Science.gov

Sample records for abnormal neural connectivity

  1. Weakly connected neural nets

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    1990-01-01

    A new neural network architecture is proposed based upon effects of non-Lipschitzian dynamics. The network is fully connected, but these connections are active only during vanishingly short time periods. The advantages of this architecture are discussed.

  2. Abnormal interhemispheric connectivity in male psychopathic offenders

    PubMed Central

    Hoppenbrouwers, Sylco S.; De Jesus, Danilo R.; Sun, Yinming; Stirpe, Tania; Hofman, Dennis; McMaster, Jeff; Hughes, Ginny; Daskalakis, Zafiris J.; Schutter, Dennis J.L.G.

    2014-01-01

    Background Psychopathic offenders inevitably violate interpersonal norms and frequently resort to aggressive and criminal behaviour. The affective and cognitive deficits underlying these behaviours have been linked to abnormalities in functional interhemispheric connectivity. However, direct neurophysiological evidence for dysfunctional connectivity in psychopathic offenders is lacking. Methods We used transcranial magnetic stimulation combined with electroencephalography to examine interhemispheric connectivity in the dorsolateral and motor cortex in a sample of psychopathic offenders and healthy controls. We also measured intracortical inhibition and facilitation over the left and right motor cortex to investigate the effects of local cortical processes on interhemispheric connectivity. Results We enrolled 17 psychopathic offenders and 14 controls in our study. Global abnormalities in right to left functional connectivity were observed in psychopathic offenders compared with controls. Furthermore, in contrast to controls, psychopathic offenders showed increased intracortical inhibition in the right, but not the left, hemisphere. Limitations The relatively small sample size limited the sensitivity to show that the abnormalities in interhemispheric connectivity were specifically related to the dorsolateral prefrontal cortex in psychopathic offenders. Conclusion To our knowledge, this study provides the first neurophysiological evidence for abnormal interhemispheric connectivity in psychopathic offenders and may further our understanding of the disruptive antisocial behaviour of these offenders. PMID:23937798

  3. Abnormal asymmetry of brain connectivity in schizophrenia.

    PubMed

    Ribolsi, Michele; Daskalakis, Zafiris J; Siracusano, Alberto; Koch, Giacomo

    2014-01-01

    Recently, a growing body of data has revealed that beyond a dysfunction of connectivity among different brain areas in schizophrenia patients (SCZ), there is also an abnormal asymmetry of functional connectivity compared with healthy subjects. The loss of the cerebral torque and the abnormalities of gyrification, with an increased or more complex cortical folding in the right hemisphere may provide an anatomical basis for such aberrant connectivity in SCZ. Furthermore, diffusion tensor imaging studies have shown a significant reduction of leftward asymmetry in some key white-matter tracts in SCZ. In this paper, we review the studies that investigated both structural brain asymmetry and asymmetry of functional connectivity in healthy subjects and SCZ. From an analysis of the existing literature on this topic, we can hypothesize an overall generally attenuated asymmetry of functional connectivity in SCZ compared to healthy controls. Such attenuated asymmetry increases with the duration of the disease and correlates with psychotic symptoms. Finally, we hypothesize that structural deficits across the corpus callosum may contribute to the abnormal asymmetry of intra-hemispheric connectivity in schizophrenia.

  4. Connectivity and functional profiling of abnormal brain structures in pedophilia.

    PubMed

    Poeppl, Timm B; Eickhoff, Simon B; Fox, Peter T; Laird, Angela R; Rupprecht, Rainer; Langguth, Berthold; Bzdok, Danilo

    2015-06-01

    Despite its 0.5-1% lifetime prevalence in men and its general societal relevance, neuroimaging investigations in pedophilia are scarce. Preliminary findings indicate abnormal brain structure and function. However, no study has yet linked structural alterations in pedophiles to both connectional and functional properties of the aberrant hotspots. The relationship between morphological alterations and brain function in pedophilia as well as their contribution to its psychopathology thus remain unclear. First, we assessed bimodal connectivity of structurally altered candidate regions using meta-analytic connectivity modeling (MACM) and resting-state correlations employing openly accessible data. We compared the ensuing connectivity maps to the activation likelihood estimation (ALE) maps of a recent quantitative meta-analysis of brain activity during processing of sexual stimuli. Second, we functionally characterized the structurally altered regions employing meta-data of a large-scale neuroimaging database. Candidate regions were functionally connected to key areas for processing of sexual stimuli. Moreover, we found that the functional role of structurally altered brain regions in pedophilia relates to nonsexual emotional as well as neurocognitive and executive functions, previously reported to be impaired in pedophiles. Our results suggest that structural brain alterations affect neural networks for sexual processing by way of disrupted functional connectivity, which may entail abnormal sexual arousal patterns. The findings moreover indicate that structural alterations account for common affective and neurocognitive impairments in pedophilia. The present multimodal integration of brain structure and function analyses links sexual and nonsexual psychopathology in pedophilia.

  5. Abnormal functional connectivity during visuospatial processing is associated with disrupted organisation of white matter in autism

    PubMed Central

    McGrath, Jane; Johnson, Katherine; O'Hanlon, Erik; Garavan, Hugh; Leemans, Alexander; Gallagher, Louise

    2013-01-01

    Disruption of structural and functional neural connectivity has been widely reported in Autism Spectrum Disorder (ASD) but there is a striking lack of research attempting to integrate analysis of functional and structural connectivity in the same study population, an approach that may provide key insights into the specific neurobiological underpinnings of altered functional connectivity in autism. The aims of this study were (1) to determine whether functional connectivity abnormalities were associated with structural abnormalities of white matter (WM) in ASD and (2) to examine the relationships between aberrant neural connectivity and behavior in ASD. Twenty-two individuals with ASD and 22 age, IQ-matched controls completed a high-angular-resolution diffusion MRI scan. Structural connectivity was analysed using constrained spherical deconvolution (CSD) based tractography. Regions for tractography were generated from the results of a previous study, in which 10 pairs of brain regions showed abnormal functional connectivity during visuospatial processing in ASD. WM tracts directly connected 5 of the 10 region pairs that showed abnormal functional connectivity; linking a region in the left occipital lobe (left BA19) and five paired regions: left caudate head, left caudate body, left uncus, left thalamus, and left cuneus. Measures of WM microstructural organization were extracted from these tracts. Fractional anisotropy (FA) reductions in the ASD group relative to controls were significant for WM connecting left BA19 to left caudate head and left BA19 to left thalamus. Using a multimodal imaging approach, this study has revealed aberrant WM microstructure in tracts that directly connect brain regions that are abnormally functionally connected in ASD. These results provide novel evidence to suggest that structural brain pathology may contribute (1) to abnormal functional connectivity and (2) to atypical visuospatial processing in ASD. PMID:24133425

  6. Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury.

    PubMed

    Stevens, Michael C; Lovejoy, David; Kim, Jinsuh; Oakes, Howard; Kureshi, Inam; Witt, Suzanne T

    2012-06-01

    Several reports show that traumatic brain injury (TBI) results in abnormalities in the coordinated activation among brain regions. Because most previous studies examined moderate/severe TBI, the extensiveness of functional connectivity abnormalities and their relationship to postconcussive complaints or white matter microstructural damage are unclear in mild TBI. This study characterized widespread injury effects on multiple integrated neural networks typically observed during a task-unconstrained "resting state" in mild TBI patients. Whole brain functional connectivity for twelve separate networks was identified using independent component analysis (ICA) of fMRI data collected from thirty mild TBI patients mostly free of macroscopic intracerebral injury and thirty demographically-matched healthy control participants. Voxelwise group comparisons found abnormal mild TBI functional connectivity in every brain network identified by ICA, including visual processing, motor, limbic, and numerous circuits believed to underlie executive cognition. Abnormalities not only included functional connectivity deficits, but also enhancements possibly reflecting compensatory neural processes. Postconcussive symptom severity was linked to abnormal regional connectivity within nearly every brain network identified, particularly anterior cingulate. A recently developed multivariate technique that identifies links between whole brain profiles of functional and anatomical connectivity identified several novel mild TBI abnormalities, and represents a potentially important new tool in the study of the complex neurobiological sequelae of TBI.

  7. Physiological consequences of abnormal connectivity in a developmental epilepsy

    PubMed Central

    Shafi, Mouhsin M.; Vernet, Marine; Klooster, Debby; Chu, Catherine J.; Boric, Katica; Barnard, Mollie E.; Romatoski, Kelsey; Westover, M. Brandon; Christodoulou, Joanna A.; Gabrieli, John D.E.; Whitfield-Gabrieli, Susan; Pascual-Leone, Alvaro; Chang, Bernard S.

    2015-01-01

    Objective Many forms of epilepsy are associated with aberrant neuronal connections, but the relationship between such pathological connectivity and the underlying physiological predisposition to seizures is unclear. We sought to characterize the cortical excitability profile of a developmental form of epilepsy known to have structural and functional connectivity abnormalities. Methods We employed transcranial magnetic stimulation (TMS) with simultaneous EEG recording in eight patients with epilepsy from periventricular nodular heterotopia (PNH) and matched healthy controls. We used connectivity imaging findings to guide TMS targeting and compared the evoked responses to single-pulse stimulation from different cortical regions. Results Heterotopia patients with active epilepsy demonstrated a relatively augmented late cortical response that was greater than that of matched controls. This abnormality was specific to cortical regions with connectivity to subcortical heterotopic gray matter. Topographic mapping of the late response differences showed distributed cortical networks that were not limited to the stimulation site, and source analysis in one subject revealed that the generator of abnormal TMS-evoked activity overlapped with the spike and seizure onset zone. Interpretation Our findings indicate that patients with epilepsy from gray matter heterotopia have altered cortical physiology consistent with hyperexcitability, and that this abnormality is specifically linked to the presence of aberrant connectivity. These results support the idea that TMS-EEG could be a useful biomarker in epilepsy in gray matter heterotopia, expand our understanding of circuit mechanisms of epileptogenesis, and have potential implications for therapeutic neuromodulation in similar epileptic conditions associated with deep lesions. PMID:25858773

  8. On sparsely connected optimal neural networks

    SciTech Connect

    Beiu, V.; Draghici, S.

    1997-10-01

    This paper uses two different approaches to show that VLSI- and size-optimal discrete neural networks are obtained for small fan-in values. These have applications to hardware implementations of neural networks, but also reveal an intrinsic limitation of digital VLSI technology: its inability to cope with highly connected structures. The first approach is based on implementing F{sub n,m} functions. The authors show that this class of functions can be implemented in VLSI-optimal (i.e., minimizing AT{sup 2}) neural networks of small constant fan-ins. In order to estimate the area (A) and the delay (T) of such networks, the following cost functions will be used: (i) the connectivity and the number-of-bits for representing the weights and thresholds--for good estimates of the area; and (ii) the fan-ins and the length of the wires--for good approximates of the delay. The second approach is based on implementing Boolean functions for which the classical Shannon`s decomposition can be used. Such a solution has already been used to prove bounds on the size of fan-in 2 neural networks. They will generalize the result presented there to arbitrary fan-in, and prove that the size is minimized by small fan-in values. Finally, a size-optimal neural network of small constant fan-ins will be suggested for F{sub n,m} functions.

  9. Abnormal Functional Connectivity in Autism Spectrum Disorders during Face Processing

    ERIC Educational Resources Information Center

    Kleinhans, Natalia M.; Richards, Todd; Sterling, Lindsey; Stegbauer, Keith C.; Mahurin, Roderick; Johnson, L. Clark; Greenson, Jessica; Dawson, Geraldine; Aylward, Elizabeth

    2008-01-01

    Abnormalities in the interactions between functionally linked brain regions have been suggested to be associated with the clinical impairments observed in autism spectrum disorders (ASD). We investigated functional connectivity within the limbic system during face identification; a primary component of social cognition, in 19 high-functioning…

  10. Knowledge Synthesis with Maps of Neural Connectivity

    PubMed Central

    Tallis, Marcelo; Thompson, Richard; Russ, Thomas A.; Burns, Gully A. P. C.

    2011-01-01

    This paper describes software for neuroanatomical knowledge synthesis based on neural connectivity data. This software supports a mature methodology developed since the early 1990s. Over this time, the Swanson laboratory at USC has generated an account of the neural connectivity of the sub-structures of the hypothalamus, amygdala, septum, hippocampus, and bed nucleus of the stria terminalis. This is based on neuroanatomical data maps drawn into a standard brain atlas by experts. In earlier work, we presented an application for visualizing and comparing anatomical macro connections using the Swanson third edition atlas as a framework for accurate registration. Here we describe major improvements to the NeuARt application based on the incorporation of a knowledge representation of experimental design. We also present improvements in the interface and features of the data mapping components within a unified web-application. As a step toward developing an accurate sub-regional account of neural connectivity, we provide navigational access between the data maps and a semantic representation of area-to-area connections that they support. We do so based on an approach called “Knowledge Engineering from Experimental Design” (KEfED) model that is based on experimental variables. We have extended the underlying KEfED representation of tract-tracing experiments by incorporating the definition of a neuronanatomical data map as a measurement variable in the study design. This paper describes the software design of a web-application that allows anatomical data sets to be described within a standard experimental context and thus indexed by non-spatial experimental design features. PMID:22053155

  11. Functional brain networks and abnormal connectivity in the movement disorders

    PubMed Central

    Poston, Kathleen L.; Eidelberg, David

    2012-01-01

    Clinical manifestations of movement disorders, such as Parkinson’s disease (PD) and dystonia, arise from neurophysiological changes within the cortico-striato-pallidothalamocortical (CSPTC) and cerebello-thalamo-cortical (CbTC) circuits. Neuroimaging techniques that probe connectivity within these circuits can be used to understand how these disorders develop as well as identify potential targets for medical and surgical therapies. Indeed, network analysis of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) has identified abnormal metabolic networks associated with the cardinal motor symptoms of PD, such as akinesia and tremor, as well as PD-related cognitive dysfunction. More recent task-based and resting state functional magnetic resonance imaging studies have reproduced several of the altered connectivity patterns identified in these abnormal PD-related networks. A similar network analysis approach in dystonia revealed abnormal disease related metabolic patterns in both manifesting and non-manifesting carriers of dystonia mutations. Other multimodal imaging approaches using magnetic resonance diffusion tensor imaging in patients with primary genetic dystonia suggest abnormal connectivity within the CbTC circuits mediate the clinical manifestations of this inherited neurodevelopmental disorder. Ongoing developments in functional imaging and future studies in early patients are likely to enhance our understanding of these movement disorders and guide novel targets for future therapies. PMID:22206967

  12. Classification of breast abnormalities using artificial neural network

    NASA Astrophysics Data System (ADS)

    Zaman, Nur Atiqah Kamarul; Rahman, Wan Eny Zarina Wan Abdul; Jumaat, Abdul Kadir; Yasiran, Siti Salmah

    2015-05-01

    Classification is the process of recognition, differentiation and categorizing objects into groups. Breast abnormalities are calcifications which are tumor markers that indicate the presence of cancer in the breast. The aims of this research are to classify the types of breast abnormalities using artificial neural network (ANN) classifier and to evaluate the accuracy performance using receiver operating characteristics (ROC) curve. The methods used in this research are ANN for breast abnormalities classifications and Canny edge detector as a feature extraction method. Previously the ANN classifier provides only the number of benign and malignant cases without providing information for specific cases. However in this research, the type of abnormality for each image can be obtained. The existing MIAS MiniMammographic database classified the mammogram images into three features only namely characteristic of background tissues, class of abnormality and radius of abnormality. However, in this research three other features are added-in. These three features are number of spots, area and shape of abnormalities. Lastly the performance of the ANN classifier is evaluated using ROC curve. It is found that ANN has an accuracy of 97.9% which is considered acceptable.

  13. Latent and Abnormal Functional Connectivity Circuits in Autism Spectrum Disorder

    PubMed Central

    Chen, Shuo; Xing, Yishi; Kang, Jian

    2017-01-01

    Autism spectrum disorder (ASD) is associated with disrupted brain networks. Neuroimaging techniques provide noninvasive methods of investigating abnormal connectivity patterns in ASD. In the present study, we compare functional connectivity networks in people with ASD with those in typical controls, using neuroimaging data from the Autism Brain Imaging Data Exchange (ABIDE) project. Specifically, we focus on the characteristics of intrinsic functional connectivity based on data collected by resting-state functional magnetic resonance imaging (rs-fMRI). Our aim was to identify disrupted brain connectivity patterns across all networks, instead of in individual edges, by using advanced statistical methods. Unlike many brain connectome studies, in which networks are prespecified before the edge connectivity in each network is compared between clinical groups, we detected the latent differentially expressed networks automatically. Our network-level analysis identified abnormal connectome networks that (i) included a high proportion of edges that were differentially expressed between people with ASD and typical controls; and (ii) showed highly-organized graph topology. These findings provide new insight into the study of the underlying neuropsychiatric mechanism of ASD. PMID:28377688

  14. Neural correlates of abnormal sensory discrimination in laryngeal dystonia.

    PubMed

    Termsarasab, Pichet; Ramdhani, Ritesh A; Battistella, Giovanni; Rubien-Thomas, Estee; Choy, Melissa; Farwell, Ian M; Velickovic, Miodrag; Blitzer, Andrew; Frucht, Steven J; Reilly, Richard B; Hutchinson, Michael; Ozelius, Laurie J; Simonyan, Kristina

    2016-01-01

    Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder.

  15. Abnormal folate metabolism in foetuses affected by neural tube defects.

    PubMed

    Dunlevy, Louisa P E; Chitty, Lyn S; Burren, Katie A; Doudney, Kit; Stojilkovic-Mikic, Taita; Stanier, Philip; Scott, Rosemary; Copp, Andrew J; Greene, Nicholas D E

    2007-04-01

    Folic acid supplementation can prevent many cases of neural tube defects (NTDs), whereas suboptimal maternal folate status is a risk factor, suggesting that folate metabolism is a key determinant of susceptibility to NTDs. Despite extensive genetic analysis of folate cycle enzymes, and quantification of metabolites in maternal blood, neither the protective mechanism nor the relationship between maternal folate status and susceptibility are understood in most cases. In order to investigate potential abnormalities in folate metabolism in the embryo itself, we derived primary fibroblastic cell lines from foetuses affected by NTDs and subjected them to the dU suppression test, a sensitive metabolic test of folate metabolism. Significantly, a subset of NTD cases exhibited low scores in this test, indicative of abnormalities in folate cycling that may be causally linked to the defect. Susceptibility to NTDs may be increased by suppression of the methylation cycle, which is interlinked with the folate cycle. However, reduced efficacy in the dU suppression test was not associated with altered abundance of the methylation cycle intermediates, s-adenosylmethionine and s-adenosylhomocysteine, suggesting that a methylation cycle defect is unlikely to be responsible for the observed abnormality of folate metabolism. Genotyping of samples for known polymorphisms in genes encoding folate-associated enzymes did not reveal any correlation between specific genotypes and the observed abnormalities in folate metabolism. These data suggest that as yet unrecognized genetic variants result in embryonic abnormalities of folate cycling that may be causally related to NTDs.

  16. Chromosomal abnormalities in fetuses with ultrasonographically detected neural tube defects.

    PubMed

    Kanit, Hakan; Özkan, Azra Arici; Öner, Soner Recai; Ispahi, Ciğdem; Endrikat, Jan Siegfried; Ertan, Kubilay

    2011-10-01

    We analyzed the karyotype of fetuses with ultrasonographically detected neural tube defects (NTDs). In our study, we included a total of 194 fetuses with NTDs. We analyzed the type of NTD, the karyotype, maternal age, fetal gestational age at diagnosis, and fetal sex. Of the 194 fetuses with NTDs, 87 were anencephalic and 107 had other, nonanencephalic, NTDs. A total of 12 fetuses were shown to have chromosomal abnormalities. Three of 87 anencephalic fetuses (3.45%) had chromosomal abnormalities. The sex ratio for anencephalic fetuses was 65.5% : 34.5% for female and male fetuses. Nine of 107 fetuses with other NTDs (8.41%) had chromosomal abnormalities. Seven fetuses had isolated NTDs and a further seven fetuses had additional ultrasonographic anomalies. Two of the latter had abnormal karyotypes. The sex ratio of all other NTD cases was 67.3% : 32.7% for female and male fetuses. The high number of chromosomal abnormalities justifies prenatal karyotyping in all fetuses with ultrasonographically diagnosed NTDs.

  17. Abnormal Functional Connectivity Density in Post-traumatic Stress Disorder.

    PubMed

    Zhang, Youxue; Xie, Bing; Chen, Heng; Li, Meiling; Liu, Feng; Chen, Huafu

    2016-05-01

    Post-traumatic stress disorder (PTSD) is a psychiatric disorder that occurs in individuals who have experienced life-threatening mental traumas. Previous neuroimaging studies have indicated that the pathology of PTSD may be associated with the abnormal functional integration among brain regions. In the current study, we used functional connectivity density (FCD) mapping, a novel voxel-wise data-driven approach based on graph theory, to explore aberrant FC through the resting-state functional magnetic resonance imaging of the PTSD. We calculated both short- and long-range FCD in PTSD patients and healthy controls (HCs). Compared with HCs, PTSD patients showed significantly increased long-range FCD in the left dorsolateral prefrontal cortex (DLPFC), but no abnormal short-range FCD was found in PTSD. Furthermore, seed-based FC analysis of the left DLPFC showed increased connectivity in the left superior parietal lobe and visual cortex of PTSD patients. The results suggested that PTSD patients experienced a disruption of intrinsic long-range functional connections in the fronto-parietal network and visual cortex, which are associated with attention control and visual information processing.

  18. Identification of neural circuits underlying P300 abnormalities in schizophrenia

    PubMed Central

    O’Donnell, Brian F.; McCarley, Robert W.; Potts, Geoffrey F.; Salisbury, Dean F.; Nestor, Paul G.; Hirayasu, Yoshio; Niznikiewicz, Margaret A.; Barnard, John; Shen, Zi Jen; Weinstein, David M.; Bookstein, Fred L.; Shenton, Martha E.

    2010-01-01

    Event-related potentials (ERPs) provide a noninvasive method to evaluate neural activation and cognitive processes in schizophrenia. The pathophysiological significance of these findings would be greatly enhanced if scalp-recorded ERP abnormalities could be related to specific neural circuits and/or regions of the brain. Using quantitative approaches in which scalp-recorded ERP components are correlated with underlying neuroanatomy in schizophrenia, we focused on biophysical and statistical procedures (partial least squares) to relate the auditory P300 component to anatomic measures obtained from quantitative magnetic resonance imaging. These findings are consistent with other evidence that temporal lobe structures contribute to the generation of the scalp-recorded P300 component and that P300 amplitude asymmetry over temporal recording sites on the scalp may reflect anatomic asymmetries in the volume of the superior temporal gyrus in schizophrenia. PMID:10352563

  19. Cocaine, Appetitive Memory and Neural Connectivity

    PubMed Central

    Ray, Suchismita

    2013-01-01

    This review examines existing cognitive experimental and brain imaging research related to cocaine addiction. In section 1, previous studies that have examined cognitive processes, such as implicit and explicit memory processes in cocaine users are reported. Next, in section 2, brain imaging studies are reported that have used chronic users of cocaine as study participants. In section 3, several conclusions are drawn. They are: (a) in cognitive experimental literature, no study has examined both implicit and explicit memory processes involving cocaine related visual information in the same cocaine user, (b) neural mechanisms underlying implicit and explicit memory processes for cocaine-related visual cues have not been directly investigated in cocaine users in the imaging literature, and (c) none of the previous imaging studies has examined connectivity between the memory system and craving system in the brain of chronic users of cocaine. Finally, future directions in the field of cocaine addiction are suggested. PMID:25009766

  20. Physical connections between different SSVEP neural networks

    PubMed Central

    Wu, Zhenghua

    2016-01-01

    This work investigates the mechanism of the Steady-State Visual Evoked Potential (SSVEP). One theory suggests that different SSVEP neural networks exist whose strongest response are located in different frequency bands. This theory is based on the fact that there are similar SSVEP frequency-amplitude response curves in these bands. Previous studies that employed simultaneous stimuli of different frequencies illustrated that the distribution of these networks were similar, but did not discuss the physical connection between them. By comparing the SSVEP power and distribution under a single-eye stimulus and a simultaneous, dual-eye stimulus, this work demonstrates that the distributions of different SSVEP neural networks are similar to each other and that there should be physical overlapping between them. According to the band-pass filter theory in a signal transferring channel, which we propose in this work for the first time, there are different amounts of neurons that are involved under repetitive stimuli of different frequencies and that the response intensity of each neuron is similar to each other so that the total response (i.e., the SSVEP) that is observed from the scalp is different. PMID:26952961

  1. Abnormal cortical thickness connectivity persists in childhood absence epilepsy

    PubMed Central

    Curwood, Evan K; Pedersen, Mangor; Carney, Patrick W; Berg, Anne T; Abbott, David F; Jackson, Graeme D

    2015-01-01

    Objective Childhood absence epilepsy (CAE) is a childhood-onset generalized epilepsy. Recent fMRI studies have suggested that frontal cortex activity occurs before thalamic involvement in epileptic discharges suggesting that frontal cortex may play an important role in childhood absence seizures. Neurocognitive deficits can persist after resolution of the epilepsy. We investigate whether structural connectivity changes are present in the brains of CAE patients in young adulthood. Methods Cortical thickness measurements were obtained for 30 subjects with CAE (mean age 21 ± 2 years) and 56 healthy controls (mean age 24 ± 4) and regressed for age, sex, and total intracranial volume (TIV). Structural connectivity was evaluated by measuring the correlation between average cortical thicknesses in 915 regions over the brain. Maps of connectivity strength were then obtained for both groups. Results When compared to controls, the CAE group shows overall increased “connectivity” with focal increased connection strength in anterior regions including; the anterior cingulate and the insula and superior temporal gyrus bilaterally; the right orbito-frontal and supramarginal regions; and the left entorhinal cortex. Decreased connection strength in the CAE group was found in the left occipital lobe, with a similar trend in right occipital lobe. Interpretation Brains in young adults whose CAE was resolved had abnormal structural connectivity. Our findings suggest that frontal regions correlate most with cortical thickness throughout the brain in CAE patients, whereas occipital regions correlate most in well matched normal controls. We interpret this as evidence of a developmental difference in CAE that emphasizes these frontal lobe regions, perhaps driven by frontal lobe epileptiform activity. PMID:26000319

  2. Dissociable cortico-striatal connectivity abnormalities in major depression in response to monetary gains and penalties

    PubMed Central

    Admon, Roee; Nickerson, Lisa D.; Dillon, Daniel G.; Holmes, Avram J.; Bogdan, Ryan; Kumar, Poornima; Dougherty, Darin D.; Iosifescu, Dan V.; Mischoulon, David; Fava, Maurizio; Pizzagalli, Diego A.

    2014-01-01

    Background Individuals with major depressive disorder (MDD) are characterized by maladaptive responses to both positive and negative outcomes, which have been linked to localized abnormal activations in cortical and striatal brain regions. However, the exact neural circuitry implicated in such abnormalities remains largely unexplored. Methods In this study 26 unmedicated adults with MDD and 29 matched healthy controls completed a monetary incentive delay task during functional magnetic resonance imaging (fMRI). Psycho-physiological interaction (PPI) analyses probed group differences in connectivity separately in response to positive and negative outcomes (i.e., monetary gains and penalties). Results Relative to controls, MDD subjects displayed decreased connectivity between the caudate and dorsal anterior cingulate cortex (dACC) in response to monetary gains, yet increased connectivity between the caudate and a different, more rostral, dACC sub-region in response to monetary penalties. Moreover, exploratory analyses of 14 MDD patients who completed a 12-week, double-blind, placebo-controlled clinical trial after the baseline fMRI scans indicated that a more normative pattern of cortico-striatal connectivity pre-treatment was associated with more symptoms improvement 12 weeks later. Conclusions These results identify the caudate as a region with dissociable incentive-dependent dACC connectivity abnormalities in MDD, and provide initial evidence that cortico-striatal circuitry may play a role in MDD treatment response. Given the role of cortico-striatal circuitry in encoding action-outcome contingencies, such dysregulated connectivity may relate to the prominent disruptions in goal-directed behavior that characterize MDD. PMID:25055809

  3. Altered Immune Function Associated with Disordered Neural Connectivity and Executive Dysfunctions: A Neurophysiological Study on Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Han, Yvonne M. Y.; Chan, Agnes S.; Sze, Sophia L.; Cheung, Mei-Chun; Wong, Chun-kwok; Lam, Joseph M. K.; Poon, Priscilla M. K.

    2013-01-01

    Previous studies have shown that children with autism spectrum disorders (ASDs) have impaired executive function, disordered neural connectivity, and abnormal immunologic function. The present study examined whether these abnormalities were associated. Seventeen high-functioning (HFA) and 17 low-functioning (LFA) children with ASD, aged 8-17…

  4. Abnormal Amygdala Resting-State Functional Connectivity in Adolescent Depression

    PubMed Central

    Cullen, Kathryn R.; Westlund, Melinda; Klimes-Dougan, Bonnie; Mueller, Bryon A.; Houri, Alaa; Eberly, Lynn E.; Lim, Kelvin O.

    2015-01-01

    Importance Major depressive disorder (MDD) frequently emerges during adolescence and can lead to persistent illness, disability and suicide. The maturational changes that take place in the brain during adolescence underscore the importance of examining neurobiological mechanisms during this time period of early illness. However, neural mechanisms of depression in adolescents have been understudied. Prior research has implicated the amygdala in emotion processing in mood disorders, and adult depression studies have suggested amygdala-frontal connectivity deficits. Resting-state functional magnetic resonance imaging (rsfMRI) is an advanced tool that can be used to probe neural networks and identify brain-behavior relationships. Objective To examine amygdala resting-state functional connectivity (RSFC) in adolescents with and without MDD using rsfMRI, and to examine how amygdala RSFC relates to a broad range of symptom dimensions. Design Cross-sectional rsfMRI study. Setting Depression research program at an academic medical center. Participants 41 girls and boys aged 12–19 years with MDD and 29 healthy adolescents (frequency matched on age and sex) with no psychiatric diagnoses. Main Outcome Measure Using a whole-brain functional connectivity approach, we examined correlation of spontaneous fluctuation of blood-oxygen-level-dependent (BOLD) signal of each voxel in the whole brain with that of the amygdala. Results Adolescents with MDD showed lower positive RSFC between amygdala and hippocampus, parahippocampus and brain stem; this connectivity was inversely correlated with general depression, dysphoria, and lassitude, and positively correlated with well-being. Patients also showed greater (positive) amygdala-precuneus RSFC (in contrast to negative amygdala-precuneus RSFC in controls.) Conclusion Impaired amygdala-hippocampal/brainstem and amygdala-precuneus RSFC has not previously been highlighted in depression and may be unique to adolescent MDD. These circuits

  5. Age-Related Increases in Long-Range Connectivity in Fetal Functional Neural Connectivity Networks In Utero

    PubMed Central

    Thomason, Moriah E.; Grove, Lauren E.; Lozon, Tim A.; Vila, Angela M.; Ye, Yongquan; Nye, Matthew J.; Manning, Janessa H.; Pappas, Athina; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S.; Romero, Roberto

    2015-01-01

    Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI) have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC) before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development. PMID:25284273

  6. Age-related increases in long-range connectivity in fetal functional neural connectivity networks in utero.

    PubMed

    Thomason, Moriah E; Grove, Lauren E; Lozon, Tim A; Vila, Angela M; Ye, Yongquan; Nye, Matthew J; Manning, Janessa H; Pappas, Athina; Hernandez-Andrade, Edgar; Yeo, Lami; Mody, Swati; Berman, Susan; Hassan, Sonia S; Romero, Roberto

    2015-02-01

    Formation of operational neural networks is one of the most significant accomplishments of human fetal brain growth. Recent advances in functional magnetic resonance imaging (fMRI) have made it possible to obtain information about brain function during fetal development. Specifically, resting-state fMRI and novel signal covariation approaches have opened up a new avenue for non-invasive assessment of neural functional connectivity (FC) before birth. Early studies in this area have unearthed new insights about principles of prenatal brain function. However, very little is known about the emergence and maturation of neural networks during fetal life. Here, we obtained cross-sectional rs-fMRI data from 39 fetuses between 24 and 38 weeks postconceptual age to examine patterns of connectivity across ten neural FC networks. We identified primitive forms of motor, visual, default mode, thalamic, and temporal networks in the human fetal brain. We discovered the first evidence of increased long-range, cerebral-cerebellar, cortical-subcortical, and intra-hemispheric FC with advancing fetal age. Continued aggregation of data about fundamental neural connectivity systems in utero is essential to establishing principles of connectomics at the beginning of human life. Normative data provides a vital context against which to compare instances of abnormal neurobiological development.

  7. Rules for Shaping Neural Connections in the Developing Brain

    PubMed Central

    Kutsarova, Elena; Munz, Martin; Ruthazer, Edward S.

    2017-01-01

    It is well established that spontaneous activity in the developing mammalian brain plays a fundamental role in setting up the precise connectivity found in mature sensory circuits. Experiments that produce abnormal activity or that systematically alter neural firing patterns during periods of circuit development strongly suggest that the specific patterns and the degree of correlation in firing may contribute in an instructive manner to circuit refinement. In fish and amphibians, unlike amniotic vertebrates, sensory input directly drives patterned activity during the period of initial projection outgrowth and innervation. Experiments combining sensory stimulation with live imaging, which can be performed non-invasively in these simple vertebrate models, have provided important insights into the mechanisms by which neurons read out and respond to activity patterns. This article reviews the classic and recent literature on spontaneous and evoked activity-dependent circuit refinement in sensory systems and formalizes a set of mechanistic rules for the transformation of patterned activity into accurate neuronal connectivity in the developing brain. PMID:28119574

  8. Abnormal Resting-State Connectivity at Functional MRI in Women with Premenstrual Syndrome

    PubMed Central

    Liu, Qing; Li, Rui; Zhou, Renlai; Li, Juan; Gu, Quan

    2015-01-01

    Objectives Premenstrual syndrome (PMS) refers to a series of cycling and relapsing physical, emotion and behavior syndromes that occur in the luteal phase and resolve soon after the onset of menses. Although PMS is widely recognized, its neural mechanism is still unclear. Design To address this question, we measured brain activity for women with PMS and women without PMS (control group) using resting-state functional magnetic resonance imaging (rs-fMRI). In addition, the participants should complete the emotion scales (Beck Anxiety Inventory, BAI; Beck Depression Inventory, BDI, before the scanning) as well as the stress perception scale (Visual analog scale for stress, VAS, before and after the scanning). Results The results showed that compared with the control group, the PMS group had decreased connectivity in the middle frontal gyrus (MFG) and theparahippocampalgyrus (PHG), as well as increased connectivity in the left medial/superior temporal gyri (MTG/STG) and precentralgyrus within the default mode network (DMN); in addition, the PMS group had higher anxiety and depression scale scores, together with lower stress perception scores. Finally, there were significantly positive correlations between the stress perception scores and functional connectivity in the MFG and cuneus. The BDI scores in the PMS group were correlated negatively with the functional connectivity in the MFG and precuneus and correlated positively with the functional connectivity in the MTG. Conclusion These findings suggest that compared with normal women, women with PMS displayed abnormal stress sensitivity, which was reflected in the decreased and increased functional connectivity within the DMN, blunted stress perception and higher depression. PMID:26325510

  9. Axon substitution in the reorganization of developing neural connections.

    PubMed Central

    Bhide, P G; Frost, D O

    1992-01-01

    Insights into the mechanisms of normal and pathological neural development may be gained by studying the reorganization of developing neural connections, caused experimentally or by disease. Many reorganized connections are assumed to arise by the anomalous stabilization of transient connections that occur during normal development. We report that, although the retina projects transiently to the somatosensory system in normal developing hamsters, the permanent retinal projections to the somatosensory system that arise as a consequence of early brain lesions are not formed by the stabilization of the normally transient projection. Instead, the transient retinal axons are replaced by retinal axons that do not normally project to the somatosensory system. The distinction between anomalous stabilization and substitution is significant for determining the cellular mechanisms underlying the development of neural connectivity. Images PMID:1465409

  10. Abnormal resting-state functional connectivity of the nucleus accumbens in multi-year abstinent heroin addicts.

    PubMed

    Zou, Feng; Wu, Xinhuai; Zhai, Tianye; Lei, Yu; Shao, Yongcong; Jin, Xiao; Tan, Shuwen; Wu, Bing; Wang, Lubin; Yang, Zheng

    2015-11-01

    Functional neuroimaging studies suggest that abnormal brain functional connectivity may be the neural underpinning of addiction to illicit drugs and of relapse after successful cessation therapy. Aberrant brain networks have been demonstrated in addicted patients and in newly abstinent addicts. However, it is not known whether abnormal brain connectivity patterns persist after prolonged abstinence. In this cross-sectional study, whole-brain resting-state functional magnetic resonance images (8 min) were collected from 30 heroin-addicted individuals after a long period of abstinence (more than 3 years) and from 30 healthy controls. We first examined the group differences in the resting-state functional connectivity of the nucleus accumbens (NAc), a brain region implicated in relapse-related processes, including craving and reactivity to stress following acute and protracted withdrawal from heroin. We then examined the relation between the duration of abstinence and the altered NAc functional connectivity in the heroin group. We found that, compared with controls, heroin-dependent participants exhibited significantly greater functional connectivity between the right ventromedial prefrontal cortex and the NAc and weaker functional connectivity between the NAc and the left putamen, left precuneus, and supplementary motor area. However, with longer abstinence time, the strength of NAc functional connectivity with the left putamen increased. These results indicate that dysfunction of the NAc functional network is still present in long-term-abstinent heroin-dependent individuals.

