-engineered scaffolds can enhance nerve regeneration and functional recovery after the repair of large nerve gaps nearly as well as autografts. PMID:24901030

  3. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome.

    PubMed

    Barnden, Leighton R; Kwiatek, Richard; Crouch, Benjamin; Burnet, Richard; Del Fante, Peter

    2016-01-01

    Autonomic changes are often associated with the chronic fatigue syndrome (CFS), but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP) and heart rate (HR). In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w) brain MRI in 25 CFS subjects and 25 normal controls (NC). Steady state BP (systolic, diastolic and pulse pressure) and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1) MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS), and (2) MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS. Significant CFS regressions were repeated controlling for anxiety and depression (A&D). Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations. We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015). Strong correlations were also detected in isolated NC regressions. PMID:27114901

  4. Autonomic correlations with MRI are abnormal in the brainstem vasomotor centre in Chronic Fatigue Syndrome

    PubMed Central

    Barnden, Leighton R.; Kwiatek, Richard; Crouch, Benjamin; Burnet, Richard; Del Fante, Peter

    2016-01-01

    Autonomic changes are often associated with the chronic fatigue syndrome (CFS), but their pathogenetic role is unclear and brain imaging investigations are lacking. The vasomotor centre and, through it, nuclei in the midbrain and hypothalamus play a key role in autonomic nervous system regulation of steady state blood pressure (BP) and heart rate (HR). In this exploratory cross-sectional study, BP and HR, as indicators of autonomic function, were correlated with volumetric and T1- and T2-weighted spin-echo (T1w and T2w) brain MRI in 25 CFS subjects and 25 normal controls (NC). Steady state BP (systolic, diastolic and pulse pressure) and HR in two postures were extracted from 24 h blood pressure monitoring. We performed (1) MRI versus autonomic score interaction-with-group regressions to detect locations where regression slopes differed in the CFS and NC groups (collectively indicating abnormality in CFS), and (2) MRI regressions in the CFS and NC groups alone to detect additional locations with abnormal correlations in CFS. Significant CFS regressions were repeated controlling for anxiety and depression (A&D). Abnormal regressions were detected in nuclei of the brainstem vasomotor centre, midbrain reticular formation and hypothalamus, but also in limbic nuclei involved in stress responses and in prefrontal white matter. Group comparisons of CFS and NC did not find MRI differences in these locations. We propose therefore that these regulatory nuclei are functioning correctly, but that two-way communication between them is impaired in CFS and this affects signalling to/from peripheral effectors/sensors, culminating in inverted or magnified correlations. This single explanation for the diverse abnormal correlations detected here consolidates the conclusion for a brainstem/midbrain nerve conduction deficit inferred earlier (Barnden et al., 2015). Strong correlations were also detected in isolated NC regressions. PMID:27114901

  5. Effect of a high-intensity static magnetic field on sciatic nerve regeneration in the rat

    SciTech Connect

    Cordeiro, P.G.; Seckel, B.R.; Miller, C.D.; Gross, P.T.; Wise, R.E.

    1989-02-01

    The effect of a high-intensity static magnetic field on peripheral nerve regeneration is evaluated in rat sciatic nerve. Forty-four rats underwent sciatic nerve repair using polyethylene nerve guides. Postoperatively, the animals were exposed to a 1-tesla magnetic field for 12 hours per day for 4 weeks with appropriate controls. Our results demonstrate that a 1-tesla static magnetic field has no statistically significant effect on nerve regeneration as determined by myelinated axon counts and electrophysiologic studies. Also, the specific orientation of the sciatic nerve with respect to the magnetic field has no influence on axonal growth or nerve conduction. Periods of restraint of 12 hours per day for 4 weeks significantly inhibit weight gain but have no effect on peripheral nerve regeneration.

  6. What Are Nerve Blocks for Headache?

    MedlinePlus

    ... nerve blocks for headache? Print Email What are nerve blocks for headache? ACHE Newsletter Sign up for ... entering your e-mail address below. What are nerve blocks for headache? A nerve block is the ...

  7. Bilateral oculomotor nerve palsy in Guillain-Barre syndrome.

    PubMed

    Burina, Adnan; Sinanović, Osman; Smajlović, Dzevdet; Vidović, Mirjana

    2008-01-01

    Guillain-Barre syndrome (GBS) is an acquired immune-mediated inflammatory disorder of the peripheral nervous system. GBS is also called acute idiopathic polyradiculoneuritis. Cranial nerves are affected in over 50% of all cases, with the facial nerves being affected the most. Otherwise, oculomotor nerves affection is rare and might occur in about 10% of cases. In this case report we present 61 years old female with GBS (acute motor and sensory axonal neuropathy subtype) associated with bilateral oculomotor nerve palsy. At the admittance in the neurological status were flaccid paraplegia, tendon reflexes absent at legs and reduced at arms, sensory disturbances in a distal (stocking-glove) distribution and bilateral ptosis. The disease was diagnosed on clinical features, nerve conduction velocity test (NCV), electromyogram (EMG) and cerebrospinal fluid (CSF) tests. After treatment with intravenous immunoglobulins and physical treatment the patient improved. She was able to walk by her own, mild semiptosis remained and she had no paresthesia. PMID:18669237

  8. Is the preservation of the phrenic nerve important after pneumonectomy?

    PubMed

    Burns, Jessica; Dunning, Joel

    2011-01-01

    A best evidence topic in cardiac surgery was written according to a structured protocol. The question addressed was: is the preservation of the phrenic nerve important after pneumonectomy? Altogether more than 49 papers were found using the reported search, of which four represented the best evidence to answer the clinical question. The authors, journal, date and country of publication, patient group studied, study type, relevant outcomes and results of these papers are tabulated. We conclude that care should be taken to preserve the integrity of the phrenic nerve wherever possible. The abnormal diaphragmatic motion which occurs as a consequence of phrenic nerve damage significantly reduces expiratory lung volumes, gas exchange and exercise capacity in already compromised patients. Phrenic nerve injury can also lead to a prolonged need for mechanical ventilation; this alone carries a risk of complication, such as infection. Plication of the paralyzed hemi-diaphragm has proved effective in reducing respiratory insufficiency after pneumonectomy. The aim of this is to fix and flatten the diaphragm, thus mimicking the role of a functioning phrenic nerve. Furthermore, the function of a preserved phrenic nerve remains normal for up to 11 years post pneumonectomy. Therefore, deterioration in function may highlight a recurrence in disease or a change in the post pneumonectomy space. PMID:20937666

  9. Biomechanical and functional variation in rat sciatic nerve following cuff electrode implantation

    PubMed Central

    2014-01-01

    Background Nerve cuff electrodes are commonly and successfully used for stimulating peripheral nerves. On the other hand, they occasionally induce functional and morphological changes following chronic implantation, for reasons not always clear. We hypothesize that restriction of nerve mobility due to cuff implantation may alter nerve conduction. Methods We quantified acute changes in nerve-muscle electrophysiology, using electromyography, and nerve kinematics in anesthetized Sprague Dawley rat sciatic nerves during controlled hindlimb joint movement. We compared electrophysiological and biomechanical response in uncuffed nerves and those secured within a cuff electrode using analysis of variance (ANOVA) and regression analysis. Results Tethering resulting from cuff implantation resulted in altered nerve strain and a complex biomechanical environment during joint movement. Coincident with biomechanical changes, electromyography revealed significantly increased variability in the response of conduction latency and amplitude in cuffed, but not free, nerves following joint movement. Conclusion Our findings emphasize the importance of the mechanical interface between peripheral nerves and their devices on neurophysiological performance. This work has implications for nerve device design, implantation, and prediction of long-term efficacy. PMID:24758405

  10. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed. PMID:25903257

  11. Cnidarian Nerve Nets and Neuromuscular Efficiency.

    PubMed

    Satterlie, Richard A

    2015-12-01

    Cnidarians are considered "nerve net animals" even though their nervous systems include various forms of condensation and centralization. Yet, their broad, two-dimensional muscle sheets are innervated by diffuse nerve nets. Do the motor nerve nets represent a primitive organization of multicellular nervous systems, do they represent a consequence of radial symmetry, or do they offer an efficient way to innervate a broad, two-dimensional muscle sheet, in which excitation of the muscle sheet can come from multiple sites of initiation? Regarding the primitive nature of cnidarian nervous systems, distinct neuronal systems exhibit some adaptations that are well known in higher animals, such as the use of oversized neurons with increased speed of conduction, and condensation of neurites into nerve-like tracts. A comparison of neural control of two-dimensional muscle sheets in a mollusc and jellyfish suggests that a possible primitive feature of cnidarian neurons may be a lack of regional specialization into conducting and transmitting regions. PMID:26105595

  12. Cervical and ocular vestibular-evoked myogenic potentials in vestibular neuritis: comparison between air- and bone-conducted stimulation.

    PubMed

    Oh, Sun-Young; Kim, Ji-Soo; Yang, Tae-Ho; Shin, Byoung-Soo; Jeong, Seul-Ki

    2013-08-01

    To clarify the changes of cervical (cVEMP) and ocular (oVEMP) vestibular evoked myogenic potentials induced by air-conducted sound (ACS) and bone-conducted vibration (BCV) in patients with vestibular neuritis (VN), patients with VN (n = 30) and normal controls (n = 45) underwent recording of cVEMP and oVEMP in response to ACS (1,000 Hz, 5 ms, tone bursts) and BCV (500 Hz, short tone burst). Patients with VN showed a high proportion of oVEMP abnormalities in response to both ACS (80.0 %) and BCV at the forehead (Fz, 73.3 %) or the mastoid (76.7 %). In contrast, cVEMPs were mostly normal with both ACS and BCV in the patients. The dissociations in the abnormalities of cVEMP and oVEMP induced by ACS and BCV at the mastoids and at the forehead in patients with VN suggest that oVEMP reflects functions of the superior vestibular nerve and most likely the utricular function. The results of our study suggest that oVEMP induced by either ACS or BCV appears to depend on integrity of the superior vestibular nerve, possibly due to the utricular afferents travelling in it. In contrast, cVEMP elicited by either ACS or BCV may reflect function of the saccular afferents running in the inferior vestibular nerve. PMID:23670310

  13. Chromosome abnormalities in glioma

    SciTech Connect

    Li, Y.S.; Ramsay, D.A.; Fan, Y.S.

    1994-09-01

    Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.

  14. [Congenital foot abnormalities].

    PubMed

    Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R

    2015-03-01

    The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290

  15. Altered protein phosphorylation in sciatic nerve from rats with streptozocin-induced diabetes

    SciTech Connect

    Schrama, L.H.; Berti-Mattera, L.N.; Eichberg, J.

    1987-11-01

    The effect of experimental diabetes on the phosphorylation of proteins in the rat sciatic nerve was studied. Nerves from animals made diabetic with streptozocin were incubated in vitro with (/sup 32/P)orthophosphate and divided into segments from the proximal to the distal end, and proteins from each segment were then separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The principal labeled species were the major myelin proteins, P0, and the basic proteins. After 6 wk of diabetes, the incorporation of isotope into these proteins rose as a function of distance along the nerve in a proximal to distal direction and was significantly higher at the distal end compared with incorporation into nerves from age-matched controls. The overall level of isotope uptake was similar in nerves from diabetic animals and weight-matched controls. The distribution of /sup 32/P among proteins also differed in diabetic nerve compared with both control groups in that P0 and the small basic protein accounted for a greater proportion of total label incorporated along the entire length of nerve. In contrast to intact nerve, there was no significant difference in protein phosphorylation when homogenates from normal and diabetic nerve were incubated with (/sup 32/P)-gamma-ATP. The results suggest that abnormal protein phosphorylation, particularly of myelin proteins, is a feature of experimental diabetic neuropathy and that the changes are most pronounced in the distal portion of the nerve.

  16. Low serum magnesium levels are associated with impaired peripheral nerve function in type 2 diabetic patients.

    PubMed

    Chu, Chen; Zhao, Weijing; Zhang, Yinan; Li, Lu; Lu, Jingyi; Jiang, Lan; Wang, Congrong; Jia, Weiping

    2016-01-01

    The aim of this study was to explore the relationship between serum magnesium and peripheral nerve function in patients with type 2 diabetes (T2DM). A total of 978 T2DM patients were included in the study. Patients were divided into tertiles according to serum magnesium concentration (low tertile: ≤0.85 mmol/L; medium tertile: 0.85 to 0.92 mmol/L; and high tertile: >0.92 mmol/L). All participants underwent nerve conduction (NC) studies. Composite z scores of conduction velocity, latency, and amplitude were constructed, respectively. The serum magnesium levels were significantly lower in patients with abnormal NC than in those with normal NC (0.87 [0.82, 0.92] vs. 0.88 [0.83, 0.93] mmol/L, P = 0.048). The composite z score of amplitude significantly increased with increasing tertiles of magnesium (-0.60 ± 0.02 vs. -0.57 ± 0.02 vs. -0.48 ± 0.03, P for trend = 0.001). After adjusting for all potential confounders, lower serum magnesium levels were still associated with lower composite z score of amplitude (β = 0.095, P = 0.014). In patients with T2DM, lower serum magnesium levels were significantly associated with lower composite z score of amplitude, indicating magnesium might affect peripheral nerve function through axonal degeneration. PMID:27601013

  17. Low serum magnesium levels are associated with impaired peripheral nerve function in type 2 diabetic patients

    PubMed Central

    Chu, Chen; Zhao, Weijing; Zhang, Yinan; Li, Lu; Lu, Jingyi; Jiang, Lan; Wang, Congrong; Jia, Weiping

    2016-01-01

    The aim of this study was to explore the relationship between serum magnesium and peripheral nerve function in patients with type 2 diabetes (T2DM). A total of 978 T2DM patients were included in the study. Patients were divided into tertiles according to serum magnesium concentration (low tertile: ≤0.85 mmol/L; medium tertile: 0.85 to 0.92 mmol/L; and high tertile: >0.92 mmol/L). All participants underwent nerve conduction (NC) studies. Composite z scores of conduction velocity, latency, and amplitude were constructed, respectively. The serum magnesium levels were significantly lower in patients with abnormal NC than in those with normal NC (0.87 [0.82, 0.92] vs. 0.88 [0.83, 0.93] mmol/L, P = 0.048). The composite z score of amplitude significantly increased with increasing tertiles of magnesium (−0.60 ± 0.02 vs. −0.57 ± 0.02 vs. −0.48 ± 0.03, P for trend = 0.001). After adjusting for all potential confounders, lower serum magnesium levels were still associated with lower composite z score of amplitude (β = 0.095, P = 0.014). In patients with T2DM, lower serum magnesium levels were significantly associated with lower composite z score of amplitude, indicating magnesium might affect peripheral nerve function through axonal degeneration. PMID:27601013

  18. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  19. Optic Nerve Drusen

    MedlinePlus

    ... the drusen enlarge and the overlying tissue (nerve fiber layer) thins with age, the disc drusen become more apparent. How are optic disc drusen treated? There is no treatment for drusen. In the rare cases (with choroidal neovascularization) laser treatment may be indicated. Revised March 2016 Eye ...

  20. Optic Nerve Atrophy

    MedlinePlus

    ... with the occipital lobe (the part of the brain that interprets vision) like a cable wire. What is optic nerve ... nystagmus. In older patients, peripheral vision and color vision assessment ... around the brain and spinal cord (hydrocephalus) may prevent further optic ...

  1. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  2. Compression neuropathy of the common peroneal nerve secondary to a ganglion cyst.

    PubMed

    Yazid Bajuri, M; Tan, B C; Das, S; Hassan, S; Subanesh, S

    2011-01-01

    There are various causes of the common peroneal nerve palsy. However, common peroneal nerve palsy caused by ganglia are uncommon. We hereby present a case of a 55-year-old man with a 1 week history of foot drop and swelling in the region of the right leg. Physical examination and nerve conduction study studies confirmed a diagnosis of common peroneal nerve palsy. Magnetic resonance imaging (MRI) revealed a lobulated, elongated cystic-appearing mass anterior to the head of fibula. Surgical decompression of the nerve with removal of the mass was performed. Surgical pathology reports confirmed the diagnosis of a ganglion cyst. Findings on physical examination, nerve conduction study and MRI results of this interesting case are being discussed. We wish to highlight that even a tumour which is benign and within the nerve sheath can cause compression. PMID:22262327

  3. Involvement of Peripheral Nerves in the Transgenic PLP-α-Syn Model of Multiple System Atrophy: Extending the Phenotype

    PubMed Central

    Kuzdas-Wood, Daniela; Irschick, Regina; Theurl, Markus; Malsch, Philipp; Mair, Norbert; Mantinger, Christine; Wanschitz, Julia; Klimaschewski, Lars; Poewe, Werner; Stefanova, Nadia; Wenning, Gregor K.

