Evaluation of central nervous system in patients with glycogen storage disease type 1a.
Aydemir, Yusuf; Gürakan, Figen; Saltık Temizel, İnci Nur; Demir, Hülya; Oğuz, Kader Karlı; Yalnızoğlu, Dilek; Topçu, Meral; Özen, Hasan; Yüce, Aysel
2016-01-01
We aimed to evaluate structure and functions of central nervous system (CNS) in children with glycogen storage disease (GSD) type 1a. Neurological examination, psychometric tests, electroencephalography (EEG), magnetic resonance imaging (MRI), visual evoked potentials (VEP) and brainstem auditory evoked potentials (BAEP) were performed. The results were compared between patients with good and poor metabolic control and healthy children. Twenty-three patients with GSD type 1a were studied. Twelve patients were in poor metabolic control group and 11 patients in good metabolic control group. Five patients had intellectual disability, 10 had EEG abnormalities, seven had abnormal VEP and two had abnormal BAEP results. MRI was abnormal in five patients. There was significant correlation between the number of hypoglycemic attacks and MRI abnormalities. Central nervous system may be affected in GSD type 1a even in patients with normal neurologic examination. Accumulation of abnormal results in patients with poor metabolic control supports the importance of metabolic control in GSD type 1a.
Cystic Fibrosis and the Nervous System.
Reznikov, Leah R
2017-05-01
Cystic fibrosis (CF) is a life-shortening autosomal recessive disorder caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR). CFTR is an anion channel that conducts bicarbonate and chloride across cell membranes. Although defective anion transport across epithelial cells is accepted as the basic defect in CF, many of the features observed in people with CF and organs affected by CF are modulated by the nervous system. This is of interest because CFTR expression has been reported in both the peripheral and central nervous systems, and it is well known that the transport of anions, such as chloride, greatly modulates neuronal excitability. Thus it is predicted that in CF, lack of CFTR in the nervous system affects neuronal function. Consistent with this prediction, several nervous system abnormalities and nervous system disorders have been described in people with CF and in animal models of CF. The goal of this special feature article is to highlight the expression and function of CFTR in the nervous system. Special emphasis is placed on nervous system abnormalities described in people with CF and in animal models of CF. Finally, features of CF that may be modulated by or attributed to faulty nervous system function are discussed. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.
2013-01-01
Introduction Intestinal dysmotility following human necrotizing enterocolitis suggests that the enteric nervous system is injured during the disease. We examined human intestinal specimens to characterize the enteric nervous system injury that occurs in necrotizing enterocolitis, and then used an animal model of experimental necrotizing enterocolitis to determine whether transplantation of neural stem cells can protect the enteric nervous system from injury. Methods Human intestinal specimens resected from patients with necrotizing enterocolitis (n = 18), from control patients with bowel atresia (n = 8), and from necrotizing enterocolitis and control patients undergoing stoma closure several months later (n = 14 and n = 6 respectively) were subjected to histologic examination, immunohistochemistry, and real-time reverse-transcription polymerase chain reaction to examine the myenteric plexus structure and neurotransmitter expression. In addition, experimental necrotizing enterocolitis was induced in newborn rat pups and neurotransplantation was performed by administration of fluorescently labeled neural stem cells, with subsequent visualization of transplanted cells and determination of intestinal integrity and intestinal motility. Results There was significant enteric nervous system damage with increased enteric nervous system apoptosis, and decreased neuronal nitric oxide synthase expression in myenteric ganglia from human intestine resected for necrotizing enterocolitis compared with control intestine. Structural and functional abnormalities persisted months later at the time of stoma closure. Similar abnormalities were identified in rat pups exposed to experimental necrotizing enterocolitis. Pups receiving neural stem cell transplantation had improved enteric nervous system and intestinal integrity, differentiation of transplanted neural stem cells into functional neurons, significantly improved intestinal transit, and significantly decreased mortality compared with control pups. Conclusions Significant injury to the enteric nervous system occurs in both human and experimental necrotizing enterocolitis. Neural stem cell transplantation may represent a novel future therapy for patients with necrotizing enterocolitis. PMID:24423414
Acute urinary retention due to benign inflammatory nervous diseases.
Sakakibara, Ryuji; Yamanishi, Tomonori; Uchiyama, Tomoyuki; Hattori, Takamichi
2006-08-01
Both neurologists and urologists might encounter patients with acute urinary retention due to benign inflammatory nervous diseases. Based on the mechanism of urinary retention, these disorders can be divided into two subgroups: disorders of the peripheral nervous system (e.g., sacral herpes) or the central nervous system (e.g., meningitis-retention syndrome [MRS]). Laboratory abnormalities include increased herpes virus titers in sacral herpes, and increased myelin basic protein in the cerebrospinal fluid (CSF) in some cases with MRS. Urodynamic abnormality in both conditions is detrusor areflexia; the putative mechanism of it is direct involvement of the pelvic nerves in sacral herpes; and acute spinal shock in MRS. There are few cases with CSF abnormality alone. Although these cases have a benign course, management of the acute urinary retention is necessary to avoid bladder injury due to overdistension. Clinical features of sacral herpes or MRS differ markedly from those of the original "Elsberg syndrome" cases.
... in people with Parkinson's disease (a brain and nervous system disease with symptoms of slowing of movement, muscle ... develops abnormal protein structures, and the brain and nervous system are destroyed over time). Talk to your doctor ...
ERIC Educational Resources Information Center
Thorne, John C.
2017-01-01
Purpose: The purpose of this study was to examine (a) whether increased grammatical error rates during a standardized narrative task are a more clinically useful marker of central nervous system abnormality in Fetal Alcohol Spectrum Disorders (FASD) than common measures of productivity or grammatical complexity and (b) whether combining the rate…
Oztarhan, Kazim; Gedikbasi, Ali; Yildirim, Dogukan; Arslan, Oguz; Adal, Erdal; Kavuncuoglu, Sultan; Ozbek, Sibel; Ceylan, Yavuz
2010-12-01
The aim of this study was to determine the distribution of cases associated with congenital abnormalities during the following three periods: pregnancy, birth, and the neonatal period. This was a retrospective study of cases between 2002 and 2006. All abnormal pregnancies, elective terminations of pregnancies, stillbirths, and births with congenital abnormalities managed in the Neonatology Unit were classified based on the above distribution scheme. During the 5-year study period, 1906 cases with congenital abnormalities were recruited, as follows: 640 prenatally detected and terminated cases, with most abnormalities related to the central nervous system, chromosomes, and urogenital system (56.7%, 12.7%, and 8.9%, respectively); 712 neonates with congenital abnormalities (congenital heart disease [49.2%], central nervous system abnormalities [14.7%], and urogenital system abnormalities [12.9%]); and hospital stillbirths, of which 34.2% had malformations (220 prenatal cases [34.4%] had multiple abnormalities, whereas 188 liveborn cases [26.4%] had multiple abnormalities). The congenital abnormalities rate between 2002 and 2006 was 2.07%. Systematic screening for fetal anomalies is the primary means for identification of affected pregnancies. © 2010 The Authors. Congenital Anomalies © 2010 Japanese Teratology Society.
Sequential involvement of the nervous system in subacute combined degeneration.
Minn, Yang-Ki; Kim, Seung-Min; Kim, Se-Hoon; Kwon, Ki-Han; Sunwoo, Il-Nam
2012-03-01
Subacute combined degeneration (SCD) involves progressive degeneration of the spinal cord, optic nerve, and peripheral nerves. Vitamin B12 (VB12) is a co-factor in myelin synthesis. Because each cell that constitutes the myelin component in the central nervous system and peripheral nervous system is different, it is improbable that these cells undergo simultaneous degeneration. However, the sequence of degeneration in SCD has not been established. In this study, we analysed medical records and electrophysiological data of patients who showed neurological symptoms and whose serum VB12 levels were lower than 200 pg/mL. We enrolled 49 patients in this study. Their mean VB12 level was 68.3 pg/mL. Somatosensory evoked potential (SEP) study showed abnormal findings in 38 patients. Of the 40 patients who underwent visual evoked potential (VEP) study, 14 showed abnormal responses. Eighteen patients showed abnormal findings on a nerve conduction study (NCS). In this study, abnormal posterior tibial nerve SEPs only were seen in 16 patients, median nerve SEPs only were seen in 3 patients, abnormal VEPs only in two, and abnormal NCS responses in one patient. No patient complained of cognitive symptoms. In SCD, degeneration appears to progress in the following order: lower spinal cord, cervical spinal cord, peripheral nerve/optic nerve, and finally, the brain.
Screening Criteria for Ophthalmic Manifestations of Congenital Zika Virus Infection.
Zin, Andrea A; Tsui, Irena; Rossetto, Julia; Vasconcelos, Zilton; Adachi, Kristina; Valderramos, Stephanie; Halai, Umme-Aiman; Pone, Marcos Vinicius da Silva; Pone, Sheila Moura; Silveira Filho, Joel Carlos Barros; Aibe, Mitsue S; da Costa, Ana Carolina C; Zin, Olivia A; Belfort, Rubens; Brasil, Patricia; Nielsen-Saines, Karin; Moreira, Maria Elisabeth Lopes
2017-09-01
Current guidelines recommend screening eye examinations for infants with microcephaly or laboratory-confirmed Zika virus infection but not for all infants potentially exposed to Zika virus in utero. To evaluate eye findings in a cohort of infants whose mothers had polymerase chain reaction-confirmed Zika virus infection during pregnancy. In this descriptive case series performed from January 2 through October 30, 2016, infants were examined from birth to 1 year of age by a multidisciplinary medical team, including a pediatric ophthalmologist, from Fernandes Figueira Institute, a Ministry of Health referral center for high-risk pregnancies and infectious diseases in children in Rio de Janeiro, Brazil. Mother-infant pairs from Rio de Janeiro, Brazil, who presented with suspected Zika virus infection during pregnancy were referred to our institution and had serum, urine, amniotic fluid, or placenta samples tested by real-time polymerase chain reaction for Zika virus. Description of eye findings, presence of microcephaly or other central nervous system abnormalities, and timing of infection in infants with confirmed Zika virus during pregnancy. Eye abnormalities were correlated with central nervous system findings, microcephaly, and the timing of maternal infection. Of the 112 with polymerase chain reaction-confirmed Zika virus infection in maternal specimens, 24 infants (21.4%) examined had eye abnormalities (median age at first eye examination, 31 days; range, 0-305 days). Ten infants (41.7%) with eye abnormalities did not have microcephaly, and 8 (33.3%) did not have any central nervous system findings. Fourteen infants with eye abnormalities (58.3%) were born to women infected in the first trimester, 8 (33.3%) in the second trimester, and 2 (8.3%) in the third trimester. Optic nerve and retinal abnormalities were the most frequent findings. Eye abnormalities were statistically associated with microcephaly (odds ratio [OR], 19.1; 95% CI, 6.0-61.0), other central nervous system abnormalities (OR, 4.3; 95% CI, 1.6-11.2), arthrogryposis (OR, 29.0; 95% CI, 3.3-255.8), and maternal trimester of infection (first trimester OR, 5.1; 95% CI, 1.9-13.2; second trimester OR, 0.5; 95% CI, 0.2-1.2; and third trimester OR, 0.3; 95% CI, 0.1-1.2). Eye abnormalities may be the only initial finding in congenital Zika virus infection. All infants with potential maternal Zika virus exposure at any time during pregnancy should undergo screening eye examinations regardless of the presence or absence of central nervous system abnormalities.
Diagnosis abnormalities of limb movement in disorders of the nervous system
NASA Astrophysics Data System (ADS)
Tymchik, Gregory S.; Skytsiouk, Volodymyr I.; Klotchko, Tatiana R.; Bezsmertna, Halyna; Wójcik, Waldemar; Luganskaya, Saule; Orazbekov, Zhassulan; Iskakova, Aigul
2017-08-01
The paper deals with important issues of diagnosis early signs of diseases of the nervous system, including Parkinson's disease and other specific diseases. Small quantities of violation trajectory of spatial movement of the extremities of human disease at the primary level as the most appropriate features are studied. In modern medical practice is very actual the control the emergence of diseases of the nervous system, including Parkinson's disease. In work a model limbs with six rotational kinematic pairs for diagnosis of early signs of diseases of the nervous system is considered. subject.
RELATIVE POTENCIES FOR ACUTE EFFECTS OF PYRETHROIDS ON MOTOR FUNCTION IN RATS.
A proposed common mode-of-action for pyrethroid insecticides, includes alterations in sodium channel dynamics in nervous system tissues, consequent disturbance of neuronal membrane polarization, abnormal discharge in targeted neurons, and changes in nervous system function. The p...
Sequential Involvement of the Nervous System in Subacute Combined Degeneration
Minn, Yang-Ki; Kim, Seung-Min; Kim, Se-Hoon; Kwon, Ki-Han
2012-01-01
Purpose Subacute combined degeneration (SCD) involves progressive degeneration of the spinal cord, optic nerve, and peripheral nerves. Vitamin B12 (VB12) is a co-factor in myelin synthesis. Because each cell that constitutes the myelin component in the central nervous system and peripheral nervous system is different, it is improbable that these cells undergo simultaneous degeneration. However, the sequence of degeneration in SCD has not been established. Materials and Methods In this study, we analysed medical records and electrophysiological data of patients who showed neurological symptoms and whose serum VB12 levels were lower than 200 pg/mL. Results We enrolled 49 patients in this study. Their mean VB12 level was 68.3 pg/mL. Somatosensory evoked potential (SEP) study showed abnormal findings in 38 patients. Of the 40 patients who underwent visual evoked potential (VEP) study, 14 showed abnormal responses. Eighteen patients showed abnormal findings on a nerve conduction study (NCS). In this study, abnormal posterior tibial nerve SEPs only were seen in 16 patients, median nerve SEPs only were seen in 3 patients, abnormal VEPs only in two, and abnormal NCS responses in one patient. No patient complained of cognitive symptoms. Conclusion In SCD, degeneration appears to progress in the following order: lower spinal cord, cervical spinal cord, peripheral nerve/optic nerve, and finally, the brain. PMID:22318813
Lack of Tryptophan Hydroxylase-1 in Mice Results in Gait Abnormalities
Suidan, Georgette L.; Vanderhorst, Veronique; Hampton, Thomas G.; Wong, Siu Ling; Voorhees, Jaymie R.; Wagner, Denisa D.
2013-01-01
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (−/−) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system. PMID:23516593
Lack of tryptophan hydroxylase-1 in mice results in gait abnormalities.
Suidan, Georgette L; Duerschmied, Daniel; Dillon, Gregory M; Vanderhorst, Veronique; Hampton, Thomas G; Wong, Siu Ling; Voorhees, Jaymie R; Wagner, Denisa D
2013-01-01
The role of peripheral serotonin in nervous system development is poorly understood. Tryptophan hydroxylase-1 (TPH1) is expressed by non-neuronal cells including enterochromaffin cells of the gut, mast cells and the pineal gland and is the rate-limiting enzyme involved in the biosynthesis of peripheral serotonin. Serotonin released into circulation is taken up by platelets via the serotonin transporter and stored in dense granules. It has been previously reported that mouse embryos removed from Tph1-deficient mothers present abnormal nervous system morphology. The goal of this study was to assess whether Tph1-deficiency results in behavioral abnormalities. We did not find any differences between Tph1-deficient and wild-type mice in general motor behavior as tested by rotarod, grip-strength test, open field and beam walk. However, here we report that Tph1 (-/-) mice display altered gait dynamics and deficits in rearing behavior compared to wild-type (WT) suggesting that tryptophan hydroxylase-1 expression has an impact on the nervous system.
Kawaguchi, Masahumi; Sugahara, Yuki; Watanabe, Tomoe; Irie, Kouta; Ishida, Minoru; Kurokawa, Daisuke; Kitamura, Shin-Ichi; Takata, Hiromi; Handoh, Itsuki C; Nakayama, Kei; Murakami, Yasunori
2011-08-01
Spills of heavy oil (HO) over the oceans have been proven to have an adverse effect on marine life. It has been hypothesized that exposure of early larvae of sinking eggs to HO leads largely to normal morphology, whereas abnormal organization of the developing neural scaffold is likely to be found. HO-induced disruption of the nervous system, which controls animal behavior, may in turn cause abnormalities in the swimming behavior of hatched larvae. To clarify the toxicological effects of HO, we performed exposure experiments and morphological and behavioral analyses in pufferfish (Takifugu rubripes) larvae. Fertilized eggs of pufferfish were exposed to 50 mg/L of HO for 8 days and transferred to fresh seawater before hatching. The hatched larvae were observed for their swimming behavior, morphological appearance, and construction of muscles and nervous system. In HO-exposed larvae, we did not detect any anomaly of body morphology. However, they showed an abnormal swimming pattern and disorganized midbrain, a higher center controlling movement. Our results suggest that HO-exposed fishes suffer developmental disorder of the brain that triggers an abnormal swimming behavior and that HO may be selectively toxic to the brain and cause physical disability throughout the life span of these fishes.
Femoral-facial syndrome with malformations in the central nervous system.
Leal, Evelia; Macías-Gómez, Nelly; Rodríguez, Lisa; Mercado, F Miguel; Barros-Núñez, Patricio
2003-01-01
The femoral hypoplasia-unusual facies syndrome (FFS) is a very rare association of femoral and facial abnormalities. Maternal diabetes mellitus has been mainly involved as the causal agent. We report the second case of FFS with anomalies in the central nervous system (CNS) including corticosubcortical atrophy, colpocephaly, partial agenesis of corpus callosum, hypoplasia of the falx cerebri and absent septum pellucidum. The psychomotor development has been normal. We propose that the CNS defects observed in these patients are part of the spectrum of abnormalities in the FFS.
Fanconi anemia: correlating central nervous system malformations and genetic complementation groups.
Johnson-Tesch, Benjamin A; Gawande, Rakhee S; Zhang, Lei; MacMillan, Margaret L; Nascene, David R
2017-06-01
Congenital central nervous system abnormalities in children with Fanconi anemia are poorly characterized, especially with regard to specific genetic complementation groups. To characterize the impact of genetic complementation groups on central nervous system anatomy. Through chart review we identified 36 patients with Fanconi anemia with available brain MRIs at the University of Minnesota (average age, 11.3 years; range, 1-43 years; M:F=19:17), which we reviewed and compared to 19 age- and sex-matched controls (average age, 7.9 years; range, 2-18 years; M:F=9:10). Genotypic information was available for 27 patients (15 FA-A, 2 FA-C, 3 FA-G, and 7 FA-D1 [biallelic mutations in BRCA2 gene]). Of the 36 patients, 61% had at least one congenital central nervous system or skull base abnormality. These included hypoplastic clivus (n=12), hypoplastic adenohypophysis (n=11), platybasia (n=8), pontocerebellar hypoplasia (n=7), isolated pontine hypoplasia (n=4), isolated vermis hypoplasia (n=3), and ectopic neurohypophysis (n=6). Average pituitary volume was significantly less in patients with Fanconi anemia (P<0.0001) than in controls. Basal angle was significantly greater in Fanconi anemia patients (P=0.006), but the basal angle of those with FA-D1 was not significantly different from controls (P=0.239). Clivus length was less in the Fanconi anemia group (P=0.002), but significance was only observed in the FA-D1 subgroup (P<0.0001). Of the seven patients meeting criteria for pontocerebellar hypoplasia, six belonged to the FA-D1 group. Patients with Fanconi anemia have higher incidences of ectopic neurohypophysis, adenohypophysis hypoplasia, platybasia and other midline central nervous system skull base posterior fossa abnormalities than age- and sex-matched controls. Patients with posterior fossa abnormalities, including pontocerebellar hypoplasia, are more likely to have biallelic BRCA2 mutations.
Rothman, Adam L; Mangalesh, Shwetha; Chen, Xi; Toth, Cynthia A
2016-01-01
Preterm infants with retinopathy of prematurity are at increased risk of poor neurodevelopmental outcomes. Because the neurosensory retina is an extension of the central nervous system, anatomic abnormalities in the anterior visual pathway often relate to system and central nervous system health. We describe optical coherence tomography as a powerful imaging modality that has recently been adapted to the infant population and provides noninvasive, high-resolution, cross-sectional imaging of the infant eye at the bedside. Optical coherence tomography has increased understanding of normal eye development and has identified several potential biomarkers of brain abnormalities and poorer neurodevelopment. PMID:28539807
ERIC Educational Resources Information Center
Mittler, Joel E.
1986-01-01
The Arnold-Chiari malformation is present in most infants born with myelomeningocele (a form of spina bifida) and hydrocephalus. The syndrome is responsible for structural abnormalities in the brain, and peripheral nervous system. Etiology, symptoms, impact on central nervous system structures, surgical treatment, and implications for education…
Maximino, Luciana Paula; Ducati, Luis Gustavo; Abramides, Dagma Venturini Marques; Corrêa, Camila de Castro; Garcia, Patrícia Fernandes; Fernandes, Adriano Yacubian
2017-12-01
To characterize patients with syndromic craniosynostosis with respect to their neuropsycholinguistic abilities and to present these findings together with the brain abnormalities. Eighteen patients with a diagnosis of syndromic craniosynostosis were studied. Eight patients had Apert syndrome and 10 had Crouzon syndrome. They were submitted to phonological evaluation, neuropsychological evaluation and magnetic resonance imaging of the brain. The phonological evaluation was done by behavioral observation of the language, the Peabody test, Token test and a school achievement test. The neuropsychological evaluation included the WISC III and WAIS tests. Abnormalities in language abilities were observed and the school achievement test showed abnormalities in 66.67% of the patients. A normal intelligence quotient was observed in 39.3% of the patients, and congenital abnormalities of the central nervous system were observed in 46.4% of the patients. Abnormalities of language abilities were observed in the majority of patients with syndromic craniosynostosis, and low cognitive performance was also observed.
A case of primary hypothyroidism causing central nervous system atherosclerosis in a dog.
Blois, Shauna L; Poma, Roberto; Stalker, Margaret J; Allen, Dana G
2008-08-01
A 2-year-old, castrated male, Australian shepherd was presented with a history of chronic mild ataxia, obesity, and lethargy. The dog was treated with levothyroxine, but the ataxia worsened. Cranial nerve abnormalities developed and the dog was euthanized. Postmortem examination revealed marked thyroid gland atrophy and widespread, severe central nervous system atherosclerosis.
Glucose test - CSF; Cerebrospinal fluid glucose test ... The glucose level in the CSF should be 50 to 80 mg/100 mL (or greater than 2/3 ... Abnormal results include higher and lower glucose levels. Abnormal ... or fungus) Inflammation of the central nervous system Tumor
A case of primary hypothyroidism causing central nervous system atherosclerosis in a dog
Blois, Shauna L.; Poma, Roberto; Stalker, Margaret J.; Allen, Dana G.
2008-01-01
A 2-year-old, castrated male, Australian shepherd was presented with a history of chronic mild ataxia, obesity, and lethargy. The dog was treated with levothyroxine, but the ataxia worsened. Cranial nerve abnormalities developed and the dog was euthanized. Postmortem examination revealed marked thyroid gland atrophy and widespread, severe central nervous system atherosclerosis. PMID:18978973
KCC3 axonopathy: neuropathological features in the central and peripheral nervous system.
Auer, Roland N; Laganière, Janet L; Robitaille, Yves O; Richardson, John; Dion, Patrick A; Rouleau, Guy A; Shekarabi, Masoud
2016-09-01
Hereditary motor and sensory neuropathy associated with agenesis of the corpus callosum (HMSN/ACC) is an autosomal recessive disease of the central and peripheral nervous system that presents as early-onset polyneuropathy. Patients are hypotonic and areflexic from birth, with abnormal facial features and atrophic muscles. Progressive peripheral neuropathy eventually confines them to a wheelchair in the second decade of life, and death occurs by the fourth decade. We here define the neuropathologic features of the disease in autopsy tissues from eight cases. Both developmental and neurodegenerative features were found. Hypoplasia or absence of the major telencephalic commissures and a hypoplasia of corticospinal tracts to half the normal size, were the major neurodevelopmental defects we observed. Despite being a neurodegenerative disease, preservation of brain weight and a conspicuous absence of neuronal or glial cell death were signal features of this disease. Small tumor-like overgrowths of axons, termed axonomas, were found in the central and peripheral nervous system, indicating attempted axonal regeneration. We conclude that the neurodegenerative deficits in HMSN/ACC are primarily caused by an axonopathy superimposed upon abnormal development, affecting peripheral but also central nervous system axons, all ultimately because of a genetic defect in the axonal cotransporter KCC3.
Risk of Central Nervous System Decompression Sickness in Air Diving to No-Stop Limits
2009-01-01
190 9 1 10 1. Weak, faint, vertigo 2. Heavy legs, abnormal gait 3. Vertigo and cardiorespiratory symptoms 4. Bilateral numbness and paresthesia ...original report," were included. 6. Pain in both feet, paresthesia 7. Hearing deficit, anisocoria, nystagmus, confusion, emotionally labile, abnormal...tandem gait 8. Scintillating scotoma, abnormal left foot dorsiflexion 9. Weakness, general left side paresthesia , numbness, abnormal gait 10. See
Evoked potentials in multiple sclerosis.
Kraft, George H
2013-11-01
Before the development of magnetic resonance imaging (MRI), evoked potentials (EPs)-visual evoked potentials, somatosensory evoked potentials, and brain stem auditory evoked responses-were commonly used to determine a second site of disease in patients being evaluated for possible multiple sclerosis (MS). The identification of an area of the central nervous system showing abnormal conduction was used to supplement the abnormal signs identified on the physical examination-thus identifying the "multiple" in MS. This article is a brief overview of additional ways in which central nervous system (CNS) physiology-as measured by EPs-can still contribute value in the management of MS in the era of MRIs. Copyright © 2013 Elsevier Inc. All rights reserved.
Secondary Abnormalities of Neurotransmitters in Infants with Neurological Disorders
ERIC Educational Resources Information Center
Garcia-Cazorla, A.; Serrano, M.; Perez-Duenas, B.; Gonzalez, V.; Ormazabal, A.; Pineda, M.; Fernandez-Alvarez, E.; Campistol, J. M. D.; Artuch, R. M. D.
2007-01-01
Neurotransmitters are essential in young children for differentiation and neuronal growth of the developing nervous system. We aimed to identify possible factors related to secondary neurotransmitter abnormalities in pediatric patients with neurological disorders. We analyzed cerebrospinal fluid (CSF) and biogenic amine metabolites in 56 infants…
Axelrod, Felicia B
2013-03-01
Genetic disorders affecting the autonomic nervous system can result in abnormal development of the nervous system or they can be caused by neurotransmitter imbalance, an ion-channel disturbance or by storage of deleterious material. The symptoms indicating autonomic dysfunction, however, will depend upon whether the genetic lesion has disrupted peripheral or central autonomic centers or both. Because the autonomic nervous system is pervasive and affects every organ system in the body, autonomic dysfunction will result in impaired homeostasis and symptoms will vary. The possibility of genetic confirmation by molecular testing for specific diagnosis is increasing but treatments tend to remain only supportive and directed toward particular symptoms. Copyright © 2013 Elsevier Inc. All rights reserved.
The accuracy of ultrasound in the diagnosis of congenital abnormalities.
Munim, Shama; Nadeem, Salva; Khuwaja, Nadya Ali
2006-01-01
To determine the accuracy of ultrasound in the diagnosis of congenital abnormalities at the Aga Khan University Hospital, Karachi. The data of congenital abnormalities was obtained from the obstetrical database and medical records of all cases complicated by congenital abnormalities, delivering from January 2001 to December 2003 and was reviewed. Antenatal ultrasounds had been performed by operators with different level of experience. In addition this data was retrieved from the termination and Congenital anomaly register. A structured data collection form was used to collect information of different variables of interest. Congenital abnormalities, complicated 2.8% (n=170), of all deliveries, including all cases of termination of pregnancy, stillbirth and live births. Out of the total, 11.6% occurred in women above the age of 35 years. Consanguinity was found in 18.2% cases. Prenatal diagnosis was made in just under half of the cases (48.8%). Central nervous system and renal abnormalities were commonly diagnosed. However, facial defects, heart defects or skeletal defects were more commonly missed. Antenatal ultrasound successfully diagnosed foetal abnormalities in 48.8% of cases, and more than 90% Central Nervous system defects and renal abnormalities. In contrast about a quarter of Cardiac defects and none of the facial defects were detected. Based on these findings we recommend that the Sonologist should incorporate four chamber view of the heart and also look at the face carefully.
2013-01-01
Background The role of the extracranial venous system in the pathology of central nervous system (CNS) disorders and aging is largely unknown. It is acknowledged that the development of the venous system is subject to many variations and that these variations do not necessarily represent pathological findings. The idea has been changing with regards to the extracranial venous system. Discussion A range of extracranial venous abnormalities have recently been reported, which could be classified as structural/morphological, hemodynamic/functional and those determined only by the composite criteria and use of multimodal imaging. The presence of these abnormalities usually disrupts normal blood flow and is associated with the development of prominent collateral circulation. The etiology of these abnormalities may be related to embryologic developmental arrest, aging or other comorbidities. Several CNS disorders have been linked to the presence and severity of jugular venous reflux. Another composite criteria-based vascular condition named chronic cerebrospinal venous insufficiency (CCSVI) was recently introduced. CCSVI is characterized by abnormalities of the main extracranial cerebrospinal venous outflow routes that may interfere with normal venous outflow. Summary Additional research is needed to better define the role of the extracranial venous system in relation to CNS disorders and aging. The use of endovascular treatment for the correction of these extracranial venous abnormalities should be discouraged, until potential benefit is demonstrated in properly-designed, blinded, randomized and controlled clinical trials. Please see related editorial: http://www.biomedcentral.com/1741-7015/11/259. PMID:24344742
Simpson-Golabi-Behmel syndrome types I and II.
Tenorio, Jair; Arias, Pedro; Martínez-Glez, Víctor; Santos, Fernando; García-Miñaur, Sixto; Nevado, Julián; Lapunzina, Pablo
2014-09-20
Simpson-Golabi-Behmel syndrome (SGBS) is a rare overgrowth syndrome clinically characterized by multiple congenital abnormalities, pre/postnatal overgrowth, distinctive craniofacial features, macrocephaly, and organomegaly. Abnormalities of the skeletal system, heart, central nervous system, kidney, and gastrointestinal tract may also be observed. Intellectual disability, early motor milestones and speech delay are sometimes present; however, there are a considerable number of individuals with normal intelligence.
Mirsky, David M; Shekdar, Karuna V; Bilaniuk, Larissa T
2012-08-01
Abnormalities of the fetal head and neck may be seen in isolation or in association with central nervous system abnormalities, chromosomal abnormalities, and syndromes. Magnetic resonance imaging (MRI) plays an important role in detecting associated abnormalities of the brain as well as in evaluating for airway obstruction that may impact prenatal management and delivery planning. This article provides an overview of the common indications for MRI of the fetal head and neck, including abnormalities of the fetal skull and face, masses of the face and neck, and fetal goiter. Copyright © 2012 Elsevier Inc. All rights reserved.
[Hereditary cerebro-oculo-renal syndromes].
Sessa, Galina; Hjortshøj, Tina Duelund; Egfjord, Martin
2014-02-17
Although many congenital diseases present disturbances of the central nervous system, eyes and renal function, only few of these have a defined genetic basis. The first clinical features of cerebro-oculo-renal diseases usually develop in early childhood and deterioration of kidney function and even end-stage kidney disease may occur in a young age. The syndromes should be considered in patients with retarded growth and development, central nervous system abnormalities, impaired vision or blindness and progressive renal failure.
Cantera, Rafael; Lüer, Karin; Rusten, Tor Erik; Barrio, Rosa; Kafatos, Fotis C; Technau, Gerhard M
2002-12-01
The gene spalt is expressed in the embryonic central nervous system of Drosophila melanogaster but its function in this tissue is still unknown. To investigate this question, we used a combination of techniques to analyse spalt mutant embryos. Electron microscopy showed that in the absence of spalt, the central nervous system cells are separated by enlarged extracellular spaces populated by membranous material at 60% of embryonic development. Surprisingly, the central nervous system from slightly older embryos (80% of development) exhibited almost wild-type morphology. An extensive survey by laser confocal microscopy revealed that the spalt mutant central nervous system has abnormal levels of particular cell adhesion and cytoskeletal proteins. Time-lapse analysis of neuronal differentiation in vitro, lineage analysis and transplantation experiments confirmed that the mutation causes cytoskeletal and adhesion defects. The data indicate that in the central nervous system, spalt operates within a regulatory pathway which influences the expression of the beta-catenin Armadillo, its ligand N-Cadherin, Notch, and the cell adhesion molecules Neuroglian, Fasciclin 2 and Fasciclin 3. Effects on the expression of these genes are persistent but many morphological aspects of the phenotype are transient, leading to the concept of sequential redundancy for stable organisation of the central nervous system.
... or along with other medications to control abnormal movements in people who have Parkinsonian syndrome (a disorder of the nervous system that causes difficulties with movement, muscle control, and balance). Diphenhydramine injection should not ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hicks, S.P.
1960-06-01
Findings are summarized from studies on the effects of radiation on the development of the nervous system in mammals. Radiation has been proven to be a useful tool for experimental mammalian embryology in studies of normal brain development as well as in studies of abnormalities of brain development. Manuscripts are included of papers accepted for publication. (C.H.)
Tonni, Gabriele; Grisolia, Giampaolo
2013-09-01
Trisomy 9 is a lethal chromosomal abnormality that rarely progresses beyond the second trimester of pregnancy. Multiple central nervous system anomalies, including bifid choroid plexus, ventriculomegaly, and Dandy-Walker malformation, associated with multicystic dysplastic kidney disease in a trisomy 9 fetus are reported. The prenatal ultrasound diagnosis has been aided by novel three-dimensional ultrasound software. Copyright © 2012 Wiley Periodicals, Inc.
Arroll, Nicola; Sadler, Lynn; Stone, Peter; Masson, Vicki; Farquhar, Cindy
2013-08-16
To determine whether there were "quality gaps" in the provision of care during pregnancies that resulted in a perinatal death due to congenital abnormality. Perinatal deaths from congenital cardiovascular, central nervous system or chromosomal abnormality in 2010 were identified retrospectively. Data were extracted by retrospective clinical note review and obtained by independent review of ultrasound scans. There were 137 perinatal deaths due to a congenital cardiovascular (35), central nervous system (29) or chromosomal abnormality (73). First contact with a health professional during pregnancy was predominantly with a general practitioner. First contact occurred within 14 weeks in 85% of pregnancies and there was often a significant delay before booking. Folate supplements were taken by 7% pre-conceptually and 54% of women in the antenatal period. There were 20 perinatal deaths from neural tube defects that could potentially have been prevented through the use of pre-conceptual folate. Antenatal screening was offered to 75% of the women who presented prior to 20 weeks and 84% of these undertook at least one of the available antenatal screening tests. Review of ultrasound images found five abnormalities could have been detected earlier. Delay in booking or failure to offer screening early were the most common reasons for delay in diagnosis of screen detectable abnormalities. The preventative value and timing of (pre-conceptual) folate needs emphasis.
de Boysson, H; Boulouis, G; Parienti, J-J; Touzé, E; Zuber, M; Arquizan, C; Dequatre, N; Detante, O; Bienvenu, B; Aouba, A; Guillevin, L; Pagnoux, C; Naggara, O
2017-10-01
3D-TOF-MRA and DSA are 2 available tools to demonstrate neurovascular involvement in primary central nervous system vasculitis. We aimed to compare the diagnostic concordance of vessel imaging using 3D-TOF-MRA and DSA in patients with primary central nervous system vasculitis. We retrospectively identified all patients included in the French primary central nervous system vasculitis cohort of 85 patients who underwent, at baseline, both intracranial 3D-TOF-MRA and DSA in an interval of no more than 2 weeks and before treatment initiation. Two neuroradiologists independently reviewed all 3D-TOF-MRA and DSA imaging. Brain vasculature was divided into 25 arterial segments. Concordance between 3D-TOF-MRA and DSA for the identification of arterial stenosis was assessed by the Cohen κ Index. Thirty-one patients met the inclusion criteria, including 20 imaged with a 1.5T MR unit and 11 with a 3T MR unit. Among the 25 patients (81%) with abnormal DSA findings, 24 demonstrated abnormal 3D-TOF-MRA findings, whereas all 6 remaining patients with normal DSA findings had normal 3D-TOF-MRA findings. In the per-segment analysis, concordance between 1.5T 3D-TOF-MRA and DSA was 0.82 (95% CI, 0.75-0.93), and between 3T 3D-TOF-MRA and DSA, it was 0.87 (95% CI, 0.78-0.91). 3D-TOF-MRA shows a high concordance with DSA in diagnostic performance when analyzing brain vasculature in patients with primary central nervous system vasculitis. In patients with negative 3T 3D-TOF-MRA findings, the added diagnostic value of DSA is limited. © 2017 by American Journal of Neuroradiology.
2017-06-09
Charcot Marie Tooth Disease (CMT); Hereditary Sensory and Motor Neuropathy; Nerve Compression Syndromes; Tooth Diseases; Congenital Abnormalities; Genetic Diseases, Inborn; Heredodegenerative Disorders, Nervous System
Peripheral Neuropathy is not a distinct disease, but the manifestation of many conditions that damage the peripheral nerves ( ... abnormal. Damaged motor nerves impair movement or function. Peripheral neuropathy may be caused by direct or indirect injury, ...
Herpes virus infection of the peripheral nervous system.
Steiner, Israel
2013-01-01
Among the human herpes viruses, three are neurotropic and capable of producing severe neurological abnormalities: herpes simplex virus type 1 and 2 (HSV-1 and HSV-2) and varicella-zoster virus (VZV). Both the acute, primary infection and the reactivation from the site of latent infection, the dorsal sensory ganglia, are associated with severe human morbidity and mortality. The peripheral nervous system is one of the major loci affected by these viruses. The present review details the virology and molecular biology underlying the human infection. This is followed by detailed description of the symtomatology, clinical presentation, diagnosis, course, therapy, and prognosis of disorders of the peripheral nervous system caused by these viruses. Copyright © 2013 Elsevier B.V. All rights reserved.
The Gut Microbiota and Autism Spectrum Disorders
Li, Qinrui; Han, Ying; Dy, Angel Belle C.; Hagerman, Randi J.
2017-01-01
Gastrointestinal (GI) symptoms are a common comorbidity in patients with autism spectrum disorder (ASD), but the underlying mechanisms are unknown. Many studies have shown alterations in the composition of the fecal flora and metabolic products of the gut microbiome in patients with ASD. The gut microbiota influences brain development and behaviors through the neuroendocrine, neuroimmune and autonomic nervous systems. In addition, an abnormal gut microbiota is associated with several diseases, such as inflammatory bowel disease (IBD), ASD and mood disorders. Here, we review the bidirectional interactions between the central nervous system and the gastrointestinal tract (brain-gut axis) and the role of the gut microbiota in the central nervous system (CNS) and ASD. Microbiome-mediated therapies might be a safe and effective treatment for ASD. PMID:28503135
The neurophysiology of the esophagus.
Woodland, Philip; Sifrim, Daniel; Krarup, Anne Lund; Brock, Christina; Frøkjaer, Jens Brøndum; Lottrup, Christian; Drewes, Asbjørn Mohr; Swanstrom, Lee L; Farmer, Adam D
2013-10-01
This paper reports on the neurophysiology of the esophagus, including on the uneven distribution of innervation in the esophagus, reflected by the increased sensitivity and perception of gastroesophageal reflux disease (GERD) events in the proximal rather than distal esophagus; the role of the enteric nervous system (ENS) in swallowing; the role of the physiological stress-responsive systems, including the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenal (HPA) axis in mediating esophageal pain; the advances in understanding pain mechanisms and brain structure provided by technological imaging advances; investigations into the efficacy of the descending-pain control system, including diffuse noxious inhibitory control (DNIC); the role of abnormal nervous signaling in afferent pathways in the pathogenesis of Barrett's esophagus (BE); and the contribution of the esophageal mucosa to reflux symptoms. © 2013 New York Academy of Sciences.
Postnatal Cardiac Autonomic Nervous Control in Pediatric Congenital Heart Disease
Nederend, Ineke; Jongbloed, Monique R. M.; de Geus, Eco J. C.; Blom, Nico A.; ten Harkel, Arend D. J.
2016-01-01
Congenital heart disease is the most common congenital defect. During childhood, survival is generally good but, in adulthood, late complications are not uncommon. Abnormal autonomic control in children with congenital heart disease may contribute considerably to the pathophysiology of these long term sequelae. This narrative review of 34 studies aims to summarize current knowledge on function of the autonomic nervous system in children with a congenital heart defect. Large scale studies that measure both branches of the nervous system for prolonged periods of time in well-defined patient cohorts in various phases of childhood and adolescence are currently lacking. Pending such studies, there is not yet a good grasp on the extent and direction of sympathetic and parasympathetic autonomic function in pediatric congenital heart disease. Longitudinal studies in homogenous patient groups linking autonomic nervous system function and clinical outcome are warranted. PMID:29367565
Effect of heavy oil on the development of the nervous system of floating and sinking teleost eggs.
Irie, Kouta; Kawaguchi, Masahumi; Mizuno, Kaori; Song, Jun-Young; Nakayama, Kei; Kitamura, Shin-Ichi; Murakami, Yasunori
2011-01-01
Heavy oil (HO) on the sea surface penetrates into fish eggs and prevents the normal morphogenesis. To identify the toxicological effects of HO in the context of the egg types, we performed exposure experiments using floating eggs and sinking eggs. In the course of development, HO-exposed embryos of floating eggs showed abnormal morphology, whereas early larva of the sinking eggs had almost normal morphology. However, the developing peripheral nervous system of sinking eggs showed abnormal projections. These findings suggest that HO exposed fishes have problems in the developing neurons, although they have no morphological malformations. Through these observations, we conclude that HO is strongly toxic to floating eggs in the morphogenesis, and also affect the neuron development in both floating and sinking eggs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Defects formation and wave emitting from defects in excitable media
NASA Astrophysics Data System (ADS)
Ma, Jun; Xu, Ying; Tang, Jun; Wang, Chunni
2016-05-01
Abnormal electrical activities in neuronal system could be associated with some neuronal diseases. Indeed, external forcing can cause breakdown even collapse in nervous system under appropriate condition. The excitable media sometimes could be described by neuronal network with different topologies. The collective behaviors of neurons can show complex spatiotemporal dynamical properties and spatial distribution for electrical activities due to self-organization even from the regulating from central nervous system. Defects in the nervous system can emit continuous waves or pulses, and pacemaker-like source is generated to perturb the normal signal propagation in nervous system. How these defects are developed? In this paper, a network of neurons is designed in two-dimensional square array with nearest-neighbor connection type; the formation mechanism of defects is investigated by detecting the wave propagation induced by external forcing. It is found that defects could be induced under external periodical forcing under the boundary, and then the wave emitted from the defects can keep balance with the waves excited from external forcing.
Alston, Robert; Wright, Neville B; Chandler, Kate; Bonney, Denise; Wynn, Robert F; Will, Andrew M; Punekar, Maqsood; Loughran, Sean; Kilday, John-Paul; Schindler, Detlev; Patel, Leena; Meyer, Stefan
2015-01-01
Objective: Fanconi anaemia (FA) is an inherited disease associated with congenital and developmental abnormalities resulting from the disruption of a multigenic DNA damage response pathway. This study aimed to define the MRI appearances of the brain in patients with FA in correlation with their genetic and clinical features. Methods: A review of the brain MRI in 20 patients with FA was performed. Pituitary size and frequencies of the radiological findings of individuals with FA and age-matched controls were determined. Results: Abnormalities were identified in 18 (90%) patients with FA, the commonest being a small pituitary (68%, p < 0.01 females and p < 0.001 males). In five cases (25%, p = 0.02), the pituitary morphology was also abnormal. Posterior fossa abnormalities were seen in six cases (30%, p = 0.01) including Chiari I malformation (n = 3), Dandy–Walker variant (n = 2) and cerebellar atrophy (n = 2). Six patients (30%, p = 0.01) had morphological structural variation of the corpus callosum (CC). Conclusion: The incidence of central nervous system (CNS) abnormalities in FA is higher than previously reported, with a midline predominance that points to impact in the early stages of CNS development. MRI brain imaging is important for endocrine assessment and pre-transplant evaluation and can make an important contribution to clinical decision-making. Advances in knowledge: The incidence of brain structural abnormalities in FA is higher than previously reported, with abnormalities of the posterior fossa, CC and pituitary being common. There is an association with gender and reduction in pituitary size which does not strongly correlate with biochemically evident endocrine abnormality. PMID:26369989
Leigh and Leigh-like syndrome in children and adults.
Finsterer, Josef
2008-10-01
Leigh syndrome (also termed subacute, necrotizing encephalopathy) is a devastating neurodegenerative disorder, characterized by almost identical brain changes, e.g., focal, bilaterally symmetric lesions, particularly in the basal ganglia, thalamus, and brainstem, but with considerable clinical and genetic heterogeneity. Clinically, Leigh syndrome is characterized by a wide variety of abnormalities, from severe neurologic problems to a near absence of abnormalities. Most frequently the central nervous system is affected, with psychomotor retardation, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Some patients also present with peripheral nervous system involvement, including polyneuropathy or myopathy, or non-neurologic abnormalities, e.g., diabetes, short stature, hypertrichosis, cardiomyopathy, anemia, renal failure, vomiting, or diarrhea (Leigh-like syndrome). In the majority of cases, onset is in early childhood, but in a small number of cases, adults are affected. In the majority of cases, dysfunction of the respiratory chain (particularly complexes I, II, IV, or V), of coenzyme Q, or of the pyruvate dehydrogenase complex are responsible for the disease. Associated mutations affect genes of the mitochondrial or nuclear genome. Leigh syndrome and Leigh-like syndrome are the mitochondrial disorders with the largest genetic heterogeneity.
La Fountaine, Michael F
2017-11-29
Concussion is defined as a complex pathophysiological process affecting the brain that is induced by the application or transmission of traumatic biomechanical forces to the head. The result of the impact is the onset of transient symptoms that may be experienced for approximately 2weeks in most individuals. However, in some individuals, symptoms may not resolve and persist for a protracted period and a chronic injury ensues. Concussion symptoms are generally characterized by their emergence through changes in affect, cognition, or multi-sensory processes including the visual and vestibular systems. An emerging consequence of concussion is the presence of cardiovascular autonomic nervous system dysfunction that is most apparent through hemodynamic perturbations and provocations. Further interrogation of data that are derived from continuous digital electrocardiograms and/or beat-to-beat blood pressure monitoring often reveal an imbalance of parasympathetic or sympathetic nervous system activity during a provocation after an injury. The disturbance is often greatest early after injury and a resolution of the dysfunction occurs in parallel with other symptoms. The possibility exists that the disturbance may remain if the concussion does not resolve. Unfortunately, there is little evidence in humans to support the etiology for the emergence of this post-injury dysfunction. As such, evidence from experimental models of traumatic brain injury and casual observations from human studies of concussion implicate a transient abnormality of the anatomical structures and functions of the cardiovascular autonomic nervous system. The purpose of this review article is to provide a mechanistic narrative of multi-disciplinary evidence to support the anatomical and physiological basis of cardiovascular autonomic nervous system dysfunction after concussion. The review article will identify the anatomical structures of the autonomic nervous system and propose a theoretical framework to demonstrate the potential effects of concussive head trauma on corresponding outcome measurements. Evidence from experimental models will be used to describe abnormal cellular functions and provide a hypothetical mechanistic basis for the respective responses of the anatomical structures to concussive head trauma. When available, example observations from the human concussion literature will be presented to demonstrate the effects of concussive head trauma that may be related to anomalous activity in the respective anatomical structures of the autonomic nervous system. Copyright © 2017 Elsevier B.V. All rights reserved.
The p38α mitogen-activated protein kinase as a central nervous system drug discovery target
Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin
2008-01-01
Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38α mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38α MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38α MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38α MAPK in neurodegenerative disorders. PMID:19090985
The p38alpha mitogen-activated protein kinase as a central nervous system drug discovery target.
Borders, Aaron S; de Almeida, Lucia; Van Eldik, Linda J; Watterson, D Martin
2008-12-03
Protein kinases are critical modulators of a variety of cellular signal transduction pathways, and abnormal phosphorylation events can be a cause or contributor to disease progression in a variety of disorders. This has led to the emergence of protein kinases as an important new class of drug targets for small molecule therapeutics. A serine/threonine protein kinase, p38alpha mitogen-activated protein kinase (MAPK), is an established therapeutic target for peripheral inflammatory disorders because of its critical role in regulation of proinflammatory cytokine production. There is increasing evidence that p38alpha MAPK is also an important regulator of proinflammatory cytokine levels in the central nervous system, raising the possibility that the kinase may be a drug discovery target for central nervous system disorders where cytokine overproduction contributes to disease progression. Development of bioavailable, central nervous system-penetrant p38alpha MAPK inhibitors provides the required foundation for drug discovery campaigns targeting p38alpha MAPK in neurodegenerative disorders.
Iramina, Keiji; Kamei, Yuuichiro; Katayama, Yoshinori
2011-01-01
We developed a simple, portable and easy system to the motion of pronation and supination of the forearm. This motion was measured by wireless acceleration and angular velocity sensor. The aim of this system is evaluation of minor nervous dysfunction. It is for the screening of the developmental disorder child. In this study, in order to confirm the effectiveness of this system, the reference curve of the neuromotor development was experimentally obtained. We studied 212 participants (108 males, 104 females) aged 7 to 12 years attending the kindergarten school. We could obtain the reference curve of the neuromotor development using this system. We also investigated the difference of neuromotor function between normally developed children and a ADHD child. There is a possibility that abnormality of the minor nervous dysfunction can be detected by using this system.
Abnormalities of the QT interval in primary disorders of autonomic failure.
Choy, A M; Lang, C C; Roden, D M; Robertson, D; Wood, A J; Robertson, R M; Biaggioni, I
1998-10-01
Experimental evidence shows that activation of the autonomic nervous system influences ventricular repolarization and, therefore, the QT interval on the ECG. To test the hypothesis that the QT interval is abnormal in autonomic dysfunction, we examined ECGs in patients with severe primary autonomic failure and in patients with congenital dopamine beta-hydroxylase (DbetaH) deficiency who are unable to synthesize norepinephrine and epinephrine. Maximal QT and rate-corrected QT (QTc) intervals and adjusted QTc dispersion [(maximal QTc - minimum QTc on 12 lead ECG)/square root of the number of leads measured] were determined in blinded fashion from ECGs of 67 patients with primary autonomic failure (36 patients with multiple system atrophy [MSA], and 31 patients with pure autonomic failure [PAF]) and 17 age- and sex-matched healthy controls. ECGs of 5 patients with congenital DbetaH deficiency and 6 age- and sex-matched controls were also analyzed. Patients with MSA and PAF had significantly prolonged maximum QTc intervals (492+/-58 ms(1/2) and 502+/-61 ms(1/2) [mean +/- SD]), respectively, compared with controls (450+/-18 ms(1/2), P < .05 and P < .01, respectively). A similar but not significant trend was observed for QT. QTc dispersion was also increased in MSA (40+/-20 ms(1/2), P < .05 vs controls) and PAF patients (32+/-19 ms(1/2), NS) compared with controls (21+/-5 ms(1/2)). In contrast, patients with congenital DbetaH deficiency did not have significantly different RR, QT, QTc intervals, or QTc dispersion when compared with controls. Patients with primary autonomic failure who have combined parasympathetic and sympathetic failure have abnormally prolonged QT interval and increased QT dispersion. However, QT interval in patients with congenital DbetaH deficiency was not significantly different from controls. It is possible, therefore, that QT abnormalities in patients with primary autonomic failure are not solely caused by lesions of the sympathetic nervous system, and that the parasympathetic nervous system is likely to have a modulatory role in ventricular repolarization.
Dong, Xian-hui; Bai, Jiang-tao; Kong, Wei-na; He, Xiao-ping; Yan, Peng; Shao, Tie-mei; Yu, Wen-guo; Chai, Xi-qing; Wu, Yan-hua; Liu, Cong
2015-01-01
Abnormally increased levels of iron in the brain trigger cascade amplification in Alzheimer’s disease patients, resulting in neuronal death. This study investigated whether components extracted from the Chinese herbs epimedium herb, milkvetch root and kudzuvine root could relieve the abnormal expression of iron metabolism-related protein in Alzheimer’s disease patients. An APPswe/PS1ΔE9 double transgenic mouse model of Alzheimer’s disease was used. The intragastric administration of compounds from epimedium herb, milkvetch root and kudzuvine root improved pathological alterations such as neuronal edema, increased the number of neurons, downregulated divalent metal transporter 1 expression, upregulated ferroportin 1 expression, and inhibited iron overload in the cerebral cortex of mice with Alzheimer’s disease. These compounds reduced iron overload-induced impairment of the central nervous system, indicating a new strategy for developing novel drugs for the treatment of Alzheimer’s disease. PMID:26109953
Sympathetic nerve dysfunction is common in patients with chronic intestinal pseudo-obstruction.
Mattsson, Tomas; Roos, Robert; Sundkvist, Göran; Valind, Sven; Ohlsson, Bodil
2008-02-01
To clarify whether disturbances in the autonomic nervous system, reflected in abnormal cardiovascular reflexes, could explain symptoms of impaired heat regulation in patients with intestinal pseudo-obstruction. Chronic intestinal pseudo-obstruction is a clinical syndrome characterized by diffuse, unspecific gastrointestinal symptoms due to damage to the enteric nervous system or the smooth muscle cells. These patients often complain of excessive sweating or feeling cold, suggesting disturbances in the autonomic nervous system. Earlier studies have pointed to a coexistence of autonomic disturbances in the enteric and cardiovascular nervous system. Thirteen consecutive patients (age range 23 to 79, mean 44 y) fulfilling the criteria for chronic intestinal pseudo-obstruction were investigated. Six of them complained of sweating or a feeling of cold. Examination of autonomic reflexes included heart rate variation to deep-breathing (expiration/inspiration index), heart rate reaction to tilt (acceleration index, brake index), and vasoconstriction (VAC) due to indirect cooling by laser doppler (VAC-index; high index indicates impaired VAC). Test results in patients were compared with healthy individuals. Patients had significantly higher (more abnormal) median VAC-index compared with healthy controls [1.79 (interquartile ranges 1.89) vs. 0.08 (interquartile ranges 1.29); P=0.0007]. However, symptoms of impaired heat regulation were not related to the VAC-index. There were no differences in expiration/inspiration, acceleration index, or brake index between patients and controls. The patients with severe gastrointestinal dysmotility showed impaired sympathetic nerve function which, however, did not seem to be associated with symptoms of impaired heat regulation.
Sotos syndrome (cerebral gigantism): analysis of 8 cases.
Melo, Débora Gusmão; Acosta, Angelina Xavier; Salles, Maria Aparecida de Almeida; Pina-Neto, João Monteiro de; Castro, José Daniel Vieira de; Santos, Antonio Carlos
2002-06-01
Sotos syndrome or cerebral gigantism is characterized by macrocephaly, overgrowth, mental retardation and central nervous system abnormalities. Congenital heart defects may be present. We report 8 patients with this syndrome and relate their clinical features, neuroimaging and echocardiographic findings.
Yamada, Shigehiro; Hotta, Kohji; Yamamoto, Takamasa S; Ueno, Naoto; Satoh, Nori; Takahashi, Hiroki
2009-04-01
The midline organ the notochord and its overlying dorsal neural tube are the most prominent features of the chordate body plan. Although the molecular mechanisms involved in the formation of the central nervous system (CNS) have been studied extensively in vertebrate embryos, none of the genes that are expressed exclusively in notochord cells has been shown to function in this process. Here, we report a gene in the urochordate Ciona intestinalis encoding a fibrinogen-like protein that plays a pivotal role in the notochord-dependent positioning of neuronal cells. While this gene (Ci-fibrn) is expressed exclusively in notochord cells, its protein product is not confined to these cells but is distributed underneath the CNS as fibril-like protrusions. We demonstrated that Ci-fibrn interacts physically and functionally with Ci-Notch that is expressed in the central nervous system, and that the correct distribution of Ci-fibrn protein is dependent on Notch signaling. Disturbance of the Ci-fibrn distribution caused an abnormal positioning of neuronal cells and an abnormal track of axon extension. Therefore, it is highly likely that the interaction between the notochord-based fibrinogen-like protein and the neural tube-based Notch signaling plays an essential role in the proper patterning of CNS.
Litwin, Mieczysław; Feber, Janusz; Niemirska, Anna; Michałkiewicz, Jacek
2016-02-01
There is an increasing amount of data indicating that primary hypertension (PH) is not only a hemodynamic phenomenon but also a complex syndrome involving abnormal fat tissue distribution, over-activity of the sympathetic nervous system (SNS), metabolic abnormalities, and activation of the immune system. In children, PH usually presents with a typical phenotype of disturbed body composition, accelerated biological maturity, and subtle immunological and metabolic abnormalities. This stage of the disease is potentially reversible. However, long-lasting over-activity of the SNS and immuno-metabolic alterations usually lead to an irreversible stage of cardiovascular disease. We describe an intermediate phenotype of children with PH, showing that PH is associated with accelerated development, i.e., early premature aging of the immune, metabolic, and vascular systems. The associations and determinants of hypertensive organ damage, the principles of treatment, and the possibility of rejuvenation of the cardiovascular system are discussed.
[Central Nervous Involvement in Patients with Fukuyama Congenital Muscular Dystrophy].
Ishigaki, Keiko
2016-02-01
Fukuyama congenital muscular dystrophy (FCMD), the second most common muscular dystrophy in the Japanese population, is an autosomal recessive disorder caused by mutations in the fukutin (FKTN) gene. The main features of FCMD are a combination of infantile-onset hypotonia, generalized muscle weakness, eye abnormalities and central nervous system involvement with mental retardation and seizures associated with cortical migration defects. The FKTN gene product is thought to be necessary for maintaining migrating neurons in an immature state during migration, and for supporting migration via α-dystroglycan in the central nervous system. Typical magnetic resonance imaging findings in FCMD patients are cobblestone lissencephaly and cerebellar cystic lesions. White matter abnormalities with hyperintensity on T(2)-weighted images are seen especially in younger patients and those with severe phenotypes. Most FCMD patients are mentally retarded and the level is moderate to severe, with IQs ranging from 30 to 50. In our recent study, 62% of patients developed seizures. Among them, 71% had only febrile seizures, 6% had afebrile seizures from the onset, and 22% developed afebrile seizures following febrile seizures. Most patients had seizures that were controllable with just 1 type of antiepileptic drug, but 18% had intractable seizures that must be treated with 3 medications.
Martin, J R; Stoner, G L
1984-11-01
Female mice were inoculated vaginally with the MS strain of herpes simplex virus type 2, and serially positive vaginal cultures were used to confirm infection. The proportion of mice infected and the mortality rate in infected mice decreased with increasing age. In mice 12 weeks old, clinical, neuropathologic, and virologic criteria defined four patterns of disease. Moribund mice had severe genital lesions, hindleg paralysis, and urinary and fecal retention, and most died during the second week of infection. These mice had a panmyelitis with a decreasing gradient of both viral antigen and lesions extending rostrally from the lumbosacral cord into the brain stem. Lesions were about equally distributed in gray and white matter and were characterized by neuronal loss and axonal demyelination, respectively. By contrast, mice with nonfatal infections had mild or no evident genital lesions and a small proportion had mild hindleg weakness. Of these, some mice had demyelinative lesions, particularly in the lower spinal cord but also at higher cord and brain stem levels, whereas others had leptomeningitis. Both of these groups had sacral sensory root abnormalities. A third group of survivors lacked both sensory root and central nervous system abnormalities. This report defines a broader spectrum of disease patterns following infection by a natural route than has been previously appreciated. It provides the first evidence that nonfatal herpes simplex virus type 2 infection by a peripheral route can produce central nervous system demyelination. It indicates that in aseptic meningitis with this agent, the route of virus spread to the central nervous system is neural and not hematogenous. Finally, the antigenic and pathologic observations presented here complement and confirm the virus isolation data and pathologic findings of others that genital herpes simplex virus type 2 infection causes ascending infection in the peripheral and central nervous system.
Peroxisomes are oxidative organelles.
Antonenkov, Vasily D; Grunau, Silke; Ohlmeier, Steffen; Hiltunen, J Kalervo
2010-08-15
Peroxisomes are multifunctional organelles with an important role in the generation and decomposition of reactive oxygen species (ROS). In this review, the ROS-producing enzymes, as well as the antioxidative defense system in mammalian peroxisomes, are described. In addition, various conditions leading to disturbances in peroxisomal ROS metabolism, such as abnormal peroxisomal biogenesis, hypocatalasemia, and proliferation of peroxisomes are discussed. We also review the role of mammalian peroxisomes in some physiological and pathological processes involving ROS that lead to mitochondrial abnormalities, defects in cell proliferation, and alterations in the central nervous system, alcoholic cardiomyopathy, and aging. Antioxid.
[P21-activated kinases and their role in the nervous system].
Qin, Yuan; Ding, Yue-Min; Xia, Qiang
2012-12-25
P21-activated kinases (PAK) participate in a variety of important cellular activities, such as cytoskeleton remodeling, cell migration, cell cycle regulation, and apoptosis or survival. PAK also has an important impact on brain development, neuronal differentiation, and regulation of synaptic plasticity in the nervous system. PAK abnormalities result in diseases including cancer, Parkinson's disease (PD), Alzheimer's disease (AD) and neural retardation. Therefore, it is of vital physiological significance to investigate the neuronal function of PAK. In this paper we review the advancement of research on the neuronal biological function and the underlying mechanisms of PAK.
Kaplan, L C
1985-12-01
While the warfarin embryopathy is well defined, central nervous system abnormalities associated with gestational warfarin exposure require further definition. Based on the timing of warfarin exposure in humans, it has been proposed that second- and third-trimester exposure predisposes to CNS abnormalities while first-trimester exposure more typically is associated with the warfarin embryopathy. A case is presented of a liveborn male with Dandy Walker malformation, agenesis of the corpus callosum, and Peter anomaly of the right eye who was exposed to warfarin between the 8th and 12th weeks of gestation who had none of the stigmata of the warfarin embryopathy. His is the first known case of exposure confined to the first trimester, and the fifth case of Dandy Walker malformation among a total of 15 CNS cases associated with this drug. This case offers evidence that Dandy Walker malformation may represent a distinct complication of in utero first-trimester exposure, and consideration of these particular abnormalities with exposure limited to a period prior to the known appearance of vitamin K-dependent clotting factors suggests that warfarin has a direct teratogenic effect on central nervous system morphogenesis.
Predictors of Outcome following Acquired Brain Injury in Children
ERIC Educational Resources Information Center
Johnson, Abigail R.; DeMatt, Ellen; Salorio, Cynthia F.
2009-01-01
Acquired brain injury (ABI) in children and adolescents can result from multiple causes, including trauma, central nervous system infections, noninfectious disorders (epilepsy, hypoxia/ischemia, genetic/metabolic disorders), tumors, and vascular abnormalities. Prediction of outcomes is important, to target interventions, allocate resources,…
A proposal to classify happiness as a psychiatric disorder.
Bentall, R P
1992-01-01
It is proposed that happiness be classified as a psychiatric disorder and be included in future editions of the major diagnostic manuals under the new name: major affective disorder, pleasant type. In a review of the relevant literature it is shown that happiness is statistically abnormal, consists of a discrete cluster of symptoms, is associated with a range of cognitive abnormalities, and probably reflects the abnormal functioning of the central nervous system. One possible objection to this proposal remains--that happiness is not negatively valued. However, this objection is dismissed as scientifically irrelevant. PMID:1619629
Arisawa, Hirohiko; Imai, Eiichi; Fujise, Nobuaki; Fukui, Kenji; Masunaga, Hiroaki
2002-01-01
A novel muscarinic receptor agonist, SNI-2011 ((+/-)-cis-2-methylspiro[1,3-oxathiolane-5,3'-quinuclidine] monohydrochloride hemihydrate, cevimeline, CAS 153504-70-2), is a candidate therapeutic drug for xerostomia in Sjögren's syndrome. The general pharmacological properties of this drug on general behavior and the central nervous system were investigated in mice, rats and cats. 1. General behavior: When SNI-2011 was administered orally to mice at 100 mg/kg, mydriasis, a decrease of spontaneous motor activity, tremor, convulsions, salivation, abnormal posture, abnormal gait, reduced grip strength and reduced response against external stimulating were observed, and 2 out of 6 animals died. At 10 mg/kg or lower, no particular sign was observed except mydriasis, which appeared to be caused via the peripheral muscarinic acetylcholine receptors. 2. Central nervous system: SNI-2011 had no effect on the motor coordination in mice. Hypothermia was observed in rats and reduced spontaneous motor activity, analgesia and enhanced maximum electroshock-induced convulsions were observed in mice after oral administration of 30 mg/kg SNI-2011. Slight increase in the rate of theta-wave band in the hippocampal EEG of rats and spinal multisynaptic reflexes in cats were observed after intravenous injection of 10 mg/kg SNI-2011. At an oral dose of 10 mg/kg, prolongation of thiopental-induced sleeping time in mice was observed. The prolongation of sleeping time was inhibited by a peripheral muscarinic antagonist. These results suggest that SNI-2011 has muscarinic effects on general behavior and the central nervous system at the doses approximately 10-fold higher than the effective doses needed for saliva secretion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roizin, L.; Orlovskaja, D.; Liu, J.C.
A survey of the literature to date on the enzyme histochemistry of intracellular organelles has not yielded any reference to the presence of acid phosphatase reaction products in the mammalian mitochondria of the central nervous system. A combination of Gomori's acid phosphatase method, however, with standard electron microscopy has disclosed the presence of enzyme reaction products in the mitochondria of the central nervous system of rats from 2 hr to 22 weeks after x-ray irradiation, as well as in a cerebral biopsy performed on a patient affected by Huntington's chorea. No enzyme reaction products, on the other hand, were observedmore » in serial sections that had been incubated in substrates either containing sodium fluoride or lacking in $beta$- glycerophosphate. The abnormal mitochondrial enzyme reaction (chemical lesion) is considered to be the consequence of the pathologic process affecting the ultrastructural-chemical organization of the organelle. (auth)« less
Autonomic Impairment in Borderline Personality Disorder: A Laboratory Investigation
ERIC Educational Resources Information Center
Weinberg, Anna; Klonsky, E. David; Hajcak, Greg
2009-01-01
Recent research suggests that emotional dysfunction in psychiatric disorders can be reflected in autonomic abnormalities. The present study examines sympathetic and parasympathetic autonomic nervous system activity in individuals with Borderline Personality Disorder (BPD) before, during, and following a social stressor task. Data were obtained…
Environmental Complexity and Central Nervous System Development and Function
ERIC Educational Resources Information Center
Lewis, Mark H.