  11. Abnormal White Matter Connections Between Medial Frontal Regions Predict Symptoms in Patients with First Episode Schizophrenia

    PubMed Central

    Ohtani, Toshiyuki; Bouix, Sylvain; Lyall, Amanda E; Hosokawa, Taiga; Saito, Yukiko; Melonakos, Eric; Westin, Carl-Fredrik; Seidman, Larry J.; Goldstein, Jill; Mesholam-Gately, Raquelle; Petryshen, Tracey; Wojcik, Joanne; Kubicki, Marek

    2015-01-01

    Introduction The medial orbitofrontal cortex (mOFC) and rostral part of anterior cingulate cortex (rACC) have been suggested to be involved in the neural network of salience and emotional processing, and associated with specific clinical symptoms in schizophrenia. Considering the schizophrenia dysconnectivity hypothesis, the connectivity abnormalities between mOFC and rACC might be associated with clinical characteristics in first episode schizophrenia patients (FESZ). Methods After parcellating mOFC into the anterior and posterior part, diffusion properties of the mOFC-rACC white matter connections for 21 patients with FESZ and 21 healthy controls (HCs) were examined using stochastic tractography, one of the most effective Diffusion Tensor Imaging methods for examining tracts between adjacent gray matter regions. Results Fractional anisotropy (FA) reductions were observed in bilateral posterior, but not anterior mOFC-rACC connections (left: p<0.0001; right: p<0.0001) in FESZ compared to HCs. In addition, reduced FA in the left posterior mOFC-rACC connection was associated with more severe anhedonia-asociality (rho=−0.633, p=0.006) and total score (rho=−0.520, p=0.032) in the Scale for the Assessment of Negative Symptoms (SANS); reduced FA in the right posterior mOFC-rACC connection was associated with more severe affective flattening (rho=−0.644, p=0.005), total score (rho=−0.535, p=0.027) in SANS, hallucinations (rho=−0.551, p=0.018), delusions (rho=−0.632, p=0.005) and total score (rho=−0.721, p=0.001) in the Scale for the Assessment of Positive Symptoms (SAPS) in FESZ. Conclusions The observed white matter abnormalities within the connections between mOFC and rACC might be associated with the psychopathology of the early stage of schizophrenia. PMID:26277547

  12. Molecular signatures of neural connectivity in the olfactory cortex

    PubMed Central

    Diodato, Assunta; Ruinart de Brimont, Marion; Yim, Yeong Shin; Derian, Nicolas; Perrin, Sandrine; Pouch, Juliette; Klatzmann, David; Garel, Sonia; Choi, Gloria B; Fleischmann, Alexander

    2016-01-01

    The ability to target subclasses of neurons with defined connectivity is crucial for uncovering neural circuit functions. The olfactory (piriform) cortex is thought to generate odour percepts and memories, and odour information encoded in piriform is routed to target brain areas involved in multimodal sensory integration, cognition and motor control. However, it remains unknown if piriform outputs are spatially organized, and if distinct output channels are delineated by different gene expression patterns. Here we identify genes selectively expressed in different layers of the piriform cortex. Neural tracing experiments reveal that these layer-specific piriform genes mark different subclasses of neurons, which project to distinct target areas. Interestingly, these molecular signatures of connectivity are maintained in reeler mutant mice, in which neural positioning is scrambled. These results reveal that a predictive link between a neuron's molecular identity and connectivity in this cortical circuit is determined independent of its spatial position. PMID:27426965

  13. Abnormal gray matter volume and resting-state functional connectivity in former heroin-dependent individuals abstinent for multiple years.

    PubMed

    Wang, Lubin; Zou, Feng; Zhai, Tianye; Lei, Yu; Tan, Shuwen; Jin, Xiao; Ye, Enmao; Shao, Yongcong; Yang, Yihong; Yang, Zheng

    2016-05-01

    Previous studies have suggested that heroin addiction is associated with structural and functional brain abnormalities. However, it is largely unknown whether these characteristics of brain abnormalities would be persistent or restored after long periods of abstinence. Considering the very high rates of relapse, we hypothesized that there may exist some latent neural vulnerabilities in abstinent heroin users. In this study, structural and resting-state functional magnetic resonance imaging data were collected from 30 former heroin-dependent (FHD) subjects who were drug free for more than 3 years and 30 non-addicted control (CN) volunteers. Voxel-based morphometry was used to identify possible gray matter volume differences between the FHD and CN groups. Alterations in resting-state functional connectivity in FHD were examined using brain areas with gray matter deficits as seed regions. Significantly reduced gray matter volume was observed in FHD in an area surrounding the parieto-occipital sulcus, which included the precuneus and cuneus. Functional connectivity analyses revealed that the FHD subjects showed reduced positive correlation within the default mode network and visual network and decreased negative correlation between the default mode network, visual network and task positive network. Moreover, the altered functional connectivity was correlated with self-reported impulsivity scores in the FHD subjects. Our findings suggest that disruption of large-scale brain systems is present in former heroin users even after multi-year abstinence, which could serve as system-level neural underpinnings for behavioral dysfunctions associated with addiction.

  14. Identification of the connections in biologically inspired neural networks

    NASA Technical Reports Server (NTRS)

    Demuth, H.; Leung, K.; Beale, M.; Hicklin, J.

    1990-01-01

    We developed an identification method to find the strength of the connections between neurons from their behavior in small biologically-inspired artificial neural networks. That is, given the network external inputs and the temporal firing pattern of the neurons, we can calculate a solution for the strengths of the connections between neurons and the initial neuron activations if a solution exists. The method determines directly if there is a solution to a particular neural network problem. No training of the network is required. It should be noted that this is a first pass at the solution of a difficult problem. The neuron and network models chosen are related to biology but do not contain all of its complexities, some of which we hope to add to the model in future work. A variety of new results have been obtained. First, the method has been tailored to produce connection weight matrix solutions for networks with important features of biological neural (bioneural) networks. Second, a computationally efficient method of finding a robust central solution has been developed. This later method also enables us to find the most consistent solution in the presence of noisy data. Prospects of applying our method to identify bioneural network connections are exciting because such connections are almost impossible to measure in the laboratory. Knowledge of such connections would facilitate an understanding of bioneural networks and would allow the construction of the electronic counterparts of bioneural networks on very large scale integrated (VLSI) circuits.

  15. Estimation of effective connectivity via data-driven neural modeling

    PubMed Central

    Freestone, Dean R.; Karoly, Philippa J.; Nešić, Dragan; Aram, Parham; Cook, Mark J.; Grayden, David B.

    2014-01-01

    This research introduces a new method for functional brain imaging via a process of model inversion. By estimating parameters of a computational model, we are able to track effective connectivity and mean membrane potential dynamics that cannot be directly measured using electrophysiological measurements alone. The ability to track the hidden aspects of neurophysiology will have a profound impact on the way we understand and treat epilepsy. For example, under the assumption the model captures the key features of the cortical circuits of interest, the framework will provide insights into seizure initiation and termination on a patient-specific basis. It will enable investigation into the effect a particular drug has on specific neural populations and connectivity structures using minimally invasive measurements. The method is based on approximating brain networks using an interconnected neural population model. The neural population model is based on a neural mass model that describes the functional activity of the brain, capturing the mesoscopic biophysics and anatomical structure. The model is made subject-specific by estimating the strength of intra-cortical connections within a region and inter-cortical connections between regions using a novel Kalman filtering method. We demonstrate through simulation how the framework can be used to track the mechanisms involved in seizure initiation and termination. PMID:25506315

  16. Ground states of partially connected binary neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1990-01-01

    Neural networks defined by outer products of vectors over (-1, 0, 1) are considered. Patterns over (-1, 0, 1) define by their outer products partially connected neural networks consisting of internally strongly connected, externally weakly connected subnetworks. Subpatterns over (-1, 1) define subnetworks, and their combinations that agree in the common bits define permissible words. It is shown that the permissible words are locally stable states of the network, provided that each of the subnetworks stores mutually orthogonal subwords, or, at most, two subwords. It is also shown that when each of the subnetworks stores two mutually orthogonal binary subwords at most, the permissible words, defined as the combinations of the subwords (one corresponding to each subnetwork), that agree in their common bits are the unique ground states of the associated energy function.

  17. A small number of abnormal brain connections predicts adult autism spectrum disorder

    PubMed Central

    Yahata, Noriaki; Morimoto, Jun; Hashimoto, Ryuichiro; Lisi, Giuseppe; Shibata, Kazuhisa; Kawakubo, Yuki; Kuwabara, Hitoshi; Kuroda, Miho; Yamada, Takashi; Megumi, Fukuda; Imamizu, Hiroshi; Náñez Sr, José E.; Takahashi, Hidehiko; Okamoto, Yasumasa; Kasai, Kiyoto; Kato, Nobumasa; Sasaki, Yuka; Watanabe, Takeo; Kawato, Mitsuo

    2016-01-01

    Although autism spectrum disorder (ASD) is a serious lifelong condition, its underlying neural mechanism remains unclear. Recently, neuroimaging-based classifiers for ASD and typically developed (TD) individuals were developed to identify the abnormality of functional connections (FCs). Due to over-fitting and interferential effects of varying measurement conditions and demographic distributions, no classifiers have been strictly validated for independent cohorts. Here we overcome these difficulties by developing a novel machine-learning algorithm that identifies a small number of FCs that separates ASD versus TD. The classifier achieves high accuracy for a Japanese discovery cohort and demonstrates a remarkable degree of generalization for two independent validation cohorts in the USA and Japan. The developed ASD classifier does not distinguish individuals with major depressive disorder and attention-deficit hyperactivity disorder from their controls but moderately distinguishes patients with schizophrenia from their controls. The results leave open the viable possibility of exploring neuroimaging-based dimensions quantifying the multiple-disorder spectrum. PMID:27075704

  18. Functional Connectivity Abnormalities of Brain Regions with Structural Deficits in Young Adult Male Smokers

    PubMed Central

    Bu, Limei; Yu, Dahua; Su, Shaoping; Ma, Yao; von Deneen, Karen M.; Luo, Lin; Zhai, Jinquan; Liu, Bo; Cheng, Jiadong; Guan, Yanyan; Li, Yangding; Bi, Yanzhi; Xue, Ting; Lu, Xiaoqi; Yuan, Kai

    2016-01-01

    Smoking is one of the most prevalent dependence disorders. Previous studies have detected structural and functional deficits in smokers. However, few studies focused on the changes of resting state functional connectivity (RSFC) of the brain regions with structural deficits in young adult smokers. Twenty-six young adult smokers and 26 well-matched healthy non-smokers participated in our study. Voxel-based morphometry (VBM) and RSFC were employed to investigate the structural and functional changes in young adult smokers. Compared with healthy non-smokers, young smokers showed increased gray matter (GM) volume in the left putamen and decreased GM volume in the left anterior cingulate cortex (ACC). Moreover, GM volume in the left ACC has a negative correlation trend with pack-years and GM volume in the left putamen was positively correlated with pack-years. The left ACC and putamen with abnormal volumes were chosen as the regions of interest (ROIs) for the RSFC analysis. We found that smokers showed increased RSFC between the left ACC and right amygdala and between the left putamen and right anterior insula. We revealed structural and functional deficits within the frontostriatal circuits in young smokers, which may shed new insights into the neural mechanisms of smoking. PMID:27757078

  19. Abnormal Connectional Fingerprint in Schizophrenia: A Novel Network Analysis of Diffusion Tensor Imaging Data

    PubMed Central

    Edwin Thanarajah, Sharmili; Han, Cheol E.; Rotarska-Jagiela, Anna; Singer, Wolf; Deichmann, Ralf; Maurer, Konrad; Kaiser, Marcus; Uhlhaas, Peter J.

    2016-01-01

    The graph theoretical analysis of structural magnetic resonance imaging (MRI) data has received a great deal of interest in recent years to characterize the organizational principles of brain networks and their alterations in psychiatric disorders, such as schizophrenia. However, the characterization of networks in clinical populations can be challenging, since the comparison of connectivity between groups is influenced by several factors, such as the overall number of connections and the structural abnormalities of the seed regions. To overcome these limitations, the current study employed the whole-brain analysis of connectional fingerprints in diffusion tensor imaging data obtained at 3 T of chronic schizophrenia patients (n = 16) and healthy, age-matched control participants (n = 17). Probabilistic tractography was performed to quantify the connectivity of 110 brain areas. The connectional fingerprint of a brain area represents the set of relative connection probabilities to all its target areas and is, hence, less affected by overall white and gray matter changes than absolute connectivity measures. After detecting brain regions with abnormal connectional fingerprints through similarity measures, we tested each of its relative connection probability between groups. We found altered connectional fingerprints in schizophrenia patients consistent with a dysconnectivity syndrome. While the medial frontal gyrus showed only reduced connectivity, the connectional fingerprints of the inferior frontal gyrus and the putamen mainly contained relatively increased connection probabilities to areas in the frontal, limbic, and subcortical areas. These findings are in line with previous studies that reported abnormalities in striatal–frontal circuits in the pathophysiology of schizophrenia, highlighting the potential utility of connectional fingerprints for the analysis of anatomical networks in the disorder. PMID:27445870

  20. Abnormally Malicious Autonomous Systems and their Internet Connectivity

    SciTech Connect

    Shue, Craig A; Kalafut, Prof. Andrew; Gupta, Prof. Minaxi

    2011-01-01

    While many attacks are distributed across botnets, investigators and network operators have recently targeted malicious networks through high profile autonomous system (AS) de-peerings and network shut-downs. In this paper, we explore whether some ASes indeed are safe havens for malicious activity. We look for ISPs and ASes that exhibit disproportionately high malicious behavior using ten popular blacklists, plus local spam data, and extensive DNS resolutions based on the contents of the blacklists. We find that some ASes have over 80% of their routable IP address space blacklisted. Yet others account for large fractions of blacklisted IP addresses. Several ASes regularly peer with ASes associated with significant malicious activity. We also find that malicious ASes as a whole differ from benign ones in other properties not obviously related to their malicious activities, such as more frequent connectivity changes with their BGP peers. Overall, we conclude that examining malicious activity at AS granularity can unearth networks with lax security or those that harbor cybercrime.

  1. Connective tissue spectrum abnormalities associated with spontaneous cerebrospinal fluid leaks: a prospective study.

    PubMed

    Reinstein, Eyal; Pariani, Mitchel; Bannykh, Serguei; Rimoin, David L; Schievink, Wouter I

    2013-04-01

    We aimed to assess the frequency of connective tissue abnormalities among patients with cerebrospinal fluid (CSF) leaks in a prospective study using a large cohort of patients. We enrolled a consecutive group of 50 patients, referred for consultation because of CSF leak. All patients have been carefully examined for the presence of connective tissue abnormalities, and based on findings, patients underwent genetic testing. Ancillary diagnostic studies included echocardiography, eye exam, and histopathological examinations of skin and dura biopsies in selected patients. We identified nine patients with heritable connective tissue disorders, including Marfan syndrome, Ehlers-Danlos syndrome and other unclassified forms. In seven patients, spontaneous CSF leak was the first noted manifestation of the genetic disorder. We conclude that spontaneous CSF leaks are associated with a spectrum of connective tissue abnormalities and may be the first noted clinical presentation of the genetic disorder. We propose that there is a clinical basis for considering spontaneous CSF leak as a clinical manifestation of heritable connective tissue disorders, and we suggest that patients with CSF leaks should be screened for connective tissue and vascular abnormalities.

  2. Alterations in neural connectivity in preterm children at school age.

    PubMed

    Gozzo, Yeisid; Vohr, Betty; Lacadie, Cheryl; Hampson, Michelle; Katz, Karol H; Maller-Kesselman, Jill; Schneider, Karen C; Peterson, Bradley S; Rajeevan, Nallakkandi; Makuch, Robert W; Constable, R Todd; Ment, Laura R

    2009-11-01

    Converging data suggest recovery from injury in the preterm brain. We used functional magnetic resonance imaging (fMRI) to test the hypothesis that cerebral connectivity involving Wernicke's area and other important cortical language regions would differ between preterm (PT) and term (T) control school age children during performance of an auditory language task. Fifty-four PT children (600-1250 g birth weight) and 24 T controls were evaluated using an fMRI passive language task and neurodevelopmental assessments including: the Wechsler Intelligence Scale for Children - III (WISC-III), the Peabody Individual Achievement Test - Revised (PIAT-R) and the Peabody Picture Vocabulary Test - Revised (PPVT-R) at 8 years of age. Neural activity was assessed for language processing and the data were evaluated for connectivity and correlations to cognitive outcomes. We found that PT subjects scored significantly lower on all components of the WISC-III (p<0.009), the PIAT-R Reading Comprehension test (p=0.013), and the PPVT-R (p=0.001) compared to term subjects. Connectivity analyses revealed significantly stronger neural circuits in PT children between Wernicke's area and the right inferior frontal gyrus (R IFG, Broca's area homologue) and both the left and the right supramarginal gyri (SMG) components of the inferior parietal lobules (pneural systems for auditory language function at school age differently than T controls; these alterations may represent a delay in maturation of neural networks or the engagement of alternate circuits for language processing.

  3. Alterations in neural connectivity in preterm children at school age

    PubMed Central

    Gozzo, Yeisid; Vohr, Betty; Lacadie, Cheryl; Hampson, Michelle; Katz, Karol H.; Maller-Kesselman, Jill; Schneider, Karen C.; Peterson, Bradley S.; Rajeevan, Nallakkandi; Makuch, Robert W.; Constable, R. Todd; Ment, Laura R.

    2009-01-01

    Converging data suggest recovery from injury in the preterm brain. We used functional Magnetic Resonance Imaging (fMRI) to test the hypothesis that cerebral connectivity involving Wernicke’s area and other important cortical language regions would differ between preterm (PT) and term (T) control school age children during performance of an auditory language task. Fifty-four PT children (600 – 1250 g birth weight) and 24 T controls were evaluated using an fMRI passive language task and neurodevelopmental assessments including: the Wechsler Intelligence Scale for Children - III (WISC - III), the Peabody Individual Achievement Test - Revised (PIAT-R) and the Peabody Picture Vocabulary Test - Revised (PPVT- R) at 8 years of age. Neural activity was assessed for language processing and the data were evaluated for connectivity and correlations to cognitive outcomes. We found PT subjects scored significantly lower on all components of the WISC - III (p < 0.009), the PIAT- R reading comprehension test (p = 0.013), and the PPVT-R (p = 0.001) compared to term subjects. Connectivity analyses revealed significantly stronger neural circuits in PT children between Wernicke’s area and the right inferior frontal gyrus (R IFG, Broca’s area homologue) and both the left and the right supramarginal gyri (SMG) components of the inferior parietal lobules (p ≤ 0.02 for all). We conclude that PT subjects employ neural systems for auditory language function at school age differently than T controls; these alterations may represent a delay in maturation of neural networks or the engagement of alternate circuits for language processing. PMID:19560547

  4. Connecting Teratogen-Induced Congenital Heart Defects to Neural Crest Cells and Their Effect on Cardiac Function

    PubMed Central

    Karunamuni, Ganga H.; Ma, Pei; Gu, Shi; Rollins, Andrew M.; Jenkins, Michael W.; Watanabe, Michiko

    2014-01-01

    Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest is in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies. PMID:25220155

  5. Connecting teratogen-induced congenital heart defects to neural crest cells and their effect on cardiac function.

    PubMed

    Karunamuni, Ganga H; Ma, Pei; Gu, Shi; Rollins, Andrew M; Jenkins, Michael W; Watanabe, Michiko

    2014-09-01

    Neural crest cells play many key roles in embryonic development, as demonstrated by the abnormalities that result from their specific absence or dysfunction. Unfortunately, these key cells are particularly sensitive to abnormalities in various intrinsic and extrinsic factors, such as genetic deletions or ethanol-exposure that lead to morbidity and mortality for organisms. This review discusses the role identified for a segment of neural crest in regulating the morphogenesis of the heart and associated great vessels. The paradox is that their derivatives constitute a small proportion of cells to the cardiovascular system. Findings supporting that these cells impact early cardiac function raises the interesting possibility that they indirectly control cardiovascular development at least partially through regulating function. Making connections between insults to the neural crest, cardiac function, and morphogenesis is more approachable with technological advances. Expanding our understanding of early functional consequences could be useful in improving diagnosis and testing therapies.

  6. Ground-state coding in partially connected neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1989-01-01

    Patterns over (-1,0,1) define, by their outer products, partially connected neural networks, consisting of internally strongly connected, externally weakly connected subnetworks. The connectivity patterns may have highly organized structures, such as lattices and fractal trees or nests. Subpatterns over (-1,1) define the subcodes stored in the subnetwork, that agree in their common bits. It is first shown that the code words are locally stable stares of the network, provided that each of the subcodes consists of mutually orthogonal words or of, at most, two words. Then it is shown that if each of the subcodes consists of two orthogonal words, the code words are the unique ground states (absolute minima) of the Hamiltonian associated with the network. The regions of attraction associated with the code words are shown to grow with the number of subnetworks sharing each of the neurons. Depending on the particular network architecture, the code sizes of partially connected networks can be vastly greater than those of fully connected ones and their error correction capabilities can be significantly greater than those of the disconnected subnetworks. The codes associated with lattice-structured and hierarchical networks are discussed in some detail.

  7. Abnormal whole-brain functional connectivity in patients with primary insomnia

    PubMed Central

    Li, Chao; Dong, Mengshi; Yin, Yi; Hua, Kelei; Fu, Shishun; Jiang, Guihua

    2017-01-01

    The investigation of the mechanism of insomnia could provide the basis for improved understanding and treatment of insomnia. The aim of this study is to investigate the abnormal functional connectivity throughout the entire brain of insomnia patients, and analyze the global distribution of these abnormalities. Whole brains of 50 patients with insomnia and 40 healthy controls were divided into 116 regions and abnormal connectivities were identified by comparing the Pearson’s correlation coefficients of each pair using general linear model analyses with covariates of age, sex, and duration of education. In patients with insomnia, regions that relate to wakefulness, emotion, worry/rumination, saliency/attention, and sensory-motor showed increased positive connectivity with each other; however, regions that often restrain each other, such as regions in salience network with regions in default mode network, showed decreased positive connectivity. Correlation analysis indicated that some increased positive functional connectivity was associated with the Self-Rating Depression Scale, Insomnia Severity Index, and Pittsburgh Sleep Quality Index scores. According to our findings, increased and decreased positive connectivities suggest function strengthening and function disinhibition, respectively, which offers a parsimonious explanation for the hyperarousal hypothesis in the level of the whole-brain functional connectivity in patients with insomnia. PMID:28243094

  8. Abnormal whole-brain functional connectivity in patients with primary insomnia.

    PubMed

    Li, Chao; Dong, Mengshi; Yin, Yi; Hua, Kelei; Fu, Shishun; Jiang, Guihua

    2017-01-01

    The investigation of the mechanism of insomnia could provide the basis for improved understanding and treatment of insomnia. The aim of this study is to investigate the abnormal functional connectivity throughout the entire brain of insomnia patients, and analyze the global distribution of these abnormalities. Whole brains of 50 patients with insomnia and 40 healthy controls were divided into 116 regions and abnormal connectivities were identified by comparing the Pearson's correlation coefficients of each pair using general linear model analyses with covariates of age, sex, and duration of education. In patients with insomnia, regions that relate to wakefulness, emotion, worry/rumination, saliency/attention, and sensory-motor showed increased positive connectivity with each other; however, regions that often restrain each other, such as regions in salience network with regions in default mode network, showed decreased positive connectivity. Correlation analysis indicated that some increased positive functional connectivity was associated with the Self-Rating Depression Scale, Insomnia Severity Index, and Pittsburgh Sleep Quality Index scores. According to our findings, increased and decreased positive connectivities suggest function strengthening and function disinhibition, respectively, which offers a parsimonious explanation for the hyperarousal hypothesis in the level of the whole-brain functional connectivity in patients with insomnia.

  9. Neural network connectivity differences in children who stutter.

    PubMed

    Chang, Soo-Eun; Zhu, David C

    2013-12-01

    Affecting 1% of the general population, stuttering impairs the normally effortless process of speech production, which requires precise coordination of sequential movement occurring among the articulatory, respiratory, and resonance systems, all within millisecond time scales. Those afflicted experience frequent disfluencies during ongoing speech, often leading to negative psychosocial consequences. The aetiology of stuttering remains unclear; compared to other neurodevelopmental disorders, few studies to date have examined the neural bases of childhood stuttering. Here we report, for the first time, results from functional (resting state functional magnetic resonance imaging) and structural connectivity analyses (probabilistic tractography) of multimodal neuroimaging data examining neural networks in children who stutter. We examined how synchronized brain activity occurring among brain areas associated with speech production, and white matter tracts that interconnect them, differ in young children who stutter (aged 3-9 years) compared with age-matched peers. Results showed that children who stutter have attenuated connectivity in neural networks that support timing of self-paced movement control. The results suggest that auditory-motor and basal ganglia-thalamocortical networks develop differently in stuttering children, which may in turn affect speech planning and execution processes needed to achieve fluent speech motor control. These results provide important initial evidence of neurological differences in the early phases of symptom onset in children who stutter.

  10. Two-layer tree-connected feed-forward neural network model for neural cryptography

    NASA Astrophysics Data System (ADS)

    Lei, Xinyu; Liao, Xiaofeng; Chen, Fei; Huang, Tingwen

    2013-03-01

    Neural synchronization by means of mutual learning provides an avenue to design public key exchange protocols, bringing about what is known as neural cryptography. Two identically structured neural networks learn from each other and reach full synchronization eventually. The full synchronization enables two networks to have the same weight, which can be used as a secret key for many subsequent cryptographic purposes. It is striking to observe that after the first decade of neural cryptography, the tree parity machine (TPM) network with hidden unit K=3 appears to be the sole network that is suitable for a neural protocol. No convincingly secure neural protocol is well designed by using other network structures despite considerable research efforts. With the goal of overcoming the limitations of a suitable network structure, in this paper we develop a two-layer tree-connected feed-forward neural network (TTFNN) model for a neural protocol. The TTFNN model captures the notion that two partners are capable of exchanging a vector with multiple bits in each time step. An in-depth study of the dynamic process of TTFNN-based protocols is then undertaken, based upon which a feasible condition is theoretically obtained to seek applicable protocols. Afterward, according to two analytically derived heuristic rules, a complete methodology for designing feasible TTFNN-based protocols is elaborated. A variety of feasible neural protocols are constructed, which exhibit the effectiveness and benefits of the proposed model. With another look from the perspective of application, TTFNN-based instances, which can outperform the conventional TPM-based protocol with respect to synchronization speed, are also experimentally confirmed.

  11. Abnormal connectivity in the sensorimotor network predicts attention deficits in traumatic brain injury.

    PubMed

    Shumskaya, Elena; van Gerven, Marcel A J; Norris, David G; Vos, Pieter E; Kessels, Roy P C

    2017-03-01

    The aim of this study was to explore modifications of functional connectivity in multiple resting-state networks (RSNs) after moderate to severe traumatic brain injury (TBI) and evaluate the relationship between functional connectivity patterns and cognitive abnormalities. Forty-three moderate/severe TBI patients and 34 healthy controls (HC) underwent resting-state fMRI. Group ICA was applied to identify RSNs. Between-subject analysis was performed using dual regression. Multiple linear regressions were used to investigate the relationship between abnormal connectivity strength and neuropsychological outcome. Forty (93%) TBI patients showed moderate disability, while 2 (5%) and 1 (2%) upper severe disability and low good recovery, respectively. TBI patients performed worse than HC on the domains attention and language. We found increased connectivity in sensorimotor, visual, default mode (DMN), executive, and cerebellar RSNs after TBI. We demonstrated an effect of connectivity in the sensorimotor RSN on attention (p < 10(-3)) and a trend towards a significant effect of the DMN connectivity on attention (p = 0.058). A group-by-network interaction on attention was found in the sensorimotor network (p = 0.002). In TBI, attention was positively related to abnormal connectivity within the sensorimotor RSN, while in HC this relation was negative. Our results show altered patterns of functional connectivity after TBI. Attention impairments in TBI were associated with increased connectivity in the sensorimotor network. Further research is needed to test whether attention in TBI patients is directly affected by changes in functional connectivity in the sensorimotor network or whether the effect is actually driven by changes in the DMN.

  12. Intrinsic connective tissue abnormalities in the heart muscle of cardiomyopathic Syrian hamsters.

    PubMed Central

    Cohen-Gould, L.; Robinson, T. F.; Factor, S. M.

    1987-01-01

    Significant connective tissue abnormalities occurring in hearts of cardiomyopathic Syrian hamsters are reported. These abnormalities include a pronounced loss of the intrinsic connective tissue skeletal framework around foci of myocytolytic necrosis within the non-necrotic myocardium. These changes were demonstrated by a silver impregnation technique, and they were confirmed by scanning electron microscopy. Quantitation demonstrated more than a twofold increase in the area of ventricular wall affected by pathologic changes, when the connective tissue alterations were included with the myocardial necrosis. In addition, the authors also observed focal, thick "tethering" connective tissue fibers at the termini of necrotic lesions, seemingly connecting them to normal muscle. These connective tissue abnormalities may contribute to the progressive loss of ventricular function that occurs in this model of cardiomyopathy. They may permit greater wall thinning than would occur with focal necrosis alone, and they may increase focal mural stiffness in the tethered regions. Further investigation of the pathogenesis of these changes and their mechanical significance is indicated. Images Figure 5 Figure 6 Figure 1 Figure 2 Figure 3 Figure 4 PMID:3578490

  13. Somatosensory cortex functional connectivity abnormalities in autism show opposite trends, depending on direction and spatial scale

    PubMed Central

    Khan, Sheraz; Michmizos, Konstantinos; Tommerdahl, Mark; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Garel, Keri-Lee A.; Herbert, Martha R.; Hämäläinen, Matti S.

    2015-01-01

    Functional connectivity is abnormal in autism, but the nature of these abnormalities remains elusive. Different studies, mostly using functional magnetic resonance imaging, have found increased, decreased, or even mixed pattern functional connectivity abnormalities in autism, but no unifying framework has emerged to date. We measured functional connectivity in individuals with autism and in controls using magnetoencephalography, which allowed us to resolve both the directionality (feedforward versus feedback) and spatial scale (local or long-range) of functional connectivity. Specifically, we measured the cortical response and functional connectivity during a passive 25-Hz vibrotactile stimulation in the somatosensory cortex of 20 typically developing individuals and 15 individuals with autism, all males and right-handed, aged 8–18, and the mu-rhythm during resting state in a subset of these participants (12 per group, same age range). Two major significant group differences emerged in the response to the vibrotactile stimulus. First, the 50-Hz phase locking component of the cortical response, generated locally in the primary (S1) and secondary (S2) somatosensory cortex, was reduced in the autism group (P < 0.003, corrected). Second, feedforward functional connectivity between S1 and S2 was increased in the autism group (P < 0.004, corrected). During resting state, there was no group difference in the mu-α rhythm. In contrast, the mu-β rhythm, which has been associated with feedback connectivity, was significantly reduced in the autism group (P < 0.04, corrected). Furthermore, the strength of the mu-β was correlated to the relative strength of 50 Hz component of the response to the vibrotactile stimulus (r = 0.78, P < 0.00005), indicating a shared aetiology for these seemingly unrelated abnormalities. These magnetoencephalography-derived measures were correlated with two different behavioural sensory processing scores (P < 0.01 and P < 0.02 for the autism

  14. Intrinsic connectivity of neural networks in the awake rabbit.

    PubMed

    Schroeder, Matthew P; Weiss, Craig; Procissi, Daniel; Disterhoft, John F; Wang, Lei

    2016-04-01

    The way in which the brain is functionally connected into different networks has emerged as an important research topic in order to understand normal neural processing and signaling. Since some experimental manipulations are difficult or unethical to perform in humans, animal models are better suited to investigate this topic. Rabbits are a species that can undergo MRI scanning in an awake and conscious state with minimal preparation and habituation. In this study, we characterized the intrinsic functional networks of the resting New Zealand White rabbit brain using BOLD fMRI data. Group independent component analysis revealed seven networks similar to those previously found in humans, non-human primates and/or rodents including the hippocampus, default mode, cerebellum, thalamus, and visual, somatosensory, and parietal cortices. For the first time, the intrinsic functional networks of the resting rabbit brain have been elucidated demonstrating the rabbit's applicability as a translational animal model. Without the confounding effects of anesthetics or sedatives, future experiments may employ rabbits to understand changes in neural connectivity and brain functioning as a result of experimental manipulation (e.g., temporary or permanent network disruption, learning-related changes, and drug administration).

  15. Identification of neural connectivity signatures of autism using machine learning

    PubMed Central

    Deshpande, Gopikrishna; Libero, Lauren E.; Sreenivasan, Karthik R.; Deshpande, Hrishikesh D.; Kana, Rajesh K.