    2015-01-01

    Multiple system atrophy (MSA) is a fatal, rapidly progressive neurodegenerative disease with (oligodendro-)glial cytoplasmic α-synuclein (α-syn) inclusions (GCIs). Peripheral neuropathies have been reported in up to 40% of MSA patients, the cause remaining unclear. In a transgenic MSA mouse model featuring GCI-like inclusion pathology based on PLP-promoter driven overexpression of human α-syn in oligodendroglia motor and non-motor deficits are associated with MSA-like neurodegeneration. Since α-syn is also expressed in Schwann cells we aimed to investigate whether peripheral nerves are anatomically and functionally affected in the PLP-α-syn MSA mouse model. Results To this end, heat/cold as well as mechanical sensitivity tests were performed. Furthermore, in vivo and ex vivo nerve conduction and the G-ratios of the sciatic nerve were analyzed, and thermosensitive ion channel mRNA expression in dorsal root ganglia (DRG) was assessed. The presence of human α-syn in Schwann cells was associated with subtle behavioral impairments. The G-ratio of the sciatic nerve, the conduction velocity of myelinated and unmyelinated primary afferents and the expression of thermosensitive ion channels in the sensory neurons, however, were similar to wildtype mice. Conclusion Our results suggest that the PNS appears to be affected by Schwann cell α-syn deposits in the PLP-α-syn MSA mouse model. However, there was no consistent evidence for functional PNS perturbations resulting from such α-syn aggregates suggesting a more central cause of the observed behavioral abnormalities. Nonetheless, our results do not exclude a causal role of α-syn in the pathogenesis of MSA associated peripheral neuropathy. PMID:26496712

  4. Nerve Bundles and Deep Dyspareunia in Endometriosis.

    PubMed

    Williams, Christina; Hoang, Lien; Yosef, Ali; Alotaibi, Fahad; Allaire, Catherine; Brotto, Lori; Fraser, Ian S; Bedaiwy, Mohamed A; Ng, Tony L; Lee, Anna F; Yong, Paul J

    2016-07-01

    The etiology of deep dyspareunia in endometriosis is unclear. Our objective was to determine whether nerve bundle density in the cul-de-sac/uterosacrals (zone II) is associated with deep dyspareunia in women with endometriosis. We conducted a blinded retrospective immunohistochemistry study (n = 58) at a tertiary referral center (2011-2013). Patients were stringently phenotyped into a study group and 2 control groups. The study group (tender endometriosis, n = 29) consisted of patients with deep dyspareunia, a tender zone II on examination, and an endometriosis lesion in zone II excised at surgery. Control group 1 (nontender endometriosis, n = 17) consisted of patients without deep dyspareunia, a nontender zone II on examination, and an endometriosis lesion in zone II excised at surgery. Control group 2 (tender nonendometriosis, n = 12) consisted of patients with deep dyspareunia, a tender zone II on examination, and a nonendometriosis lesion (eg, normal histology) in zone II excised at surgery. Protein gene product 9.5 (PGP9.5) immunohistochemistry was performed to identify nerve bundles (nerve fibers surrounded by perineurium) in the excised zone II lesion. PGP9.5 nerve bundle density (bundles/high powered field [HPF]) was then scored by a pathologist blinded to the group. We found a significant difference in PGP9.5 nerve bundle density between the 3 groups (analysis of variance, F2,55 = 6.39, P = .003). Mean PGP9.5 nerve bundle density was significantly higher in the study group (1.16 ± 0.56 bundles/HPF [±standard deviation]) compared to control group 1 (0.65 ± 0.36, Tukey test, P = .005) and control group 2 (0.72 ± 0.56, Tukey test, P = .044). This study provides evidence that neurogenesis in the cul-de-sac/uterosacrals may be an etiological factor for deep dyspareunia in endometriosis. PMID:26711313

  5. Laser-activated protein solder for peripheral nerve repair

    NASA Astrophysics Data System (ADS)

    Trickett, Rodney I.; Lauto, Antonio; Dawes, Judith M.; Owen, Earl R.

    1995-05-01

    A 100 micrometers core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the albumin based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 +/- 5 min. (n equals 20) compared to 23 +/- 9 min. (n equals 10) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 +/- 5 g, while microsutured nerves had a tensile strength of 40 +/- 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study is under way comparing laser solder repaired tibial nerves to conventional microsuture repair. At the time of submission 15 laser soldered nerves and 7 sutured nerves were characterized at 3 months and showed successful regeneration with compound muscle action potentials of 27 +/- 8 mV and 29 +/- 8 mW respectively. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  6. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  7. Radial nerve dysfunction

    MedlinePlus

    ... may occur: Abnormal sensations to the hand or forearm ("back" of the hand), "thumb side" (radial surface) ... wrist or fingers Muscle loss ( atrophy ) in the forearm Weakness of the wrist and finger Wrist or ...

  8. Propagation Speed in Myelinated Nerve

    PubMed Central

    Hardy, W. L.

    1973-01-01

    The Hodgkin-Huxley (H.H.) equations modified by Dodge for Rana pipiens myelinated nerve have been solved to determine how well the theory predicts the effects of changes of temperature and [Na+]0 on propagation. Conduction speed θ was found to have an approximately exponential dependence on temperature as was found experimentally, but the theoretical temperature coefficient (Q10) was low; 1.5 compared with the experimental finding of 2.95. θ was found to be a linear function of log ([Na+]0) in contrast to the experimental finding of a square root dependence on [Na+]0. θ is 50% greater at one-fourth normal [Na+]0 than the theory predicts. The difference between the theoretical θ([Na+]0) and the experimental θ([Na+]0) is probably due to an imprecisely known variation of parameters and not to a fundamental inadequacy of the theory. PMID:4542941

  9. Recurrent largngeal nerve paralysis: a laryngographic and computed tomographic study

    SciTech Connect

    Agha, F.P.

    1983-07-01

    Vocal cord paralysis is a relatively common entity, usually resulting from a pathologic process of the vagus nerve or its recurrent larynegeal branch. It is rarely caused by intralargngeal lesions. Four teen patients with recurrent laryngeal nerve paralysis (RLNP) were evaluated by laryngography, computed tomography (CT), or both. In the evaluation of the paramedian cord, CT was limited in its ability to differentiate between tumor or RLNP as the cause of the fixed cord, but it yielded more information than laryngography on the structural abnormalities of the larynx and pre-epiglottic and paralaryngeal spaces. Laryngography revealed distinct features of RLNP and is the procedure of choice for evaluation of functional abnormalities of the larynx until further experience with faster CT scanners and dynamic scanning of the larynx is gained.

  10. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  11. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  12. Myofibroma in the Palm Presenting with Median Nerve Compression Symptoms

    PubMed Central

    Sarkozy, Heidi

    2014-01-01

    Summary: A myofibroma is a benign proliferation of myofibroblasts in the connective tissue. Solitary myofibromas are a rare finding especially in an adult. We report a case of a 23-year-old man presenting with an enlarging mass over his right palm. The patient is an active weight lifter. He reported numbness and tingling in the median nerve distribution. Nerve conduction studies and magnetic resonance imaging scans suggested a tumor involving or compressing the median nerve. The final diagnosis of myofibroma was made only after the histopathological diagnosis. PMID:25426387

  13. Action potentials of curved nerves in finite limbs.

    PubMed

    Xiao, S; McGill, K C; Hentz, V R

    1995-06-01

    Previous simulations of volume-conducted nerve-fiber action-potentials have modeled the limb as semi-infinite or circularly cylindrical, and the fibers as straight lines parallel to the limb surface. The geometry of actual nerves and limbs, however, can be considerably more complicated. This paper presents a general method for computing the potentials of fibers with arbitrary paths in arbitrary finite limbs. It involves computing the propagating point-source response (PPSR), which is the potential arising from a single point source (dipole or tripole) travelling along the fiber. The PPSR can be applied to fibers of different conduction velocities by simple dilation or compression. The method is illustrated for oblique and spiralling nerve fibers. Potentials from oblique fibers are shown to be different for orthodromic and antidromic propagation. Such results show that the straight-line models are not always adequate for nerves with anatomical amounts of curvature. PMID:7790016

  14. Without nerves, immunology remains incomplete – in vivo veritas

    PubMed Central

    Shepherd, Andrew J; Downing, James E G; Miyan, Jaleel A

    2005-01-01

    Interest in the interactions between nervous and immune systems involved in both pathological and homeostatic mechanisms of host defence has prompted studies of neuroendocrine immune modulation and cytokine involvement in neuropathologies. In this review we concentrate on a distinct area of homeostatic control of both normal and abnormal host defence activity involving the network of peripheral c-fibre nerve fibres. These nerve fibres have long been recognized by dermatologists and gastroenterologists as key players in abnormal inflammatory processes, such as dermatitis and eczema. However, the involvement of nerves can all too easily be regarded as that of isolated elements in a local phenomenon. On the contrary, it is becoming increasingly clear that neural monitoring of host defence activities takes place, and that involvement of central/spinal mechanisms are crucial in the co-ordination of the adaptive response to host challenge. We describe studies demonstrating neural control of host defence and use the specific examples of bone marrow haemopoiesis and contact sensitivity to highlight the role of direct nerve fibre connections in these activities. We propose a host monitoring system that requires interaction between specialized immune cells and nerve fibres distributed throughout the body and that gives rise to both neural and immune memories of prior challenge. While immunological mechanisms alone may be sufficient for local responsiveness to subsequent challenge, data are discussed that implicate the neural memory in co-ordination of host defence across the body, at distinct sites not served by the same nerve fibres, consistent with central nervous mediation. PMID:16162264

  15. Abnormal Grain Growth Suppression in Aluminum Alloys

    NASA Technical Reports Server (NTRS)

    Hales, Stephen J. (Inventor); Claytor, Harold Dale (Inventor); Alexa, Joel A. (Inventor)

    2015-01-01

    The present invention provides a process for suppressing abnormal grain growth in friction stir welded aluminum alloys by inserting an intermediate annealing treatment ("IAT") after the welding step on the article. The IAT may be followed by a solution heat treatment (SHT) on the article under effectively high solution heat treatment conditions. In at least some embodiments, a deformation step is conducted on the article under effective spin-forming deformation conditions or under effective superplastic deformation conditions. The invention further provides a welded article having suppressed abnormal grain growth, prepared by the process above. Preferably the article is characterized with greater than about 90% reduction in area fraction abnormal grain growth in any friction-stir-welded nugget.

  16. Spirometric abnormalities among welders

    SciTech Connect

    Rastogi, S.K.; Gupta, B.N.; Husain, T.; Mathur, N.; Srivastava, S. )

    1991-10-01

    A group of manual welders age group 13-60 years having a mean exposure period of 12.4 {plus minus} 1.12 years were subjected to spirometry to evaluate the prevalence of spirometric abnormalities. The welders showed a significantly higher prevalence of respiratory impairment than that observed among the unexposed controls as a result of exposure to welding gases which comprised fine particles of lead, zinc, chromium, and manganese. This occurred despite the lower concentration of the pollutants at the work place. In the expose group, the smoking welders showed a prevalence of respiratory impairment significantly higher than that observed in the nonsmoking welders. The results of the pulmonary function tests showed a predominantly restrictive type of pulmonary impairment followed by a mixed ventilatory defect among the welders. The effect of age on pulmonary impairment was not discernible. Welders exposed for over 10 years showed a prevalence of respiratory abnormalities significantly higher than those exposed for less than 10 years. Smoking also had a contributory role.

  17. Sciatic Nerve Injury Related to Hip Replacement Surgery: Imaging Detection by MR Neurography Despite Susceptibility Artifacts

    PubMed Central

    Wolf, Marcel; Bäumer, Philipp; Pedro, Maria; Dombert, Thomas; Staub, Frank; Heiland, Sabine; Bendszus, Martin; Pham, Mirko

    2014-01-01

    Sciatic nerve palsy related to hip replacement surgery (HRS) is among the most common causes of sciatic neuropathies. The sciatic nerve may be injured by various different periprocedural mechanisms. The precise localization and extension of the nerve lesion, the determination of nerve continuity, lesion severity, and fascicular lesion distribution are essential for assessing the potential of spontaneous recovery and thereby avoiding delayed or inappropriate therapy. Adequate therapy is in many cases limited to conservative management, but in certain cases early surgical exploration and release of the nerve is indicated. Nerve-conduction-studies and electromyography are essential in the diagnosis of nerve injuries. In postsurgical nerve injuries, additional diagnostic imaging is important as well, in particular to detect or rule out direct mechanical compromise. Especially in the presence of metallic implants, commonly applied diagnostic imaging tests generally fail to adequately visualize nervous tissue. MRI has been deemed problematic due to implant-related artifacts after HRS. In this study, we describe for the first time the spectrum of imaging findings of Magnetic Resonance neurography (MRN) employing pulse sequences relatively insensitive to susceptibility artifacts (susceptibility insensitive MRN, siMRN) in a series of 9 patients with HRS procedure related sciatic nerve palsy. We were able to determine the localization and fascicular distribution of the sciatic nerve lesion in all 9 patients, which clearly showed on imaging predominant involvement of the peroneal more than the tibial division of the sciatic nerve. In 2 patients siMRN revealed direct mechanical compromise of the nerve by surgical material, and in one of these cases indication for surgical release of the sciatic nerve was based on siMRN. Thus, in selected cases of HRS related neuropathies, especially when surgical exploration of the nerve is considered, siMRN, with its potential to largely

  18. Infection of Polarized Airway Epithelial Cells by Normal and Small-Colony Variant Strains of Staphylococcus aureus Is Increased in Cells with Abnormal Cystic Fibrosis Transmembrane Conductance Regulator Function and Is Influenced by NF-κB ▿

    PubMed Central

    Mitchell, Gabriel; Grondin, Gilles; Bilodeau, Ginette; Cantin, André M.; Malouin, François

    2011-01-01

    The infection of nonphagocytic host cells by Staphylococcus aureus and more particularly by small-colony variants (SCVs) may contribute to the persistence of this pathogen in the lungs of cystic fibrosis (CF) patients. The development of chronic infections is also thought to be facilitated by the proinflammatory status of CF airways induced by an activation of NF-κB. The aim of this study was to compare the infection of non-CF and CF-like airway epithelial cells by S. aureus strains (normal and SCVs) and to determine the impact of the interaction between cystic fibrosis transmembrane conductance regulator (CFTR) and NF-κB on the infection level of these cells by S. aureus. We developed an S. aureus infection model using polarized airway epithelial cells grown at the air-liquid interface and expressing short hairpin RNAs directed against CFTR to mimic the CF condition. A pair of genetically related CF coisolates with the normal and SCV phenotypes was characterized and used. Infection of both cell lines (non-CF and CF-like) was more productive with the SCV strain than with its normal counterpart. However, both normal and SCV strains infected more CF-like than non-CF cells. Accordingly, inhibition of CFTR function by CFTRinh-172 increased the S. aureus infection level. Experimental activation of NF-κB also increased the level of infection of polarized pulmonary epithelial cells by S. aureus, an event that could be associated with that observed when CFTR function is inhibited or impaired. This study supports the hypothesis that the proinflammatory status of CF tissues facilitates the infection of pulmonary epithelial cells by S. aureus. PMID:21708986

  19. Ultrasound of Peripheral Nerves

    PubMed Central

    Suk, Jung Im; Walker, Francis O.; Cartwright, Michael S.

    2013-01-01

    Over the last decade, neuromuscular ultrasound has emerged as a useful tool for the diagnosis of peripheral nerve disorders. This article reviews sonographic findings of normal nerves including key quantitative ultrasound measurements that are helpful in the evaluation of focal and possibly generalized peripheral neuropathies. It also discusses several recent papers outlining the evidence base for the use of this technology, as well as new findings in compressive, traumatic, and generalized neuropathies. Ultrasound is well suited for use in electrodiagnostic laboratories where physicians, experienced in both the clinical evaluation of patients and the application of hands-on technology, can integrate findings from the patient’s history, physical examination, electrophysiological studies, and imaging for diagnosis and management. PMID:23314937

  20. Nerve ultrasound for differentiation between amyotrophic lateral sclerosis and multifocal motor neuropathy.

    PubMed

    Grimm, Alexander; Décard, Bernhard F; Athanasopoulou, Ioanna; Schweikert, Kathi; Sinnreich, Michael; Axer, Hubertus

    2015-01-01

    Ultrasound is useful for non-invasive visualization of focal nerve pathologies probably resulting from demyelination, remyelination, edema or inflammation. In patients with progressive muscle weakness, differentiation between multifocal motor neuropathy (MMN) and amyotrophic lateral sclerosis (ALS) is essential regarding therapy and prognosis. Therefore, the objective of this study was to investigate whether nerve ultrasound can differentiate between ALS and MMN. Systematic ultrasound measurements of peripheral nerves and the 6th cervical nerve root (C6) were performed in 17 patients with ALS, in 8 patients with MMN and in 28 healthy controls. Nerve conduction studies of corresponding nerves were undertaken in MMN and ALS patients. Electromyography was performed in ALS patients according to revised El-Escorial criteria. ANOVA and unpaired t test with Bonferroni correction revealed significant differences in cross-sectional areas (CSA) of different nerves and C6 diameter between the groups. Nerve enlargement was found significantly more frequently in MMN than in other groups (p < 0.001). Receiver operating characteristics analysis revealed detection of enlarged nerves/roots in at least four measurement points to serve as a good marker to differentiate MMN from ALS with a sensitivity of 87.5% and a specificity of 94.1%. Ultrasonic focal nerve enlargement in MMN was often not colocalized with areas of conduction blocks found in nerve conduction studies. Systematic ultrasound measurements in different nerves and nerve roots are valuable for detecting focal nerve enlargement in MMN, generally not found in ALS and thus could serve as a diagnostic marker to differentiate between both entities in addition to electrodiagnostic studies. PMID:25626722

  1. Cranial Nerve II: Vision.

    PubMed

    Gillig, Paulette Marie; Sanders, Richard D

    2009-09-01

    This article contains a brief review of the anatomy of the visual system, a survey of diseases of the retina, optic nerve and lesions of the optic chiasm, and other visual field defects of special interest to the psychiatrist. It also includes a presentation of the corticothalamic mechanisms, differential diagnosis, and various manifestations of visual illusions, and simple and complex visual hallucinations, as well as the differential diagnoses of these various visual phenomena. PMID:19855858

  2. Genetic factors for nerve susceptibility to injuries – lessons from PMP22 deficiency

    PubMed Central

    Li, Jun

    2014-01-01

    Genetic factors may be learnt from families with gene mutations that render nerve-injury susceptibility even to ordinary physical activities. A typical example is hereditary neuropathy with liability to pressure palsies (HNPP). HNPP is caused by a heterozygous deletion of PMP22 gene. PMP22 deficiency disrupts myelin junctions (such as tight junction and adherens junctions), leading to abnormally increased myelin permeability that explains the nerve susceptibility to injury. This finding should motivate investigators to identify additional genetic factors contributing to nerve vulnerability of injury. PMID:25374586

  3. Genetic factors for nerve susceptibility to injuries - lessons from PMP22 deficiency.

    PubMed

    Li, Jun

    2014-09-15

    Genetic factors may be learnt from families with gene mutations that render nerve-injury susceptibility even to ordinary physical activities. A typical example is hereditary neuropathy with liability to pressure palsies (HNPP). HNPP is caused by a heterozygous deletion of PMP22 gene. PMP22 deficiency disrupts myelin junctions (such as tight junction and adherens junctions), leading to abnormally increased myelin permeability that explains the nerve susceptibility to injury. This finding should motivate investigators to identify additional genetic factors contributing to nerve vulnerability of injury. PMID:25374586

  4. Choline Acetyltransferase Activity in Striatum of Neonatal Rats Increased by Nerve Growth Factor

    NASA Astrophysics Data System (ADS)

    Mobley, William C.; Rutkowski, J. Lynn; Tennekoon, Gihan I.; Buchanan, Karen; Johnston, Michael V.