2004-01-01
Environmental restriction or deprivation early in development can induce social, cognitive, affective, and motor abnormalities similar to those associated with autism. Conversely, rearing animals in larger, more complex environments results in enhanced brain structure and function, including increased brain weight, dendritic branching,…
Cardiac Dysautonomia in Huntington's Disease.
Abildtrup, Mads; Shattock, Michael
2013-01-01
Huntington's disease is a fatal, hereditary, neurodegenerative disorder best known for its clinical triad of progressive motor impairment, cognitive deficits and psychiatric disturbances. Although a disease of the central nervous system, mortality surveys indicate that heart disease is a leading cause of death. The nature of such cardiac abnormalities remains unknown. Clinical findings indicate a high prevalence of autonomic nervous system dysfunction - dysautonomia - which may be a result of pathology of the central autonomic network. Dysautonomia can have profound effects on cardiac health, and pronounced autonomic dysfunction can be associated with neurogenic arrhythmias and sudden cardiac death. Significant advances in the knowledge of neural mechanisms in cardiac disease have recently been made which further aid our understanding of cardiac mortality in Huntington's disease. Even so, despite the evidence of aberrant autonomic activity the potential cardiac consequences of autonomic dysfunction have been somewhat ignored. In fact, underlying cardiac abnormalities such as arrhythmias have been part of the exclusion criteria in clinical autonomic Huntington's disease research. A comprehensive analysis of cardiac function in Huntington's disease patients is warranted. Further experimental and clinical studies are needed to clarify how the autonomic nervous system is controlled and regulated in higher, central areas of the brain - and how these regions may be altered in neurological pathology, such as Huntington's disease. Ultimately, research will hopefully result in an improvement of management with the aim of preventing early death in Huntington's disease from cardiac causes.
Teasell, Robert W; Arnold, J Malcolm O
2004-01-01
The pathophysiology of the pain associated with complex regional pain syndrome, spinal cord injury and diabetic peripheral neuropathy is not known. The pain of complex regional pain syndrome has often been attributed to abnormal sympathetic nervous system activity based on the presence of vasomotor instability and a frequently reported positive response, albeit a temporary response, to sympathetic blockade. In contrast, the pain below the level of spinal cord injury and diabetic peripheral neuropathy are generally seen as deafferentation phenomena. Each of these pain states has been associated with abnormal sympathetic nervous system function and increased peripheral alpha-1 adrenoceptor activity. This increased responsiveness may be a consequence of alpha-1 adrenoceptor postsynaptic hypersensitivity, or alpha-2 adrenoceptor presynaptic dysfunction with diminished noradrenaline reuptake, increased concentrations of noradrenaline in the synaptic cleft and increased stimulation of otherwise normal alpha-1 adrenoceptors. Plausible mechanisms based on animal research by which alpha-1 adrenoceptor hyperresponsiveness can lead to chronic neuropathic-like pain have been reported. This raises the intriguing possibility that sympathetic nervous system dysfunction may be an important factor in the generation of pain in many neuropathic pain states. Although results to date have been mixed, there may be a greater role for new drugs which target peripheral alpha-2 adrenoceptors (agonists) or alpha-1 adrenoceptors (antagonists).
Abnormalities of the QT interval in primary disorders of autonomic failure
NASA Technical Reports Server (NTRS)
Choy, A. M.; Lang, C. C.; Roden, D. M.; Robertson, D.; Wood, A. J.; Robertson, R. M.; Biaggioni, I.
1998-01-01
BACKGROUND: Experimental evidence shows that activation of the autonomic nervous system influences ventricular repolarization and, therefore, the QT interval on the ECG. To test the hypothesis that the QT interval is abnormal in autonomic dysfunction, we examined ECGs in patients with severe primary autonomic failure and in patients with congenital dopamine beta-hydroxylase (DbetaH) deficiency who are unable to synthesize norepinephrine and epinephrine. SUBJECTS AND METHODS: Maximal QT and rate-corrected QT (QTc) intervals and adjusted QTc dispersion [(maximal QTc - minimum QTc on 12 lead ECG)/square root of the number of leads measured] were determined in blinded fashion from ECGs of 67 patients with primary autonomic failure (36 patients with multiple system atrophy [MSA], and 31 patients with pure autonomic failure [PAF]) and 17 age- and sex-matched healthy controls. ECGs of 5 patients with congenital DbetaH deficiency and 6 age- and sex-matched controls were also analyzed. RESULTS: Patients with MSA and PAF had significantly prolonged maximum QTc intervals (492+/-58 ms(1/2) and 502+/-61 ms(1/2) [mean +/- SD]), respectively, compared with controls (450+/-18 ms(1/2), P < .05 and P < .01, respectively). A similar but not significant trend was observed for QT. QTc dispersion was also increased in MSA (40+/-20 ms(1/2), P < .05 vs controls) and PAF patients (32+/-19 ms(1/2), NS) compared with controls (21+/-5 ms(1/2)). In contrast, patients with congenital DbetaH deficiency did not have significantly different RR, QT, QTc intervals, or QTc dispersion when compared with controls. CONCLUSIONS: Patients with primary autonomic failure who have combined parasympathetic and sympathetic failure have abnormally prolonged QT interval and increased QT dispersion. However, QT interval in patients with congenital DbetaH deficiency was not significantly different from controls. It is possible, therefore, that QT abnormalities in patients with primary autonomic failure are not solely caused by lesions of the sympathetic nervous system, and that the parasympathetic nervous system is likely to have a modulatory role in ventricular repolarization.
Friedler, Jordana Mashiach; Mazor, Moshe; Shoham-Vardi, Ilana; Bashiri, Asher
2011-11-01
To determine whether fetuses affected by either chromosomal abnormalities or central nervous system (CNS) malformations are prone to complications during pregnancy and delivery. In this study, 320 singleton pregnancies with CNS malformations and 133 singleton pregnancies with chromosomal abnormaLities were compared with 149,112 singleton births without any known congenital anomalies. Exclusion criteria were: births with other congenital anomalies or malformations, pregnancies Lacking prenatal care and multiple pregnancies. Data was obtained using the computerized birth discharge records. The statistical analysis was performed with the SPSS package. There were no statistically significant differences in maternal age, ethnicity, uterine anomalies or parity. The ratio of general anesthesia was almost double in the study groups compared to the control group: 25% in the CNS malformation group (RR 2.617, CI 2.031-3.372) and 25.6% in the chromosomal abnormality group (RR 2.696, CI 1.825-3.982) and 11.3% in the control group (p < 0.001). There were nearly double cesarean sections (CS) rates in both study groups: 21.5% in the CNS malformation group, 20.3% in the chromosomal abnormaLity group and 12% in the control group. A logistic regression model that included previous CS, maLpresentation, non-reassuring fetal heart monitor (NRFHR) and presence of a malformation, concluded that the presence of a malformation was not an independent risk factor for CS. However, indirect causes, such as malpresentation (4.34 OR), were independently associated with the malformations. Fetuses affected by either CNS malformations or chromosomal abnormalities have a higher rate of pregnancy and delivery complications, including those which increase the risk of maternal morbidity and mortality.
Need for multi-diagnostic approaches before considering treatment in obstructive sleep apnea.
Guilleminault, C; Mondini, S
1983-01-01
To choose an appropriate therapeutic treatment for obstructive sleep apnea syndrome (OSAS) depends on accurately diagnosing the underlying problems that lead to the disease. Evaluating local anatomical problems is critical. New techniques, such as imaging, permit us to do this more effectively. Appreciating the involvement of the central nervous system (CNS) in a fully developed syndrome is also important. Abnormal stimulation of the autonomic nervous system can be evaluated easily with a Holter ECG. Recognizing that OSAS is a multi-faceted problem whose various symptoms interact and aggravate one another helps to explain why treatments may not be immediately effective.
METHYLMERCURY BUT NOT MERCURIC CHLORIDE INDUCES APOPTOTIC CELL DEATH IN PC12 CELLS.
Normal development of the nervous system requires the process of apoptosis, a form of programmed cell death, to remove superfluous neurons. Abnormal patterns of apoptosis may be a consequence of exposure to environmental neurotoxicants leading to a disruption in the tightly regul...
Prader-Willi Disease: A Case Study.
ERIC Educational Resources Information Center
Forbus, William R., III
A case study focuses on the characteristics and physical management of a 15-year-old with Prader-Willi Syndrome, a birth defect associated with hypotonia, insatiable appetite, hypogonadism, central nervous system dysfunction, and abnormal growth and development . A literature review addresses studies dealing with behavior modification of obesity…
Biochemical abnormalities in neonatal seizures.
Sood, Arvind; Grover, Neelam; Sharma, Roshan
2003-03-01
The presence of seizure does not constitute a diagnoses but it is a symptom of an underlying central nervous system disorder due to systemic or biochemical disturbances. Biochemical disturbances occur frequently in the neonatal seizures either as an underlying cause or as an associated abnormality. In their presence, it is difficult to control seizure and there is a risk of further brain damage. Early recognition and treatment of biochemical disturbances is essential for optimal management and satisfactory long term outcome. The present study was conducted in the department of pediatrics in IGMC Shimla on 59 neonates. Biochemical abnormalities were detected in 29 (49.15%) of cases. Primary metabolic abnormalities occurred in 10(16.94%) cases of neonatal seizures, most common being hypocalcaemia followed by hypoglycemia, other metabolic abnormalities include hypomagnesaemia and hyponateremia. Biochemical abnormalities were seen in 19(38.77%) cases of non metabolic seizure in neonates. Associated metabolic abnormalities were observed more often with Hypoxic-ischemic-encephalopathy (11 out of 19) cases and hypoglycemia was most common in this group. No infant had hyponateremia, hyperkelemia or low zinc level.
MR Imaging of the Diabetic Foot.
McCarthy, Eoghan; Morrison, William B; Zoga, Adam C
2017-02-01
Abnormalities of the peripheral nervous, vascular, and immune systems contribute to the development of numerous foot and ankle pathologies in the diabetic population. Although radiographs remain the most practical first-line imaging tool, magnetic resonance (MR) is the tertiary imaging modality of choice, allowing for optimal assessment of bone and soft tissue abnormalities. MR allows for the accurate distinction between osteomyelitis/septic arthritis and neuropathic osteoarthropathy. Furthermore, it provides an excellent presurgical anatomic road map of involved tissues and devitalized skin to ensure successful limited amputations when required. Signal abnormality in the postoperative foot aids in the diagnosis of recurrent infection. Copyright © 2016 Elsevier Inc. All rights reserved.
Effects of Early Seizures on Later Behavior and Epileptogenicity
ERIC Educational Resources Information Center
Holmes, Gregory L.
2004-01-01
Both clinical and laboratory studies demonstrate that seizures early in life can result in permanent behavioral abnormalities and enhance epileptogenicity. Understanding the critical periods of vulnerability of the developing nervous system to seizure-induced changes may provide insights into parallel or divergent processes in the development of…
Language and Development in FG Syndrome with Callosal Agenesis.
ERIC Educational Resources Information Center
McCardle, Peggy; Wilson, Bruce
1993-01-01
The FG syndrome is characterized by unusual facies; sudden infant death; developmental delay; and abnormalities of the cardiac, gastrointestinal, and central nervous systems. Serial evaluations of one case with isolated agenesis of the corpus callosum found consistent patterns over time in specific language impairments in syntactic and…
Fetal Alcohol Spectrum Disorders and Abnormal Neuronal Plasticity
Medina, Alexandre E.
2012-01-01
The ingestion of alcohol during pregnancy can result in a group of neurobehavioral abnormalities collectively known as fetal alcohol spectrum disorders (FASD). During the past decade, studies using animal models indicated that early alcohol exposure can dramatically affect neuronal plasticity, an essential property of the central nervous system responsible for the normal wiring of the brain and involved in processes such as learning and memory. The abnormalities in neuronal plasticity caused by alcohol can explain many of the neurobehavioral deficits observed in FASD. Conversely, improving neuronal plasticity may have important therapeutic benefits. In this review, the author discuss the mechanisms that lead to these abnormalities and comment on recent pharmacological approaches that have been showing promising results in improving neuronal plasticity in FASD. PMID:21383101
Verheij, Johanna B G M; Sival, Deborah A; van der Hoeven, Johannes H; Vos, Yvonne J; Meiners, Linda C; Brouwer, Oebele F; van Essen, Anthonie J
2006-01-01
Shah-Waardenburg syndrome is a rare congenital disorder with variable clinical expression, characterised by aganglionosis of the rectosigmoïd (Hirschsprung disease), and abnormal melanocyte migration, resulting in pigmentary abnormalities and sensorineural deafness (Waardenburg syndrome). Mutations in the EDN, EDNRB and SOX10 genes can be found in patients with this syndrome. SOX10 mutations are specifically associated with a more severe phenotype called PCWH: peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, Waardenburg syndrome, and Hirschsprung disease. Neuronal expression of SOX10 occurs in neural crest cells during early embryonic development and in glial cells of the peripheral and central nervous systems during late embryonic development and in adults. We present a 4-year-old girl with the PCWH phenotype associated with a de novo nonsense mutation (S384X) in SOX10. Main clinical features were mental retardation, peripheral neuropathy, deafness, Hirschsprung disease, distal arthrogryposis, white hairlock, and growth retardation. She presented with hypotonia, developmental delay, reduced peripheral nerve conduction velocities, and radiologically assessed central hypomyelination. Subsequently, the formation of abnormal myelin within the central and peripheral nervous system was functionally and radiologically assessed. Children presenting with features of Waardenburg syndrome and neurological dysfunction should be tested for mutations in the SOX10 gene to enable diagnosis and counselling.
[Phakomatosis pigmento-vascularis. Report of 2 cases associated with angiodysplasia].
Peyron, N; Dereure, O; Bessis, D; Guilhou, J J; Guillot, B
1993-01-01
Phakomatosis pigmentovascularis is an uncommon disease, with a peculiar association of capillary hemangioma and pigmented lesions. Four entities have to date been described (I to IV), with localized (a) or systematical (b) involvement. In this latter subtype, the cutaneous lesions are associated with visceral (eye, central nervous system) and bony abnormalities. We describe two additional cases of phakomatosis pigmentovascularis type II (b) associated with a Klippel-Trenaunay syndrome. These reports emphasize the frequent occurrence of angiodysplasia of the Klippel-Trenaunay or Sturge-Weber-Krabbe type in the systemic subtype, especially II (b). Accordingly, complete investigations are warranted in all cases, with special attention for bones and some internal organs like eye and central nervous system. Pathophysiological hypothesis for phakomatosis pigmentovascularis are discussed.
Tanaka, S; Kuriyama, I; Nakai, T; Miyazaki, T
2003-02-01
Piscine nodaviruses (betanodaviruses) have been tentatively divided into four genotypes (SJNNV, RGNNV, TPNNV and BFNNV) and it is suggested that host specificity is different among these genotypes. In the present study, a betanodavirus [sevenband grouper nervous necrosis virus (SGNNV)] belonging to the redspotted grouper nervous necrosis virus (RGNNV) genotype, to which most betanodaviruses from warm water fish are identified, was evaluated for its pathogenicity to hatchery-reared juveniles of several marine fish species. When challenged with the virus by a bath method (10(5.1) TCID50 mL(-1)), sevenband grouper, Epinephelus septemfasciatus, Japanese flounder, Paralichthys olivaceus, and tiger puffer, Takifugu rubripes, displayed behavioural abnormalities and mortalities with distinct histopathological signs of viral nervous necrosis and heavily immunostained cells were observed in the central nervous tissues and retina. Bath-challenged rock fish, Sebastiscus marmoratus, and a hybrid of sevenband grouper and kelp grouper, E. moara, did not display any behavioural abnormality or mortality during the experimental period, although many fish showed slight signs of viral infection in nerve cells. Kelp grouper and red sea bream, Pagrus major, showed no behavioural abnormality, mortality or immunohistopathological changes after the virus challenge. These results are, in part, consistent with the natural host range of RGNNV, indicating the complexity in the host specificity of betanodaviruses.
Metronidazole-induced central nervous system toxicity: a systematic review.
Kuriyama, Akira; Jackson, Jeffrey L; Doi, Asako; Kamiya, Toru
2011-01-01
To assess patient and medication factors that contribute to metronidazole toxicity. We searched PUBMED from 1965 through April 7, 2011, and performed a hand search of bibliographies. Case reports or case series reporting metronidazole-induced central nervous toxicity. Two authors independently abstracted demographics, metronidazole indication, dose and duration, neurological manifestations, and outcomes as well as brain imaging findings. Among 64 patients, 48 (77%) had cerebellar dysfunction, 21 (33%) had altered mental status, and 8 (15%) had seizures. Patients' ages averaged 53.3 years (range, 12-87 years), and 64% were male. The median duration of metronidazole was 54 days, although 26% had taken it less than a week and 11% had taken it less than 72 hours. Among cases with outcome data, most patients either improved (n = 18 [29%]) or had complete resolution of their symptoms with discontinuation of metronidazole (n = 41 [65%]). There was no difference in resolution of symptom by age (P = 0.71) or sex (P = 0.34). The patients with cerebellar dysfunction were less likely to experience complete resolution than those with mental status changes or seizures (relative risk, 0.67; 95% confidence interval (CI), 0.49-0.92). Nearly all patients (n = 55 [86%]) underwent imaging of the brain: 44 (69%) underwent magnetic resonance imaging (MRI) and 12 (19%) underwent computed tomographic studies. All patients with cerebellar dysfunction had abnormalities on imaging: 93% (n = 39) had a cerebellar lesion, although numerous areas in the brain were affected. On follow-up MRIs, 25 patients (83%) had complete resolution of abnormalities. Metronidazole can rarely cause central nervous system toxicity; it does not seem to be a dose- or duration-related phenomenon. Most patients will have MRI abnormalities. Prognosis is excellent with metronidazole cessation.
Burwell, R G; Dangerfield, P H; Freeman, B J C
2008-01-01
There is no generally accepted scientific theory for the causes of adolescent idiopathic scoliosis (AIS). In recent years encouraging advances thought to be related to the pathogenesis of AIS have been made in several fields. After reviewing concepts of AIS pathogenesis we formulated a collective model of pathogenesis. The central concept of this collective model is a normal neuro-osseous timing of maturation (NOTOM) system operating in a child's internal world during growth and maturation; this provides a dynamic physiological balance of postural equilibrium continuously renewed between two synchronous, polarized processes (NOTOM escalator) linked through sensory input and motor output, namely: 1) osseous escalator-increasing skeletal size and relative segmental mass, and 2) neural escalator - including the CNS body schema. The latter is recalibrated continuously as the body adjusts to biomechanical and kinematic changes resulting from skeletal enlargement, enabling it to coordinate motor actions. We suggest that AIS progression results from abnormality of the neural and/or osseous components of these normal escalator in time and/or space - as asynchrony and/or asymmetries - which cause a failure of neural systems to control asymmetric growth of a rapidly enlarging and moving adolescent spine. This putative initiating asymmetric growth in the spine is explained in separate papers as resulting from dysfunction of the hypothalamus expressed through the sympathetic nervous system (leptin-sympathetic nervous system concept for AIS pathogenesis). In girls, the expression of AIS may result from disharmony between the somatic and autonomic nervous systems - relative postural maturational delay in the somatic nervous system and hypothalamic dysfunction in the autonomic nervous system, with the conflict being fought out in the spine and trunk of the girl and compounded by biomechanical spinal growth modulation.
Does gravity influence the early stages of the development of the nervous system in an amphibian?
Duprat, A M; Husson, D; Gualandris-Parisot, L
1998-11-01
As a result of previous studies using hypergravity (centrifuge) or virtual microgravity (clinostat), it was proposed that gravity was involved in embryonic development, i.e., in the establishment of the embryonic polarities and the body plan pattern which subsequently direct morphogenesis and organogenesis of the central nervous system and of sensory organs. Recent experiments were performed in space using sounding rockets and orbiting space-modules to ascertain whether gravity is indeed required for embryogenesis in Invertebrates and Vertebrates. Eggs fertilised in vivo or in vitro in microgravity showed some abnormalities during embryonic development but were able to regulate and produce nearly normal larvae. Copyright 1998 Elsevier Science B.V.
Adachi, Kristina; Song, Sophie X; Kao, Roy L; Van Dyne, Elizabeth; Kempert, Pamela; Deville, Jaime G
2016-08-01
A 19-year-old girl with a history of precursor B acute lymphoblastic leukemia in remission presented with fever, headache, and a skin rash. Cerebrospinal fluid (CSF) examination reported pleocytosis with blast-like cells concerning for a central nervous system leukemic relapse. After the patient showed significant improvement on intravenous acyclovir, a repeat lumbar puncture revealed normalization of CSF. The abnormal CSF cells were reviewed and ultimately determined to be activated and atypical lymphocytes. The patient recovered uneventfully. Atypical lymphocytes resembling leukemic blasts are an unusual finding in viral meningitis. Varicella zoster virus reactivation should be considered during initial evaluation for central nervous system relapse of leukemia.
Crosstalk between cancer and the neuro-immune system.
Kuol, Nyanbol; Stojanovska, Lily; Apostolopoulos, Vasso; Nurgali, Kulmira
2018-02-15
In the last decade, understanding of cancer initiation and progression has been given much attention with studies mainly focusing on genetic abnormalities. Importantly, cancer cells can influence their microenvironment and bi-directionally communicate with other systems such as the immune system. The nervous system plays a fundamental role in regulating immune responses to a range of disease states including cancer. Its dysfunction influences the progression of cancer. The role of the immune system in tumor progression is of relevance to the nervous system since they can bi-directionally communicate via neurotransmitters and neuropeptides, common receptors, and, cytokines. However, cross-talk between these cells is highly complex in nature, and numerous variations are possible according to the type of cancer involved. The neuro-immune interaction is essential in influencing cancer development and progression. Copyright © 2017 Elsevier B.V. All rights reserved.
GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system
Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D.; Baba, Hiroko; Ikenaka, Kazuhiro
2017-01-01
Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy. PMID:28186137
GlcNAc6ST-1 regulates sulfation of N-glycans and myelination in the peripheral nervous system.
Yoshimura, Takeshi; Hayashi, Akiko; Handa-Narumi, Mai; Yagi, Hirokazu; Ohno, Nobuhiko; Koike, Takako; Yamaguchi, Yoshihide; Uchimura, Kenji; Kadomatsu, Kenji; Sedzik, Jan; Kitamura, Kunio; Kato, Koichi; Trapp, Bruce D; Baba, Hiroko; Ikenaka, Kazuhiro
2017-02-10
Highly specialized glial cells wrap axons with a multilayered myelin membrane in vertebrates. Myelin serves essential roles in the functioning of the nervous system. Axonal degeneration is the major cause of permanent neurological disability in primary myelin diseases. Many glycoproteins have been identified in myelin, and a lack of one myelin glycoprotein results in abnormal myelin structures in many cases. However, the roles of glycans on myelin glycoproteins remain poorly understood. Here, we report that sulfated N-glycans are involved in peripheral nervous system (PNS) myelination. PNS myelin glycoproteins contain highly abundant sulfated N-glycans. Major sulfated N-glycans were identified in both porcine and mouse PNS myelin, demonstrating that the 6-O-sulfation of N-acetylglucosamine (GlcNAc-6-O-sulfation) is highly conserved in PNS myelin between these species. P 0 protein, the most abundant glycoprotein in PNS myelin and mutations in which at the glycosylation site cause Charcot-Marie-Tooth neuropathy, has abundant GlcNAc-6-O-sulfated N-glycans. Mice deficient in N-acetylglucosamine-6-O-sulfotransferase-1 (GlcNAc6ST-1) failed to synthesize sulfated N-glycans and exhibited abnormal myelination and axonal degeneration in the PNS. Taken together, this study demonstrates that GlcNAc6ST-1 modulates PNS myelination and myelinated axonal survival through the GlcNAc-6-O-sulfation of N-glycans on glycoproteins. These findings may provide novel insights into the pathogenesis of peripheral neuropathy.
Littlewood, Chris; Malliaras, Peter; Bateman, Marcus; Stace, Richmond; May, Stephen; Walters, Stephen
2013-12-01
Tendinopathy is a term used to describe a painful tendon disorder but despite being a well-recognised clinical presentation, a definitive understanding of the pathoaetiology of rotator cuff tendinopathy remains elusive. Current explanatory models, which relate to peripherally driven nocioceptive mechanisms secondary to structural abnormality, or failed healing, appear inadequate on their own in the context of current literature. In light of these limitations this paper presents an extension to current models that incorporates the integral role of the central nervous system in the pain experience. The role of the central nervous system (CNS) is described and justified along with a potential rationale to explain the favourable response to loaded therapeutic exercises demonstrated by previous studies. This additional consideration has the potential to offer a useful way to explain pain to patients, for clinicians to prescribe appropriate therapeutic management strategies and for researchers to advance knowledge in relation to this clinically challenging problem. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, X; Li, Y; Zhang, X; Duan, Z; Zhu, J
2015-01-01
The colorectum (late distal colon) is innervated by the sympathetic nervous system, and many colorectal diseases are related to disorders of the sympathetic nervous system. The sympathetic regulation of colorectal ion transport is rarely reported. The present study aims to investigate the effect of norepinephrine (NE) in the normal and catecholamine-depleted condition to clarify the regulation of the sympathetic adrenergic system in ion transport in the rat colorectum. NE-induced ion transport in the rats colorectum was measured by short-circuit current (I(sc)) recording; the expression of beta-adrenoceptors and NE transporter (NET) were quantified by real-time PCR, and western blotting. When the endogenous catecholamine was depleted by reserpine, the baseline I(sc) in the colorectum was increased significantly comparing to controls. NE evoked downward deltaI(sc) in colorectum of treated rats was 1.8-fold of controls. The expression of beta(2)-adrenoceptor protein in the colorectal mucosa was greater than the control, though the mRNA level was reduced. However, NET expression was significantly lower in catecholamine-depleted rats compared to the controls. In conclusion, the sympathetic nervous system plays an important role in regulating basal ion transport in the colorectum. Disorders of sympathetic neurotransmitters result in abnormal ion transport, beta-adrenoceptor and NET are involved in the process.
Local and Systemic Effects of Unpolymerised Monomers
Gosavi, Sulekha Siddharth; Gosavi, Siddharth Yuvraj; Alla, Rama Krishna
2010-01-01
Methyl methacrylate (MMA), a widely used monomer in dentistry and medicine has been reported to cause abnormalities or lesions in several organs. Experimental and clinical studies have documented that monomers may cause a wide range of adverse health effects such as irritation to skin, eyes, and mucous membranes, allergic dermatitis, stomatitis, asthma, neuropathy, disturbances of the central nervous system, liver toxicity, and fertility disturbances. PMID:22013462
A transfectant RK13 cell line permissive to classical caprine scrapie prion propagation
USDA-ARS?s Scientific Manuscript database
Classical scrapie is a form of transmissible spongiform encephalopathies (TSE) affecting domestic goats and sheep and disease is characterized by the accumulation of abnormal conformational isoform (PrP-Sc) of normal cellular prion protein (PrP-C) in the central nervous system and, in most cases, ly...
Klippel-Feil syndrome and Dandy-Walker malformation.
Karaman, A; Kahveci, H
2011-01-01
The Klippel-Feil deformity is a complex of osseous and visceral anomalies, which include low hairline, platybasia, fused cervical vertebrae with a short neck, and deafness. Associated central nervous system abnormalities include occipital cephalocele, Chiari I malformation, syrinx, microcephaly, and hydrocephalus. Herein, we report a case with Klippel-Feil syndrome and Dandy-Walker malformation.
Severe Neurologic Disorders in 2 Fetuses with Zika Virus Infection, Colombia.
Acosta-Reyes, Jorge; Navarro, Edgar; Herrera, Maria José; Goenaga, Eloina; Ospina, Martha L; Parra, Edgar; Mercado, Marcela; Chaparro, Pablo; Beltran, Mauricio; Gunturiz, Maria Luz; Pardo, Lissethe; Valencia, Catalina; Huertas, Sandra; Rodríguez, Jorge; Ruiz, Germán; Valencia, Diana; Haddad, Lisa B; Tinker, Sarah C; Moore, Cynthia A; Baquero, Hernando
2017-06-01
We report the results of pathologic examinations of 2 fetuses from women in Colombia with Zika virus infection during pregnancy that revealed severe central nervous system defects and potential associated abnormalities of the eye, spleen, and placenta. Amniotic fluid and tissues from multiple fetal organs tested positive for Zika virus.
Glyburide - Novel Prophylaxis and Effective Treatment for Traumatic Brain Injury
2010-08-01
tested for incremental lear ning and for rapid lear ning. Incremental learning was significantly abnormal on days 14–18, as were the memory probe and...Computational biology - modeling of primary blast effects on the central nervous system. Neuroimage. 47 Suppl 2, T10-T20. MOSS,W.C., KING ,M.J., and
Severe Neurologic Disorders in 2 Fetuses with Zika Virus Infection, Colombia
Navarro, Edgar; Herrera, Maria José; Goenaga, Eloina; Ospina, Martha L.; Parra, Edgar; Mercado, Marcela; Chaparro, Pablo; Beltran, Mauricio; Gunturiz, Maria Luz; Pardo, Lissethe; Valencia, Catalina; Huertas, Sandra; Rodríguez, Jorge; Ruiz, Germán; Valencia, Diana; Haddad, Lisa B.; Tinker, Sarah C.; Moore, Cynthia A.; Baquero, Hernando
2017-01-01
We report the results of pathologic examinations of 2 fetuses from women in Colombia with Zika virus infection during pregnancy that revealed severe central nervous system defects and potential associated abnormalities of the eye, spleen, and placenta. Amniotic fluid and tissues from multiple fetal organs tested positive for Zika virus. PMID:28296632
Auditory Habituation in the Fetus and Neonate: An fMEG Study
ERIC Educational Resources Information Center
Muenssinger, Jana; Matuz, Tamara; Schleger, Franziska; Kiefer-Schmidt, Isabelle; Goelz, Rangmar; Wacker-Gussmann, Annette; Birbaumer, Niels; Preissl, Hubert
2013-01-01
Habituation--the most basic form of learning--is used to evaluate central nervous system (CNS) maturation and to detect abnormalities in fetal brain development. In the current study, habituation, stimulus specificity and dishabituation of auditory evoked responses were measured in fetuses and newborns using fetal magnetoencephalography (fMEG). An…
Signals for glucagon secretion.
Bloom, S R
1977-01-01
The normal physiological role of glucagon is in controlling hepatic glucose output. Glucagon subserves the role of homeostasis by maintaining plasma glucose and of a stress hormone by producing hyperglycaemia. While control of glucagon release by circulating metabolites and also other hormones is clearly important, it seems likely that the nervous system exerts an over-riding influence. The parasympathetic nervous system maintains homeostasis and the sympathetic acts in stress. Glucagon levels are found to be high in cirrhosis and also after acute hepatic failure. It is likely that these changes in glucagon concentration are secondary to metabolic abnormalities. While some glucagon is cleared by the liver, a similar clearance is seen by many other tissues and it is not likely that the elevation of glucagon seen in liver failure is due solely to a gross deficiency of glucagon clearance. No liver abnormality is seen in the glucagonoma syndrome, where glucagon concentration are chronically high, or in patients who have had a total pancreatectomy, where plasma glucagon is undetectably low. It thus seems unlikely that liver mass is importantly controlled by glucagon.
Saitoh, Yurika; Ohno, Nobuhiko; Yamauchi, Junji; Sakamoto, Takeharu; Terada, Nobuo
2017-12-01
We previously demonstrated that a membrane skeletal molecular complex, 4.1G-membrane palmitoylated protein 6 (MPP6)-cell adhesion molecule 4, is incorporated in Schwann cells in the peripheral nervous system (PNS). In this study, we evaluated motor activity and myelin ultrastructures in 4.1G-deficient (-/-) mice. When suspended by the tail, aged 4.1G -/- mice displayed spastic leg extension, especially after overwork. Motor-conduction velocity in 4.1G -/- mice was slower than that in wild-type mice. Using electron microscopy, 4.1G -/- mice exhibited myelin abnormalities: myelin was thicker in internodes, and attachment of myelin tips was distorted in some paranodes. In addition, we found a novel function of 4.1G for sorting a scaffold protein, Lin7, due to disappearance of the immunolocalization and reduction of the production of Lin7c and Lin7a in 4.1G -/- sciatic nerves, as well as the interaction of MPP6 and Lin7 with immunoprecipitation. Thus, we herein propose 4.1G functions as a signal for proper formation of myelin in PNS.
Gajewska, Ewa; Sobieska, Magdalena; Samborski, Włodzimierz
2006-01-01
This work presents two diagnostic methods which were used to examine 57 children during their first three months of life. By classifying abnormalities of central nervous coordination we compared seven postural reactions according to Vojta with spontaneous behaviour of the child according to Munich Functional Development Diagnostics. It was demonstrated that both methods for the detection of early lesions in the central nervous system are sensitive. Good coherence of the results suggests that both methods may be used interchangeably.
Zając-Spychała, Olga; Wachowiak, Jacek
2012-01-01
Acute lymphoblastic leukemia is the most common malignancy in children. All current therapy regimens used in the treatment of childhood acute lymphoblastic leukemia include prophylaxis of the central nervous system. Initially it was thought that the best way of central nervous system prophylaxis is radiotherapy. But despite its effectiveness this method, may cause late sequelae and complications. In the programme currently used in Poland to treat acute lymphoblastic leukemia, prophylactic radiotherapy has been reduced by 50% (12 Gy) and is used only in patients stratified into the high risk group and in patients diagnosed as T-cell ALL (T-ALL). Complementary to radiotherapy, intrathecal methotrexate is given alone or in combination with cytarabine and hydrocortisone is given, as well as systemic chemotherapy with intravenous methotrexate is administered in high or medium doses (depending on risk groups and leukemia immunophenotype). Recent studies have shown that high dose irradiation of the central nervous system impairs cognitive development causing memory loss, visuomotor coordination impairment, attention disorders and reduction in the intelligence quotient. It has been proved that the degree of cognitive impairment depends on the radiation dose directed to the medial temporal lobe structures, particularly in the hippocampus and the surrounding cortex. Also, methotrexate used intravenously in high doses, interferes with the metabolism of folic acid which is necessary for normal development and the optimal functioning of neurons in the central nervous system. It has been proved that patients who have been treated with high doses of methotrexate are characterized by reduced memory skills and a lower intelligence quotient. The literature data concerning long term neuroanatomical abnormalities and neuropsychological deficits are ambiguous, and there is still no data concerning current methods of central nervous system prophylaxis with low doses of irradiation in combination with high doses of intravenous methotrexate.
Yoon, Byung-Hak; Lee, Jae Hyup; Na, Kyuheum; Ahn, Chihoon; Cho, Jongho; Ahn, Hyun Chan; Choi, Jungyoun; Oh, Hyosun; Kim, Byong Moon; Choe, Senyon
2018-01-01
The purpose of this study was to determine the effects of a single intravenous injection of a novel osteoinductive material, activin A/BMP-2 (AB204), to rodents on toxicity and their respiratory functions and central nervous system (CNS). A single intravenous injection of AB204 was given to Sprague–Dawley (SD) rats in doses of 0, 0.625, 2.5 and 10 mg/kg to observe the mortality rate, the general symptoms for 14 days. The experimental groups were also given 0.2, 0.4 and 0.8 mg/kg of AB204, respectively, and the respiration rate, the tidal volume and the minute volume were measured for 240 min. The experimental groups of imprinting control region (ICR) mice were given a single intravenous injection of 0.2, 0.4 and 0.8 mg/kg of AB204, respectively. Their body temperature was taken and general behaviors were observed to evaluate the effect of AB204 on the CNS for 240 min. The study on toxicity of a single intravenous injection found no death or abnormal symptoms, abnormal findings from autopsy, or abnormal body weight gain or loss in all the experimental groups. No abnormal variation associated with the test substance was observed in the respiration rate, the tidal volume, the minute volume, body temperature or the general behaviors. On the basis of these results, the approximate lethal dose of AB204 for a single intravenous injection exceeds 10 mg/kg for SD rats and a single intravenous injection of ≤0.8 mg/kg AB204 has no effect on their respiratory system for SD rat and no effect on their CNS for ICR mice. PMID:26446865
Yoon, Byung-Hak; Lee, Jae Hyup; Na, Kyuheum; Ahn, Chihoon; Cho, Jongho; Ahn, Hyun Chan; Choi, Jungyoun; Oh, Hyosun; Kim, Byong Moon; Choe, Senyon
2016-01-01
The purpose of this study was to determine the effects of a single intravenous injection of a novel osteoinductive material, activin A/BMP-2 (AB204), to rodents on toxicity and their respiratory functions and central nervous system (CNS). A single intravenous injection of AB204 was given to Sprague-Dawley (SD) rats in doses of 0, 0.625, 2.5 and 10 mg/kg to observe the mortality rate, the general symptoms for 14 days. The experimental groups were also given 0.2, 0.4 and 0.8 mg/kg of AB204, respectively, and the respiration rate, the tidal volume and the minute volume were measured for 240 min. The experimental groups of imprinting control region (ICR) mice were given a single intravenous injection of 0.2, 0.4 and 0.8 mg/kg of AB204, respectively. Their body temperature was taken and general behaviors were observed to evaluate the effect of AB204 on the CNS for 240 min. The study on toxicity of a single intravenous injection found no death or abnormal symptoms, abnormal findings from autopsy, or abnormal body weight gain or loss in all the experimental groups. No abnormal variation associated with the test substance was observed in the respiration rate, the tidal volume, the minute volume, body temperature or the general behaviors. On the basis of these results, the approximate lethal dose of AB204 for a single intravenous injection exceeds 10 mg/kg for SD rats and a single intravenous injection of ≤0.8 mg/kg AB204 has no effect on their respiratory system for SD rat and no effect on their CNS for ICR mice.
Köşkderelioğlu, Aslı; Ortan, Pınar; Ari, Alpay; Gedizlioğlu, Muhteşem
2016-03-01
To investigate the existence of peripheral and optic neuropathies in asymptomatic individuals with hepatitis C infection. Thirty consecutive patients who were followed in a hepatitis C outpatient clinic were recruited for electrophysiological evaluation together with 30 age- and gender-compatible healthy controls. All patients had a detailed neurological examination. The information regarding the disease duration and management with interferons were collected. Nerve conduction studies and visual evoked potentials (VEP) were recorded in all subjects. The results of the patient and control groups were statistically compared. Of the patients with hepatitis C infection, 16 were females and 14 males. The mean age was 57.5 years, and the average disease duration was 6.43 years. The P100 latencies in the patient group were within normal limits, while the amplitudes were meaningfully small by comparison with the controls. There were some abnormalities in the nerve conduction studies of 15 patients. Sensorial neuropathy was detected in two patients, sensorimotor polyneuropathy in four, carpal tunnel syndrome in seven, and carpal tunnel syndrome and sensorimotor polyneuropathy as comorbid states in another two patients. The nerve conduction studies and VEP parameters were entirely normal in the control group. Hepatitis C-related neurological abnormalities may occur both in the central and peripheral nervous system. Mononeuritis multiplex, sensorial axonal neuropathy, and multiple mononeuropathies are some of the presentations of the peripheral nervous system involvement. The mode of infection is considered to be via vasculitic mechanisms. In addition, optic neuropathy is a known complication of interferon treatment. Autoantibodies, cytokines, chemokines, and cryoglobulins are accused to play roles in the pathogenesis. In this study, we investigated the involvement of the peripheral nervous system and optic nerves in a group of patients with hepatitis C. The results were in favor of peripheral nerve injury of various types and optic neuropathy of the axonal type.
KÖŞKDERELİOĞLU, Aslı; ORTAN, Pınar; ARI, Alpay; GEDİZLİOĞLU, Muhteşem
2016-01-01
Introduction To investigate the existence of peripheral and optic neuropathies in asymptomatic individuals with hepatitis C infection. Methods Thirty consecutive patients who were followed in a hepatitis C outpatient clinic were recruited for electrophysiological evaluation together with 30 age- and gender-compatible healthy controls. All patients had a detailed neurological examination. The information regarding the disease duration and management with interferons were collected. Nerve conduction studies and visual evoked potentials (VEP) were recorded in all subjects. The results of the patient and control groups were statistically compared. Results Of the patients with hepatitis C infection, 16 were females and 14 males. The mean age was 57.5 years, and the average disease duration was 6.43 years. The P100 latencies in the patient group were within normal limits, while the amplitudes were meaningfully small by comparison with the controls. There were some abnormalities in the nerve conduction studies of 15 patients. Sensorial neuropathy was detected in two patients, sensorimotor polyneuropathy in four, carpal tunnel syndrome in seven, and carpal tunnel syndrome and sensorimotor polyneuropathy as comorbid states in another two patients. The nerve conduction studies and VEP parameters were entirely normal in the control group. Conclusion Hepatitis C-related neurological abnormalities may occur both in the central and peripheral nervous system. Mononeuritis multiplex, sensorial axonal neuropathy, and multiple mononeuropathies are some of the presentations of the peripheral nervous system involvement. The mode of infection is considered to be via vasculitic mechanisms. In addition, optic neuropathy is a known complication of interferon treatment. Autoantibodies, cytokines, chemokines, and cryoglobulins are accused to play roles in the pathogenesis. In this study, we investigated the involvement of the peripheral nervous system and optic nerves in a group of patients with hepatitis C. The results were in favor of peripheral nerve injury of various types and optic neuropathy of the axonal type. PMID:28360761
Boulouis, Grégoire; de Boysson, Hubert; Zuber, Mathieu; Guillevin, Loïc; Meary, Eric; Costalat, Vincent; Pagnoux, Christian; Naggara, Olivier
2017-05-01
Primary angiitis of the central nervous system remains challenging. To report an overview and pictorial review of brain magnetic resonance imaging findings in adult primary angiitis of the central nervous system and to determine the distribution of parenchymal, meningeal, and vascular lesions in a large multicentric cohort. Adult patients from the French COVAC cohort (Cohort of Patients With Primary Vasculitis of the Central Nervous System), with biopsy or angiographically proven primary angiitis of the central nervous system and brain magnetic resonance imaging available at the time of diagnosis were included. A systematic imaging review was performed blinded to clinical data. Sixty patients met inclusion criteria. Mean age was 45 years (±12.9). Patients initially presented focal deficit(s) (83%), headaches (53%), cognitive disorder (40%), and seizures (38.3%). The most common magnetic resonance imaging finding observed in 42% of patients was multiterritorial, bilateral, distal acute stroke lesions after small to medium artery distribution, with a predominant carotid circulation distribution. Hemorrhagic infarctions and parenchymal hemorrhages were also frequently found in the cohort (55%). Acute convexity subarachnoid hemorrhage was found in 26% of patients and 42% demonstrated pre-eminent leptomeningeal enhancement, which is found to be significantly more prevalent in biopsy-proven patients (60% versus 28%; P =0.04). Seven patients had tumor-like presentations. Seventy-seven percent of magnetic resonance angiographic studies were abnormal, revealing proximal/distal stenoses in 57% and 61% of patients, respectively. Adult primary angiitis of the central nervous system is a heterogenous disease, with multiterritorial, distal, and bilateral acute stroke being the most common pattern of parenchymal lesions found on magnetic resonance imaging. Our findings suggest a higher than previously thought prevalence of hemorrhagic transformation and other hemorrhagic manifestations. © 2017 American Heart Association, Inc.
[The Role of Imaging in Central Nervous System Infections].
Yokota, Hajime; Tazoe, Jun; Yamada, Kei
2015-07-01
Many infections invade the central nervous system. Magnetic resonance imaging (MRI) is the main tool that is used to evaluate infectious lesions of the central nervous system. The useful sequences on MRI are dependent on the locations, such as intra-axial, extra-axial, and spinal cord. For intra-axial lesions, besides the fundamental sequences, including T1-weighted images, T2-weighted images, and fluid-attenuated inversion recovery (FLAIR) images, advanced sequences, such as diffusion-weighted imaging, diffusion tensor imaging, susceptibility-weighted imaging, and MR spectroscopy, can be applied. They are occasionally used as determinants for quick and correct diagnosis. For extra-axial lesions, understanding the differences among 2D-conventional T1-weighted images, 2D-fat-saturated T1-weighted images, 3D-Spin echo sequences, and 3D-Gradient echo sequence after the administration of gadolinium is required to avoid wrong interpretations. FLAIR plus gadolinium is a useful tool for revealing abnormal enhancement on the brain surface. For the spinal cord, the sequences are limited. Evaluating the distribution and time course of the spinal cord are essential for correct diagnoses. We summarize the role of imaging in central nervous system infections and show the pitfalls, key points, and latest information in them on clinical practices.
Neurological Manifestations in Parry–Romberg Syndrome: 2 Case Reports
Vix, Justine; Mathis, Stéphane; Lacoste, Mathieu; Guillevin, Rémy; Neau, Jean-Philippe
2015-01-01
Abstract Parry–Romberg syndrome (PRS) is a variant of morphea usually characterized by a slowly progressive course. Clinical and radiological involvement of the central nervous system may be observed in PRS. We describe 2 patients with PRS and neurological symptoms (one with trigeminal neuralgia associated with deafness, and the second with hemifacial pain associated with migraine without aura) in conjunction with abnormal cerebral MRI including white matter T2 hyperintensities and enhancement with gadolinium. Despite the absence of specific immunosuppressive treatments, both patients have presented stable imaging during follow-up without any clinical neurologic progression. We have performed a large review of the medical literature on patients with PRS and neurological involvement (total of 129 patients) Central nervous system involvement is frequent among PRS patients and is inconsistently associated with clinical abnormalities. These various neurological manifestations include seizures, headaches, movement disorders, neuropsychological symptoms, and focal symptoms. Cerebral MRI may reveal frequent abnormalities, which can be bilateral or more often homolateral to the skin lesions, localized or so widespread so as to involve the whole hemisphere: T2 hyperintensities, mostly in the subcortical white matter, gadolinium enhancement, brain atrophy, and calcifications. These radiological lesions do not usually progress over time. Steroids or immunosuppressive treatments are controversial since it remains unclear to what extent they are beneficial and there is often no neurological progression. PMID:26181554
Statistical quantifiers of memory for an analysis of human brain and neuro-system diseases
NASA Astrophysics Data System (ADS)
Demin, S. A.; Yulmetyev, R. M.; Panischev, O. Yu.; Hänggi, Peter
2008-03-01
On the basis of a memory function formalism for correlation functions of time series we investigate statistical memory effects by the use of appropriate spectral and relaxation parameters of measured stochastic data for neuro-system diseases. In particular, we study the dynamics of the walk of a patient who suffers from Parkinson's disease (PD), Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), and compare against the data of healthy people (CO - control group). We employ an analytical method which is able to characterize the stochastic properties of stride-to-stride variations of gait cycle timing. Our results allow us to estimate quantitatively a few human locomotion function abnormalities occurring in the human brain and in the central nervous system (CNS). Particularly, the patient's gait dynamics are characterized by an increased memory behavior together with sizable fluctuations as compared with the locomotion dynamics of healthy patients. Moreover, we complement our findings with peculiar features as detected in phase-space portraits and spectral characteristics for the different data sets (PD, HD, ALS and healthy people). The evaluation of statistical quantifiers of the memory function is shown to provide a useful toolkit which can be put to work to identify various abnormalities of locomotion dynamics. Moreover, it allows one to diagnose qualitatively and quantitatively serious brain and central nervous system diseases.
ERIC Educational Resources Information Center
Hefter, Harald; Jost, Wolfgang H.; Reissig, Andrea; Zakine, Benjamin; Bakheit, Abdel Magid; Wissel, Jorg
2012-01-01
A significant percentage of patients suffering from a stroke involving motor-relevant central nervous system regions will develop a spastic movement disorder. Hyperactivity of different muscle combinations forces the limbs affected into abnormal postures or movement patterns. As muscular hyperactivity can effectively and safely be treated with…
Fisher, M A
1978-01-01
F responses recorded from flexor and extensor muscles were analysed in 18 normal subjects and in 16 patients with motor system abnormalities. The prominence of the F responses was evaluated quantitatively by determining the persistence--that is, the fraction of measurable F responses which actually occur after a series of supramaximal stimuli--and average amplitude of the F responses. In the normal resting state, the data are consistent with the hypothesis that the "central excitatory states" of motoneurones is greater in the antigravity muscles than in those muscles not stretched by gravity. This pattern was disrupted in eight of the 16 patients with motor system abnormalities caused by central nervous system lesions. These changes reflect a clinically testable aspect of the pathophysiology of certain motor system disorders. PMID:690640
Salivary α-amylase and cortisol after exercise in menopause: influence of long-term HRT.
Patacchioli, F R; Ghiciuc, C M; Bernardi, M; Dima-Cozma, L C; Fattorini, L; Squeo, M R; Galoppi, P; Brunelli, R; Ferrante, F; Pasquali, V; Perrone, G
2015-01-01
This observational prospective study analyzed the effect of an incremental cardiopulmonary exercise test (CPET) on the secretion of salivary biomarkers of the adrenergic nervous system and hypothalamus-pituitary-adrenal (HPA) axis activity by measuring salivary α-amylase and cortisol diurnal trajectories in the setting of long-term hormone replacement therapy (HRT). Fifteen healthy sedentary postmenopausal women who were current HRT users and 15 women who had never used HRT were consecutively recruited. α-Amylase and cortisol were measured in salivary samples collected on the CPET day and on a rest day. Cardiovascular and respiratory fitness parameters were recorded during the CPET challenge. The participants had very homogeneous somatic characteristics, and they were all in generally good health. The postmenopausal never-HRT users presented an abnormal diurnal pattern of α-amylase at baseline and a flattened response to CPET. In contrast, women on HRT had a physiological α-amylase diurnal pattern and increased salivary α-amylase production during the CPET-induced challenge. The CPET challenge physiologically activated the HPA axis activity, as shown by the increase in the concentration of salivary cortisol during the effort test. HPA axis activity was not affected by long-term HRT. Postmenopausal women using HRT exhibited a cardiorespiratory functional capacity that was significantly (p < 0.05) higher than that of non-users. Our findings show that healthy postmenopausal women present an asymmetry between adrenergic nervous system and HPA axis activities under both basal and stress conditions. HRT was able to modify the abnormal adrenergic nervous system activity, most likely by reducing the sympathetic hyperactivity that characterizes menopause.
Positional and positioning down-beating nystagmus without central nervous system findings.
Ogawa, Yasuo; Suzuki, Mamoru; Otsuka, Koji; Shimizu, Shigetaka; Inagaki, Taro; Hayashi, Mami; Hagiwara, Akira; Kitajima, Naoharu
2009-12-01
We report the clinical features of 4 cases with positional or positioning down-beating nystagmus in a head-hanging or supine position without any obvious central nervous system disorder. The 4 cases had some findings in common. There were no abnormal findings on neurological tests or brain MRI. They did not have gaze nystagmus. Their nystagmus was observed only in a supine or head-hanging position and it was never observed upon returning to a sitting position and never reversed. The nystagmus had no or little torsional component, had latency and tended to decrease with time. The positional DBN (p-DBN) is known to be indicative of a central nervous system disorder. Recently there were some reports that canalithiasis of the anterior semicircular canal (ASC) causes p-DBN and that patients who have p-DBN without obvious CNS dysfunction are dealt with anterior semicircular canal (ASC) benign paroxysmal positional vertigo (BPPV). There are some doubts as to the validity of making a diagnosis of ASC-BPPV in a case of p-DBN without CNS findings. It is hard to determine the cause of p-DBN in these cases.
Kuehn, Devon; Aros, Sofía; Cassorla, Fernando; Avaria, Maria; Unanue, Nancy; Henriquez, Cecilia; Kleinsteuber, Karin; Conca, Barbara; Avila, Alejandra; Carter, Tonia C.; Conley, Mary R.; Troendle, James; Mills, James L.
2014-01-01
Background Most children who are exposed to large quantities of alcohol in utero do not develop fetal alcohol syndrome (FAS). Population-based prospective data on the risk of developing components of fetal alcohol spectrum disorders (FASD), however, are limited. Methods This was a prospective cohort study of 9,628 women screened during their first prenatal appointment in Chile, which identified 101 who consumed at least 4 drinks/d (exposed) matched with 101 women with no reported alcohol consumption during pregnancy (unexposed). Detailed alcohol consumption data were collected during the pregnancy. Children were evaluated up to 8.5 years of age by clinicians masked to exposure status. Results One or more functional central nervous system abnormalities were present in 44.0% (22/50) of the exposed children compared to 13.6% (6/44) of the unexposed (p = 0.002). Growth restriction was present in 27.2% (25/92) of the exposed and 12.5% (12/96) of the unexposed (p = 0.02). Abnormal facial features were present in 17.3% (14/81) of the exposed children compared to 1.1% (1/89) of the unexposed children (p = 0.0002) by direct examination. Of the 59 exposed children with data available to detect at least 1 abnormality, 12 (20.3%) had no abnormalities. Binge drinking from conception to recognition of pregnancy (OR = 1.48 per day, 95% CI: 1.15 to 1.91, p = 0.002) and after recognition of pregnancy (OR= 1.41 per day, 95% CI: 1.01 to 1.95, p = 0.04) and total number of drinks consumed per week from conception to recognition of pregnancy (OR = 1.02 per drink, 95% CI: 1.01 to 1.04, p = 0.0009) were significantly associated with abnormal child outcome. Conclusions After exposure to heavy alcohol consumption during pregnancy, 80% of children had 1 or more abnormalities associated with alcohol exposure. Patterns of alcohol use that posed the greatest risk of adverse outcomes were binge drinking and high total weekly intake. Functional neurologic impairment occurred most frequently and may be the only sign to alert physicians to prenatal alcohol exposure. PMID:22823161
2016-02-01
cardiac rhythm abnormalities [115]. The central nervous system is particularly sensitive to the toxic effects of CO poisoning. While petechial hemorrhage...low grade fever , bronzing of the skin, bullae formation, obtunded sensation [164]. A.10.1.1 Benefit of HBO There are only a few studies as to the
Brun, Rita; Kuo, Braden
2010-01-01
Dyspepsia is a common term used for a heterogeneous group of abdominal symptoms. Functional dyspepsia (FD) is the focus of this review. The 2006 Rome III criteria defined FD and its subgroups, postprandial distress syndrome (PDS) and epigastric pain syndrome (EPS). FD is a very common condition with a high prevalence throughout the world, adversely affecting the quality of life of patients. The pathophysiology of FD has been under investigation during the past two decades. Multiple mechanisms such as abnormal gastric emptying, visceral hypersensitivity, impaired gastric accommodation, and central nervous system factors are likely involved. Several tests are available for the assessment of various physiologic functions possibly involved in the pathogenesis of FD, and some of these could be used in clinical practice, helping to understand the abnormalities underlining patients’ complaints. Currently, the possibilities of pharmacological therapy for FD are still limited, however, experience of using prokinetics, tricyclic antidepressants, selective serotonin-reuptake inhibitors (SSRIs), proton-pump inhibitors (PPIs), and several alternative techniques has been accumulated. The different combinations of alterations in physiologic gastrointestinal and central nervous system functions result in the very heterogeneous nature of FD so combined approaches to these patients could be beneficial in challenging cases. PMID:21180597
[Anesthetic management of a patient with Creutzfeldt-Jacob disease undergoing tracheal separation].
Kanzaki, Rieko; Hamada, Hiroshi; Fukuda, Hideki; Kawamoto, Masashi
2012-10-01
We gave anesthesia for tracheal separation in a patient with Creutzfeldt-Jakob disease. The patient, a 33-year-old woman, was bedridden and unable to communicate, and was going to undergo a tracheal separation procedure for repeated bouts of aspiration pneumonia. After a tracheostomy with local anesthesia and sedation with propofol, general anesthesia was induced and maintained with propofol (1.5-3.0 microg x ml(-1), target controlled infusion) and remifentanil (0.05-0.15 microg x kg(-1) x min(-1)). We did not use an anesthetic apparatus from the standpoint of infection control, and provided manual ventilation with a disposable Jackson-Rees circuit. During the operation, an entropy monitor indicated alternating extremely low (0-10) and high (90-100) values without circulatory change, probably due to a previously existing electroencephalographic abnormality. The surgery was uneventful, and spontaneous breathing and eyelid opening occurred about 10 minutes after discontinuation of remifentanil and propofol. In such infected patients, abnormal prion proteins can exist outside of the central nervous system throughout the period of anesthetic management. Therefore, careful infection control must be undertaken, even if the surgical site is not directly related to the central nervous system.
Increased working memory related fMRI signal in children following Tick Borne Encephalitis.
Henrik, Ullman; Åsa, Fowler; Ronny, Wickström
2016-01-01
Tick Borne Encephalitis (TBE) is a viral infection in the central nervous system endemic in Europe and Asia. While pediatric infection may carry a lower risk for serious neurological sequelae compared to adults, a large proportion of children experience long term cognitive problems, most markedly decreased working memory capacity. We explored whether task related functional magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI) could reveal a biological correlate of status-post TBE in children. We examined 11 serologically verified pediatric TBE patients with central nervous system involvement with 55 healthy controls with working memory tests and MRI. The TBE patients showed a prominent deficit in working memory capacity and an increased task related functional MRI signal in working memory related cortical areas during a spatial working memory task performed without sedation. No diffusion differences could be found with DTI, in line with the reported paucity of anatomical abnormalities. This study is the first to demonstrate functional MRI abnormalities in TBE patients that bears similarity to other patient groups with diffuse neuronal damage. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.
Attenuation of acoustic and tactile startle responses of vitamin B-6 deficient rats.
Schaeffer, M C
1987-01-01
Vitamin B-6 deficient rats exhibit changes in behavior, sensory function, and other nervous system abnormalities such as convulsive seizures and motor disturbances. Sensorimotor reactivity was evaluated quantitatively by measuring auditory and tactile startle responses in 12 week old female Long-Evans rats fed a diet devoid of added vitamin B-6 (DEF) or a control diet, either ad lib (AL-CON) or pair-fed to deficient rats (PF-CON). Deficiency was confirmed with a tryptophan-load test administered to a separate group of rats fed simultaneously according to the same protocol. At week 18, body weight and feed efficiency were different among groups (p less than 0.001), and were lowest in DEF. Amplitude of response to both acoustic and tactile stimuli was depressed in DEF compared to both control groups, which generally did not differ in response. This effect was seen most dramatically in responses to the acoustic stimulus (p = 0.034), and especially to the first presentation (p = 0.017). Latency to maximum response was not affected by diet. Possible mechanisms for this nervous system abnormality, not previously reported in vitamin B-6 deficiency, are discussed.
Lanni, C; Stanga, S; Racchi, M; Govoni, S
2010-01-01
Multiple molecular, cellular, structural and functional changes occur in the brain during aging. Neural cells may respond to these changes adaptively by employing multiple mechanisms in order to maintain the integrity of nerve cell circuits and to facilitate responses to environmental demands. Otherwise, they may succumb to neurodegenerative cascades that result in disorders such as Alzheimer's and Parkinson's diseases. An important role in this balancement is played by neurotrophic factors, which are central to many aspects of nervous system function since they regulate the development, maintenance and survival of neurons and neuron-supporting cells such as glia and oligodendrocytes. A vast amount of evidence indicates that alterations in levels of neurotrophic factors or their receptors can lead to neuronal death and contribute to aging as well as to the pathogenesis of diseases of abnormal trophic support (such as neurodegenerative diseases and depression) and diseases of abnormal excitability (such as epilepsy and central pain sensitization). Cellular and molecular mechanisms by which neurotrophic factors may influence cell survival and excitability are also critically examined to provide novel concepts and targets for the treatment of physiological changes bearing detrimental functional alterations and of different diseases affecting the central nervous system during aging.
Lihua, Jiang; Feng, Gao; Shanshan, Mao; Jialu, Xu; Kewen, Jiang
2017-11-01
Linear nevus sebaceous syndrome (LNSS) is a rare neurocutaneous syndrome, characterized by nevus sebaceous,central nervous system (CNS), ocular and skeletal abnormalities. The present study describes KRAS somatic mosaic mutation in a case of LNSS with lymphatic malformations (LMs). A 4-month-old female with a clinical diagnosis of LNSS presented with infantile spasms, mental retardation, skull dysplasia, ocular abnormalities, congenital atrial septal defect, and LMs. Cervical ultrasonography revealed a 4.6 × 4.6 × 2.2cm no echo packet with clear boundary in the subcutaneous tissues of the right neck. The neck MRI indicated a cyst in the subcutaneous tissues of the right neck. Whole-exome sequencing revealed a low-level heterozygous mutation of the KRAS gene (c.35C > T; p.G12D, 19%) in the skin lesion sample. This mutation was not present in the blood samples of the patient and her parents. The patient received sclerotherapy with paicibanil (OK-432) injection for the cyst. Following 1 year of treatment, the patient exhibited fewer seizures. The mental and motor development was significantly improved. The patient can currently walk with assistance and speak simple words. LNSS is a rare, congenital neurocutaneous syndrome consisting of a spectrum of abnormalities involving the skin, central nervous system, eyes, LMs and other systems. LNSS can be caused by postzygotic somatic mutation in the RAS family of genes. Multidisciplinary evaluation and treatment is needed. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.
Pérez-García, Carlos; Martín, Yolanda Ruíz; del Hoyo, Alejandra Aguado; Rodríguez, Carlos Marín; Domínguez, Minia Campos
2017-01-01
We report a case of a premature neonate girl with scalp and skull defects and brachydactyly of the feet consistent with an Adams-Oliver syndrome (AOS). The patient had central nervous system abnormalities, such as periventricular calcifications, hypoplastic corpus callosum, and bilateral hemispheric corticosubcortical hemorrhagic lesions. A muscular ventricular septal defect and a portosystemic shunt were diagnosed. To our knowledge, this is the first report of congenital supratentorial grey-white matter junction lesions without dural sinus thrombosis in association with AOS. Some of these lesions may be secondary to birth trauma (given the skull defect) whilst others have a watershed location, perhaps as further evidence of vascular disruption and decreased perfusion during critical periods of fetal brain development as the previously proposed pathogenesis of this syndrome. PMID:28706620
Ewing, Graham E.
2009-01-01
There is a compelling argument that the occurrence of regressive autism is attributable to genetic and chromosomal abnormalities, arising from the overuse of vaccines, which subsequently affects the stability and function of the autonomic nervous system and physiological systems. That sense perception is linked to the autonomic nervous system and the function of the physiological systems enables us to examine the significance of autistic symptoms from a systemic perspective. Failure of the excretory system influences elimination of heavy metals and facilitates their accumulation and subsequent manifestation as neurotoxins: the long-term consequences of which would lead to neurodegeneration, cognitive and developmental problems. It may also influence regulation of neural hyperthermia. This article explores the issues and concludes that sensory dysfunction and systemic failure, manifested as autism, is the inevitable consequence arising from subtle DNA alteration and consequently from the overuse of vaccines. PMID:22666668
Effects of Alcohol on the Endocrine System
Rachdaoui, Nadia; Sarkar, Dipak K.
2013-01-01
Synopsis The endocrine system ensures a proper communication between various organs of the body to maintain a constant internal environment. The endocrine system also plays an essential role in enabling the body to respond and appropriately cope with changes in the internal or external environments, such as respond to stress and injury. These functions of the endocrine system to maintain body homeostasis are aided by its communication with the nervous system, immune system and body’s circadian mechanism. Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiological and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. PMID:24011889
Socioeconomic disadvantage and neural development from infancy through early childhood
Chin-Lun Hung, Galen; Hahn, Jill; Alamiri, Bibi; Buka, Stephen L; Goldstein, Jill M; Laird, Nan; Nelson, Charles A; Smoller, Jordan W; Gilman, Stephen E
2015-01-01
Background: Early social experiences are believed to shape neurodevelopment, with potentially lifelong consequences. Yet minimal evidence exists regarding the role of the social environment on children’s neural functioning, a core domain of neurodevelopment. Methods: We analysed data from 36 443 participants in the United States Collaborative Perinatal Project, a socioeconomically diverse pregnancy cohort conducted between 1959 and 1974. Study outcomes included: physician (neurologist or paediatrician)-rated neurological abnormality neonatally and thereafter at 4 months and 1 and 7 years; indicators of neurological hard signs and soft signs; and indicators of autonomic nervous system function. Results: Children born to socioeconomically disadvantaged parents were more likely to exhibit neurological abnormalities at 4 months [odds ratio (OR) = 1.20; 95% confidence interval (CI) = 1.06, 1.37], 1 year (OR = 1.35; CI = 1.17, 1.56), and 7 years (OR = 1.67; CI = 1.48, 1.89), and more likely to exhibit neurological hard signs (OR = 1.39; CI = 1.10, 1.76), soft signs (OR = 1.26; CI = 1.09, 1.45) and autonomic nervous system dysfunctions at 7 years. Pregnancy and delivery complications, themselves associated with socioeconomic disadvantage, did not account for the higher risks of neurological abnormalities among disadvantaged children. Conclusions: Parental socioeconomic disadvantage was, independently from pregnancy and delivery complications, associated with abnormal child neural development during the first 7 years of life. These findings reinforce the importance of the early environment for neurodevelopment generally, and expand knowledge regarding the domains of neurodevelopment affected by environmental conditions. Further work is needed to determine the mechanisms linking socioeconomic disadvantage with children’s neural functioning, the timing of such mechanisms and their potential reversibility. PMID:26675752
Inflammation in the Pathogenesis of Lyme Neuroborreliosis
Ramesh, Geeta; Didier, Peter J.; England, John D.; Santana-Gould, Lenay; Doyle-Meyers, Lara A.; Martin, Dale S.; Jacobs, Mary B.; Philipp, Mario T.
2016-01-01
Lyme neuroborreliosis, caused by the spirochete Borrelia burgdorferi, affects both peripheral and central nervous systems. We assessed a causal role for inflammation in Lyme neuroborreliosis pathogenesis by evaluating the induced inflammatory changes in the central nervous system, spinal nerves, and dorsal root ganglia (DRG) of rhesus macaques that were inoculated intrathecally with live B. burgdorferi and either treated with dexamethasone or meloxicam (anti-inflammatory drugs) or left untreated. ELISA of cerebrospinal fluid showed significantly elevated levels of IL-6, IL-8, chemokine ligand 2, and CXCL13 and pleocytosis in all infected animals, except dexamethasone-treated animals. Cerebrospinal fluid and central nervous system tissues of infected animals were culture positive for B. burgdorferi regardless of treatment. B. burgdorferi antigen was detected in the DRG and dorsal roots by immunofluorescence staining and confocal microscopy. Histopathology revealed leptomeningitis, vasculitis, and focal inflammation in the central nervous system; necrotizing focal myelitis in the cervical spinal cord; radiculitis; neuritis and demyelination in the spinal roots; and inflammation with neurodegeneration in the DRG that was concomitant with significant neuronal and satellite glial cell apoptosis. These changes were absent in the dexamethasone-treated animals. Electromyography revealed persistent abnormalities in F-wave chronodispersion in nerve roots of a few infected animals; which were absent in dexamethasone-treated animals. These results suggest that inflammation has a causal role in the pathogenesis of acute Lyme neuroborreliosis. PMID:25892509
Postal, M; Lapa, A Tamires; Reis, F; Rittner, L; Appenzeller, S
2017-04-01
Systemic lupus erythematosus is a chronic, inflammatory, immune-mediated disease affecting 0.1% of the general population. Neuropsychiatric manifestations in systemic lupus erythematosus have been more frequently recognized and reported in recent years, occurring in up to 75% of patients during the disease course. Magnetic resonance imaging is known to be a useful tool for the detection of structural brain abnormalities in neuropsychiatric systemic lupus erythematosus patients because of the excellent soft-tissue contrast observed with MRI and the ability to acquire multiplanar images. In addition to conventional magnetic resonance imaging techniques to evaluate the presence of atrophy and white matter lesions, several different magnetic resonance imaging techniques have been used to identify microstructural or functional abnormalities. This review will highlight different magnetic resonance imaging techniques, including the advanced magnetic resonance imaging methods used to determine central nervous system involvement in systemic lupus erythematosus.