    2013-01-01

    Alterations in interregional neural connectivity have been suggested as a signature of the pathobiology of autism. There have been many reports of functional and anatomical connectivity being altered while individuals with autism are engaged in complex cognitive and social tasks. Although disrupted instantaneous correlation between cortical regions observed from functional MRI is considered to be an explanatory model for autism, the causal influence of a brain area on another (effective connectivity) is a vital link missing in these studies. The current study focuses on addressing this in an fMRI study of Theory-of-Mind (ToM) in 15 high-functioning adolescents and adults with autism and 15 typically developing control participants. Participants viewed a series of comic strip vignettes in the MRI scanner and were asked to choose the most logical end to the story from three alternatives, separately for trials involving physical and intentional causality. The mean time series, extracted from 18 activated regions of interest, were processed using a multivariate autoregressive model (MVAR) to obtain the causality matrices for each of the 30 participants. These causal connectivity weights, along with assessment scores, functional connectivity values, and fractional anisotropy obtained from DTI data for each participant, were submitted to a recursive cluster elimination based support vector machine classifier to determine the accuracy with which the classifier can predict a novel participant's group membership (autism or control). We found a maximum classification accuracy of 95.9% with 19 features which had the highest discriminative ability between the groups. All of the 19 features were effective connectivity paths, indicating that causal information may be critical in discriminating between autism and control groups. These effective connectivity paths were also found to be significantly greater in controls as compared to ASD participants and consisted predominantly of

  16. Abnormal lateralization of functional connectivity between language and default mode regions in autism

    PubMed Central

    2014-01-01

    Background Lateralization of brain structure and function occurs in typical development, and abnormal lateralization is present in various neuropsychiatric disorders. Autism is characterized by a lack of left lateralization in structure and function of regions involved in language, such as Broca and Wernicke areas. Methods Using functional connectivity magnetic resonance imaging from a large publicly available sample (n = 964), we tested whether abnormal functional lateralization in autism exists preferentially in language regions or in a more diffuse pattern across networks of lateralized brain regions. Results The autism group exhibited significantly reduced left lateralization in a few connections involving language regions and regions from the default mode network, but results were not significant throughout left- and right-lateralized networks. There is a trend that suggests the lack of left lateralization in a connection involving Wernicke area and the posterior cingulate cortex associates with more severe autism. Conclusions Abnormal language lateralization in autism may be due to abnormal language development rather than to a deficit in hemispheric specialization of the entire brain. PMID:24502324

  17. Adolescent nicotine induces persisting changes in development of neural connectivity.

    PubMed

    Smith, Robert F; McDonald, Craig G; Bergstrom, Hadley C; Ehlinger, Daniel G; Brielmaier, Jennifer M

    2015-08-01

    Adolescent nicotine induces persisting changes in development of neural connectivity. A large number of brain changes occur during adolescence as the CNS matures. These changes suggest that the adolescent brain may still be susceptible to developmental alterations by substances which impact its growth. Here we review recent studies on adolescent nicotine which show that the adolescent brain is differentially sensitive to nicotine-induced alterations in dendritic elaboration, in several brain areas associated with processing reinforcement and emotion, specifically including nucleus accumbens, medial prefrontal cortex, basolateral amygdala, bed nucleus of the stria terminalis, and dentate gyrus. Both sensitivity to nicotine, and specific areas responding to nicotine, differ between adolescent and adult rats, and dendritic changes in response to adolescent nicotine persist into adulthood. Areas sensitive to, and not sensitive to, structural remodeling induced by adolescent nicotine suggest that the remodeling generally corresponds to the extended amygdala. Evidence suggests that dendritic remodeling is accompanied by persisting changes in synaptic connectivity. Modeling, electrophysiological, neurochemical, and behavioral data are consistent with the implication of our anatomical studies showing that adolescent nicotine induces persisting changes in neural connectivity. Emerging data thus suggest that early adolescence is a period when nicotine consumption, presumably mediated by nicotine-elicited changes in patterns of synaptic activity, can sculpt late brain development, with consequent effects on synaptic interconnection patterns and behavior regulation. Adolescent nicotine may induce a more addiction-prone phenotype, and the structures altered by nicotine also subserve some emotional and cognitive functions, which may also be altered. We suggest that dendritic elaboration and associated changes are mediated by activity-dependent synaptogenesis, acting in part

  18. Abnormal functional connectivity in focal hand dystonia: mutual information analysis in EEG.

    PubMed

    Jin, Seung-Hyun; Lin, Peter; Auh, Sungyoung; Hallett, Mark

    2011-06-01

    The aim of the present study was to investigate functional connectivity in focal hand dystonia patients to understand the pathophysiology underlying their abnormality in movement. We recorded EEGs from 58 electrodes in 15 focal hand dystonia patients and 15 healthy volunteers during rest and a simple finger-tapping task that did not induce any dystonic symptoms. We investigated mutual information, which provides a quantitative measure of linear and nonlinear coupling, in the alpha, beta, and gamma bands. Mean mutual information of all 58 channels and mean of the channels of interest representative of regional functional connectivity over sensorimotor areas (C3, CP3, C4, CP4, FCz, and Cz) were evaluated. For both groups, we found enhanced mutual information during the task compared with the rest condition, specifically in the beta and gamma bands for mean mutual information of all channels, and in all bands for mean mutual information of channels of interest. Comparing the focal hand dystonia patients with the healthy volunteers for both rest and task, there was reduced mutual information in the beta band for both mean mutual information of all channels and mean mutual information of channels of interest. Regarding the properties of the connectivity in the beta band, we found that the majority of the mutual information differences were from linear connectivity. The abnormal beta-band functional connectivity in focal hand dystonia patients suggests deficient brain connectivity.

  19. Abnormal Profiles of Local Functional Connectivity Proximal to Focal Cortical Dysplasias

    PubMed Central

    Besseling, René M. H.; Jansen, Jacobus F. A.; de Louw, Anton J. A.; Vlooswijk, Mariëlle C. G.; Hoeberigs, M. Christianne; Aldenkamp, Albert P.; Backes, Walter H.

    2016-01-01

    Introduction Focal cortical dysplasia (FCD) is a congenital malformation of cortical development that often leads to medically refractory epilepsy. Focal resection can be an effective treatment, but is challenging as the surgically relevant abnormality may exceed the MR-visible lesion. The aim of the current study is to develop methodology to characterize the profile of functional connectivity around FCDs using resting-state functional MRI and in the individual patient. The detection of aberrant connectivity may provide a means to more completely delineate the clinically relevant lesion. Materials and Methods Fifteen FCD patients (age, mean±SD: 31±11 years; 11 males) and 16 matched healthy controls (35±9 years; 7 males) underwent structural and functional imaging at 3 Tesla. The cortical surface was reconstructed from the T1-weighted scan and the registered functional MRI data was spatially normalized to a common anatomical standard space employing the gyral pattern. Seed-based functional connectivity was determined in all subjects for all dysplasia locations. A single patient was excluded based on an aberrant FCD seed time series. Functional connectivity as a function of geodesic distance (along the cortical surface) was compared between the individual patients and the homotopic normative connectivity profiles derived from the controls. Results In 12/14 patients, aberrant profiles of functional connectivity were found, which demonstrated both hyper- and hypoconnectivity as well as combinations. Abnormal functional connectivity was typically found (also) beyond the lesion visible on structural MRI, while functional connectivity profiles not related to a lesion appeared normal in patients. Conclusion This novel functional MRI technique has potential for delineating functionally aberrant from normal cortex beyond the structural lesion in FCD, which remains to be confirmed in future research. PMID:27861502

  20. Abnormal Brain Connectivity Patterns in Adults with ADHD: A Coherence Study

    PubMed Central

    Sato, João Ricardo; Hoexter, Marcelo Queiroz; Castellanos, Xavier Francisco; Rohde, Luis A.

    2012-01-01

    Studies based on functional magnetic resonance imaging (fMRI) during the resting state have shown decreased functional connectivity between the dorsal anterior cingulate cortex (dACC) and regions of the Default Mode Network (DMN) in adult patients with Attention-Deficit/Hyperactivity Disorder (ADHD) relative to subjects with typical development (TD). Most studies used Pearson correlation coefficients among the BOLD signals from different brain regions to quantify functional connectivity. Since the Pearson correlation analysis only provides a limited description of functional connectivity, we investigated functional connectivity between the dACC and the posterior cingulate cortex (PCC) in three groups (adult patients with ADHD, n = 21; TD age-matched subjects, n = 21; young TD subjects, n = 21) using a more comprehensive analytical approach – unsupervised machine learning using a one-class support vector machine (OC-SVM) that quantifies an abnormality index for each individual. The median abnormality index for patients with ADHD was greater than for TD age-matched subjects (p = 0.014); the ADHD and young TD indices did not differ significantly (p = 0.480); the median abnormality index of young TD was greater than that of TD age-matched subjects (p = 0.016). Low frequencies below 0.05 Hz and around 0.20 Hz were the most relevant for discriminating between ADHD patients and TD age-matched controls and between the older and younger TD subjects. In addition, we validated our approach using the fMRI data of children publicly released by the ADHD-200 Competition, obtaining similar results. Our findings suggest that the abnormal coherence patterns observed in patients with ADHD in this study resemble the patterns observed in young typically developing subjects, which reinforces the hypothesis that ADHD is associated with brain maturation deficits. PMID:23049834

  1. A broken filter: Prefrontal functional connectivity abnormalities in schizophrenia during working memory interference

    PubMed Central

    Anticevic, Alan; Repovs, Grega; Krystal, John H.; Barch, Deanna M.

    2013-01-01

    Characterizing working memory (WM) abnormalities represents a fundamental challenge in schizophrenia research given the impact of cognitive deficits on life outcome in patients. In prior work we demonstrated that dorsolateral prefrontal cortex (DLPFC) activation was related to successful distracter resistance during WM in healthy controls, but not in schizophrenia. Although understanding the impact of regional functional deficits is critical, functional connectivity abnormalities among nodes within WM networks may constitute a final common pathway for WM impairment. Therefore, this study tested the hypothesis that schizophrenia is associated with functional connectivity abnormalities within DLPFC networks during distraction conditions in WM. 28 patients and 24 controls completed a delayed non-verbal WM task that included transient visual distraction during the WM maintenance phase. We computed DLPFC whole-brain task-based functional connectivity (tb-fcMRI) specifically during the maintenance phase in the presence or absence of distraction. Results revealed that patients failed to modulate tb-fcMRI during distracter presentation in both cortical and sub-cortical regions. Specifically, controls demonstrated reductions in tb-fcMRI between DLPFC and the extended amygdala when distraction was present. Conversely, patients failed to demonstrate a change in coupling with the amygdala, but showed greater connectivity with medio-dorsal thalamus. While controls showed more positive coupling between DLPFC and other prefrontal cortical regions during distracter presentation, patients failed to exhibit such a modulation. Taken together, these findings support the notion that observed distracter resistance deficit involves a breakdown in coupling between DLPFC and distributed regions, encompassing both subcortical (thalamic/limbic) and control region connectivity. PMID:22863548

  2. Neural Cross-Frequency Coupling: Connecting Architectures, Mechanisms, and Functions.

    PubMed

    Hyafil, Alexandre; Giraud, Anne-Lise; Fontolan, Lorenzo; Gutkin, Boris

    2015-11-01

    Neural oscillations are ubiquitously observed in the mammalian brain, but it has proven difficult to tie oscillatory patterns to specific cognitive operations. Notably, the coupling between neural oscillations at different timescales has recently received much attention, both from experimentalists and theoreticians. We review the mechanisms underlying various forms of this cross-frequency coupling. We show that different types of neural oscillators and cross-frequency interactions yield distinct signatures in neural dynamics. Finally, we associate these mechanisms with several putative functions of cross-frequency coupling, including neural representations of multiple environmental items, communication over distant areas, internal clocking of neural processes, and modulation of neural processing based on temporal predictions.

  3. ABNORMAL STRIATAL RESTING-STATE FUNCTIONAL CONNECTIVITY IN ADOLESCENTS WITH OBSESSIVE-COMPULSIVE DISORDER

    PubMed Central

    Bernstein, Gail A.; Mueller, Bryon A.; Schreiner, Melinda Westlund; Campbell, Sarah M.; Regan, Emily K.; Nelson, Peter M.; Houri, Alaa K.; Lee, Susanne S.; Zagoloff, Alexandra D.; Lim, Kelvin O.; Yacoub, Essa S.; Cullen, Kathryn R.

    2015-01-01

    Neuroimaging research has implicated abnormalities in cortico-striatal-thalamic-cortical (CSTC) circuitry in pediatric obsessive-compulsive disorder (OCD). In this study, resting-state functional magnetic resonance imaging (R-fMRI) was used to investigate functional connectivity in the CSTC in adolescents with OCD. Imaging was obtained with the Human Connectome Project (HCP) scanner using newly developed pulse sequences which allow for higher spatial and temporal resolution. Fifteen adolescents with OCD and 13 age- and gender-matched healthy controls (ages 12-19) underwent R-fMRI on the 3T HCP scanner. Twenty-four minutes of resting-state scans (two consecutive 12-minute scans) were acquired. We investigated functional connectivity of the striatum using a seed-based, whole brain approach with anatomically-defined seeds placed in the bilateral caudate, putamen, and nucleus accumbens. Adolescents with OCD compared with controls exhibited significantly lower functional connectivity between the left putamen and a single cluster of right-sided cortical areas including the orbitofrontal cortex, inferior frontal gyrus, insula, and operculum. Preliminary findings suggest that impaired striatal connectivity in adolescents with OCD in part falls within the predicted CSTC network, and also involves impaired connections between a key CSTC network region (i.e., putamen) and key regions in the salience network (i.e., insula/operculum). The relevance of impaired putamen-insula/operculum connectivity in OCD is discussed. PMID:26674413

  4. Abnormal striatal resting-state functional connectivity in adolescents with obsessive-compulsive disorder.

    PubMed

    Bernstein, Gail A; Mueller, Bryon A; Schreiner, Melinda Westlund; Campbell, Sarah M; Regan, Emily K; Nelson, Peter M; Houri, Alaa K; Lee, Susanne S; Zagoloff, Alexandra D; Lim, Kelvin O; Yacoub, Essa S; Cullen, Kathryn R

    2016-01-30

    Neuroimaging research has implicated abnormalities in cortico-striatal-thalamic-cortical (CSTC) circuitry in pediatric obsessive-compulsive disorder (OCD). In this study, resting-state functional magnetic resonance imaging (R-fMRI) was used to investigate functional connectivity in the CSTC circuitry in adolescents with OCD. Imaging was obtained with the Human Connectome Project (HCP) scanner using newly developed pulse sequences which allow for higher spatial and temporal resolution. Fifteen adolescents with OCD and 13 age- and gender-matched healthy controls (ages 12-19) underwent R-fMRI on the 3T HCP scanner. Twenty-four minutes of resting-state scans (two consecutive 12-min scans) were acquired. We investigated functional connectivity of the striatum using a seed-based, whole brain approach with anatomically-defined seeds placed in the bilateral caudate, putamen, and nucleus accumbens. Adolescents with OCD compared with controls exhibited significantly lower functional connectivity between the left putamen and a single cluster of right-sided cortical areas including parts of the orbitofrontal cortex, inferior frontal gyrus, insula, and operculum. Preliminary findings suggest that impaired striatal connectivity in adolescents with OCD in part falls within the predicted CSTC network, and also involves impaired connections between a key CSTC network region (i.e., putamen) and key regions in the salience network (i.e., insula/operculum). The relevance of impaired putamen-insula/operculum connectivity in OCD is discussed.

  5. Tools for resolving functional activity and connectivity within intact neural circuits.

    PubMed

    Jennings, Joshua H; Stuber, Garret D

    2014-01-06

    Mammalian neural circuits are sophisticated biological systems that choreograph behavioral processes vital for survival. While the inherent complexity of discrete neural circuits has proven difficult to decipher, many parallel methodological developments promise to help delineate the function and connectivity of molecularly defined neural circuits. Here, we review recent technological advances designed to precisely monitor and manipulate neural circuit activity. We propose a holistic, multifaceted approach for unraveling how behavioral states are manifested through the cooperative interactions between discrete neurocircuit elements.

  6. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations.

    PubMed

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J; Robles, Montserrat; Biswal, Bharat B; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital-cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH.

  7. Abnormal synchrony and effective connectivity in patients with schizophrenia and auditory hallucinations

    PubMed Central

    de la Iglesia-Vaya, Maria; Escartí, Maria José; Molina-Mateo, Jose; Martí-Bonmatí, Luis; Gadea, Marien; Castellanos, Francisco Xavier; Aguilar García-Iturrospe, Eduardo J.; Robles, Montserrat; Biswal, Bharat B.; Sanjuan, Julio

    2014-01-01

    Auditory hallucinations (AH) are the most frequent positive symptoms in patients with schizophrenia. Hallucinations have been related to emotional processing disturbances, altered functional connectivity and effective connectivity deficits. Previously, we observed that, compared to healthy controls, the limbic network responses of patients with auditory hallucinations differed when the subjects were listening to emotionally charged words. We aimed to compare the synchrony patterns and effective connectivity of task-related networks between schizophrenia patients with and without AH and healthy controls. Schizophrenia patients with AH (n = 27) and without AH (n = 14) were compared with healthy participants (n = 31). We examined functional connectivity by analyzing correlations and cross-correlations among previously detected independent component analysis time courses. Granger causality was used to infer the information flow direction in the brain regions. The results demonstrate that the patterns of cortico-cortical functional synchrony differentiated the patients with AH from the patients without AH and from the healthy participants. Additionally, Granger-causal relationships between the networks clearly differentiated the groups. In the patients with AH, the principal causal source was an occipital–cerebellar component, versus a temporal component in the patients without AH and the healthy controls. These data indicate that an anomalous process of neural connectivity exists when patients with AH process emotional auditory stimuli. Additionally, a central role is suggested for the cerebellum in processing emotional stimuli in patients with persistent AH. PMID:25379429

  8. Abnormal regional activity and functional connectivity in resting-state brain networks associated with etiology confirmed unilateral pulsatile tinnitus in the early stage of disease.

    PubMed

    Lv, Han; Zhao, Pengfei; Liu, Zhaohui; Li, Rui; Zhang, Ling; Wang, Peng; Yan, Fei; Liu, Liheng; Wang, Guopeng; Zeng, Rong; Li, Ting; Dong, Cheng; Gong, Shusheng; Wang, Zhenchang

    2017-03-01

    Abnormal neural activities can be revealed by resting-state functional magnetic resonance imaging (rs-fMRI) using analyses of the regional activity and functional connectivity (FC) of the networks in the brain. This study was designed to demonstrate the functional network alterations in the patients with pulsatile tinnitus (PT). In this study, we recruited 45 patients with unilateral PT in the early stage of disease (less than 48 months of disease duration) and 45 normal controls. We used regional homogeneity (ReHo) and seed-based FC computational methods to reveal resting-state brain activity features associated with pulsatile tinnitus. Compared with healthy controls, PT patients showed regional abnormalities mainly in the left middle occipital gyrus (MOG), posterior cingulate gyrus (PCC), precuneus and right anterior insula (AI). When these regions were defined as seeds, we demonstrated widespread modification of interaction between the auditory and non-auditory networks. The auditory network was positively connected with the cognitive control network (CCN), which may associate with tinnitus related distress. Both altered regional activity and changed FC were found in the visual network. The modification of interactions of higher order networks were mainly found in the DMN, CCN and limbic networks. Functional connectivity between the left MOG and left parahippocampal gyrus could also be an index to reflect the disease duration. This study helped us gain a better understanding of the characteristics of neural network modifications in patients with pulsatile tinnitus.

  9. Neuronal substrate and effective connectivity of abnormal movement sequencing in schizophrenia.

    PubMed

    Zemankova, Petra; Lungu, Ovidiu; Huttlova, Jitka; Kerkovsky, Milos; Zubor, Jozef; Lipova, Petra; Bares, Martin; Kasparek, Tomas

    2016-06-03

    Movement sequencing difficulties are part of the neurological soft signs (NSS), they have high clinical value because they are not always present in schizophrenia. We investigated the neuronal correlates of movement sequencing in 24 healthy controls and 24 schizophrenia patients, with (SZP SQ+) or without (SZP SQ-) sequencing difficulties. We characterized simultaneous and lagged functional connectivity between brain regions involved in movement sequencing using psychophysiological interaction (PPI) and the Granger causality modeling (GCM), respectively. Left premotor cortex (PMC) and superior parietal lobule (SPL) were specifically activated during sequential movements in all participants. Right PMC and precuneus, ipsilateral to the hand executing the task, activated during sequential movements only in healthy controls and SZP SQ-. SZP SQ+ showed hyperactivation in contralateral PMC, as compared to the other groups. PPI analysis revealed a deficit in inhibitory connections within this fronto-parietal network in SZP SQ+ during sequential task. GCM showed a significant lagged effective connectivity from right PMC to left SPL during task and rest periods in all groups and from right PMC to right precuneus in SZP SQ+ group only. Both SZP groups had a significant lagged connectivity from right to left PMC, during sequential task. Our results indicate that aberrant fronto-parietal network connectivity with cortical inhibition deficit and abnormal reliance on previous network activity are related to movement sequencing in SZP. The overactivation of motor cortex seems to be a good compensating strategy, the hyperactivation of parietal cortex is linked to motor deficit symptoms.

  10. Social anhedonia is associated with neural abnormalities during face emotion processing.

    PubMed

    Germine, Laura T; Garrido, Lucia; Bruce, Lori; Hooker, Christine

    2011-10-01

    Human beings are social organisms with an intrinsic desire to seek and participate in social interactions. Social anhedonia is a personality trait characterized by a reduced desire for social affiliation and reduced pleasure derived from interpersonal interactions. Abnormally high levels of social anhedonia prospectively predict the development of schizophrenia and contribute to poorer outcomes for schizophrenia patients. Despite the strong association between social anhedonia and schizophrenia, the neural mechanisms that underlie individual differences in social anhedonia have not been studied and are thus poorly understood. Deficits in face emotion recognition are related to poorer social outcomes in schizophrenia, and it has been suggested that face emotion recognition deficits may be a behavioral marker for schizophrenia liability. In the current study, we used functional magnetic resonance imaging (fMRI) to see whether there are differences in the brain networks underlying basic face emotion processing in a community sample of individuals low vs. high in social anhedonia. We isolated the neural mechanisms related to face emotion processing by comparing face emotion discrimination with four other baseline conditions (identity discrimination of emotional faces, identity discrimination of neutral faces, object discrimination, and pattern discrimination). Results showed a group (high/low social anhedonia) × condition (emotion discrimination/control condition) interaction in the anterior portion of the rostral medial prefrontal cortex, right superior temporal gyrus, and left somatosensory cortex. As predicted, high (relative to low) social anhedonia participants showed less neural activity in face emotion processing regions during emotion discrimination as compared to each control condition. The findings suggest that social anhedonia is associated with abnormalities in networks responsible for basic processes associated with social cognition, and provide a

  11. Abnormal Neural Activation to Faces in the Parents of Children with Autism.

    PubMed

    Yucel, G H; Belger, A; Bizzell, J; Parlier, M; Adolphs, R; Piven, J

    2015-12-01

    Parents of children with an autism spectrum disorder (ASD) show subtle deficits in aspects of social behavior and face processing, which resemble those seen in ASD, referred to as the "Broad Autism Phenotype " (BAP). While abnormal activation in ASD has been reported in several brain structures linked to social cognition, little is known regarding patterns in the BAP. We compared autism parents with control parents with no family history of ASD using 2 well-validated face-processing tasks. Results indicated increased activation in the autism parents to faces in the amygdala (AMY) and the fusiform gyrus (FG), 2 core face-processing regions. Exploratory analyses revealed hyper-activation of lateral occipital cortex (LOC) bilaterally in autism parents with aloof personality ("BAP+"). Findings suggest that abnormalities of the AMY and FG are related to underlying genetic liability for ASD, whereas abnormalities in the LOC and right FG are more specific to behavioral features of the BAP. Results extend our knowledge of neural circuitry underlying abnormal face processing beyond those previously reported in ASD to individuals with shared genetic liability for autism and a subset of genetically related individuals with the BAP.

  12. Neural regulation of inflammation: no neural connection from the vagus to splenic sympathetic neurons.

    PubMed

    Bratton, B O; Martelli, D; McKinley, M J; Trevaks, D; Anderson, C R; McAllen, R M

    2012-11-01

    The 'inflammatory reflex' acts through efferent neural connections from the central nervous system to lymphoid organs, particularly the spleen, that suppress the production of inflammatory cytokines. Stimulation of the efferent vagus has been shown to suppress inflammation in a manner dependent on the spleen and splenic nerves. The vagus does not innervate the spleen, so a synaptic connection from vagal preganglionic neurons to splenic sympathetic postganglionic neurons was suggested. We tested this idea in rats. In a preparatory operation, the anterograde tracer DiI was injected bilaterally into the dorsal motor nucleus of vagus and the retrograde tracer Fast Blue was injected into the spleen. On histological analysis 7-9 weeks later, 883 neurons were retrogradely labelled from the spleen with Fast Blue as follows: 89% in the suprarenal ganglia (65% left, 24% right); 11% in the left coeliac ganglion; but none in the right coeliac or either of the superior mesenteric ganglia. Vagal terminals anterogradely labelled with DiI were common in the coeliac but sparse in the suprarenal ganglia, and confocal analysis revealed no putative synaptic connection with any Fast Blue-labelled cell in either ganglion. Electrophysiological experiments in anaesthetized rats revealed no effect of vagal efferent stimulation on splenic nerve activity or on that of 15 single splenic-projecting neurons recorded in the suprarenal ganglion. Together, these findings indicate that vagal efferent neurons in the rat neither synapse with splenic sympathetic neurons nor drive their ongoing activity.

  13. Abnormal dynamics of cortical resting state functional connectivity in chronic headache patients.

    PubMed

    Wang, Zewei; Yang, Qing; Chen, Li Min

    2017-02-01

    The goals of this study are to characterize the temporal dynamics of inter-regional connectivity of the brain in chronic headache (CH) patients versus their age/gender matched controls (CONCH, n=28 pairs), and to determine whether dynamic measures reveal additional features to static functional connectivity and correlate with psychometric scores. Cortical thickness and inter-regional resting state fMRI connectivity were quantified and compared between CH and CONCH groups. Six cortical regions of interest (ROI) pairs that exhibited correlated cortical thickness and static functional connectivity abnormalities were selected for temporal dynamic analysis. Two methods were used: temporal sliding-window (SW) and wavelet transformation coherence (WTC). SW analyses using three temporal windows of 30, 60, 120s revealed that all six ROI pairs of CH exhibited higher percentage of strong connectivity (high r values), and smaller fast Fourier transform (FFT) amplitudes at a very low frequency range (i.e., 0.002-0.01Hz), compared to those of CONCH. These features were particularly prevalent in the 120s window analysis. Less variable dynamic fluctuation (i.e., smaller standard deviation of r values) was identified in two out of six ROI pairs in CH. WTC analysis revealed that time-averaged coherence was generally greater in CH than CONCH between wavelet decomposition scales 20 to 55 (0.018-0.05Hz), and was statistically significant in three out of six ROI pairs. Together, the most robust and significant differences in temporal dynamics between CH and CONCH were detected in two ROI pairs: left medial-orbitofrontal-left posterior-cingulate and left medial-orbitofrontal-left inferior-temporal. The high degrees of sleep disturbance (high PSQI score), depression (high HRSD score) and fatigue (low SF-36 score) were associated with high degree of inter-regional temporal coherence in CH. In summary, these dynamic functional connectivity (dFC) measures uncovered a temporal "lock

  14. Resting state functional MRI reveals abnormal network connectivity in Neurofibromatosis 1

    PubMed Central

    Tomson, S.N.; Schreiner, M.; Narayan, M.; Rosser, Tena; Enrique, Nicole; Silva, Alcino J.; Allen, G.I.; Bookheimer, S.Y.; Bearden, C.E.

    2015-01-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits and autism spectrum disorders. As a single gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity MRI (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted. PMID:26304096

  15. Abnormalities of hippocampal-cortical connectivity in temporal lobe epilepsy patients with hippocampal sclerosis

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Lu, Jingjing; Wang, Chunheng; Li, Meng; Lv, Bin; Jin, Zhengyu

    2011-03-01

    Hippocampal sclerosis (HS) is the most common damage seen in the patients with temporal lobe epilepsy (TLE). In the present study, the hippocampal-cortical connectivity was defined as the correlation between the hippocampal volume and cortical thickness at each vertex throughout the whole brain. We aimed to investigate the differences of ipsilateral hippocampal-cortical connectivity between the unilateral TLE-HS patients and the normal controls. In our study, the bilateral hippocampal volumes were first measured in each subject, and we found that the ipsilateral hippocampal volume significantly decreased in the left TLE-HS patients. Then, group analysis showed significant thinner average cortical thickness of the whole brain in the left TLE-HS patients compared with the normal controls. We found significantly increased ipsilateral hippocampal-cortical connectivity in the bilateral superior temporal gyrus, the right cingulate gyrus and the left parahippocampal gyrus of the left TLE-HS patients, which indicated structural vulnerability related to the hippocampus atrophy in the patient group. However, for the right TLE-HS patients, no significant differences were found between the patients and the normal controls, regardless of the ipsilateral hippocampal volume, the average cortical thickness or the patterns of hippocampal-cortical connectivity, which might be related to less atrophies observed in the MRI scans. Our study provided more evidence for the structural abnormalities in the unilateral TLE-HS patients.

  16. Resting state functional MRI reveals abnormal network connectivity in neurofibromatosis 1.

    PubMed

    Tomson, Steffie N; Schreiner, Matthew J; Narayan, Manjari; Rosser, Tena; Enrique, Nicole; Silva, Alcino J; Allen, Genevera I; Bookheimer, Susan Y; Bearden, Carrie E

    2015-11-01

    Neurofibromatosis type I (NF1) is a genetic disorder caused by mutations in the neurofibromin 1 gene at locus 17q11.2. Individuals with NF1 have an increased incidence of learning disabilities, attention deficits, and autism spectrum disorders. As a single-gene disorder, NF1 represents a valuable model for understanding gene-brain-behavior relationships. While mouse models have elucidated molecular and cellular mechanisms underlying learning deficits associated with this mutation, little is known about functional brain architecture in human subjects with NF1. To address this question, we used resting state functional connectivity magnetic resonance imaging (rs-fcMRI) to elucidate the intrinsic network structure of 30 NF1 participants compared with 30 healthy demographically matched controls during an eyes-open rs-fcMRI scan. Novel statistical methods were employed to quantify differences in local connectivity (edge strength) and modularity structure, in combination with traditional global graph theory applications. Our findings suggest that individuals with NF1 have reduced anterior-posterior connectivity, weaker bilateral edges, and altered modularity clustering relative to healthy controls. Further, edge strength and modular clustering indices were correlated with IQ and internalizing symptoms. These findings suggest that Ras signaling disruption may lead to abnormal functional brain connectivity; further investigation into the functional consequences of these alterations in both humans and in animal models is warranted.

  17. Aberrant regional neural fluctuations and functional connectivity in generalized anxiety disorder revealed by resting-state functional magnetic resonance imaging.

    PubMed

    Wang, Wei; Hou, Jingming; Qian, Shaowen; Liu, Kai; Li, Bo; Li, Min; Peng, Zhaohui; Xin, Kuolin; Sun, Gang

    2016-06-15

    The purpose of this study was to investigate the neural activity and functional connectivity in generalized anxiety disorder (GAD) during resting state, and how these alterations correlate to patients' symptoms. Twenty-eight GAD patients and 28 matched healthy controls underwent resting-state functional magnetic resonance (fMRI) scans. Amplitude of low-frequency fluctuation (ALFF) and seed-based resting-state functional connectivity (RSFC) were computed to explore regional activity and functional integration, and were compared between the two groups using the voxel-based two-sample t test. Pearson's correlation analyses were performed to examine the neural relationships with demographics and clinical symptoms scores. Compared to controls, GAD patients showed functional abnormalities: higher ALFF in the bilateral dorsomedial prefrontal cortex, bilateral dorsolateral prefrontal cortex and left precuneus/posterior cingulate cortex; lower connectivity in prefrontal gyrus; lower in prefrontal-limbic and cingulate RSFC and higher prefrontal-hippocampus RSFC were correlated with clinical symptoms severity, but these associations were unable to withstand correction for multiple testing. These findings may help facilitate further understanding of the potential neural substrate of GAD.

  18. Dorsal striatum and its limbic connectivity mediate abnormal anticipatory reward processing in obesity.

    PubMed

    Nummenmaa, Lauri; Hirvonen, Jussi; Hannukainen, Jarna C; Immonen, Heidi; Lindroos, Markus M; Salminen, Paulina; Nuutila, Pirjo

    2012-01-01

    Obesity is characterized by an imbalance in the brain circuits promoting reward seeking and those governing cognitive control. Here we show that the dorsal caudate nucleus and its connections with amygdala, insula and prefrontal cortex contribute to abnormal reward processing in obesity. We measured regional brain glucose uptake in morbidly obese (n = 19) and normal weighted (n = 16) subjects with 2-[¹⁸F]fluoro-2-deoxyglucose ([¹⁸F]FDG) positron emission tomography (PET) during euglycemic hyperinsulinemia and with functional magnetic resonance imaging (fMRI) while anticipatory food reward was induced by repeated presentations of appetizing and bland food pictures. First, we found that glucose uptake rate in the dorsal caudate nucleus was higher in obese than in normal-weight subjects. Second, obese subjects showed increased hemodynamic responses in the caudate nucleus while viewing appetizing versus bland foods in fMRI. The caudate also showed elevated task-related functional connectivity with amygdala and insula in the obese versus normal-weight subjects. Finally, obese subjects had smaller responses to appetizing versus bland foods in the dorsolateral and orbitofrontal cortices than did normal-weight subjects, and failure to activate the dorsolateral prefrontal cortex was correlated with high glucose metabolism in the dorsal caudate nucleus. These findings suggest that enhanced sensitivity to external food cues in obesity may involve abnormal stimulus-response learning and incentive motivation subserved by the dorsal caudate nucleus, which in turn may be due to abnormally high input from the amygdala and insula and dysfunctional inhibitory control by the frontal cortical regions. These functional changes in the responsiveness and interconnectivity of the reward circuit could be a critical mechanism to explain overeating in obesity.

  19. [Tilt test and orthostatic intolerance: abnormalities in the neural sympathetic response to gravitational stimulus].

    PubMed

    Furlan, R

    2001-05-01

    In the present manuscript the different methodologies aimed at assessing the autonomic profile in humans during a gravitational stimulus have been described. In addition, strengths and drawbacks of the tilt test in relation to occasional orthostatic intolerance were addressed. Finally, different autonomic abnormalities underlying occasional and chronic orthostatic intolerance syndromes have been schematically highlighted. The direct recording of the neural sympathetic discharge from the peroneal nerve (MSNA), in spite of its invasive nature, still represents the recognized reference to quantify the changes in the sympathetic activity to the vessels attending postural modifications. The increase of plasma norepinephrine during a tilt test is achieved by both an increase in plasma spillover and a concomitant decrease in systemic clearance. Changes in the indices of cardiac sympathetic and vagal modulation may also be quantified during a tilt test by power spectrum analysis of RR interval variability. The spectral markers of cardiac autonomic control, if evaluated concomitantly with MSNA, may contribute to assess abnormalities in the regional distribution of the sympathetic activity to the heart and the vessels. The capability of the tilt test of reproducing a vasovagal event or of inducing "false positive responses" seems to be markedly affected by the age, thus suggesting that additional or different etiopathogenetic mechanisms might be involved in the loss of consciousness in older as compared to younger subjects. In subjects suffering from occasional or habitual neurally mediated syncope an increase or, respectively, a decrease in cardiac and vascular sympathetic modulation has been documented before the loss of consciousness. In patients with pure autonomic failure, a global dysautonomia affecting both the sympathetic and the vagal modulation to the heart, seems to be present. In chronic orthostatic intolerance, the most common form of dysautonomia of young women

  20. Abnormal structural connectivity in the brain networks of children with hydrocephalus

    PubMed Central

    Yuan, Weihong; Holland, Scott K.; Shimony, Joshua S.; Altaye, Mekibib; Mangano, Francesco T.; Limbrick, David D.; Jones, Blaise V.; Nash, Tiffany; Rajagopal, Akila; Simpson, Sarah; Ragan, Dustin; McKinstry, Robert C.