    1985-07-01

    Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

  5. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem. PMID:22377853

  6. The importance of nerve microenvironment for schwannoma development.

    PubMed

    Schulz, Alexander; Büttner, Robert; Hagel, Christian; Baader, Stephan L; Kluwe, Lan; Salamon, Johannes; Mautner, Victor-Felix; Mindos, Thomas; Parkinson, David B; Gehlhausen, Jeffrey R; Clapp, D Wade; Morrison, Helen

    2016-08-01

    Schwannomas are predominantly benign nerve sheath neoplasms caused by Nf2 gene inactivation. Presently, treatment options are mainly limited to surgical tumor resection due to the lack of effective pharmacological drugs. Although the mechanistic understanding of Nf2 gene function has advanced, it has so far been primarily restricted to Schwann cell-intrinsic events. Extracellular cues determining Schwann cell behavior with regard to schwannoma development remain unknown. Here we show pro-tumourigenic microenvironmental effects on Schwann cells where an altered axonal microenvironment in cooperation with injury signals contribute to a persistent regenerative Schwann cell response promoting schwannoma development. Specifically in genetically engineered mice following crush injuries on sciatic nerves, we found macroscopic nerve swellings in mice with homozygous nf2 gene deletion in Schwann cells and in animals with heterozygous nf2 knockout in both Schwann cells and axons. However, patient-mimicking schwannomas could only be provoked in animals with combined heterozygous nf2 knockout in Schwann cells and axons. We identified a severe re-myelination defect and sustained macrophage presence in the tumor tissue as major abnormalities. Strikingly, treatment of tumor-developing mice after nerve crush injury with medium-dose aspirin significantly decreased schwannoma progression in this disease model. Our results suggest a multifactorial concept for schwannoma formation-emphasizing axonal factors and mechanical nerve irritation as predilection site for schwannoma development. Furthermore, we provide evidence supporting the potential efficacy of anti-inflammatory drugs in the treatment of schwannomas. PMID:27236462

  7. Identification of the motor laryngeal nerves - a new electrical stimulation technique.

    PubMed

    Spahn, J G; Bizal, J; Ferguson, S; Lingeman, R E

    1981-11-01

    Head and neck surgeons are familiar with the technique of identifying motor nerves in the head and neck region by using electrical stimulation especially in the identification of the facial and the spinal accessory nerves. The identification of the motor laryngeal nerves by electrical stimulation intra-operatively has been described; but, the difficulty of visualization of intrinsic laryngeal muscle movement has prevented the wide spread use of this technique. This paper will introduce a simple, safe and reliable method to allow the surgeon to recognize true vocal cord movement while stimulating the recurrent laryngeal nerve. The movement of a two inch 27 gauge needle placed through the cricothyroid membrane into the ipsilateral true vocal cord permits identification of intrinsic laryngeal muscle movement during electrical stimulation of the recurrent laryngeal nerve. This method has been successfully used in confirming conductivity of the laryngeal nerve during thyroid surgery, Zenker's diverticulum surgery, cricotracheal trauma and recurrent nerve neurectomy for spasmodic dysphonia. PMID:7300536

  8. The development of a normalization method for comparing nerve regeneration effectiveness among different graft types

    PubMed Central

    Chang, Wei; DeVince, Jeffrey; Green, Gabriella; Shah, Munish B.; Johns, Michael S.; Meng, Yan; Yu, Xiaojun

    2013-01-01

    The inability to compare directly different nerve grafts has been a significant factor hindering the advance of nerve graft development. Due to the abundance of variables that exist in nerve graft construction and multiple assessment types, there has been limited success in comparing nerve graft effectiveness among experiments. Using mathematical techniques on nerve conduction velocity (NCV) autograft data, a normalization function was empirically derived that normalizes differences in gap lengths. Further analysis allowed for the development of the Relative Regeneration Ratio (RRR). The RRR function allows researchers to directly compare nerve graft results based on the NCV data from their respective studies as long as the data was collected at the same post-operation time. This function also allows for comparisons between grafts tested at different gap lengths. Initial testing of this RRR function provided confidence that the function is accurate for a continuum of gap lengths and different nerve graft types. PMID:24118184

  9. Characterization of high capacitance electrodes for the application of direct current electrical nerve block.

    PubMed

    Vrabec, Tina; Bhadra, Niloy; Wainright, Jesse; Bhadra, Narendra; Franke, Manfred; Kilgore, Kevin

    2016-01-01

    Direct current (DC) can briefly produce a reversible nerve conduction block in acute experiments. However, irreversible reactions at the electrode-tissue interface have prevented its use in both acute and chronic settings. A high capacitance material (platinum black) using a charge-balanced waveform was evaluated to determine whether brief DC block (13 s) could be achieved repeatedly (>100 cycles) without causing acute irreversible reduction in nerve conduction. Electrochemical techniques were used to characterize the electrodes to determine appropriate waveform parameters. In vivo experiments on DC motor conduction block of the rat sciatic nerve were performed to characterize the acute neural response to this novel nerve block system. Complete nerve motor conduction block of the rat sciatic nerve was possible in all experiments, with the block threshold ranging from -0.15 to -3.0 mA. DC pulses were applied for 100 cycles with no nerve conduction reduction in four of the six platinum black electrodes tested. However, two of the six electrodes exhibited irreversible conduction degradation despite charge delivery that was within the initial Q (capacitance) value of the electrode. Degradation of material properties occurred in all experiments, pointing to a possible cause of the reduction in nerve conduction in some platinum black experiments . PMID:26358242

  10. Neuromuscular Ultrasound of Cranial Nerves

    PubMed Central

    Tawfik, Eman A.; Cartwright, Michael S.

    2015-01-01

    Ultrasound of cranial nerves is a novel subdomain of neuromuscular ultrasound (NMUS) which may provide additional value in the assessment of cranial nerves in different neuromuscular disorders. Whilst NMUS of peripheral nerves has been studied, NMUS of cranial nerves is considered in its initial stage of research, thus, there is a need to summarize the research results achieved to date. Detailed scanning protocols, which assist in mastery of the techniques, are briefly mentioned in the few reference textbooks available in the field. This review article focuses on ultrasound scanning techniques of the 4 accessible cranial nerves: optic, facial, vagus and spinal accessory nerves. The relevant literatures and potential future applications are discussed. PMID:25851889

  11. Limb immobilization alters functional electrophysiological parameters of sciatic nerve.

    PubMed

    Alves, J S M; Leal-Cardoso, J H; Santos-Júnior, F F U; Carlos, P S; Silva, R C; Lucci, C M; Báo, S N; Ceccatto, V M; Barbosa, R

    2013-08-01

    Immobilization, used in clinical practice to treat traumatologic problems, causes changes in muscle, but it is not known whether changes also occur in nerves. We investigated the effects of immobilization on excitability and compound action potential (CAP) and the ultrastructure of the rat sciatic nerve. Fourteen days after immobilization of the right leg of adult male Wistar rats (n=34), animals were killed and the right sciatic nerve was dissected and mounted in a moist chamber. Nerves were stimulated at a baseline frequency of 0.2 Hz and tested for 2 min at 20, 50, and 100 Hz. Immobilization altered nerve excitability. Rheobase and chronaxy changed from 3.13 ± 0.05 V and 52.31 ± 1.95 µs (control group, n=13) to 2.84 ± 0.06 V and 59.71 ± 2.79 µs (immobilized group, n=15), respectively. Immobilization altered the amplitude of CAP waves and decreased the conduction velocity of the first CAP wave (from 93.63 ± 7.49 to 79.14 ± 5.59 m/s) but not of the second wave. Transmission electron microscopy showed fragmentation of the myelin sheath of the sciatic nerve of immobilized limbs and degeneration of the axon. In conclusion, we demonstrated that long-lasting leg immobilization can induce alterations in nerve function. PMID:23969978

  12. Limb immobilization alters functional electrophysiological parameters of sciatic nerve

    PubMed Central

    Alves, J.S.M.; Leal-Cardoso, J.H.; Santos-Júnior, F.F.U.; Carlos, P.S.; Silva, R.C.; Lucci, C.M.; Báo, S.N.; Ceccatto, V.M.; Barbosa, R.

    2013-01-01

    Immobilization, used in clinical practice to treat traumatologic problems, causes changes in muscle, but it is not known whether changes also occur in nerves. We investigated the effects of immobilization on excitability and compound action potential (CAP) and the ultrastructure of the rat sciatic nerve. Fourteen days after immobilization of the right leg of adult male Wistar rats (n=34), animals were killed and the right sciatic nerve was dissected and mounted in a moist chamber. Nerves were stimulated at a baseline frequency of 0.2 Hz and tested for 2 min at 20, 50, and 100 Hz. Immobilization altered nerve excitability. Rheobase and chronaxy changed from 3.13±0.05 V and 52.31±1.95 µs (control group, n=13) to 2.84±0.06 V and 59.71±2.79 µs (immobilized group, n=15), respectively. Immobilization altered the amplitude of CAP waves and decreased the conduction velocity of the first CAP wave (from 93.63±7.49 to 79.14±5.59 m/s) but not of the second wave. Transmission electron microscopy showed fragmentation of the myelin sheath of the sciatic nerve of immobilized limbs and degeneration of the axon. In conclusion, we demonstrated that long-lasting leg immobilization can induce alterations in nerve function. PMID:23969978

  13. Ultrasound guidance of uncommon nerve blocks

    PubMed Central

    Thallaj, Ahmed

    2011-01-01

    In the past nerve stimulation was considered the standard tool for anesthesiologists to locate the peripheral nerve for nerve blocks. However, with the recent introduction of ultrasound (US) technology for regional anesthesia, the use of nerve stimulation has become a rarity nowadays. There is a growing interest by most anesthesiologists in using US for nerve blocks because of its simplicity and accuracy. US is now available in most hospitals practicing regional anesthesia and is a popular tool for performance of nerve blocks. Although nerve stimulation became a rarity, however the use of it is now limited to identify small nerve structures, such as greater auricular nerve and medial antebrachial cutaneous nerve of the forearm. However, in this review article we discuss the role of ultrasonography for greater auricular and antebrachial cutaneous nerve blocks, which could replace nerve stimulation technique. We look at the available literature on the role of US for the performance of uncommon nerve blocks and its benefits. PMID:22144927

  14. Axillary nerve injuries in contact sports: recommendations for treatment and rehabilitation.

    PubMed

    Perlmutter, G S; Apruzzese, W

    1998-11-01

    Axillary nerve injuries are some of the most common peripheral nerve injuries in athletes who participate in contact sports. Resulting deltoid muscle paralysis is secondary to nerve trauma which occurs following shoulder dislocation or a direct blow to the deltoid muscle. Compression neuropathy has been reported to occur in quadrilateral space syndrome as the axillary nerve exits this anatomic compartment. The axillary nerve is also extremely vulnerable during any operative procedure involving the inferior aspect of the shoulder, and iatrogenic injury to the axillary nerve remains a serious complication of shoulder surgery. Accurate diagnosis of axillary nerve injury is based on a careful history and physical examination as well as an understanding of the anatomy of the shoulder and the axillary nerve in particular. Inspection, palpation and neurological testing provide the bases for diagnosis. A clinically suspected axillary nerve injury should be confirmed by electrophysiological testing, including electromyography and nerve conduction studies. During the acute phase of injury, the athlete should be rested and any ligamentous or bony injury should be treated as indicated. Patients should undergo an extensive rehabilitation programme emphasising active and passive range of motion as well as strengthening of the rotator cuff, deltoid and periscapular musculature. Shoulder joint contracture should be avoided at all costs as a loss of shoulder mobility may ultimately affect functional outcome despite a return of axillary nerve function. If no axillary nerve recovery is observed by 3 to 4 months following injury, surgical exploration is indicated. Athletes who sustain injury to the axillary nerve have a variable prognosis for nerve recovery, although the return of function of the involved shoulder is typically good to excellent. We recommend that athletes who sustain axillary nerve injury may return to contact sport participation when they achieve full active range of

  15. Nerve blocks for chronic pain.

    PubMed

    Hayek, Salim M; Shah, Atit

    2014-10-01

    Nerve blocks are often performed as therapeutic or palliative interventions for pain relief. However, they are often performed for diagnostic or prognostic purposes. When considering nerve blocks for chronic pain, clinicians must always consider the indications, risks, benefits, and proper technique. Nerve blocks encompass a wide variety of interventional procedures. The most common nerve blocks for chronic pain and that may be applicable to the neurosurgical patient population are reviewed in this article. This article is an introduction and brief synopsis of the different available blocks that can be offered to a patient. PMID:25240668

  16. Retrograde axonal transport of /sup 125/I-nerve growth factor in rat ileal mesenteric nerves. Effect of streptozocin diabetes

    SciTech Connect

    Schmidt, R.E.; Plurad, S.B.; Saffitz, J.E.; Grabau, G.G.; Yip, H.K.

    1985-12-01

    The retrograde axonal transport of intravenously (i.v.) administered /sup 125/I-nerve growth factor (/sup 125/I-NGF) was examined in mesenteric nerves innervating the small bowel of rats with streptozocin (STZ) diabetes using methods described in detail in the companion article. The accumulation of /sup 125/I-NGF distal to a ligature on the ileal mesenteric nerves of diabetic animals was 30-40% less than in control animals. The inhibition of accumulation of /sup 125/I-NGF in diabetic animals was greater at a ligature tied 2 h after i.v. administration than at a ligature tied after 14 h, which suggests that the diabetic animals may have a lag in initiation of NGF transport in the terminal axon or retardation of transport at some site along the axon. The /sup 125/I-NGF transport defect was observed as early as 3 days after the induction of diabetes, a time before the development of structural axonal lesions, and did not worsen at later times when dystrophic axonopathy is present. Both the ileal mesenteric nerves, which eventually develop dystrophic axonopathy in experimental diabetes, and the jejunal mesenteric nerves, which never develop comparable structural alterations, showed similar /sup 125/I-NGF transport deficits, suggesting that the existence of the transport abnormality does not predict the eventual development of dystrophic axonal lesions. Autoradiographic localization of /sup 125/I-NGF in the ileal mesenteric nerves of animals that had been diabetic for 11-13 mo demonstrated decreased amounts of /sup 125/I-NGF in transit in unligated paravascular nerve fascicles. There was, however, no evidence for focal retardation of transported /sup 125/I-NGF at the sites of dystrophic axonal lesions.

  17. Nerve-pulse interactions

    SciTech Connect

    Scott, A.C.

    1982-01-01

    Some recent experimental and theoretical results on mechanisms through which individual nerve pulses can interact are reviewed. Three modes of interactions are considered: (1) interaction of pulses as they travel along a single fiber which leads to velocity dispersion; (2) propagation of pairs of pulses through a branching region leading to quantum pulse code transformations; and (3) interaction of pulses on parallel fibers through which they may form a pulse assembly. This notion is analogous to Hebb's concept of a cell assembly, but on a lower level of the neural hierarchy.