Developmental abnormalities and age-related neurodegeneration in a mouse model of Down syndrome
Holtzman, David M.; Santucci, Daniela; Kilbridge, Joshua; Chua-Couzens, Jane; Fontana, David J.; Daniels, Scott E.; Johnson, Randolph M.; Chen, Karen; Sun, Yuling; Carlson, Elaine; Alleva, Enrico; Epstein, Charles J.; Mobley, William C.
1996-01-01
To study the pathogenesis of central nervous system abnormalities in Down syndrome (DS), we have analyzed a new genetic model of DS, the partial trisomy 16 (Ts65Dn) mouse. Ts65Dn mice have an extra copy of the distal aspect of mouse chromosome 16, a segment homologous to human chromosome 21 that contains much of the genetic material responsible for the DS phenotype. Ts65Dn mice show developmental delay during the postnatal period as well as abnormal behaviors in both young and adult animals that may be analogous to mental retardation. Though the Ts65Dn brain is normal on gross examination, there is age-related degeneration of septohippocampal cholinergic neurons and astrocytic hypertrophy, markers of the Alzheimer disease pathology that is present in elderly DS individuals. These findings suggest that Ts65Dn mice may be used to study certain developmental and degenerative abnormalities in the DS brain. PMID:8917591
Martinez Piñeiro, Alicia; Cubells, Carles; Garcia, Pablo; Castaño, Carlos; Dávalos, Antonio; Coll-Canti, Jaume
2015-03-01
Intraoperative monitoring (IOM) has been used in different surgical disciplines since the 1980s. Nonetheless, regular routine use of IOM in interventional neuroradiology units has only been reported in a few centers. The aim of this study is to report our experience, 1 year after deciding to implement standardized IOM during endovascular treatment of vascular abnormalities of the central nervous system. Basic recordings included somatosensory-evoked potentials (SEPs) and motor-evoked potentials (MEPs). Corticobulbar motor-evoked potentials and flash-visual-evoked potentials were also recorded depending on the topography of the lesion. Intra-arterial provocative tests (PTs) with amobarbital and lidocaine were also performed. All patients except 1 were under total intravenous anesthesia. Clinical outcome was assessed prospectively and correlated with IOM events. Twelve patients and 15 procedures were monitored during the inclusion period. Significant IOM events were detected during 3 of the 15 procedures (20%). We observed temporary MEP changes in 2 cases which resolved after interruption of the embolization or application of corrective measures, leaving no postoperative neurological deficits. In 1 case, persistent SEP and MEP deterioration was detected secondary to a frontal hematoma, resulting in mild sensory-motor deficit in the right upper extremity after the procedure. Overall, 12 PTs (4 spinal cord and 8 brain abnormalities) were performed using lidocaine and sodium amytal injections. One positive result occurred after the injection of lidocaine. No false negatives were detected. IOM may provide continuous real-time data about the functional status of eloquent areas and pathways of the central nervous system in patients under general anesthesia. It therefore allows us to detect early neurological damage in time to perform specific actions that may prevent irreversible neurological deficits.
Kulshreshtha, Poorvi; Deepak, Kishore K
2013-03-01
This review imparts an impressionistic tone to our current understanding of autonomic nervous system abnormalities in fibromyalgia. In the wake of symptoms present in patients with fibromyalgia (FM), autonomic dysfunction seems plausible in fibromyalgia. A popular notion is that of a relentless sympathetic hyperactivity and hyporeactivity based on heart rate variability (HRV) analyses and responses to various physiological stimuli. However, some exactly opposite findings suggesting normal/hypersympathetic reactivity in patients with fibromyalgia do exist. This heterogeneous picture along with multiple comorbidities accounts for the quantitative and qualitative differences in the degree of dysautonomia present in patients with FM. We contend that HRV changes in fibromyalgia may not actually represent increased cardiac sympathetic tone. Normal muscle sympathetic nerve activity (MSNA) and normal autonomic reactivity tests in patients with fibromyalgia suggest defective vascular end organ in fibromyalgia. Previously, we proposed a model linking deconditioning with physical inactivity resulting from widespread pain in patients with fibromyalgia. Deconditioning also modulates the autonomic nervous system (high sympathetic tone and a low parasympathetic tone). A high peripheral sympathetic tone causes regional ischaemia, which in turn results in widespread pain. Thus, vascular dysregulation and hypoperfusion in patients with FM give rise to ischaemic pain leading to physical inactivity. Microvascular abnormalities are also found in patients with FM. Therapeutic interventions (e.g. exercise) that result in vasodilatation and favourable autonomic alterations have proven to be effective. In this review, we focus on the vascular end organ in patients with fibromyalgia in particular and its modulation by exercise in general. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Gur, Ali; Oktayoglu, Pelin
2008-01-01
Fibromyalgia (FM) and chronic fatigue syndrome (CFS) are poorly understood disorders that share similar demographic and clinical characteristics. The etiology and pathophysiology of these diseases remain unclear. Because of the similarities between both disorders it was suggested that they share a common pathophysiological mechanisms, namely, central nervous system (CNS) dysfunction. Current hypotheses center on atypical sensory processing in the CNS and dysfunction of skeletal muscle nociception and the hypothalamic-pituitary-adrenal (HPA) axis. Researches suggest that the (CNS) is primarily involved in both disorders in regard to the pain, fatigue and sleep disturbances. Many patients experience difficulty with concentration and memory and many others have mood disturbance, including depression and anxiety. Although fibromyalgia is common and associated with substantial morbidity and disability, there are no US Food and Drug Administration (FDA)-approved treatments except pregabalin. Recent pharmacological treatment studies about fibromyalgia have focused on selective serotonin and norepinephrine (NE) reuptake inhibitors, which enhance serotonin and NE neurotransmission in the descending pain pathways and lack many of the adverse side effects associated with tricyclic medications. CFS is a descriptive term used to define a recognisable pattern of symptoms that cannot be attributed to any alternative condition. The symptoms are currently believed to be the result of disturbed brain function. To date, no pharmacological agent has been reliably shown to be effective treatment for CFS. Management strategies are therefore primarily directed at relief of symptoms and minimising impediments to recovery. This chapter presents data demonstrating CFS, abnormal pain processing and autonomic nervous system (ANS) dysfunction in FM and CFS and concludes by reviewing the new concepts in treatments in CFS and FM.
Rasheed, Madiha; Shahzad, Shaheen; Zaeem, Afifa; Afzal, Imran; Gul, Asma; Khalid, Sumbal
2017-12-01
Syndromic ichthyosis is rare inherited disorders of cornification with varied disease complications. This disorder appears in seventeen subtypes associated with severe systematic manifestations along with medical, cosmetic and social problems. Syndromic ichthyosis with prominent hair abnormalities covers five major subtypes: Netherton syndrome, trichothiodystrophy, ichthyosis hypotrichosis syndrome, ichthyosis hypotrichosis sclerosing cholangitis and ichthyosis follicularis atrichia photophobia syndrome. These syndromes mostly prevail in high consanguinity states, with distinctive clinical features. The known pathogenic molecules involved in ichthyosis syndromes with prominent hair abnormalities include SPINK5, ERCC2, ERCC3, GTF2H5, MPLKIP, ST14, CLDN1 and MBTPS2. Despite underlying genetic origin, most of the health professionals solely rely on phenotypic expression of these disorders that leads to improper management of patients, hence making these patients living an orphanage life. After dermal features, association of other systems such as nervous system, skeletal system, hair abnormalities or liver problems may sometimes give clues for diagnosis but still leaving place for molecular screening for efficient diagnosis. In this paper, we have presented a review of ichthyosis syndrome with prominent hair abnormalities, with special emphasis on their updated genetic consequences and disease management. Additionally, we aim to update health professionals about the practice of molecular screening in ichthyosis syndromes for appropriate diagnosis and treatment.
ERIC Educational Resources Information Center
Reichurdt, Konrad W.; Wilson, John A. R.
This study was undertaken to measure emotional expression as mediated by the automatic nervous system during reading and during other tasks related to school work. Subjects for this research were eight normal readers, reading above the 46th percentile on the Davis Reading Test Form 1-A, used as a control group and sixteen abnormal readers drawn…
Hyperthyroidism hidden by congenital central hypoventilation syndrome.
Fox, Danya A; Weese-Mayer, Debra E; Wensley, David F; Stewart, Laura L
2015-05-01
Congenital central hypoventilation syndrome (CCHS) is a rare neurocristopathy with severe central hypoventilation. CCHS results from a mutation in the paired-like homeobox 2B gene (PHOX2B). In addition to hypoventilation, patients with CCHS display a wide array of autonomic nervous system abnormalities, including decreased heart rate variability and abrupt sinus pauses, esophageal dysmotility, abnormal pupillary light response, and temperature dysregulation, to name a few. To date, there has been no documentation of a child with both CCHS and hyperthyroidism. We report the case of a young child with CCHS who presented with tachycardia, which was later found to be due to Grave's disease, after many months of investigation.
Major diagnostic and pathological features of iniencephaly based on twenty-four cases.
Joó, József Gábor; Beke, Artúr; Papp, Csaba; Szigeti, Zsanett; Csaba, Akos; Papp, Zoltán
2008-01-01
Iniencephaly is quite a rare malformation the etiology of which is still not fully understood. In the majority of cases it is a grave and lethal condition. It is often complicated by other abnormalities affecting the central nervous system (spina bifida, anencephaly), but malformations involving other organs and systems may also be observed. Based on 24 cases the authors have surveyed the diagnostics of iniencephaly with special regard to the disorders affecting the central and non-central nervous systems. In addition, they have compared the results of prenatal diagnostics and pathological investigations. In the sample, maternal age ranged between 17 and 42 (median 24) years. Positive obstetrical-gynecological and genetic findings in the patients' history have been reported in 4 and 2 cases, respectively. In these cases, the maternal serum alpha-fetoprotein (AFP) values ranged between 0.7 and 3.9 (median 2.0) MoM, while the amniotic fluid AFP values were between 0.9 and 2.7 (median 1.4) MoM. Spina bifida (50%) and anencephaly (42%) were the most commonly occurring complications affecting the central nervous system. Among the non-central nervous system disorders, malformations of the abdominal (omphalocele) and thoracic walls (diaphragmatic hernia) were found most frequently and the tendency to develop associated polyhydramnios was also very high (75%). Pathological investigations revealed developmental disorders such as cleft lip and palate, ventricular septal defect and facial dysmorphism, which are difficult to detect using ultrasonography. Copyright 2008 S. Karger AG, Basel.
Cao, Xin-xin; Li, Jian; Zhang, Wei; Duan, Ming-hui; Shen, Ti; Zhou, Dao-bin
2014-06-01
The objective of this study was to evaluate retrospectively the clinical characteristics, treatments, and outcomes of patients with primary diffuse large B-cell lymphoma (DLBCL) of the female genital tract. The basic characteristics, treatments, and outcomes of six patients diagnosed with primary DLBCL of the female genital tract, including the ovary, uterine cervix, and vagina, treated in our hospital between 2000 and 2012, were analyzed retrospectively. Seven of 323 (2.2 %) newly diagnosed DLBCLs were diagnosed as primary female genital tract DLBCL. Six patients with complete medical data were included in the analysis. The median age at diagnosis was 52.5 years (range 20-65). The presenting symptoms included abnormal vaginal bleeding, increased vaginal discharge, abdominal fullness, and abdominal pain. Two patients had stage IE disease and four patients had stage IIE disease. Treatment included chemotherapy only in five patients, and combined chemotherapy and localized radiation in one patient. After a median follow-up of 58 months, four patients showed relapse in the central nervous system and two had died from progressive disease. The median progression-free survival was 27 months and the median overall survival for this group has not been reached. Patients with primary female genital tract DLBCL may have poor outcomes and a high risk of central nervous system relapse. Central nervous system prophylaxis might be considered in addition to systemic chemotherapy for DLBCL of the female genital tract.
The general movement assessment in non-European low- and middle-income countries.
Tomantschger, Iris; Herrero, Dafne; Einspieler, Christa; Hamamura, Cristina; Voos, Mariana Calil; Marschik, Peter B
2018-02-05
Abnormal general movements are among the most reliable markers for cerebral palsy. General movements are part of the spontaneous motor repertoire and are present from early fetal life until the end of the first half year after term. In addition to its high sensitivity (98%) and specificity (91%), the assessment of general movements is non-invasive and time- and cost-efficient. It is therefore ideal for assessing the integrity of the young nervous system, most notably in lowresource settings. Studies on the general movements assessment in low- and middle-income countries such as China, India, Iran, or South Africa are still rare but increasing. In Brazil, too, researchers have demonstrated that the evaluation of general movements adds to the functional assessment of the young nervous system. Applying general movements assessment in vulnerable populations in Brazil is therefore highly recommended.
Autonomic dysfunction in pediatric patients with headache: migraine versus tension-type headache.
Rabner, Jonathan; Caruso, Alessandra; Zurakowski, David; Lazdowsky, Lori; LeBel, Alyssa
2016-12-01
To examine symptoms indicating central nervous system (CNS) autonomic dysfunction in pediatric patients with migraine and tension-type headache. A retrospective chart review assessed six symptoms (i.e. constipation, insomnia, dizziness, blurry vision, abnormal blood pressure, and cold and clammy palms and soles) indicating central nervous system (CNS) autonomic dysfunction in 231 patients, ages 5-18 years, diagnosed with migraine, tension-type headache (TTH), or Idiopathic Scoliosis (IS). Higher frequencies of "insomnia," "dizziness," and "cold and clammy palms and soles" were found for both migraine and TTH patients compared to the IS control group (P < 0.001). Frequencies of all six symptoms were greater in TTH than migraine patients with "cold and clammy palms and soles" reaching significance (P < 0.001). The need for prospective research investigating autonomic dysfunction in pediatric headache patients is discussed.
Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion.
Talbot, Jared A; Currie, Ko W; Pearson, Bret J; Collins, Eva-Maria S
2014-06-20
Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. © 2014. Published by The Company of Biologists Ltd.
Smed-dynA-1 is a planarian nervous system specific dynamin 1 homolog required for normal locomotion
Talbot, Jared A.; Currie, Ko W.; Pearson, Bret J.; Collins, Eva-Maria S.
2014-01-01
ABSTRACT Dynamins are GTPases that are required for separation of vesicles from the plasma membrane and thus are key regulators of endocytosis in eukaryotic cells. This role for dynamin proteins is especially crucial for the proper function of neurons, where they ensure that synaptic vesicles and their neurotransmitter cargo are recycled in the presynaptic cell. Here we have characterized the dynamin protein family in the freshwater planarian Schmidtea mediterranea and showed that it possesses six dynamins with tissue specific expression profiles. Of these six planarian homologs, two are necessary for normal tissue homeostasis, and the loss of another, Smed-dynA-1, leads to an abnormal behavioral phenotype, which we have quantified using automated center of mass tracking. Smed-dynA-1 is primarily expressed in the planarian nervous system and is a functional homolog of the mammalian Dynamin I. The distinct expression profiles of the six dynamin genes makes planarians an interesting new system to reveal novel dynamin functions, which may be determined by their differential tissue localization. The observed complexity of neurotransmitter regulation combined with the tools of quantitative behavioral assays as a functional readout for neuronal activity, renders planarians an ideal system for studying how the nervous system controls behavior. PMID:24950970
Magnetic resonance imaging diagnosis of disseminated necrotizing leukoencephalopathy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atlas, S.W.; Grossman, R.I.; Packer, R.J.
1987-01-01
Disseminated necrotizing leukoencephalopathy is a rare syndrome of progressive neurologic deterioration seen most often in patients who have received central nervous system irradiation combined with intrathecal or systemic chemotherapy in the treatment or prophylaxis of various malignancies. Magnetic resonance imaging was more sensitive than computed tomography in detecting white matter abnormalities in the case of disseminated necrotizing leukoencephalopathy reported here. Magnetic resonance imaging may be useful in diagnosing incipient white matter changes in disseminated necrotizing leukoencephalopathy, thus permitting early, appropriate therapeutic modifications.
Types A and B Niemann-Pick disease.
Schuchman, Edward H; Wasserstein, Melissa P
2015-03-01
Two distinct metabolic abnormalities are encompassed under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly in infancy and profound central nervous system involvement. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and pathologic alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second NPD category are designated as having types C and D NPD. These patients may have mild hepatosplenomegaly, but the central nervous system is profoundly affected. Impaired intracellular trafficking of cholesterol causes types C and D NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed. Copyright © 2014. Published by Elsevier Ltd.
Cockayne syndrome pathogenesis: lessons from mouse models.
Jaarsma, Dick; van der Pluijm, Ingrid; van der Horst, Gijsbertus T J; Hoeijmakers, Jan H J
2013-01-01
Cockayne syndrome (CS) is a rare multisystem disorder characterized by cachectic dwarfism, nervous system abnormalities and features of premature aging. CS symptoms are associated with mutations in 5 genes, CSA, CSB, XPB, XPD and XPG encoding for proteins involved in the transcription-coupled subpathway of nucleotide excision DNA repair (NER). Mutant mice have been generated for all CS-associated genes and provide tools to examine how the cellular defects translate into CS symptoms. Mice deficient for Csa or Csb genetically mimic CS in man, and develop mild CS symptoms including reduced fat tissue, photoreceptor cell loss, and mild, but characteristic, nervous system pathology. These mild CS models are converted into severe CS models with short life span, progressive nervous system degeneration and cachectic dwarfism after simultaneous complete inactivation of global genome NER. A spectrum of mild-to-severe CS-like symptoms occurs in Xpb, Xpd, and Xpg mice that genetically mimic patients with a disorder that combines CS symptoms with another NER syndrome, xeroderma pigmentosum. In conclusion, CS mouse models mice develop a range of CS phenotypes and open promising perspectives for testing interventional approaches. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Tseng, Hsiang-Kuang; Liu, Chang-Pan; Price, Michael S.; Jong, Ambrose Y.; Chang, Jui-Chih; Toffaletti, Dena L.; Betancourt-Quiroz, Marisol; Frazzitta, Aubrey E.; Cho, Wen-Long; Perfect, John R.
2012-01-01
Background A mouse brain transmigration assessment (MBTA) was created to investigate the central nervous system (CNS) pathogenesis of cryptococcal meningoencephalitis. Methodology/Principal Findings Two cryptococcal mutants were identified from a pool of 109 pre-selected mutants that were signature-tagged with the nourseothricin acetyltransferase (NAT) resistance cassette. These two mutants displayed abnormal transmigration into the central nervous system. One mutant displaying decreased transmigration contains a null mutation in the putative FNX1 gene, whereas the other mutant possessing a null mutation in the putative RUB1 gene exhibited increased transmigration into the brain. Two macrophage adhesion-defective mutants in the pool, 12F1 and 3C9, showed reduced phagocytosis by macrophages, but displayed no defects in CNS entry suggesting that transit within macrophages (the “Trojan horse” model of CNS entry) is not the primary mechanism for C. neoformans migration into the CNS in this MBTA. Conclusions/Significance This research design provides a new strategy for genetic impact studies on how Cryptococcus passes through the blood-brain barrier (BBB), and the specific isolated mutants in this assay support a transcellular mechanism of CNS entry. PMID:23028773
Hainfellner, J A; Budka, H
1999-11-01
There is increasing evidence indicating involvement of the peripheral nervous system (PNS) in the pathogenesis of transmissible spongiform encephalopathies (TSEs). Immunocytochemically detectable deposits of TSE-specific abnormal prion protein (PrP(sc)) are considered as a surrogate marker for infectivity. We used anti-PrP immunocytochemistry to trace PrP(sc) deposition in spinal and enteric ganglia, and peripheral nerve in Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker disease (GSS), and fatal familial insomnia. Discrete PrP(sc) deposits were detectable only in a few posterior root nerve fibers in an adaxonal location in one of nine CJD and the one GSS patients examined. Follicular dendritic cells of the gut and enteric nervous system were not labeled. Thus, PrP(sc) may spread to the PNS in different forms of human prion disease. In contrast to our observations in experimental scrapie (Groschup et al., Acta Neuropathol, this issue), the deposits were scant. Possible explanations for this discrepancy comprise strain difference, or centripetal (experimental scrapie) versus centrifugal (sporadic and genetic human prion diseases) spread of PrP(sc), resulting in different patterns and amounts of PrP(sc) accumulation in the PNS.
Liu, Tsan-Hsiun; Liang, Li-Ching; Wang, Chien-Chih; Liu, Huei-Chung; Chen, Wei-June
2008-11-01
Japanese encephalitis (JE) virus is a member of the encephalitic flaviviruses and frequently causes neurological sequelae in a proportion of patients who survive the acute phase of the infection. In the present study, we molecularly identified viral infection in the brain of mice with rigidity of hindlimbs and/or abnormal gait, in which JE virus particles appeared within membrane-bound vacuoles of neurons throughout the central nervous system. Deformation of tight junctions (TJs) shown as dissociation of endothelial cells in capillaries, implying that the integrity of the blood-brain barrier (BBB) has been compromised by JE virus infection. BBB permeability evidently increased in the cerebrum, but not in the cerebellum, of JE virus-infected mice intravenously injected with the tracer of Evans blue dye. This suggests that the permeability of the BBB differentially changed in response to viral infection, leading to the entry of JE virions and/or putatively infected leukocytes from the periphery to the cerebrum as the initial site of infection in the central nervous system (CNS). Theoretically, the virus spread to the cerebellum soon after the cerebrum became infected.
Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System.
Rachdaoui, Nadia; Sarkar, Dipak K
2017-01-01
Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body's most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic-pituitary-adrenal axis, the hypothalamic-pituitary-gonadal axis, the hypothalamic-pituitary-thyroid axis, the hypothalamic-pituitary-growth hormone/insulin-like growth factor-1 axis, and the hypothalamic-posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol's effects on various components of the endocrine system and their consequences.
Carbone, David L.; Handa, Robert J.
2012-01-01
The neurotrophin, brain-derived neurotrophic factor (BDNF), is recognized as a key component in the regulation of central nervous system ontogeny, homeostasis and adult neuroplasticity. The importance of BDNF in central nervous system development and function is well documented by numerous reports from animal studies linking abnormal BDNF signaling to metabolic disturbances and anxiety or depressive-like behavior. Despite the diverse roles for BDNF in nearly all aspects of central nervous system physiology, the regulation of BDNF expression, as well as our understanding of the signaling mechanisms associated with this neurotrophin, remains incomplete. However, links between sex hormones such as estradiol and testosterone, as well as endogenous and synthetic glucocorticoids, have emerged as important mediators of BDNF expression and function. Examples of such regulation include brain region-specific induction of Bdnf mRNA in response to estradiol. Additional studies have also documented regulation of the expression of the high-affinity BDNF receptor TrkB by estradiol, thus implicating sex steroids not only in the regulation of BDNF expression, but on mechanisms of signaling associated with it. In addition to gonadal steroids, further evidence also suggests functional interaction between BDNF and glucocorticoids, such as in the regulation of corticotrophin-releasing hormone and other important neuropeptides. In this review, we provide an overview of the roles played by selected sex or stress hormones in the regulation of BDNF expression and signaling in the central nervous system PMID:23211562
[Molecular biology of subacute spongiform encephalitis].
Catala, M
1991-10-05
Subacute spongiform encephalitis is a pathology that is common to 4 human and 4 animal diseases. These diseases are characterized by the neurological lesions they share and by the fact that they can be transmitted to animals. An abnormal isoform of an endogenous central nervous system protein has been identified. It might be the sole pathogenic agent, but it is certain that it plays a major role in the expressivity of the disease.
Xu, Elvis Genbo; Khursigara, Alex J; Magnuson, Jason; Hazard, E Starr; Hardiman, Gary; Esbaugh, Andrew J; Roberts, Aaron P; Schlenk, Daniel
2017-09-05
The Deepwater Horizon (DWH) incident resulted in extensive oiling of the pelagic zone and shoreline habitats of many commercially important fish species. Exposure to the water-accommodated fraction (WAF) of oil from the spill causes developmental toxicity through cardiac defects in pelagic fish species. However, few studies have evaluated the effects of the oil on near-shore estuarine fish species such as red drum (Sciaenops ocellatus). Following exposure to a certified weathered slick oil (4.74 μg/L ∑PAH 50 ) from the DWH event, significant sublethal impacts were observed ranging from impaired nervous system development [average 17 and 22% reductions in brain and eye area at 48 h postfertilization (hpf), respectively] to abnormal cardiac morphology (100% incidence at 24, 48, and 72 hpf) in red drum larvae. Consistent with the phenotypic responses, significantly differentially expressed transcripts, enriched gene ontology, and altered functions and canonical pathways predicted adverse outcomes in nervous and cardiovascular systems, with more pronounced changes at later larval stages. Our study demonstrated that the WAF of weathered slick oil of DWH caused morphological abnormalities predicted by a suite of advanced bioinformatic tools in early developing red drum and also provided the basis for a better understanding of molecular mechanisms of crude oil toxicity in fish.
Yamamoto, Saori; Suzuki, Hideaki; Sugimura, Koichiro; Tatebe, Shunsuke; Aoki, Tatsuo; Miura, Masanobu; Yaoita, Nobuhiro; Sato, Haruka; Kozu, Katuya; Ota, Hideki; Takanami, Kentaro; Takase, Kei; Shimokawa, Hiroaki
2016-11-25
It remains to be elucidated whether cardiac sympathetic nervous activity is impaired in patients with Anderson-Fabry disease (AFD).Methods and Results:We performed 123 I-meta-iodobenzylguanidine (MIBG) scintigraphy and gadolinium-enhanced cardiovascular magnetic resonance (CMR) in 5 AFD patients. MIBG uptake in the inferolateral wall, where wall thinning and delayed enhancement were noted on CMR, was significantly lower compared with the anteroseptal wall. The localized reduction in MIBG uptake was also noted in 2 patients with no obvious abnormal findings on CMR. Cardiac sympathetic nervous activity is impaired in AFD before development of structural myocardial abnormalities. (Circ J 2016; 80: 2550-2551).
Carlsson, G; van't Hooft, I; Melin, M; Entesarian, M; Laurencikas, E; Nennesmo, I; Trebińska, A; Grzybowska, E; Palmblad, J; Dahl, N; Nordenskjöld, M; Fadeel, B; Henter, J-I
2008-10-01
Homozygous mutations in the HAX1 gene were recently identified in severe congenital neutropenia patients belonging to the original Kostmann family in northern Sweden. Our observations suggested that these patients also develop neurological and neuropsychological symptoms. Detailed clinical studies and mutation analyses were performed in the surviving patients belonging to the Kostmann kindred and in two patients not related to this family, along with studies of HAX1 splice variant expression in normal human tissues. Five of six Kostmann family patients and one other patient from northern Sweden harboured homozygous HAX1 mutations (568C-->T, Q190X) and one carried a heterozygous ELA2 gene mutation. One Swedish patient of Kurdish extraction carried alternative homozygous HAX1 mutations (131G-->A, W44X). All the three patients with Q190X mutations who were alive and available for evaluation developed neurological disease with decreased cognitive function, and three of four patients who reached 10 years developed epilepsy. In contrast, the patients with the ELA2 and W44X HAX1 mutations, respectively, showed no obvious neurological abnormalities. Moreover, two alternative HAX1 splice variants were identified in normal human tissues, including the brain. Both transcripts contained exon 5, harbouring the Q190X mutation, whereas the 5' end of exon 2 containing the W44X mutation was spliced out from the second transcript. We describe neurological and neuropsychological abnormalities for the first time in Kostmann disease patients. These central nervous system symptoms appear to be associated with specific HAX1 mutations.
Quach, David H.; Oliveira-Fernandes, Michelle; Gruner, Katherine A.; Tourtellotte, Warren G.
2013-01-01
Egr3 is a nerve growth factor (NGF)-induced transcriptional regulator that is essential for normal sympathetic nervous system development. Mice lacking Egr3 in the germline have sympathetic target tissue innervation abnormalities and physiologic sympathetic dysfunction similar to humans with dysautonomia. However, since Egr3 is widely expressed and has pleiotropic function, it has not been clear whether it has a role within sympathetic neurons and if so, what target genes it regulates to facilitate target tissue innervation. Here, we show that Egr3 expression within sympathetic neurons is required for their normal innervation since isolated sympathetic neurons lacking Egr3 have neurite outgrowth abnormalities when treated with NGF and mice with sympathetic neuron-restricted Egr3 ablation have target tissue innervation abnormalities similar to mice lacking Egr3 in all tissues. Microarray analysis performed on sympathetic neurons identified many target genes deregulated in the absence of Egr3, with some of the most significantly deregulated genes having roles in axonogenesis, dendritogenesis, and axon guidance. Using a novel genetic technique to visualize axons and dendrites in a subpopulation of randomly labeled sympathetic neurons, we found that Egr3 has an essential role in regulating sympathetic neuron dendrite morphology and terminal axon branching, but not in regulating sympathetic axon guidance to their targets. Together, these results indicate that Egr3 has a sympathetic neuron autonomous role in sympathetic nervous system development that involves modulating downstream target genes affecting the outgrowth and branching of sympathetic neuron dendrites and axons. PMID:23467373
Diagnosis, pathophysiology, and management of cluster headache.
Hoffmann, Jan; May, Arne
2018-01-01
Cluster headache is a trigeminal autonomic cephalalgia characterised by extremely painful, strictly unilateral, short-lasting headache attacks accompanied by ipsilateral autonomic symptoms or the sense of restlessness and agitation, or both. The severity of the disorder has major effects on the patient's quality of life and, in some cases, might lead to suicidal ideation. Cluster headache is now thought to involve a synchronised abnormal activity in the hypothalamus, the trigeminovascular system, and the autonomic nervous system. The hypothalamus appears to play a fundamental role in the generation of a permissive state that allows the initiation of an episode, whereas the attacks are likely to require the involvement of the peripheral nervous system. Triptans are the most effective drugs to treat an acute cluster headache attack. Monoclonal antibodies against calcitonin gene-related peptide, a crucial neurotransmitter of the trigeminal system, are under investigation for the preventive treatment of cluster headache. These studies will increase our understanding of the disorder and perhaps reveal other therapeutic targets. Copyright © 2018 Elsevier Ltd. All rights reserved.
Riihimäki, V; Hänninen, H; Akila, R; Kovala, T; Kuosma, E; Paakkulainen, H; Valkonen, S; Engström, B
2000-04-01
The relationship between elevated internal aluminum loads and central nervous system function was studied among aluminum welders, and the threshold level for adverse effect was defined. For 65 aluminum welders and 25 current mild steel welders body burden was estimated, and the aluminum concentrations in serum (S-Al) and urine (U-Al) were analyzed with graphite furnace atomic absorption spectrometry with Zeeman background correction. Referents and low-exposure and high-exposure groups were defined according to an aggregated measure of aluminum body burden, the group median S-Al levels being 0.08, 0.14, and 0.46 micromol/l, respectively, and the corresponding values for U-Al being 0.4, 1.8, and 7.1 micromol/l. Central nervous system functions were assessed with a neuropsychological test battery, symptom and mood questionnaires, a visual and quantitative analysis of electroencephalography (EEG), and P3 event-related potentials with pitch and duration paradigms. Subjective symptoms showed exposure-related increases in fatigue, mild depression, and memory and concentration problems. Neuropsychological testing revealed a circumscribed effect of aluminum, mainly in tasks demanding complex attention and the processing of information in the working memory system and in the analysis and recall of abstract visual patterns. The visual EEG analysis revealed pathological findings only for aluminum welders. Mild, diffuse abnormalities were found in 17% of the low-exposure group and 27% of the high-exposure group, and mild to moderate epileptiform abnormalities at a frequency of 7% and 17%, respectively. Both objective neurophysiological and neuropsychological measures and subjective symptomatology indicated mild but unequivocal findings dose-dependently associated with increased aluminum body burden. The study indicates that the body burden threshold for adverse effect approximates an U-Al value of 4-6 micromol/l and an S-Al value of 0.25-0.35 micromol/l among aluminum welders.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andrews, A.D.; Barrett, S.F.; Robbins, J.H.
1978-04-01
Xeroderma pigmentosum is an autosomal recessive disease in which DNA repair processes are defective. All xeroderma pigmentosum patients develop premature aging of sun exposed skin, and some develop neurological abnormalities due to premature death of nerve cells. Sensitivity to ultraviolet radiation of 24 xeroderma pigmentosum fibroblast strains was studied in vitro by measuring each strain's ability to divide and form colonies after irradiation. The most sensitive strains were derived from patients who had an early onset of neurological abnormalities; less sensitive strains were from patients with a later onset; and the most resistant strains were from patients without neurological abnormalities.more » The uv sensitivities of strains from each member of a sibling pair with xeroderma pigmentosum were identical, indicating that uv sensitivity of xeroderma pigmentosum strains is determined by the patient's inherited DNA repair defect. The results suggest that effective DNA repair is required to maintain the functional integrity of the human nervous system by preventing premature death of neurons.« less
Glial heterotopia of the lip: A rare presentation.
Dadaci, Mehmet; Bayram, Fazli Cengiz; Ince, Bilsev; Bilgen, Fatma
2016-01-01
Glial heterotopia represents collections of normal glial tissue in an abnormal location distant to the central nervous system or spinal canal with no intracranial connectivity. Nasal gliomas are non-neoplastic midline tumours, with limited growth potential and no similarity to the central nervous system gliomas. The nose and the nasopharynx are the most common sites of location. Existence of glial heterotopia in the lip region is a rare developmental disorder. We report a case of large glial heterotopia in the upper lip region in a full-term female newborn which had intracranial extension with a fibrotic band. After the surgery, there was no recurrence in the follow-up period of 3 years. When glial heterotopia, which is a rare midline anomaly, is suspected, possible intracranial connection and properties of the mass should be evaluated by magnetic resonance imaging. By this way, lower complication rate and better aesthetic results can be achieved with early diagnosis and proper surgery.
The sympathetic nervous system and the physiologic consequences of spaceflight: a hypothesis
NASA Technical Reports Server (NTRS)
Robertson, D.; Convertino, V. A.; Vernikos, J.
1994-01-01
Many of the physiologic consequences of weightlessness and the cardiovascular abnormalities on return from space could be due, at least in part, to alterations in the regulation of the autonomic nervous system. In this article, the authors review the rationale and evidence for an autonomic mediation of diverse changes that occur with spaceflight, including the anemia and hypovolemia of weightlessness and the tachycardia and orthostatic intolerance on return from space. This hypothesis is supported by studies of two groups of persons known to have low catecholamine levels: persons subjected to prolonged bedrest and persons with syndromes characterized by low circulating catecholamines (Bradbury-Eggleston syndrome and dopamine beta-hydroxylase deficiency). Both groups exhibit the symptoms mentioned. The increasing evidence that autonomic mechanisms underlie many of the physiologic consequences of weightlessness suggests that new pharmacologic approaches (such as administration of beta-blockers and/or sympathomimetic amines) based on these findings may attenuate these unwanted effects.
Nervous System Injury and Neuroimaging of Zika Virus Infection
Wu, Shanshan; Zeng, Yu; Lerner, Alexander; Gao, Bo; Law, Meng
2018-01-01
In 2016, World Health Organization announced Zika virus infection and its neurological sequalae are a public health emergency of global scope. Preliminary studies have confirmed a relationship between Zika virus infection and certain neurological disorders, including microcephaly and Guillain–Barre syndrome (GBS). The neuroimaging features of microcephaly secondary to Zika virus infection include calcifications at the junction of gray–white matter and subcortical white matter with associated cortical abnormalities, diminution of white matter, large ventricles with or without hydrocephalus, cortical malformations, hypoplasia of cerebellum and brainstem, and enlargement of cerebellomedullary cistern. Contrast enhancement of the cauda equine nerve roots is the typical neuroimaging finding of GBS associated with Zika virus. This review describes the nervous system disorders and associated imaging findings seen in Zika virus infection, with the aim to improve the understanding of this disease. Imaging plays a key role on accurate diagnosis and prognostic evaluation of this disease. PMID:29740383
Nervous System Injury and Neuroimaging of Zika Virus Infection.
Wu, Shanshan; Zeng, Yu; Lerner, Alexander; Gao, Bo; Law, Meng
2018-01-01
In 2016, World Health Organization announced Zika virus infection and its neurological sequalae are a public health emergency of global scope. Preliminary studies have confirmed a relationship between Zika virus infection and certain neurological disorders, including microcephaly and Guillain-Barre syndrome (GBS). The neuroimaging features of microcephaly secondary to Zika virus infection include calcifications at the junction of gray-white matter and subcortical white matter with associated cortical abnormalities, diminution of white matter, large ventricles with or without hydrocephalus, cortical malformations, hypoplasia of cerebellum and brainstem, and enlargement of cerebellomedullary cistern. Contrast enhancement of the cauda equine nerve roots is the typical neuroimaging finding of GBS associated with Zika virus. This review describes the nervous system disorders and associated imaging findings seen in Zika virus infection, with the aim to improve the understanding of this disease. Imaging plays a key role on accurate diagnosis and prognostic evaluation of this disease.
A psychodynamic model of behavior after acute central nervous system damage.
Groswasser, Z; Stern, M J
1998-02-01
This article describes a conceptual psychodynamic model for understanding the neurobehavioral manifestations of acute central nervous system damage (ACNSD) displayed by patients during the rehabilitation process. According to the proposed model, patientsO behavioral responses are viewed as their only means of emotional expression and therefore may not be considered entirely abnormal when viewed from the perspective of patientsO interpersonal contexts. An improved understanding of the dynamic processes through which recovering patients with ACNSD journey may lead to better interaction between the patient and the therapeutic environment, the interdisciplinary team, and family members. Combining this proposed psychodynamic model with an emerging understanding of the neurobehavioral foundations of aggression and depression may also lead to a more rational approach to intervention with various psychopharmacologic agents. During the rehabilitation process, understanding patients' cognitive deficits, motivational drives, and emotional needs and proper implementation of medical and environmental treatment can ultimately lead to a better psychosocial outcome.
The pathogenesis of Hirschsprung's disease-associated enterocolitis.
Austin, Kelly Miller
2012-11-01
Hirschsprung's disease-associated enterocolitis (HAEC) remains the most life-threatening complication in Hirschsprung disease (HD) patients. The pathogenesis of HAEC has not been determined and many hypotheses regarding the etiology of HAEC have been proposed. These include a possible causal relationship between the abnormal enteric nervous system development in HD and the development of enterocolitis. Based on the complex genetic causes of HD that have been discovered and the resultant heterogeneous group of patients that exists, the causes of HAEC are likely multiple. New insights regarding the relationship of the role of the enteric nervous system and its interaction between intestinal barrier function, innate host immunity, and commensal microflora have been discovered, which may shed light on this perplexing problem. This review presents current known risk factors of HAEC and the proposed theories and supporting evidence for the potential etiologies of HAEC. Copyright © 2012. Published by Elsevier Inc.
Rosemberg, S; Arita, F N; Campos, C; Alonso, F
1984-02-01
A case of hypomelanosis of Ito in a ten-year-old black boy with mental retardation, epilepsy and abnormalities of the white matter of the cerebral hemispheres revealed by a computerized tomography is presented. This is the 41st reported case on this disease, a number of which have shown neurological signs. A review of the literature with emphasis on the neurological manifestations is performed.
Noninvasive biosensor for hypoglycemia
NASA Astrophysics Data System (ADS)
Varadan, Vijay K.; Whitchurch, Ashwin K.; Sarukesi, Karunakaran
2003-01-01
Hypoglycemia-abnormal decrease in blood sugar- is a major obstacle in the management of diabetes and prevention of long-term complications, and it may impose serious effects on the brain, including impairment of memory and other cognitive functions. This is especially a concern in early childhood years when the nervous system is still developing. Hypoglycemic unawareness (in which the body"s normal ability to signal low blood sugar doesn"t work and an oncoming low blood sugar episode proceeds undetected) is a particularly frightening problem for many people with diabetes. Researchers have now uncovered evidence that repeated bouts of insulin-induced hypoglycemia can harm the brain over time, causing confusion, abnormal behavior, loss of consciousness, and seizures. Extreme cases have resulted in coma and death. In this paper, a non-invasive biosensor in a wrist watch along with a wireless data downloading system is proposed.
Socioeconomic disadvantage and neural development from infancy through early childhood.
Chin-Lun Hung, Galen; Hahn, Jill; Alamiri, Bibi; Buka, Stephen L; Goldstein, Jill M; Laird, Nan; Nelson, Charles A; Smoller, Jordan W; Gilman, Stephen E
2015-12-01
Early social experiences are believed to shape neurodevelopment, with potentially lifelong consequences. Yet minimal evidence exists regarding the role of the social environment on children's neural functioning, a core domain of neurodevelopment. We analysed data from 36 443 participants in the United States Collaborative Perinatal Project, a socioeconomically diverse pregnancy cohort conducted between 1959 and 1974. Study outcomes included: physician (neurologist or paediatrician)-rated neurological abnormality neonatally and thereafter at 4 months and 1 and 7 years; indicators of neurological hard signs and soft signs; and indicators of autonomic nervous system function. Children born to socioeconomically disadvantaged parents were more likely to exhibit neurological abnormalities at 4 months [odds ratio (OR) = 1.20; 95% confidence interval (CI) = 1.06, 1.37], 1 year (OR = 1.35; CI = 1.17, 1.56), and 7 years (OR = 1.67; CI = 1.48, 1.89), and more likely to exhibit neurological hard signs (OR = 1.39; CI = 1.10, 1.76), soft signs (OR = 1.26; CI = 1.09, 1.45) and autonomic nervous system dysfunctions at 7 years. Pregnancy and delivery complications, themselves associated with socioeconomic disadvantage, did not account for the higher risks of neurological abnormalities among disadvantaged children. Parental socioeconomic disadvantage was, independently from pregnancy and delivery complications, associated with abnormal child neural development during the first 7 years of life. These findings reinforce the importance of the early environment for neurodevelopment generally, and expand knowledge regarding the domains of neurodevelopment affected by environmental conditions. Further work is needed to determine the mechanisms linking socioeconomic disadvantage with children's neural functioning, the timing of such mechanisms and their potential reversibility. Published by Oxford University Press on behalf of the International Epidemiological Association 2015. This work is written by US Government employees and is in the public domain in the US.
Purtscher-like retinopathy in systemic lupus erythematosus.
Wu, Chan; Dai, Rongping; Dong, Fangtian; Wang, Qian
2014-12-01
To investigate clinical characteristics of Purtscher-like retinopathy and its clinical implications among patients with systemic lupus erythematosus (SLE). Observational case series. setting: Tertiary medical center. patient population: Patients with SLE who were diagnosed with Purtscher-like retinopathy between 2002 and 2013. observation procedures: Assessment and follow-up in the ophthalmology department. main outcome measure: Visual acuity and funduscopic examination at presentation and at 6 month follow-up, with analysis of the association between Purtscher-like retinopathy and other systemic involvement of SLE and overall disease activity. Among 5688 patients with SLE evaluated, 8 cases of Purtscher-like retinopathy were diagnosed. Typical fundus abnormalities included Purtscher flecken, cotton-wool spots, retinal hemorrhages, macular edema, optic disk swelling, and a pseudo-cherry red spot. Fluorescein angiography abnormalities included areas of capillary nonperfusion corresponding to the retinal whitening, late leakage, peripapillary staining, precapillary occlusion, and slower filling of vessels. The prevalence of central nervous system lupus was significantly higher among those with Purtscher-like retinopathy (6/8) than among 240 patients randomly sampled from those without Purtscher-like retinopathy. A very high SLE Disease Activity Index (≥20) was present in all 8 patients with Purtscher-like retinopathy. All patients received corticosteroids combined with immunosuppressants. For the majority of patients, optic atrophy developed during follow-up with persistent low visual acuity. As a rare and severe ophthalmic complication of SLE, Purtscher-like retinopathy was associated with central nervous system lupus and highly active disease. Visual acuity recovery was usually poor despite prompt treatment. Copyright © 2014 Elsevier Inc. All rights reserved.
Opperman, Karla; Moseley-Alldredge, Melinda; Yochem, John; Bell, Leslie; Kanayinkal, Tony; Chen, Lihsia
2015-01-01
The L1CAM family of cell adhesion molecules is a conserved set of single-pass transmembrane proteins that play diverse roles required for proper nervous system development and function. Mutations in L1CAMs can cause the neurological L1 syndrome and are associated with autism and neuropsychiatric disorders. L1CAM expression in the mature nervous system suggests additional functions besides the well-characterized developmental roles. In this study, we demonstrate that the gene encoding the Caenorhabditis elegans L1CAM, sax-7, genetically interacts with gtl-2, as well as with unc-13 and rab-3, genes that function in neurotransmission. These sax-7 genetic interactions result in synthetic phenotypes that are consistent with abnormal synaptic function. Using an inducible sax-7 expression system and pharmacological reagents that interfere with cholinergic transmission, we uncovered a previously uncharacterized nondevelopmental role for sax-7 that impinges on synaptic function. PMID:25488979
Hara, Yusuke; Sudo, Tatsuya; Togane, Yu; Akagawa, Hiromi; Tsujimura, Hidenobu
2018-04-01
Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers. These results indicate that cell death is required for elimination of the precursor cells composing the proliferation centers. This study substantiates an essential role of early neural cell death for ensuring normal development of the central nervous system. Copyright © 2018 Elsevier Inc. All rights reserved.
Effects of alcohol on the endocrine system.
Rachdaoui, Nadia; Sarkar, Dipak K
2013-09-01
Chronic consumption of a large amount of alcohol disrupts the communication between nervous, endocrine, and immune system and causes hormonal disturbances that lead to profound and serious consequences at physiologic and behavioral levels. These alcohol-induced hormonal dysregulations affect the entire body and can result in various disorders such as stress abnormalities, reproductive deficits, body growth defect, thyroid problems, immune dysfunction, cancers, bone disease, and psychological and behavioral disorders. This review summarizes the findings from human and animal studies that provide consistent evidence on the various effects of alcohol abuse on the endocrine system. Copyright © 2013 Elsevier Inc. All rights reserved.
Neurologic complications of electrolyte disturbances and acid-base balance.
Espay, Alberto J
2014-01-01
Electrolyte and acid-base disturbances are common occurrences in daily clinical practice. Although these abnormalities can be readily ascertained from routine laboratory findings, only specific clinical correlates may attest as to their significance. Among a wide phenotypic spectrum, acute electrolyte and acid-base disturbances may affect the peripheral nervous system as arreflexic weakness (hypermagnesemia, hyperkalemia, and hypophosphatemia), the central nervous system as epileptic encephalopathies (hypomagnesemia, dysnatremias, and hypocalcemia), or both as a mixture of encephalopathy and weakness or paresthesias (hypocalcemia, alkalosis). Disabling complications may develop not only when these derangements are overlooked and left untreated (e.g., visual loss from intracranial hypertension in respiratory or metabolic acidosis; quadriplegia with respiratory insufficiency in hypermagnesemia) but also when they are inappropriately managed (e.g., central pontine myelinolisis when rapidly correcting hyponatremia; cardiac arrhythmias when aggressively correcting hypo- or hyperkalemia). Therefore prompt identification of the specific neurometabolic syndromes is critical to correct the causative electrolyte or acid-base disturbances and prevent permanent central or peripheral nervous system injury. This chapter reviews the pathophysiology, clinical investigations, clinical phenotypes, and current management strategies in disorders resulting from alterations in the plasma concentration of sodium, potassium, calcium, magnesium, and phosphorus as well as from acidemia and alkalemia. © 2014 Elsevier B.V. All rights reserved.
2011-01-01
Introduction Cystic fibrosis, an epithelial cell transport disorder caused by mutations of the cystic fibrosis transmembrane conductance regulator gene, is not generally associated with malformations of the central nervous system. We review eight previously published reports detailing an infrequent association between cystic fibrosis and Chiari I malformation. Case presentation To the best of our knowledge, our report describes only the ninth case of a baby presenting with a new diagnosis of cystic fibrosis and Chiari I malformation, in this case in a 10-month-old, full-term Caucasian baby boy from the United States of America. Neurosurgical consultation was obtained for associated developmental delay, macrocephaly, bulging anterior fontanel, and papilledema. An MRI scan demonstrated an extensive Chiari I malformation with effacement of the fourth ventricle, obliteration of the outlets of the fourth ventricle and triventricular hydrocephalus without aqueductal stenosis. Our patient was taken to the operating room for ventriculoperitoneal shunt placement. Conclusions It is possible that the cystic fibrosis transmembrane conductance regulator gene may play a previously unrecognized role in central nervous system development; alternatively, this central nervous system abnormality may have been acquired due to constant valsalva from recurrent coughing or wheezing or metabolic and electrolyte imbalances that occur characteristically in cystic fibrosis. PMID:21838874
[Mental disorders in digestive system diseases - internist's and psychiatrist's insight].
Kukla, Urszula; Łabuzek, Krzysztof; Chronowska, Justyna; Krzystanek, Marek; Okopień, BogusŁaw
2015-05-01
Mental disorders accompanying digestive system diseases constitute interdisciplinary yet scarcely acknowledged both diagnostic and therapeutic problem. One of the mostly recognized examples is coeliac disease where patients endure the large spectrum of psychopathological symptoms, starting with attention deficit all the way down to the intellectual disability in extreme cases. It has not been fully explained how the pathomechanism of digestive system diseases affects patient's mental health, however one of the hypothesis suggests that it is due to serotonergic or opioid neurotransmission imbalance caused by gluten and gluten metabolites effect on central nervous system. Behavioral changes can also be invoked by liver or pancreatic diseases, which causes life-threatening abnormalities within a brain. It occurs that these abnormalities reflexively exacerbate the symptoms of primary somatic disease and aggravate its course, which worsens prognosis. The dominant mental disease mentioned in this article is depression which because of its effect on a hypothalamuspituitary- adrenal axis and on an autonomic nervous system, not only aggravates the symptoms of inflammatory bowel diseases but may accelerate their onset in genetically predisposed patients. Depression is known to negatively affects patients' ability to function in a society and a quality of their lives. Moreover, as far as children are concerned, the occurrence of digestive system diseases accompanied by mental disorders, may adversely affect their further physical and psychological development, which merely results in worse school performance. All those aspects of mental disorders indicate the desirability of the psychological care for patients with recognized digestive system disease. The psychological assistance should be provided immediately after diagnosis of a primary disease and be continued throughout the whole course of treatment. © 2015 MEDPRESS.
Recurrent postoperative CRPS I in patients with abnormal preoperative sympathetic function.
Ackerman, William E; Ahmad, Mahmood
2008-02-01
A complex regional pain syndrome of an extremity that has previously resolved can recur after repeat surgery at the same anatomic site. Complex regional pain syndrome is described as a disease of the autonomic nervous system. The purpose of this study was to evaluate preoperative and postoperative sympathetic function and the recurrence of complex regional pain syndrome type I (CRPS I) in patients after repeat carpal tunnel surgery. Thirty-four patients who developed CRPS I after initial carpal tunnel releases and required repeat open carpal tunnel surgeries were studied. Laser Doppler imaging (LDI) was used to assess preoperative sympathetic function 5-7 days prior to surgery and to assess postoperative sympathetic function 19-22 days after surgery or 20-22 days after resolution of the CRPS I. Sympathetic nervous system function was prospectively examined by testing reflex-evoked vasoconstrictor responses to sympathetic stimuli recorded with LDI of both hands. Patients were assigned to 1 of 2 groups based on LDI responses to sympathetic provocation. Group I (11 of 34) patients had abnormal preoperative LDI studies in the hands that had prior surgeries, whereas group II (23 of 34) patients had normal LDI studies. Each patient in this study had open repeat carpal tunnel surgery. In group I, 8 of 11 patients had recurrent CRPS I, whereas in group II, 3 of 23 patients had recurrent CRPS I. All of the recurrent CRPS I patients were successfully treated with sympathetic blockade, occupational therapy, and pharmacologic modalities. Repeat LDI after recurrent CRPS I resolution was abnormal in 8 of 8 group I patients and in 1 of 3 group II patients. CRPS I can recur after repeat hand surgery. Our study results may, however, identify those individuals who may readily benefit from perioperative therapies. Prognostic I.
Neurogenic bladder findings in patients with Congenital Zika Syndrome: A novel condition
Cruz, Glaura Nisya de Oliveira; Fontes, Juliana Marin; Saad Salles, Tania Regina Dias; Boechat, Marcia Cristina Bastos; Monteiro, Ana Carolina; Moreira, Maria Elizabeth Lopes
2018-01-01
Introduction Congenital Zika Syndrome (CZS) has been associated with microcephaly and other central nervous system abnormalities including areas that have been implicated in the control of the lower urinary tract. As such, this descriptive case series has aimed to investigate whether CZS is linked with neurogenic bladder. Identifying such an association is paramount in the effort to recognize CZS complications that have putative treatment options that could mitigate the impact of CZS in infected children. Methods Following IRB approval, urological assessment was performed in all patients referred to our clinic between June 2016 and May 2017 who presented with confirmed CZS-associated microcephaly. The research protocol consisted of obtaining clinical history, laboratory tests, lower and upper urinary tract ultrasounds, as well as a diagnostic urodynamic evaluation. ZIKA virus infection was previously confirmed by maternal history and positive PCR in babies and mothers. Microcephaly and other central nervous system abnormalities were established based on neurological assessment and associated imaging of the central nervous system (CT head and/or Brain MRI). Results Twenty-two consecutive CZS patients were tested and confirmed to have neurogenic bladder. Of the 22 patients assessed, 21 presented with an overactive bladder combined with reduced bladder capacity and elevated detrusor filling pressures. Clinically significant increases in postvoid residual (PVR) were confirmed in 40% of cases while a urinary tract infection (UTI) was identified in 23% of cases. Conclusion Neurogenic bladder, a known treatable health condition, was confirmed in 100% of patients tested in this study, most presenting with high-risk urodynamic patterns known to lead to renal damage when left untreated. Follow up studies are necessary to provide further insight onto long-term disease progression and to investigate the response to standard therapies for neurogenic bladder. Nonetheless, we emphasize the importance of proactive management of neurogenic bladder and prompt referral so as to help mitigate CZS disease burden for patients and their families. PMID:29494684
Neurogenic bladder findings in patients with Congenital Zika Syndrome: A novel condition.
Costa Monteiro, Lucia Maria; Cruz, Glaura Nisya de Oliveira; Fontes, Juliana Marin; Saad Salles, Tania Regina Dias; Boechat, Marcia Cristina Bastos; Monteiro, Ana Carolina; Moreira, Maria Elizabeth Lopes
2018-01-01
Congenital Zika Syndrome (CZS) has been associated with microcephaly and other central nervous system abnormalities including areas that have been implicated in the control of the lower urinary tract. As such, this descriptive case series has aimed to investigate whether CZS is linked with neurogenic bladder. Identifying such an association is paramount in the effort to recognize CZS complications that have putative treatment options that could mitigate the impact of CZS in infected children. Following IRB approval, urological assessment was performed in all patients referred to our clinic between June 2016 and May 2017 who presented with confirmed CZS-associated microcephaly. The research protocol consisted of obtaining clinical history, laboratory tests, lower and upper urinary tract ultrasounds, as well as a diagnostic urodynamic evaluation. ZIKA virus infection was previously confirmed by maternal history and positive PCR in babies and mothers. Microcephaly and other central nervous system abnormalities were established based on neurological assessment and associated imaging of the central nervous system (CT head and/or Brain MRI). Twenty-two consecutive CZS patients were tested and confirmed to have neurogenic bladder. Of the 22 patients assessed, 21 presented with an overactive bladder combined with reduced bladder capacity and elevated detrusor filling pressures. Clinically significant increases in postvoid residual (PVR) were confirmed in 40% of cases while a urinary tract infection (UTI) was identified in 23% of cases. Neurogenic bladder, a known treatable health condition, was confirmed in 100% of patients tested in this study, most presenting with high-risk urodynamic patterns known to lead to renal damage when left untreated. Follow up studies are necessary to provide further insight onto long-term disease progression and to investigate the response to standard therapies for neurogenic bladder. Nonetheless, we emphasize the importance of proactive management of neurogenic bladder and prompt referral so as to help mitigate CZS disease burden for patients and their families.
Synthetic Cannabinoids and Their Effects on the Cardiovascular System.
Von Der Haar, Jonathan; Talebi, Soheila; Ghobadi, Farzaneh; Singh, Shailinder; Chirurgi, Roger; Rajeswari, Pingle; Kalantari, Hossein; Hassen, Getaw Worku
2016-02-01
In the past couple of years, there has been an outbreak of synthetic cannabinoid (SC) use in major cities in the United States. Patients can present with various symptoms affecting the central nervous and cardiovascular systems. The effects of endocannabinoid on contractility and Ca(2+) signaling have been shown through both cannabinoid receptors and a direct effect on ion channels. These effects result in abnormalities in ionotropy, chronotropy, and conduction. Here we report on two cases of SC abuse and abnormalities in the cardiovascular system. These cases raise concerns about the adverse effects of SCs and the possibility of QTc prolongation and subsequent complications when using antipsychotic medication in the presence of SC abuse. WHY SHOULD AN EMERGENCY PHYSICIAN BE AWARE OF THIS?: Given the rise in SC use and the potential effect on the cardiovascular system, physicians need to be mindful of potential cardiac complications, such as QTc prolongation and torsade de pointe, especially when administering medications that have the potential to cause QTc prolongation. Copyright © 2016 Elsevier Inc. All rights reserved.
Vacuolar myelinopathy in waterfowl from a North Carolina impoundment
Augspurger, T.; Fischer, John R.; Thomas, Nancy; Sileo, L.; Brannian, Roger E.; Miller, Kimberli J.; Rocke, Tonie E.
2003-01-01
Vacuolar myelinopathy was confirmed by light and electron microscopic examination of mallards (Anas platyrhynchos), ring-necked ducks (Aythya collaris), and buffleheads (Bucephala albeola) collected during an epizootic at Lake Surf in central North Carolina (USA) between November 1998 and February 1999. Clinical signs of affected birds were consistent with central nervous system impairment of motor function (incoordination, abnormal movement and posture, weakness, paralysis). This is the first report of this disease in wild waterfowl (Anseriformes).Aug
A Syndromic Neurodevelopmental Disorder Caused by De Novo Variants in EBF3.
Chao, Hsiao-Tuan; Davids, Mariska; Burke, Elizabeth; Pappas, John G; Rosenfeld, Jill A; McCarty, Alexandra J; Davis, Taylor; Wolfe, Lynne; Toro, Camilo; Tifft, Cynthia; Xia, Fan; Stong, Nicholas; Johnson, Travis K; Warr, Coral G; Yamamoto, Shinya; Adams, David R; Markello, Thomas C; Gahl, William A; Bellen, Hugo J; Wangler, Michael F; Malicdan, May Christine V
2017-01-05
Early B cell factor 3 (EBF3) is a member of the highly evolutionarily conserved Collier/Olf/EBF (COE) family of transcription factors. Prior studies on invertebrate and vertebrate animals have shown that EBF3 homologs are essential for survival and that loss-of-function mutations are associated with a range of nervous system developmental defects, including perturbation of neuronal development and migration. Interestingly, aristaless-related homeobox (ARX), a homeobox-containing transcription factor critical for the regulation of nervous system development, transcriptionally represses EBF3 expression. However, human neurodevelopmental disorders related to EBF3 have not been reported. Here, we describe three individuals who are affected by global developmental delay, intellectual disability, and expressive speech disorder and carry de novo variants in EBF3. Associated features seen in these individuals include congenital hypotonia, structural CNS malformations, ataxia, and genitourinary abnormalities. The de novo variants affect a single conserved residue in a zinc finger motif crucial for DNA binding and are deleterious in a fly model. Our findings indicate that mutations in EBF3 cause a genetic neurodevelopmental syndrome and suggest that loss of EBF3 function might mediate a subset of neurologic phenotypes shared by ARX-related disorders, including intellectual disability, abnormal genitalia, and structural CNS malformations. Copyright © 2017 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.
MYELIN, COPPER, AND THE CUPRIZONE MODEL OF SCHIZOPHRENIA
Herring, Nicole R.; Konradi, Christine
2010-01-01
In recent years increasing evidence is pointing toward white matter abnormalities in schizophrenia and other psychiatric disorders. The present paper will provide an overview over the role of myelin in cognition and brain function, and its potential involvement in brain disorders. Furthermore, we will examine one particular experimental model for the study of dysmyelination, created by the administration of the toxin cuprizone. Cuprizone, a copper chelator, causes white matter abnormalities in rodents. The administration of cuprizone during specific developmental periods allows for the targeting of specific brain areas for dysmyelination. Thus, cuprizone can be used to study the pathogenesis and pathophysiology of myelin deficiencies in the central nervous system, and its effect on behaviors relevant to psychiatric disorders. PMID:21196354
Non-invasive brain stimulation approaches to fibromyalgia pain
Short, Baron; Borckardt, Jeffrey J; George, Mark; Beam, Will; Reeves, Scott T
2010-01-01
Fibromyalgia is a poorly understood disorder that likely involves central nervous system sensory hypersensitivity. There are a host of genetic, neuroendocrine and environmental abnormalities associated with the disease, and recent research findings suggest enhanced sensory processing, and abnormalities in central monoamines and cytokines expression in patients with fibromyalgia. The morbidity and financial costs associated with fibromyalgia are quite high despite conventional treatments with antidepressants, anticonvulsants, low-impact aerobic exercise and psychotherapy. Noninvasive brain stimulation techniques, such as transcranial direct current stimulation, transcranial magnetic stimulation, and electroconvulsive therapy are beginning to be studied as possible treatments for fibromyalgia pain. Early studies appear promising but more work is needed. Future directions in clinical care may include innovative combinations of noninvasive brain stimulation, pharmacological augmentation, and behavior therapies. PMID:21841959
Nagy, Rebecca; Wang, Heng; Albrecht, Beate; Wieczorek, Dagmar; Gillessen-Kaesbach, Gabriele; Haan, Eric; Meinecke, Peter; de la Chapelle, Albert; Westman, Judith A.
2011-01-01
Microcephalic osteodysplastic primordial dwarfism type I (MOPD I) is a rare autosomal recessive developmental disorder characterized by extreme intrauterine growth retardation, severe microcephaly, central nervous system abnormalities, dysmorphic facial features, skin abnormalities, skeletal changes, limb deformations, and early death. Recently, mutations in the RNU4ATAC gene, which encodes U4atac, a small nuclear RNA that is a crucial component of the minor spliceosome, were found to cause MOPD I. MOPD I is the first disease known to be associated with a defect in small nuclear RNAs. We describe here the clinical and molecular data for 17 cases of MOPD I, including 15 previously unreported cases, all carrying biallelic mutations in the RNU4ATAC gene. PMID:21815888
Pathophysiology of the Effects of Alcohol Abuse on the Endocrine System
Rachdaoui, Nadia; Sarkar, Dipak K.
2017-01-01
Alcohol can permeate virtually every organ and tissue in the body, resulting in tissue injury and organ dysfunction. Considerable evidence indicates that alcohol abuse results in clinical abnormalities of one of the body’s most important systems, the endocrine system. This system ensures proper communication between various organs, also interfacing with the immune and nervous systems, and is essential for maintaining a constant internal environment. The endocrine system includes the hypothalamic–pituitary–adrenal axis, the hypothalamic–pituitary–gonadal axis, the hypothalamic–pituitary–thyroid axis, the hypothalamic–pituitary–growth hormone/insulin-like growth factor-1 axis, and the hypothalamic–posterior pituitary axis, as well as other sources of hormones, such as the endocrine pancreas and endocrine adipose tissue. Alcohol abuse disrupts all of these systems and causes hormonal disturbances that may result in various disorders, such as stress intolerance, reproductive dysfunction, thyroid problems, immune abnormalities, and psychological and behavioral disorders. Studies in both humans and animal models have helped shed light on alcohol’s effects on various components of the endocrine system and their consequences. PMID:28988577
Dandy-Walker malformation: analysis of 19 cases.
Alexiou, George A; Sfakianos, George; Prodromou, Neofytos
2010-02-01
Dandy-Walker malformation is a congenital disorder that involves the cerebellum and fourth ventricle. Regarding treatment, there is still controversy over the optimum surgical management. In the current study, we present 19 consecutive cases of Dandy-Walker malformation diagnosed between January 1992 and January 2008 that were treated in our institute. All patients presented with hydrocephalus at the time of diagnosis and were treated surgically. Combined drainage of the ventricular system and posterior fossa cyst, using a 3-way connector was performed in 5 patients. Posterior fossa cyst drainage alone was performed in 10 patients and the remaining 4 patients were treated by ventricular drainage alone. All patients improved after treatment. Dandy-Walker malformation is a developmental abnormality of the central nervous system associated with various brain and extracranial abnormalities. Surgical treatment remains controversial, whereas prognosis varies greatly according to the severity of syndrome and associated comorbidities.
Periventricular heterotopia and white matter abnormalities in a girl with mosaic ring chromosome 6.
Nishigaki, Satsuki; Hamazaki, Takashi; Saito, Mika; Yamamoto, Toshiyuki; Seto, Toshiyuki; Shintaku, Haruo
2015-01-01
Ring chromosome 6 is a rare chromosome abnormality that arises typically de novo. The phenotypes can be highly variable, ranging from almost normal to severe malformations and neurological defects. We report a case of a 3-year-old girl with mosaic ring chromosome 6 who presented with being small for gestational age and intellectual disability, and whose brain MRI later revealed periventricular heterotopia and white matter abnormalities. Mosaicism was identified in peripheral blood cells examined by standard G-bands, mos 46,XX,r(6)(p25q27)[67]/45,XX,-6[25]/46,XX,dic r(6:6)(p25q27:p25q27)[6]/47,XX,r(6)(p25q27) × 2[2]. Using array-comparative genomic hybridization, we identified terminal deletion of 6q27 (1.5 Mb) and no deletion on 6p. To our knowledge, this is the first report of periventricular heterotopia and white matter abnormalities manifested in a patient with ring chromosome 6. These central nervous system malformations are further discussed in relation to molecular genetics.