    2015-01-01

    Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect

  1. Major depressive disorder is associated with abnormal interoceptive activity and functional connectivity in the insula

    PubMed Central

    Avery, Jason; Drevets, Wayne C.; Moseman, Scott; Bodurka, Jerzy; Barcalow, Joel; Simmons, W. Kyle

    2014-01-01

    Background Somatic complaints and altered interoceptive awareness are common features in the clinical presentation of major depressive disorder (MDD). Recently, neurobiological evidence has accumulated demonstrating that the insula is one of the primary cortical structures underlying interoceptive awareness. Abnormal interoceptive representation within the insula may thus contribute to the pathophysiology and symptomatology of MDD. Methods We compared fMRI blood oxygenation level-dependent (BOLD) responses between twenty unmedicated adults with MDD and twenty healthy control participants during a task requiring attention to visceral interoceptive sensations and also assessed the relationship of this BOLD response to depression severity, as rated using the Hamilton Depression Rating Scale (HDRS). Additionally, we examined between-group differences in insula resting-state functional connectivity, and its relationship to HDRS ratings of depression severity. Results Relative to the healthy controls, unmedicated MDD subjects exhibited decreased activity bilaterally in the dorsal mid-insula cortex (dmIC) during interoception, as well as within a network of brain regions implicated previously in emotion and visceral control. Activity within the insula during the interoceptive attention task was negatively correlated with both depression severity and somatic symptom severity in depressed subjects. MDD also was associated with greater resting-state functional connectivity between the dmIC and limbic brain regions implicated previously in MDD, including the amygdala, subgenual prefrontal cortex, and orbitofrontal cortex. Moreover, functional connectivity between these regions and the dmIC was positively correlated with depression severity. Conclusions MDD and the somatic symptoms of depression are associated with abnormal interoceptive representation within the insula. PMID:24387823

  2. Abnormal structural connectivity in the brain networks of children with hydrocephalus.

    PubMed

    Yuan, Weihong; Holland, Scott K; Shimony, Joshua S; Altaye, Mekibib; Mangano, Francesco T; Limbrick, David D; Jones, Blaise V; Nash, Tiffany; Rajagopal, Akila; Simpson, Sarah; Ragan, Dustin; McKinstry, Robert C

    2015-01-01

    Increased intracranial pressure and ventriculomegaly in children with hydrocephalus are known to have adverse effects on white matter structure. This study seeks to investigate the impact of hydrocephalus on topological features of brain networks in children. The goal was to investigate structural network connectivity, at both global and regional levels, in the brains in children with hydrocephalus using graph theory analysis and diffusion tensor tractography. Three groups of children were included in the study (29 normally developing controls, 9 preoperative hydrocephalus patients, and 17 postoperative hydrocephalus patients). Graph theory analysis was applied to calculate the global network measures including small-worldness, normalized clustering coefficients, normalized characteristic path length, global efficiency, and modularity. Abnormalities in regional network parameters, including nodal degree, local efficiency, clustering coefficient, and betweenness centrality, were also compared between the two patients groups (separately) and the controls using two tailed t-test at significance level of p < 0.05 (corrected for multiple comparison). Children with hydrocephalus in both the preoperative and postoperative groups were found to have significantly lower small-worldness and lower normalized clustering coefficient than controls. Children with hydrocephalus in the postoperative group were also found to have significantly lower normalized characteristic path length and lower modularity. At regional level, significant group differences (or differences at trend level) in regional network measures were found between hydrocephalus patients and the controls in a series of brain regions including the medial occipital gyrus, medial frontal gyrus, thalamus, cingulate gyrus, lingual gyrus, rectal gyrus, caudate, cuneus, and insular. Our data showed that structural connectivity analysis using graph theory and diffusion tensor tractography is sensitive to detect

  3. Introduction to a system for implementing neural net connections on SIMD architectures

    NASA Technical Reports Server (NTRS)

    Tomboulian, Sherryl

    1988-01-01

    Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized elements. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.

  4. Introduction to a system for implementing neural net connections on SIMD architectures

    NASA Technical Reports Server (NTRS)

    Tomboulian, Sherryl

    1988-01-01

    Neural networks have attracted much interest recently, and using parallel architectures to simulate neural networks is a natural and necessary application. The SIMD model of parallel computation is chosen, because systems of this type can be built with large numbers of processing elements. However, such systems are not naturally suited to generalized communication. A method is proposed that allows an implementation of neural network connections on massively parallel SIMD architectures. The key to this system is an algorithm permitting the formation of arbitrary connections between the neurons. A feature is the ability to add new connections quickly. It also has error recovery ability and is robust over a variety of network topologies. Simulations of the general connection system, and its implementation on the Connection Machine, indicate that the time and space requirements are proportional to the product of the average number of connections per neuron and the diameter of the interconnection network.

  5. Abnormal Effective Connectivity in the Brain is Involved in Auditory Verbal Hallucinations in Schizophrenia.

    PubMed

    Li, Baojuan; Cui, Long-Biao; Xi, Yi-Bin; Friston, Karl J; Guo, Fan; Wang, Hua-Ning; Zhang, Lin-Chuan; Bai, Yuan-Han; Tan, Qing-Rong; Yin, Hong; Lu, Hongbing

    2017-02-21

    Information flow among auditory and language processing-related regions implicated in the pathophysiology of auditory verbal hallucinations (AVHs) in schizophrenia (SZ) remains unclear. In this study, we used stochastic dynamic causal modeling (sDCM) to quantify connections among the left dorsolateral prefrontal cortex (inner speech monitoring), auditory cortex (auditory processing), hippocampus (memory retrieval), thalamus (information filtering), and Broca's area (language production) in 17 first-episode drug-naïve SZ patients with AVHs, 15 without AVHs, and 19 healthy controls using resting-state functional magnetic resonance imaging. Finally, we performed receiver operating characteristic (ROC) analysis and correlation analysis between image measures and symptoms. sDCM revealed an increased sensitivity of auditory cortex to its thalamic afferents and a decrease in hippocampal sensitivity to auditory inputs in SZ patients with AVHs. The area under the ROC curve showed the diagnostic value of these two connections to distinguish SZ patients with AVHs from those without AVHs. Furthermore, we found a positive correlation between the strength of the connectivity from Broca's area to the auditory cortex and the severity of AVHs. These findings demonstrate, for the first time, augmented AVH-specific excitatory afferents from the thalamus to the auditory cortex in SZ patients, resulting in auditory perception without external auditory stimuli. Our results provide insights into the neural mechanisms underlying AVHs in SZ. This thalamic-auditory cortical-hippocampal dysconnectivity may also serve as a diagnostic biomarker of AVHs in SZ and a therapeutic target based on direct in vivo evidence.

  6. Connecting Neural Coding to Number Cognition: A Computational Account

    ERIC Educational Resources Information Center

    Prather, Richard W.

    2012-01-01

    The current study presents a series of computational simulations that demonstrate how the neural coding of numerical magnitude may influence number cognition and development. This includes behavioral phenomena cataloged in cognitive literature such as the development of numerical estimation and operational momentum. Though neural research has…

  7. Difference of neural connectivity for motor function in chronic hemiparetic stroke patients with intracerebral hemorrhage.

    PubMed

    Jang, Sung Ho; Kwon, Yong Hyun; Lee, Mi Young; Lee, Dong Yeop; Hong, Ji Heon

    2012-12-07

    Difference of neural connectivity for motor function had been studied by observation of neural activity within gray matter and nucleus using functional neuroimaging techniques. Diffusion tensor imaging (DTI) by a probabilistic tracking is useful for exploration of structural connectivity in the brain. We attempted to investigate difference of neural connectivity for motor function of the affected hand in chronic hemiparetic patients with intracerebral hemorrhage (ICH). Forty-four patients with ICH and 31 normal control subjects were recruited. Diffusion tensor imaging was acquired using a sensitivity-encoding head coil at 1.5 T. Motor function was evaluated using the motricity index (MI) for hand and Modified Brunnstrom Classification (MBC). The presence or absence of a connection was confirmed between the precentral knob of the affected hemisphere and seven areas. Compared with healthy subjects, the patient group showed lower connectivity to the contralesional primary motor cortex, ipsilesional basal ganglia, ipsilesional thalamus, contralesional cerebellum, and ipsilesional medullary pyramid in the affected hemisphere (p<0.05). Connections to the ipsilesional basal ganglia, ipsilesional thalamus, and ipsilesional medullary pyramid showed positive correlation with MI and MBC (p<0.05). We found difference of neural connectivity for motor function between chronic hemiparetic patients with ICH and control subjects. Our results suggest that the motor function of the stroke patient is related to neural connectivity between the ipsilesional M1 and the ipsilesional medullary pyramid, ipsilesional basal ganglia, and ipsilesional thalamus.

  8. Neural systems language: a formal modeling language for the systematic description, unambiguous communication, and automated digital curation of neural connectivity.

    PubMed

    Brown, Ramsay A; Swanson, Larry W

    2013-09-01

    Systematic description and the unambiguous communication of findings and models remain among the unresolved fundamental challenges in systems neuroscience. No common descriptive frameworks exist to describe systematically the connective architecture of the nervous system, even at the grossest level of observation. Furthermore, the accelerating volume of novel data generated on neural connectivity outpaces the rate at which this data is curated into neuroinformatics databases to synthesize digitally systems-level insights from disjointed reports and observations. To help address these challenges, we propose the Neural Systems Language (NSyL). NSyL is a modeling language to be used by investigators to encode and communicate systematically reports of neural connectivity from neuroanatomy and brain imaging. NSyL engenders systematic description and communication of connectivity irrespective of the animal taxon described, experimental or observational technique implemented, or nomenclature referenced. As a language, NSyL is internally consistent, concise, and comprehensible to both humans and computers. NSyL is a promising development for systematizing the representation of neural architecture, effectively managing the increasing volume of data on neural connectivity and streamlining systems neuroscience research. Here we present similar precedent systems, how NSyL extends existing frameworks, and the reasoning behind NSyL's development. We explore NSyL's potential for balancing robustness and consistency in representation by encoding previously reported assertions of connectivity from the literature as examples. Finally, we propose and discuss the implications of a framework for how NSyL will be digitally implemented in the future to streamline curation of experimental results and bridge the gaps among anatomists, imagers, and neuroinformatics databases.

  9. Exposure to traumatic experiences is associated with abnormal neural mechanism during charitable donation.

    PubMed

    Wei, Dongtao; Wang, Kangcheng; Shen, Yimo; Du, Xue; Li, Wenfu; Dupuis-Roy, Nicolas; Qiu, Jiang; Zhang, Qinglin

    2013-10-30

    Previous studies suggested that posttraumatic stress disorder (PTSD) might be associated with dysfunctional reward processing. At present, little is known about the neural mechanisms of reward-related processing during a charitable donation task in trauma survivors who do not go on to develop PTSD. We used functional magnetic resonance imaging (fMRI) to investigate the neural basis of charitable donation in non-PTSD survivors of the Sichuan earthquake. Results showed that activations in the striatum of trauma survivors were reduced in both the low donation (donated a small amount to the Red Cross) and the high donation conditions (donated a large amount to the Red Cross) compared with the healthy controls. Furthermore, the trauma survivors also exhibited less activity in the insula than the healthy controls in the high donation condition. These findings suggest that abnormal reward-related activations might be associated with dysfunctions in the reward pathway of trauma survivors. Also, we discuss the possibility that traumatic experiences attenuate the reactivity of reward-related brain areas to positive emotions (as induced by advantageous donations).

  10. A neural model to study sensory abnormalities and multisensory effects in autism.

    PubMed

    Noriega, Gerardo

    2015-03-01

    Computational modeling plays an increasingly prominent role in complementing critical research in the genetics, neuroscience, and psychology of autism. This paper presents a model that supports the notion that weak central coherence, a processing bias for features and local information, may be responsible for perception abnormalities by failing to "control" sensory issues in autism. The model has a biologically plausible architecture based on a self-organizing map. It incorporates temporal information in input stimuli, with emphasis on real auditory signals, and provides a mechanism to model multisensory effects. Through comprehensive simulations the paper studies the effect of a control mechanism (akin to central coherence) in compensating the effects of temporal information in the presentation of stimuli, sensory abnormalities, and crosstalk between domains. The mechanism is successful in balancing out timing effects, basic hypersensitivities and, to a lesser degree, multisensory effects. An analysis of the effect of the control mechanism's onset time on performance suggests that most of the potential benefits are still attainable even when started rather late in the learning process. This high level of adaptability shown by the neural network highlights the importance of appropriate teaching and intervention throughout the lifetime of persons with autism and other neurological disorders.

  11. Zika virus infection induces mitosis abnormalities and apoptotic cell death of human neural progenitor cells

    PubMed Central

    Souza, Bruno S. F.; Sampaio, Gabriela L. A.; Pereira, Ciro S.; Campos, Gubio S.; Sardi, Silvia I.; Freitas, Luiz A. R.; Figueira, Claudio P.; Paredes, Bruno D.; Nonaka, Carolina K. V.; Azevedo, Carine M.; Rocha, Vinicius P. C.; Bandeira, Antonio C.; Mendez-Otero, Rosalia; dos Santos, Ricardo Ribeiro; Soares, Milena B. P.

    2016-01-01

    Zika virus (ZIKV) infection has been associated with severe complications both in the developing and adult nervous system. To investigate the deleterious effects of ZIKV infection, we used human neural progenitor cells (NPC), derived from induced pluripotent stem cells (iPSC). We found that NPC are highly susceptible to ZIKV and the infection results in cell death. ZIKV infection led to a marked reduction in cell proliferation, ultrastructural alterations and induction of autophagy. Induction of apoptosis of Sox2+ cells was demonstrated by activation of caspases 3/7, 8 and 9, and by ultrastructural and flow cytometry analyses. ZIKV-induced death of Sox2+ cells was prevented by incubation with the pan-caspase inhibitor, Z-VAD-FMK. By confocal microscopy analysis we found an increased number of cells with supernumerary centrosomes. Live imaging showed a significant increase in mitosis abnormalities, including multipolar spindle, chromosome laggards, micronuclei and death of progeny after cell division. FISH analysis for chromosomes 12 and 17 showed increased frequency of aneuploidy, such as monosomy, trisomy and polyploidy. Our study reinforces the link between ZIKV and abnormalities in the developing human brain, including microcephaly. PMID:28008958

  12. Abnormal functional global and local brain connectivity in female patients with anorexia nervosa

    PubMed Central

    Geisler, Daniel; Borchardt, Viola; Lord, Anton R.; Boehm, Ilka; Ritschel, Franziska; Zwipp, Johannes; Clas, Sabine; King, Joseph A.; Wolff-Stephan, Silvia; Roessner, Veit; Walter, Martin; Ehrlich, Stefan

    2016-01-01

    Background Previous resting-state functional connectivity studies in patients with anorexia nervosa used independent component analysis or seed-based connectivity analysis to probe specific brain networks. Instead, modelling the entire brain as a complex network allows determination of graph-theoretical metrics, which describe global and local properties of how brain networks are organized and how they interact. Methods To determine differences in network properties between female patients with acute anorexia nervosa and pairwise matched healthy controls, we used resting-state fMRI and computed well-established global and local graph metrics across a range of network densities. Results Our analyses included 35 patients and 35 controls. We found that the global functional network structure in patients with anorexia nervosa is characterized by increases in both characteristic path length (longer average routes between nodes) and assortativity (more nodes with a similar connectedness link together). Accordingly, we found locally decreased connectivity strength and increased path length in the posterior insula and thalamus. Limitations The present results may be limited to the methods applied during preprocessing and network construction. Conclusion We demonstrated anorexia nervosa–related changes in the network configuration for, to our knowledge, the first time using resting-state fMRI and graph-theoretical measures. Our findings revealed an altered global brain network architecture accompanied by local degradations indicating wide-scale disturbance in information flow across brain networks in patients with acute anorexia nervosa. Reduced local network efficiency in the thalamus and posterior insula may reflect a mechanism that helps explain the impaired integration of visuospatial and homeostatic signals in patients with this disorder, which is thought to be linked to abnormal representations of body size and hunger. PMID:26252451

  13. Abnormal climbing fibre-Purkinje cell synaptic connections in the essential tremor cerebellum.

    PubMed

    Lin, Chi-Ying; Louis, Elan D; Faust, Phyllis L; Koeppen, Arnulf H; Vonsattel, Jean-Paul G; Kuo, Sheng-Han

    2014-12-01

    Structural changes in Purkinje cells have been identified in the essential tremor cerebellum, although the mechanisms that underlie these changes remain poorly understood. Climbing fibres provide one of the major excitatory inputs to Purkinje cells, and climbing fibre-Purkinje cell connections are essential for normal cerebellar-mediated motor control. The distribution of climbing fibre-Purkinje cell synapses on Purkinje cell dendrites is dynamically regulated and may be altered in disease states. The aim of the present study was to examine the density and distribution of climbing fibre-Purkinje cell synapses using post-mortem cerebellar tissue of essential tremor cases and controls. Using vesicular glutamate transporter type 2 immunohistochemistry, we labelled climbing fibre-Purkinje cell synapses of 12 essential tremor cases and 13 age-matched controls from the New York Brain Bank. Normally, climbing fibres form synapses mainly on the thick, proximal Purkinje cell dendrites in the inner portion of the molecular layer, whereas parallel fibres form synapses on the thin, distal Purkinje cell spiny branchlets. We observed that, compared with controls, essential tremor cases had decreased climbing fibre-Purkinje cell synaptic density, more climbing fibres extending to the outer portion of the molecular layer, and more climbing fibre-Purkinje cell synapses on the thin Purkinje cell spiny branchlets. Interestingly, in essential tremor, the increased distribution of climbing fibre-Purkinje cell synapses on the thin Purkinje cell branchlets was inversely associated with clinical tremor severity, indicating a close relationship between the altered distribution of climbing fibre-Purkinje cell connections and tremor. These findings suggest that abnormal climbing fibre-Purkinje cell connections could be of importance in the pathogenesis of essential tremor.

  14. Modeling the Relationship among Gray Matter Atrophy, Abnormalities in Connecting White Matter, and Cognitive Performance in Early Multiple Sclerosis

    PubMed Central

    Kuceyeski, A.F.; Vargas, W.; Dayan, M.; Monohan, E.; Blackwell, C.; Raj, A.; Fujimoto, K.; Gauthier, S.A.

    2016-01-01

    Background and Purpose Quantitative assessment of clinical and pathologic consequences of white matter abnormalities in multiple sclerosis is critical in understanding the pathways of disease. This study aimed to test whether gray matter atrophy was related to abnormalities in connecting white matter and to identify patterns of imaging biomarker abnormalities that were related to patient processing speed. Materials and Methods Image data and Symbol Digit Modalities Test scores were collected from a cohort of patients with early multiple sclerosis. The Network Modification Tool was used to estimate connectivity irregularities by projecting white matter abnormalities onto connecting gray matter regions. Partial least-squares regression quantified the relationship between imaging biomarkers and processing speed as measured by the Symbol Digit Modalities Test. Results Atrophy in deep gray matter structures of the thalami and putamen had moderate and significant correlations with abnormalities in connecting white matter (r = 0.39–0.41, P < .05 corrected). The 2 models of processing speed, 1 for each of the WM imaging biomarkers, had goodness-of-fit (R2) values of 0.42 and 0.30. A measure of the impact of white matter lesions on the connectivity of occipital and parietal areas had significant nonzero regression coefficients. Conclusions We concluded that deep gray matter regions may be susceptible to inflammation and/or demyelination in white matter, possibly having a higher sensitivity to remote degeneration, and that lesions affecting visual processing pathways were related to processing speed. The Network Modification Tool may be used to quantify the impact of early white matter abnormalities on both connecting gray matter structures and processing speed. PMID:25414004

  15. Left hemisphere structural connectivity abnormality in pediatric hydrocephalus patients following surgery.

    PubMed

    Yuan, Weihong; Meller, Artur; Shimony, Joshua S; Nash, Tiffany; Jones, Blaise V; Holland, Scott K; Altaye, Mekibib; Barnard, Holly; Phillips, Jannel; Powell, Stephanie; McKinstry, Robert C; Limbrick, David D; Rajagopal, Akila; Mangano, Francesco T

    2016-01-01

    -II)]. However, one global network measure (global efficiency) and two regional network measures in the insula (local efficiency and between centrality) tested at 3-month post-surgery were found to correlate with GAC score tested at 12-month post-surgery with statistical significance (all p < 0.05, corrected). Our data showed that the structural connectivity analysis based on DTI and graph theory was sensitive in detecting both global and regional network abnormality when the analysis was conducted in the left hemisphere only. This approach provides a new avenue enabling the application of advanced neuroimaging analysis methods in quantifying brain damage in children with hydrocephalus surgically treated with programmable shunts.

  16. Gray Matter Abnormalities in Temporal Lobe Epilepsy: Relationships with Resting-State Functional Connectivity and Episodic Memory Performance

    PubMed Central

    Doucet, Gaelle E.; He, Xiaosong; Sperling, Michael; Sharan, Ashwini; Tracy, Joseph I.

    2016-01-01

    Temporal lobe epilepsy (TLE) affects multiple brain regions through evidence from both structural (gray matter; GM) and functional connectivity (FC) studies. We tested whether these structural abnormalities were associated with FC abnormalities, and assessed the ability of these measures to explain episodic memory impairments in this population. A resting-state and T1 sequences were acquired on 94 (45 with mesial temporal pathology) TLE patients and 50 controls, using magnetic resonance imaging (MRI) technique. A voxel-based morphometry analysis was computed to determine the GM volume differences between groups (right, left TLE, controls). Resting-state FC between the abnormal GM volume regions was computed, and compared between groups. Finally, we investigated the relation between EM, GM and FC findings. Patients with and without temporal pathology were analyzed separately. The results revealed reduced GM volume in multiple regions in the patients relative to the controls. Using FC, we found the abnormal GM regions did not display abnormal functional connectivity. Lastly, we found in left TLE patients, verbal episodic memory was associated with abnormal left posterior hippocampus volume, while in right TLE, non-verbal episodic memory was better predicted by resting-state FC measures. This study investigated TLE abnormalities using a multi-modal approach combining GM, FC and neurocognitive measures. We did not find that the GM abnormalities were functionally or abnormally connected during an inter-ictal resting state, which may reflect a weak sensitivity of functional connectivity to the epileptic network. We provided evidence that verbal and non-verbal episodic memory in left and right TLE patients may have distinct relationships with structural and functional measures. Lastly, we provide data suggesting that in the setting of occult, non-lesional right TLE pathology, a coupling of structural and functional abnormalities in extra-temporal/non-ictal regions is

  17. Computer-assisted three-dimensional reconstruction and simulations of vestibular macular neural connectivities

    NASA Technical Reports Server (NTRS)

    Ross, Muriel D.; Chimento, Thomas; Doshay, David; Cheng, Rei

    1992-01-01

    Results of computer-assisted research concerned with the three-dimensional reconstruction and simulations of vestibular macular neural connectivities are summarized. The discussion focuses on terminal/receptive fields, the question of synapses across the striola, endoplasmic reticulum and its potential role in macular information processing, and the inner epithelial plexus. Also included are preliminary results of computer simulations of nerve fiber collateral functioning, an essential step toward the three-dimensional simulation of a functioning macular neural network.

  18. Neural Connectivity in Epilepsy as Measured by Granger Causality.

    PubMed

    Coben, Robert; Mohammad-Rezazadeh, Iman

    2015-01-01

    Epilepsy is a chronic neurological disorder characterized by repeated seizures or excessive electrical discharges in a group of brain cells. Prevalence rates include about 50 million people worldwide and 10% of all people have at least one seizure at one time in their lives. Connectivity models of epilepsy serve to provide a deeper understanding of the processes that control and regulate seizure activity. These models have received initial support and have included measures of EEG, MEG, and MRI connectivity. Preliminary findings have shown regions of increased connectivity in the immediate regions surrounding the seizure foci and associated low connectivity in nearby regions and pathways. There is also early evidence to suggest that these patterns change during ictal events and that these changes may even by related to the occurrence or triggering of seizure events. We present data showing how Granger causality can be used with EEG data to measure connectivity across brain regions involved in ictal events and their resolution. We have provided two case examples as a demonstration of how to obtain and interpret such data. EEG data of ictal events are processed, converted to independent components and their dipole localizations, and these are used to measure causality and connectivity between these locations. Both examples have shown hypercoupling near the seizure foci and low causality across nearby and associated neuronal pathways. This technique also allows us to track how these measures change over time and during the ictal and post-ictal periods. Areas for further research into this technique, its application to epilepsy, and the formation of more effective therapeutic interventions are recommended.

  19. Effective connectivity of hippocampal neural network and its alteration in Mg2+-free epilepsy model.

    PubMed

    Gong, Xin-Wei; Li, Jing-Bo; Lu, Qin-Chi; Liang, Pei-Ji; Zhang, Pu-Ming

    2014-01-01

    Understanding the connectivity of the brain neural network and its evolution in epileptiform discharges is meaningful in the epilepsy researches and treatments. In the present study, epileptiform discharges were induced in rat hippocampal slices perfused with Mg2+-free artificial cerebrospinal fluid. The effective connectivity of the hippocampal neural network was studied by comparing the normal and epileptiform discharges recorded by a microelectrode array. The neural network connectivity was constructed by using partial directed coherence and analyzed by graph theory. The transition of the hippocampal network topology from control to epileptiform discharges was demonstrated. Firstly, differences existed in both the averaged in- and out-degree between nodes in the pyramidal cell layer and the granule cell layer, which indicated an information flow from the pyramidal cell layer to the granule cell layer during epileptiform discharges, whereas no consistent information flow was observed in control. Secondly, the neural network showed different small-worldness in the early, middle and late stages of the epileptiform discharges, whereas the control network did not show the small-world property. Thirdly, the network connectivity began to change earlier than the appearance of epileptiform discharges and lasted several seconds after the epileptiform discharges disappeared. These results revealed the important network bases underlying the transition from normal to epileptiform discharges in hippocampal slices. Additionally, this work indicated that the network analysis might provide a useful tool to evaluate the neural network and help to improve the prediction of seizures.

  20. Network burst dynamics under heterogeneous cholinergic modulation of neural firing properties and heterogeneous synaptic connectivity

    PubMed Central

    Knudstrup, Scott; Zochowski, Michal; Booth, Victoria

    2016-01-01

    The characteristics of neural network activity depend on intrinsic neural properties and synaptic connectivity in the network. In brain networks, both of these properties are critically affected by the type and levels of neuromodulators present. The expression of many of the most powerful neuromodulators, including acetylcholine (ACh), varies tonically and phasically with behavioural state, leading to dynamic, heterogeneous changes in intrinsic neural properties and synaptic connectivity properties. Namely, ACh significantly alters neural firing properties as measured by the phase response curve in a manner that has been shown to alter the propensity for network synchronization. The aim of this simulation study was to build an understanding of how heterogeneity in cholinergic modulation of neural firing properties and heterogeneity in synaptic connectivity affect the initiation and maintenance of synchronous network bursting in excitatory networks. We show that cells that display different levels of ACh modulation have differential roles in generating network activity: weakly modulated cells are necessary for burst initiation and provide synchronizing drive to the rest of the network, whereas strongly modulated cells provide the overall activity level necessary to sustain burst firing. By applying several quantitative measures of network activity, we further show that the existence of network bursting and its characteristics, such as burst duration and intraburst synchrony, are dependent on the fraction of cell types providing the synaptic connections in the network. These results suggest mechanisms underlying ACh modulation of brain oscillations and the modulation of seizure activity during sleep states. PMID:26869313

  1. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater

  2. Quantification of neural functional connectivity during an active avoidance task.

    PubMed

    Silva, Catia S; Hazrati, Mehrnaz K; Keil, Andreas; Principe, Jose C; Silva, Catia S; Hazrati, Mehrnaz K; Keil, Andreas; Principe, Jose C; Keil, Andreas; Principe, Jose C; Hazrati, Mehrnaz K; Silva, Catia S

    2016-08-01

    Many behavioral and cognitive processes are associated with spatiotemporal dynamic communication between brain areas. Thus, the quantification of functional connectivity with high temporal resolution is highly desirable for capturing in vivo brain function. However, brain functional network quantification from EEG recordings has been commonly used in a qualitative manner. In this paper, we consider pairwise dependence measures as random variables and estimate the pdf for each electrode of the arrangement. A metric imposed by the quadratic Cauchy-Schwartz Mutual Information quantifies these pdfs. We present the results by brain regions simplifying the analysis and visualization drastically. The proposed metric of functional connectivity quantification is addressed for temporal dependencies of the brain network that can be related to the task.

  3. The biocultural paradigm: the neural connection between science and mysticism.

    PubMed

    de Nicolas, A T

    1998-01-01

    New discoveries in perceptual psychology, brain chemistry, brain evolution, brain development, ethology, cultural anthropology, the more recent work of MacLean on the structure of the brains and the discovery by Gazzaniga of the role of the, so-called, "interpreter module," are the foundations of a new paradigm on human cortical information processing, called by its discoverer, Dr. M. Colavito, the "biocultural paradigm." This paradigm shows that biology and culture act on one another as the conditioning parameters of neurocultural information. Through mutual interaction biology in humans becomes culture, and vice versa, culture opens and stimulates the neural passages of the brains, accounting thus for the varieties of brains in humans, and for cultural diversity. Culture conditions and stimulates biology, while biology conditions and makes culture possible. Cultures and brains may be distinguished from one another through identification with certain functions or combination of functions that are exercised habitually, or become neural hard-wire through repetition or habit. This new model has replaced older and simpler models of the nature/ nurture controversy, such as the unextended rational substance of Descartes, the tabula rasa of Locke, the associated-matrix of Hume, the passive, reinforcement-driven animal of Skinner, and the genetically hard-wired robot of the sociobiologists. However, elements of these earlier models are included in the new one, but the conversation about human experience has changed, and, therefore, the human images of ourselves. This change was forced on scientists by the importance of the conditionality of the experience of "I" and "not-I" as described by Alex Comfort in his book I and That, and was introduced in the conversations some of us already had with each other. This article focuses on the "I" and "not-I" experiences with a description of the "not-I" or "oceanic" or "mystical" experience to clarify the new paradigm of

  4. Combined optical tweezers and laser dissector for controlled ablation of functional connections in neural networks

    NASA Astrophysics Data System (ADS)

    Difato, Francesco; Dal Maschio, Marco; Marconi, Emanuele; Ronzitti, Giuseppe; Maccione, Alessandro; Fellin, Tommasso; Berdondini, Luca; Chieregatti, Evelina; Benfenati, Fabio; Blau, Axel

    2011-05-01

    Regeneration of functional connectivity within a neural network after different degrees of lesion is of utmost clinical importance. To test pharmacological approaches aimed at recovering from a total or partial damage of neuronal connections within a circuit, it is necessary to develop a precise method for controlled ablation of neuronal processes. We combined a UV laser microdissector to ablate neural processes in vitro at single neuron and neural network level with infrared holographic optical tweezers to carry out force spectroscopy measurements. Simultaneous force spectroscopy, down to the sub-pico-Newton range, was performed during laser dissection to quantify the tension release in a partially ablated neurite. Therefore, we could control and measure the damage inflicted to an individual neuronal process. To characterize the effect of the inflicted injury on network level, changes in activity of neural subpopulations were monitored with subcellular resolution and overall network activity with high temporal resolution by concurrent calcium imaging and microelectrode array recording. Neuronal connections have been sequentially ablated and the correlated changes in network activity traced and mapped. With this unique combination of electrophysiological and optical tools, neural activity can be studied and quantified in response to controlled injury at the subcellular, cellular, and network level.

  5. Optimizing rTMS treatment of a balance disorder with EEG neural synchrony and functional connectivity.

    PubMed

    Guofa Shou; Han Yuan; Urbano, Diamond; Yoon-Hee Cha; Lei Ding

    2016-08-01

    Repetitive transcranial magnetic stimulation (rTMS) has been increasingly used for its potential treatment effects across diverse mental disorders. However, the treatment effect is elusive and the rate of positive responders is not high, which make it in great demand of optimizing rTMS protocols to improve the treatment effects and the rate. In this regard, neural activity guided optimization has indicated great potential in several neuroimaging studies. In this paper, we present our ongoing work on optimizing rTMS treatment of a balance disorder, i.e., Mal de Debarquement syndrome (MdDS), by investigating treatment-related EEG neural synchrony and functional connectivity changes. Motivated by our previous pilot study of rTMS on MdDS, we firstly applied a bilateral dorsolateral prefrontal cortex (DLPFC) rTMS protocol to evaluate its efficacy and the treatment-related neural responses via an independent component analysis (ICA)-based framework. Thereafter, guided by identified EEG neural synchrony and functional connectivity patterns, we proposed three potential stimulation targets covering posterior nodes of the default mode network (DMN), and implemented a new rTMS protocol by stimulating the target with the great symptoms relief. The preliminary clinical response data has indicated that the new rTMS protocol significantly increase the rate of positive responders and the degrees of the improvement. The present study demonstrates that it is promising to integrate EEG neural synchrony and functional connectivity into the optimization of rTMS protocols for different mental disorders.

  6. A graphical approach for evaluating effective connectivity in neural systems.

    PubMed

    Eichler, Michael

    2005-05-29

    The identification of effective connectivity from time-series data such as electroencephalogram (EEG) or time-resolved function magnetic resonance imaging (fMRI) recordings is an important problem in brain imaging. One commonly used approach to inference effective connectivity is based on vector autoregressive models and the concept of Granger causality. However, this probabilistic concept of causality can lead to spurious causalities in the presence of latent variables. Recently, graphical models have been used to discuss problems of causal inference for multivariate data. In this paper, we extend these concepts to the case of time-series and present a graphical approach for discussing Granger-causal relationships among multiple time-series. In particular, we propose a new graphical representation that allows the characterization of spurious causality and, thus, can be used to investigate spurious causality. The method is demonstrated with concurrent EEG and fMRI recordings which are used to investigate the interrelations between the alpha rhythm in the EEG and blood oxygenation level dependent (BOLD) responses in the fMRI. The results confirm previous findings on the location of the source of the EEG alpha rhythm.