  18. Median nerve behavior at different wrist positions among older males

    PubMed Central

    Nakashima, Hiroki; Muraki, Satoshi

    2015-01-01

    The effect of wrist flexion-extension on the median nerve appearance, namely the cross-sectional area (MNCSA) and the longitudinal (D1) and vertical (D2) diameters, was investigated among older adults (N = 34). Ultrasound examination was conducted to examine the median nerve at different wrist angles (neutral; and 15°, 30°, and 45° extension and flexion), in both the dominant and nondominant hand. Median nerve behavior were significantly associated with wrist angle changes. The MNCSA at wrist flexion and extension were significantly smaller (P < .001) compared with the neutral position in both the dominant and nondominant hand. The D1 and D2 were significantly reduced at flexion (P < .001) and extension (P < .001), respectively, in both the dominant and nondominant hand. Our results suggest that a larger flexion-extension angle causes higher compression stress on the median nerve, leading to increased deformation of the MNCSA, D1, and D2 among older adults. PMID:25945317

  19. Delayed diagnosed posterior interosseous nerve palsy due to intramuscular myxoma

    PubMed Central

    Kursumovic, A; Mattiassich, G; Rath, S

    2013-01-01

    We present a case of posterior interosseous nerve palsy after bowel surgery associated with intramuscular myxoma of the supinator muscle. The initial symptoms of swelling of the forearm made it difficult to distinguish the condition from extravasations after intravenous cannulation. The diagnosis was finally established with nerve conduction studies and MRI 3 months after symptom onset. The patient underwent surgery for removal of the tumour and decompression of the posterior interosseous nerve. The histological examination identified the tumour as intramuscular myxoma and the patient made a full recovery with no recurrence of the lesion until present. Every swelling on the forearm causing neurological disorders is tumour suspected and should be examined clinically as well as electrophysically and radiographically. Early surgery and nerve decompression should follow immediately after the diagnosis. In case of intramuscular myxoma, good recovery of function after surgery with low recurrence risk may be expected. PMID:23576649

  20. Ictal Cardiac Ryhthym Abnormalities

    PubMed Central

    Ali, Rushna

    2016-01-01

    Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227

  1. Abnormal uterine bleeding.

    PubMed

    Whitaker, Lucy; Critchley, Hilary O D

    2016-07-01

    Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558

  2. Laser-activated protein bands for peripheral nerve repair

    NASA Astrophysics Data System (ADS)

    Lauto, Antonio; Trickett, Rodney I.; Malik, Richard; Dawes, Judith M.; Owen, Earl R.

    1996-01-01

    A 100 micrometer core optical fiber-coupled 75 mW diode laser operating at a wavelength of 800 nm has been used in conjunction with a protein solder to stripe weld severed rat tibial nerves, reducing the long operating time required for microsurgical nerve repair. Welding is produced by selective laser denaturation of the protein based solder which contains the dye indocyanine green. Operating time for laser soldering was 10 plus or minus 5 min. (n equals 24) compared to 23 plus or minus 9 min (n equals 13) for microsuturing. The laser solder technique resulted in patent welds with a tensile strength of 15 plus or minus 5 g, while microsutured nerves had a tensile strength of 40 plus or minus 10 g. Histopathology of the laser soldered nerves, conducted immediately after surgery, displayed solder adhesion to the outer membrane with minimal damage to the inner axons of the nerves. An in vivo study, with a total of fifty-seven adult male wistar rats, compared laser solder repaired tibial nerves to conventional microsuture repair. Twenty-four laser soldered nerves and thirteen sutured nerves were characterized at three months and showed successful regeneration with average compound muscle action potentials (CMAP) of 2.4 plus or minus 0.7 mV and 2.7 plus or minus 0.8 mV respectively. Histopathology of the in vivo study, confirmed the comparable regeneration of axons in laser and suture operated nerves. A faster, less damaging and long lasting laser based anastomotic technique is presented.

  3. Effect of Collateral Sprouting on Donor Nerve Function After Nerve Coaptation: A Study of the Brachial Plexus

    PubMed Central

    Reichert, Paweł; Kiełbowicz, Zdzisław; Dzięgiel, Piotr; Puła, Bartosz; Wrzosek, Marcin; Bocheńska, Aneta; Gosk, Jerzy

    2016-01-01

    Background The aim of the present study was to evaluate the donor nerve from the C7 spinal nerve of the rabbit brachial plexus after a coaptation procedure. Assessment was performed of avulsion of the C5 and C6 spinal nerves treated by coaptation of these nerves to the C7 spinal nerve. Material/Methods After nerve injury, fourteen rabbits were treated by end-to-side coaptation (ETS), and fourteen animals were treated by side-to-side coaptation (STS) on the right brachial plexus. Electrophysiological and histomorphometric analyses and the skin pinch test were used to evaluate the outcomes. Results There was no statistically significant difference in the G-ratio proximal and distal to the coaptation in the ETS group, but the differences in the axon, myelin sheath and fiber diameters were statistically significant. The comparison of the ETS and STS groups distal to the coaptation with the controls demonstrated statistically significant differences in the fiber, axon, and myelin sheath diameters. With respect to the G-ratio, the ETS group exhibited no significant differences relative to the control, whereas the G-ratio in the STS group and the controls differed significantly. In the electrophysiological study, the ETS and STS groups exhibited major changes in the biceps and subscapularis muscles. Conclusions The coaptation procedure affects the histological structure of the nerve donor, but it does not translate into changes in nerve conduction or the sensory function of the limb. The donor nerve lesion in the ETS group is transient and has minimal clinical relevance. PMID:26848925

  4. Effect of Collateral Sprouting on Donor Nerve Function After Nerve Coaptation: A Study of the Brachial Plexus.

    PubMed

    Reichert, Pawel; Kiełbowicz, Zdzisław; Dzięgiel, Piotr; Puła, Bartosz; Wrzosek, Marcin; Bocheńska, Aneta; Gosk, Jerzy

    2016-01-01

    BACKGROUND The aim of the present study was to evaluate the donor nerve from the C7 spinal nerve of the rabbit brachial plexus after a coaptation procedure. Assessment was performed of avulsion of the C5 and C6 spinal nerves treated by coaptation of these nerves to the C7 spinal nerve. MATERIAL AND METHODS After nerve injury, fourteen rabbits were treated by end-to-side coaptation (ETS), and fourteen animals were treated by side-to-side coaptation (STS) on the right brachial plexus. Electrophysiological and histomorphometric analyses and the skin pinch test were used to evaluate the outcomes. RESULTS There was no statistically significant difference in the G-ratio proximal and distal to the coaptation in the ETS group, but the differences in the axon, myelin sheath and fiber diameters were statistically significant. The comparison of the ETS and STS groups distal to the coaptation with the controls demonstrated statistically significant differences in the fiber, axon, and myelin sheath diameters. With respect to the G-ratio, the ETS group exhibited no significant differences relative to the control, whereas the G-ratio in the STS group and the controls differed significantly. In the electrophysiological study, the ETS and STS groups exhibited major changes in the biceps and subscapularis muscles. CONCLUSIONS The coaptation procedure affects the histological structure of the nerve donor, but it does not translate into changes in nerve conduction or the sensory function of the limb. The donor nerve lesion in the ETS group is transient and has minimal clinical relevance. PMID:26848925

  5. Semen abnormalities with SSRI antidepressants.

    PubMed

    2015-01-01

    Despite decades of widespread use, the adverse effect profile of "selective" serotonin reuptake inhibitor (SSRI) antidepressants has still not been fully elucidated. Studies in male animals have shown delayed sexual development and reduced fertility. Three prospective cohort studies conducted in over one hundred patients exposed to an SSRI for periods ranging from 5 weeks to 24 months found altered semen param-eters after as little as 3 months of exposure: reduced sperm concentration, reduced sperm motility, a higher percentage of abnormal spermatozoa, and increased levels of sperm DNA fragmentation. One clinical trial showed growth retardation in children considered depressed who were exposed to SSRls. SSRls may have endocrine disrupting properties. Dapoxetine is a short-acting serotonin reuptake inhibitor that is chemically related to fluoxetine and marketed in the European Union for men complaining of premature ejaculation. But the corresponding European summary of product characteristics does not mention any effects on fertility. In practice, based on the data available as of mid-2014, the effects of SSRI exposure on male fertility are unclear. However, it is a risk that should be taken into account and pointed out to male patients who would like to father a child or who are experiencing fertility problems. PMID:25729824

  6. Electrocardiograph abnormalities revealed during laparoscopy

    PubMed Central

    Nijjer, Sukhjinder; Dubrey, Simon William

    2010-01-01

    This brief case presents a well patient in whom an electrocardiograph abnormality consistent with an accessory pathway was found during a routine procedure. We present the electrocardiographs, explain the underlying condition, and consider why the abnormality was revealed in this manner. PMID:22419949

  7. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  8. Haem degradation in abnormal haemoglobins.

    PubMed Central

    Brown, S B; Docherty, J C

    1978-01-01

    The coupled oxidation of certain abnormal haemoglobins leads to different bile-pigment isomer distributions from that of normal haemoglobin. The isomer pattern may be correlated with the structure of the abnormal haemoglobin in the neighbourhood of the haem pocket. This is support for haem degradation by an intramolecular reaction. PMID:708385

  9. Peripheral nerve conduits: technology update

    PubMed Central

    Arslantunali, D; Dursun, T; Yucel, D; Hasirci, N; Hasirci, V

    2014-01-01

    Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented. PMID:25489251

  10. Ultrasound-Guided Peripheral Nerve Procedures.

    PubMed

    Strakowski, Jeffrey A

    2016-08-01

    Ultrasound guidance allows real-time visualization of the needle in peripheral nerve procedures, improving accuracy and safety. Sonographic visualization of the peripheral nerve and surrounding anatomy can provide valuable information for diagnostic purposes and procedure enhancement. Common procedures discussed are the suprascapular nerve at the suprascapular notch, deep branch of the radial nerve at the supinator, median nerve at the pronator teres and carpal tunnel, lateral cutaneous nerve of the thigh, superficial fibular nerve at the leg, tibial nerve at the ankle, and interdigital neuroma. For each procedure, the indications, relevant anatomy, preprocedural scanning technique, and injection procedure itself are detailed. PMID:27468673

  11. Anatomical Study of the Ulnar Nerve Variations at High Humeral Level and Their Possible Clinical and Diagnostic Implications

    PubMed Central

    Guru, Anitha; Kumar, Naveen; Ravindra Shanthakumar, Swamy; Patil, Jyothsna; Nayak Badagabettu, Satheesha; Aithal Padur, Ashwini; Nelluri, Venu Madhav

    2015-01-01

    Background. Descriptive evaluation of nerve variations plays a pivotal role in the usefulness of clinical or surgical practice, as an anatomical variation often sets a risk of nerve palsy syndrome. Ulnar nerve (UN) is one amongst the major nerves involved in neuropathy. In the present anatomical study, variations related to ulnar nerve have been identified and its potential clinical implications discussed. Materials and Method. We examined 50 upper limb dissected specimens for possible ulnar nerve variations. Careful observation for any aberrant formation and/or communication in relation to UN has been carried out. Results. Four out of 50 limbs (8%) presented with variations related to ulnar nerve. Amongst them, in two cases abnormal communication with neighboring nerve was identified and variation in the formation of UN was noted in remaining two limbs. Conclusion. An unusual relation of UN with its neighboring nerves, thus muscles, and its aberrant formation might jeopardize the normal sensori-motor behavior. Knowledge about anatomical variations of the UN is therefore important for the clinicians in understanding the severity of ulnar nerve neuropathy related complications. PMID:26246909

  12. Electroactive biocompatible materials for nerve cell stimulation

    NASA Astrophysics Data System (ADS)

    Yang, Mei; Liang, Youlong; Gui, Qingyuan; Chen, Jun; Liu, Yong

    2015-04-01

    In the past decades, great efforts have been developed for neurobiologists and neurologists to restore nervous system functions. Recently much attention has been paid to electrical stimulation (ES) of the nervous system as a potential way to repair it. Various conductive biocompatible materials with good electrical conductivity, biocompatibility, and long-term ES or electrical stability have been developed as the substrates for ES. In this review, we summarized different types of materials developed in the purpose for ES of nervous system, including conducting polymers, carbon nanomaterials and composites from conducting polymer/carbon nanomaterials. The present review will give our perspective on the future research directions for further investigation on development of ES particularly on the nerve system.

  13. Reduction in Retinal Nerve Fiber Layer Thickness in Young Adults with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Emberti Gialloreti, Leonardo; Pardini, Matteo; Benassi, Francesca; Marciano, Sara; Amore, Mario; Mutolo, Maria Giulia; Porfirio, Maria Cristina; Curatolo, Paolo

    2014-01-01

    Recent years have seen an increase in the use of retinal nerve fiber layer (RNFL) evaluation as an easy-to-use, reproducible, proxy-measure of brain structural abnormalities. Here, we evaluated RNFL thickness in a group of subjects with high functioning autism (HFA) or with Asperger Syndrome (AS) to its potential as a tool to study autism…

  14. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  15. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  16. 21 CFR 882.5830 - Implanted diaphragmatic/phrenic nerve stimulator.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Implanted diaphragmatic/phrenic nerve stimulator. 882.5830 Section 882.5830 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... which an abnormally low amount of air enters the lungs) caused by brain stem disease, high...

  17. Occipital nerve stimulation.

    PubMed

    Mammis, Antonios; Agarwal, Nitin; Mogilner, Alon Y

    2015-01-01

    Occipital nerve stimulation (ONS) is a form of neuromodulation therapy aimed at treating intractable headache and craniofacial pain. The therapy utilizes neurostimulating electrodes placed subcutaneously in the occipital region and connected to a permanently implanted programmable pulse generator identical to those used for dorsal column/spinal cord stimulation. The presumed mechanisms of action involve modulation of the trigeminocervical complex, as well as closure of the physiologic pain gate. ONS is a reversible, nondestructive therapy, which can be tailored to a patient's individual needs. Typically, candidates for successful ONS include those patients with migraines, Chiari malformation, or occipital neuralgia. However, recent MRSA infections, unrealistic expectations, and psychiatric comorbidities are generally contraindications. As with any invasive procedure, complications may occur including lead migration, infection, wound erosion, device failure, muscle spasms, and pain. The success of this therapy is dependent on careful patient selection, a preimplantation trial, meticulous implantation technique, programming strategies, and complication avoidance. PMID:25411143

  18. Disrupted axon-glia interactions at the paranode in myelinated nerves cause axonal degeneration and neuronal cell death in the aged Caspr mutant mouse shambling.

    PubMed

    Takagishi, Yoshiko; Katanosaka, Kimiaki; Mizoguchi, Hiroyuki; Murata, Yoshiharu

    2016-07-01

    Emerging evidence suggests that axonal degeneration is a disease mechanism in various neurodegenerative diseases and that the paranodes at the nodes of Ranvier may be the initial site of pathogenesis. We investigated the pathophysiology of the disease process in the central and peripheral nervous systems of a Caspr mutant mouse, shambling (shm), which is affected by disrupted paranodal structures and impaired nerve conduction of myelinated nerves. The shm mice manifest a progressive neurological phenotype as mice age. We found extensive axonal degeneration and a loss of neurons in the central nervous system and peripheral nervous system in aged shm mice. Axonal alteration of myelinated nerves was defined by abnormal distribution and expression of neurofilaments and derangements in the status of phosphorylated and non/de-phosphorylated neurofilaments. Autophagy-related structures were also accumulated in degenerated axons and neurons. In conclusion, our results suggest that disrupted axon-glia interactions at the paranode cause the cytoskeletal alteration in myelinated axons leading to neuronal cell death, and the process involves detrimental autophagy and aging as factors that promote the pathogenesis. PMID:27255813

  19. Sciatic nerve palsy associated with total hip arthroplasty.

    PubMed

    Dhillon, M S; Nagi, O N

    1992-01-01

    Six cases of clinically evident sciatic or peroneal nerve palsy occurred in a consecutive series of 380 total hip arthroplasties (THA). An additional eight cases of peroneal nerve palsy due to pressure from Thomas splint or tight bandages were seen. Factors apparently causing nerve palsy were significant lateralization and lengthening in four cases and dislocation of the hip in one case. The cases with neuroapraxia of the peroneal nerve were seen from the third to the fifth day of Thomas splint immobilization. EMG studies were conducted in all six group 1 patients; at the end of one year the results were good in two cases, fair in three cases, and poor in one case. The results suggest that limb lengthening should be limited to 4 cm to minimize this complication. It was also seen that patients with peroneal nerve palsy due to local compression do well, though some are bothered by mild residual dysesthesia over the dorsum of the foot. In contrast, patients with sciatic nerve palsy do not have such a good outlook. PMID:1345646

  20. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells.