Machado, Sergio; Cunha, Marlo; Velasques, Bruna; Minc, Daniel; Teixeira, Silmar; Domingues, Clayton A; Silva, Julio G; Bastos, Victor H; Budde, Henning; Cagy, Mauricio; Basile, Luis; Piedade, Roberto; Ribeiro, Pedro
2010-10-01
Sensorimotor integration is defined as the capability of the central nervous system to integrate different sources of stimuli, and parallelly, to transform such inputs in motor actions. To review the basic principles of sensorimotor integration, such as, its neural bases and its elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects, and the abnormalities reported in the most common movement disorders, such as, Parkinson' disease, dystonia and stroke, like the cortical reorganization-related mechanisms. Whether these disorders are associated with an abnormal peripheral sensory input or defective central processing is still unclear, but most of the data support a central mechanism. We found that the sensorimotor integration process plays a potential role in elementary mechanisms involved in specific goal-directed tasks performed by healthy subjects and in occurrence of abnormalities in most common movement disorders and, moreover, play a potential role on the acquisition of abilities that have as critical factor the coupling of different sensory data which will constitute the basis of elaboration of motor outputs consciously goal-directed.
Lei, Ting; Feng, Jie-Ling; Xie, Ying-Jun; Xie, Hong-Ning; Zheng, Ju; Lin, Mei-Fang
2017-11-01
To explore the genetic aetiology of fetal posterior fossa abnormalities (PFAs). This study involved cases of PFAs that were identified by prenatal ultrasonographic screening and confirmed postnatally between January 2012 and January 2016. Conventional cytogenetic analyses and chromosomal microarray analysis were performed, and chromosomal aneuploidies and copy number variations (CNVs) were identified. Among 74 cases included in this study, 8 were of Blake's pouch cyst; 7, Dandy-Walker malformation; 11, vermian hypoplasia; 32, enlarged cisterna magna; and 16, cerebellar hypoplasia. The rates of nonbenign chromosomal aberrations (including chromosomal aneuploidies, pathogenic CNVs, and variants of unknown significance) were 2/8 (25.0%), 2/7 (28.5%), 8/11 (72.7%), 7/32 (21.9%), and 6/16 (37.5%), respectively. Cases were also classified as isolated PFAs (30/74), PFAs with other central nervous system (CNS) abnormalities (13/74), or PFAs with extra-CNS structural abnormalities (31/74). No fetuses with isolated PFAs or PFAs accompanied by other CNS abnormalities exhibited chromosomal aneuploidies or pathogenic CNVs. The rate of pathogenic chromosomal aberrations in the remaining fetuses was 17/31 (22.9%). The combined use of chromosomal microarray analysis and karyotype analysis might assist the prenatal diagnosis and management of PFAs, with extra-CNS structural abnormalities being detected by ultrasonography. © 2017 John Wiley & Sons, Ltd.
Neurologic manifestations of hypothyroidism in dogs.
Bertalan, Abigail; Kent, Marc; Glass, Eric
2013-03-01
Hypothyroidism is a common endocrine disease in dogs. A variety of clinicopathologic abnormalities may be present; however, neurologic deficits are rare. In some instances, neurologic deficits may be the sole manifestation of hypothyroidism. Consequent ly, the diagnosis and management of the neurologic disorders associated with hypothyroidism can be challenging. This article describes several neurologic manifestations of primary hypothyroidism in dogs; discusses the pathophysiology of hypothyroidism-induced neurologic disorders affecting the peripheral and central nervous systems; and reviews the evidence for the neurologic effects of hypothyroidism.
Magnesium replacement therapy.
DiPalma, J R
1990-07-01
Magnesium is involved as a cofactor in many vital enzymatic reactions. It is also important in the maintenance of membrane electric potential. Diagnosis of magnesium disturbances must often be based on clinical judgment. Hypomagnesemia is frequently associated with hypokalemia and hypocalcemia; hypermagnesemia most often occurs in patients with acute or chronic renal failure. Hypomagnesemia presents as neuromuscular, central nervous system and cardiac abnormalities. Inadequate dietary intake of magnesium occurs in alcoholism, catabolic states and gastrointestinal diseases. Intravenous administration of magnesium can cause neuromuscular paralysis and cardiac arrhythmias.
Neurologic disorders of mineral metabolism and parathyroid disease.
Agrawal, Lily; Habib, Zeina; Emanuele, Nicholas V
2014-01-01
Disorders of mineral metabolism may cause neurologic manifestations of the central and peripheral nervous systems. This is because plasma calcium stabilizes excitable membranes in the nerve and muscle tissue, magnesium is predominantly intracellular and is required for activation of many intracellular enzymes, and extracellular magnesium affects synaptic transmission. This chapter reviews abnormalities in electrolytes and minerals which can be associated with several neuromuscular symptoms including neuromuscular irritability, mental status changes, cardiac and smooth muscle changes, etc. © 2014 Elsevier B.V. All rights reserved.
Electrical Cerebral Stimulation Modifies Inhibitory Systems
NASA Astrophysics Data System (ADS)
Cuéllar-Herrera, M.; Rocha, L.
2003-09-01
Electrical stimulation of the nervous tissue has been proposed as a method to treat some neurological disorders, such as epilepsy. Epileptic seizures result from excessive, synchronous, abnormal firing patterns of neurons that are located predominantly in the cerebral cortex. Many people with epilepsy continue presenting seizures even though they are under regimens of antiepileptic medications. An alternative therapy for treatment resistant epilepsy is cerebral electrical stimulation. The present study is focused to review the effects of different types of electrical stimulation and specifically changes in amino acids.
Detection and Prevention of Perinatal Infection: Cytomegalovirus and Zika Virus.
Wood, Amber M; Hughes, Brenna L
2018-06-01
Congenital cytomegalovirus is the most common viral congenital infection, and affects up to 2% of neonates. Significant sequelae may develop after congenital cytomegalovirus, including hearing loss, cognitive defects, seizures, and death. Zika virus is an emerging virus with perinatal implications; a congenital Zika virus syndrome has been identified, and includes findings such as microcephaly, fetal nervous system abnormalities, and neurologic sequelae after birth. Screening, diagnosis, prevention, and treatment of these perinatal infections are reviewed in this article. Copyright © 2018 Elsevier Inc. All rights reserved.
Plinsinga, Melanie L; Brink, Michel S; Vicenzino, Bill; van Wilgen, C Paul
2015-11-01
Study Design Systematic review. Objectives To elucidate if there is sensitization of the nervous system in those with persistent rotator cuff (shoulder), lateral elbow, patellar, and Achilles tendinopathies. Background Tendinopathy can be difficult to treat, and persistent intractable pain and dysfunction are frequent. It is hypothesized that induction or maintenance of persistent pain in tendinopathy may be, at least in part, based on changes in the nervous system. Methods The PRISMA guidelines were followed. Relevant articles were identified through a computerized search in Embase, PubMed, and Web of Science, followed by a manual search of reference lists of retained articles. To be eligible, studies had to include quantitative sensory testing and evaluate individuals diagnosed with a persistent tendinopathy of the rotator cuff (shoulder), lateral elbow, patella, or Achilles tendon. Methodological quality assessment was evaluated with the Newcastle-Ottawa Scale. Results In total, 16 full-text articles met the criteria for inclusion, of which the majority were case-control studies with heterogeneous methodological quality. No studies on Achilles tendinopathy were found. Mechanical algometry was the predominant quantitative sensory testing used. Lowered pressure pain threshold was observed across different tendinopathies at the site of tendinopathy, as well as at other sites, the latter being suggestive of central sensitization. Conclusion Although more research on sensory abnormalities is warranted, it appears likely that there is an association between persistent tendon pain and sensitization of the nervous system. This evidence is primarily from studies of upper-limb tendinopathy, and caution should be exercised with inference to lower-limb tendinopathy. J Orthop Sports Phys Ther 2015;45(11):864-875. Epub 21 Sep 2015. doi:10.2519/jospt.2015.5895.
Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism
Park, Hyeong-Kyu; Ahima, Rexford S.
2014-01-01
Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. PMID:25199978
Janušonis, Skirmantas
2014-12-01
Altered serotonin (5-hydroxytryptamine, 5-HT) signaling has been implicated in some developmental abnormalities of autism spectrum disorder (ASD). However, the presumed role of 5-HT in ASD raises new questions in fundamental neuroscience. Specifically, it is not clear if the current piecemeal approach to 5-HT signaling in the mammalian body is effective and whether new conceptual approaches may be required. This review briefly discusses 5-HT production and circulation in the central nervous system and outside of it, especially with regard to ASD, and proposes a more encompassing approach that questions the utility of the "neurotransmitter" concept. It then introduces the idea of a generalized 5-HT packet that may offer insights into possible links between serotonergic varicosities and blood platelets. These approaches have theoretical significance, but they are also well positioned to advance our understanding of some long-standing problems in autism research. Copyright © 2014 ISDN. Published by Elsevier Ltd. All rights reserved.
Chickenpox encephalitis and encephalopathy: evidence for differing pathogenesis.
Shope, T. C.
1982-01-01
Retrospective assessment of hepatic and central nervous system involvement associated with chickenpox cases at a large metropolitan medical center reveals that 28 of 58 patients had biochemical, but not inflammatory, evidence of liver involvement. An additional 18 patients had biochemical liver abnormalities along with non-inflammatory encephalopathy (Reye syndrome) and 12 had clear evidence of central nervous system inflammatory involvement (encephalitis). There were no cases of solitary inflammatory liver involvement. Reviewed evidence suggests that the pathogenesis of hepatopathy and hepatoencephalopathy (Reye syndrome) is not caused by replication of virus in the involved organs, but instead is mediated through a cytotoxic mechanism and that the inflammatory brain disease is also not caused by viral replication in brain tissue, but appears to be tissue damage associated with immune cell responses (post-infectious encephalitis). The concept put forth in this essay is that a virus replicating in one organ (skin) could affect the macromolecular function of cells in another organ (liver, brain) bringing about both hepatopathy and hepatoencephalopathy. PMID:6295009
Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood.
Ouvrier, Robert; Geevasingha, Nimeshan; Ryan, Monique M
2007-08-01
The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.
Prefrontal glucose deficits in murderers lacking psychosocial deprivation.
Raine, A; Phil, D; Stoddard, J; Bihrle, S; Buchsbaum, M
1998-01-01
Previous research has suggested that links between autonomic nervous system functioning and violence are strongest in those who come from benign home backgrounds, but there appears to be no similar research using brain-imaging measures of central nervous system functioning. It was hypothesized that murderers who had no early psychosocial deprivation (e.g., no childhood abuse, family neglect) would demonstrate lower prefrontal glucose metabolism than murderers with early psychosocial deprivation and a group of normal controls. Murderers from a previous study, which showed prefrontal deficits in murderers, were assessed for psychosocial deprivation and divided into those with and without deprivation. Murderers without any clear psychosocial deficits were significantly lower on prefrontal glucose metabolism than murderers with psychosocial deficits and controls. These results suggest that murderers lacking psychosocial deficits are characterized by prefrontal deficits. It is argued that among violent offenders without deprived home backgrounds, the "social push" to violence is minimized, and consequently, brain abnormalities provide a relatively stronger predisposition to violence in this group.
Ristivojević, Andjelka; Djokić, Petra Lukić; Katanić, Dragan; Dobanovacki, Dušanka; Privrodski, Jadranka Jovanović
2016-05-01
According to the World Health Organization (WHO) definition, congenital anomalies are all disorders of the organs or tissues, regardless of whether they are visible at birth or manifest in life, and are registered in the International Classification of Diseases. The aim of this study was to compare the incidence and structure of prenatally detected and clinically manifested congenital anomalies in the newborns in the region of Novi Sad (Province of Vojvodina, Serbia) in the two distant years (1996 and 2006). This retrospective cohort study included all the children born at the Clinic for Gynecology and Obstetrics (Clinical Center of Vojvodina) in Novi Sad during 1996 and 2006. The incidence and the structure of congenital anomalies were analyzed. During 1996 there were 6,099 births and major congenital anomalies were found in 215 infants, representing 3.5%. In 2006 there were 6,628 births and major congenital anomalies were noted in 201 newborns, which is 3%. During 1996 there were more children with anomalies of musculoskeletal system, urogenital tract, with anomalies of the central nervous system and chromosomal abnormalities. During the year 2006 there were more children with cardiovascular anomalies, followed by urogenital anomalies, with significant decline in musculoskeletal anomalies. The distribution of the newborns with major congenital anomalies, regarding perinatal outcome, showed the difference between the studied years. In 2006 the increasing number of children required further investigation and treatment. There is no national registry of congenital anomalies in Serbia so the aim of this study was to enlight this topic. In the span of ten years, covering the period of the NATO campaign in Novi Sad and Serbia, the frequency of major congenital anomalies in the newborns was not increased. The most frequent anomalies observed during both years implied the musculosketelal, cardiovascular, urogenital and central nervous system. In the year 2006 there was a significant eruption of cardiovascular anomalies and a significant decrease of musculoskeletal anomalies, chromosomal abnormalities and central nervous system anomalies, while the number of urogenital anomalies declined compared to the year 1996.
Nagy, R; Wang, H; Albrecht, B; Wieczorek, D; Gillessen-Kaesbach, G; Haan, E; Meinecke, P; de la Chapelle, A; Westman, J A
2012-08-01
Microcephalic osteodysplastic primordial dwarfism type I (MOPD I) is a rare autosomal recessive developmental disorder characterized by extreme intrauterine growth retardation, severe microcephaly, central nervous system abnormalities, dysmorphic facial features, skin abnormalities, skeletal changes, limb deformations, and early death. Recently, mutations in the RNU4ATAC gene, which encodes U4atac, a small nuclear RNA that is a crucial component of the minor spliceosome, were found to cause MOPD I. MOPD I is the first disease known to be associated with a defect in small nuclear RNAs. We describe here the clinical and molecular data for 17 cases of MOPD I, including 15 previously unreported cases, all carrying biallelic mutations in the RNU4ATAC gene. © 2011 John Wiley & Sons A/S.
Acute Disseminated Encephalomyelitis: A Gray Distinction.
Abu Libdeh, Amal; Goodkin, Howard P; Ramirez-Montealegre, Denia; Brenton, J Nicholas
2017-03-01
Acute disseminated encephalomyelitis (ADEM) is an immune-mediated, inflammatory acquired demyelinating syndrome predominantly affecting the white matter of the central nervous system. We describe a three-year-old boy whose clinical presentation was suspicious for ADEM but whose initial imaging abnormalities were confined to the deep gray matter (without evidence of white matter involvement). His clinical course was fluctuating and repeat imaging one week after presentation demonstrated interval development of characteristic white matter lesions. Treatment with adjunctive intravenous immunoglobulin and high-dose corticosteroids resulted in significant clinical improvement. Isolated deep gray matter involvement can precede the appearance of white matter abnormalities of ADEM, suggesting that repeat imaging is indicated in individuals whose findings are clinically suspicious for ADEM but who lack characteristic imaging findings. Copyright © 2017 Elsevier Inc. All rights reserved.
HERC1 Ubiquitin Ligase Is Required for Normal Axonal Myelination in the Peripheral Nervous System.
Bachiller, Sara; Roca-Ceballos, María Angustias; García-Domínguez, Irene; Pérez-Villegas, Eva María; Martos-Carmona, David; Pérez-Castro, Miguel Ángel; Real, Luis Miguel; Rosa, José Luis; Tabares, Lucía; Venero, José Luis; Armengol, José Ángel; Carrión, Ángel Manuel; Ruiz, Rocío
2018-03-30
A missense mutation in HERC1 provokes loss of cerebellar Purkinje cells, tremor, and unstable gait in tambaleante (tbl) mice. Recently, we have shown that before cerebellar degeneration takes place, the tbl mouse suffers from a reduction in the number of vesicles available for release at the neuromuscular junction (NMJ). The aim of the present work was to study to which extent the alteration in HERC1 may affect other cells in the nervous system and how this may influence the motor dysfunction observed in these mice. The functional analysis showed a consistent delay in the propagation of the action potential in mutant mice in comparison with control littermates. Morphological analyses of glial cells in motor axons revealed signs of compact myelin damage as tomacula and local hypermyelination foci. Moreover, we observed an alteration in non-myelinated terminal Schwann cells at the level of the NMJ. Additionally, we found a significant increment of phosphorylated Akt-2 in the sciatic nerve. Based on these findings, we propose a molecular model that could explain how mutated HERC1 in tbl mice affects the myelination process in the peripheral nervous system. Finally, since the myelin abnormalities found in tbl mice are histological hallmarks of neuropathic periphery diseases, tbl mutant mice could be considered as a new mouse model for this type of diseases.
Peripheral nervous system assessment in acromegaly patients under somatostatin analogue therapy.
Alibas, H; Gogas Yavuz, D; Kahraman Koytak, P; Uygur, M; Tanridag, T; Uluc, K
2017-01-01
Acromegaly is known to affect peripheral nervous system (PNS) causing carpal tunnel syndrome (CTS) and polyneuropathy. The frequency of these disorders and the evaluation methods vary among studies. In the present study, we aimed to examine PNS of acromegaly patients under somatostatin analogue (SSA) therapy. Forty-eight acromegaly patients (26 F/22 M, 45.58 ± 11.6 years) under SSA treatment and 44 healthy controls (25 F/19 M, 47.46 ± 8.7 years) were assessed by symptom questionnaires, neurologic examination and electrophysiological studies. 87.5 % of the acromegaly patients had at least one abnormal finding regarding PNS. With the incorporation of palm-wrist median nerve conduction velocity method, we detected CTS in 50 % of patients. Polyneuropathy was less frequent (29.2 %). Both conditions were independent from the coexisting diabetes mellitus (p = 0.22 for CTS, p = 0.71 for polyneuropathy). Polyneuropathy but not CTS was more common among biochemically uncontrolled acromegaly patients rather than those under control (p = 0.03; p = 0.68, respectively). Our findings emphasize the high prevalence of peripheral nervous system involvement in acromegaly patients under SSA therapy and importance of neurological evaluation of these patients. Early diagnosis and treatment of the disease may reduce the PNS involvement.
Sorting nexin 3 mutation impairs development and neuronal function in Caenorhabditis elegans.
Vieira, Neide; Bessa, Carlos; Rodrigues, Ana J; Marques, Paulo; Chan, Fung-Yi; de Carvalho, Ana Xavier; Correia-Neves, Margarida; Sousa, Nuno
2018-06-01
The sorting nexins family of proteins (SNXs) plays pleiotropic functions in protein trafficking and intracellular signaling and has been associated with several disorders, namely Alzheimer's disease and Down's syndrome. Despite the growing association of SNXs with neurodegeneration, not much is known about their function in the nervous system. The aim of this work was to use the nematode Caenorhabditis elegans that encodes in its genome eight SNXs orthologs, to dissect the role of distinct SNXs, particularly in the nervous system. By screening the C. elegans SNXs deletion mutants for morphological, developmental and behavioral alterations, we show here that snx-3 gene mutation leads to an array of developmental defects, such as delayed hatching, decreased brood size and life span and reduced body length. Additionally, ∆snx-3 worms present increased susceptibility to osmotic, thermo and oxidative stress and distinct behavioral deficits, namely, a chemotaxis defect which is independent of the described snx-3 role in Wnt secretion. ∆snx-3 animals also display abnormal GABAergic neuronal architecture and wiring and altered AIY interneuron structure. Pan-neuronal expression of C. elegans snx-3 cDNA in the ∆snx-3 mutant is able to rescue its locomotion defects, as well as its chemotaxis toward isoamyl alcohol. Altogether, the present work provides the first in vivo evidence of the SNX-3 role in the nervous system.
Hou, Shuangxing; Yuan, Lianfang; Jin, Pengpeng; Ding, Bojun; Qin, Na; Li, Li; Liu, Xuedong; Wu, Zhongliang; Zhao, Gang; Deng, Yanchun
2013-02-18
Lead is a heavy metal and important environmental toxicant and nerve poison that can destruction many functions of the nervous system. Lead poisoning is a medical condition caused by increased levels of lead in the body. Lead interferes with a variety of body processes and is toxic to many organs and issues, including the central nervous system. It interferes with the development of the nervous system, and is therefore particularly toxic to children, causing potentially permanent neural and cognitive impairments. In this study, we investigated the relationship between lead poisoning and the intellectual and neurobehavioral capabilities of children. The background characteristics of the research subjects were collected by questionnaire survey. Blood lead levels were detected by differential potentiometric stripping analysis (DPSA). Intelligence was assessed using the Gesell Developmental Scale. The Achenbach Child Behavior Checklist (CBCL) was used to evaluate each child's behavior. Blood lead levels were significantly negatively correlated with the developmental quotients of adaptive behavior, gross motor performance, fine motor performance, language development, and individual social behavior (P < 0.01). Compared with healthy children, more children with lead poisoning had abnormal behaviors, especially social withdrawal, depression, and atypical body movements, aggressions and destruction. Lead poisoning has adverse effects on the behavior and mental development of 2-4-year-old children, prescribing positive and effective precautionary measures.
Baehring, J; Henchcliffe, C; Ledezma, C; Fulbright, R; Hochberg, F
2005-01-01
Background: Intravascular lymphoma (IVL) is a rare non-Hodgkin's lymphoma with relative predilection for the central nervous system. In the absence of extraneural manifestations, the disease is not recognised until autopsy in the majority of cases underlining the need for new clinical markers. Methods: This is a retrospective series of five patients with IVL seen at a single institution over three years. An advanced magnetic resonance imaging (MRI) protocol was performed at various time points prior to diagnosis and during treatment. Results: MRI revealed multiple lesions scattered throughout the cerebral hemispheres; the brainstem, cerebellum, and spinal cord were less frequently involved. On initial presentation, hyperintense lesions were seen on diffusion weighted images suggestive of ischaemia in three of four patients in whom the images were obtained at that time point. In four patients lesions were also identifiable as hyperintense areas on fluid attenuated inversion recovery (FLAIR) sequences. Initial contrast enhancement was encountered in three cases. Diffusion weighted imaging lesions either vanished or followed the typical pattern of an ischaemic small vessel stroke with evolution of abnormal FLAIR signal followed by enhancement with gadolinium in the subacute stage and tissue loss in the chronic stage. Diffusion weighted imaging and FLAIR abnormalities proved to be partially reversible, correlating with the response to chemotherapy. Conclusion: We provide the first detailed description of the dynamic pattern of diffusion weighted MRI in IVL. These patterns in combination with systemic findings may facilitate early diagnosis and serve as a new tool to monitor treatment response. PMID:15774442
Brainstem abnormalities and vestibular nerve enhancement in acute neuroborreliosis.
Farshad-Amacker, Nadja A; Scheffel, Hans; Frauenfelder, Thomas; Alkadhi, Hatem
2013-12-21
Borreliosis is a widely distributed disease. Neuroborreliosis may present with unspecific symptoms and signs and often remains difficult to diagnose in patients with central nervous system symptoms, particularly if the pathognomonic erythema chronica migrans does not develop or is missed. Thus, vigilance is mandatory in cases with atypical presentation of the disease and with potentially severe consequences if not recognized early. We present a patient with neuroborreliosis demonstrating brain stem and vestibular nerve abnormalities on magnetic resonance imaging. A 28-year-old Caucasian female presented with headaches, neck stiffness, weight loss, nausea, tremor, and gait disturbance. Magnetic resonance imaging showed T2-weighted hyperintense signal alterations in the pons and in the vestibular nerves as well as bilateral post-contrast enhancement of the vestibular nerves. Serologic testing of the cerebrospinal fluid revealed the diagnosis of neuroborreliosis. Patients infected with neuroborreliosis may present with unspecific neurologic symptoms and magnetic resonance imaging as a noninvasive imaging tool showing signal abnormalities in the brain stem and nerve root enhancement may help in establishing the diagnosis.
White matter changes in Alzheimer's disease: a focus on myelin and oligodendrocytes.
Nasrabady, Sara E; Rizvi, Batool; Goldman, James E; Brickman, Adam M
2018-03-02
Alzheimer's disease (AD) is conceptualized as a progressive consequence of two hallmark pathological changes in grey matter: extracellular amyloid plaques and neurofibrillary tangles. However, over the past several years, neuroimaging studies have implicated micro- and macrostructural abnormalities in white matter in the risk and progression of AD, suggesting that in addition to the neuronal pathology characteristic of the disease, white matter degeneration and demyelination may be also important pathophysiological features. Here we review the evidence for white matter abnormalities in AD with a focus on myelin and oligodendrocytes, the only source of myelination in the central nervous system, and discuss the relationship between white matter changes and the hallmarks of Alzheimer's disease. We review several mechanisms such as ischemia, oxidative stress, excitotoxicity, iron overload, Aβ toxicity and tauopathy, which could affect oligodendrocytes. We conclude that white matter abnormalities, and in particular myelin and oligodendrocytes, could be mechanistically important in AD pathology and could be potential treatment targets.
Hirotani, Makoto; Yabe, Ichiro; Hamada, Shinsuke; Tsuji, Sachiko; Kikuchi, Seiji; Sasaki, Hidenao
2007-01-01
A 34-year-old man visited the hospital with chief complaints of headache, fever, and disturbance of consciousness. In view of his clinical condition, the course of the disease, and results of examination, he was diagnosed with viral meningitis and treated accordingly. However, his clinical condition worsened, and MRI revealed abnormal signals in the splenium of the corpus callosum, in the basal ganglia and in the internal capsule, as well as the presence of severe inflammation in the base of the brain. Since he had a high ADA level in the cerebrospinal fluid and was consequently suspected to have tuberculous meningitis, he was placed on antitubercular agents. Then, his clinical condition began to improve. Additional steroid pulse therapy further improved his condition, and abnormal signals in the splenium of the corpus callosum and the basal ganglia resolved. This valuable case suggests that an immune mechanism contributed to the occurrence of central nervous system symptoms associated with tuberculous meningitis.
Lunardini, Francesca; Casellato, Claudia; Bertucco, Matteo; Sanger, Terence D; Pedrocchi, Alessandra
2015-01-01
Muscle synergies are hypothesized to represent motor modules recruited by the nervous system to flexibly perform subtasks necessary to achieve movement. Muscle synergy analysis may offer a better view of the neural structure underlying motor behaviors and how they change in motor deficits and rehabilitation. The aim of this study is to investigate if muscle synergies are able to encode regularities in the musculoskeletal system organization and dynamic behavior of patients with dystonia, or if they are altered as a consequence of the nervous system dysfunction in dystonia. To do so, we applied muscle synergies analysis to muscle activity recorded during the execution of upper limb writing tasks in 10 children with dystonia and 9 age-matched healthy controls. We show that, although children with dystonia present movement abnormalities compared to control subjects, the muscle synergies extracted from the two groups are very similar, and that the two groups share a significant number of motor modules. Our finding therefore suggests that a regular modular organization of upper limb muscle coordination is preserved for childhood dystonia.
The Therapeutic Potential of Insulin-Like Growth Factor-1 in Central Nervous System Disorders
Costales, Jesse; Kolevzon, Alexander
2016-01-01
Central nervous system (CNS) development is a finely tuned process that relies on multiple factors and intricate pathways to ensure proper neuronal differentiation, maturation, and connectivity. Disruption of this process can cause significant impairments in CNS functioning and lead to debilitating disorders that impact motor and language skills, behavior, and cognitive functioning. Recent studies focused on understanding the underlying cellular mechanisms of neurodevelopmental disorders have identified a crucial role for insulin-like growth factor-1 (IGF-1) in normal CNS development. Work in model systems has demonstrated rescue of pathophysiological and behavioral abnormalities when IGF-1 is administered, and several clinical studies have shown promise of efficacy in disorders of the CNS, including autism spectrum disorder (ASD). In this review, we explore the molecular pathways and downstream effects of IGF-1 and summarize the results of completed and ongoing pre-clinical and clinical trials using IGF-1 as a pharmacologic intervention in various CNS disorders. This aim of this review is to provide evidence for the potential of IGF-1 as a treatment for neurodevelopmental disorders and ASD. PMID:26780584
Kam, Yiu-Wing; Leite, Juliana Almeida; Lum, Fok-Moon; Tan, Jeslin J L; Lee, Bernett; Judice, Carla C; Teixeira, Daniel Augusto de Toledo; Andreata-Santos, Robert; Vinolo, Marco A; Angerami, Rodrigo; Resende, Mariangela Ribeiro; Freitas, Andre Ricardo Ribas; Amaral, Eliana; Junior, Renato Passini; Costa, Maria Laura; Guida, José Paulo; Arns, Clarice Weis; Ferreira, Luis Carlos S; Rénia, Laurent; Proença-Modena, Jose Luiz; Ng, Lisa F P; Costa, Fabio T M
2017-07-15
Zika virus (ZIKV) infections have been linked to different levels of clinical outcomes, ranging from mild rash and fever to severe neurological complications and congenital malformations. We investigated the clinical and immunological response, focusing on the immune mediators profile in 95 acute ZIKV-infected adult patients from Campinas, Brazil. These patients included 6 pregnant women who later delivered during the course of this study. Clinical observations were recorded during hospitalization. Levels of 45 immune mediators were quantified using multiplex microbead-based immunoassays. Whereas 11.6% of patients had neurological complications, 88.4% displayed mild disease of rash and fever. Several immune mediators were specifically higher in ZIKV-infected patients, and levels of interleukin 10, interferon gamma-induced protein 10 (IP-10), and hepatocyte growth factor differentiated between patients with or without neurological complications. Interestingly, higher levels of interleukin 22, monocyte chemoattractant protein 1, TNF-α, and IP-10 were observed in ZIKV-infected pregnant women carrying fetuses with fetal growth-associated malformations. Notably, infants with congenital central nervous system deformities had significantly higher levels of interleukin 18 and IP-10 but lower levels of hepatocyte growth factor than those without such abnormalities born to ZIKV-infected mothers. This study identified several key markers for the control of ZIKV pathogenesis. This will allow a better understanding of the molecular mechanisms of ZIKV infection in patients. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Kam, Yiu-Wing; Leite, Juliana Almeida; Lum, Fok-Moon; Tan, Jeslin J L; Lee, Bernett; Judice, Carla C; Teixeira, Daniel Augusto de Toledo; Andreata-Santos, Robert; Vinolo, Marco A; Angerami, Rodrigo; Resende, Mariangela Ribeiro; Freitas, Andre Ricardo Ribas; Amaral, Eliana; Junior, Renato Passini; Costa, Maria Laura; Guida, José Paulo; Arns, Clarice Weis; Ferreira, Luis Carlos S; Rénia, Laurent; Proença-Modena, Jose Luiz; Costa, Fabio T M
2017-01-01
Abstract Background Zika virus (ZIKV) infections have been linked to different levels of clinical outcomes, ranging from mild rash and fever to severe neurological complications and congenital malformations. Methods We investigated the clinical and immunological response, focusing on the immune mediators profile in 95 acute ZIKV-infected adult patients from Campinas, Brazil. These patients included 6 pregnant women who later delivered during the course of this study. Clinical observations were recorded during hospitalization. Levels of 45 immune mediators were quantified using multiplex microbead-based immunoassays. Results Whereas 11.6% of patients had neurological complications, 88.4% displayed mild disease of rash and fever. Several immune mediators were specifically higher in ZIKV-infected patients, and levels of interleukin 10, interferon gamma-induced protein 10 (IP-10), and hepatocyte growth factor differentiated between patients with or without neurological complications. Interestingly, higher levels of interleukin 22, monocyte chemoattractant protein 1, TNF-α, and IP-10 were observed in ZIKV-infected pregnant women carrying fetuses with fetal growth–associated malformations. Notably, infants with congenital central nervous system deformities had significantly higher levels of interleukin 18 and IP-10 but lower levels of hepatocyte growth factor than those without such abnormalities born to ZIKV-infected mothers. Conclusions This study identified several key markers for the control of ZIKV pathogenesis. This will allow a better understanding of the molecular mechanisms of ZIKV infection in patients. PMID:28838147
NASA Astrophysics Data System (ADS)
Donahue, John E.; Berzin, Tyler M.; Rafii, Michael S.; Glass, David J.; Yancopoulos, George D.; Fallon, Justin R.; Stopa, Edward G.
1999-05-01
Agrin is a heparan sulfate proteoglycan that is widely expressed in neurons and microvascular basal lamina in the rodent and avian central nervous system. Agrin induces the differentiation of nerve-muscle synapses, but its function in either normal or diseased brains is not known. Alzheimer's disease (AD) is characterized by loss of synapses, changes in microvascular architecture, and formation of neurofibrillary tangles and senile plaques. Here we have asked whether AD causes changes in the distribution and biochemical properties of agrin. Immunostaining of normal, aged human central nervous system revealed that agrin is expressed in neurons in multiple brain areas. Robust agrin immunoreactivity was observed uniformly in the microvascular basal lamina. In AD brains, agrin is highly concentrated in both diffuse and neuritic plaques as well as neurofibrillary tangles; neuronal expression of agrin also was observed. Furthermore, patients with AD had microvascular alterations characterized by thinning and fragmentation of the basal lamina. Detergent extraction and Western blotting showed that virtually all the agrin in normal brain is soluble in 1% SDS. In contrast, a large fraction of the agrin in AD brains is insoluble under these conditions, suggesting that it is tightly associated with β -amyloid. Together, these data indicate that the agrin abnormalities observed in AD are closely linked to β -amyloid deposition. These observations suggest that altered agrin expression in the microvasculature and the brain parenchyma contribute to the pathogenesis of AD.
Patients with n-hexane induced polyneuropathy: a clinical follow up.
Chang, Y C
1990-01-01
The prognosis of hexacarbon induced polyneuropathy is usually good, though its clinical course after the cessation of exposure has not been described in detail. Eleven patients with moderate to severe n-hexane induced polyneuropathy due to occupational exposure were regularly followed up for a period of four years at the neurological department of the National Taiwan University Hospital. Sensorimotor neuropathy was diagnosed in nine patients and motor neuropathy in two. All were removed from further exposure to n-hexane after aetiological confirmation, but motor disturbance continued to worsen in five cases. Sensory functions were regained earlier than motor functions. All the patients, including one who was tetraplegic and confined to a wheelchair in the early stages, regained their full motor capabilities within one to four years. Three patients with severe neuropathy had residual muscle atrophy in the intrinsic foot and hand muscles. Signs of damage to the central nervous system, including increased tendon reflexes in two patients and leg tightness in six patients, emerged as muscle power was nearing complete recovery. The tightness of the legs gradually disappeared, but muscle cramps of the calves developed and these were still present at the end of follow up. Two patients had mild abnormal colour vision, and the abnormality was still detectable four years later. It is concluded that n-hexane induced neuropathy has a good prognosis, and that spasticity due to damage to the central nervous system is functionally reversible; muscle cramps and dyschromatopsia persist much longer. PMID:2166555
Signs and symptoms of developmental abnormalities of the genitourinary tract.
Nogueira, Paulo Cesar Koch; Paz, Isabel de Pádua
2016-01-01
The abnormalities of the genitourinary tract development are the leading cause of chronic kidney disease (CKD) in children. The diagnosis of this disease in Brazil is late and incomplete, which results in increased morbidity and mortality in this age group. Early diagnosis of this condition is the prerogative of generalist pediatricians, and the aim of this study was to review the clinical signs and symptoms associated with developmental abnormalities of the genitourinary tract. Based on the description of a symbolic clinical case, the authors conducted a non-systematic review of medical literature. The results suggest that the following data should be used as a warning for early diagnosis of affected children: (a) combined urinary tract abnormalities (chromosomal abnormalities; sequence of malformations [VACTERLand Prune-Belly]; and musculoskeletal, digestive tract, heart, and nervous system malformations); (b) previous history (congenital anomalies of the kidney and urinary tract [CAKUT] in the family, low birth weight, and oligoamnios); (c) clinical signs (polyuria/nocturia, urinary tract infection, systemic arterial hypertension, failure to thrive, weak urinary stream, difficulty to start urination, distended bladder, non-monosymptomatic enuresis, urinary/urge incontinence, and bowel and bladder dysfunction); and (d) pre- and postnatal ultrasonographic alterations (increased anteroposterior diameter of the renal pelvis, mainly in the third trimester of pregnancy; single kidney; hydronephrosis associated with other abnormalities; and hydronephrosis with parenchymal involvement in the post-neonatal assessment). The suggestions shown here can help the pediatrician to establish clinical hypotheses for the early diagnosis of developmental abnormalities of the genitourinary tract without resorting to expensive and invasive procedures. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Effects of HIV-1 on Cognition in Humanized NSG Mice
NASA Astrophysics Data System (ADS)
Akhter, Sidra Pervez
Host species specificity of human immunodeficiency virus (HIV) creates a challenge to study the pathology, diagnostic tools, and therapeutic agents. The closely related simian immunodeficiency virus and studies of neurocognitive impairments on transgenic animals expressing partial viral genome have significant limitations. The humanized mice model provides a small animal system in which a human immune system can be engrafted and immunopathobiology of HIV-1 infection can be studied. However, features of HIV-associated neurocognitive disorders (HAND) were not evaluated in this model. Open field activity test was selected to characterize behavior of original strain NOD/scid-IL-2Rgammac null (NSG) mice, effects of engraftment of human CD34+ hematopoietic stem cells (HSCs) and functional human immune system (huNSG), and finally, investigate the behavior changes induced by chronic HIV-1 infection. Long-term infected HuNSG mice showed the loss of working memory and increased anxiety in the open field. Additionally, these animals were utilized for evaluation of central nervous system metabolic and structural changes. Detected behavioral abnormalities are correlated with obtained neuroimaging and histological abnormalities published.
Agamanolis, D P; Patre, S
1979-05-01
We found marked accumulation of glycogen in the brain in one case of the cerebro-hepato-renal syndrome (CHRS). Glycogen in the form of beta-particles was deposited freely within the nucleus, perikaryon and cell processes of neurons and glial cells. The changes involved the gray matter diffusely but were more prominent in the cerebral cortex. The patient died at the age of 4 months after a clinical course characterized by severe hypotonia, seizures, and apneic episodes. Other neuropathologic findings were developmental malformations of the central nervous systen (CNS) (pachygyria, polymicrogyria, and hypoplasia of the inferior olives), white matter abnormalities (deficiency in myelination and diffuse accumulation of sudanophilic droplets within glial cells), clusters of peculiar "globoid" histiocytes with pleomorphic lipid inclusions, and microglial nodules in gray and white matter. This unusual combination of findings is regarded as characteristic of the CHRS.
Fox, Howard S.; Weed, Michael R.; Huitron-Resendiz, Salvador; Baig, Jamal; Horn, Thomas F.W.; Dailey, Peter J.; Bischofberger, Norbert; Henriksen, Steven J.
2000-01-01
Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions. PMID:10880046
Fox, H S; Weed, M R; Huitron-Resendiz, S; Baig, J; Horn, T F; Dailey, P J; Bischofberger, N; Henriksen, S J
2000-07-01
Simian immunodeficiency virus (SIV) infection of rhesus monkeys provides an excellent model of the central nervous system (CNS) consequences of HIV infection. To discern the relationship between viral load and abnormalities induced in the CNS by the virus, we infected animals with SIV and later instituted antiviral treatment to lower peripheral viral load. Measurement of sensory-evoked potentials, assessing CNS neuronal circuitry, revealed delayed latencies after infection that could be reversed by lowering viral load. Cessation of treatment led to the reappearance of these abnormalities. In contrast, the decline in general motor activity induced by SIV infection was unaffected by antiviral treatment. An acute increase in the level of the chemokine monocyte chemoattractant protein-1 (MCP-1) was found in the cerebrospinal fluid (CSF) relative to plasma in the infected animals at the peak of acute viremia, likely contributing to an early influx of immune cells into the CNS. Examination of the brains of the infected animals after return of the electrophysiological abnormalities revealed diverse viral and inflammatory findings. Although some of the physiological abnormalities resulting from SIV infection can be at least temporarily reversed by lowering viral load, the viral-host interactions initiated by infection may result in long-lasting changes in CNS-mediated functions.
Efavirenz, Emtricitabine, and Tenofovir
... nervous abnormally happy mood unusual dreams joint or back pain itching Some side effects can be serious. If you experience any of these symptoms or those listed in the IMPORTANT WARNING section, call your doctor immediately ...
Ahmed, Seemin Seher; Schattgen, Stefan A; Frakes, Ashley E; Sikoglu, Elif M; Su, Qin; Li, Jia; Hampton, Thomas G; Denninger, Andrew R; Kirschner, Daniel A; Kaspar, Brian; Matalon, Reuben; Gao, Guangping
2016-06-01
Aspartoacylase (AspA) gene mutations cause the pediatric lethal neurodegenerative Canavan disease (CD). There is emerging promise of successful gene therapy for CD using recombinant adeno-associated viruses (rAAVs). Here, we report an intracerebroventricularly delivered AspA gene therapy regime using three serotypes of rAAVs at a 20-fold reduced dose than previously described in AspA(-/-) mice, a bona-fide mouse model of CD. Interestingly, central nervous system (CNS)-restricted therapy prolonged survival over systemic therapy in CD mice but failed to sustain motor functions seen in systemically treated mice. Importantly, we reveal through histological and functional examination of untreated CD mice that AspA deficiency in peripheral tissues causes morphological and functional abnormalities in this heretofore CNS-defined disorder. We demonstrate for the first time that AspA deficiency, possibly through excessive N-acetyl aspartic acid accumulation, elicits both a peripheral and CNS immune response in CD mice. Our data establish a role for peripheral tissues in CD pathology and serve to aid the development of more efficacious and sustained gene therapy for this disease.
Physiology of leptin: energy homeostasis, neuroendocrine function and metabolism.
Park, Hyeong-Kyu; Ahima, Rexford S
2015-01-01
Leptin is secreted by adipose tissue and regulates energy homeostasis, neuroendocrine function, metabolism, immune function and other systems through its effects on the central nervous system and peripheral tissues. Leptin administration has been shown to restore metabolic and neuroendocrine abnormalities in individuals with leptin-deficient states, including hypothalamic amenorrhea and lipoatrophy. In contrast, obese individuals are resistant to leptin. Recombinant leptin is beneficial in patients with congenital leptin deficiency or generalized lipodystrophy. However, further research on molecular mediators of leptin resistance is needed for the development of targeted leptin sensitizing therapies for obesity and related metabolic diseases. Copyright © 2015 Elsevier Inc. All rights reserved.
Autonomic neuropathy in an alcoholic population.
Barter, F; Tanner, A R
1987-12-01
Autonomic nervous system integrity has been assessed in 30 alcoholic subjects and 30 age-sex matched controls using five simple tests of cardiovascular responses. There was evidence of parasympathetic neuropathy alone in five of the alcoholic subjects (16%) and of combined parasympathetic and sympathetic neuropathy in an additional six (20%). None of the controls showed any abnormality. Within the alcoholic group, those with autonomic neuropathy were older, were more likely to be female and to have established alcoholic liver disease. Symptoms were a poor guide to the presence or absence of autonomic neuropathy.
Visceral larva migrans presenting as multiple intracranial and intraspinal abscesses.
Moiyadi, Alefia; Mahadevan, Anita; Anandh, Balasubramaniam; Shivashankar, Ravi Shankar; Chickabasavaiah, Yasha Thagadur; Shankar, Susarla Krishna
2007-08-01
Involvement of nervous system by toxocariasis is rare and can produce a spectrum of pathology that includes eosinophillic meningoencephalitis, meningomyelitis, space occupying lesions, vasculitis causing seizures or behavioral abnormalities posing diagnostic dilemmas. We describe a 38-year-old man who presented with multiple intracranial and intramedullary abscesses caused by visceral larva migrans. Neurohelminthiasis as a cause of multiple abscesses, though rare, should be entertained as a differential diagnosis particularly in tropical South-east Asian countries where helminthiasis is still an epidemiological concern prevalent in the pediatric age group.
Malformations of cortical development: 3T magnetic resonance imaging features
Battal, Bilal; Ince, Selami; Akgun, Veysel; Kocaoglu, Murat; Ozcan, Emrah; Tasar, Mustafa
2015-01-01
Malformation of cortical development (MCD) is a term representing an inhomogeneous group of central nervous system abnormalities, referring particularly to embriyological aspect as a consequence of any of the three developmental stages, i.e., cell proliferation, cell migration and cortical organization. These include cotical dysgenesis, microcephaly, polymicrogyria, schizencephaly, lissencephaly, hemimegalencephaly, heterotopia and focal cortical dysplasia. Since magnetic resonance imaging is the modality of choice that best identifies the structural anomalies of the brain cortex, we aimed to provide a mini review of MCD by using 3T magnetic resonance scanner images. PMID:26516429
In utero negativization of Zika virus in a foetus with serious central nervous system abnormalities.
Rodó, C; Suy, A; Sulleiro, E; Soriano-Arandes, A; Antón, A; García-Ruiz, I; Arévalo, S; Vázquez, É; Vázquez, A; de Ory, F; Sánchez-Seco, M P; Rodrigo, C; Pumarola, T; Carreras, E
2018-05-01
We describe a case of a pregnant woman with Zika virus (ZIKV) infection and a foetus with severe brain malformations. ZIKV tested positive in amniotic fluid at 19 weeks but was negative at delivery. The newborn did not meet the case definition of congenital ZIKV syndrome because neither ZIKV RNA nor IgM antibodies were detected; however, prenatal brain lesions were confirmed after birth (Graphical Abstract). Copyright © 2017 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Paralysis and pernicious anemia in a young woman.
Matrana, Marc R; Gauthier, Carl; Lafaye, Kristina M
2009-01-01
Vitamin B12 is important for normal nervous system functioning, and deficiencies are associated with various neurological abnormalities. We present a case of an 18-year-old woman who presented with significant neurological sequelae, but only mild hematologic abnormalities and normal vitamin B12 levels. She was found to have a moderately increased mean corpuscular volume, a markedly elevated homocysteine level, and a greatly increased methylmalonic acid level. In symptomatic patients it is important for physicians to maintain a high index of suspicion for B12 deficiency despite normal serum levels. The measurement of MMA and homocysteine levels provides much more sensitive tests, but even these tests do not completely rule out a deficiency. Although, the traditional treatment for vitamin B12 deficiency has been intramuscular cobalamin injections, recent studies have shown that oral cobalamin may be as efficacious.
Early physiological abnormalities after simian immunodeficiency virus infection.
Horn, T F; Huitron-Resendiz, S; Weed, M R; Henriksen, S J; Fox, H S
1998-12-08
Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction.
Early physiological abnormalities after simian immunodeficiency virus infection
Horn, Thomas F. W.; Huitron-Resendiz, Salvador; Weed, Michael R.; Henriksen, Steven J.; Fox, Howard S.
1998-01-01
Central nervous system (CNS) damage and dysfunction are devastating consequences of HIV infection. Although the CNS is one of the initial targets for HIV infection, little is known about early viral-induced abnormalities that can affect CNS function. Here we report the detection of early physiological abnormalities in simian immunodeficiency virus-infected monkeys. The acute infection caused a disruption of the circadian rhythm manifested by rises in body temperature, observed in all five individuals between 1 and 2 weeks postinoculation (p.i.), accompanied by a reduction in daily motor activity to 50% of control levels. Animals remained hyperthermic at 1 and 2 months p.i. and returned to preinoculation temperatures at 3 months after viral inoculation. Although motor activity recovered to baseline values at 1 month p.i., activity levels then decreased to approximately 50% of preinoculation values over the next 2 months. Analysis of sensory-evoked responses 1 month p.i. revealed distinct infection-induced changes in auditory-evoked potential peak latencies that persisted at 3 months after viral inoculation. These early physiological abnormalities may precede the development of observable cognitive or motor deficiencies and can provide an assay to evaluate agents to prevent or alleviate neuronal dysfunction. PMID:9844017
[Fetal bone and joint disorders].
Jakobovits, Akos
2008-12-21
The article discusses the physiology and pathology of fetal bone and joint development and functions. The bones provide static support for the body. The skull and the bones of spinal column encase the central and part of the peripheral nervous system. The ribs and the sternum shield the heart and the lungs, while the bones of the pelvis protect the intraabdominal organs. Pathological changes of these bony structures may impair the functions of the respective systems or internal organs. Movements of the bones are brought about by muscles. The deriving motions are facilitated by joints. Bony anomalies of the extremities limit their effective functions. Apart from skeletal and joint abnormalities, akinesia may also be caused by neurological, muscular and skin diseases that secondarily affect the functions of bones and joints. Such pathological changes may lead to various degrees of physical disability and even to death. Some of the mentioned anomalies are recognizable in utero by ultrasound. The diagnosis may serve as medical indication for abortion in those instances when the identified abnormality is incompatible with independent life.
Clarke, Adam R; Barry, Robert J; Baker, Iris E; McCarthy, Rory; Selikowitz, Mark
2017-07-01
Stimulant medications are the most commonly prescribed treatment for Attention-Deficit/Hyperactivity Disorder (AD/HD). These medications result in a normalization of the EEG. However, past research has found that complete normalization of the EEG is not always achieved. One reason for this may be that studies have used different medications interchangeably, or groups of subjects on different stimulants. This study investigated whether methylphenidate and dexamphetamine produce different levels of normalization of the EEG in children with AD/HD. Three groups of 20 boys participated in this study. There were 2 groups with a diagnosis of AD/HD; one group, good responders to methylphenidate, and the second, good responders to dexamphetamine. The third group was a normal control group. Baseline EEGs were recorded using an eyes-closed resting condition, and analyzed for total power and relative delta, theta, alpha, and beta. Subjects were placed on a 6-month trial of methylphenidate or dexamphetamine, after which a second EEG was recorded. At baseline, the children with AD/HD had elevated relative theta, less relative alpha and beta compared with controls. Baseline differences were found between the two medication groups, with the dexamphetamine group having greater EEG abnormalities than the methylphenidate group. The results indicate that good responders to methylphenidate and dexamphetamine have different EEG profiles when assessed before medication, and these differences may represent different underlying central nervous system deficits. The 2 medications were found to result in substantial normalization of the EEG, with no significant differences in EEG changes occurring between the 2 medications. This indicates that the degree of pretreatment EEG abnormality was the major factor contributing to the degree of normalization of the EEG. As good responders to the 2 medications appear to have different central nervous system abnormalities, it is recommended that stimulant medications be treated independently and not used interchangeably in research and treatment of AD/HD.
A nationwide survey of combined central and peripheral demyelination in Japan.
Ogata, Hidenori; Matsuse, Dai; Yamasaki, Ryo; Kawamura, Nobutoshi; Matsushita, Takuya; Yonekawa, Tomomi; Hirotani, Makoto; Murai, Hiroyuki; Kira, Jun-ichi
2016-01-01
To clarify the clinical features of combined central and peripheral demyelination (CCPD) via a nationwide survey. The following characteristics were used to define CCPD: T2 high-signal intensity lesions in the brain, optic nerves or spinal cord on MRI, or abnormalities on visual-evoked potentials; conduction delay, conduction block, temporal dispersion or F-wave abnormalities suggesting demyelinating neuropathy based on nerve conduction studies; exclusion of secondary demyelination. We conducted a nationwide survey in 2012, sending questionnaires to 1332 adult and paediatric neurology institutions in Japan. We collated 40 CCPD cases, including 29 women. Age at onset was 31.7±14.1 years (mean±SD). Sensory disturbance (94.9%), motor weakness (92.5%) and gait disturbance (79.5%) were common. Although cerebrospinal fluid protein levels were increased in 82.5%, oligoclonal IgG bands and elevated IgG indices were detected in 7.4% and 18.5% of cases, respectively. Fifteen of 21 patients (71.4%) had abnormal visual-evoked potentials. Antineurofascin 155 antibodies were positive in 5/11 (45.5%). Corticosteroids, intravenous immunoglobulins and plasmapheresis resulted in an 83.3%, 66.7% and 87.5% improvement, respectively, whereas interferon-β was effective in only 10% of cases. CCPD cases with simultaneous onset of central nervous system (CNS) and peripheral nervous system (PNS) involvement exhibited greater disability, but less recurrence and more frequent extensive cerebral and spinal cord MRI lesions compared to those with temporarily separated onset, whereas optic nerve involvement was more common in the latter. CCPD shows different characteristics from classical demyelinating diseases, and distinctive features exist between cases with simultaneous and temporarily separated onset of CNS and PNS involvement. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
McCauley, Mark D.; Wang, Tiannan; Mike, Elise; Herrera, Jose; Beavers, David L.; Huang, Teng-Wei; Ward, Christopher S.; Skinner, Steven; Percy, Alan K.; Glaze, Daniel G.; Wehrens, Xander H. T.; Neul, Jeffrey L.
2013-01-01
Rett Syndrome is a neurodevelopmental disorder typically caused by mutations in Methyl-CpG-Binding Protein 2 (MECP2) in which 26% of deaths are sudden and of unknown cause. To explore the hypothesis that these deaths may be due to cardiac dysfunction, we characterized the electrocardiograms (ECGs) in 379 people with Rett syndrome and found that 18.5% show prolongation of the corrected QT interval (QTc), indicating a repolarization abnormality that can predispose to the development of an unstable fatal cardiac rhythm. Male mice lacking MeCP2 function, Mecp2Null/Y, also have prolonged QTc and show increased susceptibility to induced ventricular tachycardia. Female heterozygous null mice, Mecp2Null/+, show an age-dependent prolongation of QTc associated with ventricular tachycardia and cardiac-related death. Genetic deletion of MeCP2 function in only the nervous system was sufficient to cause long QTc and ventricular tachycardia, implicating neuronally-mediated changes to cardiac electrical conduction as a potential cause of ventricular tachycardia in Rett syndrome. The standard therapy for prolonged QTc in Rett syndrome, β-adrenergic receptor blockers, did not prevent ventricular tachycardia in Mecp2Null/Y mice. To determine whether an alternative therapy would be more appropriate, we characterized cardiomyocytes from Mecp2Null/Y mice and found increased persistent sodium current, which was normalized when cells were treated with the sodium channel-blocking anti-seizure drug phenytoin. Treatment with phenytoin reduced both QTc and sustained ventricular tachycardia in Mecp2Null/Y mice. These results demonstrate that cardiac abnormalities in Rett syndrome are secondary to abnormal nervous system control, which leads to increased persistent sodium current. Our findings suggest that treatment in people with Rett syndrome would be more effective if it targeted the increased persistent sodium current in order to prevent lethal cardiac arrhythmias. PMID:22174313
Sunitinib in Treating Young Patients With Refractory Solid Tumors
2014-01-27
Central Nervous System Metastases; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
Sympathetic nervous system and the kidney in hypertension.
DiBona, Gerald F
2002-03-01
Long-term control of arterial pressure has been attributed to the kidney by virtue of its ability to couple the regulation of blood volume to the maintenance of sodium and water balance by the mechanisms of pressure natriuresis and diuresis. In the presence of a defect in renal excretory function, hypertension arises as the consequence of the need for an increase in arterial pressure to offset the abnormal pressure natriuresis and diuresis mechanisms, and to maintain sodium and water balance. There is growing evidence that an important cause of the defect in renal excretory function in hypertension is an increase in renal sympathetic nerve activity (RSNA). First, increased RSNA is found in animal models of hypertension and hypertensive humans. Second, renal denervation prevents or alleviates hypertension in virtually all animal models of hypertension. Finally, increased RSNA results in reduced renal excretory function by virtue of effects on the renal vasculature, the tubules, and the juxtaglomerular granular cells. The increase in RSNA is of central nervous system origin, with one of the stimuli being the action of angiotensin II, probably of central origin. By acting on brain stem nuclei that are important in the control of peripheral sympathetic vasomotor tone (e.g. rostral ventrolateral medulla), angiotensin II increases the basal level of RSNA and impairs its arterial baroreflex regulation. Therefore, the renal sympathetic nerves may serve as the link between central sympathetic nervous system regulatory sites and the kidney in contributing to the renal excretory defect in the development of hypertension.
Effects of changes in vertical occlusal dimension on heart rate fluctuations in guinea pigs.
Taga, Hitoshi; Azuma, Yukio; Maehara, Kiyoshi; Nomura, Shuichi
2012-01-01
We have previously reported that the decrease of the vertical occlusal dimension (VOD) led to heart failure and abnormalities in creatine phosphokinase (CPK) in guinea pigs. In the present study, we investigated the autonomic activity and the origin of the abnormality in CPK under different occlusal conditions. Guinea pigs were separated into the following five groups: untreated control, reduced VOD, slit, restored VOD and increased VOD groups and compared for their electrocardiogram and heart rate fluctuations for two weeks using Fluclet, computer software. The control group revealed no changes in heart rate fluctuations or posture. The reduced VOD group exhibited a two-phase wave of heart rate fluctuations, with the first peak 0-2 days after teeth grinding, and the second peak starting from 4 days after teeth grinding until sudden death (usually 12th day), accompanied by head drop. The slit and the restored VOD groups exhibited only the first peak. The increased VOD group, with approximately 3 mm-thick acrylic pellets bonded to the posterior teeth, showed no heart rate fluctuations. Body weight loss was most prominent in the reduced VOD group, and became much milder in the order of increased VOD, restored and slit groups. The reduced VOD group exhibited transient elevation of skeletal muscle type of CPK isozyme activity within two days after treatment. The present study suggests that the first peak of heart rate fluctuations is caused by pulpal stimulation, and the second peak by excessive contraction (excessive excitation of the motor output system and the autonomic nervous system) of the masticatory muscles. On the other hand, increased VOD did not influence either the motor or the autonomic nervous system.
Zencirci, Beyazit
2010-05-03
Neurofibromatosis is a syndrome caused by the abnormal deposition of neural tissues of the nervous system, endocrine system, visceral structures, and skin. On the other hand, pectus carinatum and temporomandibular joint dysfunction are illnesses that adversly affect the respiratory system and cause additional problems in airway management. Fifty-eight-year-old Turkish male patient had neurofibromatosis, pectus carinatum and temporomandibular joint dysfunction. The case was due to be operated on with the diagnosis of incarcerated umbilical hernia. Spinal anesthesia was successfully performed and the duration of the surgery was 1 hour. No postoperative complications were observed and he was discharged from the hospital on the 3rd post-operative day. The anesthetic management of patients with neurofibromatosis requires attention to all possible abnormalities and associated disturbances. Furthermore, the presence of pectus carinatum and temporomandibular joint dysfunction also increase the potential risks. The operation was successfully completed with spinal anesthesia that was carefully applied upon taking the required measures and considering all pathologies that may accompany the case and complications that may occur.
2010-01-01
Background Neurofibromatosis is a syndrome caused by the abnormal deposition of neural tissues of the nervous system, endocrine system, visceral structures, and skin. On the other hand, pectus carinatum and temporomandibular joint dysfunction are illnesses that adversly affect the respiratory system and cause additional problems in airway management. Case Presentation Fifty-eight-year-old Turkish male patient had neurofibromatosis, pectus carinatum and temporomandibular joint dysfunction. The case was due to be operated on with the diagnosis of incarcerated umbilical hernia. Spinal anesthesia was successfully performed and the duration of the surgery was 1 hour. No postoperative complications were observed and he was discharged from the hospital on the 3rd post-operative day. Conclusion The anesthetic management of patients with neurofibromatosis requires attention to all possible abnormalities and associated disturbances. Furthermore, the presence of pectus carinatum and temporomandibular joint dysfunction also increase the potential risks. The operation was successfully completed with spinal anesthesia that was carefully applied upon taking the required measures and considering all pathologies that may accompany the case and complications that may occur. PMID:20438631
Gajewska, Ewa; Samborski, Włodzimierz
2006-01-01
This work focuses on the usefulness of assessment based on seven body positions according to Vojta for early detection of developmental abnormalities of the central nervous system. As additional factors, Apgar score at 1st and 5th minute of life, as well as asymmetry of head or of whole body at the time of investigation (usually third month of life) were analyzed in correlation with subsequent diagnosis of cerebral palsy usually established after the first year of life. The study group consisted of 57 children with birthweight lower than 1500 grams. Seven children were diagnosed with cerebral palsy at the age of one year. The following conclusions were drawn: Vojta's diagnostic method is very sensitive in detecting injury of the central nervous system early in life; high correlation was found between cerebral palsy and asymmetry of the body, but not of the head; low Apgar score at 5th but not at 1st minute is highly predictive for progression to cerebral palsy in infants with very low birthweight.
Types A and B Niemann-Pick Disease.
Schuchman, Edward H; Wasserstein, Melissa P
2016-06-01
Two distinct metabolic abnormalities are included under the eponym Niemann-Pick disease (NPD). The first is due to the deficient activity of the enzyme acid sphingomyelinase (ASM). Patients with ASM deficiency are classified as having types A and B Niemann-Pick disease (NPD). Type A NPD patients exhibit hepatosplenomegaly, frequent pulmonary infections, and profound central nervous system involvement in infancy. They rarely survive beyond two years of age. Type B patients also have hepatosplenomegaly and progressive alterations of their lungs, but there are usually no central nervous system signs. The age of onset and rate of disease progression varies greatly among type B patients, and they frequently live into adulthood. Recently, patients with phenotypes intermediate between types A and B NPD also have been identified. These individuals represent the expected continuum caused by inheriting different mutations in the ASM gene (SMPD1). Patients in the second category are designated as having type C NPD. Impaired intracellular trafficking of cholesterol causes type C NPD, and two distinct gene defects have been found. In this chapter only types A and B NPD will be discussed.
Psychological interventions in the management of common skin conditions
Shenefelt, Philip D
2010-01-01
The nervous system and the skin develop next to each other in the embryo and remain intimately interconnected and interactive throughout life. The nervous system can influence skin conditions through psychoneuroimmunoendocrine mechanisms and through behaviors. Understanding the pathophysiology aids in selection of treatment plans for correcting the negative effects of the psyche on specific skin conditions. Medication options include standard psychotropic medications and alternative herbs and supplements. Other options include biofeedback, cognitive-behavioral methods, hypnosis, meditation, progressive relaxation, the placebo effect, and suggestion. When simple measures fail, combining medications with other therapeutic options may produce better results. Skin conditions that have strong psychophysiologic aspects may respond well to techniques such as biofeedback, cognitive-behavioral methods, hypnosis, meditation, or progressive relaxation that help to counteract stress. Treatment of primary psychiatric disorders that negatively influence skin conditions often results in improvement of those skin conditions. Abnormal conditions of the skin, hair, and nails can also influence the psyche negatively. Treatment of secondary psychiatric disorders such as anxiety or depression that are triggered or exacerbated by the appearance of these skin conditions or the associated discomfort may also be required. PMID:22110329
Your brain on drugs: imaging of drug-related changes in the central nervous system.
Tamrazi, Benita; Almast, Jeevak
2012-01-01
Drug abuse is a substantial problem in society today and is associated with significant morbidity and mortality. Various drugs are associated with serious complications affecting the brain, and it is critical to recognize the imaging findings of these complications to provide prompt medical management. The central nervous system (CNS) is a target organ for drugs of abuse as well as specific prescribed medications. Drugs of abuse affecting the CNS include cocaine, heroin, alcohol, amphetamines, toluene, and cannabis. Prescribed medications or medical therapies that can affect the CNS include immunosuppressants, antiepileptics, nitrous oxide, and total parenteral nutrition. The CNS complications of these drugs include neurovascular complications, encephalopathy, atrophy, infection, changes in the corpus callosum, and other miscellaneous changes. Imaging abnormalities indicative of these complications can be appreciated at both magnetic resonance (MR) imaging and computed tomography (CT). It is critical for radiologists to recognize complications related to drugs of abuse as well as iatrogenic effects of various medications. Therefore, diagnostic imaging modalities such as MR imaging and CT can play a pivotal role in the recognition and timely management of drug-related complications in the CNS.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, R.C.; Howser, D.M.; Anderson, T.
1979-03-01
In 38 patients with non-Hodgkin's lymphoma, involvement of the central nervous system (CNS) by malignant lymphoma developed during an eight year period. All patients had lymphomatous meningitis; clinical involvement of the spinal nerves or cranial nerves suggested the diagnosis. Spinal fluid was abnormal in 97% of the patients although a positive cytology could be documented in only 67% by lumbar puncture. The histology in 82% of the patients was diffuse. Involvement of the CNS in nodular lymphoma was uncommon (3%), and the histology in virtually all of these patients had converted to diffuse. At the time of diagnosis of CNSmore » disease, 95% of the patients had other evidence of advanced disease; 66% had bone marrow involvement. In only 18% of the patients did CNS disease develop while they werin clinical remission. Eighty-five percent of the patients treated with whole brain irradiation and intrathecal chemotherapy had a good clinical response. Knowledge of these risk factors permits definition of a group of patients who may benefit from CNS prophylaxis.« less
Kobayashi, Zen; Tsuchiya, Kuniaki; Takahashi, Makoto; Yokota, Osamu; Sasaki, Atsushi; Bhunchet, Ekapot; Arai, Tetsuaki; Akiyama, Haruhiko; Kamoshita, Masaharu; Kotera, Minoru; Mizusawa, Hidehiro
2008-12-15
A 27-year-old Japanese man developed recurrent respiratory and central nervous system (CNS) symptoms, and hemophagocytic syndromes with a clinical course of 6 years. CT demonstrated multiple nodular lesions in the bilateral lungs, and MRI revealed multiple abnormal intensity areas in the brain and spinal cord. Cerebrospinal fluid (CSF) examination disclosed mild pleocytosis and the presence of Epstein-Barr virus (EBV)-DNA detected by polymerase chain reaction (PCR). The patient died of a hemorrhagic shock associated with a hemophagocytic syndrome. A postmortem study revealed massive hemorrhage in the abdominal cavity and iliopsoas muscles, as well as diffuse infiltration of lymphocytes and/or macrophages into the lungs, liver, kidneys, spleen, cardiac muscle, bone marrow, and CNS. The severe involvement was demonstrated in the CNS, especially in the spinal cord and brainstem. The CD3 positive cells of the brainstem were EBV-encoded RNA 1 positive. This is the first autopsy case of chronic active EBV infection (CAEBV) in which severe and extensive CNS involvement was demonstrated.
Zhang, Sanbing; Cui, Huixian; Wang, Lei; Kang, Lin; Huang, Guannan; Du, Juan; Li, Sha; Tanaka, Hideaki; Su, Yuhong
2016-01-01
The appropriate projection of axons within the nervous system is a crucial component of the establishment of neural circuitry. Draxin is a repulsive axon guidance protein. Draxin has important functions in the guidance of three commissures in the central nervous system and in the migration of neural crest cells and dI3 interneurons in the chick spinal cord. Here, we report that the distribution of the draxin protein and the location of 23C10-positive areas have a strong temporal and spatial correlation. The overexpression of draxin, especially transmembrane draxin, caused 23C10-positive axon bundles to misproject in the dorsal hindbrain. In addition, the overexpression of transmembrane draxin caused abnormal formation of the ganglion crest of the IX and X cranial nerves, misprojection of some anti-human natural killer-1 (HNK-1)-stained structures in the dorsal roof of the hindbrain, and a simultaneous reduction in the efferent nerves of some motoneuron axons inside the hindbrain. Our data reveal that draxin might be involved in the fascicular projection of cranial nerves in the hindbrain. PMID:27199282
Beyond taxol: microtubule-based treatment of disease and injury of the nervous system
Ahmad, Fridoon J.