  7. Estimating Fast Neural Input Using Anatomical and Functional Connectivity

    PubMed Central

    Eriksson, David

    2016-01-01

    In the last 20 years there has been an increased interest in estimating signals that are sent between neurons and brain areas. During this time many new methods have appeared for measuring those signals. Here we review a wide range of methods for which connected neurons can be identified anatomically, by tracing axons that run between the cells, or functionally, by detecting if the activity of two neurons are correlated with a short lag. The signals that are sent between the neurons are represented by the activity in the neurons that are connected to the target population or by the activity at the corresponding synapses. The different methods not only differ in the accuracy of the signal measurement but they also differ in the type of signal being measured. For example, unselective recording of all neurons in the source population encompasses more indirect pathways to the target population than if one selectively record from the neurons that project to the target population. Infact, this degree of selectivity is similar to that of optogenetic perturbations; one can perturb selectively or unselectively. Thus it becomes possible to match a given signal measurement method with a signal perturbation method, something that allows for an exact input control to any neuronal population. PMID:28066189

  8. Neural code alterations and abnormal time patterns in Parkinson’s disease

    NASA Astrophysics Data System (ADS)

    Andres, Daniela Sabrina; Cerquetti, Daniel; Merello, Marcelo

    2015-04-01

    Objective. The neural code used by the basal ganglia is a current question in neuroscience, relevant for the understanding of the pathophysiology of Parkinson’s disease. While a rate code is known to participate in the communication between the basal ganglia and the motor thalamus/cortex, different lines of evidence have also favored the presence of complex time patterns in the discharge of the basal ganglia. To gain insight into the way the basal ganglia code information, we studied the activity of the globus pallidus pars interna (GPi), an output node of the circuit. Approach. We implemented the 6-hydroxydopamine model of Parkinsonism in Sprague-Dawley rats, and recorded the spontaneous discharge of single GPi neurons, in head-restrained conditions at full alertness. Analyzing the temporal structure function, we looked for characteristic scales in the neuronal discharge of the GPi. Main results. At a low-scale, we observed the presence of dynamic processes, which allow the transmission of time patterns. Conversely, at a middle-scale, stochastic processes force the use of a rate code. Regarding the time patterns transmitted, we measured the word length and found that it is increased in Parkinson’s disease. Furthermore, it showed a positive correlation with the frequency of discharge, indicating that an exacerbation of this abnormal time pattern length can be expected, as the dopamine depletion progresses. Significance. We conclude that a rate code and a time pattern code can co-exist in the basal ganglia at different temporal scales. However, their normal balance is progressively altered and replaced by pathological time patterns in Parkinson’s disease.

  9. Neural immune pathways and their connection to inflammatory diseases

    PubMed Central

    Eskandari, Farideh; Webster, Jeanette I; Sternberg, Esther M

    2003-01-01

    Inflammation and inflammatory responses are modulated by a bidirectional communication between the neuroendocrine and immune system. Many lines of research have established the numerous routes by which the immune system and the central nervous system (CNS) communicate. The CNS signals the immune system through hormonal pathways, including the hypothalamic–pituitary–adrenal axis and the hormones of the neuroendocrine stress response, and through neuronal pathways, including the autonomic nervous system. The hypothalamic–pituitary–gonadal axis and sex hormones also have an important immunoregulatory role. The immune system signals the CNS through immune mediators and cytokines that can cross the blood–brain barrier, or signal indirectly through the vagus nerve or second messengers. Neuroendocrine regulation of immune function is essential for survival during stress or infection and to modulate immune responses in inflammatory disease. This review discusses neuroimmune interactions and evidence for the role of such neural immune regulation of inflammation, rather than a discussion of the individual inflammatory mediators, in rheumatoid arthritis. PMID:14680500

  10. Hydronephrosis in the Wnt5a-ablated kidney is caused by an abnormal ureter-bladder connection.

    PubMed

    Yun, Kangsun; Perantoni, Alan O

    The Wnt5a null mouse is a complex developmental model which, among its several posterior-localized axis defects, exhibits multiple kidney phenotypes, including duplex kidney and loss of the medullary zone. We previously reported that ablation of Wnt5a in nascent mesoderm causes duplex kidney formation as a result of aberrant development of the nephric duct and abnormal extension of intermediate mesoderm. However, these mice also display a loss of the medullary region late in gestation. We have now genetically isolated duplex kidney formation from the medullary defect by specifically targeting the progenitors for both the ureteric bud and metanephric mesenchyme. The conditional mutants fail to form a normal renal medulla but no longer exhibit duplex kidney formation. Approximately 1/3 of the mutants develop hydronephrosis in the kidneys either uni- or bilaterally when using Dll1Cre. The abnormal kidney phenotype becomes prominent at E16.5, which approximates the time when urine production begins in the mouse embryonic kidney, and is associated with a dramatic increase in apoptosis only in mutant kidneys with hydronephrosis. Methylene blue dye injection and histologic examination reveal that aberrant cell death likely results from urine toxicity due to an abnormal ureter-bladder connection. This study shows that Wnt5a is not required for development of the renal medulla and that loss of the renal medullary region in the Wnt5a-deleted kidney is caused by an abnormal ureter-bladder connection.

  11. Neural connectivity during reward expectation dissociates psychopathic criminals from non-criminal individuals with high impulsive/antisocial psychopathic traits.

    PubMed

    Geurts, Dirk E M; von Borries, Katinka; Volman, Inge; Bulten, Berend Hendrik; Cools, Roshan; Verkes, Robbert-Jan

    2016-08-01

    Criminal behaviour poses a big challenge for society. A thorough understanding of the neurobiological mechanisms underlying criminality could optimize its prevention and management. Specifically,elucidating the neural mechanisms underpinning reward expectation might be pivotal to understanding criminal behaviour. So far no study has assessed reward expectation and its mechanisms in a criminal sample. To fill this gap, we assessed reward expectation in incarcerated, psychopathic criminals. We compared this group to two groups of non-criminal individuals: one with high levels and another with low levels of impulsive/antisocial traits. Functional magnetic resonance imaging was used to quantify neural responses to reward expectancy. Psychophysiological interaction analyses were performed to examine differences in functional connectivity patterns of reward-related regions. The data suggest that overt criminality is characterized, not by abnormal reward expectation per se, but rather by enhanced communication between reward-related striatal regions and frontal brain regions. We establish that incarcerated psychopathic criminals can be dissociated from non-criminal individuals with comparable impulsive/antisocial personality tendencies based on the degree to which reward-related brain regions interact with brain regions that control behaviour. The present results help us understand why some people act according to their impulsive/antisocial personality while others are able to behave adaptively despite reward-related urges.

  12. Abnormal Functional Connectivity in Children with Attention-Deficit/Hyperactivity Disorder

    PubMed Central

    Tomasi, Dardo; Volkow, Nora D.

    2012-01-01

    Background Attention-deficit/hyperactivity disorder (ADHD) is typically characterized by symptoms of inattention and hyperactivity/impulsivity, but there is increased recognition of a motivation deficit too. This neuropathology may reflect dysfunction of both attention and reward-motivation networks. Methods To test this hypothesis, we compared the functional connectivity density between 247 ADHD and 304 typically developing control children from a public magnetic resonance imaging database. We quantified short- and long-range functional connectivity density in the brain using an ultrafast data-driven approach. Results Children with ADHD had lower connectivity (short- and long-range) in regions of the dorsal attention (superior parietal cortex) and default-mode (precuneus) networks and in cerebellum and higher connectivity (short-range) in reward-motivation regions (ventral striatum and orbitofrontal cortex) than control subjects. In ADHD children, the orbitofrontal cortex (region involved in salience attribution) had higher connectivity with reward-motivation regions (striatum and anterior cingulate) and lower connectivity with superior parietal cortex (region involved in attention processing). Conclusions The enhanced connectivity within reward-motivation regions and their decreased connectivity with regions from the default-mode and dorsal attention networks suggest impaired interactions between control and reward pathways in ADHD that might underlie attention and motivation deficits in ADHD. PMID:22153589

  13. Abnormal Amygdalar Activation and Connectivity in Adolescents with Attention-Deficit/Hyperactivity Disorder

    ERIC Educational Resources Information Center

    Posner, Jonathan; Nagel, Bonnie J.; Maia, Tiago V.; Mechling, Anna; Oh, Milim; Wang, Zhishun; Peterson, Bradley S.

    2011-01-01

    Objective: Emotional reactivity is one of the most disabling symptoms associated with attention-deficit/hyperactivity disorder (ADHD). We aimed to identify neural substrates associated with emotional reactivity and to assess the effects of stimulants on those substrates. Method: We used functional magnetic resonance imaging (fMRI) to assess neural…

  14. Abnormal Functional Activation and Connectivity in the Working Memory Network in Early-Onset Schizophrenia

    ERIC Educational Resources Information Center

    Kyriakopoulos, Marinos; Dima, Danai; Roiser, Jonathan P.; Corrigall, Richard; Barker, Gareth J.; Frangou, Sophia

    2012-01-01

    Objective: Disruption within the working memory (WM) neural network is considered an integral feature of schizophrenia. The WM network, and the dorsolateral prefrontal cortex (DLPFC) in particular, undergo significant remodeling in late adolescence. Potential interactions between developmental changes in the WM network and disease-related…

  15. Nonlinear spatio-temporal interactions and neural connections in human vision using transient and M-sequence stimuli

    SciTech Connect

    Chen, H.W.; Aine, C.J.; Flynn, E.R.; Wood, C.C.

    1996-02-01

    Reciprocal connections, in essence, are the dynamic wiring (connections) of the neural network circuitry. Given the high complexity of the neural circuitry in the human brain, it is quite a challenge to study the dynamic wiring of highly parallel and widely distributed neural networks. The measurements of stimulus evoked coherent oscillations provide indirect evidence of dynamic wiring. In this study, in addition to the coherent oscillation measurements, two more techniques are discussed for testing possible dynamic wiring: measurements of spatio-temporal interactions beyond the classical receptive fields, and neural structural testing using nonlinear systems analysis.

  16. Interictal activity is an important contributor to abnormal intrinsic network connectivity in paediatric focal epilepsy.

    PubMed

    Shamshiri, Elhum A; Tierney, Tim M; Centeno, Maria; St Pier, Kelly; Pressler, Ronit M; Sharp, David J; Perani, Suejen; Cross, J Helen; Carmichael, David W

    2017-01-01

    Patients with focal epilepsy have been shown to have reduced functional connectivity in intrinsic connectivity networks (ICNs), which has been related to neurocognitive development and outcome. However, the relationship between interictal epileptiform discharges (IEDs) and changes in ICNs remains unclear, with evidence both for and against their influence. EEG-fMRI data was obtained in 27 children with focal epilepsy (mixed localisation and aetiologies) and 17 controls. A natural stimulus task (cartoon blocks verses blocks where the subject was told "please wait") was used to enhance the connectivity within networks corresponding to ICNs while reducing potential confounds of vigilance and motion. Our primary hypothesis was that the functional connectivity within visual and attention networks would be reduced in patients with epilepsy. We further hypothesized that controlling for the effects of IEDs would increase the connectivity in the patient group. The key findings were: (1) Patients with mixed epileptic foci showed a common connectivity reduction in lateral visual and attentional networks compared with controls. (2) Having controlled for the effects of IEDs there were no connectivity differences between patients and controls. (3) A comparison within patients revealed reduced connectivity between the attentional network and basal ganglia associated with interictal epileptiform discharges. We also found that the task activations were reduced in epilepsy patients but that this was unrelated to IED occurrence. Unexpectedly, connectivity changes in ICNs were strongly associated with the transient effects of interictal epileptiform discharges. Interictal epileptiform discharges were shown to have a pervasive transient influence on the brain's functional organisation. Hum Brain Mapp 38:221-236, 2017. © 2016 Wiley Periodicals, Inc.

  17. The neural changes in connectivity of the voice network during voice pitch perturbation.

    PubMed

    Flagmeier, Sabina G; Ray, Kimberly L; Parkinson, Amy L; Li, Karl; Vargas, Robert; Price, Larry R; Laird, Angela R; Larson, Charles R; Robin, Donald A

    2014-05-01

    Voice control is critical to communication. To date, studies have used behavioral, electrophysiological and functional data to investigate the neural correlates of voice control using perturbation tasks, but have yet to examine the interactions of these neural regions. The goal of this study was to use structural equation modeling of functional neuroimaging data to examine network properties of voice with and without perturbation. Results showed that the presence of a pitch shift, which was processed as an error in vocalization, altered connections between right STG and left STG. Other regions that revealed differences in connectivity during error detection and correction included bilateral inferior frontal gyrus, and the primary and pre motor cortices. Results indicated that STG plays a critical role in voice control, specifically, during error detection and correction. Additionally, pitch perturbation elicits changes in the voice network that suggest the right hemisphere is critical to pitch modulation.

  18. Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks.

    PubMed

    Rich, Scott; Booth, Victoria; Zochowski, Michal

    2016-01-01

    The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics

  19. Intrinsic Cellular Properties and Connectivity Density Determine Variable Clustering Patterns in Randomly Connected Inhibitory Neural Networks

    PubMed Central

    Rich, Scott; Booth, Victoria; Zochowski, Michal

    2016-01-01

    The plethora of inhibitory interneurons in the hippocampus and cortex play a pivotal role in generating rhythmic activity by clustering and synchronizing cell firing. Results of our simulations demonstrate that both the intrinsic cellular properties of neurons and the degree of network connectivity affect the characteristics of clustered dynamics exhibited in randomly connected, heterogeneous inhibitory networks. We quantify intrinsic cellular properties by the neuron's current-frequency relation (IF curve) and Phase Response Curve (PRC), a measure of how perturbations given at various phases of a neurons firing cycle affect subsequent spike timing. We analyze network bursting properties of networks of neurons with Type I or Type II properties in both excitability and PRC profile; Type I PRCs strictly show phase advances and IF curves that exhibit frequencies arbitrarily close to zero at firing threshold while Type II PRCs display both phase advances and delays and IF curves that have a non-zero frequency at threshold. Type II neurons whose properties arise with or without an M-type adaptation current are considered. We analyze network dynamics under different levels of cellular heterogeneity and as intrinsic cellular firing frequency and the time scale of decay of synaptic inhibition are varied. Many of the dynamics exhibited by these networks diverge from the predictions of the interneuron network gamma (ING) mechanism, as well as from results in all-to-all connected networks. Our results show that randomly connected networks of Type I neurons synchronize into a single cluster of active neurons while networks of Type II neurons organize into two mutually exclusive clusters segregated by the cells' intrinsic firing frequencies. Networks of Type II neurons containing the adaptation current behave similarly to networks of either Type I or Type II neurons depending on network parameters; however, the adaptation current creates differences in the cluster dynamics

  20. Binary synaptic connections based on memory switching in a-Si:H for artificial neural networks

    NASA Technical Reports Server (NTRS)

    Thakoor, A. P.; Lamb, J. L.; Moopenn, A.; Khanna, S. K.

    1987-01-01

    A scheme for nonvolatile associative electronic memory storage with high information storage density is proposed which is based on neural network models and which uses a matrix of two-terminal passive interconnections (synapses). It is noted that the massive parallelism in the architecture would require the ON state of a synaptic connection to be unusually weak (highly resistive). Memory switching using a-Si:H along with ballast resistors patterned from amorphous Ge-metal alloys is investigated for a binary programmable read only memory matrix. The fabrication of a 1600 synapse test array of uniform connection strengths and a-Si:H switching elements is discussed.

  1. Estimate the effective connectivity in multi-coupled neural mass model using particle swarm optimization

    NASA Astrophysics Data System (ADS)

    Shan, Bonan; Wang, Jiang; Deng, Bin; Zhang, Zhen; Wei, Xile

    2017-03-01

    Assessment of the effective connectivity among different brain regions during seizure is a crucial problem in neuroscience today. As a consequence, a new model inversion framework of brain function imaging is introduced in this manuscript. This framework is based on approximating brain networks using a multi-coupled neural mass model (NMM). NMM describes the excitatory and inhibitory neural interactions, capturing the mechanisms involved in seizure initiation, evolution and termination. Particle swarm optimization method is used to estimate the effective connectivity variation (the parameters of NMM) and the epileptiform dynamics (the states of NMM) that cannot be directly measured using electrophysiological measurement alone. The estimated effective connectivity includes both the local connectivity parameters within a single region NMM and the remote connectivity parameters between multi-coupled NMMs. When the epileptiform activities are estimated, a proportional-integral controller outputs control signal so that the epileptiform spikes can be inhibited immediately. Numerical simulations are carried out to illustrate the effectiveness of the proposed framework. The framework and the results have a profound impact on the way we detect and treat epilepsy.

  2. Analyzing the scaling of connectivity in neuromorphic hardware and in models of neural networks.

    PubMed

    Partzsch, Johannes; Schüffny, René

    2011-06-01

    In recent years, neuromorphic hardware systems have significantly grown in size. With more and more neurons and synapses integrated in such systems, the neural connectivity and its configurability have become crucial design constraints. To tackle this problem, we introduce a generic extended graph description of connection topologies that allows a systematical analysis of connectivity in both neuromorphic hardware and neural network models. The unifying nature of our approach enables a close exchange between hardware and models. For an existing hardware system, the optimally matched network model can be extracted. Inversely, a hardware architecture may be fitted to a particular model network topology with our description method. As a further strength, the extended graph can be used to quantify the amount of configurability for a certain network topology. This is a hardware design variable that has widely been neglected, mainly because of a missing analysis method. To condense our analysis results, we develop a classification for the scaling complexity of network models and neuromorphic hardware, based on the total number of connections and the configurability. We find a gap between several models and existing hardware, making these hardware systems either impossible or inefficient to use for scaled-up network models. In this respect, our analysis results suggest models with locality in their connections as promising approach for tackling this scaling gap.

  3. Deafferentation-induced plasticity of visual callosal connections: predicting critical periods and analyzing cortical abnormalities using diffusion tensor imaging.

    PubMed

    Olavarria, Jaime F; Bock, Andrew S; Leigland, Lindsey A; Kroenke, Christopher D

    2012-01-01

    Callosal connections form elaborate patterns that bear close association with striate and extrastriate visual areas. Although it is known that retinal input is required for normal callosal development, there is little information regarding the period during which the retina is critically needed and whether this period correlates with the same developmental stage across species. Here we review the timing of this critical period, identified in rodents and ferrets by the effects that timed enucleations have on mature callosal connections, and compare it to other developmental milestones in these species. Subsequently, we compare these events to diffusion tensor imaging (DTI) measurements of water diffusion anisotropy within developing cerebral cortex. We observed that the relationship between the timing of the critical period and the DTI-characterized developmental trajectory is strikingly similar in rodents and ferrets, which opens the possibility of using cortical DTI trajectories for predicting the critical period in species, such as humans, in which this period likely occurs prenatally. Last, we discuss the potential of utilizing DTI to distinguish normal from abnormal cerebral cortical development, both within the context of aberrant connectivity induced by early retinal deafferentation, and more generally as a potential tool for detecting abnormalities associated with neurodevelopmental disorders.

  4. Abnormalities in fronto-striatal connectivity within language networks relate to differences in grey-matter heterogeneity in Asperger syndrome☆

    PubMed Central

    Radulescu, Eugenia; Minati, Ludovico; Ganeshan, Balaji; Harrison, Neil A.; Gray, Marcus A.; Beacher, Felix D.C.C.; Chatwin, Chris; Young, Rupert C.D.; Critchley, Hugo D.

    2013-01-01

    Asperger syndrome (AS) is an Autism Spectrum Disorder (ASD) characterised by qualitative impairment in the development of emotional and social skills with relative preservation of general intellectual abilities, including verbal language. People with AS may nevertheless show atypical language, including rate and frequency of speech production. We previously observed that abnormalities in grey matter homogeneity (measured with texture analysis of structural MR images) in AS individuals when compared with controls are also correlated with the volume of caudate nucleus. Here, we tested a prediction that these distributed abnormalities in grey matter compromise the functional integrity of brain networks supporting verbal communication skills. We therefore measured the functional connectivity between caudate nucleus and cortex during a functional neuroimaging study of language generation (verbal fluency), applying psycho-physiological interaction (PPI) methods to test specifically for differences attributable to grey matter heterogeneity in AS participants. Furthermore, we used dynamic causal modelling (DCM) to characterise the causal directionality of these differences in interregional connectivity during word production. Our results revealed a diagnosis-dependent influence of grey matter heterogeneity on the functional connectivity of the caudate nuclei with right insula/inferior frontal gyrus and anterior cingulate, respectively with the left superior frontal gyrus and right precuneus. Moreover, causal modelling of interactions between inferior frontal gyri, caudate and precuneus, revealed a reliance on bottom-up (stimulus-driven) connections in AS participants that contrasted with a dominance of top-down (cognitive control) connections from prefrontal cortex observed in control participants. These results provide detailed support for previously hypothesised central disconnectivity in ASD and specify discrete brain network targets for diagnosis and therapy in ASD

  5. Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines

    PubMed Central

    Zhang, Yimeng; Li, Xiong; Samonds, Jason M.

    2015-01-01

    Bayesian theory has provided a compelling conceptualization for perceptual inference in the brain. Central to Bayesian inference is the notion of statistical priors. To understand the neural mechanisms of Bayesian inference, we need to understand the neural representation of statistical regularities in the natural environment. In this paper, we investigated empirically how statistical regularities in natural 3D scenes are represented in the functional connectivity of disparity-tuned neurons in the primary visual cortex of primates. We applied a Boltzmann machine model to learn from 3D natural scenes, and found that the units in the model exhibited cooperative and competitive interactions, forming a “disparity association field”, analogous to the contour association field. The cooperative and competitive interactions in the disparity association field are consistent with constraints of computational models for stereo matching. In addition, we simulated neurophysiological experiments on the model, and found the results to be consistent with neurophysiological data in terms of the functional connectivity measurements between disparity-tuned neurons in the macaque primary visual cortex. These findings demonstrate that there is a relationship between the functional connectivity observed in the visual cortex and the statistics of natural scenes. They also suggest that the Boltzmann machine can be a viable model for conceptualizing computations in the visual cortex and, as such, can be used to predict neural circuits in the visual cortex from natural scene statistics. PMID:26712581

  6. Relating functional connectivity in V1 neural circuits and 3D natural scenes using Boltzmann machines.

    PubMed

    Zhang, Yimeng; Li, Xiong; Samonds, Jason M; Lee, Tai Sing

    2016-03-01

    Bayesian theory has provided a compelling conceptualization for perceptual inference in the brain. Central to Bayesian inference is the notion of statistical priors. To understand the neural mechanisms of Bayesian inference, we need to understand the neural representation of statistical regularities in the natural environment. In this paper, we investigated empirically how statistical regularities in natural 3D scenes are represented in the functional connectivity of disparity-tuned neurons in the primary visual cortex of primates. We applied a Boltzmann machine model to learn from 3D natural scenes, and found that the units in the model exhibited cooperative and competitive interactions, forming a "disparity association field", analogous to the contour association field. The cooperative and competitive interactions in the disparity association field are consistent with constraints of computational models for stereo matching. In addition, we simulated neurophysiological experiments on the model, and found the results to be consistent with neurophysiological data in terms of the functional connectivity measurements between disparity-tuned neurons in the macaque primary visual cortex. These findings demonstrate that there is a relationship between the functional connectivity observed in the visual cortex and the statistics of natural scenes. They also suggest that the Boltzmann machine can be a viable model for conceptualizing computations in the visual cortex and, as such, can be used to predict neural circuits in the visual cortex from natural scene statistics.

  7. Identification of Abnormal System Noise Temperature Patterns in Deep Space Network Antennas Using Neural Network Trained Fuzzy Logic

    NASA Technical Reports Server (NTRS)

    Lu, Thomas; Pham, Timothy; Liao, Jason

    2011-01-01

    This paper presents the development of a fuzzy logic function trained by an artificial neural network to classify the system noise temperature (SNT) of antennas in the NASA Deep Space Network (DSN). The SNT data were classified into normal, marginal, and abnormal classes. The irregular SNT pattern was further correlated with link margin and weather data. A reasonably good correlation is detected among high SNT, low link margin and the effect of bad weather; however we also saw some unexpected non-correlations which merit further study in the future.

  8. The trabecula septomarginalis (Leonardo’s cord) in abnormal ventriculo-arterial connections: anatomic and morphogenetic implications

    PubMed Central

    2014-01-01

    Background The abnormal ventriculo-arterial connections in atrio-ventricular concordance and situs solitus with two well developed ventricles include the range from tetralogy of Fallot throughout the different forms of double outlet right ventricle to transposition of great arteries. The infundibular septum and the trabecula septomarginalis are the fundamental anatomical landmarks for the segmental analysis. In these abnormalities there is a pathological progressive counter-clockwise rotation of the infundibular septum which divorces from the antero-superior limb of the trabecula septomarginalis and achieves his identity. Is there any anatomical evidence of a simultaneous abnormal counter-clockwise rotation of the trabecula septomarginalis? Methods Malposition of great arteries is a generic term since all relationships have to be expected. We present specimens with anatomical evidence of a progressive counter-clockwise rotation from 0° to about 180°of the plane passing throughout the trabecula septomarginalis’s limbs. Results We can observe sequentially: 1. Malformations in which the posterior limb of the trabecula septomarginalis is committed to the ventriculo infundibular fold: (tetralogy of Fallot, double outlet right ventricle with sub-aortic ventricular septal defect, truncus arteriosus and doubly committed ventricular septal defect); 2. Malformations in which the posterior limb of the trabecula septomarginalis is committed to the infundibular septum (double outlet right ventricle with sub-pulmonary ventricular septal defect, transposition of great arteries). Conclusions 1. The sequential-segmental analysis identify all the morphologies. 2. The trabecula septomarginalis plane presents a progressive counter-clockwise twist on the long axis. 3. Since the trabeculated portions of the ventricles are the oldest developmental components, our observations support the hypothesis that the abnormal ventriculo-arterial connections could be in relation with a

  9. Non-linear dynamics in recurrently connected neural circuits implement Bayesian inference by sampling

    NASA Astrophysics Data System (ADS)

    Ticchi, Alessandro; Faisal, Aldo A.; Brain; Behaviour Lab Team

    2015-03-01

    Experimental evidence at the behavioural-level shows that the brains are able to make Bayes-optimal inference and decisions (Kording and Wolpert 2004, Nature; Ernst and Banks, 2002, Nature), yet at the circuit level little is known about how neural circuits may implement Bayesian learning and inference (but see (Ma et al. 2006, Nat Neurosci)). Molecular sources of noise are clearly established to be powerful enough to pose limits to neural function and structure in the brain (Faisal et al. 2008, Nat Rev Neurosci; Faisal et al. 2005, Curr Biol). We propose a spking neuron model where we exploit molecular noise as a useful resource to implement close-to-optimal inference by sampling. Specifically, we derive a synaptic plasticity rule which, coupled with integrate-and-fire neural dynamics and recurrent inhibitory connections, enables a neural population to learn the statistical properties of the received sensory input (prior). Moreover, the proposed model allows to combine prior knowledge with additional sources of information (likelihood) from another neural population, and to implement in spiking neurons a Markov Chain Monte Carlo algorithm which generates samples from the inferred posterior distribution.

  10. Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case

    PubMed Central

    2011-01-01

    Background We address the goal of curating observations from published experiments in a generalizable form; reasoning over these observations to generate interpretations and then querying this interpreted knowledge to supply the supporting evidence. We present web-application software as part of the 'BioScholar' project (R01-GM083871) that fully instantiates this process for a well-defined domain: using tract-tracing experiments to study the neural connectivity of the rat brain. Results The main contribution of this work is to provide the first instantiation of a knowledge representation for experimental observations called 'Knowledge Engineering from Experimental Design' (KEfED) based on experimental variables and their interdependencies. The software has three parts: (a) the KEfED model editor - a design editor for creating KEfED models by drawing a flow diagram of an experimental protocol; (b) the KEfED data interface - a spreadsheet-like tool that permits users to enter experimental data pertaining to a specific model; (c) a 'neural connection matrix' interface that presents neural connectivity as a table of ordinal connection strengths representing the interpretations of tract-tracing data. This tool also allows the user to view experimental evidence pertaining to a specific connection. BioScholar is built in Flex 3.5. It uses Persevere (a noSQL database) as a flexible data store and PowerLoom® (a mature First Order Logic reasoning system) to execute queries using spatial reasoning over the BAMS neuroanatomical ontology. Conclusions We first introduce the KEfED approach as a general approach and describe its possible role as a way of introducing structured reasoning into models of argumentation within new models of scientific publication. We then describe the design and implementation of our example application: the BioScholar software. This is presented as a possible biocuration interface and supplementary reasoning toolkit for a larger, more specialized

  11. Fornix microstructure and memory performance is associated with altered neural connectivity during episodic recognition

    PubMed Central

    Ly, Martina; Adluru, Nagesh; Destiche, Daniel J.; Lu, Sharon Y.; Oh, Jennifer M.; Hoscheidt, Siobhan M.; Alexander, Andrew L.; Okonkwo, Ozioma C.; Rowley, Howard A.; Sager, Mark A.; Johnson, Sterling C.; Bendlin, Barbara B.

    2015-01-01

    Objective The purpose of this study was to assess whether age-related differences in white matter microstructure are associated with altered task-related connectivity during episodic recognition. Method Using functional magnetic resonance imaging and diffusion tensor imaging from 282 cognitively healthy middle-to-late aged adults enrolled in the Wisconsin Registry for Alzheimer's Prevention, we investigated whether fractional anisotropy (FA) within white matter regions known to decline with age was associated with task-related connectivity within the recognition network. Results There was a positive relationship between fornix FA and memory performance, both of which negatively correlated with age. Psychophysiological interaction analyses revealed that higher fornix FA was associated with increased task-related connectivity amongst the hippocampus, caudate, precuneus, middle occipital gyrus, and middle frontal gyrus. In addition, better task performance was associated with increased task-related connectivity between the posterior cingulate gyrus, middle frontal gyrus, cuneus, and hippocampus. Conclusions The findings indicate that age has a negative effect on white matter microstructure, which in turn has a negative impact on memory performance. However, fornix microstructure did not significantly mediate the effect of age on performance. Interestingly, dynamic functional connectivity was associated with better memory performance. The results of the psychophysiological interaction analysis further revealed that alterations in fornix microstructure explain–at least in part–connectivity among cortical regions in the recognition memory network. Our results may further elucidate the relationship between structural connectivity, neural function, and cognition. PMID:26888616

  12. Interrelating anatomical, effective, and functional brain connectivity using propagators and neural field theory

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.

    2012-01-01

    It is shown how to compute effective and functional connection matrices (eCMs and fCMs) from anatomical CMs (aCMs) and corresponding strength-of-connection matrices (sCMs) using propagator methods in which neural interactions play the role of scatterings. This analysis demonstrates how network effects dress the bare propagators (the sCMs) to yield effective propagators (the eCMs) that can be used to compute the covariances customarily used to define fCMs. The results incorporate excitatory and inhibitory connections, multiple structures and populations, asymmetries, time delays, and measurement effects. They can also be postprocessed in the same manner as experimental measurements for direct comparison with data and thereby give insights into the role of coarse-graining, thresholding, and other effects in determining the structure of CMs. The spatiotemporal results show how to generalize CMs to include time delays and how natural network modes give rise to long-range coherence at resonant frequencies. The results are demonstrated using tractable analytic cases via neural field theory of cortical and corticothalamic systems. These also demonstrate close connections between the structure of CMs and proximity to critical points of the system, highlight the importance of indirect links between brain regions and raise the possibility of imaging specific levels of indirect connectivity. Aside from the results presented explicitly here, the expression of the connections among aCMs, sCMs, eCMs, and fCMs in terms of propagators opens the way for propagator theory to be further applied to analysis of connectivity.

  13. Cocaine addiction is associated with abnormal prefrontal function, increased striatal connectivity and sensitivity to monetary incentives, and decreased connectivity outside the human reward circuit.

    PubMed

    Vaquero, Lucía; Cámara, Estela; Sampedro, Frederic; Pérez de Los Cobos, José; Batlle, Francesca; Fabregas, Josep Maria; Sales, Joan Artur; Cervantes, Mercè; Ferrer, Xavier; Lazcano, Gerardo; Rodríguez-Fornells, Antoni; Riba, Jordi

    2017-05-01

    Cocaine addiction has been associated with increased sensitivity of the human reward circuit to drug-related stimuli. However, the capacity of non-drug incentives to engage this network is poorly understood. Here, we characterized the functional sensitivity to monetary incentives and the structural integrity of the human reward circuit in abstinent cocaine-dependent (CD) patients and their matched controls. We assessed the BOLD response to monetary gains and losses in 30 CD patients and 30 healthy controls performing a lottery task in a magnetic resonance imaging scanner. We measured brain gray matter volume (GMV) using voxel-based morphometry and white matter microstructure using voxel-based fractional anisotropy (FA). Functional data showed that, after monetary incentives, CD patients exhibited higher activation in the ventral striatum than controls. Furthermore, we observed an inverted BOLD response pattern in the prefrontal cortex, with activity being highest after unexpected high gains and lowest after losses. Patients showed increased GMV in the caudate and the orbitofrontal cortex, increased white matter FA in the orbito-striatal pathway but decreased FA in antero-posterior association bundles. Abnormal activation in the prefrontal cortex correlated with GMV and FA increases in the orbitofrontal cortex. While functional abnormalities in the ventral striatum were inversely correlated with abstinence duration, structural alterations were not. In conclusion, results suggest abnormal incentive processing in CD patients with high salience for rewards and punishments in subcortical structures but diminished prefrontal control after adverse outcomes. They further suggest that hypertrophy and hyper-connectivity within the reward circuit, to the expense of connectivity outside this network, characterize cocaine addiction.

  14. Initialization and self-organized optimization of recurrent neural network connectivity.

    PubMed

    Boedecker, Joschka; Obst, Oliver; Mayer, N Michael; Asada, Minoru

    2009-10-01

    Reservoir computing (RC) is a recent paradigm in the field of recurrent neural networks. Networks in RC have a sparsely and randomly connected fixed hidden layer, and only output connections are trained. RC networks have recently received increased attention as a mathematical model for generic neural microcircuits to investigate and explain computations in neocortical columns. Applied to specific tasks, their fixed random connectivity, however, leads to significant variation in performance. Few problem-specific optimization procedures are known, which would be important for engineering applications, but also in order to understand how networks in biology are shaped to be optimally adapted to requirements of their environment. We study a general network initialization method using permutation matrices and derive a new unsupervised learning rule based on intrinsic plasticity (IP). The IP-based learning uses only local learning, and its aim is to improve network performance in a self-organized way. Using three different benchmarks, we show that networks with permutation matrices for the reservoir connectivity have much more persistent memory than the other methods but are also able to perform highly nonlinear mappings. We also show that IP-based on sigmoid transfer functions is limited concerning the output distributions that can be achieved.

  15. Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses.

    PubMed

    Gay, Charles W; Robinson, Michael E; Lai, Song; O'Shea, Andrew; Craggs, Jason G; Price, Donald D; Staud, Roland

    2016-02-01

    Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue.

  16. Abnormal Resting-State Functional Connectivity in Patients with Chronic Fatigue Syndrome: Results of Seed and Data-Driven Analyses

    PubMed Central

    Gay, Charles W.; Robinson, Michael E.; Lai, Song; O'Shea, Andrew; Craggs, Jason G.; Price, Donald D.