    PubMed

    Zhang, Yan-Ru; Ka, Ka; Zhang, Ge-Chen; Zhang, Hui; Shang, Yan; Zhao, Guo-Qiang; Huang, Wen-Hua

    2015-09-01

    Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic factor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells may demonstrate even better effects in the repair of peripheral nerve injury. We cultured bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor and/or ciliary neurotrophic factor and used them to treat sciatic nerve injury in rats. We observed an increase in sciatic functional index, triceps wet weight recovery rate, myelin thickness, number of myelinated nerve fibers, amplitude of motor-evoked potentials and nerve conduction velocity, and a shortened latency of motor-evoked potentials when allografts loaded with both neurotrophic factors were used, compared with allografts loaded with just one factor. Thus, the combination of both brain-derived neurotrophic factor and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells can greatly improve nerve injury. PMID:26604913

  1. Repair of peripheral nerve defects with chemically extracted acellular nerve allografts loaded with neurotrophic factors-transfected bone marrow mesenchymal stem cells

    PubMed Central

    Zhang, Yan-ru; Ka, Ka; Zhang, Ge-chen; Zhang, Hui; Shang, Yan; Zhao, Guo-qiang; Huang, Wen-hua

    2015-01-01

    Chemically extracted acellular nerve allografts loaded with brain-derived neurotrophic factor-transfected or ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells have been shown to repair sciatic nerve injury better than chemically extracted acellular nerve allografts alone, or chemically extracted acellular nerve allografts loaded with bone marrow mesenchymal stem cells. We hypothesized that these allografts compounded with both brain-derived neurotrophic factor- and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells may demonstrate even better effects in the repair of peripheral nerve injury. We cultured bone marrow mesenchymal stem cells expressing brain-derived neurotrophic factor and/or ciliary neurotrophic factor and used them to treat sciatic nerve injury in rats. We observed an increase in sciatic functional index, triceps wet weight recovery rate, myelin thickness, number of myelinated nerve fibers, amplitude of motor-evoked potentials and nerve conduction velocity, and a shortened latency of motor-evoked potentials when allografts loaded with both neurotrophic factors were used, compared with allografts loaded with just one factor. Thus, the combination of both brain-derived neurotrophic factor and ciliary neurotrophic factor-transfected bone marrow mesenchymal stem cells can greatly improve nerve injury. PMID:26604913

  2. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  3. Effects of deep heating provided by therapeutic ultrasound on demyelinating nerves

    PubMed Central

    Aydin, Elif; Tastaban, Engin; Omurlu, Imran Kurt; Turan, Yasemin; Şendur, Ömer Faruk

    2016-01-01

    [Purpose] Physiotherapeutic heating agents are classified into two groups: superficial-heating agents and deep-heating agents. Therapeutic ultrasound is a deep-heating agent used to treat various musculosketal disorders. Numerous studies have attempted to determine the impact of ultrasound on healthy nerve conduction parameters. However, the instantaneous effects of deep heating via ultrasound on demyelinating nerves do not appear to have been described previously. The present study aimed to assess and compare the impact of ultrasound on demyelinating nerve and healthy nerve conduction parameters. [Subjects and Methods] Carpal tunnel syndrome was used as a focal demyelination model. Thirty-two hands of 25 participants with carpal tunnel syndrome were enrolled in the study. Ultrasound parameters were 3.3 MHz, 1.0 W/cm2, 8 minutes, and continuous wave. Electrodiagnostic studies were performed initially, at the midpoint (4th min), and immediately after (8th min) ultrasound application. [Results] Reduced motor conduction velocity was found in demyelinating nerves at the 4th and 8th minutes. Ulnar nerve onset latency was significantly prolonged in the 8th minute recording, compared to the initial value. There were no significant differences in relative velocity and latency changes between demyelinating and normal nerves. [Conclusion] Deep heating via ultrasound may inversely affect conduction velocity in demyelinating nerves. PMID:27190467

  4. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  5. α-Synuclein pathology in the cranial and spinal nerves in Lewy body disease.

    PubMed

    Nakamura, Keiko; Mori, Fumiaki; Tanji, Kunikazu; Miki, Yasuo; Toyoshima, Yasuko; Kakita, Akiyoshi; Takahashi, Hitoshi; Yamada, Masahito; Wakabayashi, Koichi

    2016-06-01

    Accumulation of phosphorylated α-synuclein in neurons and glial cells is a histological hallmark of Lewy body disease (LBD) and multiple system atrophy (MSA). Recently, filamentous aggregations of phosphorylated α-synuclein have been reported in the cytoplasm of Schwann cells, but not in axons, in the peripheral nervous system in MSA, mainly in the cranial and spinal nerve roots. Here we conducted an immunohistochemical investigation of the cranial and spinal nerves and dorsal root ganglia of patients with LBD. Lewy axons were found in the oculomotor, trigeminal and glossopharyngeal-vagus nerves, but not in the hypoglossal nerve. The glossopharyngeal-vagus nerves were most frequently affected, with involvement in all of 20 subjects. In the spinal nerve roots, Lewy axons were found in all of the cases examined. Lewy axons in the anterior nerves were more frequent and numerous in the thoracic and sacral segments than in the cervical and lumbar segments. On the other hand, axonal lesions in the posterior spinal nerve roots appeared to increase along a cervical-to-sacral gradient. Although Schwann cell cytoplasmic inclusions were found in the spinal nerves, they were only minimal. In the dorsal root ganglia, axonal lesions were seldom evident. These findings indicate that α-synuclein pathology in the peripheral nerves is axonal-predominant in LBD, whereas it is restricted to glial cells in MSA. PMID:26563477

  6. ‘Strategic Sequences’ in Adipose Derived Stem Cell Nerve Regeneration

    PubMed Central

    Widgerow, Alan D.; Salibian, Ara A.; Kohan, Emil; SartiniFerreira, Tadeu; Afzel, Hassaan; Tham, Thanh; Evans, Gregory RD

    2014-01-01

    Background Peripheral nerve injuries (PNI) are a major source of morbidity worldwide. The development of cellular regenerative therapies has the potential to improve outcomes of nerve injuries. However, an ideal therapy has yet to be found. The purpose of this study is to examine the current literature key points of regenerative techniques utilizing human adipose derived stem cells (hADSCs) for nerve regeneration, and derive a comprehensive approach to hADSC therapy for PNI. Methods A literature review was conducted using the electronic database PubMed to search for current experimental approaches to repairing peripheral nerve injuries using hADSCs. Key search elements focused on specific components of nerve regeneration paradigms, including, 1) support cells, 2) scaffolds and 3) nerve conduits. Results Strategic sequences were developed by optimizing the components of different experimental regenerative therapies. These sequences focus on priming hADSCs within a specialized growth medium, a hydrogel matrix base, and a collagen nerve conduit to achieve neuromodulatory nerve regeneration. Human ADSCs may exert their neuroregenerative influence through paracrine effects on surrounding Schwann cells in addition to physical interactions with injured tissue. Conclusions hADSCs may play a key role in nerve regeneration by acting primarily as support for local neurotrophic mediation and modulation of nerve growth rather than that of a primary neuronal differentiation agent. PMID:24375471

  7. Humeral head translation after a suprascapular nerve block.

    PubMed

    San Juan, Jun G; Kosek, Peter; Karduna, Andrew R

    2013-08-01

    Subacromial impingement syndrome is the most common shoulder disorder. Abnormal superior translation of the humeral head is believed to be a major cause of this pathology. The first purpose of the study was to examine the effects of suprascapular nerve block on superior translation of the humeral head and scapular upward rotation during dynamic shoulder elevation. The secondary purpose was to assess muscle activation patterns during these motions. Twenty healthy subjects participated in the study. Using fluoroscopy and electromyography, humeral head translation and muscle activation were measured before and after a suprascapular nerve block. The humeral head was superiorly located at 60 degrees of humeral elevation, and the scapula was more upwardly rotated from 30 to 90 degrees of humeral elevation after the block. The differences were observed during midrange of motion. In addition, the deltoid muscle group demonstrated increased muscle activation after the nerve block. The study's results showed a compensatory increase in humeral head translation, scapular upward rotation, and deltoid muscle activation due to the nerve block. These outcomes suggest that increasing muscular strength and endurance of the supraspinatus and infraspinatus muscles could prevent any increased superior humeral head translation. This may be beneficial in reducing shoulder impingement or rotator cuff tears over time. PMID:22927503

  8. Mechanisms defining the electrotonic potential abnormalities in simulated amyotrophic lateral sclerosis.

    PubMed

    Stephanova, D I; Krustev, S M; Negrev, N

    2012-06-01

    Electrotonic potentials allow the accommodative processes to polarizing stimuli to be assessed. Electrotonic potential transients in response to applied polarizing stimuli are caused by the kinetics of underlying axonal conductances. Here, we study these transients using our multi-layered model of the human motor nerve, in three simulated cases of the motor neuron disease amyotrophic lateral sclerosis (ALS): ALS1, ALS2 and ALS3 are three consecutively greater degrees of uniform axonal dysfunctions along the human motor nerve fibre. The results show that the responses in the ALS1 case are quite similar to the normal case. In contrast, in the ALS2 and ALS3 cases, long-lasting (100 ms) subthreshold depolarizing stimuli activate the classical "transient" Na(+) channels in the nodal and in the internodal axolemma beneath the myelin sheath; this leads to action potential generation during the early parts of the electrotonic responses in all compartments along the fibre length. The results also show that the electrotonic potentials in response to long-lasting (100 ms) subthreshold hyperpolarizing stimuli in the ALS1 and ALS2 cases are quiet similar to those of the normal case. However, the current kinetics in the ALS3 case differs from the normal case after the termination of the long-lasting hyperpolarizing stimuli. In the most abnormal ALS3 case, the activation of the Na(+) channels in the nodal and in the internodal axolemma leads to repetitive action potential generation in the late parts (100-200 ms) of the hyperpolarizing electrotonic responses. The results show that the repetitive firing, due to the progressively increased nodal and internodal ion channel dysfunction, are consistent with the loss of functional potassium channels involving both the fast and the slow potassium channel types. The results confirm that the electrotonic potentials in the three simulated ALS cases are specific indicators for the motor neuron disease ALS. The mechanisms underlying the

  9. Peripheral nerve: from the microscopic functional unit of the axon to the biomechanically loaded macroscopic structure.

    PubMed

    Topp, Kimberly S; Boyd, Benjamin S

    2012-01-01

    Peripheral nerves are composed of motor and sensory axons, associated ensheathing Schwann cells, and organized layers of connective tissues that are in continuity with the tissues of the central nervous system. Nerve fiber anatomy facilitates conduction of electrical impulses to convey information over a distance, and the length of these polarized cells necessitates regulated axonal transport of organelles and structural proteins for normal cell function. Nerve connective tissues serve a protective function as the limb is subjected to the stresses of myriad limb positions and postures. Thus, the tissues are uniquely arranged to control the local nerve fiber environment and modulate physical stresses. In this brief review, we describe the microscopic anatomy and physiology of peripheral nerve and the biomechanical properties that enable nerve to withstand the physical stresses of everyday life. PMID:22133662

  10. Malignant Peripheral Nerve Sheath Tumor.

    PubMed

    James, Aaron W; Shurell, Elizabeth; Singh, Arun; Dry, Sarah M; Eilber, Fritz C

    2016-10-01

    Malignant peripheral nerve sheath tumor (MPNST) is the sixth most common type of soft tissue sarcoma. Most MPNSTs arise in association with a peripheral nerve or preexisting neurofibroma. Neurofibromatosis type is the most important risk factor for MPNST. Tumor size and fludeoxyglucose F 18 avidity are among the most helpful parameters to distinguish MPNST from a benign peripheral nerve sheath tumor. The histopathologic diagnosis is predominantly a diagnosis of light microscopy. Immunohistochemical stains are most helpful to distinguish high-grade MPNST from its histologic mimics. Current surgical management of high-grade MPNST is similar to that of other high-grade soft tissue sarcomas. PMID:27591499

  11. Morphological changes in the sciatic nerve, skeletal muscle, heart and brain of rabbits receiving continuous sciatic nerve block with 0.2% ropivacaine

    PubMed Central

    Zhou, Yangning; He, Miao; Zou, Tianxiao; Yu, Bin

    2015-01-01

    Objective: To investigate the morphological changes in various tissues of rabbits receiving sciatic nerve block with 0.2% ropivacaine for 48 h. Methods: Twenty healthy were randomly assigned to normal saline group (N group) and ropivacaine group (R group). The right sciatic nerve was exposed, and a nerve-blocking trocar cannula embedded. Animals received an injection of 0.5% ropivacaine hydrochloride at a dose of 0.75 ml/kg. Rabbit was then connected to an infusion pump containing 50 ml of normal saline in N group, or to a infusion pump containing 0.2% ropivacaine hydrochloride in R group at 0.25 ml/kg•h-1. Results: In both R group and N group, a small number of nerve cells exhibited pyknotic degeneration. More nerve cells with pyknotic degeneration were found in R group than in N group (P<0.001). At 48 h after surgery, there was a significant correlation between the abnormality of right hind limb and the degree of edema in sciatic nerve (P<0.01). Conclusion: Pyknotic degeneration of sciatic nerve increased after an infusion of 0.2% ropivacaine hydrochloride for 48 h, suggesting the neurotoxicity of ropivacaine. An infusion of 0.2% ropivacaine hydrochloride for 48 h may cause necrosis of skeletal muscle cells. The sciatic nerve edema would greatly affect the hindlimb motor while both pyknotic degeneration of sciatic nerve and skeletal muscle have little influence on the hindlimb movement. After an infusion of 0.2% ropivacaine hydrochloride for 48 h, the morphology of right atrium and brain tissues around the ventriculus tertius and medulla oblongata remained unchanged. PMID:26823703

  12. Identifying the Non-recurrent Laryngeal Nerve: Preventing a Major Risk of Morbidity During Thyroidectomy

    PubMed Central

    Mahmodlou, Rahim; Aghasi, Mohammad Reza; Sepehrvand, Nariman

    2013-01-01

    Non-recurrent laryngeal nerve (NRLN) is a rare anomaly which is reported in 0.3%-0.8% of people on the right side and in 0.004% (extremely rare) on the left side. Damage to this nerve during the surgical procedure may lead to severe iatrogenic morbidity and should therefore be prevented from being damaged. The best way to avoid this damage to the nerve is to identify the nerve with a systematic diligent dissection based on usual anatomical landmarks and awareness about the possibility of their existence. Hereby, we are going to present a 26-year-old woman, a case of NRLN on the right side which was identified during thyroidectomy. The nervous anomaly was accompanied with vascular abnormality which was confirmed by computerized tomography (CT) angiography, post-operatively. PMID:23543847

  13. Nerve Transfers for the Restoration of Wrist, Finger, and Thumb Extension After High Radial Nerve Injury.

    PubMed

    Pet, Mitchell A; Lipira, Angelo B; Ko, Jason H

    2016-05-01

    High radial nerve injury is a common pattern of peripheral nerve injury most often associated with orthopedic trauma. Nerve transfers to the wrist and finger extensors, often from the median nerve, offer several advantages when compared to nerve repair or grafting and tendon transfer. In this article, we discuss the forearm anatomy pertinent to performing these nerve transfers and review the literature surrounding nerve transfers for wrist, finger, and thumb extension. A suggested algorithm for management of acute traumatic high radial nerve palsy is offered, and our preferred surgical technique for treatment of high radial nerve palsy is provided. PMID:27094891

  14. Evaluation of Sensorimotor Nerve Damage in Patients with Maxillofacial Trauma; a Single Center Experience

    PubMed Central

    Poorian, Behnaz; Bemanali, Mehdi; Chavoshinejad, Mohammad

    2016-01-01

    Objective: To evaluate sensorimotor nerve damage in patients with maxillofacial trauma referring to Taleghani hospital, Tehran, Iran Methods: This cross-sectional study was conducted during a 2-year period from 2014 to 2012 in Taleghani hospital of Tehran. We included a total number of 495 patients with maxillofacial trauma referring to our center during the study period. The demographic information, type of fracture, location of fracture and nerve injuries were assessed and recorded in each patients. The frequency of sensorimotor injuries in these patients was recorded. Data are presented as frequencies and proportions as appropriate. Results: Overall we included 495 patients with maxillofacial trauma with mean age of 31.5±13.8 years. There were 430 (86.9% men and in 65 (13.1%) women among the patients. The frequency of nerve injuries was 67.7% (336 patients). The mean age of the patients with nerve injuries was 33.4 ± 3.7 years. Marginal mandibular branch of facial nerve was the most common involved nerve being involved in 5 patients (1%). Regarding trigeminal nerve, the inferior alveolar branch (194 patients 39.1%) was the most common involved branch followed by infraorbital branch (135 patients 27.2%). Mandibular fracture was the most common injured bone being reported in 376 patient (75.9%) patients followed by zygomatic bone in 100 patient (20%). Conclusion: The most frequent fracture occurred in mandible followed by zygoma and the most injured nerve was inferior alveolar nerve followed by infraorbital branch of trigeminal nerve. In facial nerve the marginal branch was the most involved nerve. The frequency of nerve injury and the male to female ratio was higher in the current study compared to the literature. PMID:27331065

  15. Tissue specificity in rat peripheral nerve regeneration through combined skeletal muscle and vein conduit grafts.

    PubMed

    Tos, P; Battiston, B; Geuna, S; Giacobini-Robecchi, M G; Hill, M A; Lanzetta, M; Owen, E R

    2000-01-01

    Diffusible factors from the distal stumps of transected peripheral nerves exert a neurotropic effect on regenerating nerves in vivo (specificity). This morphological study was designed to investigate the existence of tissue specificity in peripheral nerve fiber regeneration through a graft of vein filled with fresh skeletal muscle. This tubulization technique demonstrated experimental and clinical results similar to those obtained with traditional autologous nerve grafts. Specifically, we used Y-shaped grafts to assess the orientation pattern of regenerating axons in the distal stump tissue. Animal models were divided into four experimental groups. The proximal part of the Y-shaped conduit was sutured to a severed tibial nerve in all experiments. The two distal stumps were sutured to different targets: group A to two intact nerves (tibial and peroneal), group B to an intact nerve and an unvascularized tendon, group C to an intact nerve and a vascularized tendon, and group D to a nerve graft and an unvascularized tendon. Morphological evaluation by light and electron microscopy was conducted in the distal forks of the Y-shaped tube. Data showed that almost all regenerating nerve fibers spontaneously oriented towards the nerve tissue (attached or not to the peripheral innervation field), showing a good morphological pattern of regeneration in both the early and late phases of regeneration. When the distal choice was represented by a tendon (vascularized or not), very few nerve fibers were detected in the corresponding distal fork of the Y-shaped graft. These results show that, using the muscle-vein-combined grafting technique, regenerating axons are able to correctly grow and orientate within the basement membranes of the graft guided by the neurotropic lure of the distal nerve stump. PMID:10702739

  16. Effects of Hemodiafiltration and High Flux Hemodialysis on Nerve Excitability in End-Stage Kidney Disease

    PubMed Central

    Arnold, Ria; Pussell, Bruce A.; Pianta, Timothy J.; Grinius, Virginija; Lin, Cindy S-Y.; Kiernan, Matthew C.; Howells, James; Jardine, Meg J.; Krishnan, Arun V.