2013-01-01
Contemporary research has revealed a great deal of information on the behaviours of microtubules that underlie critical events in the lives of neurons. Microtubules in the neuron undergo dynamic assembly and disassembly, bundling and splaying, severing, and rapid transport as well as integration with other cytoskeletal elements such as actin filaments. These various behaviours are regulated by signalling pathways that affect microtubule-related proteins such as molecular motor proteins and microtubule severing enzymes, as well as a variety of proteins that promote the assembly, stabilization and bundling of microtubules. In recent years, translational neuroscientists have earmarked microtubules as a promising target for therapy of injury and disease of the nervous system. Proof-of-principle has come mainly from studies using taxol and related drugs to pharmacologically stabilize microtubules in animal models of nerve injury and disease. However, concerns persist that the negative consequences of abnormal microtubule stabilization may outweigh the positive effects. Other potential approaches include microtubule-active drugs with somewhat different properties, but also expanding the therapeutic toolkit to include intervention at the level of microtubule regulatory proteins. PMID:23811322
[The analysis of epidemiology, clinical symptoms, serological tests in the course of borreliosis].
Biesiada, Grazyna; Czepiel, Jacek; Leśniak, Maciej; Garlicki, Aleksander; Mach, Tomasz
2010-01-01
Lyme disease is an animal-borne disease, caused by spirochetes of the Borrelia burgdorferi (Bb). The infection is transmitted by ticks of the Ixodes ricinus species. Humans are infected through a tick bite to the skin. The aim of the study was evaluation of epidemiology, symptoms and serologic factors in Lyme disease. We have enrolled 39 patients from Malopołska region in the study treated for Lyme borreliosis. History of tick biting, clinical signs and symptoms and serological tests were evaluated. The most common symptoms were headaches and pain of the large joints. Patients with untreated erithema migrans (EM) more often developed symptoms from nervous system (83%) than joints (54%). We found abnormalities which confirmed inflammation in CSF in 24.3% of patients. Patients with positive IgG antibodies against Bb in CSF and confirmed their intrathecal synthesis had never had EM in the past. There is low percentage of the patients who were treated due to EM. Patients with untreated EM more often developed symptoms from nervous system than joints. The most common symptoms among our patients were headaches and pain of large joints.
Chang, Y C
1987-01-01
An outbreak of n-hexane polyneuropathy as a result of industrial exposure occurred in printing factories in Taipei area from December 1983 to February 1985. Multimodality evoked potentials study was performed on 22 of the polyneuropathy cases, five of the subclinical cases, and seven of the unaffected workers. The absolute and interpeak latencies of patterned visual evoked potential (pVEP) in both the polyneuropathy and subclinical groups were longer than in the normal controls. The pVEP interpeak amplitude was also decreased in the polyneuropathy cases. Brainstem auditory evoked potentials (BAEP), showed no difference of wave I latency between factory workers and normal controls, but prolongation of the wave I-V interpeak latencies was noted, corresponding with the severity of the polyneuropathy. In somatosensory evoked potentials (SEPs), both the absolute latencies and central conduction time (CCT) were longer in subclinical and polyneuropathy cases than in the unaffected workers and normal controls. From this evoked potentials study, chronic toxic effects of n-hexane on the central nervous system were shown. PMID:3031221
R1 autonomic nervous system in acute kidney injury.
Hering, Dagmara; Winklewski, Pawel J
2017-02-01
Acute kidney injury (AKI) is a rapid loss of kidney function resulting in accumulation of end metabolic products and associated abnormalities in fluid, electrolyte and acid-base homeostasis. The pathophysiology of AKI is complex and multifactorial involving numerous vascular, tubular and inflammatory pathways. Neurohumoral activation with heightened activity of the sympathetic nervous system and renin-angiotensin-aldosterone system play a critical role in this scenario. Inflammation and/or local renal ischaemia are underlying mechanisms triggering renal tissue hypoxia and resultant renal microcirculation dysfunction; a common feature of AKI occurring in numerous clinical conditions leading to a high morbidity and mortality rate. The contribution of renal nerves to the pathogenesis of AKI has been extensively demonstrated in a series of experimental models over the past decades. While this has led to better knowledge of the pathogenesis of human AKI, therapeutic approaches to improve patient outcomes are scarce. Restoration of autonomic regulatory function with vagal nerve stimulation resulting in anti-inflammatory effects and modulation of centrally-mediated mechanisms could be of clinical relevance. Evidence from experimental studies suggests that a therapeutic splenic ultrasound approach may prevent AKI via activation of the cholinergic anti-inflammatory pathway. This review briefly summarizes renal nerve anatomy, basic insights into neural control of renal function in the physiological state and the involvement of the autonomic nervous system in the pathophysiology of AKI chiefly due to sepsis, cardiopulmonary bypass and ischaemia/reperfusion experimental model. Finally, potentially preventive experimental pre-clinical approaches for the treatment of AKI aimed at sympathetic inhibition and/or parasympathetic stimulation are presented. © 2016 John Wiley & Sons Australia, Ltd.
Deutsch, Mariel B; Mendez, Mario F
2015-03-01
Define the neurocognitive features of primary central nervous system lymphoma (PCNSL) presenting with dementia, and compare with other causes of rapidly progressive dementia (RPD). PCNSL can present as an RPD. Differentiating PCNSL from other RPDs is critical because lymphomatous dementia may be reversible, and untreated PCNSL is fatal. We performed a meta-analysis of case reports of dementia from PCNSL (between 1950 and 2013); 20 patients (14 with lymphomatosis cerebri) met our criteria. We compared these patients to a case series of patients with RPD from Creutzfeldt-Jakob disease and other non-PCNSL etiologies (Sala et al, 2012. Alzheimer Dis Assoc Disord. 26:267-271). Median age was 66 years (range 41 to 81); 70% were men. Time from symptom onset to evaluation was <6 months in 65%. No patients had seizures; 5% had headaches; 45% had non-aphasic speech difficulty. There was significantly more memory impairment in patients with PCNSL than other RPDs and significantly less myoclonus and parkinsonism. Behavioral changes and cerebellar signs were not significantly different. Significantly more patients with PCNSL than other RPDs had white matter changes; significantly fewer had atrophy. Elevated CSF protein and pleocytosis were more frequent in PCNSL; patients with other RPDs tended to have normal CSF±14-3-3 protein. Unlike patients with RPD from other causes, those with PCNSL commonly present with impaired memory, apathy, and abnormal speech and gait, without headache, seizure, or myoclonus. White matter changes and CSF abnormalities predominate. Improved clinical awareness of PCNSL can prompt earlier diagnosis and treatment.
Neuroacanthocytosis associated with a defect of the 4.1R membrane protein
Orlacchio, Antonio; Calabresi, Paolo; Rum, Adriana; Tarzia, Anna; Salvati, Anna Maria; Kawarai, Toshitaka; Stefani, Alessandro; Pisani, Antonio; Bernardi, Giorgio; Cianciulli, Paolo; Caprari, Patrizia
2007-01-01
Background Neuroacanthocytosis (NA) denotes a heterogeneous group of diseases that are characterized by nervous system abnormalities in association with acanthocytosis in the patients' blood. The 4.1R protein of the erythrocyte membrane is critical for the membrane-associated cytoskeleton structure and in central neurons it regulates the stabilization of AMPA receptors on the neuronal surface at the postsynaptic density. We report clinical, biochemical, and genetic features in four patients from four unrelated families with NA in order to explain the cause of morphological abnormalities and the relationship with neurodegenerative processes. Case presentation All patients were characterised by atypical NA with a novel alteration of the erythrocyte membrane: a 4.1R protein deficiency. The 4.1R protein content was significantly lower in patients (3.40 ± 0.42) than in controls (4.41 ± 0.40, P < 0.0001), reflecting weakened interactions of the cytoskeleton with the membrane. In patients IV:1 (RM23), IV:3 (RM15), and IV:6 (RM16) the 4.1 deficiency seemed to affect the horizontal interactions of spectrin and an impairment of the dimer self-association into tetramers was detected. In patient IV:1 (RM16) the 4.1 deficiency seemed to affect the skeletal attachment to membrane and the protein band 3 was partially reduced. Conclusion A decreased expression pattern of the 4.1R protein was observed in the erythrocytes from patients with atypical NA, which might reflect the expression pattern in the central nervous system, especially basal ganglia, and might lead to dysfunction of AMPA-mediated glutamate transmission. PMID:17298666
Hinderer, Christian; Katz, Nathan; Louboutin, Jean-Pierre; Bell, Peter; Tolar, Jakub; Orchard, Paul J; Lund, Troy C; Nayal, Mohamad; Weng, Liwei; Mesaros, Clementina; de Souza, Carolina F M; Dalla Corte, Amauri; Giugliani, Roberto; Wilson, James M
2017-10-01
The mucopolysaccharidoses (MPS) are rare genetic disorders marked by severe somatic and neurological symptoms. Development of treatments for the neurological manifestations of MPS has been hindered by the lack of objective measures of central nervous system disease burden. Identification of biomarkers for central nervous system disease in MPS patients would facilitate the evaluation of new agents in clinical trials. High throughput metabolite screening of cerebrospinal fluid (CSF) samples from a canine model of MPS I revealed a marked elevation of the polyamine, spermine, in affected animals, and gene therapy studies demonstrated that reduction of CSF spermine reflects correction of brain lesions in these animals. In humans, CSF spermine was elevated in neuropathic subtypes of MPS (MPS I, II, IIIA, IIIB), but not in subtypes in which cognitive function is preserved (MPS IVA, VI). In MPS I patients, elevated CSF spermine was restricted to patients with genotypes associated with CNS disease and was reduced following hematopoietic stem cell transplantation, which is the only therapy currently capable of improving cognitive outcomes. Additional studies in cultured neurons from MPS I mice showed that elevated spermine was essential for the abnormal neurite overgrowth exhibited by MPS neurons. These findings offer new insights into the pathogenesis of CNS disease in MPS patients, and support the use of spermine as a new biomarker to facilitate the development of next generation therapeutics for MPS. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Adult neuronal ceroid-lipofuscinosis.
Goebel, H H; Braak, H
1989-01-01
Among the different clinical forms of neuronal ceroid-lipofuscinosis (NCL), the adult type is the least frequent, most sporadic and most difficult one to diagnose. Clinical symptomatology differs from the classical childhood NCL forms in that ocular symptoms are absent while changes of behavior, dementia and seizures dominate the clinical picture. Excessive accumulation of NCL-specific lipopigments has largely been explored in the nervous system, where pigmento-architectonic investigations disclose layer-specific cortical pathology similar to but less pronounced than that of juvenile and protracted juvenile NCL. Ultrastructural analysis of lipopigments in adult NCL reveals diversity of lipopigment fine structure, but less impressive than in the childhood forms of NCL. Abnormal accretion of lipopigments outside the nervous system has rarely been demonstrated and requires ampler documentation, making in vivo diagnosis of adult NCL often difficult and sometimes equivocal. Adult NCL is now frequently considered identical to "Kufs' disease". However, in the past, the latter term has comprised a heterogeneous spectrum of lipidoses the NCL-nature of which had not been unequivocally established. Thus, one may either speak of "Kufs' syndrome" or abandon this term altogether. Although patients afflicted with adult NCL may suffer from Kufs' disease, not all who have and had Kufs disease may have or have had adult NCL. The current debate on adult NCL centers around scepticism concerning many of the earlier reports, on incorporating diagnostic studies of non-CNS organs in presumptive patients and on distinguishing adult NCL from "atypical" patients or forms of NCL, as well as other disorders marked by non-specific abnormal accumulation of lipofuscin.
Combination Chemotherapy in Treating Young Patients With Advanced Solid Tumors
2013-05-01
Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Unspecified Childhood Solid Tumor, Protocol Specific
van Bilsen, Marc; Patel, Hitesh C; Bauersachs, Johann; Böhm, Michael; Borggrefe, Martin; Brutsaert, Dirk; Coats, Andrew J S; de Boer, Rudolf A; de Keulenaer, Gilles W; Filippatos, Gerasimos S; Floras, John; Grassi, Guido; Jankowska, Ewa A; Kornet, Lilian; Lunde, Ida G; Maack, Christoph; Mahfoud, Felix; Pollesello, Piero; Ponikowski, Piotr; Ruschitzka, Frank; Sabbah, Hani N; Schultz, Harold D; Seferovic, Petar; Slart, Riemer H J A; Taggart, Peter; Tocchetti, Carlo G; Van Laake, Linda W; Zannad, Faiez; Heymans, Stephane; Lyon, Alexander R
2017-11-01
Despite improvements in medical therapy and device-based treatment, heart failure (HF) continues to impose enormous burdens on patients and health care systems worldwide. Alterations in autonomic nervous system (ANS) activity contribute to cardiac disease progression, and the recent development of invasive techniques and electrical stimulation devices has opened new avenues for specific targeting of the sympathetic and parasympathetic branches of the ANS. The Heart Failure Association of the European Society of Cardiology recently organized an expert workshop which brought together clinicians, trialists and basic scientists to discuss the ANS as a therapeutic target in HF. The questions addressed were: (i) What are the abnormalities of ANS in HF patients? (ii) What methods are available to measure autonomic dysfunction? (iii) What therapeutic interventions are available to target the ANS in patients with HF, and what are their specific strengths and weaknesses? (iv) What have we learned from previous ANS trials? (v) How should we proceed in the future? © 2017 The Authors. European Journal of Heart Failure © 2017 European Society of Cardiology.
Mixed lineage kinases (MLKs): a role in dendritic cells, inflammation and immunity?
Handley, Matthew E; Rasaiyaah, Jane; Chain, Benjamin M; Katz, David R
2007-01-01
This review summarizes current knowledge about the mixed lineage kinases (MLKs) and explores their potential role in inflammation and immunity. MLKs were identified initially as signalling molecules in the nervous system. They were also shown to play a role in the cell cycle. Further studies documented three groups of MLKs, and showed that they may be activated via the c-Jun NH2 terminal kinase (JNK) pathway, and by Rho GTPases. The biochemistry of the MLKs has been investigated in considerable detail. Homodimerization and heterodimerization can occur, and both autophosphorylation and autoinhibition are seen. The interaction between MLKs and JNK interacting protein (JIP) scaffolds, and the resultant effects on mitogen activated protein kinases, have been identified. Clearly, there is some redundancy within the MLK pathway(s), since mice which lack the MLK3 molecule are not abnormal. However, using a combination of biochemical analysis and pharmacological inhibitors, several recent studies in vitro have suggested that MLKs are not only expressed in cells of the immune system (as well as in the nervous system), but also may be implicated selectively in the signalling pathway that follows on toll-like receptor ligation in innate sentinel cells, such as the dendritic cell. PMID:17408454
Undiagnosed neurological disease as a potential cause of male lower urinary tract symptoms.
Wei, Diana Y; Drake, Marcus J
2016-01-01
In the central nervous system there are many regulatory processes controlling the lower urinary tract. This review considers the possibility that urinary dysfunction may precede diagnosis of neurological disease. Lower urinary tract symptoms (LUTS) occur early in multiple system atrophy, Parkinson's disease and normal pressure hydrocephalus, and may present before neurological diagnosis. Some people present with LUTS and subsequently are diagnosed with multiple sclerosis or a spinal condition. In male LUTS, the symptoms could reflect early stages of a neurological disease, which has not yet been diagnosed ('occult neurology'). Key symptoms include erectile dysfunction, retrograde ejaculation, enuresis, loss of filling sensation or unexplained stress urinary incontinence. Directed questioning should enquire about visual symptoms, back pain, anosmia, bowel dysfunction and incontinence, or memory loss. Examination features can include resting tremor, 'croaky' speech, abnormal gait, orthostatic hypotension, ataxia, or altered perineal sensation. Imaging, such as MRI scan, should only be requested after expert neurological examination, to ensure the correct parts of the central nervous system are scanned with appropriate radiological protocols. Urologists should consider an undiagnosed neurological condition can be present in a few cases. Any finding should be further evaluated by colleagues with relevant expertise.
[Terata catydidymus dicephalus: description of a case].
Alò, P L; Trombetta, G; Marcone, P; De Quarto, A; Memeo, L; Di Tondo, U
1997-10-01
Conjoined twinning is the result of an abnormal developmental process of "twinning" in which two similar weighted and sized twins are partially conjoined and show a total symmetry independently from the pattern of conjunction. They are classified in three groups: Terata Catydidymus, Terata Anadidyma and Terata Anacatadidyma. Among Terata Catydidymus the dicephalus subtype is a rare abnormality with a severe prognosis compared to other subtypes as: diprosopus, pyophagus and ischiopagus. We report the case of a fetus at the 15th weeks of pregnancy. The external examination revealed severe diffuse somatic malformations consisting of dicephalia with a double neck in conjunction to a single chest, a single abdomen, a double spine conjoined distally near the sacrum, buds of ribs in between the two spines with mid clavicular and scapular fusion following the major axis of the two bones. Arms and legs revealed no abnormalities. Central nervous system structures were normally developed and the two hemispheres seemed completely separated and independent one to the other. We believe that the case described is interesting being Terata Catydidymus a rare phenomenon, being the dicephalus subtype still lesser frequent and its occurrence in males quite exceptional.
Atlantoaxial Rotatory Subluxation: A Review for the Pediatric Emergency Physician.
Kinon, Merritt D; Nasser, Rani; Nakhla, Jonathan; Desai, Rupen; Moreno, Jessica R; Yassari, Reza; Bagley, Carlos A
2016-10-01
Pediatric emergency physicians must have a high clinical suspicion for atlantoaxial rotatory subluxation (AARS), particularly when a child presents with neck pain and an abnormal head posture without the ability to return to a neutral position. As shown in the neurosurgical literature, timely diagnosis and swift initiation of treatment have a greater chance of treatment success for the patient. However, timely treatment is complicated because torticollis can result from a variety of maladies, including: congenital abnormalities involving the C1-C2 joint or the surrounding supporting muscles and ligaments, central nervous system abnormalities, obstetric palsies from brachial plexus injuries, clavicle fractures, head and neck surgery, and infection. The treating pediatrician must discern the etiology of the underlying problem to determine both timing and treatment paradigms, which vary widely between these illnesses. We present a comprehensive review of AARS that is intended for pediatric emergency physicians. Management of AARS can vary widely bases on factors, such as duration of symptoms, as well as the patient's history. The goal of this review is to streamline the management paradigms and provide an inclusive review for pediatric emergency first responders.
Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior
Fujita, Yuki; Masuda, Koji; Bando, Masashige; Nakato, Ryuichiro; Katou, Yuki; Tanaka, Takashi; Nakayama, Masahiro; Takao, Keizo; Miyakawa, Tsuyoshi; Tanaka, Tatsunori; Ago, Yukio
2017-01-01
Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/− mice. Smc3+/− mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/− mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype. PMID:28408410
Neurocutaneous melanocytosis presenting in a teenager: A case report and review of the literature.
Monica, I; Kumar, L Pavan; Uppin, Megha S; Jagannath Rao Naidu, Kotiyala V
2015-01-01
Neuro cutaneous melanocytosis (NCM) is a non-familial, congenital disorder characterized by multiple congenital nevi and brain or leptomeningeal abnormal melanin deposits. Here, we present an adult onset NCM. A 17-year-old boy presented with headache and double vision for 1 month. Magnetic resonance imaging of the brain showed hydrocephalus and abnormal meningeal hyper intensities in supra and infratentorial regions predominantly in the posterior fossa. Para medullary region showed an 11×10 mm nodular contrast enhancing nodule. Resection of an intramedullary central nervous system lesion revealed melanoma while skin biopsy was benign melanocytic nevus. As per Kadonaga and Frieden criteria, a diagnosis of NCM was made. Planned for craniospinal irradiation by three-dimensional conformal radiotherapy with a dose of 36 Gy, in 18 fractions (2 Gy/fraction and 5 days in a week) along with steroids however patient progressed and developed quadriplegia with intradural metastasis.
Sublethal Dosage of Imidacloprid Reduces the Microglomerular Density of Honey Bee Mushroom Bodies
Peng, Yi-Chan; Yang, En-Cheng
2016-01-01
The dramatic loss of honey bees is a major concern worldwide. Previous studies have indicated that neonicotinoid insecticides cause behavioural abnormalities and have proven that exposure to sublethal doses of imidacloprid during the larval stage decreases the olfactory learning ability of adults. The present study shows the effect of sublethal doses of imidacloprid on the neural development of the honey bee brain by immunolabelling synaptic units in the calyces of mushroom bodies. We found that the density of the synaptic units in the region of the calyces, which are responsible for olfactory and visual functions, decreased after being exposed to a sublethal dose of imidacloprid. This not only links a decrease in olfactory learning ability to abnormal neural connectivity but also provides evidence that imidacloprid damages the development of the nervous system in regions responsible for both olfaction and vision during the larval stage of the honey bee. PMID:26757950
Interbrachial Pinch by Trapezius Transfer in Amyoplasia Congenita: A Case Report
Thione, Alessandro; Cavadas, Pedro C.; Rubi, Carlo G.
2017-01-01
Summary: Amyoplasia congenita, or “classic distal arthrogryposis,” is the most common disorder among the congenital, non-progressive, multiple joint contractural conditions named arthrogryposis. The cause remains unknown, and it occurs sporadically. Abnormal neurological examination indicates that movement in utero was diminished as a result of an abnormality of the central or peripheral nervous system, the motor end plate, or muscle. The absence of central neural pathology indicates the origin in akinetic fetal condition. Three weeks are enough to cause muscle weakness and joint fibrosis. Joint contractures in amyoplasia are often rigid and refractory to nonoperative treatment such as passive stretching. Surgery is focused on each patient's need respecting adaptive maneuvers to accomplish daily tasks. We present a case in which pectoral major muscle had no strength for pinching; a trapezius muscle transfer was planned to obtain an interbrachial pinch useful for grasping. PMID:28607845
Crosstalk between metabolic and neuropsychiatric disorders
Cha, Danielle S.
2012-01-01
Evidence supporting the concurrence of metabolic disturbances (e.g. insulin resistance, diabetes and obesity) and neuropsychiatric disorders has been demonstrated in both human and animal studies, suggesting the possibility that they have shared pathophysiological mechanisms. During the past decade, our understanding for the role of insulin in both normal and abnormal central nervous system (CNS) processes has become increasingly refined. Evidence indicates that insulin is a pleiotropic peptide, critical to neurotrophism, neuroplasticity, and neuromodulation. Moreover, the role of insulin underscores its importance in the development of several neuropsychiatric disorders, including, but not limited to, mechanisms involved in the pathogenesis and progression towards diabetes, obesity, and neurodegenerative disorders, such as Alzheimer's disease. This review focuses on the insulin-mediated effects on normal and abnormal brain function and discusses why targeting insulin-related pathways in the brain may emerge as a new approach for refining treatment of neurological and psychiatric disorders. PMID:22802875
Crosstalk between metabolic and neuropsychiatric disorders.
Kaidanovich-Beilin, Oksana; Cha, Danielle S; McIntyre, Roger S
2012-01-01
Evidence supporting the concurrence of metabolic disturbances (e.g. insulin resistance, diabetes and obesity) and neuropsychiatric disorders has been demonstrated in both human and animal studies, suggesting the possibility that they have shared pathophysiological mechanisms. During the past decade, our understanding for the role of insulin in both normal and abnormal central nervous system (CNS) processes has become increasingly refined. Evidence indicates that insulin is a pleiotropic peptide, critical to neurotrophism, neuroplasticity, and neuromodulation. Moreover, the role of insulin underscores its importance in the development of several neuropsychiatric disorders, including, but not limited to, mechanisms involved in the pathogenesis and progression towards diabetes, obesity, and neurodegenerative disorders, such as Alzheimer's disease. This review focuses on the insulin-mediated effects on normal and abnormal brain function and discusses why targeting insulin-related pathways in the brain may emerge as a new approach for refining treatment of neurological and psychiatric disorders.
Mitler, Merrill M.; Hajdukovic, Roza; Erman, Milton; Koziol, James A.
2008-01-01
Summary Narcolepsy is a neurological condition with a prevalence of up to 1 per 1,000 that is characterized by irresistible bouts of sleep. Associated features include the pathological manifestations of rapid-eye-movement (REM) sleep: cataplexy, sleep paralysis, hypnagogic hallucinations, and abnormal sleep-onset REM periods and disturbed nocturnal sleep. The condition is strongly associated with the HLA-DR2 and DQw1 phenotype. The phenomenology of narcolepsy is discussed, and diagnostic procedures are reviewed. Treatment modalities involving central nervous system stimulants for somnolence and tricyclic drugs for REM-sleep abnormalities are discussed. Sleep laboratory studies on the treatment efficacy of methylphenidate, pemoline, dextroamphetamine, protriptyline, and viloxazine are presented. Data suggest that: (1) methylphenidate and dextro-amphetamine objectively improve somnolence; (2) pemoline, at doses up to 112.5 mg, is less effective in controlling somnolence but may improve certain aspects of performance; and (3) protriptyline and viloxazine are effective anticataplectic agents that produce little improvement in somnolence. PMID:1968069
Tam, J; Danilovich, N; Nilsson, K; Sairam, M R; Maysinger, D
2002-01-01
The follitropin receptor knockout (FORKO) mouse undergoes ovarian failure, thereby providing an animal model to investigate the consequences of the depletion of circulating estrogen in females. The estrogen deficiency causes marked defects in the female reproductive system, obesity, and skeletal abnormalities. In light of estrogen's known pleiotropic effects in the nervous system, our study examined the effects of genetically induced estrogen-testosterone imbalance on this system in female FORKO mice. Circulating concentrations of 17-beta-estradiol (E2) in FORKO mice are significantly decreased (FORKO -/-: 1.13+/-0.34 pg/ml; wild-type +/+: 17.6+/-3.5 pg/ml, P<0.0001, n=32-41); in contrast, testosterone levels are increased (-/-: 37.7+/-2.3 pg/ml; wild-type +/+: 3.9+/-1.7 pg/ml, P<0.005, n=25-33). The focus was on the activities of key enzymes in the central cholinergic and peripheral nervous systems, on dorsal root ganglia (DRGs) capacity for neurite outgrowth, and on the phosphorylation state of structural neurofilament (NF) proteins. Choline acetyltransferase activity was decreased in several central cholinergic structures (striatum 50+/-3%, hippocampus 24+/-2%, cortex 12+/-3%) and in DRGs (11+/-6%). Moreover, we observed aberrations in the enzymatic activities of mitogen-activated protein kinases (extracellular-regulated kinase and c-Jun N-terminal kinase) in the hippocampus, DRGs, and sciatic nerves. Hippocampal and sensory ganglia samples from FORKO mice contained hyper-phosphorylated NFs. Finally, explanted ganglia of FORKO mice displayed decreased neurite outgrowth (20-50%) under non-treated conditions and when treated with E2 (10 nM). Our results demonstrate that genetic depletion of circulating estrogen leads to biochemical and morphological changes in central and peripheral neurons, and underlie the importance of estrogen in the normal development and functioning of the nervous system. In particular, the findings suggest that an early and persisting absence of the steroid leads to neurodegenerative changes and identify several key enzymes that may contribute to the process. This model provides a system to explore the consequences of circulating estrogen deprivation and other hormonal imbalances in the nervous system.
Prenatal diagnosis of Chiari malformation with syringomyelia in the second trimester.
Iruretagoyena, Jesus Igor; Trampe, Barbara; Shah, Dinesh
2010-02-01
Routine anatomic ultrasound performed in the second trimester has a detection rate of approximately 70-90% for fetal congenital abnormalities (Nyberg and Souter, J Ultrasound Med 2001;6:655-674). The central nervous system abnormalities are one of the most common ones detected. Chiari malformation is among the CNS abnormalities diagnosed in the fetal period (Bianchi et al., Fetology - diagnosis and management of the fetal patient, McGraw-Hill, 2000). The Arnold-Chiari malformation was first described in 1883 by Cleland (Romero et al., Prenatal diagnosis of congenital anomalies, Appleton and Lange, 1988). It is characterised by the prolapse of the hindbrain structures below the level of the foramen magnum. It can be associated with skeletal abnormalities and neurological dysfunction. In type I, a lip of cerebellum is downwardly displaced with the tonsils, but the fourth ventricle remains in the posterior fossa. This condition may coexist with syringomyelia, which is a cyst formation on the cervical portion of the spinal cord (Creasy et al., Maternal fetal medicine principles and practice, 2004). We present a case where Chiari type 1 and syringomyelia detected at 18 weeks of gestation. The reason for referral to our center was an abnormal inward posturing of both upper and lower extremities (minimal gross movement and almost inexistent range of motion on fetal joints). On further fetal evaluation, an abnormal brain ultrasound was identified. Prenatal diagnosis of Chiari type 1 malformation and syringomyelia is almost nonexistent when reviewing the literature is the reason why this case is presented.
Homovanillic acid in cerebrospinal fluid of 1388 children with neurological disorders.
Molero-Luis, Marta; Serrano, Mercedes; Ormazábal, Aida; Pérez-Dueñas, Belén; García-Cazorla, Angels; Pons, Roser; Artuch, Rafael
2013-06-01
To determine the prevalence of dopaminergic abnormalities in 1388 children with neurological disorders, and to analyse their clinical, neuroradiological, and electrophysiological characteristics. We studied biogenic amines in 1388 cerebrospinal fluid (CSF) samples from children with neurological disorders (mean age 3y 10mo, SD 4y 5mo; 712 males, 676 females. Correlations among CSF homovanillic acid (HVA) values and other biochemical, clinical, neuroradiological, and electrophysiological parameters were analysed. Twenty-one patients with primary dopaminergic deficiencies were identified. Of the whole sample, 20% showed altered HVA. We report neurological diseases with abnormal CSF HVA values such as pontocerebellar hypoplasia, perinatal asphyxia, central nervous system infections, mitochondrial disorders, and other genetic diseases. Overlapping HVA levels between primary and secondary dopamine deficiencies were observed. Prevalence of low CSF HVA levels was significantly higher in neonatal patients (χ(2) =84.8, p<0.001). Abnormalities in white matter were associated with low CSF HVA (odds ratio 2.3, 95% confidence interval 1.5-3.5). HVA abnormalities are observed in various neurological diseases, but some are probably an unspecific finding. No clear limits for CSF HVA values pointing towards primary diseases can be stated. We report several neurological diseases showing HVA alterations. No neuroimaging traits were associated with low HVA values, except for white matter abnormalities. © The Authors. Developmental Medicine & Child Neurology © 2013 Mac Keith Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altman, J.
1987-10-01
In most neurotoxicological studies morphological assessment focuses on pathological effects, like degenerative changes in neuronal perikarya, axonopathy, demyelination, and glial and endothelial cell reactions. Similarly, the assessment of physiological and behavioral effects center on evident neurological symptoms, like EEG and EMG abnormalities, resting and intention tremor, abnormal gait, and abnormal reflexes. This paper reviews briefly another central nervous system target of harmful environmental agents, which results in behavioral abnormalities without any qualitatively evident neuropathology. This is called microneuronal hypoplasia, a retardation of brain development characterized by a quantitative reduction in the normal population of late-generated, short-axoned neurons in specific brainmore » regions. Correlated descriptive and experimental neurogenetic studies in the rat have established that all the cerebellar granule cells and a very high proportion of hippocampal granule cells are produced postnatally, and that focal, low-dose X-irradiation either of the cerebellum or of the hippocampus after birth selectively interferes with the acquisition of the full complement of granule cells (microneuronal hypoplasia). Subsequent behavioral investigations showed that cerebellar microneuronal hypoplasia results in profound hyperactivity without motor abnormalities, while hippocampal microneuronal hypoplasia results in hyperactivity, as well as attentional and learning deficits. There is much indirect clinical evidence that various harmful environmental agents affecting the pregnant mother and/or the infant lead to such childhood disorders as hyperactivity and attentional and learning disorders. 109 references.« less
Cellular and molecular basis of chronic constipation: Taking the functional/idiopathic label out
Bassotti, Gabrio; Villanacci, Vincenzo; Creƫoiu, Dragos; Creƫoiu, Sanda Maria; Becheanu, Gabriel
2013-01-01
In recent years, the improvement of technology and the increase in knowledge have shifted several strongly held paradigms. This is particularly true in gastroenterology, and specifically in the field of the so-called “functional” or “idiopathic” disease, where conditions thought for decades to be based mainly on alterations of visceral perception or aberrant psychosomatic mechanisms have, in fact, be reconducted to an organic basis (or, at the very least, have shown one or more demonstrable abnormalities). This is particularly true, for instance, for irritable bowel syndrome, the prototype entity of “functional” gastrointestinal disorders, where low-grade inflammation of both mucosa and myenteric plexus has been repeatedly demonstrated. Thus, researchers have also investigated other functional/idiopathic gastrointestinal disorders, and found that some organic ground is present, such as abnormal neurotransmission and myenteric plexitis in esophageal achalasia and mucosal immune activation and mild eosinophilia in functional dyspepsia. Here we show evidence, based on our own and other authors’ work, that chronic constipation has several abnormalities reconductable to alterations in the enteric nervous system, abnormalities mainly characterized by a constant decrease of enteric glial cells and interstitial cells of Cajal (and, sometimes, of enteric neurons). Thus, we feel that (at least some forms of) chronic constipation should no more be considered as a functional/idiopathic gastrointestinal disorder, but instead as a true enteric neuropathic abnormality. PMID:23864772
Cellular and molecular basis of chronic constipation: taking the functional/idiopathic label out.
Bassotti, Gabrio; Villanacci, Vincenzo; Creţoiu, Dragos; Creţoiu, Sanda Maria; Becheanu, Gabriel
2013-07-14
In recent years, the improvement of technology and the increase in knowledge have shifted several strongly held paradigms. This is particularly true in gastroenterology, and specifically in the field of the so-called "functional" or "idiopathic" disease, where conditions thought for decades to be based mainly on alterations of visceral perception or aberrant psychosomatic mechanisms have, in fact, be reconducted to an organic basis (or, at the very least, have shown one or more demonstrable abnormalities). This is particularly true, for instance, for irritable bowel syndrome, the prototype entity of "functional" gastrointestinal disorders, where low-grade inflammation of both mucosa and myenteric plexus has been repeatedly demonstrated. Thus, researchers have also investigated other functional/idiopathic gastrointestinal disorders, and found that some organic ground is present, such as abnormal neurotransmission and myenteric plexitis in esophageal achalasia and mucosal immune activation and mild eosinophilia in functional dyspepsia. Here we show evidence, based on our own and other authors' work, that chronic constipation has several abnormalities reconductable to alterations in the enteric nervous system, abnormalities mainly characterized by a constant decrease of enteric glial cells and interstitial cells of Cajal (and, sometimes, of enteric neurons). Thus, we feel that (at least some forms of) chronic constipation should no more be considered as a functional/idiopathic gastrointestinal disorder, but instead as a true enteric neuropathic abnormality.
[Orthostatic postural tachycardia: study of 8 patients].
Santiago Pérez, S; Ferrer Gila, T
1998-02-07
The occurrence of syncopal episodes is a very frequent event. In the absence of a structural systemic or cardiac disease, syncope is resulting of an anomalous cardiovascular response neurally mediated by the autonomic nervous system. It is the final common manifestation of different abnormal mechanisms and is frequently precipitated by orthostatism. Orthostatic intolerance syndrome refers to the development of symptoms during the upright posture that disappear in supine position. Tachycardia may be one of the clinical features of the syndrome. During orthostatic stress a hyperadrenergic response, with maintained increment of heart rate and associated symptoms, is developed. Changes in blood pressure may be diverse and in some cases hypotension and syncope occurs. Eight patients with symptoms of orthostatic intolerance who underwent autonomic evaluation and were diagnosed from postural tachycardia are presented. In all the cases an abnormal increment of heart rate during tilting was found and it was associated to hyperadrenergic symptoms. Evidence of restricted sympathetic impairment was observed in six cases with distal reduction of sudomotor function and abnormal adrenergic response during Valsalva manoeuvre. Symptoms disappeared or mostly subsided with pharmacological (amitriptyline in one case, phenobarbital in another one and non-cardioselective beta-blockers in six patients) and non-pharmacological treatment. In further examinations heart rate and blood pressure were normal.
Control of Abnormal Synchronization in Neurological Disorders
Popovych, Oleksandr V.; Tass, Peter A.
2014-01-01
In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174
Hypomelanosis of Ito: neurological and psychiatric pictures in developmental age.
Parisi, L; Di Filippo, T; Roccella, M
2012-02-01
Hypomelanosis of Ito (HOI) is a multisystem neurocutaneous disorder. In the described cases, cutaneous manifestations (unilateral or bilateral streaks and swirls of hypomelanosis with regular and confluent borders) and extracutaneous abnormalities are often associated. Extracutaneous abnormalities involve the musculoskeletal system (scoliosis, vertebral anomalies, cranial-facial malformations) and other organs, as well as the central nervous system (CNS). The most significant anomalies of the CNS are psychomotor retardation and cognitive deficit. Autism, epilepsy, language disorders, cerebral malformations (neural migration disorders, cerebral hypoplasia, cortical atrophy, agenesis of the corpus callosum) are sometimes present. Numerous abnormal chromosomal patterns have been observed. HOI is usually a sporadic disorder; though autosomal dominant transmission has been suggested, recessive and X-linked inheritance patterns have also been reported. This study describes five children with HOI presenting with various features of the clinical spectrum of the syndrome. Some of these cases were referred for psychomotor therapy as part of an integrated neuropsychologic and psychomotor treatment support program. In this view, psychomotor treatment aims to promote the emotional-relational component, to overcome rigid divisions, and to integrate learning-related cognitive aspects with psychodynamic concepts. Finally, the goals of psychological and social support are to help the parents accept their child's handicap, understand the child's behavior, plan future pregnancies, and foster an environment for their child's integration.
Doolittle, Derrick A; Lehman, Vance T; Schwartz, Kara M; Wong-Kisiel, Lily C; Lehman, Julia S; Tollefson, Megha M
2015-01-01
Parry-Romberg syndrome (PRS) and en coup de sabre (ECS) are variants of morphea. Although numerous findings on central nervous system (CNS) imaging of PRS and ECS have been reported, the spectrum and frequency of CNS imaging findings and relation to cutaneous and neurologic abnormalities have not been fully characterized. We retrospectively reviewed patients younger than 50 years at our institution over a 16-year interval who had clinical diagnosis of PRS and ECS by a skin or facial subspecialist. Two neuroradiologists evaluated available imaging and characterized CNS imaging findings. Eighty-eight patients with PRS or ECS were identified (62 women [70.4 %]; mean age 28.8 years). Of the 43 patients with CNS imaging, 19 (44 %) had abnormal findings. The only finding in 1 of these 19 patients was lateral ventricle asymmetry; of the other 18, findings were bilateral in 11 (61 %), ipsilateral to the side of facial involvement in 6 (33 %), and contralateral in 1 (6 %). Sixteen patients had serial imaging examinations over an average of 632 days; 13 (81 %) had stable imaging findings, and 3 (19 %) had change over time. Of six patients with progressive cutaneous findings, five (83 %) had stable imaging findings over time. Among the 23 patients with clinical neurologic abnormality and imaging, 12 (52 %) had abnormal imaging findings. All seven patients with seizures (100 %) had abnormal imaging studies. In PRS and ECS, imaging findings often are bilateral and often do not progress, regardless of cutaneous disease activity. Findings are inconsistently associated with clinical abnormalities.
Abnormal cerebrospinal fluid protein indices in schizophrenia.
Kirch, D G; Kaufmann, C A; Papadopoulos, N M; Martin, B; Weinberger, D R
1985-10-01
Determinations of albumin and immunoglobulin G (IgG) were performed in paired cerebrospinal fluid (CSF) and serum samples from 24 subjects with schizophrenia. These determinations allowed calculation of two indices, one that is an indicator of integrity of the blood-brain barrier and the other a measure of selective IgG production within the central nervous system (CNS). In comparison with previously determined reference values, 7 of 24 (29%) subjects showed increased blood-brain barrier permeability, and 8 of 24 (33%) demonstrated elevated endogenous CNS IgG production. One of these eight also demonstrated oligoclonal banding on high-resolution protein electrophoresis of the CSF.
Is Multiple Sclerosis an Autoimmune Disease?
Wootla, Bharath; Eriguchi, Makoto; Rodriguez, Moses
2012-01-01
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS) with varied clinical presentations and heterogeneous histopathological features. The underlying immunological abnormalities in MS lead to various neurological and autoimmune manifestations. There is strong evidence that MS is, at least in part, an immune-mediated disease. There is less evidence that MS is a classical autoimmune disease, even though many authors state this in the description of the disease. We show the evidence that both supports and refutes the autoimmune hypothesis. In addition, we present an alternate hypothesis based on virus infection to explain the pathogenesis of MS. PMID:22666554
Berker, M; Oruckaptan, H H; Oge, H K; Benli, K
2000-11-01
Neurocutaneous melanosis is a rare dysmorphogenesis associated with single or multiple giant pigmented cutaneous nevi and diffuse involvement of the leptomeninges anywhere in the central nervous system (CNS). It is interesting that almost 8-10% of patients had associated Dandy-Walker malformation in the literature, suggesting a common origin of the developmental abnormalities. In this article, we present a 2-year-old patient with neurocutaneous melanosis associated with Dandy-Walker malformation. We reviewed the literature and discuss the pathogenesis based on the preferred hypotheses so far. Copyright 2001 S. Karger AG, Basel.
Fatal Eastern Equine Encephalitis in a Patient on Maintenance Rituximab: A Case Report.
Solomon, Isaac H; Ciarlini, Pedro D S C; Santagata, Sandro; Ahmed, Asim A; De Girolami, Umberto; Prasad, Sashank; Mukerji, Shibani S
2017-01-01
A 63-year-old woman on rituximab maintenance for follicular lymphoma presented with headaches, vomiting, and fever, and was diagnosed with eastern equine encephalomyelitis by cerebrospinal fluid polymerase chain reaction. Eastern equine encephalomyelitis immunoglobulin (Ig)G/IgM remained negative due to rituximab treatment, and magnetic resonance imaging showed minimal abnormalities, making this a diagnostically challenging case. Despite therapy with intravenous Ig, the patient rapidly declined and died on hospital day 12. Autopsy revealed perivascular and parenchymal chronic inflammation, with an absence of B lymphocytes, and virally infected neurons throughout the central nervous system.
Kerosene poisoning in children in Iraq.
Nagi, N. A.; Abdulallah, Z. A.
1995-01-01
One hundred and three children with kerosene poisoning were studied. The majority of the patients were under five years of age and included a newborn baby. More patients were seen in spring and fewer in winter months. Most of the patients were children of poor families living in overcrowded conditions. Negligence and ignorance were the main causes of poisoning. Respiratory and central nervous systems were mainly involved. Chest X-ray abnormalities were frequently seen. The patients were treated symptomatically. Only one patient died, he had been in a coma on admission to the hospital. All other patients had rapid and complete recoveries. PMID:7567734
Nervous System Abnormalities and Legionnaire's Disease.
Halperin, John J
2017-03-01
Although patients with Legionnaire's disease frequently develop alterations of consciousness, this is no more frequent than in patients hospitalized with other, equally severe forms of bacterial pneumonia. Legionella meningitis occurs rarely, if ever. Patients with Legionnaire's are susceptible to critical illness polyneuropathy/myopathy, as are other critically ill patients. Legionnaire's patients may develop MRI hyperdensities in the splenium of the corpus callosum, as may other patients with severe infections. Patients with Legionnaire's may be at increased risk of, and rarely develop, immune-mediated multifocal brain (acute disseminated encephalomyelitis) or peripheral nerve disease (Guillain-Barré syndrome). Copyright © 2016 Elsevier Inc. All rights reserved.
Autonomous diagnostics and prognostics of signal and data distribution systems
NASA Astrophysics Data System (ADS)
Blemel, Kenneth G.
2001-07-01
Wiring is the nervous system of any complex system and is attached to or services nearly every subsystem. Damage to optical wiring systems can cause serious interruptions in communication, command and control systems. Electrical wiring faults and failures due to opens, shorts, and arcing probably result in adverse effects to the systems serviced by the wiring. Abnormalities in a system usually can be detected by monitoring some wiring parameter such as vibration, data activity or power consumption. This paper introduces the mapping of wiring to critical functions during system engineering to automatically define the Failure Modes Effects and Criticality Analysis. This mapping can be used to define the sensory processes needed to perform diagnostics during system engineering. This paper also explains the use of Operational Modes and Criticality Effects Analysis in the development of Sentient Wiring Systems as a means for diagnostic, prognostics and health management of wiring in aerospace and transportation systems.
Tamura, A; Maruyama, Y; Ishitobi, Y; Kawano, A; Ando, T; Ikeda, R; Inoue, A; Imanaga, J; Okamoto, S; Kanehisa, M; Ninomiya, T; Tanaka, Y; Tsuru, J; Akiyoshi, J
2013-11-01
Social anxiety disorder is believed to be a stress-induced disease. Although it can be inferred from the symptoms during attacks that there exists some abnormality of autonomic nervous system in any of the stress systems in social anxiety disorder, little evidence has been reported. This study focused on comparing the reactivity of 2 stress systems, the autonomic nervous system (ANS) and the hypothalamic-pituitary-adrenal (HPA) axis in patients with social anxiety disorder. 32 patients with the generalized type of social anxiety disorder were compared with 80 age- and gender-matched controls. We collected saliva samples from patients and controls before and after electrical stimulation to measure the concentrations of salivary alpha-amylase (sAA) and salivary cortisol. Profile of Mood State (POMS) and State-Trait Anxiety Inventory (STAI) scores and Heart Rate Variability (HRV) were also determined following stimulation. SAA in patients displayed a significantly higher level at baseline and a significantly larger response to electrical stimulation as compared to controls, whereas no group differences were seen in any HRV. Neither within-subject nor group differences were seen in salivary cortisol levels. These results suggest that SAD patients displayed enhanced ANS (but not HPA axis) activity vs. healthy controls. © Georg Thieme Verlag KG Stuttgart · New York.
2013-09-27
Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Metastatic Childhood Soft Tissue Sarcoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Soft Tissue Sarcoma; Recurrent Childhood Visual Pathway Glioma; Unspecified Childhood Solid Tumor, Protocol Specific
Neuroanatomical abnormalities in chronic tinnitus in the human brain
Adjamian, Peyman; Hall, Deborah A.; Palmer, Alan R.; Allan, Thomas W.; Langers, Dave R.M.
2014-01-01
In this paper, we review studies that have investigated brain morphology in chronic tinnitus in order to better understand the underlying pathophysiology of the disorder. Current consensus is that tinnitus is a disorder involving a distributed network of peripheral and central pathways in the nervous system. However, the precise mechanism remains elusive and it is unclear which structures are involved. Given that brain structure and function are highly related, identification of anatomical differences may shed light upon the mechanism of tinnitus generation and maintenance. We discuss anatomical changes in the auditory cortex, the limbic system, and prefrontal cortex, among others. Specifically, we discuss the gating mechanism of tinnitus and evaluate the evidence in support of the model from studies of brain anatomy. Although individual studies claim significant effects related to tinnitus, outcomes are divergent and even contradictory across studies. Moreover, results are often confounded by the presence of hearing loss. We conclude that, at present, the overall evidence for structural abnormalities specifically related to tinnitus is poor. As this area of research is expanding, we identify some key considerations for research design and propose strategies for future research. PMID:24892904
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinchik, E.M.; Carpenter, D.A.; Handel, M.A.
1995-07-03
Variability and complexity of phenotypes observed in microdeletion syndromes can be due to deletion of a single gene whose product participates in several aspects of development or can be due to the deletion of a number of tightly linked genes, each adding its own effect to the syndrome. The p{sup 6H} deletion in mouse chromosome 7 presents a good model with which to address this question of multigene vs. single-gene pleiotropy. Mice homozygous for the p{sup 6H} deletion are diluted in pigmentation, are smaller than their littermates, and manifest a nervous jerky-gait phenotype. Male homozygotes are sterile and exhibit profoundmore » abnormalities in spermiogenesis. By using N-ethyl-N-nitrosourea (EtNU) mutagenesis and a breeding protocol designed to recover recessive mutations expressed hemizygously opposite a large p-locus deletion, we have generated three noncomplementing mutations that map to the p{sup 6H} deletion. Each of these EtNU-induced mutations has adverse effects on the size, nervous behavior, and progression of spermiogenesis that characterize p{sup 6H} deletion homozygotes. Because etNU is thought to induce primarily intragenic (point) mutations in mouse stem-cell spermatogonia, we propose that the trio of phenotypes (runtiness, nervous jerky gait, and male sterility) expressed in p{sup 6H} deletion homozygotes is the result of deletion of a single highly pleiotropic gene. We also predict that a homologous single locus, quite possibly tightly linked and distal to the D15S12 (P) locus in human chromosome 15q11-q13, may be associated with similar developmental abnormalities in humans. 29 refs., 3 figs., 1 tab.« less
McLean, B N; Miller, D; Thompson, E J
1995-01-01
A retrospective study of CSF and serum analysis from a total of 43 patients with sarcoidosis, 20 with systemic lupus erythematosus, and 12 with Behçet's disease with neurological involvement found local synthesis of oligoclonal IgG using isoelectric focusing and immunoblotting in 51%, 25%, and 8% respectively at some stage in their disease. Blood-brain barrier breakdown, when assessed with an albumin ratio found 47% of patients with sarcoidosis, 30% of those with systemic lupus erythematosus, and 42% of patients with Behçet's disease exhibiting abnormal barrier function at some time. Serial CSF analysis showed that clinical relapses were associated with worsening barrier function and in some patients the development of local oligoclonal IgG synthesis; conversely steroid treatment led to a statistically significant improvement in barrier function, and in two patients a loss of oligoclonal IgG bands. A higher proportion of patients had MRI abnormalities than oligoclonal IgG or blood-brain barrier breakdown, MRI being abnormal in 16 of 19 patients with sarcoidosis, three of four patients with systemic lupus erythematosus, and seven of nine patients with Behçet's disease, although this may have been due to temporal factors. In the differential diagnosis of chronic neurological disorders, locally synthesised oligoclonal IgG cannot distinguish between diseases, but the loss of bands seen in two patients contrasts with what is seen in multiple sclerosis, and thus may be a useful diagnostic clue. PMID:7745401
Cai, Guilan; Wang, Yini; Liu, Xiaojing; Han, Yanfei; Wang, Zhao
2017-08-01
Hemophagocytic lymphohistiocytosis (HLH) is a rare multisystem disorder characterized by proliferation and diffuse infiltration multiple organs with histiocytes, including the central nervous system (CNS). Neurological manifestations of HLH have been recognized in different studies with children, but they remain relatively ill-defined in adults with HLH. From March 2008 to October 2014, 289 adult patients with HLH were admitted to our center. Clinical, radiological, and cerebral spinal fluid (CSF) data of the patients with CNS involvement were reviewed, and a retrospective study in our single-center was carried out. CNS involvement was observed in 29 patients (10%) either in their diagnosis process or during disease course. CNS symptoms included disturbance of consciousness, cranial nerve palsies, seizures, headache, limb paralysis, irritability, meningism, and memory loss. CSF analysis was conducted in 17 patients (59%). Among them, 11 patients (65%) were reported as having abnormal CSF. Neuroradiological studies were performed in 25 patients (86%). Among the 13 cases that underwent CT scan, one patient hemorrhaged. Single or multiple hypodense foci were detected in the other 2 patients. Magnetic resonance imaging (MRI) abnormalities were found in 15 patients, including focal lesions in cortical and adjacent subcortical regions with or without variable nodular or ring contrast-enhancement, multiple lesions in white matter, diffuse white matter signal changes, and meningeal enhancement. Basal ganglia, cerebellum, and brainstem lesions were also observed. CNS involvement could also be found in adult patients with HLH, but not as frequent as it was in children. The clinical manifestations could be diversified. By carrying out rigorous CNS examinations, an early diagnosis could be made and it was of the utmost importance for the prevention of further lesions.
Siddesh, Anjurani; Gupta, Geetika; Sharan, Ram; Agarwal, Meenal; Phadke, Shubha R
2017-04-01
Prenatal diagnosis of malformations is an important method of prevention and control of congenital anomalies with poor prognosis. Central nervous system (CNS) malformations amongst these are the most common. The information about the prevalence and spectrum of prenatally detected malformations is crucial for genetic counselling and policymaking for population-based preventive programmes. The objective of this study was to study the spectrum of prenatally detected CNS malformations and their association with chromosomal abnormalities and autopsy findings. This retrospective study was conducted in a tertiary care hospital in north India from January 2007 to December 2013. The details of cases with prenatally detected CNS malformations were collected and were related with the foetal chromosomal analysis and autopsy findings. Amongst 6044 prenatal ultrasonographic examinations performed; 768 (12.7%) had structural malformations and 243 (31.6%) had CNS malformations. Neural tube defects (NTDs) accounted for 52.3 per cent of CNS malformations and 16.5 per cent of all malformations. The other major groups of prenatally detected CNS malformations were ventriculomegaly and midline anomalies. Chromosomal abnormalities were detected in 8.2 per cent of the 73 cases studied. Foetal autopsy findings were available for 48 foetuses. Foetal autopsy identified additional findings in eight foetuses and the aetiological diagnosis changed in two of them (4.2%). Amongst prenatally detected malformations, CNS malformations were common. NTD, which largely is a preventable anomaly, continued to be the most common group. Moreover, 60 per cent of malformations were diagnosed after 20 weeks, posing legal issues. Chromosomal analysis and foetal autopsy are essential for genetic counselling based on aetiological diagnosis.
Oculomotor Deficits in Aryl Hydrocarbon Receptor Null Mouse
Chevallier, Aline; Mialot, Antoine; Petit, Jean-Maurice; Fernandez-Salguero, Pedro; Barouki, Robert
2013-01-01
The Aryl hydrocarbon Receptor or AhR, a ligand-activated transcription factor, is known to mediate the toxic and carcinogenic effects of various environmental pollutants such as 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD). Recent studies in Caenorhabditis elegans and Drosophila melanogaster show that the orthologs of the AhR are expressed exclusively in certain types of neurons and are implicated in the development and the homeostasis of the central nervous system. While physiological roles of the AhR were demonstrated in the mammalian heart, liver and gametogenesis, its ontogenic expression and putative neural functions remain elusive. Here, we report that the constitutive absence of the AhR in adult mice (AhR−/−) leads to abnormal eye movements in the form of a spontaneous pendular horizontal nystagmus. To determine if the nystagmus is of vestibular, visual, or cerebellar origin, gaze stabilizing reflexes, namely vestibulo-ocular and optokinetic reflexes (VOR and OKR), were investigated. The OKR is less effective in the AhR−/− mice suggesting a deficit in the visuo-motor circuitry, while the VOR is mildly affected. Furthermore, the AhR is expressedin the retinal ganglion cells during the development, however electroretinograms revealed no impairment of retinal cell function. The structure of the cerebellum of the AhR−/− mice is normal which is compatible with the preserved VOR adaptation, a plastic process dependent on cerebellar integrity. Finally, intoxication with TCDD of control adults did not lead to any abnormality of the oculomotor control. These results demonstrate that the absence of the AhR leads to acquired central nervous system deficits in the adults. Given the many common features between both AhR mouse and human infantile nystagmus syndromes, the AhR−/− mice might give insights into the developmental mechanisms which lead to congenital eye disorders. PMID:23301081
A Drosophila model for Angelman syndrome
Wu, Yaning; Bolduc, Francois V.; Bell, Kimberly; Tully, Tim; Fang, Yanshan; Sehgal, Amita; Fischer, Janice A.
2008-01-01
Angelman syndrome is a neurological disorder whose symptoms include severe mental retardation, loss of motor coordination, and sleep disturbances. The disease is caused by a loss of function of UBE3A, which encodes a HECT-domain ubiquitin ligase. Here, we generate a Drosophila model for the disease. The results of several experiments show that the functions of human UBE3A and its fly counterpart, dube3a, are similar. First, expression of Dube3a is enriched in the Drosophila nervous system, including mushroom bodies, the seat of learning and memory. Second, we have generated dube3a null mutants, and they appear normal externally, but display abnormal locomotive behavior and circadian rhythms, and defective long-term memory. Third, flies that overexpress Dube3a in the nervous system also display locomotion defects, dependent on the ubiquitin ligase activity. Finally, missense mutations in UBE3A alleles of Angelman syndrome patients alter amino acid residues conserved in the fly protein, and when introduced into dube3a, behave as loss-of-function mutations. The simplest model for Angelman syndrome is that in the absence of UBE3A, particular substrates fail to be ubiquitinated and proteasomally degraded, accumulate in the brain, and interfere with brain function. We have generated flies useful for genetic screens to identify Dube3a substrates. These flies overexpress Dube3a in the eye or wing and display morphological abnormalities, dependent on the critical catalytic cysteine. We conclude that dube3a mutants are a valid model for Angelman syndrome, with great potential for identifying the elusive UBE3A substrates relevant to the disease. PMID:18701717
Overview of the Autonomic Nervous System
... be reversible or progressive. Anatomy of the autonomic nervous system The autonomic nervous system is the part of ... organs they connect with. Function of the autonomic nervous system The autonomic nervous system controls internal body processes ...
Kindling and Oxidative Stress as Contributors to Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
Jason, L. A.; Porter, N.; Herrington, J.; Sorenson, M.; Kubow, S.
2010-01-01
Myalgic Encephalomyelitis/chronic fatigue syndrome (ME/CFS) is one of the more complex illnesses involving multiple systems within the body. Onset of ME/CFS frequently occurs quickly, and many patients report a prior exposure to a viral infection. This debilitating illness can affect the immune, neuroendocrine, autonomic, and neurologic systems. Abnormal biological findings among some patients have included aberrant ion transport and ion channel activity, cortisol deficiency, sympathetic nervous system hyperactivity, EEG spike waves, left ventricular dysfunction in the heart, low natural killer cell cytotoxicity, and a shift from Th1 to Th2 cytokines. We propose that the kindling and oxidative stress theories provide a heuristic template for better understanding the at times conflicting findings regarding the etiology and pathophysiology of this illness. PMID:21253446
Thyroid hormones states and brain development interactions.
Ahmed, Osama M; El-Gareib, A W; El-Bakry, A M; Abd El-Tawab, S M; Ahmed, R G
2008-04-01
The action of thyroid hormones (THs) in the brain is strictly regulated, since these hormones play a crucial role in the development and physiological functioning of the central nervous system (CNS). Disorders of the thyroid gland are among the most common endocrine maladies. Therefore, the objective of this study was to identify in broad terms the interactions between thyroid hormone states or actions and brain development. THs regulate the neuronal cytoarchitecture, neuronal growth and synaptogenesis, and their receptors are widely distributed in the CNS. Any deficiency or increase of them (hypo- or hyperthyroidism) during these periods may result in an irreversible impairment, morphological and cytoarchitecture abnormalities, disorganization, maldevelopment and physical retardation. This includes abnormal neuronal proliferation, migration, decreased dendritic densities and dendritic arborizations. This drastic effect may be responsible for the loss of neurons vital functions and may lead, in turn, to the biochemical dysfunctions. This could explain the physiological and behavioral changes observed in the animals or human during thyroid dysfunction. It can be hypothesized that the sensitive to the thyroid hormones is not only remarked in the neonatal period but also prior to birth, and THs change during the development may lead to the brain damage if not corrected shortly after the birth. Thus, the hypothesis that neurodevelopmental abnormalities might be related to the thyroid hormones is plausible. Taken together, the alterations of neurotransmitters and disturbance in the GABA, adenosine and pro/antioxidant systems in CNS due to the thyroid dysfunction may retard the neurogenesis and CNS growth and the reverse is true. In general, THs disorder during early life may lead to distortions rather than synchronized shifts in the relative development of several central transmitter systems that leads to a multitude of irreversible morphological and biochemical abnormalities (pathophysiology). Thus, further studies need to be done to emphasize this concept.
PHACE syndrome: new views on diagnostic criteria.
Poetke, M; Frommeld, T; Berlien, H P
2002-12-01
The association of large facial hemangiomas with posterior fossa malformations and vascular anomalies has been termed the PHACE syndrome. It is characterized by the association of posterior fossa malformations, hemangiomas, arterial anomalies, coarctation of the aorta and other cardiac defects, and eye abnormalities. Since most articles focus on isolated case reports, an extended retrospective literature review of all reports of large hemangiomas with associated abnormalities of the central nervous system and other malformations was performed to examine the clinical features, and other not as yet reported associated anomalies. Reports were found on 59 patients with PHACE syndrome, to which we added ten cases of our own. The Dandy-Walker syndrome is the most common CNS abnormality reported in association with PHACE syndrome and was seen in 48 (81 %) patients. Arterial malformations were found in 13 (22 %) cases; only 11 patients (19 %) had structural arterial abnormalities without associated Dandy-Walker complex. As published, about one third of patients (31 %) had further ophthalmologic abnormalities, and cardiac anomalies, including coarctation of the aorta. Subglottic hemangiomas were seen in 4 (7 %) patients and ventral developmental defects also in 3 cases. In seven of 59 patients (12 %) with PHACE syndrome, intracranial hemangiomas were present. This study demonstrates that among other CNS abnormalities, special attention should be given to intracranial hemangiomas which seems to be a peculiar phenotype of PHACE syndrome. We therefore suggest that a sixth criterion should be added to the five minimal inclusion criteria for PHACE syndrome. The inclusion criteria would then be: arterial abnormalities or/and intracranial hemangiomas. On the basis of our experience with our patients and with those previously reported, we stress the importance of using contrast-enhanced imaging to detect intracranial lesions.
Kemp, Stephen F; Alter, Craig A; Dana, Ken; Baptista, Joyce; Blethen, Sandra L
2002-05-01
The primary use of magnetic resonance imaging (MRI) in the evaluation of children with short stature (SS) is to discover lesions in the central nervous system (CNS), particularly tumors that may require intervention. MRI has a secondary role in identifying structural abnormalities responsible for growth hormone deficiency (GHD). We examined data from the National Cooperative Growth Study (NCGS) Substudy 8 to determine how American physicians are using MRI in evaluating children with SS. Of the 21,738 short children enrolled in NCGS, 5% underwent MRI during their follow-up. Children who had GH stimulation testing were more likely to have had an MRI than those in whom no GH stimulation test was performed (19% vs 2%, p <0.0001). Moreover, children diagnosed with severe GHD (maximum GH <5 ng/ml) were more likely to have an abnormal finding on MRI. Of these patients, 27% demonstrated an abnormality as compared to 12% and 12.5% in patients with partial GHD and normal GH stimulation test results (>10 ng/ml), respectively. Abnormalities unrelated to the hypothalamus or pituitary represented 30% of these findings, while disorders in pituitary anatomy, including pituitary hypoplasia, pituitary stalk interruption, and ectopic posterior pituitary, represented an additional 30% of abnormal MRI examinations. CNS tumors comprised 23% of abnormal findings in these patients. We conclude that MRI provides significant value in the evaluation of children with SS, by identifying CNS tumors associated with growth failure as well as anatomical abnormalities of the pituitary. These findings are useful in confirming the diagnosis of GHD in children and identifying potential candidates for continued GH replacement in adulthood.
Role of the blood-brain barrier in multiple sclerosis.
Ortiz, Genaro Gabriel; Pacheco-Moisés, Fermín Paul; Macías-Islas, Miguel Ángel; Flores-Alvarado, Luis Javier; Mireles-Ramírez, Mario A; González-Renovato, Erika Daniela; Hernández-Navarro, Vanessa Elizabeth; Sánchez-López, Angélica Lizeth; Alatorre-Jiménez, Moisés Alejandro
2014-11-01
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system associated with demyelination and axonal loss eventually leading to neurodegeneration. MS exhibits many of the hallmarks of an inflammatory autoimmune disorder including breakdown of the blood-brain barrier (BBB). The BBB is a complex organization of cerebral endothelial cells, pericytes and their basal lamina, which are surrounded and supported by astrocytes and perivascular macrophages. In pathological conditions, lymphocytes activated in the periphery infiltrate the central nervous system to trigger a local immune response that ultimately damages myelin and axons. Cytotoxic factors including pro-inflammatory cytokines, proteases, and reactive oxygen and nitrogen species accumulate and may contribute to myelin destruction. Dysregulation of the BBB and transendothelial migration of activated leukocytes are among the earliest cerebrovascular abnormalities seen in MS brains and parallel the release of inflammatory cytokines. In this review we establish the importance of the role of the BBB in MS. Improvements in our understanding of molecular mechanism of BBB functioning in physiological and pathological conditions could lead to improvement in the quality of life of MS patients. Copyright © 2015 IMSS. Published by Elsevier Inc. All rights reserved.
Inflammation and Neuropeptides: The Connection in Diabetic Wound Healing
Pradhan, Leena; Nabzdyk, Christoph; Andersen, Nicholas D; LoGerfo, Frank W; Veves, Aristidis
2013-01-01
This article provides a broad overview of the interaction between neuropeptides and inflammatory mediators as it pertains to diabetic wound healing. Abnormal wound healing is a major complication of both type I and type II diabetes and is the most frequent cause of non-traumatic lower limb amputation. Wound healing requires the orchestrated integration of complex biological and molecular events. Inflammation, proliferation and migration of cells followed by angiogenesis and re-epithelization are essential phases of wound healing. The link between wound healing and the nervous system is clinically apparent as peripheral neuropathy is reported in 30–50% of diabetic patients and is the most common and sensitive predictor of foot ulceration. The bidirectional connection between the nervous and the immune systems and the role it plays in wound healing has emerged as one of the focal features of the wound healing dogma. The mediators of this connection include neuropeptides and the cytokines released from different cells including immune and cutaneous cells. Therefore, to develop successful wound healing therapies, it is vital to understand in depth the signaling pathways in the neuro-immune axis and their implication in diabetic wound healing. PMID:19138453
Sun, Liting; Gooding, Hayley L; Brunton, Paula J; Russell, John A; Mitchell, Rory; Fleetwood-Walker, Sue
2013-11-01
Adverse events at critical stages of development can lead to lasting dysfunction in the central nervous system (CNS). To seek potential underlying changes in synaptic function, we used a newly developed protocol to measure alterations in receptor-mediated Ca(2+) fluorescence responses of synaptoneurosomes, freshly isolated from selected regions of the CNS concerned with emotionality and pain processing. We compared adult male controls and offspring of rats exposed to social stress in late pregnancy (prenatal stress, PS), which showed programmed behavioural changes indicating anxiety, anhedonia and pain hypersensitivity. We found corresponding increases, in PS rats compared with normal controls, in responsiveness of synaptoneurosomes from frontal cortex to a glutamate receptor (GluR) agonist, and from spinal cord to activators of nociceptive afferents. Through a combined pharmacological and biochemical strategy, we found evidence for a role of phospholipase D1 (PLD1)-mediated signalling, that may involve 5-HT2A receptor (5-HT2AR) activation, at both levels of the nervous system. These changes might participate in underpinning the enduring alterations in behaviour induced by PS. Copyright © 2013 Elsevier Ltd. All rights reserved.