    2016-01-01

    Abstract Although altered resting-state functional connectivity (FC) is a characteristic of many chronic pain conditions, it has not yet been evaluated in patients with chronic fatigue. Our objective was to investigate the association between fatigue and altered resting-state FC in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Thirty-six female subjects, 19 ME/CFS and 17 healthy controls, completed a fatigue inventory before undergoing functional magnetic resonance imaging. Two methods, (1) data driven and (2) model based, were used to estimate and compare the intraregional FC between both groups during the resting state (RS). The first approach using independent component analysis was applied to investigate five RS networks: the default mode network, salience network (SN), left frontoparietal networks (LFPN) and right frontoparietal networks, and the sensory motor network (SMN). The second approach used a priori selected seed regions demonstrating abnormal regional cerebral blood flow (rCBF) in ME/CFS patients at rest. In ME/CFS patients, Method-1 identified decreased intrinsic connectivity among regions within the LFPN. Furthermore, the FC of the left anterior midcingulate with the SMN and the connectivity of the left posterior cingulate cortex with the SN were significantly decreased. For Method-2, five distinct clusters within the right parahippocampus and occipital lobes, demonstrating significant rCBF reductions in ME/CFS patients, were used as seeds. The parahippocampal seed and three occipital lobe seeds showed altered FC with other brain regions. The degree of abnormal connectivity correlated with the level of self-reported fatigue. Our results confirm altered RS FC in patients with ME/CFS, which was significantly correlated with the severity of their chronic fatigue. PMID:26449441

  17. Abnormalities in Resting-State Functional Connectivity in Early Human Immunodeficiency Virus Infection

    PubMed Central

    Wang, Xue; Foryt, Paul; Ochs, Renee; Chung, Jae-Hoon; Wu, Ying; Parrish, Todd

    2011-01-01

    Abstract Limited information is available concerning changes that occur in the brain early in human immunodeficiency virus (HIV) infection. This investigation evaluated resting-state functional connectivity, which is based on correlations of spontaneous blood oxygen level-dependent functional magnetic resonance imaging (fMRI) oscillations between brain regions, in 15 subjects within the first year of HIV infection and in 15 age-matched controls. Resting-state fMRI data for each session were concatenated in time across subjects to create a single 4D dataset and decomposed into 36 independent component analysis (ICA) using Multivariate Exploratory Linear Optimized Decomposition into Independent Components. ICA components were back-reconstructed for each subject's 4D data to estimate subject-specific spatial maps using the dual-regression technique. Comparison of spatial maps between HIV and controls revealed significant differences in the lateral occipital cortex (LOC) network. Reduced coactivation in left inferior parietal cortex within the LOC network was identified in the HIV subjects. Connectivity strength within this region correlated with performance on tasks involving visual-motor coordination (Grooved Pegboard and Rey Figure Copy) in the HIV group. The findings indicate prominent changes in resting-state functional connectivity of visual networks early in HIV infection. This network may sustain injury in association with the intense viremia and brain viral invasion before immune defenses can contain viral replication. Resting-state functional connectivity may have utility as a noninvasive neuroimaging biomarker for central nervous system impairment in early HIV infection. PMID:22433049

  18. Functional connectivity with distinct neural networks tracks fluctuations in gain/loss framing susceptibility.

    PubMed

    Smith, David V; Sip, Kamila E; Delgado, Mauricio R

    2015-07-01

    Multiple large-scale neural networks orchestrate a wide range of cognitive processes. For example, interoceptive processes related to self-referential thinking have been linked to the default-mode network (DMN); whereas exteroceptive processes related to cognitive control have been linked to the executive-control network (ECN). Although the DMN and ECN have been postulated to exert opposing effects on cognition, it remains unclear how connectivity with these spatially overlapping networks contribute to fluctuations in behavior. While previous work has suggested the medial-prefrontal cortex (MPFC) is involved in behavioral change following feedback, these observations could be linked to interoceptive processes tied to DMN or exteroceptive processes tied to ECN because MPFC is positioned in both networks. To address this problem, we employed independent component analysis combined with dual-regression functional connectivity analysis. Participants made a series of financial decisions framed as monetary gains or losses. In some sessions, participants received feedback from a peer observing their choices; in other sessions, feedback was not provided. Following feedback, framing susceptibility-indexed as the increase in gambling behavior in loss frames compared to gain frames-was heightened in some participants and diminished in others. We examined whether these individual differences were linked to differences in connectivity by contrasting sessions containing feedback against those that did not contain feedback. We found two key results. As framing susceptibility increased, the MPFC increased connectivity with DMN; in contrast, temporal-parietal junction decreased connectivity with the ECN. Our results highlight how functional connectivity patterns with distinct neural networks contribute to idiosyncratic behavioral changes.

  19. Autism spectrum disorder and early motor abnormalities: Connected or coincidental companions?

    PubMed

    Setoh, Peipei; Marschik, Peter B; Einspieler, Christa; Esposito, Gianluca

    2017-01-01

    Research in the past decade has produced a growing body of evidence showing that motor abnormalities in individuals with autism spectrum disorder (ASD) are the rule rather than the exception. The paper by Chinello and colleagues furthers our understanding of the importance of studying motor functions in ASD by testing a non-clinical population of parents-infant triads. Chinello and colleagues' findings seem to suggest that subclinical motor impairments may exist in the typical population with inherited non-clinical ASD traits. Chinello and colleagues' discovery also urges us to ask why motor abnormalities exist in typically developing infants when their parents present some subclinical ASD traits. We believe that there are at least two possibilities. In the first possible scenario, motor impairments and ASD traits form a single cluster of symptoms unique to a subgroup of individuals with autism. A second possible scenario is that motor atypicalities are the first warning signs of vulnerability often associated with atypical development. In conclusion, Chinello et al.'s findings inform us that subclinical atypical phenotypes such as sociocommunicative anomalies may be related to subclinical motor performances in the next generation. This adds to our knowledge by shedding some light on the relation of vulnerability in one domain with vulnerability in another domain.

  20. Connectivity strategies for higher-order neural networks applied to pattern recognition

    NASA Technical Reports Server (NTRS)

    Spirkovska, Lilly; Reid, Max B.

    1990-01-01

    Different strategies for non-fully connected HONNs (higher-order neural networks) are discussed, showing that by using such strategies an input field of 128 x 128 pixels can be attained while still achieving in-plane rotation and translation-invariant recognition. These techniques allow HONNs to be used with the larger input scenes required for practical pattern-recognition applications. The number of interconnections that must be stored has been reduced by a factor of approximately 200,000 in a T/C case and about 2000 in a Space Shuttle/F-18 case by using regional connectivity. Third-order networks have been simulated using several connection strategies. The method found to work best is regional connectivity. The main advantages of this strategy are the following: (1) it considers features of various scales within the image and thus gets a better sample of what the image looks like; (2) it is invariant to shape-preserving geometric transformations, such as translation and rotation; (3) the connections are predetermined so that no extra computations are necessary during run time; and (4) it does not require any extra storage for recording which connections were formed.

  1. Abnormal brain functional connectivity leads to impaired mood and cognition in hyperthyroidism: a resting-state functional MRI study

    PubMed Central

    Li, Ling; Zhi, Mengmeng; Hou, Zhenghua; Zhang, Yuqun; Yue, Yingying; Yuan, Yonggui

    2017-01-01

    Patients with hyperthyroidism frequently have neuropsychiatric complaints such as lack of concentration, poor memory, depression, anxiety, nervousness, and irritability, suggesting brain dysfunction. However, the underlying process of these symptoms remains unclear. Using resting-state functional magnetic resonance imaging (rs-fMRI), we depicted the altered graph theoretical metric degree centrality (DC) and seed-based resting-state functional connectivity (FC) in 33 hyperthyroid patients relative to 33 healthy controls. The peak points of significantly altered DC between the two groups were defined as the seed regions to calculate FC to the whole brain. Then, partial correlation analyses were performed between abnormal DC, FC and neuropsychological performances, as well as some clinical indexes. The decreased intrinsic functional connectivity in the posterior lobe of cerebellum (PLC) and medial frontal gyrus (MeFG), as well as the abnormal seed-based FC anchored in default mode network (DMN), attention network, visual network and cognitive network in this study, possibly constitutes the latent mechanism for emotional and cognitive changes in hyperthyroidism, including anxiety and impaired processing speed. PMID:28009983

  2. Joint multiple fully connected convolutional neural network with extreme learning machine for hepatocellular carcinoma nuclei grading.

    PubMed

    Li, Siqi; Jiang, Huiyan; Pang, Wenbo

    2017-03-22

    Accurate cell grading of cancerous tissue pathological image is of great importance in medical diagnosis and treatment. This paper proposes a joint multiple fully connected convolutional neural network with extreme learning machine (MFC-CNN-ELM) architecture for hepatocellular carcinoma (HCC) nuclei grading. First, in preprocessing stage, each grayscale image patch with the fixed size is obtained using center-proliferation segmentation (CPS) method and the corresponding labels are marked under the guidance of three pathologists. Next, a multiple fully connected convolutional neural network (MFC-CNN) is designed to extract the multi-form feature vectors of each input image automatically, which considers multi-scale contextual information of deep layer maps sufficiently. After that, a convolutional neural network extreme learning machine (CNN-ELM) model is proposed to grade HCC nuclei. Finally, a back propagation (BP) algorithm, which contains a new up-sample method, is utilized to train MFC-CNN-ELM architecture. The experiment comparison results demonstrate that our proposed MFC-CNN-ELM has superior performance compared with related works for HCC nuclei grading. Meanwhile, external validation using ICPR 2014 HEp-2 cell dataset shows the good generalization of our MFC-CNN-ELM architecture.

  3. Effective connectivity of neural pathways underlying disgust by multivariate Granger causality analysis

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Wang, Yonghui; Tian, Jie; Liu, Yijun

    2011-03-01

    The disgust system arises phylogenetically in response to dangers to the internal milieu from pathogens and their toxic products. Functional imaging studies have demonstrated that a much wider range of neural structures was involved in triggering disgust reactions. However, less is known regarding how and what neural pathways these neural structures interact. To address this issue, we adopted an effective connectivity based analysis, namely the multivariate Granger causality approach, to explore the causal interactions within these brain networks. Results presented that disgust can induce a wide range of brain activities, such as the insula, the anterior cingulate cortex, the parahippocampus lobe, the dorsal lateral prefrontal cortex, the superior occipital gyrus, and the supplementary motor cortex. These brain areas constitute as a whole, with much denser connectivity following disgust stimuli, in comparison with that of the neutral condition. Moreover, the anterior insula, showing multiple casual interactions with limbic and subcortical areas, was implicated as a central hub in organizing multiple information processing in the disgust system.

  4. Resting state functional MRI reveals abnormal network connectivity in orthostatic tremor.

    PubMed

    Benito-León, Julián; Louis, Elan D; Manzanedo, Eva; Hernández-Tamames, Juan Antonio; Álvarez-Linera, Juan; Molina-Arjona, José Antonio; Matarazzo, Michele; Romero, Juan Pablo; Domínguez-González, Cristina; Domingo-Santos, Ángela; Sánchez-Ferro, Álvaro

    2016-07-01

    Very little is known about the pathogenesis of orthostatic tremor (OT). We have observed that OT patients might have deficits in specific aspects of neuropsychological function, particularly those thought to rely on the integrity of the prefrontal cortex, which suggests a possible involvement of frontocerebellar circuits. We examined whether resting-state functional magnetic resonance imaging (fMRI) might provide further insights into the pathogenesis on OT. Resting-state fMRI data in 13 OT patients (11 women and 2 men) and 13 matched healthy controls were analyzed using independent component analysis, in combination with a "dual-regression" technique, to identify group differences in several resting-state networks (RSNs). All participants also underwent neuropsychological testing during the same session. Relative to healthy controls, OT patients showed increased connectivity in RSNs involved in cognitive processes (default mode network [DMN] and frontoparietal networks), and decreased connectivity in the cerebellum and sensorimotor networks. Changes in network integrity were associated not only with duration (DMN and medial visual network), but also with cognitive function. Moreover, in at least 2 networks (DMN and medial visual network), increased connectivity was associated with worse performance on different cognitive domains (attention, executive function, visuospatial ability, visual memory, and language). In this exploratory study, we observed selective impairments of RSNs in OT patients. This and other future resting-state fMRI studies might provide a novel method to understand the pathophysiological mechanisms of motor and nonmotor features of OT.

  5. Resting state functional MRI reveals abnormal network connectivity in orthostatic tremor

    PubMed Central

    Benito-León, Julián; Louis, Elan D.; Manzanedo, Eva; Hernández-Tamames, Juan Antonio; Álvarez-Linera, Juan; Molina-Arjona, José Antonio; Matarazzo, Michele; Romero, Juan Pablo; Domínguez-González, Cristina; Domingo-Santos, Ángela; Sánchez-Ferro, Álvaro

    2016-01-01

    Abstract Very little is known about the pathogenesis of orthostatic tremor (OT). We have observed that OT patients might have deficits in specific aspects of neuropsychological function, particularly those thought to rely on the integrity of the prefrontal cortex, which suggests a possible involvement of frontocerebellar circuits. We examined whether resting-state functional magnetic resonance imaging (fMRI) might provide further insights into the pathogenesis on OT. Resting-state fMRI data in 13 OT patients (11 women and 2 men) and 13 matched healthy controls were analyzed using independent component analysis, in combination with a “dual-regression” technique, to identify group differences in several resting-state networks (RSNs). All participants also underwent neuropsychological testing during the same session. Relative to healthy controls, OT patients showed increased connectivity in RSNs involved in cognitive processes (default mode network [DMN] and frontoparietal networks), and decreased connectivity in the cerebellum and sensorimotor networks. Changes in network integrity were associated not only with duration (DMN and medial visual network), but also with cognitive function. Moreover, in at least 2 networks (DMN and medial visual network), increased connectivity was associated with worse performance on different cognitive domains (attention, executive function, visuospatial ability, visual memory, and language). In this exploratory study, we observed selective impairments of RSNs in OT patients. This and other future resting-state fMRI studies might provide a novel method to understand the pathophysiological mechanisms of motor and nonmotor features of OT. PMID:27442678

  6. Application of viral vectors to the study of neural connectivities and neural circuits in the marmoset brain

    PubMed Central

    Watakabe, Akiya; Sadakane, Osamu; Hata, Katsusuke; Ohtsuka, Masanari; Takaji, Masafumi

    2016-01-01

    ABSTRACT It is important to study the neural connectivities and functions in primates. For this purpose, it is critical to be able to transfer genes to certain neurons in the primate brain so that we can image the neuronal signals and analyze the function of the transferred gene. Toward this end, our team has been developing gene transfer systems using viral vectors. In this review, we summarize our current achievements as follows. 1) We compared the features of gene transfer using five different AAV serotypes in combination with three different promoters, namely, CMV, mouse CaMKII (CaMKII), and human synapsin 1 (hSyn1), in the marmoset cortex with those in the mouse and macaque cortices. 2) We used target‐specific double‐infection techniques in combination with TET‐ON and TET‐OFF using lentiviral retrograde vectors for enhanced visualization of neural connections. 3) We used an AAV‐mediated gene transfer method to study the transcriptional control for amplifying fluorescent signals using the TET/TRE system in the primate neocortex. We also established systems for shRNA mediated gene targeting in a neocortical region where a gene is significantly expressed and for expressing the gene using the CMV promoter for an unexpressed neocortical area in the primate cortex using AAV vectors to understand the regulation of downstream genes. Our findings have demonstrated the feasibility of using viral vector mediated gene transfer systems for the study of primate cortical circuits using the marmoset as an animal model. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 354–372, 2017 PMID:27706918

  7. Effects of corticosteroids on the proliferation of normal and abnormal human connective tissue cells.

    PubMed

    Priestley, G C; Brown, J C

    1980-01-01

    Four corticosteroids were tested in vitro for effect on the proliferation of four strains of fibroblasts from scleroderma skin, four strains from normal adult skin and four strains of rheumatoid synovial cells. Significant effects on fibroblasts occurred only at the highest steroid concentration tested (10 microgram/ml) where the inhibitory ranking of the steriods was clobetasol propionate greater than clobetasone butyrate greater than betamethasone valerate greater than hydrocortisone. Hydrocortisone and betamethasone valerate stimulated proliferation of two normal strains, had no certain effect on the scleroderma group, and inhibited growth of synovial cells. Clobetasone butyrate and clobetasol propionate inhibited growth of all cells. All four steroids substantially reduced acid mucopolysaccharide secretion by scleroderma fibroblasts. These results suggest that fibroblasts from normal and abnormal skin show only small differences in their responses to corticosteroids in vitro, but contrast sharply with the mouse L-929 fibroblasts previously used in some assays of topical corticosteroid potency.

  8. Genetic dyslexia risk variant is related to neural connectivity patterns underlying phonological awareness in children.

    PubMed

    Skeide, Michael A; Kirsten, Holger; Kraft, Indra; Schaadt, Gesa; Müller, Bent; Neef, Nicole; Brauer, Jens; Wilcke, Arndt; Emmrich, Frank; Boltze, Johannes; Friederici, Angela D

    2015-09-01

    Phonological awareness is the best-validated predictor of reading and spelling skill and therefore highly relevant for developmental dyslexia. Prior imaging genetics studies link several dyslexia risk genes to either brain-functional or brain-structural factors of phonological deficits. However, coherent evidence for genetic associations with both functional and structural neural phenotypes underlying variation in phonological awareness has not yet been provided. Here we demonstrate that rs11100040, a reported modifier of SLC2A3, is related to the functional connectivity of left fronto-temporal phonological processing areas at resting state in a sample of 9- to 12-year-old children. Furthermore, we provide evidence that rs11100040 is related to the fractional anisotropy of the arcuate fasciculus, which forms the structural connection between these areas. This structural connectivity phenotype is associated with phonological awareness, which is in turn associated with the individual retrospective risk scores in an early dyslexia screening as well as to spelling. These results suggest a link between a dyslexia risk genotype and a functional as well as a structural neural phenotype, which is associated with a phonological awareness phenotype. The present study goes beyond previous work by integrating genetic, brain-functional and brain-structural aspects of phonological awareness within a single approach. These combined findings might be another step towards a multimodal biomarker for developmental dyslexia.

  9. A closer look at the apparent correlation of structural and functional connectivity in excitable neural networks

    NASA Astrophysics Data System (ADS)

    Messé, Arnaud; Hütt, Marc-Thorsten; König, Peter; Hilgetag, Claus C.

    2015-01-01

    The relationship between the structural connectivity (SC) and functional connectivity (FC) of neural systems is a central focus in brain network science. It is an open question, however, how strongly the SC-FC relationship depends on specific topological features of brain networks or the models used for describing excitable dynamics. Using a basic model of discrete excitable units that follow a susceptible - excited - refractory dynamic cycle (SER model), we here analyze how functional connectivity is shaped by the topological features of a neural network, in particular its modularity. We compared the results obtained by the SER model with corresponding simulations by another well established dynamic mechanism, the Fitzhugh-Nagumo model, in order to explore general features of the SC-FC relationship. We showed that apparent discrepancies between the results produced by the two models can be resolved by adjusting the time window of integration of co-activations from which the FC is derived, providing a clearer distinction between co-activations and sequential activations. Thus, network modularity appears as an important factor shaping the FC-SC relationship across different dynamic models.

  10. Abnormal functional connectivity density in patients with ischemic white matter lesions

    PubMed Central

    Ding, Ju-Rong; Ding, Xin; Hua, Bo; Xiong, Xingzhong; Wang, Qingsong; Chen, Huafu

    2016-01-01

    Abstract White matter lesions (WMLs) are frequently detected in elderly people. Previous structural and functional studies have demonstrated that WMLs are associated with cognitive and motor decline. However, the underlying mechanism of how WMLs lead to cognitive decline and motor disturbance remains unclear. We used functional connectivity density mapping (FCDM) to investigate changes in brain functional connectivity in 16 patients with ischemic WMLs and 13 controls. Both short- and long-range FCD maps were computed, and group comparisons were performed between the 2 groups. A correlation analysis was further performed between regions with altered FCD and cognitive test scores (Mini-Mental State Examination [MMSE] and Montreal Cognitive Assessment [MoCA]) in the patient group. We found that patients with ischemic WMLs showed reduced short-range FCD in the temporal cortex, primary motor cortex, and subcortical region, which may account for inadequate top-down attention, impaired motor, memory, and executive function associated with WMLs. The positive correlation between primary motor cortex and MoCA scores may provide evidence for the influences of cognitive function on behavioral performance. The inferior parietal cortex exhibited increased short-range FCD, reflecting a hyper bottom-up attention to compensate for the inadequate top-down attention for language comprehension and information retrieval in patients with WMLs. Moreover, the prefrontal and primary motor cortex showed increased long-range FCD and the former positively correlated with MoCA scores, which may suggest a strategy of cortical functional reorganization to compensate for motor and executive deficits. Our findings provide new insights into how WMLs cause cognitive and motor decline from cortical functional connectivity perspective. PMID:27603353

  11. Cell biology in neuroscience: Architects in neural circuit design: glia control neuron numbers and connectivity.

    PubMed

    Corty, Megan M; Freeman, Marc R

    2013-11-11

    Glia serve many important functions in the mature nervous system. In addition, these diverse cells have emerged as essential participants in nearly all aspects of neural development. Improved techniques to study neurons in the absence of glia, and to visualize and manipulate glia in vivo, have greatly expanded our knowledge of glial biology and neuron-glia interactions during development. Exciting studies in the last decade have begun to identify the cellular and molecular mechanisms by which glia exert control over neuronal circuit formation. Recent findings illustrate the importance of glial cells in shaping the nervous system by controlling the number and connectivity of neurons.

  12. Progressive Changes in a Distributed Neural Circuit Underlie Breathing Abnormalities in Mice Lacking MeCP2

    PubMed Central

    Huang, Teng-Wei; Kochukov, Mikhail Y.; Ward, Christopher S.; Merritt, Jonathan; Thomas, Kaitlin; Nguyen, Tiffani; Arenkiel, Benjamin R.

    2016-01-01

    in the function of MeCP2, the protein encoded by the gene mutated in Rett syndrome, within the hindbrain are critical for control of normal breathing. Here we show that MeCP2 function plays distinct roles in specific brainstem regions in the genesis of various aspects of abnormal breathing. This provides insight into the pathogenesis of these breathing abnormalities in Rett syndrome, which could be used to target treatments to improve these symptoms. Furthermore, it provides further knowledge about the fundamental neural circuits that control breathing. PMID:27194336

  13. Clarifying the anatomy of hearts with concordant ventriculo-arterial connections but abnormally related arterial trunks.

    PubMed

    Gupta, Saurabh K; Ramakrishnan, Sivasubramanian; Gulati, Gurpreet S; Henry, G William; Spicer, Diane E; Backer, Carl L; Anderson, Robert H

    2016-01-01

    Hearts in which the arterial trunks arise from the morphologically appropriate ventricles, but in a parallel manner, rather than the usual spiralling arrangement, have long fascinated anatomists. These rare entities, for quite some time, were considered embryological impossibilities, but ongoing experience has shown that they can be found in various segmental combinations. Problems still exist about how best to describe them, as the different variants are often described with esoteric terms, such as anatomically corrected malposition or isolated ventricular inversion. In this review, based on our combined clinical and morphological experience, we demonstrate that the essential feature of all hearts described in this manner is a parallel arrangement of the arterial trunks as they exit from the ventricular mass. We show that the relationship of the arterial roots needs to be described in terms of the underlying ventricular topology, rather than according to the arrangement of the atrial chambers. We then discuss the importance of determining atrial arrangement on the basis of the morphology of the appendages, following the precepts as set out in the so-called "morphological method" and distinguished according to the extent of the pectinate muscles relative to the atrioventricular junctions as opposed to basing diagnosis on the venoatrial connections. We show that, when approached in this manner, the various combinations can be readily diagnosed in the clinical setting and described in straightforward way.

  14. Relating structural and functional anomalous connectivity in the aging brain via neural mass modeling.

    PubMed

    Pons, A J; Cantero, Jose L; Atienza, Mercedes; Garcia-Ojalvo, Jordi

    2010-09-01

    The structural changes that arise as the brain ages influence its functionality. In many cases, the anatomical degradation simply leads to normal aging. In others, the neurodegeneration is large enough to cause neurological disorders (e.g. Alzheimer's disease). Structure and function can be both currently measured using noninvasive techniques, such as magnetic resonance imaging (MRI) and electroencephalography (EEG) respectively. However, a full theoretical scheme linking structural and functional degradation is still lacking. Here we present a neural mass model that aims to bridge both levels of description and that reproduces experimentally observed multichannel EEG recordings of alpha rhythm in young subjects, healthy elderly subjects, and patients with mild cognitive impairment. We focus our attention in the dominant frequency of the signals at different electrodes and in the correlation between specific electrode pairs, measured via the phase-lag index. Our model allows us to study the influence of different structural connectivity pathways, independently of each other, on the normal and aberrantly aging brain. In particular, we study in detail the effect of the thalamic input on specific cortical regions, the long-range connectivity between cortical regions, and the short-range coupling within the same cortical area. Once the influence of each type of connectivity is determined, we characterize the regions of parameter space compatible with the EEG recordings of the populations under study. Our results show that the different types of connectivity must be fine-tuned to maintain the brain in a healthy functioning state independently of its age and brain condition.

  15. Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions

    PubMed Central

    Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso

    2017-01-01

    The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala’s psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective. PMID:28345642

  16. Recruitment of Polysynaptic Connections Underlies Functional Recovery of a Neural Circuit after Lesion

    PubMed Central

    Tamvacakis, Arianna N.

    2016-01-01

    Abstract The recruitment of additional neurons to neural circuits often occurs in accordance with changing functional demands. Here we found that synaptic recruitment plays a key role in functional recovery after neural injury. Disconnection of a brain commissure in the nudibranch mollusc, Tritonia diomedea, impairs swimming behavior by eliminating particular synapses in the central pattern generator (CPG) underlying the rhythmic swim motor pattern. However, the CPG functionally recovers within a day after the lesion. The strength of a spared inhibitory synapse within the CPG from Cerebral Neuron 2 (C2) to Ventral Swim Interneuron B (VSI) determines the level of impairment caused by the lesion, which varies among individuals. In addition to this direct synaptic connection, there are polysynaptic connections from C2 and Dorsal Swim Interneurons to VSI that provide indirect excitatory drive but play only minor roles under normal conditions. After disconnecting the pedal commissure (Pedal Nerve 6), the recruitment of polysynaptic excitation became a major source of the excitatory drive to VSI. Moreover, the amount of polysynaptic recruitment, which changed over time, differed among individuals and correlated with the degree of recovery of the swim motor pattern. Thus, functional recovery was mediated by an increase in the magnitude of polysynaptic excitatory drive, compensating for the loss of direct excitation. Since the degree of susceptibility to injury corresponds to existing individual variation in the C2 to VSI synapse, the recovery relied upon the extent to which the network reorganized to incorporate additional synapses. PMID:27570828

  17. Robustness of connectionist swimming controllers against random variation in neural connections.

    PubMed

    Or, Jimmy

    2007-06-01

    The ability to achieve high swimming speed and efficiency is very important to both the real lamprey and its robotic implementation. In previous studies, we used evolutionary algorithms to evolve biologically plausible connectionist swimming controllers for a simulated lamprey. This letter investigates the robustness and optimality of the best-evolved controllers as well as the biological controller hand-crafted by Ekeberg. Comparing cases of random variation in intrasegmental or intersegmental weights against each controller allows estimates of robustness to be made. We conduct experiments on the controllers' robustness at the excitation level, which corresponds to either the maximum swimming speed or efficiency by randomly varying the segmental connection weights and on some occasions also the intersegmental couplings, through varying noise ranges. Interestingly, although the swimming performance (in terms of maximum speed and efficiency) of the Ekeberg biological controller is not as good as that of the artificially evolved controllers, it is relatively robust against noise in the neural networks. This suggests that the natural evolutions have evolved a swimming controller that is good enough to survive in the real world. Our findings could inspire neurobiologists to conduct real physiological experiments to gain a better understanding on how neural connectivity affects behavior. The results can also be applied to control an artificial lamprey in simulation and possibly also a robotic one.

  18. Dynamic Changes in Amygdala Psychophysiological Connectivity Reveal Distinct Neural Networks for Facial Expressions of Basic Emotions.

    PubMed

    Diano, Matteo; Tamietto, Marco; Celeghin, Alessia; Weiskrantz, Lawrence; Tatu, Mona-Karina; Bagnis, Arianna; Duca, Sergio; Geminiani, Giuliano; Cauda, Franco; Costa, Tommaso

    2017-03-27

    The quest to characterize the neural signature distinctive of different basic emotions has recently come under renewed scrutiny. Here we investigated whether facial expressions of different basic emotions modulate the functional connectivity of the amygdala with the rest of the brain. To this end, we presented seventeen healthy participants (8 females) with facial expressions of anger, disgust, fear, happiness, sadness and emotional neutrality and analyzed amygdala's psychophysiological interaction (PPI). In fact, PPI can reveal how inter-regional amygdala communications change dynamically depending on perception of various emotional expressions to recruit different brain networks, compared to the functional interactions it entertains during perception of neutral expressions. We found that for each emotion the amygdala recruited a distinctive and spatially distributed set of structures to interact with. These changes in amygdala connectional patters characterize the dynamic signature prototypical of individual emotion processing, and seemingly represent a neural mechanism that serves to implement the distinctive influence that each emotion exerts on perceptual, cognitive, and motor responses. Besides these differences, all emotions enhanced amygdala functional integration with premotor cortices compared to neutral faces. The present findings thus concur to reconceptualise the structure-function relation between brain-emotion from the traditional one-to-one mapping toward a network-based and dynamic perspective.

  19. Functional connectivity and information flow of the respiratory neural network in chronic obstructive pulmonary disease

    PubMed Central

    Yu, Lianchun; De Mazancourt, Marine; Hess, Agathe; Ashadi, Fakhrul R.; Klein, Isabelle; Mal, Hervé; Courbage, Maurice

    2016-01-01

    Abstract Breathing involves a complex interplay between the brainstem automatic network and cortical voluntary command. How these brain regions communicate at rest or during inspiratory loading is unknown. This issue is crucial for several reasons: (i) increased respiratory loading is a major feature of several respiratory diseases, (ii) failure of the voluntary motor and cortical sensory processing drives is among the mechanisms that precede acute respiratory failure, (iii) several cerebral structures involved in responding to inspiratory loading participate in the perception of dyspnea, a distressing symptom in many disease. We studied functional connectivity and Granger causality of the respiratory network in controls and patients with chronic obstructive pulmonary disease (COPD), at rest and during inspiratory loading. Compared with those of controls, the motor cortex area of patients exhibited decreased connectivity with their contralateral counterparts and no connectivity with the brainstem. In the patients, the information flow was reversed at rest with the source of the network shifted from the medulla towards the motor cortex. During inspiratory loading, the system was overwhelmed and the motor cortex became the sink of the network. This major finding may help to understand why some patients with COPD are prone to acute respiratory failure. Network connectivity and causality were related to lung function and illness severity. We validated our connectivity and causality results with a mathematical model of neural network. Our findings suggest a new therapeutic strategy involving the modulation of brain activity to increase motor cortex functional connectivity and improve respiratory muscles performance in patients. Hum Brain Mapp 37:2736–2754, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. PMID:27059277

  20. Functional brain abnormalities in psychiatric disorders: neural mechanisms to detect and resolve cognitive conflict and interference.

    PubMed

    Melcher, Tobias; Falkai, Peter; Gruber, Oliver

    2008-11-01

    In the present article, we review functional neuroimaging studies on interference processing and performance monitoring in three groups of psychiatric disorders, (1) mood disorders, (2) schizophrenia, and (3) obsessive-compulsive disorder (OCD). Ad (1) Behavioral performance measures suggest an impaired interference resolution capability in symptomatic bipolar disorder patients. A series of neuroimaging analyses found alterations in the ACC-DLPFC system in mood disorder (unipolar depressed and bipolar) patients, putatively reflective of an abnormal interplay of monitoring and executive neurocognitive functions. Other studies of euthymic bipolar patients showed relatively decreased interference-related activation in rostroventral PFC which conceivably underlies defective inhibitory control. Ad (2) Behavioral Stroop studies revealed a specific performance pattern of schizophrenia patients (normal RT interference but increased error interference and RT facilitation) suggestive of a deficit in ignoring irrelevant (word) information. Moreover, reduced/absent behavioral post-error and post-conflict adaptation effects suggest alterations in performance monitoring and/or adjustment capability in these patients. Neuroimaging findings converge to suggest a disorder-related abnormal neurophysiology in ACC which consistently showed conflict- and error-related hypoactivation that, however, appeared to be modulated by different factors. Moreover, studies suggest a specific deficit in context processing in schizophrenia, evidently related to activation reduction in DLPFC. Ad (3) Behavioral findings provide evidence for impaired interference resolution in OCD. Neuroimaging results consistently showed conflict- and error-related ACC hyperactivation which--conforming OCD pathogenesis models--can be conclusively interpreted as reflecting overactive performance monitoring. Taken together, interference resolution and performance monitoring appeared to be fruitful concepts in the

  1. Abnormal O-GlcNAcylation of Pax3 Occurring from Hyperglycemia-Induced Neural Tube Defects Is Ameliorated by Carnosine But Not Folic Acid in Chicken Embryos.

    PubMed

    Tan, Rui-Rong; Li, Yi-Fang; Zhang, Shi-Jie; Huang, Wen-Shan; Tsoi, Bun; Hu, Dan; Wan, Xin; Yang, Xuesong; Wang, Qi; Kurihara, Hiroshi; He, Rong-Rong

    2017-01-01

    Neural tube defects (NTDs) are among the most common of the embryonic abnormalities associated with hyperglycemic gestation. In this study, the molecular mechanisms of embryonic neurogenesis influenced by hyperglycemia was investigated using chicken embryo models. High-concentration glucose was administered into chicken eggs and resulted in increased plasma and brain tissue glucose, and suppressed expression of glucose transporters (GLUTs). The rate of NTD positively correlated with hyperglycemia. Furthermore, abnormally increased O-GlcNAcylation, a nutritionally responsive modification, of the key neural tube marker Pax3 protein led to the loss of this protein. This loss was not observed in a folate-deficiency NTD induced by methotrexate. Carnosine, an endogenous dipeptide, showed significant recovery effects on neural tube development. In contrast, folic acid, a well-known periconceptional agent, surprisingly showed relatively minimal effect. Higher expression levels of the Pax3 protein were found in the carnosine-treated groups, while lower expression levels were found in folic acid groups. Furthermore, the abnormal O-GlcNAcylation of the Pax3 protein was restored by carnosine. These results suggest new insights into using endogenous nutrients for the protection of embryonic neurodevelopment affected by diabetes gestation. The abnormal excessive O-GlcNAcylation of Pax3 may be responsible for the neural tube defects associated with hyperglycemia.

  2. Efficient "Shotgun" Inference of Neural Connectivity from Highly Sub-sampled Activity Data

    PubMed Central

    Soudry, Daniel; Keshri, Suraj; Stinson, Patrick; Oh, Min-hwan; Iyengar, Garud; Paninski, Liam

    2015-01-01

    Inferring connectivity in neuronal networks remains a key challenge in statistical neuroscience. The “common input” problem presents a major roadblock: it is difficult to reliably distinguish causal connections between pairs of observed neurons versus correlations induced by common input from unobserved neurons. Available techniques allow us to simultaneously record, with sufficient temporal resolution, only a small fraction of the network. Consequently, naive connectivity estimators that neglect these common input effects are highly biased. This work proposes a “shotgun” experimental design, in which we observe multiple sub-networks briefly, in a serial manner. Thus, while the full network cannot be observed simultaneously at any given time, we may be able to observe much larger subsets of the network over the course of the entire experiment, thus ameliorating the common input problem. Using a generalized linear model for a spiking recurrent neural network, we develop a scalable approximate expected loglikelihood-based Bayesian method to perform network inference given this type of data, in which only a small fraction of the network is observed in each time bin. We demonstrate in simulation that the shotgun experimental design can eliminate the biases induced by common input effects. Networks with thousands of neurons, in which only a small fraction of the neurons is observed in each time bin, can be quickly and accurately estimated, achieving orders of magnitude speed up over previous approaches. PMID:26465147

  3. Efficient "Shotgun" Inference of Neural Connectivity from Highly Sub-sampled Activity Data.

    PubMed

    Soudry, Daniel; Keshri, Suraj; Stinson, Patrick; Oh, Min-Hwan; Iyengar, Garud; Paninski, Liam

    2015-10-01

    Inferring connectivity in neuronal networks remains a key challenge in statistical neuroscience. The "common input" problem presents a major roadblock: it is difficult to reliably distinguish causal connections between pairs of observed neurons versus correlations induced by common input from unobserved neurons. Available techniques allow us to simultaneously record, with sufficient temporal resolution, only a small fraction of the network. Consequently, naive connectivity estimators that neglect these common input effects are highly biased. This work proposes a "shotgun" experimental design, in which we observe multiple sub-networks briefly, in a serial manner. Thus, while the full network cannot be observed simultaneously at any given time, we may be able to observe much larger subsets of the network over the course of the entire experiment, thus ameliorating the common input problem. Using a generalized linear model for a spiking recurrent neural network, we develop a scalable approximate expected loglikelihood-based Bayesian method to perform network inference given this type of data, in which only a small fraction of the network is observed in each time bin. We demonstrate in simulation that the shotgun experimental design can eliminate the biases induced by common input effects. Networks with thousands of neurons, in which only a small fraction of the neurons is observed in each time bin, can be quickly and accurately estimated, achieving orders of magnitude speed up over previous approaches.