    2013-01-01

    Objectives Peripheral neuropathy is the most common neurological complication in end-stage kidney disease. While high flux hemodialysis (HFHD) and hemodiafiltration (HDF) have become the preferred options for extracorporeal dialysis therapy, the effects of these treatments on nerve excitability have not yet been examined. Methods An observational proof-of-concept study of nerve excitability and neuropathy was undertaken in an incident dialysis population (n = 17) receiving either HFHD or HDF. Nerve excitability techniques were utilised to assess nerve ion channel function and membrane potential, in conjunction with clinical assessment and standard nerve conduction studies. A mathematical model of axonal excitability was used to investigate the underlying basis of the observed changes. Nerve excitability was recorded from the median nerve, before, during and after a single dialysis session and correlated with corresponding biochemical markers. Differences in nerve excitability were compared to normal controls with longitudinal follow-up over an 18 month period. Results Nerve excitability was performed in patient cohorts treated with either HFHD (n = 9) or online HDF (n = 8), with similar neuropathy status. Nerve excitability measures in HDF-treated patients were significantly closer to normal values compared to HFHD patients obtained over the course of a dialysis session (p<0.05). Longitudinal studies revealed stability of nerve excitability findings, and thus maintenance of improved nerve function in the HDF group. Conclusions This study has provided evidence that nerve excitability in HDF-treated patients is significantly closer to normal values prior to dialysis, across a single dialysis session and at longitudinal follow-up. These findings offer promise for the management of neuropathy in ESKD and should be confirmed in randomised trials. PMID:23536855

  17. Stimulation of the human auditory nerve with optical radiation

    NASA Astrophysics Data System (ADS)

    Fishman, Andrew; Winkler, Piotr; Mierzwinski, Jozef; Beuth, Wojciech; Izzo Matic, Agnella; Siedlecki, Zygmunt; Teudt, Ingo; Maier, Hannes; Richter, Claus-Peter

    2009-02-01

    A novel, spatially selective method to stimulate cranial nerves has been proposed: contact free stimulation with optical radiation. The radiation source is an infrared pulsed laser. The Case Report is the first report ever that shows that optical stimulation of the auditory nerve is possible in the human. The ethical approach to conduct any measurements or tests in humans requires efficacy and safety studies in animals, which have been conducted in gerbils. This report represents the first step in a translational research project to initiate a paradigm shift in neural interfaces. A patient was selected who required surgical removal of a large meningioma angiomatum WHO I by a planned transcochlear approach. Prior to cochlear ablation by drilling and subsequent tumor resection, the cochlear nerve was stimulated with a pulsed infrared laser at low radiation energies. Stimulation with optical radiation evoked compound action potentials from the human auditory nerve. Stimulation of the auditory nerve with infrared laser pulses is possible in the human inner ear. The finding is an important step for translating results from animal experiments to human and furthers the development of a novel interface that uses optical radiation to stimulate neurons. Additional measurements are required to optimize the stimulation parameters.

  18. [Research Progress in Seeding Cells of Peripheral Nerve].

    PubMed

    Shi, Gengqiang; Hu, Yi

    2015-04-01

    Seeding cells play an important role in the peripheral nerve damage repair. Seeding cells studied conse- quently in peripheral nerve are Schwann cells, bone marrow mesenchymal stem cells and neural stem cells. Schwann cells, the first seeding cells, are various unique glial cells in the peripheral nervous system, which can form the myelin sheath for insulation and package of the neuron projecting axons in the peripheral nervous system so that the conduction velocity of the nerve signal was accelerated. It can be proved that Schwann cells played an important role in the maintenance of peripheral nerve function and in the regeneration process after peripheral nerve injury. The second, bone marrow mesenchymal stem cells are the various mesenchymal stem cells mainly exist in the systemic connective tissues and organs. These functional stem cells are often studied at present, and it has been found that they have exuberant proliferation and differentiation potentials. Neural stem cells, mentioned the third in sequence, are the kind of pluripotent cells with multi-directional differentiation, which could conduct the self-renewal function, and generate and differentiate neurons, astrocytes and oligodendrocytes through asymmetric cell division. These three types of seed cells are discussed in this paper. PMID:26211274

  19. Nerve Disease and Bladder Control

    MedlinePlus

    ... Research Training & Career Development Grant programs for students, postdocs, and faculty Research at NIDDK Labs, faculty, and ... KB) Alternate Language URL Nerve Disease and Bladder Control Page Content On this page: What bladder control ...

  20. Imaging of the facial nerve.

    PubMed

    Veillona, F; Ramos-Taboada, L; Abu-Eid, M; Charpiot, A; Riehm, S

    2010-05-01

    The facial nerve is responsible for the motor innervation of the face. It has a visceral motor function (lacrimal, submandibular, sublingual glands and secretion of the nose); it conveys a great part of the taste fibers, participates to the general sensory of the auricle (skin of the concha) and the wall of the external auditory meatus. The facial mimic, production of tears, nasal flow and salivation all depend on the facial nerve. In order to image the facial nerve it is mandatory to be knowledgeable about its normal anatomy including the course of its efferent and afferent fibers and about relevant technical considerations regarding CT and MR to be able to achieve high-resolution images of the nerve. PMID:20456888

  1. Experimental Research on Differentiation-Inducing Growth of Nerve Lateral Bud by HUC-MSCs Chitosan Composite Conduit.

    PubMed

    Xiao, Qiang; Zhang, Xuepu; Wu, Yuexin

    2015-11-01

    This study is intended to explore the role of human umbilical-cord-derived mesenchymal stem cells (HUC-MSCs) in nerve end-to-side anastomosis, as well as in the induction and promotion of growth of nerve lateral bud. The chitosan nerve conduit was prepared based on the biological characteristics of chitosan, and the nerve conduit was filled with HUC-MSCs, and was used to bridge the nerve end-to-side anastomotic stoma. The experimental animals were randomly assigned into three groups (10 in each group), and the nerve end-to-side anastomosis was conducted: (1) group A (control group): traditional tibial nerve-common peroneal nerve end-to-side anastomosis; (2) group B (experimental group 1): tibial nerve-common peroneal nerve end-to-side anastomotic stoma bridged with chitosan nerve conduit; (3) group C (experimental group 2): tibial nerve-common peroneal nerve end-to-side anastomotic stoma bridged by chitosan nerve conduit filled with HUC-MSCs. General morphological observation, nerve electrophysiology, and anti-S-100 immunohistochemistry were performed. All experimental animals survived, and no infections were found at operative incisions. The nerve continuity was in good condition through visual observation when sampling, which is mild adhesion to the surrounding tissue and easy to be separated. 12 W HUC-MSCs chitosan composite nerve conduits were degraded completely after operation. Electrophysiological test showed that the nerve conduction velocity (NCV) in group C was significantly higher than that in group A or group B (p < 0.01). There were no significant differences between NCVs of group A and group B. Toluidine blue staining and transmission electron microscope showed that the number of the medullated fibers and the myelin sheath thickness in group C were larger than those in group A or B. There were no significant differences between the numbers of the medullated fibers and between the myelin sheath thicknesses of groups A and B. By means of anti-S-100

  2. Finite difference discretisation of a model for biological nerve conduction

    NASA Astrophysics Data System (ADS)

    Aderogba, A. A.; Chapwanya, M.; Jejeniwa, O. A.

    2016-06-01

    A nonstandard finite difference method is proposed for the discretisation of the semilinear FitzHugh-Nagumo reaction diffusion equation. The equation has been useful in describing, for example, population models, biological models, heat and mass transfer models, and many other applications. The proposed approach involves splitting the equation into the space independent and the time independent sub equation. Numerical simulations for the full equation are presented.

  3. Corneal nerve architecture in a donor with unilateral epithelial basement membrane dystrophy

    PubMed Central

    He, Jiucheng; Bazan, Haydee E.P.

    2014-01-01

    Background: Epithelial basement membrane dystrophy (EBMD) is by far the most common corneal dystrophy. In this study, we used a newly developed method of immunofluorescence staining and imaging to study the entire corneal nerve architecture of a donor with unilateral EBMD. Method: Two fresh eyes from a 56-year-old male donor were obtained; the right eye of the donor was diagnosed with EBMD and the left was normal. After slit lamp examination, the corneas were immunostained with anti-β-tubulin III antibody. Images were recorded by a fluorescent microscope equipped with a Photometrics digital camera using MetaVue imaginig software. Results: The left cornea appeared normal as observed by slit lamp and stereomicroscope, but the right eye had numerous irregular geographic patches in the basement membrane. Immunofluorescence showed no difference in the stromal nerve distribution between the two eyes, but there were areas without innervations in the EBMD cornea. Subbasal nerve fibers also showed tortuous courses and fewer divisions. There was a significant decrease in the density of subbasal nerve fibers and the number of terminals in the right eye. Conclusion: We show for the first time detailed nerve architecture in an EBMD cornea. Our results suggest that EBMD-induced abnormalities of basement membrane altered epithelial nerve architecture and decreased nerve density, contributing to the pathology of the disease. PMID:23306594

  4. MICROCHIP ENZYMATIC ASSAY OF ORGANOPHOSPHATE NERVE AGENTS. (R830900)

    EPA Science Inventory

    An on-chip enzymatic assay for screening organophosphate (OP) nerve agents, based on a pre-column reaction of organophosphorus hydrolase (OPH), electrophoretic separation of the phosphonic acid products, and their contactless-conductivity detection, is described. Factors affec...

  5. Hemangioma of the Facial Nerve

    PubMed Central

    Balkany, Thomas; Fradis, Milo; Jafek, Bruce W.; Rucker, Nolan C.

    1991-01-01

    Hemangioma of the facial nerve may occur more frequently than previously recognized. This benign vascular tumor most often arises in the area of the geniculate ganglion, although the reason for this site of predilection is not known. Using silicon injection and cross-sectional vessel counts, we recently demonstrated the presence of a geniculate capillary plexus (GCP) in the cat. The present study was designed to identify a similar GCP in man, if present, and to relate if to the site of predilection of hemangioma of the facial nerve. Twenty-five human facial nerves were studied in horizontally sectioned temporal bones. A clinical case of hemangioma arising at the geniculate ganglion is presented. The human geniculate ganglion has a very rich capillary plexus in contrast to the poor intrinsic vasculature of the adjacent labyrinthine segment and nioderate vasculature of the tympanic segment of the facial nerve. We hypothesize that the GCP is the origin of most hemangiomas of facial nerve. The anatomic distinctness of the geniculate gangion and GCP from the facial nerve may allow removal of these tumors with preservation of motor function in certain cases. ImagesFigure 1Figure 2Figure 3 PMID:17170823

  6. [Peripheral Nerve Injuries in Sports].

    PubMed

    Tettenborn, B; Mehnert, S; Reuter, I

    2016-09-01

    Peripheral nerve injuries due to sports are relatively rare but the exact incidence is not known due to a lack of epidemiological studies. Particular sports activities tend to cause certain peripheral nerve injuries including direct acute compression or stretching, repetitive compression and stretching over time, or another mechanism such as ischemia or laceration. These nerve lesions may be severe and delay or preclude the athlete's return to sports, especially in cases with delayed diagnosis. Repetitive and vigorous use or overuse makes the athlete vulnerable to disorders of the peripheral nerves, and sports equipment may cause compression of the nerves. Depending on etiology, the treatment is primarily conservative and includes physiotherapy, modification of movements and sports equipment, shoe inserts, splinting, antiphlogistic drugs, sometimes local administration of glucocorticoids or, lately, the use of extracorporeal shock waves. Most often, cessation of the offending physical activity is necessary. Surgery is only indicated in the rare cases of direct traumatic nerve injury or when symptoms are refractory to conservative therapy. Prognosis mainly depends on the etiology and the available options of modifying measures.This article is based on the publications "Reuter I, Mehnert S. Engpasssyndrome peripherer Nerven bei Sportlern". Akt Neurol 2012;39:292-308 and Sportverl Sportschad 2013;27:130-146. PMID:27607069

  7. Abnormal Activity Detection Using Pyroelectric Infrared Sensors

    PubMed Central

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua

    2016-01-01

    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process. PMID:27271632

  8. Abnormal Activity Detection Using Pyroelectric Infrared Sensors.

    PubMed

    Luo, Xiaomu; Tan, Huoyuan; Guan, Qiuju; Liu, Tong; Zhuo, Hankz Hankui; Shen, Baihua

    2016-01-01

    Healthy aging is one of the most important social issues. In this paper, we propose a method for abnormal activity detection without any manual labeling of the training samples. By leveraging the Field of View (FOV) modulation, the spatio-temporal characteristic of human activity is encoded into low-dimension data stream generated by the ceiling-mounted Pyroelectric Infrared (PIR) sensors. The similarity between normal training samples are measured based on Kullback-Leibler (KL) divergence of each pair of them. The natural clustering of normal activities is discovered through a self-tuning spectral clustering algorithm with unsupervised model selection on the eigenvectors of a modified similarity matrix. Hidden Markov Models (HMMs) are employed to model each cluster of normal activities and form feature vectors. One-Class Support Vector Machines (OSVMs) are used to profile the normal activities and detect abnormal activities. To validate the efficacy of our method, we conducted experiments in real indoor environments. The encouraging results show that our method is able to detect abnormal activities given only the normal training samples, which aims to avoid the laborious and inconsistent data labeling process. PMID:27271632

  9. From the brachial plexus to the hand, multiple connections between the median and ulnar nerves may serve as bypass routes for nerve fibres.

    PubMed

    Yang, H; Gil, Y; Kim, S; Bang, J; Choi, H; Lee, H Y

    2016-07-01

    Axons from the median and ulnar nerves can pass to each other through aberrant connections between them. Multiple interconnections between the nerves may provide a detour route for nerve fibres going to the hand. We investigated the incidence of variations and the associations between them in 90 cadaveric upper limbs. In 91% of upper limbs, one to five variations were found, with several statistically significant associations. The contribution of the C8 nerve to the lateral cord was positively associated with an accessory contribution of the lateral cord to the ulnar nerve. The latter variation showed positive association with the occurrence of any of the variations in the hand itself. Ulnar innervation of the superficial head of the flexor pollicis brevis was positively associated with the Riche-Cannieu communication. The co-existence of the variations and their associations may be the explanation for unusual clinical findings related to median and ulnar conduction, which appear contrary to anatomical knowledge. PMID:26763269

  10. Evolution of peripheral nerve function in humans: novel insights from motor nerve excitability

    PubMed Central

    Farrar, Michelle A; Park, Susanna B; Lin, Cindy S-Y; Kiernan, Matthew C

    2013-01-01

    While substantial alterations in myelination and axonal growth have been described during maturation, their interactions with the configuration and activity of axonal membrane ion channels to achieve impulse conduction have not been fully elucidated. The present study utilized axonal excitability techniques to compare the changes in nerve function across healthy infants, children, adolescents and adults. Multiple excitability indices (stimulus–response curve, strength–duration time constant, threshold electrotonus, current–threshold relationship and recovery cycle) combined with conventional neurophysiological measures were investigated in 57 subjects (22 males, 35 females; age range 0.46–24 years), stimulating the median motor nerve at the wrist. Maturational changes in conduction velocity were paralleled by significant alterations in multiple excitability parameters, similarly reaching steady values in adolescence. Maturation was accompanied by reductions in threshold (P < 0.005) and rheobase (P= 0.001); depolarizing and hyperpolarizing electrotonus progressively reduced (P < 0.001), or ‘fanned-in’; resting current–threshold slope increased (P < 0.0001); accommodation to depolarizing currents prolonged (P < 0.0001); while greater threshold changes in refractoriness (P= 0.001) and subexcitability (P < 0.01) emerged. Taken together, the present findings suggest that passive membrane conductances and the activity of K+ conductances decrease with formation of the axo-glial junction and myelination. In turn, these functional alterations serve to enhance the efficiency and speed of impulse conduction concurrent with the acquisition of motor skills during childhood, and provide unique insight into the evolution of postnatal human peripheral nerve function. Significantly, these findings bring the dynamics of axonal development to the clinical domain and serve to further illuminate pathophysiological mechanisms that occur during development. PMID:23006483

  11. Postherniotomy dysejaculation: successful treatment with mesh removal and nerve transection.

    PubMed

    Aasvang, E K; Kehlet, H

    2008-12-01

    Dysejaculation following groin hernia repair can occur in about 1-2% of patients, resulting in impairment of sexual function. We report a case of chronic postherniotomy dysejaculation treated with transection of the ilioinguinal and iliohypogastric nerves and decompression of vas deferens that was embedded and twisted in shrunken mesh and scar tissue. At three months follow-up, there was reduced overall pain and no dysejaculation, and quantitative sensory testing showed reversal of sensory abnormalities, except for sensory loss, compared with preoperative values. PMID:18437287

  12. Malignant epithelioid schwannoma affecting the trigeminal nerve of a dog.

    PubMed

    Pumarola, M; Añor, S; Borràs, D; Ferrer, I

    1996-07-01

    A malignant epithelioid schwannoma was diagnosed affecting the trigeminal nerve of an 11-year-old dog. Neurologic abnormalities included an altered mental status, ataxia, left head tilt, postural reaction deficits of all four limbs, a pronounced left masticatory muscle atrophy, and absent left facial sensation. Histologically, a densely arranged epithelioid population with a very high mitotic index was surrounded by a spindle-shaped cell proliferation characteristic of schwannomas. Both cell populations stained positively for vimentin, but only spindle cells were occassionally positive for S-100 protein. The histologic and immunohistochemical features of this tumor were consistent with those found in human epithelioid schwannomas. PMID:8817843

  13. Study of synergistic role of allogenic skin-derived precursor differentiated Schwann cells and heregulin-1β in nerve regeneration with an acellular nerve allograft.