Zhang, Sanbing; Cui, Huixian; Wang, Lei; Kang, Lin; Huang, Guannan; Du, Juan; Li, Sha; Tanaka, Hideaki; Su, Yuhong
2016-07-01
The appropriate projection of axons within the nervous system is a crucial component of the establishment of neural circuitry. Draxin is a repulsive axon guidance protein. Draxin has important functions in the guidance of three commissures in the central nervous system and in the migration of neural crest cells and dI3 interneurons in the chick spinal cord. Here, we report that the distribution of the draxin protein and the location of 23C10-positive areas have a strong temporal and spatial correlation. The overexpression of draxin, especially transmembrane draxin, caused 23C10-positive axon bundles to misproject in the dorsal hindbrain. In addition, the overexpression of transmembrane draxin caused abnormal formation of the ganglion crest of the IX and X cranial nerves, misprojection of some anti-human natural killer-1 (HNK-1)-stained structures in the dorsal roof of the hindbrain, and a simultaneous reduction in the efferent nerves of some motoneuron axons inside the hindbrain. Our data reveal that draxin might be involved in the fascicular projection of cranial nerves in the hindbrain. © 2016 The Histochemical Society.
BmRobo1a and BmRobo1b control axon repulsion in the silkworm Bombyx mori.
Li, Xiao-Tong; Yu, Qi; Zhou, Qi-Sheng; Zhao, Xiao; Liu, Zhao-Yang; Cui, Wei-Zheng; Liu, Qing-Xin
2016-02-15
The development of the nervous system is based on the growth and connection of axons, and axon guidance molecules are the dominant regulators during this course. Robo, as the receptor of axon guidance molecule Slit, plays a key role as a conserved repellent cue for axon guidance during the development of the central nervous system. However, the function of Robo in the silkworm Bombyx mori is unknown. In this study, we cloned two novel robo genes in B. mori (Bmrobo1a and Bmrobo1b). BmRobo1a and BmRobo1b lack an Ig and a FNIII domain in the extracellular region and the CC0 and CC2 motifs in the intracellular region. BmRobo1a and BmRobo1b were colocalized with BmSlit in the neuropil. Knock-down of Bmrobo1a and Bmrobo1b by RNA interference (RNAi) resulted in abnormal development of axons. Our results suggest that BmRobo1a and BmRobo1b have repulsive function in axon guidance, even though their structures are different from Robo1 of other species. Copyright © 2015 Elsevier B.V. All rights reserved.
The ubiquitin-proteasome system in spongiform degenerative disorders
Whatley, Brandi R.; Li, Lian; Chin, Lih-Shen
2008-01-01
Summary Spongiform degeneration is characterized by vacuolation in nervous tissue accompanied by neuronal death and gliosis. Although spongiform degeneration is a hallmark of prion diseases, this pathology is also present in the brains of patients suffering from Alzheimer's disease, diffuse Lewy body disease, human immunodeficiency virus (HIV) infection, and Canavan's spongiform leukodystrophy. The shared outcome of spongiform degeneration in these diverse diseases suggests that common cellular mechanisms must underlie the processes of spongiform change and neurodegeneration in the central nervous system. Immunohistochemical analysis of brain tissues reveals increased ubiquitin immunoreactivity in and around areas of spongiform change, suggesting the involvement of ubiquitin-proteasome system dysfunction in the pathogenesis of spongiform neurodegeneration. The link between aberrant ubiquitination and spongiform neurodegeneration has been strengthened by the discovery that a null mutation in the E3 ubiquitin-protein ligase mahogunin ring finger-1 (Mgrn1) causes an autosomal recessively inherited form of spongiform neurodegeneration in animals. Recent studies have begun to suggest that abnormal ubiquitination may alter intracellular signaling and cell functions via proteasome-dependent and proteasome-independent mechanisms, leading to spongiform degeneration and neuronal cell death. Further elucidation of the pathogenic pathways involved in spongiform neurodegeneration should facilitate the development of novel rational therapies for treating prion diseases, HIV infection, and other spongiform degenerative disorders. PMID:18790052
Iliescu, D; Comănescu, A; Antsaklis, P; Tudorache, Stefania; Ghiluşi, Mirela; Comănescu, Violeta; Paulescu, Daniela; Ceauşu, Iuliana; Antsaklis, A; Novac, Liliana; Cernea, N
2011-01-01
Morphological investigation of the central nervous system (CNS) in fetuses with positive markers for open spina bifida (OSB) detection, visualized by ultrasound during the first trimester of pregnancy. Data from fetuses that underwent routine first trimester ultrasound scan in our center during September 2007-March 2011 and presented abnormal aspects of the fourth ventricle, also referred as intracranial translucency (IT), provided the morphological support to evaluate CNS features. A neuro-histological study of posterior cerebral fossa illustrated anatomical features of the structures involved in the sonographic first trimester detection of neural tube defects. Abnormal IT aspects were found in OSB cases examined in the first trimester, but also in other severe cerebral abnormalities. Brain stem antero-posterior diameter (BS) and brain stem to occipital bone (BSOB) ratio may be more specific for OSB detection. Correlations between histological aspects of posterior brain fossa and ultrasound standard assessment have been made; highlighting the anatomical features involved by the new techniques developed for OSB early detection. Preliminary results show that modern sonographic protocols are capable to detect abnormalities in the morphometry of the posterior brain. First trimester fourth ventricle abnormalities should be followed by careful CNS evaluation because are likely to appear in OSB affected fetuses, but also in other CNS severe anomalies; in such cases, normal BS and BSOB ratio may serve as indirect argument for spine integrity, if specificity is confirmed in large series of fetuses.
A study on causes and types of abnormal increase in infants' head circumference in kashan/iran.
Talebian, Ahmad; Soltani, Babak; Moravveji, Alireza; Salamati, Ladan; Davami, Majid
2013-01-01
Head circumference is a valuable index of brain growth and its disturbances can indicate different disorders of nervous system. Abnormal increased head circumference (macrocephaly) is common and observed in about 2% of infants. In this study, the causes and clinical types of abnormal increase in infants' head circumference were investigated in Kashan, Iran. This cross-sectional study was performed on 90 infants less than 2 years of age with abnormal increase in head circumference in Kashan, during 2009- 2011. The data were collected by history taking, physical examination, growth chart, and imaging. 65 (72%) cases out of 90 infants were male and 25 ( 28%) cases were female. Fifty-three (58.8%) cases had familial megalencephaly, 30 (33.4%) had hydrocephalus, and other causes were observed in 7 (7.8%) cases. Eighty-three percent of Infants with familial megalencephaly and 50% with hydrocephalus had normal fontanels. In 90.6% of cases with familial megalencephaly, family history for large head was positive. Motor development was normal in 100% of cases with familial megalencephaly and 76.7% of hydrocephalic infants. Familial megalencephaly was the most common cause of macrocephaly in the studied infants, and most of them had normal physical examination and development, so, parental head circumferences should be considered in the interpretation of infant's head circumference and in cases of abnormal physical examination or development, other diagnostic modalities, including brain imaging should be done.
van Eijk, R V; Wolters, E C; Tutuarima, J A; Hische, E A; Bos, J D; van Trotsenburg, L; de Koning, G A; van der Helm, H J
1987-01-01
Neurological examination and investigation of the cerebrospinal fluid (CSF) was performed on 24 patients with early and 180 patients with late syphilis. In 21 (12%) patients with late syphilis positive CSF treponemal test results and neurological deficits suggestive of symptomatic neurosyphilis were found. Concomitantly all but three patients with neurosyphilis showed one or more of the following abnormal CSF variables: CSF concentration of albumin X 10(3)/serum concentration (albumin ratio) greater than or equal to 7.9; mononuclear cells greater than 5 microliters: ratio of CSF to serum IgG concentrations/ratio of CSF to serum albumin concentrations (IgG index) greater than or equal to 0.7 or of IgM/albumin (IgM index) greater than or equal to 0.1; or oligoclonal CSF immunoglobulins. In 20 (95%) patients with neurosyphilis evidence of the production of treponemal antibodies within the central nervous system (CNS) was shown. Ten (48%) patients with neurosyphilis had been treated previously for late syphilis. These observations emphasise the need to screen for neurosyphilis in patients with late syphilis. Intrathecal production of treponemal antibodies was detected in six (25%) patients with early and 44 (28%) with late syphilis who did not show any neurological deficit. Intrathecal production of treponemal antibodies indicating that the CNS was affected led us to suspect asymptomatic neurosyphilis in these patients. Seventeen (11%) patients with late syphilis but no neurosyphilis and only one (4%) with early syphilis showed additional abnormal CSF variables. Surprisingly, six out of 22 patients with treated early and 20 out of 68 patients with treated late syphilis showed evidence of treponema antibody production within the CNS. We do not know whether these findings indicate that the CNS was affected because of inadequate treatment or merely reflect persistent synthesis of treponemal antibodies associated with cured infection. In one (4%) patient with early and in 21 (13%) with late syphilis but no neurosyphilis abnormal CSF variables in the absence of positive CSF treponemal test results were observed, which excluded syphilitic inflammation of the CNS. PMID:3294570
Crumbs 2 prevents cortical abnormalities in mouse dorsal telencephalon.
Dudok, Jacobus J; Murtaza, Mariyam; Henrique Alves, C; Rashbass, Pen; Wijnholds, Jan
2016-07-01
The formation of a functionally integrated nervous system is dependent on a highly organized sequence of events that includes timely division and differentiation of progenitors. Several apical polarity proteins have been shown to play crucial roles during neurogenesis, however, the role of Crumbs 2 (CRB2) in cortical development has not previously been reported. Here, we show that conditional ablation of Crb2 in the murine dorsal telencephalon leads to defects in the maintenance of the apical complex. Furthermore, within the mutant dorsal telencephalon there is premature expression of differentiation proteins. We examined the physiological function of Crb2 on wild type genetic background as well as on background lacking Crb1. Telencephalon lacking CRB2 resulted in reduced levels of PALS1 and CRB3 from the apical complex, an increased number of mitotic cells and expanded neuronal domain. These defects are transient and therefore only result in rather mild cortical abnormalities. We show that CRB2 is required for maintenance of the apical polarity complex during development of the cortex and regulation of cell division, and that loss of CRB2 results in cortical abnormalities. Copyright © 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Structural brain abnormalities in Cushing's syndrome.
Bauduin, Stephanie E E C; van der Wee, Nic J A; van der Werff, Steven J A
2018-05-08
Alongside various physical symptoms, patients with Cushing's disease and Cushing's syndrome display a wide variety of neuropsychiatric and cognitive symptoms, which are indicative of involvement of the central nervous system. The aim of this review is to provide an overview of the structural brain abnormalities that are associated with Cushing's disease and Cushing's syndrome and their relation to behavioral and cognitive symptomatology. In this review, we discuss the gray matter structural abnormalities found in patients with active Cushing's disease and Cushing's syndrome, the reversibility and persistence of these changes and the white matter structural changes related to Cushing's syndrome. Recent findings are of particular interest because they provide more detailed information on localization of the structural changes as well as possible insights into the underlying biological processes. Active Cushing's disease and Cushing's syndrome is related to volume reductions of the hippocampus and in a prefrontal region involving the anterior cingulate cortex (ACC) and medial frontal gyrus (MFG). Whilst there are indications that the reductions in hippocampal volume are partially reversible, the changes in the ACC and MFG appear to be more persistent. In contrast to the volumetric findings, changes in white matter connectivity are typically widespread involving multiple tracts.
An electrophysiological follow up of patients with n-hexane polyneuropathy.
Chang, Y C
1991-01-01
Electroneurographic (ENeG) and evoked potential (EP) studies were regularly performed on 11 printing workers with n-hexane polyneuropathy after cessation of exposure. At the initial examination, the ENeG studies simulated a demyelinative process. Further slowing of nerve conduction velocity, or further decreasing of action potential amplitude, or both in the follow up ENeG study were found in about half the patients. The motor distal latency did not worsen. Nerve conduction returned to normal earlier in the sensory than in the motor nerves. After the patients had regained full motor capability, conduction velocities in motor nerves were still significantly slowed. These ENeG characteristics correlate with the pathological and pathophysiological changes in experimental hexa-carbon neuropathies. The initial findings from the EP studies indicated a conduction abnormality in the central nervous system (CNS). Delayed worsening occurred in the amplitude of visual EPs in three patients. On serial follow up, the interpeak latency and interpeak amplitude of visual EPs improved little. Residual abnormalities were also found in the interpeak latency of auditory EPs in the brainstem and in the absolute latency of scalp somatosensory EPs from the peroneal nerve. Astroglial proliferation in the CNS probably impedes recovery of the abnormalities in EP. PMID:1993154
Pathogenic implications of iron accumulation in multiple sclerosis
Williams, Rachel; Buchheit, Cassandra L.; Berman, Nancy E. J.; LeVine, Steven M.
2011-01-01
Iron, an essential element used for a multitude of biochemical reactions, abnormally accumulates in the central nervous system of patients with multiple sclerosis (MS). The mechanisms of abnormal iron deposition in MS are not fully understood, nor do we know whether these deposits have adverse consequences, i.e., contribute to pathogenesis. With some exceptions, excess levels of iron are represented concomitantly in multiple deep gray matter structures often with bilateral representation, while in white matter pathological iron deposits are usually located at sites of inflammation that are associated with veins. These distinct spatial patterns suggest disparate mechanisms of iron accumulation between these regions. Iron has been postulated to promote disease activity in MS by various means: 1) iron can amplify the activated state of microglia resulting in the increased production of proinflammatory mediators; 2) excess intracellular iron deposits could promote mitochondria dysfunction; and 3) improperly managed iron could catalyze the production of damaging reactive oxygen species. The pathological consequences of abnormal iron deposits may be dependent on the affected brain region and/or accumulation process. Here we review putative mechanisms of enhanced iron uptake in MS and address the likely roles of iron in the pathogenesis of this disease. PMID:22004421
Experimental skeletal teratogenesis in the frog tadpole.
Roth, M
1978-01-01
Severe deformities of the hind limb skeleton such as shortening, abnormal curvatures, terminal expansions, curled toes and joint dislocations were produced in frog tadpoles by the osteolathyrogenic principle. Gross-anatomical features of the deformed skeleton and of the respective nervous trunks were studied in specimens cleared according to WILLIAMS' technique. The findings support the previously suggested osteo-neural concept: Experimental skeletal deformities represent adaptations of the bone growth at the organ level to the inadequate extensive growth of the nervous trunks. The neural growth appears to be more severely affected by the teratogen than the bone growth proper.
Shoemaker, Ritchie C; House, Dennis; Ryan, James C
2014-01-01
Executive cognitive and neurologic abnormalities are commonly seen in patients with a chronic inflammatory response syndrome (CIRS) acquired following exposure to the interior environment of water-damaged buildings (WDB), but a clear delineation of the physiologic or structural basis for these abnormalities has not been defined. Symptoms of affected patients routinely include headache, difficulty with recent memory, concentration, word finding, numbness, tingling, metallic taste and vertigo. Additionally, persistent proteomic abnormalities in inflammatory parameters that can alter permeability of the blood-brain barrier, such as C4a, TGFB1, MMP9 and VEGF, are notably present in cases of CIRS-WDB compared to controls, suggesting a consequent inflammatory injury to the central nervous system. Findings of gliotic areas in MRI scans in over 45% of CIRS-WDB cases compared to 5% of controls, as well as elevated lactate and depressed ratios of glutamate to glutamine, are regularly seen in MR spectroscopy of cases. This study used the volumetric software program NeuroQuant® (NQ) to determine specific brain structure volumes in consecutive patients (N=17) seen in a medical clinic specializing in inflammatory illness. Each of these patients presented for evaluation of an illness thought to be associated with exposure to WDB, and received an MRI that was evaluated by NQ. When compared to those of a medical control group (N=18), statistically significant differences in brain structure proportions were seen for patients in both hemispheres of two of the eleven brain regions analyzed; atrophy of the caudate nucleus and enlargement of the pallidum. In addition, the left amygdala and right forebrain were also enlarged. These volumetric abnormalities, in conjunction with concurrent abnormalities in inflammatory markers, suggest a model for structural brain injury in "mold illness" based on increased permeability of the blood-brain barrier due to chronic, systemic inflammation. Copyright © 2014 Elsevier Inc. All rights reserved.
Severe neonatal cytomegalovirus infection: about a case
El Hasbaoui, Brahim; Bousselamti, Amal; Redouani, Mohammed Amine; Barkat, Amina
2017-01-01
Maternofoetal infection with Cytomegalovirus (CMV) is the most common congenital infection and a leading cause of mental retardation and sensori-neural hearing loss. Population-based studies indicate that at least 0.5% of all infants born alive have CMV of whom approximately 10% have clinically evident symptomsat birth. The Justification of systematic screening for foetal CMV infection is still controversial and is not recommended in most developed countries. This is mainly justified by the paucity of antenatal prognostic factors and the lack of established intrauterine treatment when foetal infection has been diagnosed. In case of congenital CMV infection, infants can be symptomatic or asymptomatic at birth. Mortality for such infants can reach 30%, and survivors can have mental retardation, sensorineural hearing loss, chorioretinitis, and other significant medical problems. A newborn symptomatic is defined by the existence of clinical and / or biological signs and / or neonatal imaging, the most frequent clinical signs are: hepatosplenomegaly (60%), microcephaly (53%), jaundice (67%), petechiae (76%), at least one neurological abnormality (68%). The frequency of biological abnormalities is as follows: increase in transaminases (83%), thrombocytopenia (77%), hyperbilirubinemia (69%), haemolysis (51%), hyperproteinorrachy (46%). The abnormalities of neonatal imaging are present in 70% of symptomatic newborns; intracerebral calcifications are the most frequent abnormalities. We report a case of newborn who presented a congenital infection by CMV, evoked on the intrauterine growth retardation, organs of the reticulo endothelial and haematological system were reached while nervous system was spared, and CMV PCR was very positive. indicating an antiviral treatment for 6weeks based on ganciclovir. PMID:28904689
Domínguez, R O; Pagano, M A; Marschoff, E R; González, S E; Repetto, M G; Serra, J A
2014-01-01
Epidemiological studies have demonstrated that patients with diabetes mellitus have an increased risk of developing Alzheimer disease, but the relationship between the 2 entities is not clear. Both diseases exhibit similar metabolic abnormalities: disordered glucose metabolism, abnormal insulin receptor signalling and insulin resistance, oxidative stress, and structural abnormalities in proteins and β-amyloid deposits. Different hypotheses have emerged from experimental work in the last two decades. One of the most comprehensive relates the microvascular damage in diabetic polyneuritis with the central nervous system changes occurring in Alzheimer disease. Another hypothesis considers that cognitive impairment in both diabetes and Alzheimer disease is linked to a state of systemic oxidative stress. Recently, attenuation of cognitive impairment and normalisation of values in biochemical markers for oxidative stress were found in patients with Alzheimer disease and concomitant diabetes. Antidiabetic drugs may have a beneficial effect on glycolysis and its end products, and on other metabolic alterations. Diabetic patients are at increased risk for developing Alzheimer disease, but paradoxically, their biochemical alterations and cognitive impairment are less pronounced than in groups of dementia patients without diabetes. A deeper understanding of interactions between the pathogenic processes of both entities may lead to new therapeutic strategies that would slow or halt the progression of impairment. Copyright © 2013 Sociedad Española de Neurología. Published by Elsevier Espana. All rights reserved.
Vasospasm is a significant factor in cyclosporine-induced neurotoxicity: case report.
Braakman, Hilde M H; Lodder, Jan; Postma, Alida A; Span, Lambert F R; Mess, Werner H
2010-05-11
The aetiology of central nervous system lesions observed in cerebral cyclosporine neurotoxicity remains controversial. We report a 48-year-old woman with a non-severe aplastic anaemia who presented with stroke-like episodes while on cyclosporine treatment.Transcranial Doppler ultrasound revealed severely elevated flow velocities in several cerebral vessels, consistent with vasospasm. Immediately after reducing the cyclosporine dose, the stroke-like episodes disappeared. Only after cyclosporine withdrawal the transcranial Doppler ultrasound abnormalities fully resolved. This case demonstrates a significant role of vasospasm in the pathway of cyclosporine-induced neurotoxicity. Transcranial Doppler ultrasound is an effective tool for the diagnosis and follow-up of cyclosporine-induced vasospasm.
Role of mTOR Complexes in Neurogenesis.
LiCausi, Francesca; Hartman, Nathaniel W
2018-05-22
Dysregulation of neural stem cells (NSCs) is associated with several neurodevelopmental disorders, including epilepsy and autism spectrum disorder. The mammalian target of rapamycin (mTOR) integrates the intracellular signals to control cell growth, nutrient metabolism, and protein translation. mTOR regulates many functions in the development of the brain, such as proliferation, differentiation, migration, and dendrite formation. In addition, mTOR is important in synaptic formation and plasticity. Abnormalities in mTOR activity is linked with severe deficits in nervous system development, including tumors, autism, and seizures. Dissecting the wide-ranging roles of mTOR activity during critical periods in development will greatly expand our understanding of neurogenesis.
Epidermal nevus syndrome and didymosis aplasticosebacea.
Demerdjieva, Zdravka; Kavaklieva, Svetlana; Tsankov, Nikolay
2007-01-01
The epidermal nevus syndrome is a disease complex consisting of the association of an epidermal nevus with various developmental abnormalities of the skin, eyes, nervous, skeletal, cardiovascular, and urogenital systems. The epidermal nevi are classified according to their predominant component; nevus sebaceus (sebaceous glands), nevus comedonicus (hair follicles), and nevus verrucosus (keratinocytes). We report a neonate who presented with a nevus sebaceus on the scalp and face as well as a coloboma and dermoid on his left eye. Within the sebaceous nevus on the scalp, circumscribed lesions of aplasia cutis congenita were detected, which is consistent with the recently proposed term in the literature didymosis aplasticosebacea.
NASA Astrophysics Data System (ADS)
Choo, Lin-P'ing; Jackson, Michael; Halliday, William C.; Mantsch, Henry H.
1994-01-01
The abnormal abundance of (beta) -amyloid plaques and neurofibrillary tangles are the hallmark of Alzheimer's disease (AD). Human central nervous system (CNS) grey matter was probed for characteristics arising from these pathological features. In AD but not normal grey matter, an IR band at 1615 cm-1 is seen, characteristic of a protein in an aggregated state. We speculate that this band arises from (beta) A4-amyloid protein. AD, and 18q- grey matter spectra show increased intensity of phosphate bands in accordance with known hyperphosphorylation of proteins found in neurofibrillary tangles. These spectral features may be useful in the diagnosis of AD.
Outpatient anesthesia for oral surgery in a juvenile with Leigh disease.
Ellis, Zachary; Bloomer, Charles
2005-01-01
We report a case of anesthesia for elective outpatient third molar extraction in a juvenile with Leigh disease, a progressive neurodegenerative disorder related to respiratory chain deficiency. This syndrome usually presents in infancy and is characterized by nervous system dysfunction and respiratory abnormalities. Anesthesia has been reported to aggravate respiratory symptoms and frequently precipitate respiratory failure. Preoperative swallowing difficulty or respiratory symptoms should be carefully diagnosed, because they can be a warning sign of postoperative complications or mortality. Adverse effects of anesthesia may quickly lead into metabolic acidosis. Anesthetics should be carefully chosen that do not interfere with mitochondrial respiration, which can lead to lactic acidosis.
NASA Technical Reports Server (NTRS)
Nowakowski, R. S.; Hayes, N. L.
1999-01-01
The basic principles of the development of the central nervous system (CNS) are reviewed, and their implications for both normal and abnormal development of the brain are discussed. The goals of this review are (a) to provide a set of concepts to aid in understanding the variety of complex processes that occur during CNS development, (b) to illustrate how these concepts contribute to our knowledge of the normal anatomy of the adult brain, and (c) to provide a basis for understanding how modifications of normal developmental processes by traumatic injury, by environmental or experiential influences, or by genetic variations may lead to modifications in the resultant structure and function of the adult CNS.
Metabolic consequences of stress during childhood and adolescence.
Pervanidou, Panagiota; Chrousos, George P
2012-05-01
Stress, that is, the state of threatened or perceived as threatened homeostasis, is associated with activation of the stress system, mainly comprised by the hypothalamic-pituitary-adrenal axis and the arousal/sympathetic nervous systems. The stress system normally functions in a circadian manner and interacts with other systems to regulate a variety of behavioral, endocrine, metabolic, immune, and cardiovascular functions. However, the experience of acute intense physical or emotional stress, as well as of chronic stress, may lead to the development of or may exacerbate several psychologic and somatic conditions, including anxiety disorders, depression, obesity, and the metabolic syndrome. In chronically stressed individuals, both behavioral and neuroendocrine mechanisms promote obesity and metabolic abnormalities: unhealthy lifestyles in conjunction with dysregulation of the stress system and increased secretion of cortisol, catecholamines, and interleukin-6, with concurrently elevated insulin concentrations, lead to development of central obesity, insulin resistance, and the metabolic syndrome. Fetal life, childhood, and adolescence are particularly vulnerable periods of life to the effects of intense acute or chronic stress. Similarly, these life stages are crucial for the later development of behavioral, metabolic, and immune abnormalities. Developing brain structures and functions related to stress regulation, such as the amygdala, the hippocampus, and the mesocorticolimbic system, are more vulnerable to the effects of stress compared with mature structures in adults. Moreover, chronic alterations in cortisol secretion in children may affect the timing of puberty, final stature, and body composition, as well as cause early-onset obesity, metabolic syndrome, and type 2 diabetes mellitus. The understanding of stress mechanisms leading to metabolic abnormalities in early life may lead to more effective prevention and intervention strategies of obesity-related health problems. Copyright © 2012 Elsevier Inc. All rights reserved.
Abnormal motor phenotype at adult stages in mice lacking type 2 deiodinase.
Bárez-López, Soledad; Bosch-García, Daniel; Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana
2014-01-01
Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3'-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders.
[Neurological manifestations of Whipple disease].
Vital Durand, D; Gérard, A; Rousset, H
2002-10-01
Whipple disease is an uncommon chronic bacterial infection due to Tropheryma whipplei. Clinical manifestations are protean (joint pain, fever, weight loss, abdominal pain, lymphadenopathies), and the diagnosis is often delayed. Although previously considered a late manifestation of Whipple disease, neurological involvement is now frequently the initial clinical manifestation and represents the greatest risk for long-term disability. All patients should be treated and monitored as if they had central nervous system disease even if they are asymptomatic. Neurological manifestations include dementia (56 percent), abnormalities of eye movements (33p. cent), involuntary movements (28 percent), seizures, hypothalamic dysfunction, myelopathy, ataxia and psychiatric manifestations. Uveitis, retinitis, optic neuritis and papilloedema may be found. 80 percent of the reported cases of neuro-Whipple had associated systemic symptoms or signs but many patients are presenting without concurrent intestinal manifestation. Thus, the disease may remain undiagnosed or misdiagnosed, as rheumatoid arthritis or sarcoidosis. Traditionally, the diagnostic procedure of choice is biopsy of the duodenal mucosa by demonstrating PAS-positive foamy macrophages. However, not all cases have small bowel infiltration and tissue obtained from sites clinically affected may be helpful. CT and MR images of the central nervous system are normal or not specific: atrophic changes, mass lesions, focal abnormalities and hydrocephalus. The application of a PCR assay against Tropheryma whipplei has transformed the diagnosis. Positive results have been obtained from several tissues and from CSF and PCR is more sensitive than other techniques. All patients must be treated with antibiotics which cross the blood-brain barrier. Most agree that initial treatment with a combination of parenteral penicillin and streptomycin for at least 14 days is appropriate, thereafter cotrimoxazole orally 3 times a day for at least one and probably for two years. Third generation cephalosporins, rifampicin and chloramphenicol have been used successfully. PCR is recognized to be a useful tool for monitoring progress but it is sometimes difficult to reverse established neurological defects.
Wafa, Abdulsamad; As'sad, Manar; Liehr, Thomas; Aljapawe, Abdulmunim; Al Achkar, Walid
2017-04-07
The translocation t(1;19)(q23;p13), which results in the TCF3-PBX1 chimeric gene, is one of the most frequent rearrangements observed in B cell acute lymphoblastic leukemia. It appears in both adult and pediatric patients with B cell acute lymphoblastic leukemia at an overall frequency of 3 to 5%. Most cases of pre-B cell acute lymphoblastic leukemia carrying the translocation t(1;19) have a typical immunophenotype with homogeneous expression of CD19, CD10, CD9, complete absence of CD34, and at least diminished CD20. Moreover, the translocation t(1;19) correlates with known clinical high risk factors, such as elevated white blood cell count, high serum lactate dehydrogenase levels, and central nervous system involvement; early reports indicated that patients with translocation t(1;19) had a poor outcome under standard treatment. We report the case of a 15-year-old Syrian boy with pre-B cell acute lymphoblastic leukemia with abnormal karyotype with a der(19)t(1;19)(q21.1;p13.3) and two yet unreported chromosomal aberrations: an interstitial deletion 6q12 to 6q26 and a der(13)t(1;13)(q21.1;p13). According to the literature, cases who are translocation t(1;19)-positive have a significantly higher incidence of central nervous system relapse than patients with acute lymphoblastic leukemia without the translocation. Of interest, central nervous system involvement was also seen in our patient. To the best of our knowledge, this is the first case of childhood pre-B cell acute lymphoblastic leukemia with an unbalanced translocation t(1;19) with two additional chromosomal aberrations, del(6)(q12q26) and t(1;13)(q21.3;p13), which seem to be recurrent and could influence clinical outcome. Also the present case confirms the impact of the translocation t(1;19) on central nervous system relapse, which should be studied for underlying mechanisms in future.
Neuropathogenesis of persistent infection with Borna disease virus.
Honda, Tomoyuki
2015-01-01
Borna disease virus (BDV), belonging to the non-segmented, negative-stranded RNA viruses, persistently infects the central nervous system of many mammals. Neonatal BDV infection in rodent models induces neurodevelopmental disturbance without overt inflammatory responses, resulting in a wide range of neurobehavioral abnormalities, such as anxiety, abnormal play behaviors, and cognitive deficits, resembling those of autism patients. Therefore, studies of BDV could provide a valuable model to investigate neuropathogenesis of neurodevelopmental disorders. However, the detailed neuropathogenesis of BDV has not been revealed. Here, we proposed two novel mechanisms that may contribute to BDV neuropathology. The first mechanism is abnormal IGF signaling. Using transgenic mice expressing BDV P protein in glial cells (P-Tg) that show neurobehavioral abnormalities resembling those in BDV-infected animals, we found that the upregulation of insulin-like growth factor (IGF) binding protein 3 in the astrocytes disturbs the IGF signaling and induces the Purkinje cell loss in BDV infection. The other is the integration of BDV sequences into the host genome. We recently found that BDV mRNAs are reverse-transcribed and integrated into the genome of infected cells. BDV integrants have the potential to produce their translated products or piRNAs, suggesting that BDV might exhibit the pathogenicity thorough these molecules. We also demonstrated that BDV integrants affect neighboring gene expression. Collectively, BDV integrants may alter transcriptome of infected cells, affecting BDV neuropathology.
Nicoś, M; Krawczyk, P; Wojas-Krawczyk, K; Bożyk, A; Jarosz, B; Sawicki, M; Trojanowski, T; Milanowski, J
2017-12-01
RT-PCR technique has showed a promising value as pre-screening method for detection of mRNA containing abnormal ALK sequences, but its sensitivity and specificity is still discussable. Previously, we determined the incidence of ALK rearrangement in CNS metastases of NSCLC using IHC and FISH methods. We evaluated ALK gene rearrangement using two-step RT-PCR method with EML4-ALK Fusion Gene Detection Kit (Entrogen, USA). The studied group included 145 patients (45 females, 100 males) with CNS metastases of NSCLC and was heterogeneous in terms of histology and smoking status. 21% of CNS metastases of NSCLC (30/145) showed presence of mRNA containing abnormal ALK sequences. FISH and IHC tests confirmed the presence of ALK gene rearrangement and expression of ALK abnormal protein in seven patients with positive result of RT-PCR analysis (4.8% of all patients, 20% of RT-PCR positive patients). RT-PCR method compared to FISH analysis achieved 100% of sensitivity and only 82.7% of specificity. IHC method compared to FISH method indicated 100% of sensitivity and 97.8% of specificity. In comparison to IHC, RT-PCR showed identical sensitivity with high number of false positive results. Utility of RT-PCR technique in screening of ALK abnormalities and in qualification patients for molecularly targeted therapies needs further validation.
77 FR 56133 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-09-12
... is the nervous system but effects on the nervous system were only observed at high doses. Nervous... cholinergic nervous system seen after repeated dosing. Typically, low to moderate levels of neonicotinoids... peripheral nervous system (PNS). High levels of neonicotinoids can over stimulate the PNS, maintaining cation...
Ichikawa, Tomonaga; Nakahata, Shingo; Tamura, Tomohiro; Manachai, Nawin; Morishita, Kazuhiro
2015-10-01
N-myc downstream-regulated gene 2 (NDRG2) is one of the important stress-inducible genes and plays a critical role in negatively regulating PI3K/AKT signaling during hypoxia and inflammation. Through recruitment of PP2A phosphatase, NDRG2 maintains the dephosphorylated status of PTEN to suppress excessive PI3K/AKT signaling, and loss of NDRG2 expression is frequently seen in various types of cancer with enhanced activation of PI3K/AKT signaling. Because NDRG2 is highly expressed in the nervous system, we investigated whether NDRG2 plays a functional role in the nervous system using Ndrg2-deficient mice. Ndrg2-deficient mice do not display any gross abnormalities in the nervous system, but they have a diminished behavioral response associated with anxiety. Ndrg2-deficient mice exhibited decreased immobility and increased head-dipping and rearing behavior in two behavioral models, indicating an improvement of emotional anxiety-like behavior. Moreover, treatment of wild-type mice with the antidepressant drug imipramine reduced the expression of Ndrg2 in the frontal cortex, which was due to the degradation of HIF-1α through reduced expression of HSP90 protein. Furthermore, we found that the down-regulation of Ndrg2 in Ndrg2-deficient mice and imipramine treatment improved mood behavior with enhanced phosphorylation of GSK3β through activation of PI3K/AKT signaling, suggesting that the expression level of NDRG2 has a causal influence on mood-related phenotypes. Collectively, these results suggest that NDRG2 may be a potential target for mood disorders such as depression and anxiety. Copyright © 2015 Elsevier Inc. All rights reserved.
Oka, Saori; Hirai, Jun; Yasukawa, Takashi; Nakahara, Yasuyuki; Inoue, Yoshihiro H
2015-08-01
The theory that accumulation of reactive oxygen species (ROS) in internal organs is a major promoter of aging has been considered negatively. However, it is still controversial whether overexpression of superoxide dismutases (SODs), which remove ROS, extends the lifespan in Drosophila adults. We examined whether ROS accumulation by depletion of Cu/Zn-SOD (SOD1) or Mn-SOD (SOD2) influenced age-related impairment of the nervous system and muscles in Drosophila. We confirmed the efficient depletion of Sod1 and Sod2 through RNAi and ROS accumulation by monitoring of ROS-inducible gene expression. Both RNAi flies displayed accelerated impairment of locomotor activity with age and shortened lifespan. Similarly, adults with nervous system-specific depletion of Sod1 or Sod2 also showed reduced lifespan. We then found an accelerated loss of dopaminergic neurons in the flies with suppressed SOD expression. A half-dose reduction of three pro-apoptotic genes resulted in a significant suppression of the neuronal loss, suggesting that apoptosis was involved in the neuronal loss caused by SOD silencing. In addition, depletion of Sod1 or Sod2 in musculature is also associated with enhancement of age-related locomotion impairment. In indirect flight muscles from SOD-depleted adults, abnormal protein aggregates containing poly-ubiquitin accumulated at an early adult stage and continued to increase as the flies aged. Most of these protein aggregates were observed between myofibril layers. Moreover, immuno-electron microscopy indicated that the aggregates were predominantly localized in damaged mitochondria. These findings suggest that muscular and neuronal ROS accumulation may have a significant effect on age-dependent impairment of the Drosophila adults.
Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance
Tischfield, Max A.; Baris, Hagit N.; Wu, Chen; Rudolph, Guenther; Van Maldergem, Lionel; He, Wei; Chan, Wai-Man; Andrews, Caroline; Demer, Joseph L.; Robertson, Richard L.; Mackey, David A.; Ruddle, Jonathan B.; Bird, Thomas D.; Gottlob, Irene; Pieh, Christina; Traboulsi, Elias I.; Pomeroy, Scott L.; Hunter, David G.; Soul, Janet S.; Newlin, Anna; Sabol, Louise J.; Doherty, Edward J.; de Uzcátegui, Clara E.; de Uzcátegui, Nicolas; Collins, Mary Louise Z.; Sener, Emin C.; Wabbels, Bettina; Hellebrand, Heide; Meitinger, Thomas; de Berardinis, Teresa; Magli, Adriano; Schiavi, Costantino; Pastore-Trossello, Marco; Koc, Feray; Wong, Agnes M.; Levin, Alex V.; Geraghty, Michael T.; Descartes, Maria; Flaherty, Maree; Jamieson, Robyn V.; Møller, H. U.; Meuthen, Ingo; Callen, David F.; Kerwin, Janet; Lindsay, Susan; Meindl, Alfons; Gupta, Mohan L.; Pellman, David; Engle, Elizabeth C.
2011-01-01
We report that eight heterozygous missense mutations in TUBB3, encoding the neuron-specific β-tubulin isotype III, result in a spectrum of human nervous system disorders we now call the TUBB3 syndromes. Each mutation causes the ocular motility disorder CFEOM3, whereas some also result in intellectual and behavioral impairments, facial paralysis, and/or later-onset axonal sensorimotor polyneuropathy. Neuroimaging reveals a spectrum of abnormalities including hypoplasia of oculomotor nerves, and dysgenesis of the corpus callosum, anterior commissure, and corticospinal tracts. A knock-in disease mouse model reveals axon guidance defects without evidence of cortical cell migration abnormalities. We show the disease-associated mutations can impair tubulin heterodimer formation in vitro, although folded mutant heterodimers can still polymerize into microtubules. Modeling each mutation in yeast tubulin demonstrates that all alter dynamic instability whereas a subset disrupts the interaction of microtubules with kinesin motors. These findings demonstrate normal TUBB3 is required for axon guidance and maintenance in mammals. PMID:20074521
Ciani, Lorenza; Patel, Anjla; Allen, Nicholas D.; ffrench-Constant, Charles
2003-01-01
While roles in adhesion and morphogenesis have been documented for classical cadherins, the nonclassical cadherins are much less well understood. Here we have examined the functions of the giant protocadherin FAT by generating a transgenic mouse lacking mFAT1. These mice exhibit perinatal lethality, most probably caused by loss of the renal glomerular slit junctions and fusion of glomerular epithelial cell processes (podocytes). In addition, some mFAT1−/− mice show defects in forebrain development (holoprosencephaly) and failure of eye development (anophthalmia). In contrast to Drosophila, where FAT acts as a tumor suppressor gene, we found no evidence for abnormalities of proliferation in two tissues (skin and central nervous system [CNS]) containing stem and precursor cell populations and in which FAT is expressed strongly. Our results confirm a necessary role for FAT1 in the modified adhesion junctions of the renal glomerular epithelial cell and reveal hitherto unsuspected roles for FAT1 in CNS development. PMID:12724416
Ohno, Ayami; Mori, Akira; Doi, Ryuichiro; Yonenaga, Yoshikuni; Asano, Noboru; Uemoto, Shinji
2010-09-01
Mitochondrial Myopathy, Encephalopathy, Lactic Acidosis, and Stroke-like syndrome (MELAS) is a rare, fetal disease caused by a mutation in mitochondrial DNA that leads to impaired oxidative metabolism in skeletal muscle, the central nervous system, and liver function. This report presents the case of a 50-year-old woman with biliary cystadenocarcinoma complicated by MELAS who underwent a successful left hemihepatectomy. In this case, the diagnostic key for the malignant tumor was an (18)F-fluorodeoxyglucose positron emission tomography study, which was useful even in a patient with MELAS, which causes abnormal glucose metabolism. The perioperative management of such patients includes special precautions to prevent lactic acidosis and deterioration of the reserved liver function after a hepatectomy, since the mitochondrial function in MELAS patients is abnormal. The patient in this report has remained free of liver dysfunctions and cancer recurrence for 2 years following the hepatectomy. This is the first report of a successful major hepatectomy for a patient with MELAS.
Urgency: the cornerstone symptom of overactive bladder.
Brubaker, Linda
2004-12-01
Urgency, defined as the compelling feeling of impending incontinence that is difficult to defer, is the cornerstone symptom of overactive bladder. Unfortunately, controversy continues to surround this term and its definition, a fact that has constrained the performance of clinical research in this field. It is important to note that the definition assumes an abnormal sensation that is distinguishable from the normal feeling of "urge to void," which occurs during a normal bladder-filling cycle. The cause of urgency is not fully understood and may vary from patient to patient. Urgency may be controlled by central nervous system mechanisms, lower urinary tract mechanisms, including detrusor myogenic functions (ie, overt detrusor contractions, micromotions, myofibroblast abnormalities), or afferent neural factors. Recently, a number of articles that attempt to quantify urgency have appeared in the literature. Attempts to measure urgency are confounded by difficulties in understanding its definition, the context of normal urge to void, and the power of suggestion in most clinical environments.
[The impact of dysglycemia on brain function in children with type 1 diabetes mellitus].
Pańkowska, Ewa
2012-01-01
Diabetes is a metabolic disease defined by increased blood glucose level above the references value. Insulin therapy is mandatory for all patients with type 1 diabetes melitus (T1DM). However, the insulin therapy is also the potential factor of hyperglycemia as well as hypoglycemia condition called dysglycemia. Moreover, T1DM leads to late organ changes such as retinopathy and nephropathy primarily due to diabetic angiopathy. Neuropathy is one of diabetic complications which can occur from the beginning of the disease. The pathogenesis of diabetic neuropathy, a structural and morphological abnormality, has been well described. In adults with T1DM diagnosed in childhood more frequent incidence of epilepsy, abnormal EEG and impaired cognitive functions were diagnosed. In children with type I diabetes further in depth studies are needed concerning the structural and functional damage of the central nervous system (cns). Research studies carried out in children have shown that the metabolic and morphological cns changes are the result of both hypo- and hyperglycemia.
Somnolence after prophylactic cranial irradiation in children with acute lymphoblastic leukaemia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Freeman, J.E.; Johnston, P.G.B.; Voke, J.M.
1973-12-01
A transient cerebral disturbance characterized by somnolence of varying degree is described in children after cranial irradiation given as part of central nervous system (C.N.S.) prophylaxis for acute lymphoblastic leukemia in remission. Out of 28 such children receiving cranial irradiation from a telecobalt unit as part of the Medical Research Council protocol for C.N.S. prophylaxis 11 (39%) developed pronounced symptoms of somnolence, anorexia, and lethargy some six weeks after the completion of cranial irradiation, and a further 11 (39%) developed these features in mild form. In all cases the symptoms were transient, no focal neurological abnormality was detected, and allmore » children made a spontansous and complete recovery. E.E.G. studies on five somnolent children showed similar abnormal activity of diffuse and patchy distribution over both hemispheres. Indirect evidence is presented to support the concept that this syndrome represents a transient radiation encephalopathy, analogous to acute transient radiation myelopathy, caused by temporary disturbance of myelin synthesis. (auth)« less
Herrlinger, Stephanie A; Shao, Qiang; Ma, Li; Brindley, Melinda; Chen, Jian-Fu
2018-04-26
The Zika virus (ZIKV) is a flavivirus currently endemic in North, Central, and South America. It is now established that the ZIKV can cause microcephaly and additional brain abnormalities. However, the mechanism underlying the pathogenesis of ZIKV in the developing brain remains unclear. Intracerebral surgical methods are frequently used in neuroscience research to address questions about both normal and abnormal brain development and brain function. This protocol utilizes classical surgical techniques and describes methods that allow one to model ZIKV-associated human neurological disease in the mouse nervous system. While direct brain inoculation does not model the normal mode of virus transmission, the method allows investigators to ask targeted questions concerning the consequence after ZIKV infection of the developing brain. This protocol describes embryonic, neonatal, and adult stages of intraventricular inoculation of ZIKV. Once mastered, this method can become a straightforward and reproducible technique that only takes a few hours to perform.
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
21 CFR 882.5550 - Central nervous system fluid shunt and components.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Central nervous system fluid shunt and components... Central nervous system fluid shunt and components. (a) Identification. A central nervous system fluid... central nervous system to an internal delivery site or an external receptacle for the purpose of relieving...
Education and the Immunization Paradigm
ERIC Educational Resources Information Center
Lewis, Tyson E.
2009-01-01
In this paper I chart the origins of modern day "biopedagogy" through an analysis of two historically specific figures of abnormality: the nervous child and the degenerate. These two figures form the positive (hygienic) and negative (eugenic) surfaces of biopolitics in education, sustained and articulated through the category of immunization. By…
Ramachandran, Rajoo; Babu, Sellappan Rajamanickam; Ilanchezhian, Subramanian; Radhakrishnan, Prabhu Radhan
2015-01-01
DiGeorge syndrome is a congenital genetic disorder that affects the endocrine system, mainly the thymus and parathyroid glands. The syndrome produces different symptoms, which vary in severity and character between patients. It manifests with craniofacial dysmorphism and defects in the heart, parathyroid, and thymus. Patients can present with a palatal deformity and nasal speech. This rare entity is caused mainly due to deletion of chromosome 22q11.2. Radiographic evaluation of DiGeorge syndrome is necessary to define aberrant anatomy, evaluate central nervous system, craniofacial abnormalities, musculoskeletal system, and cardiothoracic contents. It also helps in planning surgical procedures and surgical reconstructions. We report a case of DiGeorge syndrome in a 4-month-old neonate and discuss the clinical, imaging, and cytogenetic findings that helped in the diagnosis of this rare entity.
Masurovsky, Edmund B.; Bunge, Mary Bartlett; Bunge, Richard P.
1967-01-01
Long-term organotypic cultures of rat dorsal root ganglia were exposed to a single 40 kR dose of 184 kvp X-rays and studied in the living and fixed states by light or electron microscopy at 1–14 day intervals thereafter. Within the first 4 days following irradiation, over 30% of the neurons display chromatolytic reactions (eccentric nuclei, peripheral dispersal of Nissl substance, central granular zone) as well as abnormal nucleolar changes and dissociation of ribosomes from endoplasmic reticulum cisternae. Some satellite cells undergo retraction or acute degeneration, leaving only basement membrane to cover the neuron in these areas. 8 days after irradiation, neurons also exhibit (a) areas in which ribosomes are substantially reduced, (b) regions of cytoplasmic sequestration, (c) extensive vacuolization of granular endoplasmic reticulum and Golgi complex, and (d) diversely altered mitochondria (including the presence of ribosome-like particles or association with abnormal glycogen and lipid deposits). Nucleolar components become altered or reoriented and may form abnormal projections and ringlike configurations. Sizeable areas of the neuronal soma are now denuded of satellite cells; underlying these areas, nerve processes are found abnormally invaginated into the neuronal cytoplasm. By the 14th day following irradiation, most neurons display marked degenerative changes including extensive regions of ribosome depletion, sequestration, vacuolization, autolysis, and, in some areas, swirls of filaments, myelin figures, and heterogeneous dense bodies. These observations demonstrate that X-irradiation produces profound cytopathological changes in nervous tissue isolated from the host and that many of these changes resemble the effects of radiation on nervous tissue in vivo. PMID:10976234
Central Nervous System Vasculitis
... of Vasculitis / Central Nervous System (CNS) Vasculitis Central Nervous System (CNS) Vasculitis Swap out your current Facebook Profile ... Facebook personal page. Replace with this image. Central nervous system (CNS) vasculitis is inflammation of blood vessel walls ...
Subacute combined degeneration
... SCD Images Central nervous system and peripheral nervous system Central nervous system References Pytel P, Anthony DC. Peripheral nerves and ... chap 27. So YT. Deficiency diseases of the nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...
Sangkatumvong, Suvimol; Khoo, Michael C. K.; Kato, Roberta; Detterich, Jon A.; Bush, Adam; Keens, Thomas G.; Meiselman, Herbert J.; Wood, John C.
2011-01-01
Rationale: Sickle cell disease is an inherited blood disorder characterized by vasoocclusive crises. Although hypoxia and pulmonary disease are known risk factors for these crises, the mechanisms that initiate vasoocclusive events are not well known. Objectives: To study the relationship between transient hypoxia, respiration, and microvascular blood flow in patients with sickle cell. Methods: We established a protocol that mimics nighttime hypoxic episodes and measured microvascular blood flow to determine if transient hypoxia causes a decrease in microvascular blood flow. Significant desaturations were induced safely by five breaths of 100% nitrogen. Measurements and Main Results: Desaturation did not induce change in microvascular perfusion; however, it induced substantial transient parasympathetic activity withdrawal in patients with sickle cell disease, but not controls subjects. Marked periodic drops in peripheral microvascular perfusion, unrelated to hypoxia, were triggered by sighs in 11 of 11 patients with sickle cell and 8 of 11 control subjects. Although the sigh frequency was the same in both groups, the probability of a sigh inducing a perfusion drop was 78% in patients with sickle cell and 17% in control subjects (P < 0.001). Evidence for sigh-induced sympathetic nervous system dominance was seen in patients with sickle cell (P < 0.05), but was not significant in control subjects. Conclusions: These data demonstrate significant disruption of autonomic nervous system balance, with marked parasympathetic withdrawal in response to transient hypoxia. They draw attention to an enhanced autonomic nervous system–mediated sigh–vasoconstrictor response in patients with sickle cell that could increase red cell retention in the microvasculature, promoting vasoocclusion. PMID:21616995
Iliescu, D; Tudorache, S; Comanescu, A; Antsaklis, P; Cotarcea, S; Novac, L; Cernea, N; Antsaklis, A
2013-09-01
To assess the potential of first-trimester sonography in the detection of fetal abnormalities using an extended protocol that is achievable with reasonable resources of time, personnel and ultrasound equipment. This was a prospective two-center 2-year study of 5472 consecutive unselected pregnant women examined at 12 to 13 + 6 gestational weeks. Women were examined using an extended morphogenetic ultrasound protocol that, in addition to the basic evaluation, involved a color Doppler cardiac sweep and identification of early contingent markers for major abnormalities. The prevalence of lethal and severe malformations was 1.39%. The first-trimester scan identified 40.6% of the cases detected overall and 76.3% of major structural defects. The first-trimester detection rate (DR) for major congenital heart disease (either isolated or associated with extracardiac abnormalities) was 90% and that for major central nervous system anomalies was 69.5%. In fetuses with increased nuchal translucency (NT), the first-trimester DR for major anomalies was 96%, and in fetuses with normal NT it was 66.7%. Most (67.1%) cases with major abnormalities presented with normal NT. A detailed first-trimester anomaly scan using an extended protocol is an efficient screening method to detect major fetal structural abnormalities in low-risk pregnancies. It is feasible at 12 to 13 + 6 weeks with ultrasound equipment and personnel already used for routine first-trimester screening. Rate of detection of severe malformations is greater in early- than in mid-pregnancy and on postnatal evaluation. Early heart investigation could be improved by an extended protocol involving use of color Doppler. Copyright © 2013 ISUOG. Published by John Wiley & Sons Ltd.
Echolalia as a novel manifestation of neuropsychiatric systemic lupus erythematosus.
Zapor, M; Murphy, F T; Enzenauer, R
2001-01-01
"That tongue of yours, by which I have been tricked, shall have its power curtailed and enjoy the briefest use of speech." With these words, Hera, of Greek mythology, deprived the nymph Echo of spontaneous speech, constraining her instead to merely repeating the words of others. Echolalia, which derives from the word "echo," is disordered speech in which an individual persistently repeats what is heard. Echolalia has been described in patients with a number of neuropsychiatric illnesses including autism and Tourette's syndrome. Neuropsychiatric systemic lupus erythematosus (NPSLE) is a heterogeneous disease with protean manifestations that may occur in approximately 25% to 50% of patients with systemic lupus erythematosus (SLE). Although the most common manifestations include cognitive dysfunction (50%) and seizures (20%), NPSLE may also present as peripheral neuropathy (15%), psychosis (10%), or other central nervous system abnormalities. We report the case of a 57-year-old woman with SLE and echolalia.
Neurofibromatosis: chronological history and current issues.
Antônio, João Roberto; Goloni-Bertollo, Eny Maria; Trídico, Lívia Arroyo
2013-01-01
Neurofibromatosis, which was first described in 1882 by Von Recklinghausen, is a genetic disease characterized by a neuroectodermal abnormality and by clinical manifestations of systemic and progressive involvement which mainly affect the skin, nervous system, bones, eyes and possibly other organs. The disease may manifest in several ways and it can vary from individual to individual. Given the wealth of information about neurofibromatosis, we attempted to present this information in different ways. In the first part of this work, we present a chronological history, which describes the evolution of the disease since the early publications about the disorder until the conclusion of this work, focusing on relevant aspects which can be used by those wishing to investigate this disease. In the second part, we present an update on the various aspects that constitute this disease.
Neurofibromatosis: chronological history and current issues*
Antônio, João Roberto; Goloni-Bertollo, Eny Maria; Trídico, Lívia Arroyo
2013-01-01
Neurofibromatosis, which was first described in 1882 by Von Recklinghausen, is a genetic disease characterized by a neuroectodermal abnormality and by clinical manifestations of systemic and progressive involvement which mainly affect the skin, nervous system, bones, eyes and possibly other organs. The disease may manifest in several ways and it can vary from individual to individual. Given the wealth of information about neurofibromatosis, we attempted to present this information in different ways. In the first part of this work, we present a chronological history, which describes the evolution of the disease since the early publications about the disorder until the conclusion of this work, focusing on relevant aspects which can be used by those wishing to investigate this disease. In the second part, we present an update on the various aspects that constitute this disease. PMID:23793209
Autonomic Nervous System Disorders
Your autonomic nervous system is the part of your nervous system that controls involuntary actions, such as the beating of your heart ... breathing and swallowing Erectile dysfunction in men Autonomic nervous system disorders can occur alone or as the result ...
Nervous system active pharmaceutical ingredients (APIs), including anti-depressants and opioids, are important clinically administered pharmaceuticals within healthcare facilities. Concentrations and mass loadings of ten nervous system APIs and three nervous system API metaboli...
Color blindness among multiple sclerosis patients in Isfahan.
Shaygannejad, Vahid; Golabchi, Khodayar; Dehghani, Alireza; Ashtari, Fereshteh; Haghighi, Sepehr; Mirzendehdel, Mahsa; Ghasemi, Majid
2012-03-01
Multiple sclerosis (MS) is a disease of young and middle aged individuals with a demyelinative axonal damage nature in central nervous system that causes various signs and symptoms. As color vision needs normal function of optic nerve and macula, it is proposed that MS can alter it via influencing optic nerve. In this survey, we evaluated color vision abnormalities and its relationship with history of optic neuritis and abnormal visual evoked potentials (VEPs) among MS patients. The case group was included of clinically definitive MS patients and the same number of normal population was enrolled as the control group. Color vision of all the participants was evaluated by Ishihara test and then visual evoked potential (VEPs) and history of optic neuritis (ON) was assessed among them. Then, frequency of color blindness was compared between the case and the control group. Finally, color blinded patients were compared to those with the history of ON and abnormal VEPs. 63 MS patients and the same number of normal populations were enrolled in this study. 12 patients had color blindness based on the Ishihara test; only 3 of them were among the control group, which showed a significant different between the two groups (P = 0.013). There was a significant relationship between the color blindness and abnormal VEP (R = 0.53, P = 0.023) but not for the color blindness and ON (P = 0.67). This study demonstrates a significant correlation between color blindness and multiple sclerosis including ones with abnormal prolonged VEP latencies. Therefore, in individuals with acquired color vision impairment, an evaluation for potentially serious underlying diseases like MS is essential.
Swansbury, G J; Slater, R; Bain, B J; Moorman, A V; Secker-Walker, L M
1998-05-01
This paper reports clinical and cytogenetic data from 125 cases with t(9;11)(p21-22;q32) which were accepted for a European Union Concerted Action Workshop on 11q23. This chromosome abnormality is known to occur predominantly in acute myeloid leukemia (AML) FAB type M5a and less often in AML M4; in this series it was also found to occur, uncommonly, in other AML FAB types, in childhood acute lymphoblastic leukemia (ALL) (nine cases), in relatively young patients with myelodysplastic syndrome (MDS) (five cases), acute biphenotypic leukemia (two cases), and acute undifferentiated leukemia (one case). All age groups were represented but 50% of the patients were aged less than 15 years. The t(9;11) was the sole abnormality in 57 cases with AML; trisomy 8 was the most common additional abnormality (23 cases, including seven with further abnormalities), and 28 cases had other additional abnormalities. Among the t(9;11)+ve patients with AML, the white cell count (WBC) and age group were significant predictors of event-free survival; central nervous system (CNS) involvement or karyotype class (sole, with trisomy 8, or with other), also contributed to prognosis although our data could not show these to be independent factors. The best outcome was for patients aged 1-9 years, with low WBC, and with absence of CNS disease or presence of trisomy 8. For patients aged less than 15 years, the event-free survival for ALL patients was not significantly worse than that of AML patients.
Bouwstra, Hylco; Dijck-Brouwer, Da Janneke; Decsi, Tamás; Boehm, Günther; Boersma, E Rudy; Muskiet, Frits A J; Hadders-Algra, Mijna
2006-05-01
Prenatal essential fatty acid (EFA) status might be an important factor in the development of the central nervous system (CNS). The aim of the present study was to evaluate the relationship between the fatty acid compositions of the umbilical blood vessels at birth, used as a proxy of prenatal EFA status, and quality of general movements (GMs) at 3 mo. Umbilical artery and vein fatty acid compositions were investigated in a mixed group of breastfed infants and infants fed with formula with or without long-chain polyunsaturated fatty acid (LCPUFA) supplementation. At the age of 3 mo, video assessment of the quality of GMs was performed to evaluate neurologic condition. The quality of GMs was scored by assessing the degree of variation, complexity, and fluency. Outcomes were classified as normal-optimal, normal suboptimal, mildly abnormal, and definitely abnormal movements. Information on potential confounders, including the type of postnatal feeding, was collected prospectively. Associations between fatty acid status at birth and quality of GMs were investigated, and multinomial logistic regression analyses were carried out. None of the infants showed definitely abnormal movements. Infants with mildly abnormal GMs had a lower EFA index, lower arachidonic acid (AA) content, higher total n-9 fatty acid, and higher total monounsaturated fatty acid (MUFA) content in the umbilical artery compared with infants with normal GMs. Multivariate analyses confirmed these findings. We conclude that mildly abnormal GMs are associated with a less favorable EFA status in the umbilical artery.
[Partial facial duplication (a rare diprosopus): Case report and review of the literature].
Es-Seddiki, A; Rkain, M; Ayyad, A; Nkhili, H; Amrani, R; Benajiba, N
2015-12-01
Diprosopus, or partial facial duplication, is a very rare congenital abnormality. It is a rare form of conjoined twins. Partial facial duplication may be symmetric or not and may involve the nose, the maxilla, the mandible, the palate, the tongue and the mouth. A male newborn springing from inbred parents was admitted at his first day of life for facial deformity. He presented with hypertelorism, 2 eyes, a tendency to nose duplication (flatted large nose, 2 columellae, 2 lateral nostrils separated in the midline by a third deformed hole), two mouths and a duplicated maxilla. Laboratory tests were normal. The cranio-facial CT confirmed the maxillary duplication. This type of cranio-facial duplication is a rare entity with about 35 reported cases in the literature. Our patient was similar to a rare case of living diprosopus reported by Stiehm in 1972. Diprosopus is often associated with abnormalities of the gastrointestinal tract, the central nervous system, the cardiovascular and respiratory systems and with a high incidence of cleft lip and palate. Surgical treatment consists in the resection of the duplicated components. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Kanaan, Nicholas M.; Pigino, Gustavo F.; Brady, Scott T.; Lazarov, Orly; Binder, Lester I.; Morfini, Gerardo A.
2012-01-01
Alzheimer’s disease (AD) is characterized by progressive, age-dependent degeneration of neurons in the central nervous system. A large body of evidence indicates that neurons affected in AD follow a dying-back pattern of degeneration, where abnormalities in synaptic function and axonal connectivity long precede somatic cell death. Mechanisms underlying dying-back degeneration of neurons in AD remain elusive but several have been proposed, including deficits in fast axonal transport (FAT). Accordingly, genetic evidence linked alterations in FAT to dying-back degeneration of neurons, and FAT defects have been widely documented in various AD models. In light of these findings, we discuss experimental evidence linking several AD-related pathogenic polypeptides to aberrant activation of signaling pathways involved in the phosphoregulation of microtubule-based motor proteins. While each pathway appears to affect FAT in a unique manner, in the context of AD, many of these pathways might work synergistically to compromise the delivery of molecular components critical for the maintenance and function of synapses and axons. Therapeutic approaches aimed at preventing FAT deficits by normalizing the activity of specific protein kinases may help prevent degeneration of vulnerable neurons in AD. PMID:22721767
Morris, Gerwyn; Berk, Michael; Puri, Basant K
2018-04-01
There is copious evidence of abnormalities in resting-state functional network connectivity states, grey and white matter pathology and impaired cerebral perfusion in patients afforded a diagnosis of multiple sclerosis, major depression or chronic fatigue syndrome (CFS) (myalgic encephalomyelitis). Systemic inflammation may well be a major element explaining such findings. Inter-patient and inter-illness variations in neuroimaging findings may arise at least in part from regional genetic, epigenetic and environmental variations in the functions of microglia and astrocytes. Regional differences in neuronal resistance to oxidative and inflammatory insults and in the performance of antioxidant defences in the central nervous system may also play a role. Importantly, replicated experimental findings suggest that the use of high-resolution SPECT imaging may have the capacity to differentiate patients afforded a diagnosis of CFS from those with a diagnosis of depression. Further research involving this form of neuroimaging appears warranted in an attempt to overcome the problem of aetiologically heterogeneous cohorts which probably explain conflicting findings produced by investigative teams active in this field. However, the ionising radiation and relative lack of sensitivity involved probably preclude its use as a routine diagnostic tool.
What Health-Related Functions Are Regulated by the Nervous System?
... What health-related functions are regulated by the nervous system? The nervous system plays a role in nearly every aspect of ... feeling emotions. Functions that are regulated by the nervous system include (but are not limited to): Brain growth ...
Holsen, Laura M.; Lee, Jong-Hwan; Spaeth, Sarah B.; Ogden, Lauren A.; Klibanski, Anne; Whitfield-Gabrieli, Susan; Sloan, Richard P.; Goldstein, Jill M.
2012-01-01
The comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) is among the 10th leading cause of morbidity and mortality worldwide. Thus, understanding the co-occurrence of these disorders will have major public health significance. MDD is associated with an abnormal stress response, manifested in brain circuitry deficits, gonadal dysfunction, and autonomic nervous system (ANS) dysregulation. Contribution of the relationships between these systems to the pathophysiology of MDD is not well understood. The objective of this preliminary study was to investigate, in parallel, relationships between HPG-axis functioning, stress response circuitry activation, and parasympathetic reactivity in healthy controls and women with MDD. Using fMRI with pulse oximetry [from which we calculated the high frequency (HF) component of R-R interval variability (HF-RRV), a measure of parasympathetic modulation] and hormone data, we studied eight women with recurrent MDD in remission and six controls during a stress response paradigm. We demonstrated that hypoactivations of hypothalamus, amygdala, hippocampus, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and subgenual ACC were associated with lower parasympathetic cardiac modulation in MDD women. Estradiol and progesterone attenuated group differences in the effect of HF-RRV on hypoactivation in the amygdala, hippocampus, ACC, and OFC in MDD women. Findings have implications for understanding the relationship between mood, arousal, heart regulation, and gonadal hormones, and may provide insights into MDD and CVD risk comorbidity. PMID:22395084
Wettschureck, N.; Moers, A.; Wallenwein, B.; Parlow, A. F.; Maser-Gluth, C.; Offermanns, S.
2005-01-01
Heterotrimeric G proteins of the Gq/11 family transduce signals from a variety of neurotransmitter and hormone receptors and have therefore been implicated in various functions of the nervous system. Using the Cre/loxP system, we generated mice which lack the genes coding for the α subunits of the two main members of the Gq/11 family, gnaq and gna11, selectively in neuronal and glial precursor cells. Mice with defective gnaq and gna11 genes were morphologically normal, but they died shortly after birth. Mice carrying a single gna11 allele survived the early postnatal period but died within 3 to 6 weeks as anorectic dwarfs. In these mice, postnatal proliferation of pituitary somatotroph cells was strongly impaired, and plasma growth hormone (GH) levels were reduced to 15%. Hypothalamic levels of GH-releasing hormone (GHRH), an important stimulator of somatotroph proliferation, were strongly decreased, and exogenous administration of GHRH restored normal proliferation. The hypothalamic effects of ghrelin, a regulator of GHRH production and food intake, were reduced in these mice, suggesting that an impairment of ghrelin receptor signaling might contribute to GHRH deficiency and abnormal eating behavior. Taken together, our findings show that Gq/11 signaling is required for normal hypothalamic function and that impairment of this signaling pathway causes somatotroph hypoplasia, dwarfism, and anorexia. PMID:15713647
Koushika, S P; Lisbin, M J; White, K
1996-12-01
Tissue-specific alternative pre-mRNA splicing is a widely used mechanism for gene regulation and the generation of different protein isoforms, but relatively little is known about the factors and mechanisms that mediate this process. Tissue-specific RNA-binding proteins could mediate alternative pre-mRNA splicing. In Drosophila melanogaster, the RNA-binding protein encoded by the elav (embryonic lethal abnormal visual system) gene is a candidate for such a role. The ELAV protein is expressed exclusively in neurons, and is important for the formation and maintenance of the nervous system. In this study, photoreceptor neurons genetically depleted of ELAV, and elav-null central nervous system neurons, were analyzed immunocytochemically for the expression of neural proteins. In both situations, the lack of ELAV corresponded with a decrease in the immunohistochemical signal of the neural-specific isoform of Neuroglian, which is generated by alternative splicing. Furthermore, when ELAV was expressed ectopically in cells that normally express only the non-neural isoform of Neuroglian, we observed the generation of the neural isoform of Neuroglian. Drosophila ELAV promotes the generation of the neuron-specific isoform of Neuroglian by the regulation of pre-mRNA splicing. The findings reported in this paper demonstrate that ELAV is necessary, and the ectopic expression of ELAV in imaginal disc cells is sufficient, to mediate neuron-specific alternative splicing.