  4. Abnormal Neural Oscillations in Schizophrenia Assessed by Spectral Power Ratio of MEG During Word Processing.

    PubMed

    Xu, Tingting; Stephane, Massoud; Parhi, Keshab K

    2016-11-01

    This study investigated spectral power of neural oscillations associated with word processing in schizophrenia. Magnetoencephalography (MEG) data were acquired from 12 schizophrenia patients and 10 healthy controls during a visual word processing task. Two spectral power ratio (SPR) feature sets: the band power ratio (BPR) and the window power ratio (WPR) were extracted from MEG data in five frequency bands, four time windows of word processing, and at locations covering whole head. Cluster-based nonparametric permutation tests were employed to identify SPRs that show significant between-group difference. Machine learning based feature selection and classification techniques were then employed to select optimal combinations of the significant SPR features, and distinguish schizophrenia patients from healthy controls. We identified three BPR clusters and three WPR clusters that show significant oscillation power difference between groups. These include the theta/delta, alpha/delta and beta/delta BPRs during base-to-encode and encode time windows, and the beta band WPR from base to encode and from encode to post-encode windows. Based on two WPR and one BPR features combined, over 95% cross-validation classification accuracy was achieved using three different linear classifiers separately. These features may have potential as quantitative markers that discriminate schizophrenia patients and healthy controls; however, this needs further validation on larger samples.

  5. Neural mechanisms of predatory aggression in rats-implications for abnormal intraspecific aggression.

    PubMed

    Tulogdi, Aron; Biro, Laszlo; Barsvari, Beata; Stankovic, Mona; Haller, Jozsef; Toth, Mate

    2015-04-15

    Our recent studies showed that brain areas that are activated in a model of escalated aggression overlap with those that promote predatory aggression in cats. This finding raised the interesting possibility that the brain mechanisms that control certain types of abnormal aggression include those involved in predation. However, the mechanisms of predatory aggression are poorly known in rats, a species that is in many respects different from cats. To get more insights into such mechanisms, here we studied the brain activation patterns associated with spontaneous muricide in rats. Subjects not exposed to mice, and those which did not show muricide were used as controls. We found that muricide increased the activation of the central and basolateral amygdala, and lateral hypothalamus as compared to both controls; in addition, a ventral shift in periaqueductal gray activation was observed. Interestingly, these are the brain regions from where predatory aggression can be elicited, or enhanced by electrical stimulation in cats. The analysis of more than 10 other brain regions showed that brain areas that inhibited (or were neutral to) cat predatory aggression were not affected by muricide. Brain activation patterns partly overlapped with those seen earlier in the cockroach hunting model of rat predatory aggression, and were highly similar with those observed in the glucocorticoid dysfunction model of escalated aggression. These findings show that the brain mechanisms underlying predation are evolutionarily conservative, and indirectly support our earlier assumption regarding the involvement of predation-related brain mechanisms in certain forms of escalated social aggression in rats.

  6. Impact of acoustic coordinated reset neuromodulation on effective connectivity in a neural network of phantom sound.

    PubMed

    Silchenko, Alexander N; Adamchic, Ilya; Hauptmann, Christian; Tass, Peter A

    2013-08-15

    Chronic subjective tinnitus is an auditory phantom phenomenon characterized by abnormal neuronal synchrony in the central auditory system. As recently shown in a proof of concept clinical trial, acoustic coordinated reset (CR) neuromodulation causes a significant relief of tinnitus symptoms combined with a significant decrease of pathological oscillatory activity in a network comprising auditory and non-auditory brain areas. The objective of the present study was to analyze whether CR therapy caused an alteration of the effective connectivity in a tinnitus related network of localized EEG brain sources. To determine which connections matter, in a first step, we considered a larger network of brain sources previously associated with tinnitus. To that network we applied a data-driven approach, combining empirical mode decomposition and partial directed coherence analysis, in patients with bilateral tinnitus before and after 12 weeks of CR therapy as well as in healthy controls. To increase the signal-to-noise ratio, we focused on the good responders, classified by a reliable-change-index (RCI). Prior to CR therapy and compared to the healthy controls, the good responders showed a significantly increased connectivity between the left primary cortex auditory cortex and the posterior cingulate cortex in the gamma and delta bands together with a significantly decreased effective connectivity between the right primary auditory cortex and the dorsolateral prefrontal cortex in the alpha band. Intriguingly, after 12 weeks of CR therapy most of the pathological interactions were gone, so that the connectivity patterns of good responders and healthy controls became statistically indistinguishable. In addition, we used dynamic causal modeling (DCM) to examine the types of interactions which were altered by CR therapy. Our DCM results show that CR therapy specifically counteracted the imbalance of excitation and inhibition. CR significantly weakened the excitatory connection

  7. Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation

    PubMed Central

    Macpherson, Lindsey J.; Zaharieva, Emanuela E.; Kearney, Patrick J.; Alpert, Michael H.; Lin, Tzu-Yang; Turan, Zeynep; Lee, Chi-Hon; Gallio, Marco

    2015-01-01

    Determining the pattern of activity of individual connections within a neural circuit could provide insights into the computational processes that underlie brain function. Here, we develop new strategies to label active synapses by trans-synaptic fluorescence complementation in Drosophila. First, we demonstrate that a synaptobrevin-GRASP chimera functions as a powerful activity-dependent marker for synapses in vivo. Next, we create cyan and yellow variants, achieving activity-dependent, multi-colour fluorescence reconstitution across synapses (X-RASP). Our system allows for the first time retrospective labelling of synapses (rather than whole neurons) based on their activity, in multiple colours, in the same animal. As individual synapses often act as computational units in the brain, our method will promote the design of experiments that are not possible using existing techniques. Moreover, our strategies are easily adaptable to circuit mapping in any genetic system. PMID:26635273

  8. Investigation of micropatterning and micromechanical forces towards engineering neural networks with defined connectivity

    NASA Astrophysics Data System (ADS)

    de Silva, Mauris Nishanga

    2005-07-01

    Previously, microfabrication technology has been used to control the growth of dissociated neurons in culture by surface micropatterning. However, such systems did not provide control over synaptic connectivity between neurons. In addition, mechanical tension exerted by the growth cone plays an important role during neurite outgrowth, and mechanical force can be used as a stimulus for eliciting a neurite from a neuron. Therefore, one could, in principle, pattern neurons on adhesive islands with non-permissive intervening regions that prevent spontaneous outgrowth and formation of synaptic connections, and then form connections on demand with the desired directionality and specificity by eliciting neurites using mechanical force. In order to investigate the possibility of creating such a neural network, a novel microsystem was developed having an array of glass microposts that can be used to micromechanically stimulate multiple neurons simultaneously in vitro. Traditional approaches to micropatterning of cells require photolithography, which typically requires functionalizing of surfaces with one molecule type that promotes cell adhesion and another molecule type that inhibits cell adhesion, and which is a complex, multi-step process that is time consuming and difficult to reproduce consistently. To simplify the micropatterning process, we developed a novel method of microcontact printing on polydimethylsiloxane (PDMS) substrates, a direct PDMS-PDMS stamping method that eliminated the need for adhesion-inhibiting molecules to achieve cellular patterns. However, direct PDMS-PDMS stamping is difficult to implement due to the complexity of the photolithography involved in stamp fabrication, and due to the inability to change patterns rapidly. Therefore, a novel precision spraying (PS) method was developed to micropattern cells in two steps, that is low cost, enables the facile changing of patterns for rapid prototyping, and has the ability to achieve patterns on non

  9. Caged Neuron MEA: A system for long-term investigation of cultured neural network connectivity

    PubMed Central

    Erickson, Jonathan; Tooker, Angela; Tai, Y-C.; Pine, Jerome

    2008-01-01

    Traditional techniques for investigating cultured neural networks, such as the patch clamp and multi-electrode array, are limited by: 1) the number of identified cells which can be simultaneously electrically contacted, 2) the length of time for which cells can be studied, and 3) the lack of one-to-one neuron-to-electrode specificity. Here, we present a new device—the caged neuron multi-electrode array—which overcomes these limitations. This micro-machined device consists of an array of neurocages which mechanically trap a neuron near an extracellular electrode. While the cell body is trapped, the axon and dendrites can freely grow into the surrounding area to form a network. The electrode is bi-directional, capable of both stimulating and recording action potentials. This system is non-invasive, so that all constituent neurons of a network can be studied over its lifetime with stable one-to-one neuron-to-electrode correspondence. Proof-of-concept experiments are described to illustrate that functional networks form in a neurochip system of 16 cages in a 4×4 array, and that suprathreshold connectivity can be fully mapped over several weeks. The neurochip opens a new domain in neurobiology for studying small cultured neural networks. PMID:18775453

  10. On the connection between level of education and the neural circuitry of emotion perception

    PubMed Central

    Demenescu, Liliana R.; Stan, Adrian; Kortekaas, Rudie; van der Wee, Nic J. A.; Veltman, Dick J.; Aleman, André

    2014-01-01

    Through education, a social group transmits accumulated knowledge, skills, customs, and values to its members. So far, to the best of our knowledge, the association between educational attainment and neural correlates of emotion processing has been left unexplored. In a retrospective analysis of The Netherlands Study of Depression and Anxiety (NESDA) functional magnetic resonance imaging (fMRI) study, we compared two groups of fourteen healthy volunteers with intermediate and high educational attainment, matched for age and gender. The data concerned event-related fMRI of brain activation during perception of facial emotional expressions. The region of interest (ROI) analysis showed stronger right amygdala activation to facial expressions in participants with lower relative to higher educational attainment (HE). The psychophysiological interaction analysis revealed that participants with HE exhibited stronger right amygdala—right insula connectivity during perception of emotional and neutral facial expressions. This exploratory study suggests the relevance of educational attainment on the neural mechanism of facial expressions processing. PMID:25386133

  11. Abnormal task driven neural oscillations in multiple sclerosis: A visuomotor MEG study.

    PubMed

    Barratt, Eleanor L; Tewarie, Prejaas K; Clarke, Margareta A; Hall, Emma L; Gowland, Penny A; Morris, Peter G; Francis, Susan T; Evangelou, Nikos; Brookes, Matthew J

    2017-02-27

    Multiple sclerosis (MS) is a debilitating disease commonly attributed to degradation of white matter myelin. Symptoms include fatigue, as well as problems associated with vision and movement. Although areas of demyelination in white matter are observed routinely in patients undergoing MRI scans, such measures are often a poor predictor of disease severity. For this reason, it is instructive to measure associated changes in brain function. Widespread white-matter demyelination may lead to delays of propagation of neuronal activity, and with its excellent temporal resolution, magnetoencephalography can be used to probe such delays in controlled conditions (e.g., during a task). In healthy subjects, responses to visuomotor tasks are well documented: in motor cortex, movement elicits a localised decrease in the power of beta band oscillations (event-related beta desynchronisation) followed by an increase above baseline on movement cessation (post-movement beta rebound (PMBR)). In visual cortex, visual stimulation generates increased gamma oscillations. In this study, we use a visuomotor paradigm to measure these responses in MS patients and compare them to age- and gender-matched healthy controls. We show a significant increase in the time-to-peak of the PMBR in patients which correlates significantly with the symbol digit modalities test: a measure of information processing speed. A significant decrease in the amplitude of visual gamma oscillations in patients is also seen. These findings highlight the potential value of electrophysiological imaging in generating a new understanding of visual disturbances and abnormal motor control in MS patients. Hum Brain Mapp, 2017. © 2017 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

  12. Chronic myofascial temporomandibular pain is associated with neural abnormalities in the trigeminal and limbic systems

    PubMed Central

    Shen, Yoshi F.; Goddard, Greg; Mackey, Sean C.

    2010-01-01

    Myofascial pain of the temporomandibular region (M-TMD) is a common, but poorly understood chronic disorder. It is unknown whether the condition is a peripheral problem, or a disorder of the central nervous system (CNS). To investigate possible CNS substrates of M-TMD, we compared the brain morphology of 15 women with M-TMD to 15 age- and gender-matched healthy controls. High-resolution structural brain and brainstem scans were carried out using magnetic resonance imaging (MRI), and data were analyzed using a voxel-based morphometry approach. The M-TMD group evidenced decreased or increased gray matter volume compared to controls in several areas of the trigeminothalamocortical pathway, including brainstem trigeminal sensory nuclei, the thalamus, and the primary somatosensory cortex. In addition, M-TMD individuals showed increased gray matter volume compared to controls in limbic regions such as the posterior putamen, globus pallidus, and anterior insula. Within the M-TMD group, jaw pain, pain tolerance, and pain duration were differentially associated with brain and brainstem gray matter volume. Self-reported pain severity was associated with increased gray matter in the rostral anterior cingulate cortex and posterior cingulate. Sensitivity to pressure algometry was associated with decreased gray matter in the pons, corresponding to the trigeminal sensory nuclei. Longer pain duration was associated with greater gray matter in the posterior cingulate, hippocampus, midbrain, and cerebellum. The pattern of gray matter abnormality found in M-TMD individuals suggests the involvement of trigeminal and limbic system dysregulation, as well as potential somatotopic reorganization in the putamen, thalamus, and somatosensory cortex. PMID:20236763

  13. Mice with Tak1 deficiency in neural crest lineage exhibit cleft palate associated with abnormal tongue development.

    PubMed

    Song, Zhongchen; Liu, Chao; Iwata, Junichi; Gu, Shuping; Suzuki, Akiko; Sun, Cheng; He, Wei; Shu, Rong; Li, Lu; Chai, Yang; Chen, YiPing

    2013-04-12

    Cleft palate represents one of the most common congenital birth defects in humans. TGFβ signaling, which is mediated by Smad-dependent and Smad-independent pathways, plays a crucial role in regulating craniofacial development and patterning, particularly in palate development. However, it remains largely unknown whether the Smad-independent pathway contributes to TGFβ signaling function during palatogenesis. In this study, we investigated the function of TGFβ activated kinase 1 (Tak1), a key regulator of Smad-independent TGFβ signaling in palate development. We show that Tak1 protein is expressed in both the epithelium and mesenchyme of the developing palatal shelves. Whereas deletion of Tak1 in the palatal epithelium or mesenchyme did not give rise to a cleft palate defect, inactivation of Tak1 in the neural crest lineage using the Wnt1-Cre transgenic allele resulted in failed palate elevation and subsequently the cleft palate formation. The failure in palate elevation in Wnt1-Cre;Tak1(F/F) mice results from a malformed tongue and micrognathia, resembling human Pierre Robin sequence cleft of the secondary palate. We found that the abnormal tongue development is associated with Fgf10 overexpression in the neural crest-derived tongue tissue. The failed palate elevation and cleft palate were recapitulated in an Fgf10-overexpressing mouse model. The repressive effect of the Tak1-mediated noncanonical TGFβ signaling on Fgf10 expression was further confirmed by inhibition of p38, a downstream kinase of Tak1, in the primary cell culture of developing tongue. Tak1 thus functions to regulate tongue development by controlling Fgf10 expression and could represent a candidate gene for mutation in human PRS clefting.

  14. Differential Patterns of Abnormal Activity and Connectivity in the Amygdala-Prefrontal Circuitry in Bipolar-I and Bipolar-NOS Youth

    ERIC Educational Resources Information Center

    Ladouceur, Cecile D.; Farchione, Tiffany; Diwadkar, Vaibhav; Pruitt, Patrick; Radwan, Jacqueline; Axelson, David A.; Birmaher, Boris; Phillips, Mary L.

    2011-01-01

    Objective: The functioning of neural systems supporting emotion processing and regulation in youth with bipolar disorder not otherwise specified (BP-NOS) remains poorly understood. We sought to examine patterns of activity and connectivity in youth with BP-NOS relative to youth with bipolar disorder type I (BP-I) and healthy controls (HC). Method:…

  15. Single image depth estimation based on convolutional neural network and sparse connected conditional random field

    NASA Astrophysics Data System (ADS)

    Zhu, Leqing; Wang, Xun; Wang, Dadong; Wang, Huiyan

    2016-10-01

    Deep convolutional neural networks (DCNNs) have attracted significant interest in the computer vision community in the recent years and have exhibited high performance in resolving many computer vision problems, such as image classification. We address the pixel-level depth prediction from a single image by combining DCNN and sparse connected conditional random field (CRF). Owing to the invariance properties of DCNNs that make them suitable for high-level tasks, their outputs are generally not localized enough for detailed pixel-level regression. A multiscale DCNN and sparse connected CRF are combined to overcome this localization weakness. We have evaluated our framework using the well-known NYU V2 depth dataset, and the results show that the proposed method can improve the depth prediction accuracy both qualitatively and quantitatively, as compared to previous works. This finding shows the potential use of the proposed method in three-dimensional (3-D) modeling or 3-D video production from the given two-dimensional (2-D) images or 2-D videos.

  16. Predicting healthy older adult's brain age based on structural connectivity networks using artificial neural networks.

    PubMed

    Lin, Lan; Jin, Cong; Fu, Zhenrong; Zhang, Baiwen; Bin, Guangyu; Wu, Shuicai

    2016-03-01

    Brain ageing is followed by changes of the connectivity of white matter (WM) and changes of the grey matter (GM) concentration. Neurodegenerative disease is more vulnerable to an accelerated brain ageing, which is associated with prospective cognitive decline and disease severity. Accurate detection of accelerated ageing based on brain network analysis has a great potential for early interventions designed to hinder atypical brain changes. To capture the brain ageing, we proposed a novel computational approach for modeling the 112 normal older subjects (aged 50-79 years) brain age by connectivity analyses of networks of the brain. Our proposed method applied principal component analysis (PCA) to reduce the redundancy in network topological parameters. Back propagation artificial neural network (BPANN) improved by hybrid genetic algorithm (GA) and Levenberg-Marquardt (LM) algorithm is established to model the relation among principal components (PCs) and brain age. The predicted brain age is strongly correlated with chronological age (r=0.8). The model has mean absolute error (MAE) of 4.29 years. Therefore, we believe the method can provide a possible way to quantitatively describe the typical and atypical network organization of human brain and serve as a biomarker for presymptomatic detection of neurodegenerative diseases in the future.

  17. Subanesthetic Ketamine Treatment Promotes Abnormal Interactions between Neural Subsystems and Alters the Properties of Functional Brain Networks

    PubMed Central

    Dawson, Neil; McDonald, Martin; Higham, Desmond J; Morris, Brian J; Pratt, Judith A

    2014-01-01

    Acute treatment with subanesthetic ketamine, a non-competitive N-methyl-D-aspartic acid (NMDA) receptor antagonist, is widely utilized as a translational model for schizophrenia. However, how acute NMDA receptor blockade impacts on brain functioning at a systems level, to elicit translationally relevant symptomatology and behavioral deficits, has not yet been determined. Here, for the first time, we apply established and recently validated topological measures from network science to brain imaging data gained from ketamine-treated mice to elucidate how acute NMDA receptor blockade impacts on the properties of functional brain networks. We show that the effects of acute ketamine treatment on the global properties of these networks are divergent from those widely reported in schizophrenia. Where acute NMDA receptor blockade promotes hyperconnectivity in functional brain networks, pronounced dysconnectivity is found in schizophrenia. We also show that acute ketamine treatment increases the connectivity and importance of prefrontal and thalamic brain regions in brain networks, a finding also divergent to alterations seen in schizophrenia. In addition, we characterize how ketamine impacts on bipartite functional interactions between neural subsystems. A key feature includes the enhancement of prefrontal cortex (PFC)-neuromodulatory subsystem connectivity in ketamine-treated animals, a finding consistent with the known effects of ketamine on PFC neurotransmitter levels. Overall, our data suggest that, at a systems level, acute ketamine-induced alterations in brain network connectivity do not parallel those seen in chronic schizophrenia. Hence, the mechanisms through which acute ketamine treatment induces translationally relevant symptomatology may differ from those in chronic schizophrenia. Future effort should therefore be dedicated to resolve the conflicting observations between this putative translational model and schizophrenia. PMID:24492765

  18. Analysis of Abnormal Intra-QRS Potentials in Signal-Averaged Electrocardiograms Using a Radial Basis Function Neural Network.

    PubMed

    Lin, Chun-Cheng

    2016-09-27

    Abnormal intra-QRS potentials (AIQPs) are commonly observed in patients at high risk for ventricular tachycardia. We present a method for approximating a measured QRS complex using a non-linear neural network with all radial basis functions having the same smoothness. We extracted the high frequency, but low amplitude intra-QRS potentials using the approximation error to identify possible ventricular tachycardia. With a specified number of neurons, we performed an orthogonal least squares algorithm to determine the center of each Gaussian radial basis function. We found that the AIQP estimation error arising from part of the normal QRS complex could cause clinicians to misjudge patients with ventricular tachycardia. Our results also show that it is possible to correct this misjudgment by combining multiple AIQP parameters estimated using various spread parameters and numbers of neurons. Clinical trials demonstrate that higher AIQP-to-QRS ratios in the X, Y and Z leads are visible in patients with ventricular tachycardia than in normal subjects. A linear combination of 60 AIQP-to-QRS ratios can achieve 100% specificity, 90% sensitivity, and 95.8% total prediction accuracy for diagnosing ventricular tachycardia.

  19. An independent components and functional connectivity analysis of resting state fMRI data points to neural network dysregulation in adult ADHD.

    PubMed

    Hoekzema, Elseline; Carmona, Susana; Ramos-Quiroga, J Antoni; Richarte Fernández, Vanesa; Bosch, Rosa; Soliva, Juan Carlos; Rovira, Mariana; Bulbena, Antonio; Tobeña, Adolf; Casas, Miguel; Vilarroya, Oscar

    2014-04-01

    Spontaneous fluctuations can be measured in the brain that reflect dissociable functional networks oscillating at synchronized frequencies, such as the default mode network (DMN). In contrast to its diametrically opposed task-positive counterpart, the DMN predominantly signals during a state of rest, and inappropriate regulation of this network has been associated with inattention, a core characteristic of attention-deficit/hyperactivity disorder (ADHD). To examine whether abnormalities can be identified in the DMN component of patients with ADHD, we applied an independent components analysis to resting state functional magnetic resonance imaging data acquired from 22 male medication-naïve adults with ADHD and 23 neurotypical individuals. We observed a stronger coherence of the left dorsolateral prefrontal cortex (dlPFC) with the DMN component in patients with ADHD which correlated with measures of selective attention. The increased left dlPFC-DMN coherence also surfaced in a whole-brain replication analysis involving an independent sample of 9 medication-naïve adult patients and 9 controls. In addition, a post hoc seed-to-voxel functional connectivity analysis using the dlPFC as a seed region to further examine this region's suggested connectivity differences uncovered a higher temporal coherence with various other neural networks and confirmed a reduced anticorrelation with the DMN. These results point to a more diffuse connectivity between functional networks in patients with ADHD. Moreover, our findings suggest that state-inappropriate neural activity in ADHD is not confined to DMN intrusion during attention-demanding contexts, but also surfaces as an insufficient suppression of dlPFC signaling in relation to DMN activity during rest. Together with previous findings, these results point to a general dysfunction in the orthogonality of functional networks.

  20. Adults with high social anhedonia have altered neural connectivity with ventral lateral prefrontal cortex when processing positive social signals

    PubMed Central

    Yin, Hong; Tully, Laura M.; Lincoln, Sarah Hope; Hooker, Christine I.

    2015-01-01

    Social anhedonia (SA) is a debilitating characteristic of schizophrenia, a common feature in individuals at psychosis-risk, and a vulnerability for developing schizophrenia-spectrum disorders. Prior work (Hooker et al., 2014) revealed neural deficits in the ventral lateral prefrontal cortex (VLPFC) when processing positive social cues in a community sample of people with high SA. Lower VLPFC neural activity was related to more severe self-reported schizophrenia-spectrum symptoms as well as the exacerbation of symptoms after social stress. In the current study, psycho-physiological interaction (PPI) analysis was applied to further investigate the neural mechanisms mediated by the VLPFC during emotion processing. PPI analysis revealed that, compared to low SA controls, participants with high SA exhibited reduced connectivity between the VLPFC and the motor cortex, the inferior parietal and the posterior temporal regions when viewing socially positive (relative to neutral) emotions. Across all participants, VLPFC connectivity correlated with behavioral and self-reported measures of attentional control, emotion management, and reward processing. Our results suggest that impairments to the VLPFC mediated neural circuitry underlie the cognitive and emotional deficits associated with social anhedonia, and may serve as neural targets for prevention and treatment of schizophrenia-spectrum disorders. PMID:26379532

  1. Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity?

    NASA Astrophysics Data System (ADS)

    Negro, Francesco; Keenan, Kevin; Farina, Dario

    2015-06-01

    Objective. The identification of common oscillatory inputs to motor neurons in the electromyographic (EMG) signal power spectrum is often preceded by EMG rectification for enhancing the low-frequency oscillatory components. However, rectification is a nonlinear operator and its influence on the EMG signal spectrum is not fully understood. In this study, we aim at determining when EMG rectification is beneficial in the study of oscillatory inputs to motor neurons. Approach. We provide a full mathematical description of the power spectrum of the rectified EMG signal and the influence of the average shape of the motor unit action potentials on it. We also provide a validation of these theoretical results with both simulated and experimental EMG signals. Main results. Simulations using an advanced computational model and experimental results demonstrated the accuracy of the theoretical derivations on the effect of rectification on the EMG spectrum. These derivations proved that rectification is beneficial when assessing the strength of low-frequency (delta and alpha bands) common synaptic inputs to the motor neurons, when the duration of the action potentials is short, and when the level of cancellation is relatively low. On the other hand, rectification may distort the estimation of common synaptic inputs when studying higher frequencies (beta and gamma), in a way dependent on the duration of the action potentials, and may introduce peaks in the coherence function that do not correspond to physiological shared inputs. Significance. This study clarifies the conditions when rectifying the surface EMG is appropriate for studying neural connectivity.

  2. Dishevelled is essential for neural connectivity and planar cell polarity in planarians.

    PubMed

    Almuedo-Castillo, Maria; Saló, Emili; Adell, Teresa

    2011-02-15

    The Wingless/Integrated (Wnt) signaling pathway controls multiple events during development and homeostasis. It comprises multiple branches, mainly classified according to their dependence on β-catenin activation. The Wnt/β-catenin branch is essential for the establishment of the embryonic anteroposterior (AP) body axis throughout the phylogenetic tree. It is also required for AP axis establishment during planarian regeneration. Wnt/β-catenin-independent signaling encompasses several different pathways, of which the most extensively studied is the planar cell polarity (PCP) pathway, which is responsible for planar polarization of cell structures within an epithelial sheet. Dishevelled (Dvl) is the hub of Wnt signaling because it regulates and channels the Wnt signal into every branch. Here, we analyze the role of Schmidtea mediterranea Dvl homologs (Smed-dvl-1 and Smed-dvl-2) using gene silencing. We demonstrate that in addition to a role in AP axis specification, planarian Dvls are involved in at least two different β-catenin-independent processes. First, they are essential for neural connectivity through Smed-wnt5 signaling. Second, Smed-dvl-2, together with the S. mediterranea homologs of Van-Gogh (Vang) and Diversin (Div), is required for apical positioning of the basal bodies of epithelial cells. These data represent evidence not only of the function of the PCP network in lophotrocozoans but of the involvement of the PCP core elements Vang and Div in apical positioning of the cilia.

  3. Neural processing during older adults' comprehension of spoken sentences: age differences in resource allocation and connectivity.

    PubMed

    Peelle, Jonathan E; Troiani, Vanessa; Wingfield, Arthur; Grossman, Murray

    2010-04-01

    Speech comprehension remains largely preserved in older adults despite significant age-related neurophysiological change. However, older adults' performance declines more rapidly than that of young adults when listening conditions are challenging. We investigated the cortical network underlying speech comprehension in healthy aging using short sentences differing in syntactic complexity, with processing demands further manipulated through speech rate. Neural activity was monitored using blood oxygen level-dependent functional magnetic resonance imaging. Comprehension of syntactically complex sentences activated components of a core sentence-processing network in both young and older adults, including the left inferior and middle frontal gyri, left inferior parietal cortex, and left middle temporal gyrus. However, older adults showed reduced recruitment of inferior frontal regions relative to young adults; the individual degree of recruitment predicted accuracy at the more difficult fast speech rate. Older adults also showed increased activity in frontal regions outside the core sentence-processing network, which may have played a compensatory role. Finally, a functional connectivity analysis demonstrated reduced coherence between activated regions in older adults. We conclude that decreased activation of specialized processing regions, and limited ability to coordinate activity between regions, contribute to older adults' difficulty with sentence comprehension under difficult listening conditions.

  4. Brief report: Anomalous neural deactivations and functional connectivity during receptive language in autism spectrum disorder: a functional MRI study.

    PubMed

    Karten, Ariel; Hirsch, Joy

    2015-06-01

    Neural mechanisms that underlie language disability in autism spectrum disorder (ASD) have been associated with reduced excitatory processes observed as positive blood oxygen level dependent (BOLD) responses. However, negative BOLD responses (NBR) associated with language and inhibitory processes have been less studied in ASD. In this study, functional magnetic resonance imaging showed that the NBR in ASD participants was reduced during passive listening to spoken narratives compared to control participants. Further, functional connectivity between the superior temporal gyrus and regions that exhibited a NBR during receptive language in control participants was increased in ASD participants. These findings extend models for receptive language disability in ASD to include anomalous neural deactivations and connectivity consistent with reduced or poorly modulated inhibitory processes.

  5. Whole-brain functional connectivity during emotional word classification in medication-free Major Depressive Disorder: Abnormal salience circuitry and relations to positive emotionality☆

    PubMed Central

    van Tol, Marie-José; Veer, Ilya M.; van der Wee, Nic J.A.; Aleman, André; van Buchem, Mark A.; Rombouts, Serge A.R.B.; Zitman, Frans G.; Veltman, Dick J.; Johnstone, Tom

    2013-01-01

    Major Depressive Disorder (MDD) has been associated with biased processing and abnormal regulation of negative and positive information, which may result from compromised coordinated activity of prefrontal and subcortical brain regions involved in evaluating emotional information. We tested whether patients with MDD show distributed changes in functional connectivity with a set of independently derived brain networks that have shown high correspondence with different task demands, including stimulus salience and emotional processing. We further explored if connectivity during emotional word processing related to the tendency to engage in positive or negative emotional states. In this study, 25 medication-free MDD patients without current or past comorbidity and matched controls (n = 25) performed an emotional word-evaluation task during functional MRI. Using a dual regression approach, individual spatial connectivity maps representing each subject's connectivity with each standard network were used to evaluate between-group differences and effects of positive and negative emotionality (extraversion and neuroticism, respectively, as measured with the NEO-FFI). Results showed decreased functional connectivity of the medial prefrontal cortex, ventrolateral prefrontal cortex, and ventral striatum with the fronto-opercular salience network in MDD patients compared to controls. In patients, abnormal connectivity was related to extraversion, but not neuroticism. These results confirm the hypothesis of a relative (para)limbic–cortical decoupling that may explain dysregulated affect in MDD. As connectivity of these regions with the salience network was related to extraversion, but not to general depression severity or negative emotionality, dysfunction of this network may be responsible for the failure to sustain engagement in rewarding behavior. PMID:24179829

  6. Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models.

    PubMed

    Izhikevich, E M

    1999-01-01

    Many scientists believe that all pulse-coupled neural networks are toy models that are far away from the biological reality. We show here, however, that a huge class of biophysically detailed and biologically plausible neural-network models can be transformed into a canonical pulse-coupled form by a piece-wise continuous, possibly noninvertible, change of variables. Such transformations exist when a network satisfies a number of conditions; e.g., it is weakly connected; the neurons are Class 1 excitable (i.e., they can generate action potentials with an arbitrary small frequency); and the synapses between neurons are conventional (i.e., axo-dendritic and axo-somatic). Thus, the difference between studying the pulse-coupled model and Hodgkin-Huxley-type neural networks is just a matter of a coordinate change. Therefore, any piece of information about the pulse-coupled model is valuable since it tells something about all weakly connected networks of Class 1 neurons. For example, we show that the pulse-coupled network of identical neurons does not synchronize in-phase. This confirms Ermentrout's result that weakly connected Class 1 neurons are difficult to synchronize, regardless of the equations that describe dynamics of each cell.

  7. Association of neural tube defects in children of mothers with MTHFR 677TT genotype and abnormal carbohydrate metabolism risk: a case-control study.

    PubMed

    Cadenas-Benitez, N M; Yanes-Sosa, F; Gonzalez-Meneses, A; Cerrillos, L; Acosta, D; Praena-Fernandez, J M; Neth, O; Gomez de Terreros, I; Ybot-González, P

    2014-03-26

    Abnormalities in maternal folate and carbohydrate metabolism have both been shown to induce neural tube defects (NTD) in humans and animal models. However, the relationship between these two factors in the development of NTDs remains unclear. Data from mothers of children with spina bifida seen at the Unidad de Espina Bífida del Hospital Infantil Virgen del Rocío (case group) were compared to mothers of healthy children with no NTD (control group) who were randomly selected from patients seen at the outpatient ward in the same hospital. There were 25 individuals in the case group and 41 in the control group. Analysis of genotypes for the methylenetetrahydrofolate reductase (MTHFR) 677CT polymorphism in women with or without risk factors for abnormal carbohydrate metabolism revealed that mothers who were homozygous for the MTHFR 677TT polymorphism and at risk of abnormal carbohydrate metabolism were more likely to have offspring with spina bifida and high levels of homocysteine, compared to the control group. The increased incidence of NTDs in mothers homozygous for the MTHFR 677TT polymorphism and at risk of abnormal carbohydrate metabolism stresses the need for careful metabolic screening in pregnant women, and, if necessary, determination of the MTHFR 677CT genotype in those mothers at risk of developing abnormal carbohydrate metabolism.

  8. Cocaine addiction related reproducible brain regions of abnormal default-mode network functional connectivity: a group ICA study with different model orders.

    PubMed

    Ding, Xiaoyu; Lee, Seong-Whan

    2013-08-26

    Model order selection in group independent component analysis (ICA) has a significant effect on the obtained components. This study investigated the reproducible brain regions of abnormal default-mode network (DMN) functional connectivity related with cocaine addiction through different model order settings in group ICA. Resting-state fMRI data from 24 cocaine addicts and 24 healthy controls were temporally concatenated and processed by group ICA using model orders of 10, 20, 30, 40, and 50, respectively. For each model order, the group ICA approach was repeated 100 times using the ICASSO toolbox and after clustering the obtained components, centrotype-based anterior and posterior DMN components were selected for further analysis. Individual DMN components were obtained through back-reconstruction and converted to z-score maps. A whole brain mixed effects factorial ANOVA was performed to explore the differences in resting-state DMN functional connectivity between cocaine addicts and healthy controls. The hippocampus, which showed decreased functional connectivity in cocaine addicts for all the tested model orders, might be considered as a reproducible abnormal region in DMN associated with cocaine addiction. This finding suggests that using group ICA to examine the functional connectivity of the hippocampus in the resting-state DMN may provide an additional insight potentially relevant for cocaine-related diagnoses and treatments.