    PubMed

    Wang, Houlei; Wu, Jingping; Zhang, Xinchao; Ding, Lei; Zeng, Qingmin

    2016-07-01

    Development of tissue structure and three-dimensional microenvironment is crucial for regeneration of axons in the peripheral nerve repair. In this study we aimed to evaluate the efficacy of nerve regeneration by using an acellular nerve allograft (ANA) injected with allogenic skin-derived precursor differentiated Schwann cells (SKP-SCs) and heregulin-1β. Skin-derived precursor cells (SKPs) were generated from dermis of newborn (postnatal day 2) Wistar rats. In a rat model, nerve regeneration was determined across a 15 mm lesion in the sciatic nerve by using an ANA injected with allogenic SKP-SCs and heregulin-1β. The electrophysiological analysis, histological examination and electron microscopy were involved in this study. Cultured SKPs expressed nestin and fibronectin, and differentiated into cells with phenotype of SCs that presented characteristic markers of p75NGFR and S100-β. Implantation of SKP-SCs into the rat models by using ANA and allogenic skin-derived precursor differentiated Schwann cells (SKP-SCs) increases sciatic nerve functional index (SFI), peak amplitudes, nerve conduction velocities, number of myelinated fibers within the graft, while reduces incubation period, sciatic nerve injury-induced weight and contractions loss. Using ANA injected with SKP-SCs combined with heregulin-1β greatly promote peripheral nerve repair in a rat model. Our results suggest that SKP-SCs transplantation with heregulin-1β represents a powerful therapeutic approach, and facilitates the efficacy of acellular nerve allograft in peripheral nerve injury, though the detailed mechanism remains to be elucidated. PMID:27063890

  14. From nerve net to nerve ring, nerve cord and brain--evolution of the nervous system.

    PubMed

    Arendt, Detlev; Tosches, Maria Antonietta; Marlow, Heather

    2016-01-01

    The puzzle of how complex nervous systems emerged remains unsolved. Comparative studies of neurodevelopment in cnidarians and bilaterians suggest that this process began with distinct integration centres that evolved on opposite ends of an initial nerve net. The 'apical nervous system' controlled general body physiology, and the 'blastoporal nervous system' coordinated feeding movements and locomotion. We propose that expansion, integration and fusion of these centres gave rise to the bilaterian nerve cord and brain. PMID:26675821

  15. Malignant Peripheral Nerve Sheath Tumor -A Rare Malignancy in Mandible

    PubMed Central

    Majumdar, Sumit; Kotina, Sreekanth; Uppala, Divya; Kumar, Singam Praveen

    2016-01-01

    Malignant Peripheral Nerve Sheath Tumor (MPNST) is biologically an aggressive tumor that is usually found in the extremities, trunk and infrequently found in the head and neck area particularly in the jaws, arising from the cells allied with nerve sheath. Mandibular MPNST may either arise from a preexisting neurofibroma or develop de novo. Because of the greater variability from case to case in overall appearance both clinically and histologically, a case of MPNST of the mandible in a 25-year-old female patient is reported. The lesion was excised and immunohistological studies (S-100 & Neuron specific enolase) were conducted to confirm the neural origin. PMID:27504425

  16. Malignant Peripheral Nerve Sheath Tumor -A Rare Malignancy in Mandible.

    PubMed

    Majumdar, Sumit; Kotina, Sreekanth; Mahesh, Nirujogi; Uppala, Divya; Kumar, Singam Praveen

    2016-06-01

    Malignant Peripheral Nerve Sheath Tumor (MPNST) is biologically an aggressive tumor that is usually found in the extremities, trunk and infrequently found in the head and neck area particularly in the jaws, arising from the cells allied with nerve sheath. Mandibular MPNST may either arise from a preexisting neurofibroma or develop de novo. Because of the greater variability from case to case in overall appearance both clinically and histologically, a case of MPNST of the mandible in a 25-year-old female patient is reported. The lesion was excised and immunohistological studies (S-100 & Neuron specific enolase) were conducted to confirm the neural origin. PMID:27504425

  17. Diabetic neuropathy increases stimulation threshold during popliteal sciatic nerve block†

    PubMed Central

    Heschl, S.; Hallmann, B.; Zilke, T.; Gemes, G.; Schoerghuber, M.; Auer-Grumbach, M.; Quehenberger, F.; Lirk, P.; Hogan, Q.; Rigaud, M.

    2016-01-01

    Background Peripheral nerve stimulation is commonly used for nerve localization in regional anaesthesia, but recommended stimulation currents of 0.3–0.5 mA do not reliably produce motor activity in the absence of intraneural needle placement. As this may be particularly true in patients with diabetic neuropathy, we examined the stimulation threshold in patients with and without diabetes. Methods Preoperative evaluation included a neurological exam and electroneurography. During ultrasound-guided popliteal sciatic nerve block, we measured the current required to produce motor activity for the tibial and common peroneal nerve in diabetic and non-diabetic patients. Proximity to the nerve was evaluated post-hoc using ultrasound imaging. Results Average stimulation currents did not differ between diabetic (n=55) and non-diabetic patients (n=52). Although the planned number of patients was not reached, the power goal for the mean stimulation current was met. Subjects with diminished pressure perception showed increased thresholds for the common peroneal nerve (median 1.30 vs. 0.57 mA in subjects with normal perception, P=0.042), as did subjects with decreased pain sensation (1.60 vs. 0.50 mA in subjects with normal sensation, P=0.038). Slowed ulnar nerve conduction velocity predicted elevated mean stimulation current (r=−0.35, P=0.002). Finally, 15 diabetic patients required more than 0.5 mA to evoke a motor response, despite intraneural needle placement (n=4), or required currents ≥2 mA despite needle-nerve contact, vs three such patients (1 intraneural, 2 with ≥2 mA) among non-diabetic patients (P=0.003). Conclusions These findings suggest that stimulation thresholds of 0.3–0.5 mA may not reliably determine close needle-nerve contact during popliteal sciatic nerve block, particularly in patients with diabetic neuropathy. Clinical trial registration NCT01488474 PMID:26994231

  18. Laminin-based Nanomaterials for Peripheral Nerve Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Neal, Rebekah Anne

    supported by nerve conduction studies and electromyography which described impulse transmission, muscle stimulation, and foot twitch through the region of regeneration. These studies provide a firm foundation for the use of natural-synthetic blend electrospun nanofibers to enhance existing hollow nerve guidance conduits. The similarity in surgical technique and obvious benefit to the patient should lead to rapid translation into clinical application.

  19. Identification of Changes in Gene expression of rats after Sensory and Motor Nerves Injury

    PubMed Central

    Wang, Yu; Guo, Zhi-Yuan; Sun, Xun; Lu, Shi-bi; Xu, Wen-Jing; Zhao, Qing; Peng, Jiang

    2016-01-01

    Wallerian degeneration is a sequence of events in the distal stump of axotomized nerves. Despite large numbers of researches concentrating on WD, the biological mechanism still remains unclear. Hence we constructed a rat model with both motor and sensory nerves injury and then conducted a RNA-seq analysis. Here the rats were divided into the 4 following groups: normal motor nerves (NMN), injured motor nerves (IMN), normal sensory nerves (NSN) and injured sensory nerves (ISN). The transcriptomes of rats were sequenced by the Illumina HiSeq. The differentially expressed genes (DEGs) of 4 combinations including NMN vs. IMN, NSN vs. ISN, NMN vs. NSN and IMN vs. ISN were identified respectively. For the above 4 combinations, we identified 1666, 1514, 95 and 17 DEGs. We found that NMN vs. IMN shared the most common genes with NSN vs. ISN indicating common mechanisms between motor nerves injury and sensory nerves injury. At last, we performed an enrichment analysis and observed that the DEGs of NMN vs IMN and NSN vs. ISN were significantly associated with binding and activity, immune response, biosynthesis, metabolism and development. We hope our study may shed light on the molecular mechanisms of nerves degeneration and regeneration during WD. PMID:27253193

  20. Improved peripheral nerve regeneration in streptozotocin-induced diabetic rats by oral lumbrokinase.

    PubMed

    Lee, Han-Chung; Hsu, Yuan-Man; Tsai, Chin-Chuan; Ke, Cherng-Jyh; Yao, Chun-Hsu; Chen, Yueh-Sheng

    2015-01-01

    We assessed the therapeutic effects of lumbrokinase, a group of enzymes extracted from the earthworm, on peripheral-nerve regeneration using well-defined sciatic nerve lesion paradigms in diabetic rats induced by the injection of streptozotocin (STZ). We found that lumbrokinase therapy could improve the rats' circulatory blood flow and promote the regeneration of axons in a silicone rubber conduit after nerve transection. Lumbrokinase treatment could also improve the neuromuscular functions with better nerve conductive performances. Immunohistochemical staining showed that lumbrokinase could dramatically promote calcitonin gene-related peptide (CGRP) expression in the lamina I-II regions in the dorsal horn ipsilateral to the injury and cause a marked increase in the number of macrophages recruited within the distal nerve stumps. In addition, the lumbrokinase could stimulate the secretion of interleukin-1 (IL-1), nerve growth factor (NGF), platelet-derived growth factor (PDGF), and transforming growth factor-β (TGF-β) in dissected diabetic sciatic nerve segments. In conclusion, the administration of lumbrokinase after nerve repair surgery in diabetic rats was found to have remarkable effects on promoting peripheral nerve regeneration and functional recovery. PMID:25787300

  1. Identification of Changes in Gene expression of rats after Sensory and Motor Nerves Injury.

    PubMed

    Wang, Yu; Guo, Zhi-Yuan; Sun, Xun; Lu, Shi-Bi; Xu, Wen-Jing; Zhao, Qing; Peng, Jiang

    2016-01-01

    Wallerian degeneration is a sequence of events in the distal stump of axotomized nerves. Despite large numbers of researches concentrating on WD, the biological mechanism still remains unclear. Hence we constructed a rat model with both motor and sensory nerves injury and then conducted a RNA-seq analysis. Here the rats were divided into the 4 following groups: normal motor nerves (NMN), injured motor nerves (IMN), normal sensory nerves (NSN) and injured sensory nerves (ISN). The transcriptomes of rats were sequenced by the Illumina HiSeq. The differentially expressed genes (DEGs) of 4 combinations including NMN vs. IMN, NSN vs. ISN, NMN vs. NSN and IMN vs. ISN were identified respectively. For the above 4 combinations, we identified 1666, 1514, 95 and 17 DEGs. We found that NMN vs. IMN shared the most common genes with NSN vs. ISN indicating common mechanisms between motor nerves injury and sensory nerves injury. At last, we performed an enrichment analysis and observed that the DEGs of NMN vs IMN and NSN vs. ISN were significantly associated with binding and activity, immune response, biosynthesis, metabolism and development. We hope our study may shed light on the molecular mechanisms of nerves degeneration and regeneration during WD. PMID:27253193

  2. Polylactic-co-glycolic acid microspheres containing three neurotrophic factors promote sciatic nerve repair after injury

    PubMed Central

    Zhao, Qun; Li, Zhi-yue; Zhang, Ze-peng; Mo, Zhou-yun; Chen, Shi-jie; Xiang, Si-yu; Zhang, Qing-shan; Xue, Min

    2015-01-01

    A variety of neurotrophic factors have been shown to repair the damaged peripheral nerve. However, in clinical practice, nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor are all peptides or proteins that may be rapidly deactivated at the focal injury site; their local effective concentration time following a single medication cannot meet the required time for spinal axons to regenerate and cross the glial scar. In this study, we produced polymer sustained-release microspheres based on the polylactic-co-glycolic acid copolymer; the microspheres at 300-μm diameter contained nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor. Six microspheres were longitudinally implanted into the sciatic nerve at the anastomosis site, serving as the experimental group; while the sciatic nerve in the control group was subjected to the end-to-end anastomosis using 10/0 suture thread. At 6 weeks after implantation, the lower limb activity, weight of triceps surae muscle, sciatic nerve conduction velocity and the maximum amplitude were obviously better in the experimental group than in the control group. Compared with the control group, more regenerating nerve fibers were observed and distributed in a dense and ordered manner with thicker myelin sheaths in the experimental group. More angiogenesis was also visible. Experimental findings indicate that polylactic-co-glycolic acid composite microspheres containing nerve growth factor, neurotrophin-3 and brain-derived neurotrophic factor can promote the restoration of sciatic nerve in rats after injury. PMID:26604912

  3. Molecular abnormalities in Ewing's sarcoma.

    PubMed

    Burchill, Susan Ann

    2008-10-01

    Ewing's sarcoma is one of the few solid tumors for which the underlying molecular genetic abnormality has been described: rearrangement of the EWS gene on chromosome 22q12 with an ETS gene family member. These translocations define the Ewing's sarcoma family of tumors (ESFT) and provide a valuable tool for their accurate and unequivocal diagnosis. They also represent ideal targets for the development of tumor-specific therapeutics. Although secondary abnormalities occur in over 80% of primary ESFT the clinical utility of these is currently unclear. However, abnormalities in genes that regulate the G(1)/S checkpoint are frequently described and may be important in predicting outcome and response. Increased understanding of the molecular events that arise in ESFT and their role in the development and maintenance of the malignant phenotype will inform the improved stratification of patients for therapy and identify targets and pathways for the design of more effective cancer therapeutics. PMID:18925858

  4. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  5. Cranial Nerves IX, X, XI, and XII

    PubMed Central

    Sanders, Richard D.

    2010-01-01

    This article concludes the series on cranial nerves, with review of the final four (IX–XII). To summarize briefly, the most important and common syndrome caused by a disorder of the glossopharyngeal nerve (craniel nerve IX) is glossopharyngeal neuralgia. Also, swallowing function occasionally is compromised in a rare but disabling form of tardive dyskinesia called tardive dystonia, because the upper motor portion of the glossopharyngel nerve projects to the basal ganglia and can be affected by lesions in the basal ganglia. Vagus nerve funtion (craniel nerve X) can be compromised in schizophrenia, bulimia, obesity, and major depression. A cervical lesion to the nerve roots of the spinal accessory nerve (craniel nerve XI) can cause a cervical dystonia, which sometimes is misdiagnosed as a dyskinesia related to neuroleptic use. Finally, unilateral hypoglossal (craniel nerve XII) nerve palsy is one of the most common mononeuropathies caused by brain metastases. Supranuclear lesions of cranial nerve XII are involved in pseudobulbar palsy and ALS, and lower motor neuron lesions of cranial nerve XII can also be present in bulbar palsy and in ALS patients who also have lower motor neuron involvement. This article reviews these and other syndromes related to cranial nerves IX through XII that might be seen by psychiatry. PMID:20532157

  6. What Protects Certain Nerves from Stretch Injury?

    PubMed

    Schraut, Nicholas B; Walton, Sharon; Bou Monsef, Jad; Shott, Susan; Serici, Anthony; Soulii, Lioubov; Amirouche, Farid; Gonzalez, Mark H; Kerns, James M

    2016-01-01

    The human tibial nerves is less prone to injury following joint arthroplasty compared with the peroneal nerves. Besides the anatomical distribution, other features may confer protection from stretch injury. We therefore examined the size, shape and connective tissue distribution for the two nerves. The tibial and peroneal nerves from each side of nine fresh human cadavers we reharvested mid-thigh. Proximal segments manually stretched 20%-25% were fixed in aldehyde, while the adjacent distal segments were fixed in their natural length. Paraffin sections stained by Masson's trichrome method for connective tissue were examined by light microscopy. Tibial nerves had 2X more fascicles compared with the peroneal, but the axonal content appeared similar. Analysis showed that neither nerve had a significant reduction in cross sectional area of the fascicles following stretch. However, fascicles from stretched tibial nerves become significantly more oval compared with those from unstretched controls and peroneal nerves. Tibial nerves had a greater proportion that was extrafascicular tissue (50-55%) compared with peroneal nerves (38%-42%). This epineurium was typically adipose tissue. Perineurial thickness in both nerves was directly related to fascicular size. Tibial nerves have several unique histological features associated with size, shape and tissue composition compared with the peroneal nerve. We suggest that more fascicles with their tightly bound perineurium and more robust epineurium afford protection against stretch injury. Mechanical studies should clarify how size and shape contribute to nerve protection and/or neurapraxia. PMID:26529568

  7. Sympathetic sprouting near sensory neurons after nerve injury occurs preferentially on spontaneously active cells and is reduced by early nerve block

    PubMed Central

    Xie, Wenrui; Strong, Judith Ann; Li, Huiqing; Zhang, Jun-Ming

    2006-01-01

    Some chronic pain conditions are maintained or enhanced by sympathetic activity. In animal models of pathological pain, abnormal sprouting of sympathetic fibers around large- and medium-size sensory neurons is observed in dorsal root ganglia (DRG). Large and medium size cells are also more likely to be spontaneously active, suggesting that sprouting may be related to neuron activity. We previously showed that sprouting could be reduced by systemic or locally applied lidocaine. In the complete sciatic nerve transection model in rats, spontaneous activity initially originates in the injury site; later, the DRG become the major source of spontaneous activity. In this study, spontaneous activity reaching the DRG soma was reduced by early nerve blockade (local perfusion of the transected nerve with TTX for the first 7 days after injury). This significantly reduced sympathetic sprouting. Conversely, increasing spontaneous activity by local nerve perfusion with K+ channel blockers increased sprouting. The hyperexcitability and spontaneous activity of DRG neurons observed in this model were also significantly reduced by early nerve blockade. These effects of early nerve blockade on sprouting, excitability, and spontaneous activity were all observed 4 to 5 weeks after the end of early nerve blockade, indicating that the early period of spontaneous activity in the injured nerve is critical for establishing the more long-lasting pathologies observed in the DRG. Individual spontaneously active neurons, labeled with fluorescent dye, were 5–6 times more likely than quiescent cells to be co-localized with sympathetic fibers, suggesting a highly localized correlation of activity and sprouting. PMID:17065247

  8. Abnormal Schwann cell/axon interactions in the Trembler-J mouse

    PubMed Central

    ROBERTSON, A. M.; KING, R. H. M.; MUDDLE, J. R.; THOMAS, P. K.