Skin sensitivity and skin microbiota: Is there a link?
Seite, Sophie; Misery, Laurent
2018-05-21
Sensitive skin is defined by the occurrence of unpleasant sensations, accompanied or not by erythema, in response to stimuli which normally should not provoke such sensations and that cannot be linked to skin disease. Even if its pathophysiology is not completely known, hyper-reactivity of the cutaneous nervous system associated with an abnormal skin barrier has been hypothesized as a primary culprit including more recently a role of the cutaneous microbiota. The objective of this short review is to discuss the relationship between the skin microbiota, skin sensitivity and the skin barrier function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Suppression of polyglutamine toxicity by a Drosophila homolog of myeloid leukemia factor 1.
Kazemi-Esfarjani, Parsa; Benzer, Seymour
2002-10-01
The toxicity of an abnormally long polyglutamine [poly(Q)] tract within specific proteins is the molecular lesion shared by Huntington's disease (HD) and several other hereditary neurodegenerative disorders. By a genetic screen in Drosophila, devised to uncover genes that suppress poly(Q) toxicity, we discovered a Drosophila homolog of human myeloid leukemia factor 1 (MLF1). Expression of the Drosophila homolog (dMLF) ameliorates the toxicity of poly(Q) expressed in the eye and central nervous system. In the retina, whether endogenously or ectopically expressed, dMLF co-localized with aggregates, suggesting that dMLF alone, or through an intermediary molecular partner, may suppress toxicity by sequestering poly(Q) and/or its aggregates.
Asato, Yuko; Kamitani, Toshiaki; Ootsuka, Kuniyuki; Kuramochi, Mizuki; Nakanishi, Kozo; Shimada, Tetsuya; Takahashi, Toshiyuki; Misu, Tatsuro; Aoki, Masashi; Fujihara, Kazuo; Kawabata, Yoshinori
2018-05-18
We herein report the case of a 76-year old man with aquaporin-4-Immunoglobulin-G (AQP4-IgG)-positive neuromyelitis optica spectrum disorder (NMOSD), in whom transient interstitial pulmonary lesions developed at the early stage of the disease. Chest X-ray showed multiple infiltrative shadows in both upper lung fields, and computed tomography revealed abnormal shadows distributed randomly in the lungs. Surgical lung biopsy showed features of unclassifiable interstitial pneumonia, characterized by various types of air-space organization, which resulted in obscure lung structure. This is the first report to describe the pathological findings of interstitial pneumonia, which may represent a rare extra-central nervous system complication of NMOSD.
[Variant of abnormal mental development with early evidence of abstract thinking].
Bulakhova, L A
1982-01-01
The author presents the data of 4- to 25-year-long observation of a group of boys distinguished since the early age by a pronounced disproportionaity of the psychic development: an accelerated development of abstract-logical thinking with gross defects of sensuous perception, emotions, psychomotor functions, and adaptive behaviour as a whole. Despite the evolutional course of the state most of the patients appeared to be unable to independent social adaptation. The degree and structure of this disharmonic underdevelopment allow one to regard this pathology as a variant of nervous system dysontogenesis differing from, but bordering on such forms as Kanner's autism, Asperger's psychopathy, or mental retardation with partial giftedness.
The expanding universe of disorders of the basal ganglia.
Obeso, Jose A; Rodriguez-Oroz, Maria C; Stamelou, Maria; Bhatia, Kailash P; Burn, David J
2014-08-09
The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made. Copyright © 2014 Elsevier Ltd. All rights reserved.
Neuronal substrates and functional consequences of prenatal cannabis exposure.
Calvigioni, Daniela; Hurd, Yasmin L; Harkany, Tibor; Keimpema, Erik
2014-10-01
Cannabis remains one of the world's most widely used substance of abuse amongst pregnant women. Trends of the last 50 years show an increase in popularity in child-bearing women together with a constant increase in cannabis potency. In addition, potent herbal "legal" highs containing synthetic cannabinoids that mimic the effects of cannabis with unknown pharmacological and toxicological effects have gained rapid popularity amongst young adults. Despite the surge in cannabis use during pregnancy, little is known about the neurobiological and psychological consequences in the exposed offspring. In this review, we emphasize the importance of maternal programming, defined as the intrauterine presentation of maternal stimuli to the foetus, in neurodevelopment. In particular, we focus on cannabis-mediated maternal adverse effects, resulting in direct central nervous system alteration or sensitization to late-onset chronic and neuropsychiatric disorders. We compare clinical and preclinical experimental studies on the effects of foetal cannabis exposure until early adulthood, to stress the importance of animal models that permit the fine control of environmental variables and allow the dissection of cannabis-mediated molecular cascades in the developing central nervous system. In sum, we conclude that preclinical experimental models confirm clinical studies and that cannabis exposure evokes significant molecular modifications to neurodevelopmental programs leading to neurophysiological and behavioural abnormalities.
Zhang, Yanli; Wang, Lina; Zhou, Wenhao; Wang, Huijun; Zhang, Jin; Deng, Shanshan; Li, Weihua; Li, Huawei; Mao, Zuohua; Ma, Duan
2013-09-01
Tissue factor pathway inhibitor-2 (Tfpi-2) is an important serine protease inhibitor in the extracellular matrix (ECM), but its precise physiological significance remains unknown. This work is part of a series of studies intended to investigate functional roles of Tfpi-2 and explore the underlying molecular mechanisms. First, we cloned and identified zebrafish Tfpi-2 (zTfpi-2) as an evolutionarily conserved protein essential for zebrafish development. We also demonstrated that ztfpi-2 is mainly expressed in the central nervous system (CNS) of zebrafish, and embryonic depletion of ztfpi-2 caused severe CNS defects. In addition, changes of neural markers, including pax2a, egr2b, huC, ngn1, gfap and olig2, confirmed the presence of developmental abnormalities in the relevant regions of ztfpi-2 morphants. Using microarray analysis, we found that members of the Notch pathway, especially her4 and mib, which mediate lateral inhibition in CNS development, were also downregulated. Intriguingly, both her4 and mib were able to partially rescue the ztfpi-2 morphant phenotype. Furthermore, Morpholino knockdown of ztfpi-2 resulted in upregulation of neuronal markers while downregulation of glial markers, providing evidence that the Notch pathway is probably involved in ztfpi-2-mediated CNS development. Copyright © 2013 Elsevier Inc. All rights reserved.
Noh, Kyung-Min; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W.; Shen, Li; Li, Haitao; Allis, C. David
2015-01-01
ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of “repressive” histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX’s ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this “methyl/phos” switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction. PMID:25538301
Noh, Kyung-Min; Maze, Ian; Zhao, Dan; Xiang, Bin; Wenderski, Wendy; Lewis, Peter W; Shen, Li; Li, Haitao; Allis, C David
2015-06-02
ATRX (the alpha thalassemia/mental retardation syndrome X-linked protein) is a member of the switch2/sucrose nonfermentable2 (SWI2/SNF2) family of chromatin-remodeling proteins and primarily functions at heterochromatic loci via its recognition of "repressive" histone modifications [e.g., histone H3 lysine 9 tri-methylation (H3K9me3)]. Despite significant roles for ATRX during normal neural development, as well as its relationship to human disease, ATRX function in the central nervous system is not well understood. Here, we describe ATRX's ability to recognize an activity-dependent combinatorial histone modification, histone H3 lysine 9 tri-methylation/serine 10 phosphorylation (H3K9me3S10ph), in postmitotic neurons. In neurons, this "methyl/phos" switch occurs exclusively after periods of stimulation and is highly enriched at heterochromatic repeats associated with centromeres. Using a multifaceted approach, we reveal that H3K9me3S10ph-bound Atrx represses noncoding transcription of centromeric minor satellite sequences during instances of heightened activity. Our results indicate an essential interaction between ATRX and a previously uncharacterized histone modification in the central nervous system and suggest a potential role for abnormal repetitive element transcription in pathological states manifested by ATRX dysfunction.
A theoretical framework for understanding neuromuscular response to lower extremity joint injury.
Pietrosimone, Brian G; McLeod, Michelle M; Lepley, Adam S
2012-01-01
Neuromuscular alterations are common following lower extremity joint injury and often lead to decreased function and disability. These neuromuscular alterations manifest in inhibition or abnormal facilitation of the uninjured musculature surrounding an injured joint. Unfortunately, these neural alterations are poorly understood, which may affect clinical recognition and treatment of these injuries. Understanding how these neural alterations affect physical function may be important for proper clinical management of lower extremity joint injuries. Pertinent articles focusing on neuromuscular consequences and treatment of knee and ankle injuries were collected from peer-reviewed sources available on the Web of Science and Medline databases from 1975 through 2010. A theoretical model to illustrate potential relationships between neural alterations and clinical impairments was constructed from the current literature. Lower extremity joint injury affects upstream cortical and spinal reflexive excitability pathways as well as downstream muscle function and overall physical performance. Treatment targeting the central nervous system provides an alternate means of treating joint injury that may be effective for patients with neuromuscular alterations. Disability is common following joint injury. There is mounting evidence that alterations in the central nervous system may relate to clinical changes in biomechanics that may predispose patients to further injury, and novel clinical interventions that target neural alterations may improve therapeutic outcomes.
A Theoretical Framework for Understanding Neuromuscular Response to Lower Extremity Joint Injury
Pietrosimone, Brian G.; McLeod, Michelle M.; Lepley, Adam S.
2012-01-01
Background: Neuromuscular alterations are common following lower extremity joint injury and often lead to decreased function and disability. These neuromuscular alterations manifest in inhibition or abnormal facilitation of the uninjured musculature surrounding an injured joint. Unfortunately, these neural alterations are poorly understood, which may affect clinical recognition and treatment of these injuries. Understanding how these neural alterations affect physical function may be important for proper clinical management of lower extremity joint injuries. Methods: Pertinent articles focusing on neuromuscular consequences and treatment of knee and ankle injuries were collected from peer-reviewed sources available on the Web of Science and Medline databases from 1975 through 2010. A theoretical model to illustrate potential relationships between neural alterations and clinical impairments was constructed from the current literature. Results: Lower extremity joint injury affects upstream cortical and spinal reflexive excitability pathways as well as downstream muscle function and overall physical performance. Treatment targeting the central nervous system provides an alternate means of treating joint injury that may be effective for patients with neuromuscular alterations. Conclusions: Disability is common following joint injury. There is mounting evidence that alterations in the central nervous system may relate to clinical changes in biomechanics that may predispose patients to further injury, and novel clinical interventions that target neural alterations may improve therapeutic outcomes. PMID:23016066
A case of disseminated central nervous system sparganosis.
Noiphithak, Raywat; Doungprasert, Gahn
2016-01-01
Sparganosis is a very rare parasitic infection in various organs caused by the larvae of tapeworms called spargana. The larva usually lodges in the central nervous system (CNS) and the orbit. However, lumbar spinal canal involvement, as noted in the present case, is extremely rare. We report a rare case of disseminated CNS sparganosis involving the brain and spinal canal and review the literature. A 54-year-old man presented with progressive low back pain and neurological deficit at the lumbosacral level for 2 months. Imaging indicated arachnoiditis and an abnormal lesion at the L4-5 vertebral level. The patient underwent laminectomy of the L4-5 with lesionectomy and lysis of adhesions between the nerve roots. Microscopic examination indicated sparganum infection. Further brain imaging revealed evidence of chronic inflammation in the left parieto-occipital area without evidence of live parasites. In addition, an ophthalmologist reported a nonactive lesion in the right conjunctiva. The patient recovered well after surgery, although he had residual back pain and bladder dysfunction probably due to severe adhesion of the lumbosacral nerve roots. CNS sparganosis can cause various neurological symptoms similar to those of other CNS infections. A preoperative enzyme-linked immunosorbent assay is helpful for diagnosis, especially in endemic areas. Surgical removal of the worm remains the treatment of choice.
Akın, Onur; Eker, İbrahim; Arslan, Mutluay; Yavuz, Süleyman Tolga; Akman, Sevil; Taşçılar, Mehmet Emre; Ünay, Bülent
2017-10-26
Childhood obesity may lead to neuronal impairment in both the peripheral and the central nervous system. This study aimed to investigate the impact of obesity and insulin resistance (IR) on the central nervous system and neurocognitive functions in children. Seventy-three obese children (38 male and 35 female) and 42 healthy children (21 male and 21 female) were recruited. Standard biochemical indices and IR were evaluated. The Wechsler Intelligence Scale for Children-Revised (WISC-R) and electroencephalography (EEG) were administered to all participants. The obese participants were divided into two groups based on the presence or absence of IR, and the data were compared between the subgroups. Only verbal scores on the WISC-R in the IR+ group were significantly lower than those of the control and IR- groups. There were no differences between the groups with respect to other parameters of the WISC-R or the EEG. Verbal scores of the WISC-R were negatively correlated with obesity duration and homeostatic model assessment-insulin resistance (HOMA-IR) values. EEGs showed significantly more frequent 'slowing during hyperventilation' (SDHs) in obese children than non-obese children. Neurocognitive functions, particularly verbal abilities, were impaired in obese children with IR. An early examination of cognitive functions may help identify and correct such abnormalities in obese children.
Alrawashdeh, Omar; Alsbou, Mohammad; Alzoubi, Hamed; Al-Shagahin, Hani
2016-11-02
Alkaptonuria is a rare metabolic disease characterised by accumulative deposition of homogentisic acid in the connective tissue of the body. This results in early degeneration of tendons, cartilages, heart valves, and other tissues. The main objective of the study is to examine the possibility of the nervous system involvement in patients with alkaptonuria The sample consists of two groups; 22 patients with AKU and 20 controls. A neurological assessment has been carried out including detailed medical history, neurological examination, and a nerve conduction study of the nerves of the dominant hand. The prevalence of any abnormality was compared between the two groups using chi square test. The mean values of the nerve conduction study were compared between the two groups using student t-test. There was a higher prevalence of low back pain, hearing problems and tinnitus, numbness and neuropathic pain in alkaptonuria patients. There was no significant difference between the two groups in other conditions such as seizures, headache, and syncope. The values of the nerve conduction study did not show significant difference between the two groups. Neurologically related symptoms in alkaptonuria mostly represent complications of the connective tissue degeneration rather than direct involvement of the nervous system. This has been supported further by the normal findings of the neurophysiology study in patients with alkaptonuria.
Armao, Diane; Bailey, Rachel M; Bouldin, Thomas W; Kim, Yongbaek; Gray, Steven J
2016-08-01
Giant axonal neuropathy (GAN) is an inherited severe sensorimotor neuropathy. The aim of this research was to investigate the neuropathologic features and clinical autonomic nervous system (ANS) phenotype in two GAN knockout (KO) mouse models. Little is known about ANS involvement in GAN in humans, but autonomic signs and symptoms are commonly reported in early childhood. Routine histology and immunohistochemistry was performed on GAN KO mouse specimens taken at various ages. Enteric dysfunction was assessed by quantifying the frequency, weight, and water content of defecation in GAN KO mice. Histological examination of the enteric, parasympathetic and sympathetic ANS of GAN KO mice revealed pronounced and widespread neuronal perikaryal intermediate filament inclusions. These neuronal inclusions served as an easily identifiable, early marker of GAN in young GAN KO mice. Functional studies identified an age-dependent alteration in fecal weight and defecation frequency in GAN KO mice. For the first time in the GAN KO mouse model, we described the early, pronounced and widespread neuropathologic features involving the ANS. In addition, we provided evidence for a clinical autonomic phenotype in GAN KO mice, reflected in abnormal gastrointestinal function. These findings in GAN KO mice suggest that consideration should be given to ANS involvement in human GAN, especially when considering treatments and patient care.
Neuronal substrates and functional consequences of prenatal cannabis exposure
Calvigioni, Daniela; Hurd, Yasmin L.; Keimpema, Erik
2015-01-01
Cannabis remains one of the world’s most widely used substance of abuse amongst pregnant women. Trends of the last 50 years show an increase in popularity in child-bearing women together with a constant increase in cannabis potency. In addition, potent herbal “legal” highs containing synthetic cannabinoids that mimic the effects of cannabis with unknown pharmacological and toxicological effects have gained rapid popularity amongst young adults. Despite the surge in cannabis use during pregnancy, little is known about the neurobiological and psychological consequences in the exposed offspring. In this review, we emphasize the importance of maternal programming, defined as the intrauterine presentation of maternal stimuli to the foetus, in neurodevelopment. In particular, we focus on cannabis-mediated maternal adverse effects, resulting in direct central nervous system alteration or sensitization to late-onset chronic and neuropsychiatric disorders. We compare clinical and preclinical experimental studies on the effects of foetal cannabis exposure until early adulthood, to stress the importance of animal models that permit the fine control of environmental variables and allow the dissection of cannabis-mediated molecular cascades in the developing central nervous system. In sum, we conclude that preclinical experimental models confirm clinical studies and that cannabis exposure evokes significant molecular modifications to neurodevelopmental programs leading to neurophysiological and behavioural abnormalities. PMID:24793873
An option space for early neural evolution.
Jékely, Gáspár; Keijzer, Fred; Godfrey-Smith, Peter
2015-12-19
The origin of nervous systems has traditionally been discussed within two conceptual frameworks. Input-output models stress the sensory-motor aspects of nervous systems, while internal coordination models emphasize the role of nervous systems in coordinating multicellular activity, especially muscle-based motility. Here we consider both frameworks and apply them to describe aspects of each of three main groups of phenomena that nervous systems control: behaviour, physiology and development. We argue that both frameworks and all three aspects of nervous system function need to be considered for a comprehensive discussion of nervous system origins. This broad mapping of the option space enables an overview of the many influences and constraints that may have played a role in the evolution of the first nervous systems. © 2015 The Author(s).
Effects of ischaemia and hypoxia on the development of the nervous system in acardiac foetus.
Laure-Kamionowska, Milena; Maślińska, Danuta; Deregowski, Krzysztof; Piekarski, Paweł; Raczkowska, Barbara
2004-01-01
The twin-reversed arterial perfusion (TRAP) sequence and development of an acardius are rare and severe complications in monozygotic twin pregnancy. Haemodynamic disturbances in placental perfusion via abnormal vascular anastomoses allow inter-twin transfusion to occur. Because of blood perfusion, one of the twins is poorly oxygenated and contains metabolic waste products. Retrograde placental perfusion leads to the formation of a non-viable malformed acardiac foetus. We studied the effects of haemodynamic disturbances in acardiac foetus on the development of the nervous system. The acardius was a product of a 32-weeks pregnancy. Caesarean section yielded a skin covered ovoid mass (size, 10 x 8 cm; weight, 220 g). The dissection of the acardiac twin showed a skin with hair and appendages, rudimentary lower limbs, vertebral column and brain mass. The rudimentary brain tissue was considerably disorganised structurally. We distinguished two main morphological forms of various appearances. In the centre, we observed a scarcely vascularised mass of tissue containing mature and immature neurones, glial cells and randomly distributed fibres. The mass of tissue appeared poorly differentiated, although there were some arrangements reminiscent of cerebral structures. Clusters of neurones provided a slight suggestion of nuclear or fibre structure. The cerebellar cortex was the only well recognisable structure. In the other fragment of the tissue, we found a slit cavity with ependymal outline and well-developed choroid plexus, which seemed to represent the 3rd ventricle. The scarcely vascularised disorganised tissue was surrounded by the highly vascularised one. It included many thin-walled sinusoid vessels. In some places, they were so concentrated that they resembled cavernous haemangioma. The spinal cord appeared comparatively well organised with a slightly dilated central canal. The morphological picture of the rudimentary brain tissue was similar to the picture of the cerebrovasculosa area. The effect of ischaemia in the presented case is the anomalous formation of the cerebral structures. The morphological features imply that the failure occurred after neurulation and before the prosencephalic began to grow. The failure of neural tube formation occurred on the 22nd-25th day of gestation. The malformed formation of the nervous system might be caused by impaired induction due to altered gene expression or to the interference of exogenous agents that interrupt normal development. The haemodynamic abnormal placental circulation, which induced lack of oxygen supply and nutritional deficiency, implies the morphological pattern of the anomaly.
78 FR 9311 - Hazard Communication; Corrections and Technical Amendment
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-08
... Column for Standard No. 1910.1051. ``Cancer; eye and respiratory tract irritation; center nervous system... irritation; central nervous system effects; and flammability.'' The following table contains a summary of the... (l)(1)(ii) ``center nervous system effects'' is paragraph. corrected to ``central nervous system...
The Nervous System and Gastrointestinal Function
ERIC Educational Resources Information Center
Altaf, Muhammad A.; Sood, Manu R.
2008-01-01
The enteric nervous system is an integrative brain with collection of neurons in the gastrointestinal tract which is capable of functioning independently of the central nervous system (CNS). The enteric nervous system modulates motility, secretions, microcirculation, immune and inflammatory responses of the gastrointestinal tract. Dysphagia,…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marakami, U.; Kameyana, Y.; Majima, A.
1962-03-01
Pregnant mice on the 8.5th day of gestation were subjected to 200-r whole-body irradiation and the fetuses were examined on the l3th to l9th day of gestation. Incidence of fetal death (23.0%) was much higher than in the controls (8.2%1, and malformations of the nose, eyes, and ears cecurred in 32%. These malformations included alterations leading to a beaklike snout (19%), a univentricular telencephalon with cyclopia (6%), and forms transitional between these two (6%). These malformations were specific for irradiation on the 8.5th day of gestation; in previous studies they were not prominent when irradiation was carried out on themore » 8th, lOth, or llth day. During this most sensitive developmental stsge at 8.5 days, 3 to 5 brain vesicles are formed and the anterior neuropore is closed, which may account for the greater effect of teratogenic agents on the central nervous system at this time. Other abnormalities included exencephalia 12%), hydrocephalus (4%), microcephalia 10.7%), abnormally shaped head (5%), spinal cord anomalies (6%), eye anomalies (29%1, harelip and cleft palate (12%), tail abnormalities (6%), and thoraco- abdominal hernia (5%). (H.H.D.)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murakami, U.; Kameyama, Y.; Majima, A.
1962-03-01
Pregnant mice on the 8 1/2th day of gestation were subjected to 200 r whole-body irradiation and the fetuses were examined on the l3th to l9th day of gestation. Incidence of fetal death (23.0%) was much higher than in the controls (8.2%), and malformations of the nose, eyes, and ears occurred in 32%. These malformations included alterations leading to a beaklike snout (19%), a univentricular telencephalon with cyclopia (6%), and fomas transitional between these two (6%). These malformations were specific for irradiation on the 8 1/2th day of gestation. In previous studies they were not prominent when irradiation was carriedmore » out on the 8th, l0th, or llth day. During this most sensitive developmental stage at 8 1/2 days, 3 to 5 brain vesicles are formed and the anterior neuropore is closed, which may account for the greater effect of teratogenic agents on the central nervous system at this time. Other abnormalities included exencephalia (2%), hydrocephalus (4%), microcephalia (0.7%), abnormally shaped head (5%), spinal cord anomalies (6%), eye anomalies (29%), harelip and cleft palate (l2%), tail abnormalities (6%), and thoraco- abdominal hennia (5%). (H.H.D.)« less
What can Akabane disease teach us about other arboviral diseases.
Brenner, Jacob; Rotenberg, Ditza; Jaakobi, Shami; Stram, Yehuda; Guini-Rubinstein, Merisol; Menasherov, Sofia; Bernstein, Michel; Yaakobovitch, Yudith; David, Dan; Perl, Samuel
2016-09-30
Viruses of the Simbu serogroup cause lesions to foetuses that are seen at birth and that correlate with the stage of pregnancy at which the dam first contracts the virus. The Simbu serogroup comprises arboviruses known to cause outbreaks of abnormal parturitions in domestic ruminants; these abnormalities include abortion, stillbirth, and congenitally deformed neonates. Simbu serogroup members include: Akabane virus (AKAV), Aino virus, Cache Valley virus, and Schmallenberg virus. Lately, dairy herds calf malformations have been observed in Europe, where there have been reports of clinical manifestations such as diarrhoea, fever, and reduced milk yield in adult lactating cows. The Israeli dairy cattle industry has experienced 2 major episodes of abnormal parturitions that resulted from 2 arboviral Simbu serogroup episodes, which occurred 35 years apart. A wave of apparently newly introduced AKAV was noted from the beginning of January 2012. Investigations carried out throughout the period of late Summer 2011 to early Winter 2012, associated the Israeli AKAV strain with central nervous system manifestations in lactating cows. A lack of clinical/epidemiological 'uniformity' among the AKAV infections was noted during these investigations. Here we describe and discuss the clinical and spatial distribution differences found among the 3 above-mentioned outbreaks. Comparable features in the clinical presentation, spatial distribution, and target‑animal issues relating to Akabane disease are discussed.
Neurobehavioral Mutants Identified in an ENU Mutagenesis Project
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, Melloni N.; Dunning, Jonathan P; Wiley, Ronald G
2007-01-01
We report on a behavioral screening test battery that successfully identified several neurobehavioral mutants among a large-scale ENU-mutagenized mouse population. Large numbers of ENU mutagenized mice were screened for abnormalities in central nervous system function based on abnormal performance in a series of behavior tasks. We developed and employed a high-throughput screen of behavioral tasks to detect behavioral outliers. Twelve mutant pedigrees, representing a broad range of behavioral phenotypes, have been identified. Specifically, we have identified two open field mutants (one displaying hyper-locomotion, the other hypo-locomotion), four tail suspension mutants (all displaying increased immobility), one nociception mutant (displaying abnormal responsivenessmore » to thermal pain), two prepulse inhibition mutants (displaying poor inhibition of the startle response), one anxiety-related mutant (displaying decreased anxiety in the light/dark test), and one learning and memory mutant (displaying reduced response to the conditioned stimulus) These findings highlight the utility of a set of behavioral tasks used in a high throughput screen to identify neurobehavioral mutants. Further analysis (i.e., behavioral and genetic mapping studies) of mutants is in progress with the ultimate goal of identification of novel genes and mouse models relevant to human disorders as well as the identification of novel therapeutic targets.« less
Lis-Święty, Anna; Brzezińska-Wcisło, Ligia; Arasiewicz, Hubert
2017-09-01
Localized scleroderma (LoS) of the face and head is often associated with neurological manifestations and/or imaging abnormalities in the central nervous system (CNS). We present an analysis of 20 cases of LoS affecting the face and head. The CNS symptoms and/or abnormalities in high-resolution computed tomography (HRCT) and/or magnetic resonance imaging (MRI) were observed in 12 patients (60%). In addition to the mild and unspecific disorders (e.g. headaches), serious neurological complications probably in the course of vasculitis were revealed: epilepsy (in two patients), epilepsy and pyramidal sings (in one patient). Neurological disorders and LoS occurred at the same time (in three patients) or at the course of the disease (nine patients) and no later than 29 years since the onset of the disease. No link between neurological disorders and the LoS clinical morphology, immunological and other laboratory parameters has been established. CNS involvement is not correlated with the clinical course of the facial and head LoS and may occur years after the disease initial symptomatology. Imaging follow-up is not required if there is not any emerging neurological symptom. In some cases, however, both HRCT and MRI are useful for monitoring disease evolution and addressing therapeutic choices.
Kanagawa, Motoi; Toda, Tatsushi
2017-01-01
Muscular dystrophy is a group of genetic disorders characterized by progressive muscle weakness. In the early 2000s, a new classification of muscular dystrophy, dystroglycanopathy, was established. Dystroglycanopathy often associates with abnormalities in the central nervous system. Currently, at least eighteen genes have been identified that are responsible for dystroglycanopathy, and despite its genetic heterogeneity, its common biochemical feature is abnormal glycosylation of alpha-dystroglycan. Abnormal glycosylation of alpha-dystroglycan reduces its binding activities to ligand proteins, including laminins. In just the last few years, remarkable progress has been made in determining the sugar chain structures and gene functions associated with dystroglycanopathy. The normal sugar chain contains tandem structures of ribitol-phosphate, a pentose alcohol that was previously unknown in humans. The dystroglycanopathy genes fukutin, fukutin-related protein (FKRP), and isoprenoid synthase domain-containing protein (ISPD) encode essential enzymes for the synthesis of this structure: fukutin and FKRP transfer ribitol-phosphate onto sugar chains of alpha-dystroglycan, and ISPD synthesizes CDP-ribitol, a donor substrate for fukutin and FKRP. These findings resolved long-standing questions and established a disease subgroup that is ribitol-phosphate deficient, which describes a large population of dystroglycanopathy patients. Here, we review the history of dystroglycanopathy, the properties of the sugar chain structure of alpha-dystroglycan, dystroglycanopathy gene functions, and therapeutic strategies. PMID:29081423
Cervical Vertigo: Historical Reviews and Advances.
Peng, Baogan
2018-01-01
Vertigo is one of the most common presentations in adult patients. Among the various causes of vertigo, so-called cervical vertigo is still a controversial entity. Cervical vertigo was first thought to be due to abnormal input from cervical sympathetic nerves based on the work of Barré and Liéou in 1928. Later studies found that cerebral blood flow is not influenced by sympathetic stimulation. Ryan and Cope in 1955 proposed that abnormal sensory information from the damaged joint receptors of upper cervical regions may be related to pathologies of vertigo of cervical origin. Further studies found that cervical vertigo seems to originate from diseased cervical intervertebral discs. Recent research found that the ingrowth of a large number of Ruffini corpuscles into diseased cervical discs may be related to vertigo of cervical origin. Abnormal neck proprioceptive input integrated from the signals of Ruffini corpuscles in diseased cervical discs and muscle spindles in tense neck muscles secondary to neck pain is transmitted to the central nervous system and leads to a sensory mismatch with vestibular and other sensory information, resulting in a subjective feeling of vertigo and unsteadiness. Further studies are needed to illustrate the complex pathophysiologic mechanisms of cervical vertigo and to better understand and manage this perplexing entity. Copyright © 2017 Elsevier Inc. All rights reserved.
77 FR 70908 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-28
... level of skin irritation. The main target of toxicity is the nervous system but effects on the nervous system were only observed at high doses. Nervous system toxicity was manifested as clinical signs and... motor activity which are consistent with effects on the nicotinic cholinergic nervous system seen after...
78 FR 21267 - Dinotefuran; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... causes a low level of skin irritation. The main target of toxicity is the nervous system, but effects on the nervous system were only observed at high doses. Nervous system toxicity was manifested as... in motor activity which are consistent with effects on the nicotinic cholinergic nervous system seen...
Initial neuro-ophthalmological manifestations in Churg–Strauss syndrome
Vallet, Anne-Evelyne; Didelot, Adrien; Guebre-Egziabher, Fitsum; Bernard, Martine; Mauguière, François
2010-01-01
Churg–Strauss syndrome (CSS) is a systemic vasculitis with frequent respiratory tract involvement. It can also affect the nervous system, notably the optic tract. The present work reports the case of a 65-year-old man diagnosed as having CSS in the context of several acute onset neurological symptoms including muscle weakness and signs of temporal arteritis, including bilateral anterior ischaemic optic neuropathy (ON). Electroretinograms (ERGs) and visual evoked potentials (VEPs) were performed. Flash ERGs were normal whereas VEPs were highly abnormal, showing a dramatic voltage reduction, thus confirming the ON. The vision outcome was poor. Ophthalmological presentations of CSS have rarely been reported, but no previous case of sudden blindness documented by combined ERG and VEP investigations were found in the literature. The present case strongly suggests that the occurrence of visual loss in the context of systemic inflammation with hypereosinophilia should lead to considering the diagnosis of CSS. PMID:22789694
NASA Astrophysics Data System (ADS)
Reardon, Joyce T.; Bessho, Tadayoshi; Kung, Hsiang Chuan; Bolton, Philip H.; Sancar, Aziz
1997-08-01
Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20-30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.
2012-01-01
Functional gastrointestinal disorder (FGID) is one of the commonest digestive diseases worldwide and leads to significant morbidity and burden on healthcare resource. The putative bio-psycho-social pathophysiological model for FGID underscores the importance of psychological distress in the pathogenesis of FGID. Concomitant psychological disorders, notably anxiety and depressive disorders, are strongly associated with FGID and these psychological co-morbidities correlate with severity of FGID symptoms. Early life adversity such as sexual and physical abuse is more commonly reported in patients with FGID. There is mounting evidence showing that psychological disorders are commonly associated with abnormal central processing of visceral noxious stimuli. The possible causal link between psychological disorders and FGID involves functional abnormalities in various components of the brain-gut axis, which include hypothalamic-pituitary-adrenal system, sympathetic and parasympathetic nervous system, serotonergic and endocannabinoid systems. Moreover, recent studies have also shown that psychological distress may alter the systemic and gut immunity, which is increasingly recognized as a pathophysiologic feature of FGID. Psychotropic agent, in particular antidepressant, and psychological intervention such as cognitive behavioral therapy and meditation have been reported to be effective for alleviation of gastrointestinal symptoms and quality of life in FGID patients. Further studies are needed to evaluate the impact of early detection and management of co-morbid psychological disorders on the long-term clinical outcome and disease course of FGID. PMID:22323984
Contrast MR of the brain after high-perfusion cardiopulmonary bypass
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simonson, T.M.; Yuh, W.T.C.; Hindman, B.J.
1994-01-01
To study the efficacy of contrast MR imaging in the evaluation of central nervous system complications in the cardiopulmonary bypass patient and attempt to explain their pathophysiology based on the MR appearance and the cardiopulmonary bypass protocol. Nineteen patients were prospectively studied with contrast MR examinations the day before and 3 to 7 days after cardiopulmonary bypass, to determine the nature, extent, and number of new postoperative MR abnormalities. Cardiopulmonary bypass parameters used in our institution included: membrane oxygenation, arterial filtration with a pore size of 25 [mu]m, and a relatively high perfusion rate to produce a cardiac index ofmore » 2.0 to 2.5 L min per m[sup 2]. The preoperative noncontrast MR examination showed age-related changes and/or signs of ischemia in 60% of patients on the day before surgery. However, there was no abnormal enhancement or new T2 abnormalities on any postoperative MR examination to suggest hypoperfusion or emboli. None of the 19 patients developed overt neurologic deficits postoperatively. Review of the cardiopulmonary bypass protocol used indicated significant variations in technique at different institutions. Contrast MR imaging demonstrated no new abnormalities in patients after cardiopulmonary bypass performed with strict in-line arterial filtration and relatively high perfusion. MR imaging is feasible in the early postoperative period after cardiopulmonary bypass and may offer a convenient method for evaluation of the neurologic impact of technical factors associated with cardiopulmonary bypass. 17 refs.« less
Imaging Characteristics of Children with Auditory Neuropathy Spectrum Disorder
Roche, Joseph P.; Huang, Benjamin Y.; Castillo, Mauricio; Bassim, Marc K.; Adunka, Oliver F.; Buchman, Craig A.
2013-01-01
Objective To identify and define the imaging characteristics of children with auditory neuropathy spectrum disorder (ANSD). Design Retrospective medical records review and analysis of both temporal bone computed tomography (CT) and magnetic resonance images (MRI) in from children with the diagnosis of ANSD. Setting Tertiary referral center. Patients 118 children with the electrophysiological characteristics of ANSD with available imaging studies for review. Interventions Two neuroradiologists and a neurotologist reviewed each study and consensus descriptions were established. Main outcome measures The type and number of imaging findings were tabulated. Results Sixty-eight (64%) MRIs revealed at least one imaging abnormality while selective use of CT identified 23 (55%) with anomalies. The most prevalent MRI findings included cochlear nerve deficiency (n=51; 28% of 183 nerves), brain abnormalities (n=42; 40% of 106 brains) and prominent temporal horns (n=33, 16% of 212 temporal lobes). The most prevalent CT finding from selective use of CT was cochlear dysplasia (n=13; 31%). Conclusions MRI will identify many abnormalities in children with ANSD that are not readily discernable on CT. Specifically, both developmental and acquired abnormalities of the brain, posterior cranial fossa, and cochlear nerves are not uncommonly seen in this patient population. Inner ear anomalies are well delineated using either imaging modality. Since many of the central nervous system findings identified in this study using MRI can alter the treatment and prognosis for these children, we believe that MRI should be the initial imaging study of choice for children with ANSD. PMID:20593543
ANIMAL MODELS OF DYSTONIA: LESSONS FROM A MUTANT RAT
LeDoux, Mark S.
2010-01-01
Dystonia is a motor sign characterized by involuntary muscle contractions which produce abnormal postures. Genetic factors contribute significantly to primary dystonia. In comparison, secondary dystonia can be caused by a wide variety of metabolic, structural, infectious, toxic and inflammatory insults to the nervous system. Although classically ascribed to dysfunction of the basal ganglia, studies of diverse animal models have pointed out that dystonia is a network disorder with important contributions from abnormal olivocerebellar signaling. In particular, work with the dystonic (dt) rat has engendered dramatic paradigm shifts in dystonia research. The dt rat manifests generalized dystonia caused by deficiency of the neuronally-restricted protein caytaxin. Electrophysiological and biochemical studies have shown that defects at the climbing fiber-Purkinje cell synapse in the dt rat lead to abnormal bursting firing patterns in the cerebellar nuclei, which increases linearly with postnatal age. In a general sense, the dt rat has shown the scientific and clinical communities that dystonia can arise from dysfunctional cerebellar cortex. Furthermore, work with the dt rat has provided evidence that dystonia (1) is a neurodevelopmental network disorder and (2) can be driven by abnormal cerebellar output. In large part, work with other animal models has expanded upon studies in the dt rat and shown that primary dystonia is a multi-nodal network disorder associated with defective sensorimotor integration. In addition, experiments in genetically-engineered models have been used to examine the underlying cellular pathologies that drive primary dystonia. PMID:21081162
Friedrich, Timo; Lambert, Aaron M.; Masino, Mark A.; Downes, Gerald B.
2012-01-01
SUMMARY Analysis of zebrafish mutants that demonstrate abnormal locomotive behavior can elucidate the molecular requirements for neural network function and provide new models of human disease. Here, we show that zebrafish quetschkommode (que) mutant larvae exhibit a progressive locomotor defect that culminates in unusual nose-to-tail compressions and an inability to swim. Correspondingly, extracellular peripheral nerve recordings show that que mutants demonstrate abnormal locomotor output to the axial muscles used for swimming. Using positional cloning and candidate gene analysis, we reveal that a point mutation disrupts the gene encoding dihydrolipoamide branched-chain transacylase E2 (Dbt), a component of a mitochondrial enzyme complex, to generate the que phenotype. In humans, mutation of the DBT gene causes maple syrup urine disease (MSUD), a disorder of branched-chain amino acid metabolism that can result in mental retardation, severe dystonia, profound neurological damage and death. que mutants harbor abnormal amino acid levels, similar to MSUD patients and consistent with an error in branched-chain amino acid metabolism. que mutants also contain markedly reduced levels of the neurotransmitter glutamate within the brain and spinal cord, which probably contributes to their abnormal spinal cord locomotor output and aberrant motility behavior, a trait that probably represents severe dystonia in larval zebrafish. Taken together, these data illustrate how defects in branched-chain amino acid metabolism can disrupt nervous system development and/or function, and establish zebrafish que mutants as a model to better understand MSUD. PMID:22046030
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hua, C; Shulkin, B; Li, Y
Purpose: To identify treatment-induced defects in the brain of children with craniopharyngioma receiving surgery and proton therapy using fluorodeoxyglucose positron emission tomography (FDG PET). Methods: Forty seven patients were enrolled on a clinical trial for craniopharyngioma with serial imaging and functional evaluations. Proton therapy was delivered using the double-scattered beams with a prescribed dose of 54 Cobalt Gray Equivalent. FDG tracer uptake in each of 63 anatomical regions was computed after warping PET images to a 3D reference template in Talairach coordinates. Regional uptake was deemed significantly low or high if exceeding two standard deviations of normal population from themore » mean. For establishing the normal ranges, 132 children aged 1–20 years with noncentral nervous system related diseases and normal-appearing cerebral PET scans were analyzed. Age- and gender-dependent regional uptake models were developed by linear regression and confidence intervals were calculated. Results: Most common PET abnormality before proton therapy was significantly low uptake in the frontal lobe, the occipital lobe (particularly in cuneus), the medial and ventral temporal lobe, cingulate gyrus, caudate nuclei, and thalamus. They were related to injury from surgical corridors, tumor mass effect, insertion of a ventricular catheter, and the placement of an Ommaya reservoir. Surprisingly a significantly high uptake was observed in temporal gyri and the parietal lobe. In 13 patients who already completed 18-month PET scans, metabolic abnormalities improved in 11 patients from baseline. One patient had persistent abnormalities. Only one revealed new uptake abnormalities in thalamus, brainstem, cerebellum, and insula. Conclusion: Postoperative FDG PET of craniopharyngioma patients revealed metabolic abnormalities in specific regions of the brain. Proton therapy did not appear to exacerbate these surgery- and tumor-induced defects. In patients with persistent and new abnormalities, continued investigation on clinical symptoms and cognitive outcomes is ongoing to establish the association and predictive values of metabolic imaging.« less
NASA Astrophysics Data System (ADS)
David, Samuel; Aguayo, Albert J.
1981-11-01
The origin, termination, and length of axonal growth after focal central nervous system injury was examined in adult rats by means of a new experimental model. When peripheral nerve segments were used as ``bridges'' between the medulla and spinal cord, axons from neurons at both these levels grew approximately 30 millimeters. The regenerative potential of these central neurons seems to be expressed when the central nervous system glial environment is changed to that of the peripheral nervous system.
Hacohen, Yael; Wright, Sukhvir; Waters, Patrick; Agrawal, Shakti; Carr, Lucinda; Cross, Helen; De Sousa, Carlos; DeVile, Catherine; Fallon, Penny; Gupta, Rajat; Hedderly, Tammy; Hughes, Elaine; Kerr, Tim; Lascelles, Karine; Lin, Jean-Pierre; Philip, Sunny; Pohl, Keith; Prabahkar, Prab; Smith, Martin; Williams, Ruth; Clarke, Antonia; Hemingway, Cheryl; Wassmer, Evangeline; Vincent, Angela; Lim, Ming J
2013-01-01
Objective To report the clinical and investigative features of children with a clinical diagnosis of probable autoimmune encephalopathy, both with and without antibodies to central nervous system antigens. Method Patients with encephalopathy plus one or more of neuropsychiatric symptoms, seizures, movement disorder or cognitive dysfunction, were identified from 111 paediatric serum samples referred from five tertiary paediatric neurology centres to Oxford for antibody testing in 2007–2010. A blinded clinical review panel identified 48 patients with a diagnosis of probable autoimmune encephalitis whose features are described. All samples were tested/retested for antibodies to N-methyl-D-aspartate receptor (NMDAR), VGKC-complex, LGI1, CASPR2 and contactin-2, GlyR, D1R, D2R, AMPAR, GABA(B)R and glutamic acid decarboxylase. Results Seizures (83%), behavioural change (63%), confusion (50%), movement disorder (38%) and hallucinations (25%) were common. 52% required intensive care support for seizure control or profound encephalopathy. An acute infective organism (15%) or abnormal cerebrospinal fluid (32%), EEG (70%) or MRI (37%) abnormalities were found. One 14-year-old girl had an ovarian teratoma. Serum antibodies were detected in 21/48 (44%) patients: NMDAR 13/48 (27%), VGKC-complex 7/48(15%) and GlyR 1/48(2%). Antibody negative patients shared similar clinical features to those who had specific antibodies detected. 18/34 patients (52%) who received immunotherapy made a complete recovery compared to 4/14 (28%) who were not treated; reductions in modified Rankin Scale for children scores were more common following immunotherapies. Antibody status did not appear to influence the treatment effect. Conclusions Our study outlines the common clinical and paraclinical features of children and adolescents with probable autoimmune encephalopathies. These patients, irrespective of positivity for the known antibody targets, appeared to benefit from immunotherapies and further antibody targets may be defined in the future. PMID:23175854
2013-07-01
Childhood Burkitt Lymphoma; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Germ Cell Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Diffuse Large Cell Lymphoma; Childhood Immunoblastic Large Cell Lymphoma; Childhood Medulloepithelioma; Childhood Meningioma; Childhood Mixed Glioma; Childhood Nasal Type Extranodal NK/T-cell Lymphoma; Childhood Oligodendroglioma; Recurrent Childhood Anaplastic Large Cell Lymphoma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Grade III Lymphomatoid Granulomatosis; Recurrent Childhood Large Cell Lymphoma; Recurrent Childhood Lymphoblastic Lymphoma; Recurrent Childhood Malignant Germ Cell Tumor; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Small Noncleaved Cell Lymphoma; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma; Recurrent Childhood Visual Pathway Glioma; Recurrent/Refractory Childhood Hodgkin Lymphoma; Unspecified Childhood Solid Tumor, Protocol Specific
Recurrent postural vasovagal syncope: sympathetic nervous system phenotypes.
Vaddadi, Gautam; Guo, Ling; Esler, Murray; Socratous, Florentia; Schlaich, Markus; Chopra, Reena; Eikelis, Nina; Lambert, Gavin; Trauer, Thomas; Lambert, Elisabeth
2011-10-01
The pathophysiology of vasovagal syncope is poorly understood, and the treatment usually ineffective. Our clinical experience is that patients with vasovagal syncope fall into 2 groups, based on their supine systolic blood pressure, which is either normal (>100 mm Hg) or low (70-100 mm Hg). We investigated neural circulatory control in these 2 phenotypes. Sympathetic nervous testing was at 3 levels: electric, measuring sympathetic nerve firing (microneurography); neurochemical, quantifying norepinephrine spillover to plasma; and cellular, with Western blot analysis of sympathetic nerve proteins. Testing was done during head-up tilt (HUT), simulating the gravitational stress of standing, in 18 healthy control subjects and 36 patients with vasovagal syncope, 15 with the low blood pressure phenotype and 21 with normal blood pressure. Microneurography and norepinephrine spillover increased significantly during HUT in healthy subjects. The microneurography response during HUT was normal in normal blood pressure and accentuated in low blood pressure phenotype (P=0.05). Norepinephrine spillover response was paradoxically subnormal during HUT in both patient groups (P=0.001), who thus exhibited disjunction between nerve firing and neurotransmitter release; this lowered norepinephrine availability, impairing the neural circulatory response. Subnormal norepinephrine spillover in low blood pressure phenotype was linked to low tyrosine hydroxylase (43.7% normal, P=0.001), rate-limiting in norepinephrine synthesis, and in normal blood pressure to increased levels of the norepinephrine transporter (135% normal, P=0.019), augmenting transmitter reuptake. Patients with recurrent vasovagal syncope, when phenotyped into 2 clinical groups based on their supine blood pressure, show unique sympathetic nervous system abnormalities. It is predicted that future therapy targeting the specific mechanisms identified in the present report should translate into more effective treatment.
Post-traumatic stress disorder: the neurobiological impact of psychological trauma
Sherin, Jonathan E.; Nemeroff, Charles B.
2011-01-01
The classic fight-or-flight response to perceived threat is a reflexive nervous phenomenon thai has obvious survival advantages in evolutionary terms. However, the systems that organize the constellation of reflexive survival behaviors following exposure to perceived threat can under some circumstances become dysregulated in the process. Chronic dysregulation of these systems can lead to functional impairment in certain individuals who become “psychologically traumatized” and suffer from post-traumatic stress disorder (PTSD), A body of data accumulated over several decades has demonstrated neurobiological abnormalities in PTSD patients. Some of these findings offer insight into the pathophysiology of PTSD as well as the biological vulnerability of certain populations to develop PTSD, Several pathological features found in PTSD patients overlap with features found in patients with traumatic brain injury paralleling the shared signs and symptoms of these clinical syndromes. PMID:22034143
The mechanisms of neurotoxicity and the selective vulnerability of nervous system sites.
Maurer, Laura L; Philbert, Martin A
2015-01-01
The spatial heterogeneity of the structure, function, and cellular composition of the nervous system confers extraordinary complexity and a multiplicity of mechanisms of chemical neurotoxicity. Because of its relatively high metabolic demands and functional dependence on postmitotic neurons, the nervous system is vulnerable to a variety of xenobiotics that affect essential homeostatic mechanisms that support function. Despite protection from the neuroglia and blood-brain barrier, the central nervous system is prone to attack from lipophilic toxicants and those that hijack endogenous transport, receptor, metabolic, and other biochemical systems. The inherent predilection of chemicals for highly conserved biochemical systems confers selective vulnerability of the nervous system to neurotoxicants. This chapter discusses selective vulnerability of the nervous system in the context of neuron-specific decrements (axonopathy, myelinopathy, disruption of neurotransmission), and the degree to which neuronal damage is facilitated or ameliorated by surrounding nonneural cells in both the central and peripheral nervous systems. © 2015 Elsevier B.V. All rights reserved.
Omura, Y
1987-01-01
Using microscopic slides of specific tissues from the human body or pure substances including neuro-transmitters such as serotonin, dopamine, norepinephrine, etc., as reference control substances in the Bi-Digital O-Ring Test Molecular Identification Method, the author was able to localize and image normal and abnormal internal organs, and to localize and trace the distribution of neurotransmitters in the different parts of the central nervous system. Using microscopic slides of different parts of the heart, we were able to image the outline of the heart as well as the SA node, AV node, tricuspid valve, mitral valve, aortic valve, pulmonary valve, coronary arteries, and aorta and its branches, including the vertebral arteries, without using any bulky or expensive imaging instruments. Using serotonin as a reference control substance on the different parts of the central nervous system, it was possible to demonstrate the 6 well-known raphe nuclei and the locus coeruleus (which contains serotonin & norepinephrine), as well as the distribution of serotonin in the cerebrum and the cerebellum, all of which closely resembled previously published well-known neuroanatomical structures and distributions of neurotransmitters. As an extension of this work, possible representations of different internal organs on the central nervous system were examined using microscopic slides of different internal organs as reference control substances. The results indicated that the entire heart is represented primarily in the medulla oblongata, and that the SA node and the upper half of the left atrium are represented in the caudal end of the pons; the right side of the heart (i.e. R-atrium, AV node, tricuspid valve, R-ventricle) is represented on the right side of the medulla oblongata, and the left side of the heart (i.e. lower half of the L-atrium, mitral valve, L-ventricle) is represented on the left side of the medulla oblongata, and the upper half of the left atrium is represented in the caudal end of the left side of the pons. The bottoms of the ventricles are located near the spinal cord. Furthermore, the right and the left sides of the heart are represented in specific areas of each side of the right and left hemispheres of the cerebral cortex, and there are connecting pathways between the representation areas of identical parts of the heart, through the corpus callosum and other neuro-pathways.
Color blindness among multiple sclerosis patients in Isfahan
Shaygannejad, Vahid; Golabchi, Khodayar; Dehghani, Alireza; Ashtari, Fereshteh; Haghighi, Sepehr; Mirzendehdel, Mahsa; Ghasemi, Majid
2012-01-01
Background: Multiple sclerosis (MS) is a disease of young and middle aged individuals with a demyelinative axonal damage nature in central nervous system that causes various signs and symptoms. As color vision needs normal function of optic nerve and macula, it is proposed that MS can alter it via influencing optic nerve. In this survey, we evaluated color vision abnormalities and its relationship with history of optic neuritis and abnormal visual evoked potentials (VEPs) among MS patients. Materials and Methods: The case group was included of clinically definitive MS patients and the same number of normal population was enrolled as the control group. Color vision of all the participants was evaluated by Ishihara test and then visual evoked potential (VEPs) and history of optic neuritis (ON) was assessed among them. Then, frequency of color blindness was compared between the case and the control group. Finally, color blinded patients were compared to those with the history of ON and abnormal VEPs. Results: 63 MS patients and the same number of normal populations were enrolled in this study. 12 patients had color blindness based on the Ishihara test; only 3 of them were among the control group, which showed a significant different between the two groups (P = 0.013). There was a significant relationship between the color blindness and abnormal VEP (R = 0.53, P = 0.023) but not for the color blindness and ON (P = 0.67). Conclusions: This study demonstrates a significant correlation between color blindness and multiple sclerosis including ones with abnormal prolonged VEP latencies. Therefore, in individuals with acquired color vision impairment, an evaluation for potentially serious underlying diseases like MS is essential. PMID:23267377
Cragan, Janet D; Mai, Cara T; Petersen, Emily E; Liberman, Rebecca F; Forestieri, Nina E; Stevens, Alissa C; Delaney, Augustina; Dawson, April L; Ellington, Sascha R; Shapiro-Mendoza, Carrie K; Dunn, Julie E; Higgins, Cathleen A; Meyer, Robert E; Williams, Tonya; Polen, Kara N D; Newsome, Kim; Reynolds, Megan; Isenburg, Jennifer; Gilboa, Suzanne M; Meaney-Delman, Dana M; Moore, Cynthia A; Boyle, Coleen A; Honein, Margaret A
2017-03-03
Zika virus infection during pregnancy can cause serious brain abnormalities, but the full range of adverse outcomes is unknown (1). To better understand the impact of birth defects resulting from Zika virus infection, the CDC surveillance case definition established in 2016 for birth defects potentially related to Zika virus infection* (2) was retrospectively applied to population-based birth defects surveillance data collected during 2013-2014 in three areas before the introduction of Zika virus (the pre-Zika years) into the World Health Organization's Region of the Americas (Americas) (3). These data, from Massachusetts (2013), North Carolina (2013), and Atlanta, Georgia (2013-2014), included 747 infants and fetuses with one or more of the birth defects meeting the case definition (pre-Zika prevalence = 2.86 per 1,000 live births). Brain abnormalities or microcephaly were the most frequently recorded (1.50 per 1,000), followed by neural tube defects and other early brain malformations † (0.88), eye abnormalities without mention of a brain abnormality (0.31), and other consequences of central nervous system (CNS) dysfunction without mention of brain or eye abnormalities (0.17). During January 15-September 22, 2016, the U.S. Zika Pregnancy Registry (USZPR) reported 26 infants and fetuses with these same defects among 442 completed pregnancies (58.8 per 1,000) born to mothers with laboratory evidence of possible Zika virus infection during pregnancy (2). Although the ascertainment methods differed, this finding was approximately 20 times higher than the proportion of one or more of the same birth defects among pregnancies during the pre-Zika years. These data demonstrate the importance of population-based surveillance for interpreting data about birth defects potentially related to Zika virus infection.
Pulse wave velocity and cardiac autonomic function in type 2 diabetes mellitus.
Chorepsima, Stamatina; Eleftheriadou, Ioanna; Tentolouris, Anastasios; Moyssakis, Ioannis; Protogerou, Athanasios; Kokkinos, Alexandros; Sfikakis, Petros P; Tentolouris, Nikolaos
2017-05-19
Increased carotid-femoral pulse wave velocity (PWV) has been associated with incident cardiovascular disease, independently of traditional risk factors. Cardiac autonomic dysfunction is a common complication of diabetes and has been associated with reduced aortic distensibility. However, the association of cardiac autonomic dysfunction with PWV is not known. In this study we examined the association between cardiac autonomic function and PWV in subjects with type 2 diabetes mellitus. A total of 290 patients with type 2 diabetes were examined. PWV was measured at the carotid-femoral segment with applanation tonometry. Central mean arterial blood pressure (MBP) was determined by the same apparatus. Participants were classified as having normal (n = 193) or abnormal (n = 97) PWV values using age-corrected values. Cardiac autonomic nervous system activity was determined by measurement of parameters of heart rate variability (HRV). Subjects with abnormal PWV were older, had higher arterial blood pressure and higher heart rate than those with normal PWV. Most of the values of HRV were significantly lower in subjects with abnormal than in those with normal PWV. Multivariate analysis, after controlling for various confounding factors, demonstrated that abnormal PWV was associated independently only with peripheral MBP [odds ratio (OR) 1.049, 95% confidence intervals (CI) 1.015-1.085, P = 0.005], central MBP (OR 1.052, 95% CI 1.016-1.088, P = 0.004), log total power (OR 0.490, 95% CI 0.258-0.932, P = 0.030) and log high frequency power (OR 0.546, 95% CI 0.301-0.991, P = 0.047). In subjects with type 2 diabetes, arterial blood pressure and impaired cardiac autonomic function is associated independently with abnormal PWV.
Peripheral neuropathy in children with type 1 diabetes.
Louraki, M; Karayianni, C; Kanaka-Gantenbein, C; Katsalouli, M; Karavanaki, K
2012-10-01
Diabetic neuropathy (DN) is a major complication of type 1 diabetes mellitus (T1DM) with significant morbidity and mortality in adulthood. Clinical neuropathy is rarely seen in paediatric populations, whereas subclinical neuropathy is commonly seen, especially in adolescents. Peripheral DN involves impairment of the large and/or small nerve fibres, and can be diagnosed by various methods. Nerve conduction studies (NCS) are the gold-standard method for the detection of subclinical DN; however, it is invasive, difficult to perform and selectively detects large-fibre abnormalities. Vibration sensation thresholds (VSTs) and thermal discrimination thresholds (TDTs) are quicker and easier and, therefore, more suitable as screening tools. Poor glycaemic control is the most important risk factor for the development of DN. Maintaining near-normoglycaemia is the only way to prevent or reverse neural impairment, as the currently available treatments can only relieve the symptoms of DN. Early detection of children and adolescents with nervous system abnormalities is crucial to allow all appropriate measures to be taken to prevent the development of DN. Copyright © 2012 Elsevier Masson SAS. All rights reserved.
Acute dyskinetic reaction in a healthy toddler following methylphenidate ingestion.
Waugh, Jeff L
2013-07-01
Acute dyskinetic or dystonic reactions are a long-recognized complication of medications that alter dopamine signaling. Most reactions occur following exposure to agents that block dopamine receptors (e.g., neuroleptics). However, agents that increase dopaminergic transmission (such as methylphenidate) can also trigger acute dyskinesias. This has been previously reported only in patients also taking dopamine antagonists or, less commonly, in children with developmental abnormalities. The present report describes a previously healthy toddler who developed transient torticollis and orolingual dyskinesias following accidental exposure to methylphenidate. He had no preexisting movement disorder, central nervous system injury, or developmental abnormalities--in short, none of the previously reported risk factors for this side effect. The unique features of this case led to the hypothesis that developmental shifts in dopamine signaling were the basis for his particular sensitivity to methylphenidate. If confirmed, this hypothesis has implications for the treatment of common childhood attentional and behavioral disorders. The article includes a literature review of dyskinetic/dystonic reactions in children and the developmental regulation of dopamine metabolism. Copyright © 2013 Elsevier Inc. All rights reserved.
Zika virus infection and pregnancy: what we do and do not know
Ticconi, Carlo; Pietropolli, Adalgisa; Rezza, Giovanni
2016-01-01
Recent data strongly suggest an association between the current outbreak of ZIKA virus (ZIKV) in many countries of Central and South America and a sharp increase in the detection of microcephaly and fetal malformations. The link with brain defect, which has been detected mainly in some areas of Brazil, is supported by the following evidence: (1) ZIKV transmission from infected pregnant women to their fetuses; (2) the potential of ZIKV to determine a specific congenital fetal syndrome characterized by abnormalities involving primarily the developing brain and eye. In particular, the risk of transmission and congenital disease appears to be restricted to mother’s infection during the first trimester of pregnancy. Among brain defects, microcephaly, brain calcifications, and ventriculomegaly are the most frequent abnormalities of the central nervous system detected so far. However, relevant information on effect of maternal infection with ZIKV on the fetus is still limited. In this review, we focus our attention on current knowledge about ZIKV infection in pregnancy, discussing relevant issues and open problems which merit further investigation. PMID:27690200
Brain Gut Microbiome Interactions and Functional Bowel Disorders
Mayer, Emeran A.; Savidge, Tor; Shulman, Robert J.
2014-01-01
Alterations in the bidirectional interactions between the gut and the nervous system play an important role in IBS pathophysiology and symptom generation. A body of largely preclinical evidence suggests that the gut microbiota can modulate these interactions. Characterizations of alterations of gut microbiota in unselected IBS patients, and assessment of changes in subjective symptoms associated with manipulations of the gut microbiota with prebiotics, probiotics and antibiotics support a small, but poorly defined role of dybiosis in overall IBS symptoms. It remains to be determined if the observed abnormalities are a consequence of altered top down signaling from the brain to the gut and microbiota, if they are secondary to a primary perturbation of the microbiota, and if they play a role in the development of altered brain gut interactions early in life. Different mechanisms may play role in subsets of patients. Characterization of gut microbiome alterations in large cohorts of well phenotyped patients as well as evidence correlating gut metabolites with specific abnormalities in the gut brain axis are required to answer these questions. PMID:24583088
Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth
2016-01-01
Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration. PMID:27997532
Naftelberg, Shiran; Abramovitch, Ziv; Gluska, Shani; Yannai, Sivan; Joshi, Yuvraj; Donyo, Maya; Ben-Yaakov, Keren; Gradus, Tal; Zonszain, Jonathan; Farhy, Chen; Ashery-Padan, Ruth; Perlson, Eran; Ast, Gil
2016-12-01
Familial Dysautonomia (FD) is a neurodegenerative disease in which aberrant tissue-specific splicing of IKBKAP exon 20 leads to reduction of IKAP protein levels in neuronal tissues. Here we generated a conditional knockout (CKO) mouse in which exon 20 of IKBKAP is deleted in the nervous system. The CKO FD mice exhibit developmental delays, sensory abnormalities, and less organized dorsal root ganglia (DRGs) with attenuated axons compared to wild-type mice. Furthermore, the CKO FD DRGs show elevated HDAC6 levels, reduced acetylated α-tubulin, unstable microtubules, and impairment of axonal retrograde transport of nerve growth factor (NGF). These abnormalities in DRG properties underlie neuronal degeneration and FD symptoms. Phosphatidylserine treatment decreased HDAC6 levels and thus increased acetylation of α-tubulin. Further PS treatment resulted in recovery of axonal outgrowth and enhanced retrograde axonal transport by decreasing histone deacetylase 6 (HDAC6) levels and thus increasing acetylation of α-tubulin levels. Thus, we have identified the molecular pathway that leads to neurodegeneration in FD and have demonstrated that phosphatidylserine treatment has the potential to slow progression of neurodegeneration.
Neurobehavioral development in Joubert syndrome.
Gitten, J; Dede, D; Fennell, E; Quisling, R; Maria, B L
1998-08-01
Research on children with Joubert syndrome has focused on brain structural abnormalities and associated clinical symptoms. The degree of developmental delay has not been objectively reported. We investigated the neurobehavioral development of children with Joubert syndrome through neurobehavioral assessment in the largest sample to date. Thirty-two parents of children with Joubert syndrome completed the Child Development Inventory and magnetic resonance imaging (MRI) data was gathered on 17 of these children. Results indicate that 94% were severely impaired according to the Child Development Inventory, with age being positively correlated with degree of neurobehavioral impairment. The average developmental age of our sample was 19 months (63% below chronological age). Severity of illness as measured by the General Development scale of the Child Development Inventory and severity of illness as measured by MRI (overall severity rating) did not yield consistent data regarding severity of the midbrain and cerebellar malformations. Similarly, markers of abnormal cerebral development such as cortical atrophy and delayed myelination were independent of severity of illness ratings on the Child Development Inventory. The degree of developmental delay in Joubert syndrome and the severity of gross central nervous system malformations appear independent.
Giles, Emma K; Lawrence, Andrew J; Duncan, Jhodie R
2014-09-01
This review summarizes recent research on the potential cognitive and behavioural abnormalities induced by exposure to volatile anesthetics and suggests a role of hypoxia-inducible factor (HIF)-1α in mediating these events. Volatile anesthetics are widely utilized in clinical and research settings, yet the long-term safety of exposure to these agents is under debate. Findings from various animal models suggest volatile anesthetics induce widespread apoptosis in the central nervous system (CNS) that correlates with lasting deficits in learning and memory. Longitudinal analysis of clinical data highlight an increased risk of developmental disorders later in life when children are exposed to volatile anesthetics, particularly when exposures occur over multiple sessions. However, the mechanisms underlying these events have yet to be established. Considering the extensive use of volatile anesthetics, it is crucial that these events are better understood. The possible role of HIF-1α in volatile anesthetic-induced CNS abnormalities will be suggested and areas requiring urgent attention will be outlined.
Abnormal autonomic and associated brain activities during rest in autism spectrum disorder
Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T.; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R.
2014-01-01
Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition. PMID:24424916
Testosterone Plus Finasteride Treatment After Spinal Cord Injury
2018-05-16
Spinal Cord Injury; Spinal Cord Injuries; Trauma, Nervous System; Wounds and Injuries; Central Nervous System Diseases; Nervous System Diseases; Spinal Cord Diseases; Gonadal Disorders; Endocrine System Diseases; Hypogonadism; Genital Diseases, Male
Circulatory response and autonomic nervous activity during gum chewing.
Hasegawa, Yoko; Sakagami, Joe; Ono, Takahiro; Hori, Kazuhiro; Zhang, Min; Maeda, Yoshinobu
2009-08-01
Mastication has been proven to enhance the systemic circulation, with circulatory responses seeming to be largely regulated by autonomic nervous activity via a more complex regulatory system than those of other activities. However, few studies have examined the relationships between changes in autonomic nervous activity and the systemic circulation that are induced by masticatory movement. We investigated changes in the systemic circulation and autonomic nervous activity during gum chewing to clarify the influence of mastication. Electrocardiograms, arterial blood pressure, and masseter electromyograms were taken while chewing gum continuously as indicators of systemic circulation in 10 healthy subjects with normal dentition. Cardiac sympathetic activity and vagus nervous activity, as well as vasomotor sympathetic nervous activity, were evaluated by fluctuation analysis of heart rate and blood pressure. Repeated analysis of variance and multiple comparisons were performed to determine chronological changes in each indicator during gum chewing. Gum chewing increased the heart rate and the mean arterial pressure. Although cardiac sympathetic activity and vagus nervous activity showed significant changes, vasomotor sympathetic nervous activity did not. These results suggest that changes in the autonomic nervous activity of the heart are mainly involved in the enhancement of systemic circulation with gum chewing. This explains some characteristics of autonomic nervous regulation in masticatory movement.