    1997-01-01

    The Trembler-J (TrJ) mouse has a point mutation in the gene coding for peripheral myelin protein 22 (PMP22). Disturbances in PMP22 are associated with abnormal myelination in a range of inherited peripheral neuropathies both in mice and humans. PMP22 is produced mainly by Schwann cells in the peripheral nervous system where it is localised to compact myelin. The function of PMP22 is unclear but its low abundance (∼5% of total myelin protein) means that it is unlikely to play a structural role. Its inclusion in a recently discovered family of proteins suggests a function in cell proliferation/differentiation and possibly in adhesion. Nerves from TrJ and the allelic Trembler (Tr) mouse are characterised by abnormally thin myelin for the size of the axon and an increased number of Schwann cells. We report ultrastructural evidence of abnormal Schwann cell-axon interactions. Schwann cell nuclei have been found adjacent to the nodes of Ranvier whereas in normal animals they are located near the centre of the internodes. In some fibres the terminal myelin loops faced outwards into the extracellular space instead of turning inwards and terminating on the axon. In severely affected nerves many axons were only partially surrounded by Schwann cell cytoplasm. All these features suggest a failure of Schwann cell–axon recognition or interaction. In addition to abnormalities related to abnormal myelination there was significant axonal loss in the dorsal roots. PMID:9147228

  9. [Emotion Disorders and Abnormal Perspiration].

    PubMed

    Umeda, Satoshi

    2016-08-01

    This article reviewed the relationship between emotional disorders and abnormal perspiration. First, I focused on local brain areas related to emotional processing, and summarized the functions of the emotional network involving those local areas. Functional disorders followed by the damage in the amygdala, orbitofrontal cortex, and insular cortex were reviewed, including related abnormal perspiration. I then addressed the mechanisms of how autonomic disorders influence emotional processing. Finally, possible future directions for integrated understanding of the connection between neural activities and bodily reactions were discussed. PMID:27503817

  10. Ultrasonographic assessment of abnormal pregnancy.

    PubMed

    England, G C

    1998-07-01

    Ultrasonographic imaging is widely used in small animal practice for the diagnosis of pregnancy and the determination of fetal number. Ultrasonography can also be used to monitor abnormal pregnancies, for example, conceptuses that are poorly developed for their gestational age (and therefore are likely to fail), and pregnancies in which there is embryonic resorption or fetal abortion. An ultrasound examination may reveal fetal abnormalities and therefore alter the management of the pregnant bitch or queen prior to parturition. There are, however, a number of ultrasonographic features of normal pregnancies that may mimic disease, and these must be recognized. PMID:9698618

  11. Phosphorylated α-synuclein in skin nerve fibres differentiates Parkinson's disease from multiple system atrophy.

    PubMed

    Zange, Leonora; Noack, Cornelia; Hahn, Katrin; Stenzel, Werner; Lipp, Axel

    2015-08-01

    Deposition of phosphorylated SNCA (also known as α-synuclein) in cutaneous nerve fibres has been shown pre- and post-mortem in Parkinson's disease. Thus far, no pre-mortem studies investigating the presence of phosphorylated SNCA in skin sympathetic nerve fibres of multiple system atrophy, another synucleinopathy, have been conducted. In this in vivo study, skin from the ventral forearm of 10 patients with multiple system atrophy and 10 with Parkinson's disease, together with six control subjects with essential tremor, were examined by immunohistochemistry. Phosphorylated SNCA deposits in skin sympathetic nerve fibres and dermal nerve fibre density were assessed. All patients with Parkinson's disease expressed phosphorylated SNCA in sympathetic skin nerve fibres, correlating with an age-independent denervation of autonomic skin elements. In contrast, no phosphorylated SNCA was found in autonomic skin nerve fibres of patients with multiple system atrophy and essential tremor control subjects. These findings support that phosphorylated SNCA deposition is causative for nerve fibre degeneration in Parkinson's disease. Moreover, pre-mortem investigation of phosphorylated SNCA in cutaneous nerve fibres may prove a relevant and easily conductible diagnostic procedure to differentiate Parkinson's disease from multiple system atrophy. PMID:26017579

  12. Fiber diameter distributions in the chinchilla's ampullary nerves

    NASA Technical Reports Server (NTRS)

    Hoffman, Larry F.; Honrubia, Vicente

    2002-01-01

    A morphometric study of the chinchilla's ampullary nerves was conducted to produce an unbiased accounting of the diameter distribution of their constituent fibers. Diameter analyses were determined from 1 microm plastic-embedded nerve sections taken at a plane immediately proximal to the sensory epithelium. We found these nerves to be composed of 2094+/-573 fibers, having diameters that ranged from 0.5 to 8 microm. The distributions of diameters were positively skewed, where approximately 75% of the fibers were found to have diameters less than 3.5 microm. An analysis of the spatial distribution of diameters within the nerve section revealed that the lateralmost areas of the nerve contained larger fractions of fibers within the smallest diameter quintiles, and the central area harbored greater proportions of the larger diameter quintiles. However, significant fractions of all quintiles were found in all areas. These data were integrated with available data of Fernandez et al. (1998) to produce diameter estimates of calyx, dimorphic, and bouton morphology subpopulations. In view of a general relationship between diameter, innervation locus, and an afferent's physiologic characteristics, these data provide the basis for developing a perspective for the in situ distribution of afferent response dynamics.

  13. Ephaptic transmission between single nerve fibres in the spinal nerve roots of dystrophic mice.

    PubMed

    Rasminsky, M

    1980-08-01

    1. Ephaptic transmission was observed between spontaneously active single nerve fibres in the spinal nerve roots of dystrophic mice. 2. In the five ephaptically interacting pairs of fibres studied in detail, the conduction velocities in the exciting fibres were < 1 m/sec and the conduction velocities in the excited fibres were 2-10 m/sec in the immediate vicinity of the ephapses at 26-28 degrees C. 3. Membrane current analysis suggested that conduction was continuous in the exciting fibres. In some cases conduction away from the ephapse in the excited fibre was saltatory in at least one and possibly in both directions of transmission. 4. It is concluded that in at least some cases the direction of ephaptic transmission is from bare axon to myelinated axon. 5. Transmission time across the ephapses, measured as the interval between peaks of inward membrane current in exciting and excited fibres, was less than or equal to microseconds-240 microseconds. 6. Ephaptic transmission is not necessarily contingent upon the direction of propagation of the impulse in the exciting fibre. 7. Ephaptic transmission between two fibres can remain stable at frequencies of at least 70 Hz. 8. There may be multiple sites of spontaneous ectopic excitation in single dystrophic mouse spinal root axons. An impulse traversing a site of ectopic excitation may incite a subsequent burst of impulses to arise from that site following a delay of more than 100 msec. PMID:6255143

  14. Inhalational exposure to nerve agents.

    PubMed

    Niven, Alexander S; Roop, Stuart A

    2004-03-01

    The respiratory system plays a major role in the pathogenesis of nerve agent toxicity. It is the major route of entry and absorption of nerve agent vapor, and respiratory failure is the most common cause of death follow-ing exposure. Respiratory symptoms are mediated by chemical irritation,muscarinic and nicotinic receptor overstimulation, and central nervous system effects. Recent attacks have demonstrated that most patients with an isolated vapor exposure developed respiratory symptoms almost immediately. Most patients had only mild and transient respiratory effects, and those that did develop significant respiratory compromise did so rapidly. These observations have significant ramifications on triage of patients in a mass-casualty situation, because patients with mild-to-moderate exposure to nerve agent vapor alone do not require decontamination and are less likely to develop progressive symptoms following initial antidote therapy. Limited data do not demonstrate significant long-term respiratory effects following nerve agent exposure and treatment. Provisions for effective respiratory protection against nerve agents is a vital consideration in any emergency preparedness or health care response plan against a chemical attack. PMID:15062227

  15. Rehabilitation of the trigeminal nerve

    PubMed Central

    Iro, Heinrich; Bumm, Klaus; Waldfahrer, Frank

    2005-01-01

    When it comes to restoring impaired neural function by means of surgical reconstruction, sensory nerves have always been in the role of the neglected child when compared with motor nerves. Especially in the head and neck area, with its either sensory, motor or mixed cranial nerves, an impaired sensory function can cause severe medical conditions. When performing surgery in the head and neck area, sustaining neural function must not only be highest priority for motor but also for sensory nerves. In cases with obvious neural damage to sensory nerves, an immediate neural repair, if necessary with neural interposition grafts, is desirable. Also in cases with traumatic trigeminal damage, an immediate neural repair ought to be considered, especially since reconstructive measures at a later time mostly require for interposition grafts. In terms of the trigeminal neuralgia, commonly thought to arise from neurovascular brainstem compression, a pharmaceutical treatment is considered as the state of the art in terms of conservative therapy. A neurovascular decompression of the trigeminal root can be an alternative in some cases when surgical treatment is sought after. Besides the above mentioned therapeutic options, alternative treatments are available. PMID:22073060

  16. Facial-hypoglossal nerve anastomosis using laser nerve welding.

    PubMed

    Hwang, Kun; Kim, Sun Goo; Kim, Dae Joong

    2006-07-01

    The aim of this study is to compare laser nerve welding to microsurgical suturing of hypoglossal-facial nerve anastomosis (HFA), and a result of immediate to delayed repair, and to evaluate the effect of laser nerve welding on HFA for reanimation of facial palsy. The first group of five rats underwent immediate HFA by microsurgical suturing and the second group of five rats by CO2 laser welding. The third group of five rats underwent delayed HFA by microsurgical suturing, and the fourth group of five rats by laser nerve welding. The fifth group of five rats served as controls, with intact hypoglossal and facial nerve. In all rats of the four different treatment groups, cholera toxin B subunit (CTb) was injected in the epineurium distal to the anastomosis site on the postoperative 6th week and in the normal hypoglossal nerve in the five rats of the control group. Neurons labeled CTb of hypoglossal nuclei were positive immunohistochemically, and the numbers were counted. In the immediate HFA groups, CTb-positive neurons were 751 +/- 247 in the laser welding group (n = 5) and 888 +/- 60 in the microsurgical suturing group (n = 5). There was no significant difference (P = 0.117). In the delayed HFA groups, CTb-positive neurons were 749 +/- 54 in the laser welding group (n = 5) and 590 +/- 169 in the microsurgical suturing group (n = 5). The difference was not significant (P = 0.116). There was no significant difference between immediate and delayed anastomosis in the laser welding group (P = 0.600), but there was significance between immediate and delayed anastomosis in the microsurgical suturing group (P = 0.009). Injected CTb in intact hypoglossal neurons (n = 5) were labeled 1,003 +/- 52. No dehiscence in the laser welding site of nerve anastomosis was seen at the time of re-exploration for injection of CTb in all 10 rats. This study shows that the regeneration of anastomosed hypoglossal-facial nerve was affected similarly by laser welding and microsurgical suturing

  17. Pleural abnormalities: thoracic ultrasound to the rescue!

    PubMed Central

    Pathmanathan, Sega; Lakshminarayana, Umesh B.; Avery, Gerard R.; Kastelik, Jack A.; Morjaria, Jaymin B.

    2013-01-01

    Diaphragmatic hernias that are diagnosed in adulthood may be traumatic or congenital in nature. Therefore, respiratory specialists need to be aware of the presentation of patients with these conditions. In this report, we describe a case series of patients with congenital and traumatic diaphragmatic hernias and highlight a varied range of their presentations. Abnormalities were noted in the thorax on the chest radiographs, but it was unclear as to the nature of the anomaly. The findings on thoracic ultrasound conducted by a pulmonologist helped to direct appropriate investigations avoiding unnecessary interventions. Instead of pleural effusions, consolidation or collapse, thoracic computed tomography demonstrated diaphragmatic hernias which were managed either conservatively or by surgery. There is increasing evidence that pulmonary specialists should be trained in thoracic ultrasonography to identify pleural pathology as well as safely conducting pleural-based interventions. PMID:23819018

  18. Pleural abnormalities: thoracic ultrasound to the rescue!

    PubMed

    Aslam, Imran; Pathmanathan, Sega; Lakshminarayana, Umesh B; Avery, Gerard R; Kastelik, Jack A; Morjaria, Jaymin B

    2013-07-01

    Diaphragmatic hernias that are diagnosed in adulthood may be traumatic or congenital in nature. Therefore, respiratory specialists need to be aware of the presentation of patients with these conditions. In this report, we describe a case series of patients with congenital and traumatic diaphragmatic hernias and highlight a varied range of their presentations. Abnormalities were noted in the thorax on the chest radiographs, but it was unclear as to the nature of the anomaly. The findings on thoracic ultrasound conducted by a pulmonologist helped to direct appropriate investigations avoiding unnecessary interventions. Instead of pleural effusions, consolidation or collapse, thoracic computed tomography demonstrated diaphragmatic hernias which were managed either conservatively or by surgery. There is increasing evidence that pulmonary specialists should be trained in thoracic ultrasonography to identify pleural pathology as well as safely conducting pleural-based interventions. PMID:23819018

  19. Do Resin Cements Alter Action Potentials of Isolated Rat Sciatic Nerve?

    PubMed Central

    Ertan, Ahmet Atila; Beriat, Nilufer Celebi; Onur, Mehmet Ali; Tan, Gamze; Cehreli, Murat Cavit

    2011-01-01

    Objectives: The purpose of this study was to explore the effects dual-cure resin cements on nerve conduction. Methods: Panavia F, RelyX ARC, and Variolink II polymerized either by light-emitting diode (LED) or quartz tungsten halogen (QTH) were used in the study (n=10). The conductance of sciatic nerves of 50 rats were measured before and after contact with the specimens for 1 h. Results: The time-dependent change in nerve conductance and the comparison of LED versus QTH showed that differences between groups are significant (P<.05). For both polymerization techniques, pair-wise comparisons of resin cements showed that the nerve conductance between groups is different (P<.05). RelyX ARC elicited irreversible inhibition of compound action potentials (more than 50% change) and Panavia F and Variolink II polymerized by LED and QTH did not alter nerve conduction beyond physiologic limits. Conclusions: Resin cements may alter nerve conductance and even lead to neurotoxic effects. PMID:21494389

  20. The coexistence of peripheral nerve sheath tumors and vitiligo: more than coincidence?

    PubMed

    Elsherif, Mohamed A; Spinner, Robert J; Miest, Rachel Y

    2016-01-01

    Neurocristopathies arise from abnormal migration, differentiation, or proliferation of neural crest derivatives, leading to diverse clinical and pathological features. They are classified into dysgenetic or neoplastic, and can affect single or multiple sites (simple versus complex). Examples include congenital melanocytic nevi, neuroblastoma, Hirshsprung's disease, Waardenburg's syndrome, neurofibromatosis (NF) 1 and multiple endocrine neoplasia (MEN) 2A and 2B. We report two cases of peripheral nerve sheath tumors associated with vitiligo and discuss the possible implicated embryologic, genetic and molecular mechanisms. To our knowledge, we also report the first case of de novo malignant peripheral nerve sheath tumor (MPNST) associated with vitiligo. PMID:26607956