Stocker, Abigail; Abell, Thomas L.; Rashed, Hani; Kedar, Archana; Boatright, Ben; Chen, Jiande
2016-01-01
Background Disorders of nausea, vomiting, abdominal pain, and related problems often are manifestations of gastrointestinal, neuromuscular, and/or autonomic dysfunction. Many of these patients respond to neurostimulation, either gastric electrical stimulation or electroacupuncture. Both of these therapeutic techniques appear to influence the autonomic nervous system which can be evaluated directly by traditional testing and indirectly by heart rate variability. Methods We studied patients undergoing gastric neuromodulation by both systemic autonomic testing (39 patients, six males and 33 females, mean age 38 years) and systemic autonomic testing and heart rate variability (35 patients, seven males and 28 females, mean age 37 years) testing before and after gastric neuromodulation. We also performed a pilot study using both systemic autonomic testing and heart rate variability in a small number of patients (five patients, all females, mean age 48.6 years) with diabetic gastroparesis at baseline to compare the two techniques at baseline. Systemic autonomic testing and heart rate variability were performed with standardized techniques and gastric electrical stimulation was performed as previously described with electrodes implanted serosally in the myenteric plexus. Results Both systemic autonomic testing and heart rate variability measures were often abnormal at baseline and showed changes after gastric neuromodulation therapy in two groups of symptomatic patients. Pilot data on a small group of similar patients with systemic automatic nervous measures and heart rate variability showed good concordance between the two techniques. Conclusions Both traditional direct autonomic measures and indirect measures such as heart rate variability were evaluated, including a pilot study of both methods in the same patient group. Both appear to be useful in evaluation of patients at baseline and after stimulation therapies; however, a future full head-to-head comparison is warranted. PMID:27785318
Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Lee, Soon Il; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon
2016-11-01
Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4-29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448.
Kim, Seok Jin; Hong, Jun Sik; Chang, Myung Hee; Kim, Jeong-A; Kwak, Jae-Yong; Kim, Jin Seok; Yoon, Dok Hyun; Lee, Won Sik; Do, Young Rok; Kang, Hye Jin; Eom, Hyeon-Seok; Park, Yong; Won, Jong-Ho; Mun, Yeung-Chul; Kim, Hyo Jung; Kwon, Jung Hye; Kong, Jee Hyun; Oh, Sung Yong; Lee, Sunah; Bae, Sung Hwa; Yang, Deok-Hwan; Jun, Hyun Jung; Kim, Yang Soo; Yun, Hwan Jung; Il Lee, Soon; Kim, Min Kyoung; Park, Eun Kyung; Kim, Won Seog; Suh, Cheolwon
2016-01-01
Central nervous system involvement remains a challenging issue in the treatment of patients with diffuse large B-cell lymphoma. We conducted a prospective cohort study with newly diagnosed diffuse large B-cell lymphoma patients receiving rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone to identify incidence and risk factors for central nervous system involvement. Among 595 patients, 279 patients received pre-treatment central nervous system evaluation, and 14 patients had central nervous system involvement at diagnosis (2.3% out of entire patients and 5.0% out of the 279 patients). For those patients, median follow-up duration was 38.2 months and some of them achieved long-term survival. Out of 581 patients who did not have central nervous system involvement at diagnosis, 26 patients underwent secondary central nervous system relapse with a median follow-up of 35 months, and the median time to central nervous system involvement was 10.4 months (range: 3.4–29.2). Serum lactate dehydrogenase > ×3 upper limit of normal range, the Eastern Cooperative Oncology Group performance status ≥ 2, and involvement of sinonasal tract or testis, were independent risk factors for central nervous system relapse in multivariate analysis. Our study suggests that enhanced stratification of serum lactate dehydrogenase according to the National Comprehensive Cancer Network-International Prognostic Index may contribute to better prediction for central nervous system relapse in patients with diffuse large B-cell lymphoma. This trial was registered at clinicaltrials.gov identifier: 01202448. PMID:27713132
Gengo, F M; Gabos, C
1988-07-01
The most common mild side effects occurring with use of beta-blockers, thiazide diuretics, and angiotensin-converting enzyme inhibitors for blood pressure control are central nervous system symptoms, specifically lethargy, sedation, and fatigue. These symptoms affect 5% to 10% of patients taking these drugs. The mechanism by which beta-blockers may induce central nervous system effects is uncertain. Relative lipophilicity as a factor affecting penetrance of the blood-brain barrier has not proved to be a reliable predictor of whether the drug will cause such disturbances. Comparisons of atenolol (hydrophilic) and metoprolol (lipophilic) have shown no differences between these drugs with respect to side effects of the central nervous system. The incidence of central nervous system effects with angiotensin-converting enzyme inhibitors is similar to that for most beta-blockers. The precise role of the angiotensin-converting enzyme in the central nervous system is not well defined. Most thiazide diuretics are not associated with major complications of the central nervous system, although electrolyte imbalance may occasionally lead to complaints of neurologic symptoms. Because the incidence of central nervous system effects with these three classes of drugs is so low, concern for the side effects of the central nervous system is not a prime consideration in the choice of an initial antihypertensive agent.
2013-05-01
Childhood Atypical Teratoid/Rhabdoid Tumor; Childhood Central Nervous System Choriocarcinoma; Childhood Central Nervous System Embryonal Tumor; Childhood Central Nervous System Germinoma; Childhood Central Nervous System Mixed Germ Cell Tumor; Childhood Central Nervous System Teratoma; Childhood Central Nervous System Yolk Sac Tumor; Childhood Choroid Plexus Tumor; Childhood Craniopharyngioma; Childhood Ependymoblastoma; Childhood Grade I Meningioma; Childhood Grade II Meningioma; Childhood Grade III Meningioma; Childhood High-grade Cerebellar Astrocytoma; Childhood High-grade Cerebral Astrocytoma; Childhood Infratentorial Ependymoma; Childhood Low-grade Cerebellar Astrocytoma; Childhood Low-grade Cerebral Astrocytoma; Childhood Medulloepithelioma; Childhood Mixed Glioma; Childhood Oligodendroglioma; Childhood Supratentorial Ependymoma; Extra-adrenal Paraganglioma; Recurrent Childhood Brain Stem Glioma; Recurrent Childhood Central Nervous System Embryonal Tumor; Recurrent Childhood Cerebellar Astrocytoma; Recurrent Childhood Cerebral Astrocytoma; Recurrent Childhood Ependymoma; Recurrent Childhood Medulloblastoma; Recurrent Childhood Pineoblastoma; Recurrent Childhood Spinal Cord Neoplasm; Recurrent Childhood Subependymal Giant Cell Astrocytoma; Recurrent Childhood Supratentorial Primitive Neuroectodermal Tumor; Recurrent Childhood Visual Pathway and Hypothalamic Glioma
Shumskikh, D S; Rakhmanov, R S; Orlov, A L
2015-01-01
There was developed the PC software, which demonstrates the type of nervous system, allows us to differentiate people according to the empirical coefficient within groups with the same type of nervous system, provides information on the severity of the asymmetry of the hemispheres of the brain and shows the results of performance of the work It does not require additional calculations. With its use there were examined 1 and 2 courses students of the institution. Ehpyky was performed the comparative analysis of the progress of students with different types of nervous system. The academic performance in the examinees with a strong type of nervous system was significantly higher than in those with a weak type. In order to improve professional training the assessment of the type of the nervous system can be used in the educational process for the identification and correction of students with a weak nervous system.
[Research progress of functional magnetic resonance imaging in mechanism studies of tinnitus].
Ji, B B; Li, M; Zhang, J N
2018-02-07
Tinnitus is a subjective symptom of phantom sound in the ear or brain without sound or electrical stimulation in the environment. The mechanism of tinnitus is complicated and mostly unclear. Recent studies suggested that the abnormal peripheral auditory input lead to neuroplasticity changes in central nervous system followed by tinnitus. More research concerned on the tinnitus central mechanism. A rapid development of functional magnetic resonance imaging (fMRI) technique made it more widely used in tinnitus central mechanism research. fMRI brought new findings but also presented some shortages in technology and cognition in tinnitus study. This article summarized the outcomes of fMRI research on tinnitus in recent years, exploring its existing problems and application prospects.
Maternal and congenital toxoplasmosis, currently available and novel therapies in horizon
Oz, Helieh S.
2014-01-01
Over one billion people worldwide are predicted to harbor Toxoplasma infection frequently with unknown lifelong health consequences. Toxoplasmosis is an important cause of foodborne, inflammatory illnesses, as well as congenital abnormalities. Ubiquitous Toxoplasma has a unique tropism for central nervous system with a mind-bugging effect and is transmitted sexually through semen. Currently available therapies are ineffective for persistent chronic disease and congenital toxoplasmosis or have severe side effects which may result in life-threatening complications. There is an urgent need for safe and effective therapies to eliminate or treat this cosmopolitan infectious and inflammatory disease. This investigation discusses pathogenesis of maternal and congenital toxoplasmosis, the currently available therapies in practice, and the experimental therapeutic modalities for promising future trials. PMID:25104952
Dyspepsia in childhood and adolescence: insights and treatment considerations.
Perez, Maria E; Youssef, Nader N
2007-12-01
Functional dyspepsia (FD) is common in children, with as many as 80% of those being evaluated for chronic abdominal pain reporting symptoms of epigastric discomfort, nausea, or fullness. It is known that patients with persistent complaints have increased comorbidities such as depression and anxiety. The interaction with psychopathologic variables has been found to mediate the association between upper abdominal pain and gastric hypersensitivity. These observations suggest that abnormal central nervous system processing of gastric stimuli may be a relevant pathophysiologic mechanism in FD. Despite increased understanding, no specific therapy has emerged; however, recent nonpharmacological-based options such as hypnosis may be effective. Novel approaches, including dietary manipulation and use of nutraceuticals such as ginger and Iberogast (Medical Futures Inc., Ontario, Canada), may also be considered.
Greene, Nicholas D.E.; Copp, Andrew J.
2015-01-01
Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies. PMID:25032496
Menekse, Guner; Mert, Mustafa Kurthan; Olmaz, Burak; Celik, Tamer; Celik, Umit Sizmaz; Okten, Ali Ihsan
2015-01-01
Amniotic band syndrome is a group of sporadic congenital anomalies that involve the limbs, craniofacial regions and trunk, ranging from simple digital band constriction to complex craniofacial and central nervous system abnormalities. Placento-cranial adhesions in amniotic band syndrome are extremely rare, and severe conditions are associated with high morbidity and mortality rates. In this study, we pooled placento-cranial adhesion case reports that were published in the medical literature and added an unpublished case from our institution. The purpose of this article was to review and discuss the clinical features and outcomes of placento-cranial adhesions in amniotic band syndrome. © 2015 S. Karger AG, Basel.
The neurologic evaluation of patients with low-tension glaucoma.
Corbett, J J; Phelps, C D; Eslinger, P; Montague, P R
1985-08-01
One hypothesized cause of low-tension glaucoma is chronic or intermittent ischemia of the optic nerve. Since the optic nerve and brain are both parts of the central nervous system and share a common blood supply, the authors wondered if patients with low-tension glaucoma might also have clinical or radiographic evidence of cerebral atrophy. In this study, 27 patients with low-tension glaucoma were examined using neurobehavioral testing, electroencephalography, computerized tomographic scan, neurological history, and physical examination. In only a small number of patients were these tests abnormal. However, 12 of the 27 patients gave a history of common or classic migraine. This unexpected finding raises the possibility that migraine-related ischemia might be the pathogenic mechanism in some cases of low-tension glaucoma.
Kiliç, Ebru Tarikçi; Gerenli, Nelgin; Akdemir, Mehmet Salim; Tastan, Necmi Onur; Atag, Egemen
2018-01-01
Leigh syndrome (LS) is a rare disease mainly affecting the central nervous system due to the abnormalities of mitochondrial energy generation and seen in early childhood with progressive loss of movement, mental abilities, seizures, nystagmus, ophthalmoparesis, optic atrophy, ataxia, dystonia, or respiratory failure. Anesthesia and surgery exacerbate the risks of aspiration, wheezing, and breathing difficulties. Tracheal irritability can be stimulated with the efforts of intubation. We report the anesthetic management of a rare case of an 11-year-old boy with a severe form of LS for percutaneous endoscopic gastrostomy insertion. The patient was closely monitored during the procedure and the postoperative period. Carefully chosen anesthetic agents, good pain control, and close monitoring are essential. PMID:29628597
Abnormal Motor Phenotype at Adult Stages in Mice Lacking Type 2 Deiodinase
Gómez-Andrés, David; Pulido-Valdeolivas, Irene; Montero-Pedrazuela, Ana; Obregon, Maria Jesus; Guadaño-Ferraz, Ana
2014-01-01
Background Thyroid hormones have a key role in both the developing and adult central nervous system and skeletal muscle. The thyroid gland produces mainly thyroxine (T4) but the intracellular concentrations of 3,5,3′-triiodothyronine (T3; the transcriptionally active hormone) in the central nervous system and skeletal muscle are modulated by the activity of type 2 deiodinase (D2). To date no neurological syndrome has been associated with mutations in the DIO2 gene and previous studies in young and juvenile D2-knockout mice (D2KO) did not find gross neurological alterations, possibly due to compensatory mechanisms. Aim This study aims to analyze the motor phenotype of 3-and-6-month-old D2KO mice to evaluate the role of D2 on the motor system at adult stages in which compensatory mechanisms could have failed. Results Motor abilities were explored by validated tests. In the footprint test, D2KO showed an altered global gait pattern (mice walked slower, with shorter strides and with a hindlimb wider base of support than wild-type mice). No differences were detected in the balance beam test. However, a reduced latency to fall was found in the rotarod, coat-hanger and four limb hanging wire tests indicating impairment on coordination and prehensile reflex and a reduction of muscle strength. In histological analyses of cerebellum and skeletal muscle, D2KO mice did not present gross structural abnormalities. Thyroid hormones levels and deiodinases activities were also determined. In D2KO mice, despite euthyroid T3 and high T4 plasma levels, T3 levels were significantly reduced in cerebral cortex (48% reduction) and skeletal muscle (33% reduction), but not in the cerebellum where other deiodinase (type 1) is expressed. Conclusions The motor alterations observed in D2KO mice indicate an important role for D2 in T3 availability to maintain motor function and muscle strength. Our results suggest a possible implication of D2 in motor disorders. PMID:25083788
Is panic disorder a disorder of physical fitness? A heuristic proposal.
Perna, Giampaolo; Caldirola, Daniela
2018-01-01
Currently, panic disorder (PD) is considered a mental disorder based on the assumptions that panic attacks (PAs) are "false alarms" that arise from abnormally sensitive defense systems in the central nervous system and that PD is treated with therapies specifically acting on anxiety or fear mechanisms. This article aims to propose an alternative perspective based on the results of some experimental studies. Our heuristic proposal suggests not only that PD may be a mental disorder but also that patients with PD have real abnormal body functioning, mainly involving cardiorespiratory and balance systems, leading to a decline in global physical fitness. PAs, as well as physical symptoms or discomfort in some environmental situations, may be "real alarms" signaling that the adaptability resources of an organism are insufficient to respond appropriately to some internal or external changes, thus representing the transient conscious awareness of an imbalance in body functioning. The antipanic properties of several modern treatments for PD may include their beneficial effects on body functions. Although anxiety or fear mechanisms are evidently involved in PD, we hypothesize that a reduction of physical fitness is the "primum movens" of PD, while anxiety or fear is induced and sustained by repeated signals of impaired body functioning. We propose considering panic in a broader perspective that offers a central role to the body and to contemplate the possible role of somatic treatments in PD.
Is panic disorder a disorder of physical fitness? A heuristic proposal
Perna, Giampaolo; Caldirola, Daniela
2018-01-01
Currently, panic disorder (PD) is considered a mental disorder based on the assumptions that panic attacks (PAs) are “false alarms” that arise from abnormally sensitive defense systems in the central nervous system and that PD is treated with therapies specifically acting on anxiety or fear mechanisms. This article aims to propose an alternative perspective based on the results of some experimental studies. Our heuristic proposal suggests not only that PD may be a mental disorder but also that patients with PD have real abnormal body functioning, mainly involving cardiorespiratory and balance systems, leading to a decline in global physical fitness. PAs, as well as physical symptoms or discomfort in some environmental situations, may be “real alarms” signaling that the adaptability resources of an organism are insufficient to respond appropriately to some internal or external changes, thus representing the transient conscious awareness of an imbalance in body functioning. The antipanic properties of several modern treatments for PD may include their beneficial effects on body functions. Although anxiety or fear mechanisms are evidently involved in PD, we hypothesize that a reduction of physical fitness is the “primum movens” of PD, while anxiety or fear is induced and sustained by repeated signals of impaired body functioning. We propose considering panic in a broader perspective that offers a central role to the body and to contemplate the possible role of somatic treatments in PD. PMID:29623195
Cutis tricolor: a literature review and report of five new cases
Polizzi, Agata; Schepis, Carmelo; Morano, Massimiliano; Strano, Serena; Belfiore, Giuseppe; Palmucci, Stefano; Foti, Pietro Valerio; Pirrone, Concetta; Roggini, Mario; David, Emanule; Salpietro, Vincenzo; Milone, Pietro
2016-01-01
Background Cutis tricolor is a skin abnormality consisting in a combination of congenital hyper- and hypopigmented skin lesions (in the form of paired macules, patches or streaks) in close proximity to each other in a background of normal skin. It is currently regarded as a twin-spotting (mosaic) phenomenon and today is clear that not all cases of cutis tricolor represent one single entity. This phenomenon has been reported so far either: (I) as an purely cutaneous trait; (II) as a part of a complex malformation phenotype (Ruggieri-Happle syndrome, RHS) including distinct facial features, eye (cataract), skeletal (skull and vertebral defects, and long bones dysplasia), nervous system (corpus callosum, cerebellar and white matter anomalies, cavum vergae and holoprosencephaly) and systemic abnormalities; (III) as a distinct type with multiple, disseminated smaller skin macules (cutis tricolor parvimaculata); and (IV) in association with other skin disturbances [e.g., cutis marmorata telangectasica congenita (phacomatosis achromico-melano-marmorata)] or in the context of other skin (e.g., ataxia-telangiectasia and phacomatosis pigmentovascularis, PPV) or complex malformation phenotypes (e.g., microcephaly and dwarfism). Methods (I) Review of the existing literature; and (II) information on our personal experience (clinical, laboratory and imaging data) on new cases with cutis tricolor seen and followed-up at our institutions during years 2010–2016. Results The existing literature revealed 19 previous studies (35 cases) with pure cutaneous or syndromic cutis tricolor phenomena. Our personal experience included 5 unpublished patients (3 boys; 2 girls; currently aged 2 to 14 years) seen and followed-up at our Institutions in Italy who had: (I) skin manifestations of the cutis tricolor type (N=5); (II) skeletal abnormalities including small skull (n=2), obtuse angle of mandible (n=3), mild to moderate scoliosis (n=3), vertebral defects (n=3), and long bones bowing (n=3); mild psychomotor delay (n=3); epilepsy (n=2); anomalies of the corpus callosum (n=3); and cavum vergae (n =2). Conclusions This study further confirms and expands the overall phenotype of cutis tricolor. By literature review and personal experience we conclude that the skin abnormalities of the cutis tricolor type are stable over time; the skeletal defects are mild to moderate and do not progress or cause relevant orthopaedic complications; the neurological/behavioural phenotype does not progress and the paroxysmal events (when present) tend to decrease over time; there is a typical facial phenotype in some patients (long, elongated face, thick and brushy eyebrows, hypertelorism, deep nasal bridge with large bulbous nose and anteverted nostrils), which characterizes a somewhat distinct syndromic phenotype; some patients may develop early onset cataracts. The allelic dydymotic hypothesis of post-zygotic mutations likely involving the same gene loci could well explain the overall skin, bone, lens and nervous system phenomena of migration of different streaks of clones in the different tissues. PMID:27942472
How Does Imaging of Congenital Zika Compare with Imaging of Other TORCH Infections?
Levine, Deborah; Jani, Jacques C; Castro-Aragon, Ilse; Cannie, Mieke
2017-12-01
The acronym TORCH is used to refer to congenital infections, such as toxoplasmosis, other infections (such as syphillis, varicella-zoster, and parvovirus B19), cytomegalovirus, and herpes simplex virus. The classic findings in patients with TORCH infections include rash in the mother during pregnancy and ocular findings in the newborn. Zika virus has emerged as an important worldwide congenital infection. It fits well with other congenital TORCH infections since there is a rash in the mother and there are commonly ocular abnormalities in the newborn. TORCH infections are recognized to have neurologic effects, such as ventriculomegaly, intraventricular adhesions, subependymal cysts, intracerebral calcifications, and microcephaly; however, the Zika virus is intensely neurotropic. Thus, it targets neural progenitor cells, leading to a more severe spectrum of central nervous system abnormalities than is typically seen in other TORCH infections, while relatively sparing the other organ systems. In this review, nonspecific findings of congenital infections initially will be described, then individual TORCH infections will be described and compared with the imaging findings associated with congenital Zika virus infection. For the radiologist, awareness of imaging features of common congenital infections may facilitate early diagnosis and may, at times, lead to prompt initiation of therapy. Online supplemental material is available for this article.
Rostami-Nejad, Mohammad; Haldane, Thea; AlDulaimi, David; Alavian, Seyed Moayed; Zali, Mohammad Reza; Rostami, Kamran
2013-01-01
Context Celiac disease (CD) is defined as a permanent intolerance to ingested gluten. The intolerance to gluten results in immune-mediated damage of small intestine mucosa manifested by villous atrophy and crypt hyperplasia. These abnormalities resolve with initiationa gluten-free diet. Evidence Acquisition PubMed, Ovid, and Google were searched for full text articles published between 1963 and 2012. The associated keywords were used, and papers described particularly the impact of celiac disease on severity of liver disorder were identified. Results Recently evidence has emerged revealingthat celiac disease not only is associated with small intestine abnormalities and malabsorption, but is also a multisystem disorder affecting other systems outside gastrointestinal tract, including musculo-skeletal, cardiovascular and nervous systems. Some correlations have been assumed between celiac and liver diseases. In particular, celiac disease is associated with changes in liver biochemistry and linked to alter the prognosis of other disorders. This review will concentrate on the effect of celiac disease and gluten-free diets on the severity of liver disorders. Conclusions Although GFD effect on the progression of CD associated liver diseases is not well defined, it seems that GFD improves liver function tests in patients with a hypertransaminasemia. PMID:24348636
Autonomic dysfunction and osteoporosis after electrical burn.
Roshanzamir, Sharareh; Dabbaghmanesh, Mohammad Hossein; Dabbaghmanesh, Alireza; Nejati, Solmaz
2016-05-01
Several studies have shown the importance of the sympathetic nervous system in bone metabolism. There is an evidence of sympathetic skin response (SSR) impairment in electrical burn patients up to 2 years after their injuries. The acute phase of burn is accompanied by increased bone resorption. Whether the prolonged dysfunction of sympathetic nervous system may result in bone metabolism derangement even after the acute phase of electrical burn is the inspiring question for this study. And we tried to find correlation between SSR abnormality and areal bone mineral density (BMD) in electrical burn patients 6 months or more after the incidents. 42 electrical burn patients (≥6 months prior to study) who did not have a known joint or bone disease, history of neuropathy (central or peripheral), diabetes mellitus or consumption of any drug affecting the autonomic nervous system or evidence of neuropathy in nerve conduction study were recruited. We also gathered a control group of 50 healthy subjects (without electrical burn or the exclusion criteria). They went under dual energy X-ray absorptiometry and SSR study. Data were analyzed statistically with SPSS 16.0 making use of independent t-test and Pearson correlation coefficient. P<0.05 was considered significant statistically. Areal BMD was significantly lower in electrical burn patients than control group (P<0.001). SSR latency was significantly prolonged and its amplitude was significantly reduced in burn patients compared to control group (P<0.001). In burn patients there was an inverse correlation of areal BMD of lumbar vertebrae, left femur neck and total femur with SSR latency and a direct correlation of areal BMD with SSR amplitude. In control group there was just direct correlation of areal BMD of lumbar vertebrae and left femur neck with SSR amplitude. Electrical burn patients are at risk of reduced areal BMD long after their injuries. Sympathetic derangement and impaired SSR are correlated with reduction in areal BMD in these patients. Copyright © 2015 Elsevier Ltd and ISBI. All rights reserved.
Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A.W.; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M.; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J.; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G.; Humeau, Yann; Schenck, Annette; Herault, Yann
2015-01-01
ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2Camk2aCre/0 mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2Camk2aCre/0 mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2Camk2aCre/0 mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2Camk2aCre/0 mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. PMID:26376863
Dubos, Aline; Castells-Nobau, Anna; Meziane, Hamid; Oortveld, Merel A W; Houbaert, Xander; Iacono, Giovanni; Martin, Christelle; Mittelhaeuser, Christophe; Lalanne, Valérie; Kramer, Jamie M; Bhukel, Anuradha; Quentin, Christine; Slabbert, Jan; Verstreken, Patrik; Sigrist, Stefan J; Messaddeq, Nadia; Birling, Marie-Christine; Selloum, Mohammed; Stunnenberg, Henk G; Humeau, Yann; Schenck, Annette; Herault, Yann
2015-12-01
ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system. © The Author 2015. Published by Oxford University Press.
ERIC Educational Resources Information Center
Gordon, Tessa; Gordon, Karen
2010-01-01
Schwann cells normally form myelin sheaths around axons in the peripheral nervous system (PNS) and support nerve regeneration after nerve injury. In contrast, nerve regeneration in the central nervous system (CNS) is not supported by the myelinating cells known as oligodendrocytes. We have found that: 1) low frequency electrical stimulation can be…
Maccallini, Paolo; Bonin, Serena; Trevisan, Giusto
2018-01-01
Some patients with a history of Borrelia burgdorferi infection develop a chronic symptomatology characterized by cognitive deficits, fatigue, and pain, despite antibiotic treatment. The pathogenic mechanism that underlines this condition, referred to as post-treatment Lyme disease syndrome (PTLDS), is currently unknown. A debate exists about whether PTLDS is due to persistent infection or to post-infectious damages in the immune system and the nervous system. We present the case of a patient with evidence of exposure to Borrelia burgdorferi sl and a long history of debilitating fatigue, cognitive abnormalities and autonomic nervous system issues. The patient had a positive Western blot for anti-basal ganglia antibodies, and the autoantigen has been identified as γ enolase, the neuron-specific isoenzyme of the glycolytic enzyme enolase. Assuming Borrelia own surface exposed enolase as the source of this autoantibody, through a mechanism of molecular mimicry, and given the absence of sera reactivity to α enolase, a bioinformatical analysis was carried out to identify a possible cross-reactive conformational B cell epitope, shared by Borrelia enolase and γ enolase, but not by α enolase. Taken that evidence, we hypothesize that this autoantibody interferes with glycolysis in neuronal cells, as the physiological basis for chronic symptoms in at least some cases of PTLDS. Studies investigating on the anti-γ enolase and anti-Borrelia enolase antibodies in PTLDS are needed to confirm our hypotheses. Copyright © 2017 Elsevier Ltd. All rights reserved.
Sarcoidosis of the central nervous system: clinical features, imaging, and CSF results.
Kidd, Desmond P
2018-06-19
Neurological complications of systemic sarcoidosis are uncommon and the natural history and optimal treatments under-researched. With the advent of modern biological therapies, it is important to define the clinical characteristics and immunopathology of the disease. Patients referred to and treated within the Centre for Neurosarcoidosis over a 15 year period who had biopsy-proven "highly probable" disease of the central nervous system were studied prospectively. 166 patients were studied, of whom two-thirds had involvement of the brain and spinal cord and the remainder cranial neuropathies and radiculopathy. Imaging was abnormal in all those with meningeal and parenchymal diseases, and was normal in 37% of those with cranial neuropathy. Those with leptomeningeal disease had a more severe disorder, with hydrocephalus and tissue destruction, whereas those with pachymeningeal disease had more striking imaging features but less neurological impairment. The CSF was active in 70% of cases, even when imaging was normal. Disability correlated with CSF indices in those with a leptomeningitis. Oligoclonal bands were seen in 30% of cases and correlated with disability and the presence of hydrocephalus. Unmatched bands were seen only in isolated neurological disease. This prospective study of neurosarcoidosis increases our understanding of the pathophysiology of the disease. A reclassification of the clinical and imaging features of the disease allows an understanding of its pathophysiology and correlation with CSF indices allows an early identification of those with a more destructive disease will help to define treatment and may thereby improve outcome.
The central nervous system is composed of the brain and spinal cord. Your brain and spinal cord serve as the main "processing center" for your entire nervous system. They control all the workings of your body.
Hypothyroid-associated central vestibular disease in 10 dogs: 1999-2005.
Higgins, Michael A; Rossmeisl, John H; Panciera, David L
2006-01-01
With the exception of myxedema coma, central nervous system signs are rare in hypothyroid dogs. Central vestibular dysfunction is a possible and reversible manifestation of hypothyroidism. Medical records of dogs with vestibular dysfunction and hypothyroidism were reviewed. Of 113 records identified, 10 dogs with at least 2 concurrent clinical neurologic abnormalities localizable to the central vestibular system were included. Retrospective, descriptive study. Median age at diagnosis was 7 years (range, 5-10 years). All dogs were referred for progressive neurologic disease. Lesions were localized to the myelencephalic region in 5 dogs and to the vestibulocerebellum in 5 dogs. Two dogs had evidence of multifocal intracranial disease. Non-neurologic physical abnormalities suggestive of hypothyroidism were absent in 7 of 10 dogs. Hypercholesterolemia was the only consistent clinicopathologic abnormality detected, and was present in 7 of 10 dogs. All dogs had total thyroxine (TT4) and free thyroxine (fT4) concentrations below reference ranges, and 9 of 10 had increased TSH concentrations. Intracranial imaging studies were normal in 5 of 8 dogs, and identified lesions consistent with infarctions in 3 of 8 dogs. Albuminocytologic dissociation was detected in 5 of 6 CSF analyses. Brainstem auditory-evoked responses disclosed prolonged wave V latencies in 3 of 4 dogs tested. No other causes of central vestibular dysfunction were identified during other diagnostic investigations. The median time from initiation of treatment to clinical improvement was 4 days. Vestibular signs resolved in 9 of 10 dogs within 4 weeks. Although the pathogenesis in dogs without evidence of infarction is unknown, central vestibular dysfunction appears to be a rare but reversible neurologic sequelae of hypothyroidism.
Takada, Shigeki; Hojo, Masato; Takebe, Noriyoshi; Tanigaki, Kenji; Miyamoto, Susumu
2018-06-07
Hemangioblastomas (HBs) are benign vascular tumors of the central nervous system and histologically contain abundant microvessels. Therefore, they clinically exhibit vascular malformation-like characteristics. It has been described that endothelial-to-mesenchymal transition (EndMT) contributes to the pathogenesis of cerebral cavernous malformations. However, it remains unknown whether EndMT contributes to the pathogenesis of central nervous system HBs. The aim of our study was to investigate whether EndMT occurs in central nervous system HBs. Ten central nervous system HBs were immunohistochemically investigated. CD31 (an endothelial marker) and EndMT markers, such as α-smooth muscle actin (a mesenchymal marker) and CD44 (a mesenchymal stem cell marker), were expressed in the endothelial layer of microvessels in all cases. These findings suggest that endothelial cells (ECs) of microvessels in central nervous system HBs have acquired mesenchymal and stem-cell-like characteristics and undergone EndMT. In all cases, both ephrin-B2 and EphB4, which are not detected in adult normal brain vessels, were expressed in the endothelial layer of microvessels. These data suggest that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. This is the first report showing the possibility that EndMT contributes to the pathogenesis of central nervous system HBs. It is likely that ECs of microvessels in central nervous system HBs are immature or malformed cells and have both arterial and venous characteristics. EndMT is expected to be a new therapeutic target in central nervous system HBs. Copyright © 2018 Elsevier Inc. All rights reserved.
The Human Sympathetic Nervous System Response to Spaceflight
NASA Technical Reports Server (NTRS)
Ertl, Andrew C.; Diedrich, Andre; Paranjape, Sachin Y.; Biaggioni, Italo; Robertson, Rose Marie; Lane, Lynda D.; Shiavi, Richard; Robertson, David
2003-01-01
The sympathetic nervous system is an important part of the autonomic (or automatic) nervous system. When an individual stands up, the sympathetic nervous system speeds the heart and constricts blood vessels to prevent a drop in blood pressure. A significant number of astronauts experience a drop in blood pressure when standing for prolonged periods after they return from spaceflight. Difficulty maintaining blood pressure with standing is also a daily problem for many patients. Indirect evidence available before the Neurolab mission suggested the problem in astronauts while in space might be due partially to reduced sympathetic nervous system activity. The purpose of this experiment was to identify whether sympathetic activity was reduced during spaceflight. Sympathetic nervous system activity can be determined in part by measuring heart rate, nerve activity going to blood vessels, and the release of the hormone norepinephrine into the blood. Norepinephrine is a neurotransmitter discharged from active sympathetic nerve terminals, so its rate of release can serve as a marker of sympathetic nervous system action. In addition to standard cardiovascular measurements (heart rate, blood pressure), we determined sympathetic nerve activity as well as norepinephrine release and clearance on four crewmembers on the Neurolab mission. Contrary to our expectation, the results demonstrated that the astronauts had mildly elevated resting sympathetic nervous system activity in space. Sympathetic nervous system responses to stresses that simulated the cardiovascular effects of standing (lower body negative pressure) were brisk both during and after spaceflight. We concluded that, in the astronauts tested, the activity and response of the sympathetic nervous system to cardiovascular stresses appeared intact and mildly elevated both during and after spaceflight. These changes returned to normal within a few days.
Stages of Childhood Soft Tissue Sarcoma
... lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
Treatment Options for Childhood Soft Tissue Sarcoma
... lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
Pryor, G T; Rebert, C S
1992-01-01
Solvent mixtures are ubiquitous in industrialized environments and are used frequently for recreational purposes. Toluene and hexane are common components of many solvent mixtures and have characteristic, but different, neurotoxic consequences. Interestingly, Takeuchi et al., (1981) reported that toluene attenuated the peripheral neuropathy caused by n-hexane, possibly by blocking its metabolism to 2,5-hexanedione (Perbellini, et al., 1982). To confirm such effects at higher concentrations and to examine effects on the central nervous system (CNS), four groups of 12 rats each were exposed to air, toluene (1200 ppm), hexane (4000 ppm), or a mixture of toluene (1200 ppm) and hexane (4,000 ppm) 14 hr/day for 9 weeks. A battery of behavioral and electrophysiologic tests was used to assess the functional consequences of their exposures. The battery consisted of measures of grip strength, locomotor gait and landing splay, sensory sensitivities during conditioned avoidance performance, the action potential of the ventral caudal nerve, and the brainstem auditory evoked response. Measures of peripheral nervous system functions (e.g., grip strength and conduction velocity) showed interactive effects like those reported by Takeuchi et al. Toluene greatly reduced the neuropathy caused by hexane. Hexane-induced abnormalities in central components of the brainstem response were much less reduced in the presence of toluene. There was no reciprocal action of hexane on the motor syndrome and hearing loss caused by toluene.
Associated malformations among infants with anophthalmia and microphthalmia.
Stoll, Claude; Dott, Beatrice; Alembik, Yves; Roth, Marie-Paule
2012-03-01
Infants with anophthalmia and microphthalmia frequently have other associated congenital anomalies. The reported frequency and types of associated malformations vary among different studies. The purpose of this investigation was to assess the frequency and types of associated malformations among infants with anophthalmia and microphthalmia in a geographically well defined population from 1979 to 2004 of 346,831 consecutive births. Of the 87 infants with anophthalmia and microphthalmia born during this period (prevalence at birth, 2.5 per 10,000), 90% had associated malformations. Infants with associated malformation were divided into recognizable conditions (22 infants [25%] with chromosomal and 15 infants [17%] with nonchromosomal conditions), and nonrecognizable conditions (41 infants [47%] with multiple malformations). Trisomies 13 and 18 were the most frequent chromosomal abnormalities. Amniotic bands sequence, CHARGE syndrome, Meckel-Gruber syndrome, and VACTERL association were most often present in recognizable nonchromosomal conditions. Malformations in the musculoskeletal, cardiovascular, and central nervous systems were the most common other anomalies in infants with multiple malformations and nonrecognizable conditions. The frequency of associated malformations in infants with anophthalmia or microphthalmia emphasizes the need for a thorough investigation of these infants. Routine screening for other malformations-especially musculoskeletal, cardiac, and central nervous system anomalies-may need to be considered in infants with anophthalmia or microphthalmia, and referral of these infants for genetics evaluation and counseling seems warranted. Copyright © 2012 Wiley Periodicals, Inc.
Starks, Sarah E.; Hoppin, Jane A.; Kamel, Freya; Lynch, Charles F.; Jones, Michael P.; Alavanja, Michael C.; Sandler, Dale P.
2012-01-01
Background: Evidence is limited that long-term human exposure to organophosphate (OP) pesticides, without poisoning, is associated with adverse peripheral nervous system (PNS) function. Objective: We investigated associations between OP pesticide use and PNS function by administering PNS tests to 701 male pesticide applicators in the Agricultural Health Study (AHS). Methods: Participants completed a neurological physical examination (NPx) and electrophysiological tests as well as tests of hand strength, sway speed, and vibrotactile threshold. Self-reported information on lifetime use of 16 OP pesticides was obtained from AHS interviews and a study questionnaire. Associations between pesticide use and measures of PNS function were estimated with linear and logistic regression controlling for age and outcome-specific covariates. Results: Significantly increased odds ratios (ORs) were observed for associations between ever use of 10 of the 16 OP pesticides and one or more of six NPx outcomes. Most notably, abnormal toe proprioception was significantly associated with ever use of 6 OP pesticides, with ORs ranging from 2.03 to 3.06; monotonic increases in strength of association with increasing use was observed for 3 of the 6 pesticides. Mostly null associations were observed between OP pesticide use and electrophysiological tests, hand strength, sway speed, and vibrotactile threshold. Conclusions: This study provides some evidence that long-term exposure to OP pesticides is associated with signs of impaired PNS function among pesticide applicators. PMID:22262687
Alrawashdeh, Omar; Alsbou, Mohammad; Alzoubi, Hamed; Al-shagahin, Hani
2017-01-01
Alkaptonuria is a rare metabolic disease characterised by accumulative deposition of homogentisic acid in the connective tissue of the body. This results in early degeneration of tendons, cartilages, heart valves, and other tissues. The main objective of the study is to examine the possibility of the nervous system involvement in patients with alkaptonuria The sample consists of two groups; 22 patients with AKU and 20 controls. A neurological assessment has been carried out including detailed medical history, neurological examination, and a nerve conduction study of the nerves of the dominant hand. The prevalence of any abnormality was compared between the two groups using chi square test. The mean values of the nerve conduction study were compared between the two groups using student t-test. There was a higher prevalence of low back pain, hearing problems and tinnitus, numbness and neuropathic pain in alkaptonuria patients. There was no significant difference between the two groups in other conditions such as seizures, headache, and syncope. The values of the nerve conduction study did not show significant difference between the two groups. Neurologically related symptoms in alkaptonuria mostly represent complications of the connective tissue degeneration rather than direct involvement of the nervous system. This has been supported further by the normal findings of the neurophysiology study in patients with alkaptonuria. PMID:28217270
Udayakumaran, Suhas; Onyia, Chiazor U
2015-05-01
Beckwith-Wiedemann syndrome (BWS) is an unusual complex of abnormalities that includes mainly omphalocele, macroglossia, gigantism, visceromegaly, and neonatal hypoglycemia. Type I Chiari malformation, on the other hand, is defined as ectopia of the cerebellar tonsils below the plane of the foramen magnum. Only one case of association of BWS with Chiari I malformation has been previously reported in the literature. Several conditions involving congenital hemihypertrophy have been previously reported in association with Type I Chiari malformation. The pathophysiological mechanism for most of these associations is thought to be quite complex and still remains unclear. However, the presence of tonsillar herniation in BWS has been explained by Tubbs and Oakes in the only one existing case report of BWS with Type I Chiari malformation in the literature, to be due to associated hemihypertrophy of the skull base. We additionally suggest that cerebellar hypertrophy may also contribute to the tonsillar herniation and fourth ventricular outlet obstruction. We now report our recent experience on this association following a review of the literature on association of other hemihypertrophy syndromes with the central nervous system anomalies. We believe that a common pathogenesis of Type I Chiari malformation occurs in conditions of hemihypertrophy including BWS, probably secondary to dysmorphology involving the posterior cranial fossa, and is not just an associated finding.
Clinical-Radiologic Correlation of Extraocular Eye Movement Disorders: Seeing beneath the Surface.
Thatcher, Joshua; Chang, Yu-Ming; Chapman, Margaret N; Hovis, Keegan; Fujita, Akifumi; Sobel, Rachel; Sakai, Osamu
2016-01-01
Extraocular eye movement disorders are relatively common and may be a significant source of discomfort and morbidity for patients. The presence of restricted eye movement can be detected clinically with quick, easily performed, noninvasive maneuvers that assess medial, lateral, upward, and downward gaze. However, detecting the presence of ocular dysmotility may not be sufficient to pinpoint the exact cause of eye restriction. Imaging plays an important role in excluding, in some cases, and detecting, in others, a specific cause responsible for the clinical presentation. However, the radiologist should be aware that the imaging findings in many of these conditions when taken in isolation from the clinical history and symptoms are often nonspecific. Normal eye movements are directly controlled by the ocular motor cranial nerves (CN III, IV, and VI) in coordination with indirect input or sensory stimuli derived from other cranial nerves. Specific causes of ocular dysmotility can be localized to the cranial nerve nuclei in the brainstem, the cranial nerve pathways in the peripheral nervous system, and the extraocular muscles in the orbit, with disease at any of these sites manifesting clinically as an eye movement disorder. A thorough understanding of central nervous system anatomy, cranial nerve pathways, and orbital anatomy, as well as familiarity with patterns of eye movement restriction, are necessary for accurate detection of radiologic abnormalities that support a diagnostic source of the suspected extraocular movement disorder. © RSNA, 2016.
A history of the autonomic nervous system: part II: from Reil to the modern era.
Oakes, Peter C; Fisahn, Christian; Iwanaga, Joe; DiLorenzo, Daniel; Oskouian, Rod J; Tubbs, R Shane
2016-12-01
The history of the study of the autonomic nervous system is rich. At the beginning of the nineteenth century, scientists were beginning to more firmly grasp the reality of this part of the human nervous system. The evolution of our understanding of the autonomic nervous system has a rich history. Our current understanding is based on centuries of research and trial and error.
Evolution of eumetazoan nervous systems: insights from cnidarians.
Kelava, Iva; Rentzsch, Fabian; Technau, Ulrich
2015-12-19
Cnidarians, the sister group to bilaterians, have a simple diffuse nervous system. This morphological simplicity and their phylogenetic position make them a crucial group in the study of the evolution of the nervous system. The development of their nervous systems is of particular interest, as by uncovering the genetic programme that underlies it, and comparing it with the bilaterian developmental programme, it is possible to make assumptions about the genes and processes involved in the development of ancestral nervous systems. Recent advances in sequencing methods, genetic interference techniques and transgenic technology have enabled us to get a first glimpse into the molecular network underlying the development of a cnidarian nervous system-in particular the nervous system of the anthozoan Nematostella vectensis. It appears that much of the genetic network of the nervous system development is partly conserved between cnidarians and bilaterians, with Wnt and bone morphogenetic protein (BMP) signalling, and Sox genes playing a crucial part in the differentiation of neurons. However, cnidarians possess some specific characteristics, and further studies are necessary to elucidate the full regulatory network. The work on cnidarian neurogenesis further accentuates the need to study non-model organisms in order to gain insights into processes that shaped present-day lineages during the course of evolution. © 2015 The Authors.
Morphological patterns in children with ganglion related enteric neuronal abnormalities.
Henna, Nausheen; Nagi, Abdul H; Sheikh, Muhammad A; Shaukat, Mahmood
2011-01-01
Hirschsprung's Disease (HD) is a developmental disorder of enteric nervous system characterised by the absence of ganglion cells in submucosal (Meissner's) and myenteric (Aurbach's) plexuses of distal bowel. The purpose of the present study was to observe and report the morphological patterns of ganglion related enteric neuronal abnormalities in children presented with clinical features of (HD) in a Pakistani population. A total of 92 patients with clinical presentation of HD were enrolled between March 2009 and October 2009. Among them, 8 were excluded according to the exclusion criteria. After detailed history and physical examination, paraffin embedded H and E stained sections were prepared from the serial open biopsies from colorectum. The data was analysed using SPSS-17. Frequencies and percentages are given for qualitative variables. Non-parametric Binomial Chi-Square test was applied to observe within group associations and p<0.05 was considered statistically significant. Among 84 patients, 13 (15.5%) proved to be normally ganglionic whereas 71 (84.5%) showed ganglion related enteric neuronal abnormalities namely isolated hypoganglionosis 9 (12.7%), immaturity of ganglion cells 9 (12.7%), isolated hyperganglionosis (IND Type B) 2 (2.8%) and Hirschsprung's disease 51 (71.8%). Among HD group, 34 (66.7%) belonged to isolated form and 17 (33.3%) showed combined ganglion related abnormalities. Hirschsprung's disease is common in Pakistani population, followed by hypoganglionosis, immaturity of ganglion cells and IND type B. The presence of hypertrophic nerve fibres was significant in HD, hyperganglionosis and hypoganglionosis, whereas, no hypertrophic nerve fibres were appreciated in immaturity of ganglion cell group.
Can prognostic indicators be identified in a fetus with an encephalocele?
Bannister, C M; Russell, S A; Rimmer, S; Thorne, J A; Hellings, S
2000-12-01
Encephaloceles, like other congenital malformations of the brain diagnosable in utero, can be either complicated (there being an associated chromosomal abnormality, abnormalities in the remainder of the central nervous system (CNS) and/or other organs), or isolated (no abnormalities in the chromosomes, the remainder of the CNS or other organs). Complicated cases invariably have a poor prognosis but amongst those with isolated lesions the outcome is variable with some affected children having poor mental and physical development but others who are only mildly or moderately disabled. To be able to make an informed decision about how to manage their pregnancy parents need to know what the prognosis is likely to be for their fetus with an encephalocele. To see if the necessary information could be reliably gathered by prenatal assessment of affected fetuses, a review was carried out of the medical records and ultrasound scans of 31 fetuses with encephaloceles referred to the Fetal Management Unit at St. Mary's Hospital in Manchester between January 1991 and December 1997. Eighteen of the cohort were classified as having a complicated encephalocele. Thirteen of the pregnancies were terminated; there were three intrauterine deaths, and one neonatal death. There is only one surviving child who is severely disabled. Thirteen fetuses were classified as having isolated encephaloceles, six had a mass of neural tissue in the encephalocele sac and were terminated, one died in utero and six had a cystic lesion or only a nubbin and have survived with few or no abnormalities. This study has shown that it is possible to identify fetuses with an encephalocele with a favourable outcome.
Partial duplication of chromosome 19 associated with syndromic duane retraction syndrome.
Abu-Amero, Khaled K; Kondkar, Altaf A; Al Otaibi, Abdullah; Alorainy, Ibrahim A; Khan, Arif O; Hellani, Ali M; Oystreck, Darren T; Bosley, Thomas M
2015-03-01
To evaluate possible monogenic and chromosomal anomalies in a patient with unilateral Duane retraction syndrome, modest dysmorphism, cerebral white matter abnormalities, and normal cognitive function. Performing high-resolution array comparative genomic hybridization (array CGH) and sequencing of HOXA1, KIF21A, SALL4, and CHN1 genes. The proband had unilateral Duane retraction syndrome (DRS) type III on the right with low-set ears, prominent forehead, clinodactyly, and a history of frequent infections during early childhood. Motor development and cognitive function were normal. Parents were not related, and no other family member was similarly affected. MRI revealed multiple small areas of high signal on T2 weighted images in cerebral white matter oriented along white matter tracts. Sequencing of HOXA1, KIF21A, SALL4, and CHN1 did not reveal any mutation(s). Array CGH showed a 95 Kb de novo duplication on chromosome 19q13.4 encompassing four killer cell immunoglobulin-like receptor (KIR) genes. Conclusions. KIR genes have not previously been linked to a developmental syndrome, although they are known to be expressed in the human brain and brainstem and to be associated with certain infections and autoimmune diseases, including some affecting the nervous system. DRS and brain neuroimaging abnormalities may imply a central and peripheral oligodendrocyte abnormality related in some fashion to an immunomodulatory disturbance.
75 FR 69005 - Flumioxazin; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-10
... reproduction studies indicated an effect on the nervous systems. Based on the lack of evidence of... flumioxazin does not directly impact the nervous system or directly target the immune system. The Agency does... to indicate that flumioxazin targets the nervous system or the immune system. Further, EPA has...
Treatment Option Overview (Childhood Soft Tissue Sarcoma)
... nearby lymph nodes or to the lungs. Peripheral nervous system tumors Peripheral nervous system tumors include the following ... therapy , and surgery with or without chemotherapy . Peripheral Nervous System Tumors Ectomesenchymoma Treatment of ectomesenchymoma may include the ...
... will include a detailed examination of the nervous system and muscle function. In most cases, a neurologist (specialist in ... require ongoing care and support. Alternative Names Decreased muscle tone; Floppy infant ... Central nervous system and peripheral nervous system References Burnette WB. Hypotonic ( ...
... the autonomic nervous system. This is the part of the nervous system that is not under your control. Sweating is ... Skin layers References Chelimsky T, Chelimsky G. Disorders of the autonomic nervous system. In: Daroff RB, Jankovic J, Mazziotta JC, Pomeroy ...
Al-Mateen, Majeed; Craig, Alexa Kanwit; Chance, Phillip F
2014-03-01
We describe 2 patients with X-linked Charcot-Marie-Tooth disease, type 1 (CMTX1) disease and central nervous system manifestations and review 19 cases from the literature. Our first case had not been previously diagnosed with Charcot-Marie-Tooth disease, and the second case, although known to have Charcot-Marie-Tooth disease, was suspected of having CMTX1 after presentation with central nervous system manifestations. The most common central nervous system manifestations were transient and included dysarthria, ataxia, hemiparesis, and tetraparesis resembling periodic paralysis. Of the 21 patients, 19 presented at 21 years of age or younger, implicating CMTX1 with transient central nervous system manifestations as a disorder that predominantly affects children and adolescents. CMTX1 should be included in the differential diagnosis of patients who present with transient central nervous system phenomena, including stroke-like episodes, tetraparesis suggestive of periodic paralysis, dysarthria, ataxia, or combinations of these deficits. Reversible, bilateral, nonenhancing white matter lesions and restricted diffusion on magnetic resonance imaging are characteristic features of the central nervous system phenotype of CMTX1.
Akaeda, H; Nagai, K; Okuda, Y; Shinoto, M; Okuda, H
1981-06-01
In usual medical consultation, we have been met a lot of female patients suffering from disturbances of autonomic nervous system such as headache, shoulder-ache and so on. Experiments were designed to elucidate whether or not these disturbances of autonomic nervous system were induced by inflammation and accelerated by stimulant diets. Functions of autonomic nervous system were examined by lipolysis in rat epididymal adipose tissue which was partly controlled by sympathetic nervous system. It was found that free fatty acid release from the epididymal adipose tissue was considerably elevated by inflammation which was formed in abdominal wall or in abdominal cavity or oral administration of stimulant diets such as red pepper and white pepper, and that such elevation of lipolysis was significantly reduced by resection of the autonomic nerve. These results indicated that the inflammation and the stimulant diets induced excitement of sympathetic nerve which controlled the epididymal adipose tissue. Experiments were now in progress to clarify relationship between such excitement of sympathetic nervous system induced by the inflammation or by the stimulant diet and irregular complaints due to disturbances of autonomic nervous system.
Digestive tract neural control and gastrointestinal disorders in cerebral palsy.
Araújo, Liubiana A; Silva, Luciana R; Mendes, Fabiana A A
2012-01-01
To examine the neural control of digestive tract and describe the main gastrointestinal disorders in cerebral palsy (CP), with attention to the importance of early diagnosis to an efficient interdisciplinary treatment. Systematic review of literature from 1997 to 2012 from Medline, Lilacs, Scielo, and Cochrane Library databases. The study included 70 papers, such as relevant reviews, observational studies, controlled trials, and prevalence studies. Qualitative studies were excluded. The keywords used were: cerebral palsy, dysphagia, gastroesophageal reflux disease, constipation, recurrent respiratory infections, and gastrostomy. The appropriate control of the digestive system depends on the healthy functioning and integrity of the neural system. Since CP patients have structural abnormalities of the central and peripheral nervous system, they are more likely to develop eating disorders. These range from neurological immaturity to interference in the mood and capacity of caregivers. The disease has, therefore, a multifactorial etiology. The most prevalent digestive tract disorders are dysphagia, gastroesophageal reflux disease, and constipation, with consequent recurrent respiratory infections and deleterious impact on nutritional status. Patients with CP can have neurological abnormalities of digestive system control; therefore, digestive problems are common. The issues raised in the present study are essential for professionals within the interdisciplinary teams that treat patients with CP, concerning the importance of comprehensive anamnesis and clinical examination, such as detailed investigation of gastrointestinal disorders. Early detection of these digestive problems may lead to more efficient rehabilitation measures in order to improve patients' quality of life.
Fascial preadipocytes: another missing piece of the puzzle to understand fibromyalgia?
Bordoni, Bruno; Marelli, Fabiola; Morabito, Bruno; Cavallaro, Francesca; Lintonbon, David
2018-01-01
Fibromyalgia (FM) syndrome is a chronic condition causing pain, affecting approximately 0.5%-6% of the developed countries' population, and on average, 2% of the worldwide population. Despite the large amount of scientific literature available, the FM etiology is still uncertain. The diagnosis is based on the clinical presentation and the severity of the symptomatology. Several studies pointed out pathological alterations within the central nervous system, suggesting that FM could originate from a central sensitization of the pain processing centers. Research supports the thesis of a peripheral neuropathic component, with the finding of axonal damages. The fibromyalgia patient has many myofascial system abnormalities, such as pain and fatigue, impairing the symptomatic profile. This paper revises the myopathic compensations, highlighting the possible role of the fascia in generating symptoms, being aware of the new information about the fascia's activity in stimulating inflammation and fat cell production.
Rotational manipulation of single cells and organisms using acoustic waves
Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun
2016-01-01
The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation. PMID:27004764
Report of a rare case of trauma-induced thyroid storm.
Vora, Neil M; Fedok, Fred; Stack, Brendan C
2002-08-01
Thyroid storm is a potentially life-threatening endocrinologic emergency characterized by an exacerbation of a hyperthyroid state. Several inciting factors can instigate the conversion of thyrotoxicosis to thyroid storm; trauma is one such trigger, but it is rare. Patients with thyroid storm can manifest fever, nervous system disorders, gastrointestinal or hepatic dysfunction (e.g., nausea, vomiting, diarrhea, and/or jaundice), and arrhythmia and other cardiovascular abnormalities. Treatment of thyroid storm is multimodal and is best managed by the endocrinologist and medical intensivist. Initial medical and supportive therapies are directed at stabilizing the patient, correcting the hyperthyroid state, managing the systemic decompensation, and treating the underlying cause. Once this has been achieved, definitive treatment in the form of radioactive ablation or surgery should be undertaken. We describe a case of thyroid storm in a young man that was precipitated by a motor vehicle accident.
Fascial preadipocytes: another missing piece of the puzzle to understand fibromyalgia?
Bordoni, Bruno; Marelli, Fabiola; Morabito, Bruno; Cavallaro, Francesca; Lintonbon, David
2018-01-01
Fibromyalgia (FM) syndrome is a chronic condition causing pain, affecting approximately 0.5%–6% of the developed countries’ population, and on average, 2% of the worldwide population. Despite the large amount of scientific literature available, the FM etiology is still uncertain. The diagnosis is based on the clinical presentation and the severity of the symptomatology. Several studies pointed out pathological alterations within the central nervous system, suggesting that FM could originate from a central sensitization of the pain processing centers. Research supports the thesis of a peripheral neuropathic component, with the finding of axonal damages. The fibromyalgia patient has many myofascial system abnormalities, such as pain and fatigue, impairing the symptomatic profile. This paper revises the myopathic compensations, highlighting the possible role of the fascia in generating symptoms, being aware of the new information about the fascia’s activity in stimulating inflammation and fat cell production. PMID:29750060
Musical hallucinosis: case reports and possible neurobiological models.
Mocellin, Ramon; Walterfang, Mark; Velakoulis, Dennis
2008-04-01
The perception of music without a stimulus, or musical hallucination, is reported in both organic and psychiatric disorders. It is most frequently described in the elderly with associated hearing loss and accompanied by some degree of insight. In this setting it is often referred to as 'musical hallucinosis'. The aim of the authors was to present examples of this syndrome and review the current understanding of its neurobiological basis. We describe three cases of persons experiencing musical hallucinosis in the context of hearing deficits with varying degrees of associated central nervous system abnormalities. Putative neurobiological mechanisms, in particular those involving de-afferentation of a complex auditory recognition system by complete or partial deafness, are discussed in the light of current information from the literature. Musical hallucinosis can be experienced in those patients with hearing impairment and is phenomenologically distinct for hallucinations described in psychiatric disorders.
Rotational manipulation of single cells and organisms using acoustic waves.
Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun
2016-03-23
The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.
Biological substrates of schizophrenia.
Kovelman, J A; Scheibel, A B
1986-01-01
Schizophrenia is increasingly believed to represent a group of organic disorders which primarily, although not exclusively, affect the central nervous system. Our purpose is to review a representative sample of twentieth-century literature which speaks to the biological substrates of the syndrome. Subjects reviewed include genetic and environmental contributions to the onset of illness, early and recent findings of gross structural anomalies, and apparent histopathological alterations in cerebral cortex, cerebellar vermis, limbic system, and brain stem, as well as problems of cerebral asymmetry. Data from a diverse group of electrophysiological studies reveal several promising correlates of these areas of investigation. Despite the inconsistent nature of the findings to date, several themes have begun to emerge, including patterns of hypofrontal/hyperparietal regional cerebral flow and glucose utilization, left hemispheric dysfunction, and deficits of interhemispheric information processing. The interpretation and significance of these emerging patterns remains unclear and must await more profound insights into the nature of normal and abnormal cerebral function.
L1 Antibodies Block Lymph Node Fibroblastic Reticular Matrix Remodeling In Vivo
Di Sciullo, Gino; Donahue, Tim; Schachner, Melitta; Bogen, Steven A.
1998-01-01
L1 is an immunoglobulin superfamily adhesion molecule highly expressed on neurons and involved in cell motility, neurite outgrowth, axon fasciculation, myelination, and synaptic plasticity. L1 is also expressed by nonneural cells, but its function outside of the nervous system has not been studied extensively. We find that administration of an L1 monoclonal antibody in vivo disrupts the normal remodeling of lymph node reticular matrix during an immune response. Ultrastructural examination reveals that reticular fibroblasts in mice treated with L1 monoclonal antibodies fail to spread and envelop collagen fibers with their cellular processes. The induced defect in the remodeling of the fibroblastic reticular system results in the loss of normal nodal architecture, collapsed cortical sinusoids, and macrophage accumulation in malformed sinuses. Surprisingly, such profound architectural abnormalities have no detectable effects on the primary immune response to protein antigens. PMID:9625755
Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring
2016-10-01
AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL INVESTIGATOR...Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 14-1-0586 5c. PROGRAM ELEMENT...cavitations that are not spontaneously repaired. Early after injury, blood enters the central nervous system (CNS) and directly kills brain cells but also
Immunostaining to visualize murine enteric nervous system development.
Barlow-Anacker, Amanda J; Erickson, Christopher S; Epstein, Miles L; Gosain, Ankush
2015-04-29
The enteric nervous system is formed by neural crest cells that proliferate, migrate and colonize the gut. Following colonization, neural crest cells must then differentiate into neurons with markers specific for their neurotransmitter phenotype. Cholinergic neurons, a major neurotransmitter phenotype in the enteric nervous system, are identified by staining for choline acetyltransferase (ChAT), the synthesizing enzyme for acetylcholine. Historical efforts to visualize cholinergic neurons have been hampered by antibodies with differing specificities to central nervous system versus peripheral nervous system ChAT. We and others have overcome this limitation by using an antibody against placental ChAT, which recognizes both central and peripheral ChAT, to successfully visualize embryonic enteric cholinergic neurons. Additionally, we have compared this antibody to genetic reporters for ChAT and shown that the antibody is more reliable during embryogenesis. This protocol describes a technique for dissecting, fixing and immunostaining of the murine embryonic gastrointestinal tract to visualize enteric nervous system neurotransmitter expression.
Mravec, Boris; Gidron, Yori; Kukanova, Barbara; Bizik, Jozef; Kiss, Alexander; Hulin, Ivan
2006-11-01
For the precise coordination of systemic functions, the nervous system uses a variety of peripherally and centrally localized receptors, which transmit information from internal and external environments to the central nervous system. Tight interconnections between the immune, nervous, and endocrine systems provide a base for monitoring and consequent modulation of immune system functions by the brain and vice versa. The immune system plays an important role in tumorigenesis. On the basis of rich interconnections between the immune, nervous and endocrine systems, the possibility that the brain may be informed about tumorigenesis is discussed in this review article. Moreover, the eventual modulation of tumorigenesis by central nervous system is also considered. Prospective consequences of the interactions between tumor and brain for diagnosis and therapy of cancer are emphasized.
Classical Neurotransmitters and their Significance within the Nervous System.
ERIC Educational Resources Information Center
Veca, A.; Dreisbach, J. H.
1988-01-01
Describes some of the chemical compounds involved in the nervous system and their roles in transmitting nerve signals. Discusses acetylcholine, dopamine, norepinephrine, serotonin, histamine, glycine, glutemate, and gamma-aminobutyric acid and their effects within the nervous system. (CW)
Complex Homology and the Evolution of Nervous Systems
Liebeskind, Benjamin J.; Hillis, David M.; Zakon, Harold H.; Hofmann, Hans A.
2016-01-01
We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states. PMID:26746806
Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring
2016-10-01
AWARD NUMBER: W81XWH-14-1-0586 TITLE: Bioengineered Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring PRINCIPAL...Hydrogel to Inhibit Post-Traumatic Central Nervous System Scarring 5a. CONTRACT NUMBER W81XWH-14-1-0586 5b. GRANT NUMBER W81XWH- 14-1-0586 5c...barriers that prevent the optimal delivery of biologics and cells to the injured nervous system . A significant problem is the formation of scar tissue
Peptide-gated ion channels and the simple nervous system of Hydra.
Gründer, Stefan; Assmann, Marc
2015-02-15
Neurons either use electrical or chemical synapses to communicate with each other. Transmitters at chemical synapses are either small molecules or neuropeptides. After binding to their receptors, transmitters elicit postsynaptic potentials, which can either be fast and transient or slow and longer lasting, depending on the type of receptor. Fast transient potentials are mediated by ionotropic receptors and slow long-lasting potentials by metabotropic receptors. Transmitters and receptors are well studied for animals with a complex nervous system such as vertebrates and insects, but much less is known for animals with a simple nervous system like Cnidaria. As cnidarians arose early in animal evolution, nervous systems might have first evolved within this group and the study of neurotransmission in cnidarians might reveal an ancient mechanism of neuronal communication. The simple nervous system of the cnidarian Hydra extensively uses neuropeptides and, recently, we cloned and functionally characterized an ion channel that is directly activated by neuropeptides of the Hydra nervous system. These results demonstrate the existence of peptide-gated ion channels in Hydra, suggesting they mediate fast transmission in its nervous system. As related channels are also present in the genomes of the cnidarian Nematostella, of placozoans and of ctenophores, it should be considered that the early nervous systems of cnidarians and ctenophores have co-opted neuropeptides for fast transmission at chemical synapses. © 2015. Published by The Company of Biologists Ltd.
Learning and Memory... and the Immune System
ERIC Educational Resources Information Center
Marin, Ioana; Kipnis, Jonathan
2013-01-01
The nervous system and the immune system are two main regulators of homeostasis in the body. Communication between them ensures normal functioning of the organism. Immune cells and molecules are required for sculpting the circuitry and determining the activity of the nervous system. Within the parenchyma of the central nervous system (CNS),…
Central and peripheral nervous systems: master controllers in cancer metastasis.
Shi, Ming; Liu, Dan; Yang, Zhengyan; Guo, Ning
2013-12-01
Central and sympathetic nervous systems govern functional activities of many organs. Solid tumors like organs are also innervated by sympathetic nerve fibers. Neurotransmitters released from sympathetic nerve fibers can modulate biological behaviors of tumor cells. Multiple physiologic processes of tumor development may be dominated by central and sympathetic nervous systems as well. Recent studies suggest that dysfunction of central and sympathetic nervous systems and disorder of the hormone network induced by psychological stress may influence malignant progression of cancer by inhibiting the functions of immune system, regulating metabolic reprogramming of tumor cells, and inducing interactions between tumor and stromal cells. Over-release of inflammatory cytokines by tumors may aggravate emotional disorder, triggering the vicious cycles in tumor microenvironment and host macroenvironment. It is reasonable to hypothesize that cancer progression may be controlled by central and sympathetic nervous systems. In this review, we will focus on the recent information about the impacts of central and sympathetic nervous systems on tumor invasion and metastasis.
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2010 CFR
2010-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
76 FR 5711 - Bispyribac-sodium; Pesticide Tolerances
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-02
...- sodium has shown no indications of central or peripheral nervous system toxicity in any study and does not appear to be structurally related to any other chemical that causes adverse nervous system effects... the nervous system is a target for [[Page 5715
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
40 CFR 721.72 - Hazard communication program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... irritation. (ii) Respiratory complications. (iii) Central nervous system effects. (iv) Internal organ effects... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E... irritation (B) Respiratory complications (C) Central nervous system effects (D) Internal organ effects (E...
2017-08-30
Brain Injury; Central Nervous System Degenerative Disorder; Central Nervous System Infectious Disorder; Central Nervous System Vascular Malformation; Hemorrhagic Cerebrovascular Accident; Ischemic Cerebrovascular Accident; Primary Brain Neoplasm; Brain Cancer; Brain Tumors
Natural History Study of Children With Metachromatic Leukodystrophy
2016-04-19
Lipid Metabolism Disorders; Metachromatic Leukodystrophy (MLD); Nervous System Diseases; Brain Diseases; Central Nervous System Diseases; Demyelinating Diseases; Metabolism, Inborn Errors; Genetic Diseases, Inborn; Sphingolipidoses; Hereditary Central Nervous System Demyelinating Diseases; Metabolic Inborn Brain Diseases; Lysosomal Storage Diseases; Metabolic Diseases; Sulfatidosis
Nutritional and metabolic diseases involving the nervous system.
Kopcha, M
1987-03-01
This article will discuss eight diseases that alter normal nervous system function: hypovitaminosis A, water deprivation/salt toxicity, ammonia toxicosis, hypomagnesemia, hypocalcemia, nervous ketosis, hepatoencephalopathy, and rumen metabolic acidosis.