  9. Connectivity

    ERIC Educational Resources Information Center

    Grush, Mary, Ed.

    2006-01-01

    Connectivity has dramatically changed the landscape of higher education IT. From "on-demand" services for net-gen students and advanced eLearning systems for faculty, to high-performance computing grid resources for researchers, IT now provides more networked services than ever to connect campus constituents to each other and to the world.…

  10. Mutual connectivity analysis (MCA) using generalized radial basis function neural networks for nonlinear functional connectivity network recovery in resting-state functional MRI

    NASA Astrophysics Data System (ADS)

    D'Souza, Adora M.; Abidin, Anas Zainul; Nagarajan, Mahesh B.; Wismüller, Axel

    2016-03-01

    We investigate the applicability of a computational framework, called mutual connectivity analysis (MCA), for directed functional connectivity analysis in both synthetic and resting-state functional MRI data. This framework comprises of first evaluating non-linear cross-predictability between every pair of time series prior to recovering the underlying network structure using community detection algorithms. We obtain the non-linear cross-prediction score between time series using Generalized Radial Basis Functions (GRBF) neural networks. These cross-prediction scores characterize the underlying functionally connected networks within the resting brain, which can be extracted using non-metric clustering approaches, such as the Louvain method. We first test our approach on synthetic models with known directional influence and network structure. Our method is able to capture the directional relationships between time series (with an area under the ROC curve = 0.92 +/- 0.037) as well as the underlying network structure (Rand index = 0.87 +/- 0.063) with high accuracy. Furthermore, we test this method for network recovery on resting-state fMRI data, where results are compared to the motor cortex network recovered from a motor stimulation sequence, resulting in a strong agreement between the two (Dice coefficient = 0.45). We conclude that our MCA approach is effective in analyzing non-linear directed functional connectivity and in revealing underlying functional network structure in complex systems.

  11. Primary prevention of neural-tube defects and some other congenital abnormalities by folic acid and multivitamins: history, missed opportunity and tasks.

    PubMed

    Czeizel, Andrew E; Bártfai, Zoltán; Bánhidy, Ferenc

    2011-08-01

    The history of intervention trials of periconception folic acid with multivitamin and folic acid supplementation in women has shown a recent breakthrough in the primary prevention of structural birth defects, namely neural-tube defects and some other congenital abnormalities. Recently, some studies have demonstrated the efficacy of this new method in reducing congenital abnormalities with specific origin; for example, in the offspring of diabetic and epileptic mothers, and in pregnancy with high fever. The benefits and drawbacks of four possible uses of periconception folate/folic acid and multivitamin supplementation are discussed: we believe there has been a missed opportunity to implement this preventive approach in medical practice. The four methods are as follows: (i) dietary intake of folate and other vitamins, (ii) periconception folic acid/multivitamin supplementation, (iii) food fortification with folic acid, and (iv) the combination of oral contraceptives with 6S-5-methytetrahydrofolate ('folate').

  12. Abnormal epigenetic regulation of the gene expression levels of Wnt2b and Wnt7b: Implications for neural tube defects.

    PubMed

    Bai, Baoling; Chen, Shuyuan; Zhang, Qin; Jiang, Qian; Li, Huili

    2016-01-01

    The association between Wnt genes and neural tube defects (NTDs) is recognized, however, it remains to be fully elucidated. Our previous study demonstrated that epigenetic mechanisms are affected in human NTDs. Therefore, the present study aimed to evaluate whether Wnt2b and Wnt7b are susceptible to abnormal epigenetic modification in NTDs, using chromatin immunoprecipitation assays to evaluate histone enrichments and the MassARRAY platform to detect the methylation levels of target regions within Wnt genes. The results demonstrated that the transcriptional activities of Wnt2b and Wnt7b were abnormally upregulated in mouse fetuses with NTDs and, in the GC‑rich promoters of these genes, histone 3 lysine 4 (H3K4) acetylation was enriched, whereas H3K27 trimethylation was reduced. Furthermore, several CpG sites in the altered histone modification of target regions were significantly hypomethylated. The present study also detected abnormal epigenetic modifications of these Wnt genes in human NTDs. In conclusion, the present study detected abnormal upregulation in the levels of Wnt2b and Wnt7b, and hypothesized that the alterations may be due to the ectopic opening of chromatin structure. These results improve understanding of the dysregulation of epigenetic modification of Wnt genes in NTDs.

  13. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived neurotrophin 3.

    PubMed

    Shneider, Neil A; Mentis, George Z; Schustak, Joshua; O'Donovan, Michael J

    2009-04-15

    The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin 1 receptor ErbB2 from muscle precursors. However, despite a modest ( approximately 30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by approximately 80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections but not their initial formation or their specificity.

  14. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived NT3

    PubMed Central

    Shneider, Neil A.; Mentis, George Z.; Schustak, Joshua; O’Donovan, Michael J.

    2009-01-01

    Summary The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin1 receptor ErbB2 from muscle precursors. However, despite a modest (~30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by ~80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections, but not their initial formation or their specificity. PMID:19369542

  15. Using large-scale neural models to interpret connectivity measures of cortico-cortical dynamics at millisecond temporal resolution

    PubMed Central

    Banerjee, Arpan; Pillai, Ajay S.; Horwitz, Barry

    2012-01-01

    Over the last two decades numerous functional imaging studies have shown that higher order cognitive functions are crucially dependent on the formation of distributed, large-scale neuronal assemblies (neurocognitive networks), often for very short durations. This has fueled the development of a vast number of functional connectivity measures that attempt to capture the spatiotemporal evolution of neurocognitive networks. Unfortunately, interpreting the neural basis of goal directed behavior using connectivity measures on neuroimaging data are highly dependent on the assumptions underlying the development of the measure, the nature of the task, and the modality of the neuroimaging technique that was used. This paper has two main purposes. The first is to provide an overview of some of the different measures of functional/effective connectivity that deal with high temporal resolution neuroimaging data. We will include some results that come from a recent approach that we have developed to identify the formation and extinction of task-specific, large-scale neuronal assemblies from electrophysiological recordings at a ms-by-ms temporal resolution. The second purpose of this paper is to indicate how to partially validate the interpretations drawn from this (or any other) connectivity technique by using simulated data from large-scale, neurobiologically realistic models. Specifically, we applied our recently developed method to realistic simulations of MEG data during a delayed match-to-sample (DMS) task condition and a passive viewing of stimuli condition using a large-scale neural model of the ventral visual processing pathway. Simulated MEG data using simple head models were generated from sources placed in V1, V4, IT, and prefrontal cortex (PFC) for the passive viewing condition. The results show how closely the conclusions obtained from the functional connectivity method match with what actually occurred at the neuronal network level. PMID:22291621

  16. Abnormal structural connectivity between the basal ganglia, thalamus, and frontal cortex in patients with disorders of consciousness.

    PubMed

    Weng, Ling; Xie, Qiuyou; Zhao, Ling; Zhang, Ruibin; Ma, Qing; Wang, Junjing; Jiang, Wenjie; He, Yanbin; Chen, Yan; Li, Changhong; Ni, Xiaoxiao; Xu, Qin; Yu, Ronghao; Huang, Ruiwang

    2017-03-10

    Consciousness loss in patients with severe brain injuries is associated with reduced functional connectivity of the default mode network (DMN), fronto-parietal network, and thalamo-cortical network. However, it is still unclear if the brain white matter connectivity between the above mentioned networks is changed in patients with disorders of consciousness (DOC). In this study, we collected diffusion tensor imaging (DTI) data from 13 patients and 17 healthy controls, constructed whole-brain white matter (WM) structural networks with probabilistic tractography. Afterward, we estimated and compared topological properties, and revealed an altered structural organization in the patients. We found a disturbance in the normal balance between segregation and integration in brain structural networks and detected significantly decreased nodal centralities primarily in the basal ganglia and thalamus in the patients. A network-based statistical analysis detected a subnetwork with uniformly significantly decreased structural connections between the basal ganglia, thalamus, and frontal cortex in the patients. Further analysis indicated that along the WM fiber tracts linking the basal ganglia, thalamus, and frontal cortex, the fractional anisotropy was decreased and the radial diffusivity was increased in the patients compared to the controls. Finally, using the receiver operating characteristic method, we found that the structural connections within the NBS-derived component that showed differences between the groups demonstrated high sensitivity and specificity (>90%). Our results suggested that major consciousness deficits in DOC patients may be related to the altered WM connections between the basal ganglia, thalamus, and frontal cortex.

  17. Probabilistic diffusion tractography and graph theory analysis reveal abnormal white matter structural connectivity networks in drug-naive boys with attention deficit/hyperactivity disorder.

    PubMed

    Cao, Qingjiu; Shu, Ni; An, Li; Wang, Peng; Sun, Li; Xia, Ming-Rui; Wang, Jin-Hui; Gong, Gao-Lang; Zang, Yu-Feng; Wang, Yu-Feng; He, Yong

    2013-06-26

    Attention-deficit/hyperactivity disorder (ADHD), which is characterized by core symptoms of inattention and hyperactivity/impulsivity, is one of the most common neurodevelopmental disorders of childhood. Neuroimaging studies have suggested that these behavioral disturbances are associated with abnormal functional connectivity among brain regions. However, the alterations in the structural connections that underlie these behavioral and functional deficits remain poorly understood. Here, we used diffusion magnetic resonance imaging and probabilistic tractography method to examine whole-brain white matter (WM) structural connectivity in 30 drug-naive boys with ADHD and 30 healthy controls. The WM networks of the human brain were constructed by estimating inter-regional connectivity probability. The topological properties of the resultant networks (e.g., small-world and network efficiency) were then analyzed using graph theoretical approaches. Nonparametric permutation tests were applied for between-group comparisons of these graphic metrics. We found that both the ADHD and control groups showed an efficient small-world organization in the whole-brain WM networks, suggesting a balance between structurally segregated and integrated connectivity patterns. However, relative to controls, patients with ADHD exhibited decreased global efficiency and increased shortest path length, with the most pronounced efficiency decreases in the left parietal, frontal, and occipital cortices. Intriguingly, the ADHD group showed decreased structural connectivity in the prefrontal-dominant circuitry and increased connectivity in the orbitofrontal-striatal circuitry, and these changes significantly correlated with the inattention and hyperactivity/impulsivity symptoms, respectively. The present study shows disrupted topological organization of large-scale WM networks in ADHD, extending our understanding of how structural disruptions of neuronal circuits underlie behavioral disturbances in

  18. Coherent periodic activity in excitatory Erdös-Renyi neural networks: the role of network connectivity.

    PubMed

    Tattini, Lorenzo; Olmi, Simona; Torcini, Alessandro

    2012-06-01

    In this article, we investigate the role of connectivity in promoting coherent activity in excitatory neural networks. In particular, we would like to understand if the onset of collective oscillations can be related to a minimal average connectivity and how this critical connectivity depends on the number of neurons in the networks. For these purposes, we consider an excitatory random network of leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed Erdös-Renyi graph with average connectivity scaling as a power law with the number of neurons in the network. The scaling is controlled by a parameter γ, which allows to pass from massively connected to sparse networks and therefore to modify the topology of the system. At a macroscopic level, we observe two distinct dynamical phases: an asynchronous state corresponding to a desynchronized dynamics of the neurons and a regime of partial synchronization (PS) associated with a coherent periodic activity of the network. At low connectivity, the system is in an asynchronous state, while PS emerges above a certain critical average connectivity (c). For sufficiently large networks, (c) saturates to a constant value suggesting that a minimal average connectivity is sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered network: sparse or massively connected. However, this value depends on the nature of the synapses: reliable or unreliable. For unreliable synapses, the critical value required to observe the onset of macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a limit, the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond to that of a homogeneous

  19. Coherent periodic activity in excitatory Erdös-Renyi neural networks: The role of network connectivity

    NASA Astrophysics Data System (ADS)

    Tattini, Lorenzo; Olmi, Simona; Torcini, Alessandro

    2012-06-01

    In this article, we investigate the role of connectivity in promoting coherent activity in excitatory neural networks. In particular, we would like to understand if the onset of collective oscillations can be related to a minimal average connectivity and how this critical connectivity depends on the number of neurons in the networks. For these purposes, we consider an excitatory random network of leaky integrate-and-fire pulse coupled neurons. The neurons are connected as in a directed Erdös-Renyi graph with average connectivity scaling as a power law with the number of neurons in the network. The scaling is controlled by a parameter γ, which allows to pass from massively connected to sparse networks and therefore to modify the topology of the system. At a macroscopic level, we observe two distinct dynamical phases: an asynchronous state corresponding to a desynchronized dynamics of the neurons and a regime of partial synchronization (PS) associated with a coherent periodic activity of the network. At low connectivity, the system is in an asynchronous state, while PS emerges above a certain critical average connectivity c. For sufficiently large networks, c saturates to a constant value suggesting that a minimal average connectivity is sufficient to observe coherent activity in systems of any size irrespectively of the kind of considered network: sparse or massively connected. However, this value depends on the nature of the synapses: reliable or unreliable. For unreliable synapses, the critical value required to observe the onset of macroscopic behaviors is noticeably smaller than for reliable synaptic transmission. Due to the disorder present in the system, for finite number of neurons we have inhomogeneities in the neuronal behaviors, inducing a weak form of chaos, which vanishes in the thermodynamic limit. In such a limit, the disordered systems exhibit regular (non chaotic) dynamics and their properties correspond to that of a homogeneous fully

  20. Functional connectivity among spike trains in neural assemblies during rat working memory task.

    PubMed

    Xie, Jiacun; Bai, Wenwen; Liu, Tiaotiao; Tian, Xin

    2014-11-01

    Working memory refers to a brain system that provides temporary storage to manipulate information for complex cognitive tasks. As the brain is a more complex, dynamic and interwoven network of connections and interactions, the questions raised here: how to investigate the mechanism of working memory from the view of functional connectivity in brain network? How to present most characteristic features of functional connectivity in a low-dimensional network? To address these questions, we recorded the spike trains in prefrontal cortex with multi-electrodes when rats performed a working memory task in Y-maze. The functional connectivity matrix among spike trains was calculated via maximum likelihood estimation (MLE). The average connectivity value Cc, mean of the matrix, was calculated and used to describe connectivity strength quantitatively. The spike network was constructed by the functional connectivity matrix. The information transfer efficiency Eglob was calculated and used to present the features of the network. In order to establish a low-dimensional spike network, the active neurons with higher firing rates than average rate were selected based on sparse coding. The results show that the connectivity Cc and the network transfer efficiency Eglob vaired with time during the task. The maximum values of Cc and Eglob were prior to the working memory behavior reference point. Comparing with the results in the original network, the feature network could present more characteristic features of functional connectivity.

  1. Abnormalities of localized connectivity in schizophrenia patients and their unaffected relatives: a meta-analysis of resting-state functional magnetic resonance imaging studies

    PubMed Central

    Xiao, Bo; Wang, Shuai; Liu, Jianbo; Meng, Tiantian; He, Yuqiong; Luo, Xuerong

    2017-01-01

    Objective The localized dysfunction of specialized brain regions in schizophrenia patients and their unaffected relatives has been identified in a large-scale brain network; however, evidence is inconsistent. We aimed to identify abnormalities in the localized connectivity in schizophrenia patients and their relatives by conducting a meta-analysis of regional homogeneity (ReHo) studies. Methods Fourteen studies on resting-state functional magnetic resonance imaging, with 316 schizophrenia patients, 342 healthy controls, and 66 unaffected relatives, were included in the meta-analysis. This analysis was performed using anisotropic effect-size-based signed differential mapping software. Results Schizophrenia patients showed increased ReHo in right superior frontal gyrus and right superior temporal gyrus, as well as decreased ReHo in left fusiform gyrus, left superior temporal gyrus, left postcentral gyrus, and right precentral gyrus. Unaffected relatives showed decreased ReHo in right insula and right superior temporal gyrus. These results remained widely unchanged in both sensitivity and subgroup analyses. Conclusion Schizophrenia patients and their unaffected relatives had extensive abnormal localized connectivity in cerebrum, especially in superior temporal gyrus, which were the potential diagnostic markers and expounded the pathophysiological hypothesis for the disorder. PMID:28243099

  2. Global and regional functional connectivity maps of neural oscillations in focal epilepsy

    PubMed Central

    Englot, Dario J.; Hinkley, Leighton B.; Kort, Naomi S.; Imber, Brandon S.; Mizuiri, Danielle; Honma, Susanne M.; Findlay, Anne M.; Garrett, Coleman; Cheung, Paige L.; Mantle, Mary; Tarapore, Phiroz E.; Knowlton, Robert C.; Chang, Edward F.; Nagarajan, Srikantan S.

    2015-01-01

    Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious

  3. Global and regional functional connectivity maps of neural oscillations in focal epilepsy.

    PubMed

    Englot, Dario J; Hinkley, Leighton B; Kort, Naomi S; Imber, Brandon S; Mizuiri, Danielle; Honma, Susanne M; Findlay, Anne M; Garrett, Coleman; Cheung, Paige L; Mantle, Mary; Tarapore, Phiroz E; Knowlton, Robert C; Chang, Edward F; Kirsch, Heidi E; Nagarajan, Srikantan S

    2015-08-01

    Intractable focal epilepsy is a devastating disorder with profound effects on cognition and quality of life. Epilepsy surgery can lead to seizure freedom in patients with focal epilepsy; however, sometimes it fails due to an incomplete delineation of the epileptogenic zone. Brain networks in epilepsy can be studied with resting-state functional connectivity analysis, yet previous investigations using functional magnetic resonance imaging or electrocorticography have produced inconsistent results. Magnetoencephalography allows non-invasive whole-brain recordings, and can be used to study both long-range network disturbances in focal epilepsy and regional connectivity at the epileptogenic zone. In magnetoencephalography recordings from presurgical epilepsy patients, we examined: (i) global functional connectivity maps in patients versus controls; and (ii) regional functional connectivity maps at the region of resection, compared to the homotopic non-epileptogenic region in the contralateral hemisphere. Sixty-one patients were studied, including 30 with mesial temporal lobe epilepsy and 31 with focal neocortical epilepsy. Compared with a group of 31 controls, patients with epilepsy had decreased resting-state functional connectivity in widespread regions, including perisylvian, posterior temporo-parietal, and orbitofrontal cortices (P < 0.01, t-test). Decreased mean global connectivity was related to longer duration of epilepsy and higher frequency of consciousness-impairing seizures (P < 0.01, linear regression). Furthermore, patients with increased regional connectivity within the resection site (n = 24) were more likely to achieve seizure postoperative seizure freedom (87.5% with Engel I outcome) than those with neutral (n = 15, 64.3% seizure free) or decreased (n = 23, 47.8% seizure free) regional connectivity (P < 0.02, chi-square). Widespread global decreases in functional connectivity are observed in patients with focal epilepsy, and may reflect deleterious

  4. Intelligence and Neural Efficiency: Measures of Brain Activation versus Measures of Functional Connectivity in the Brain

    ERIC Educational Resources Information Center

    Neubauer, Aljoscha C.; Fink, Andreas

    2009-01-01

    The neural efficiency hypothesis of intelligence suggests a more efficient use of the cortex (or even the brain) in brighter as compared to less intelligent individuals. This has been shown in a series of studies employing different neurophysiological measurement methods and a broad range of different cognitive task demands. However, most of the…

  5. Speed hysteresis and noise shaping of traveling fronts in neural fields: role of local circuitry and nonlocal connectivity

    PubMed Central

    Capone, Cristiano; Mattia, Maurizio

    2017-01-01

    Neural field models are powerful tools to investigate the richness of spatiotemporal activity patterns like waves and bumps, emerging from the cerebral cortex. Understanding how spontaneous and evoked activity is related to the structure of underlying networks is of central interest to unfold how information is processed by these systems. Here we focus on the interplay between local properties like input-output gain function and recurrent synaptic self-excitation of cortical modules, and nonlocal intermodular synaptic couplings yielding to define a multiscale neural field. In this framework, we work out analytic expressions for the wave speed and the stochastic diffusion of propagating fronts uncovering the existence of an optimal balance between local and nonlocal connectivity which minimizes the fluctuations of the activation front propagation. Incorporating an activity-dependent adaptation of local excitability further highlights the independent role that local and nonlocal connectivity play in modulating the speed of propagation of the activation and silencing wavefronts, respectively. Inhomogeneities in space of local excitability give raise to a novel hysteresis phenomenon such that the speed of waves traveling in opposite directions display different velocities in the same location. Taken together these results provide insights on the multiscale organization of brain slow-waves measured during deep sleep and anesthesia. PMID:28045036

  6. Elimination of spiral waves in a locally connected chaotic neural network by a dynamic phase space constraint.

    PubMed

    Li, Yang; Oku, Makito; He, Guoguang; Aihara, Kazuyuki

    2017-04-01

    In this study, a method is proposed that eliminates spiral waves in a locally connected chaotic neural network (CNN) under some simplified conditions, using a dynamic phase space constraint (DPSC) as a control method. In this method, a control signal is constructed from the feedback internal states of the neurons to detect phase singularities based on their amplitude reduction, before modulating a threshold value to truncate the refractory internal states of the neurons and terminate the spirals. Simulations showed that with appropriate parameter settings, the network was directed from a spiral wave state into either a plane wave (PW) state or a synchronized oscillation (SO) state, where the control vanished automatically and left the original CNN model unaltered. Each type of state had a characteristic oscillation frequency, where spiral wave states had the highest, and the intra-control dynamics was dominated by low-frequency components, thereby indicating slow adjustments to the state variables. In addition, the PW-inducing and SO-inducing control processes were distinct, where the former generally had longer durations but smaller average proportions of affected neurons in the network. Furthermore, variations in the control parameter allowed partial selectivity of the control results, which were accompanied by modulation of the control processes. The results of this study broaden the applicability of DPSC to chaos control and they may also facilitate the utilization of locally connected CNNs in memory retrieval and the exploration of traveling wave dynamics in biological neural networks.

  7. Modeling, control, and simulation of grid connected intelligent hybrid battery/photovoltaic system using new hybrid fuzzy-neural method.

    PubMed

    Rezvani, Alireza; Khalili, Abbas; Mazareie, Alireza; Gandomkar, Majid

    2016-07-01

    Nowadays, photovoltaic (PV) generation is growing increasingly fast as a renewable energy source. Nevertheless, the drawback of the PV system is its dependence on weather conditions. Therefore, battery energy storage (BES) can be considered to assist for a stable and reliable output from PV generation system for loads and improve the dynamic performance of the whole generation system in grid connected mode. In this paper, a novel topology of intelligent hybrid generation systems with PV and BES in a DC-coupled structure is presented. Each photovoltaic cell has a specific point named maximum power point on its operational curve (i.e. current-voltage or power-voltage curve) in which it can generate maximum power. Irradiance and temperature changes affect these operational curves. Therefore, the nonlinear characteristic of maximum power point to environment has caused to development of different maximum power point tracking techniques. In order to capture the maximum power point (MPP), a hybrid fuzzy-neural maximum power point tracking (MPPT) method is applied in the PV system. Obtained results represent the effectiveness and superiority of the proposed method, and the average tracking efficiency of the hybrid fuzzy-neural is incremented by approximately two percentage points in comparison to the conventional methods. It has the advantages of robustness, fast response and good performance. A detailed mathematical model and a control approach of a three-phase grid-connected intelligent hybrid system have been proposed using Matlab/Simulink.

  8. Speed hysteresis and noise shaping of traveling fronts in neural fields: role of local circuitry and nonlocal connectivity

    NASA Astrophysics Data System (ADS)

    Capone, Cristiano; Mattia, Maurizio

    2017-01-01

    Neural field models are powerful tools to investigate the richness of spatiotemporal activity patterns like waves and bumps, emerging from the cerebral cortex. Understanding how spontaneous and evoked activity is related to the structure of underlying networks is of central interest to unfold how information is processed by these systems. Here we focus on the interplay between local properties like input-output gain function and recurrent synaptic self-excitation of cortical modules, and nonlocal intermodular synaptic couplings yielding to define a multiscale neural field. In this framework, we work out analytic expressions for the wave speed and the stochastic diffusion of propagating fronts uncovering the existence of an optimal balance between local and nonlocal connectivity which minimizes the fluctuations of the activation front propagation. Incorporating an activity-dependent adaptation of local excitability further highlights the independent role that local and nonlocal connectivity play in modulating the speed of propagation of the activation and silencing wavefronts, respectively. Inhomogeneities in space of local excitability give raise to a novel hysteresis phenomenon such that the speed of waves traveling in opposite directions display different velocities in the same location. Taken together these results provide insights on the multiscale organization of brain slow-waves measured during deep sleep and anesthesia.

  9. Investigating the neural basis for fMRI-based functional connectivity in a blocked design: application to interregional correlations and psycho-physiological interactions.

    PubMed

    Kim, Jieun; Horwitz, Barry

    2008-06-01

    This paper investigates how well different kinds of fMRI functional connectivity analysis reflect the underlying interregional neural interactions. This is hard to evaluate using real experimental data where such relationships are unknown. Rather, we use a biologically realistic neural model to simulate both neuronal activities and multiregional fMRI data from a blocked design. Because we know how every element in the model is related to every other element, we can compare functional connectivity measurements across different spatial and temporal scales. We focus on (1) psycho-physiological interaction (PPI) analysis, which is a simple brain connectivity method that characterizes the activity in one brain region by the interaction between another region's activity and a psychological factor, and (2) interregional correlation analysis. We investigated the neurobiological underpinnings of PPI using simulated neural activities and fMRI signals generated by a large-scale neural model that performs a visual delayed match-to-sample task. Simulated fMRI data are generated by convolving integrated synaptic activities (ISAs) with a hemodynamic response function. The simulation was done under three task conditions: high-attention, low-attention and a control task ('passive viewing'). We investigated how biological and scanning parameters affect PPI and compared these with functional connectivity measures obtained using correlation analysis. We performed correlational and PPI analyses with three types of time-series data: ISA, fMRI and deconvolved fMRI (which yields estimated neural signals) obtained using a deconvolution algorithm. The simulated ISA can be considered as the 'gold standard' because it represents the underlying neural activity. Our main findings show (1) that evaluating the change in an interregional functional connection using the difference in regression coefficients (as is essentially done in the PPI method) produces results that better reflect the

  10. Causal manipulation of functional connectivity in a specific neural pathway during behaviour and at rest

    PubMed Central

    Johnen, Vanessa M; Neubert, Franz-Xaver; Buch, Ethan R; Verhagen, Lennart; O'Reilly, Jill X; Mars, Rogier B; Rushworth, Matthew F S

    2015-01-01

    Correlations in brain activity between two areas (functional connectivity) have been shown to relate to their underlying structural connections. We examine the possibility that functional connectivity also reflects short-term changes in synaptic efficacy. We demonstrate that paired transcranial magnetic stimulation (TMS) near ventral premotor cortex (PMv) and primary motor cortex (M1) with a short 8-ms inter-pulse interval evoking synchronous pre- and post-synaptic activity and which strengthens interregional connectivity between the two areas in a pattern consistent with Hebbian plasticity, leads to increased functional connectivity between PMv and M1 as measured with functional magnetic resonance imaging (fMRI). Moreover, we show that strengthening connectivity between these nodes has effects on a wider network of areas, such as decreasing coupling in a parallel motor programming stream. A control experiment revealed that identical TMS pulses at identical frequencies caused no change in fMRI-measured functional connectivity when the inter-pulse-interval was too long for Hebbian-like plasticity. DOI: http://dx.doi.org/10.7554/eLife.04585.001 PMID:25664941

  11. Navigating toward a novel environment from a route or survey perspective: neural correlates and context-dependent connectivity.

    PubMed

    Boccia, Maddalena; Guariglia, C; Sabatini, U; Nemmi, F

    2016-05-01

    When we move toward a novel environment we may learn it in different ways, i.e., by walking around or studying a map. Both types of learning seem to be very effective in daily life navigation and correspond to two different types of mental representation of space: route and survey representation. In the present study, we investigated the neural basis of route and survey perspectives during learning and retrieval of novel environments. The study was carried out over 5 days, during which participants learned two paths from a different perspective (i.e., route learning and survey learning). Then participants had to retrieve these paths using a survey or route perspective during fMRI scans, on the first and fifth day. We found that the left inferior temporal lobe and right angular gyrus (AG) were activated more during recall of paths learned in a survey perspective than in a route perspective. We also found a session by perspective interaction effect on neural activity in brain areas classically involved in navigation such as the parahippocampal place area (PPA) and the retrosplenial cortex (RSC). A set of frontal, parietal and temporal areas showed different patterns of activity according to the type of retrieval perspective. We tested the context-dependent connectivity of right PPA, RSC and AG, finding that these areas showed different patterns of connectivity in relation to the learning and recalling perspective. Our results shed more light on the segregation of neural circuits involved in the acquisition of a novel environment and navigational strategies.

  12. Genetically induced abnormal cranial development in human trisomy 18 with holoprosencephaly: comparisons with the normal tempo of osteogenic-neural development.

    PubMed

    Reid, Shaina N; Ziermann, Janine M; Gondré-Lewis, Marjorie C

    2015-07-01

    Craniofacial malformations are common congenital defects caused by failed midline inductive signals. These midline defects are associated with exposure of the fetus to exogenous teratogens and with inborn genetic errors such as those found in Down, Patau, Edwards' and Smith-Lemli-Opitz syndromes. Yet, there are no studies that analyze contributions of synchronous neurocranial and neural development in these disorders. Here we present the first in-depth analysis of malformations of the basicranium of a holoprosencephalic (HPE) trisomy 18 (T18; Edwards' syndrome) fetus with synophthalmic cyclopia and alobar HPE. With a combination of traditional gross dissection and state-of-the-art computed tomography, we demonstrate the deleterious effects of T18 caused by a translocation at 18p11.31. Bony features included a single developmentally unseparated frontal bone, and complete dual absence of the anterior cranial fossa and ethmoid bone. From a superior view with the calvarium plates removed, there was direct visual access to the orbital foramen and hard palate. Both the eyes and the pituitary gland, normally protected by bony structures, were exposed in the cranial cavity and in direct contact with the brain. The middle cranial fossa was shifted anteriorly, and foramina were either missing or displaced to an abnormal location due to the absence or misplacement of its respective cranial nerve (CN). When CN development was conserved in its induction and placement, the respective foramen developed in its normal location albeit with abnormal gross anatomical features, as seen in the facial nerve (CNVII) and the internal acoustic meatus. More anteriorly localized CNs and their foramina were absent or heavily disrupted compared with posterior ones. The severe malformations exhibited in the cranial fossae, orbital region, pituitary gland and sella turcica highlight the crucial involvement of transcription factors such as TGIF, which is located on chromosome 18 and contributes

  13. Changes in Neural Connectivity and Memory Following a Yoga Intervention for Older Adults: A Pilot Study

    PubMed Central

    Eyre, Harris A.; Acevedo, Bianca; Yang, Hongyu; Siddarth, Prabha; Van Dyk, Kathleen; Ercoli, Linda; Leaver, Amber M.; Cyr, Natalie St.; Narr, Katherine; Baune, Bernhard T.; Khalsa, Dharma S.; Lavretsky, Helen

    2016-01-01

    Background: No study has explored the effect of yoga on cognitive decline and resting-state functional connectivity. Objectives: This study explored the relationship between performance on memory tests and resting-state functional connectivity before and after a yoga intervention versus active control for subjects with mild cognitive impairment (MCI). Methods: Participants ( ≥ 55 y) with MCI were randomized to receive a yoga intervention or active “gold-standard” control (i.e., memory enhancement training (MET)) for 12 weeks. Resting-state functional magnetic resonance imaging was used to map correlations between brain networks and memory performance changes over time. Default mode networks (DMN), language and superior parietal networks were chosen as networks of interest to analyze the association with changes in verbal and visuospatial memory performance. Results: Fourteen yoga and 11 MET participants completed the study. The yoga group demonstrated a statistically significant improvement in depression and visuospatial memory. We observed improved verbal memory performance correlated with increased connectivity between the DMN and frontal medial cortex, pregenual anterior cingulate cortex, right middle frontal cortex, posterior cingulate cortex, and left lateral occipital cortex. Improved verbal memory performance positively correlated with increased connectivity between the language processing network and the left inferior frontal gyrus. Improved visuospatial memory performance correlated inversely with connectivity between the superior parietal network and the medial parietal cortex. Conclusion:Yoga may be as effective as MET in improving functional connectivity in relation to verbal memory performance. These findings should be confirmed in larger prospective studies. PMID:27060939

  14. Connecting brains to robots: an artificial body for studying the computational properties of neural tissues.

    PubMed

    Reger, B D; Fleming, K M; Sanguineti, V; Alford, S; Mussa-Ivaldi, F A

    2000-01-01

    We have created a hybrid neuro-robotic system that establishes two-way communication between the brain of a lamprey and a small mobile robot. The purpose of this system is to offer a new paradigm for investigating the behavioral, computational, and neurobiological mechanisms of sensory-motor learning in a unified context. The mobile robot acts as an artificial body that delivers sensory information to the neural tissue and receives command signals from it. The sensory information encodes the intensity of light generated by a fixed source. The closed-loop interaction between brain and robot generates autonomous behaviors whose features are strictly related to the structure and operation of the neural preparation. We provide a detailed description of the hybrid system, and we present experimental findings on its performance. In particular, we found (a) that the hybrid system generates stable behaviors, (b) that different preparations display different but systematic responses to the presentation of an optical stimulus, and (c) that alteration of the sensory input leads to short- and long-term adaptive changes in the robot responses. The comparison of the behaviors generated by the lamprey's brain stem with the behaviors generated by network models of the same neural system provides us with a new tool for investigating the computational properties of synaptic plasticity.

  15. Neural correlates of verbal creativity: differences in resting-state functional connectivity associated with expertise in creative writing

    PubMed Central

    Lotze, Martin; Erhard, Katharina; Neumann, Nicola; Eickhoff, Simon B.; Langner, Robert

    2014-01-01

    Neural characteristics of verbal creativity as assessed by word generation tasks have been recently identified, but differences in resting-state functional connectivity (rFC) between experts and non-experts in creative writing have not been reported yet. Previous electroencephalography (EEG) coherence measures during rest demonstrated a decreased cooperation between brain areas in association with creative thinking ability. Here, we used resting-state functional magnetic resonance imaging to compare 20 experts in creative writing and 23 age-matched non-experts with respect to rFC strengths within a brain network previously found to be associated with creative writing. Decreased rFC for experts was found between areas 44 of both hemispheres. Increased rFC for experts was observed between right hemispheric caudate and intraparietal sulcus. Correlation analysis of verbal creativity indices (VCIs) with rFC values in the expert group revealed predominantly negative associations, particularly of rFC between left area 44 and left temporal pole. Overall, our data support previous findings of reduced connectivity between interhemispheric areas and increased right-hemispheric connectivity during rest in highly verbally creative individuals. PMID:25076885

  16. Neural Connectivity and Immunocytochemical Studies of Anatomical Sites Related to Nauseogenic and Emetic Reflexes

    NASA Technical Reports Server (NTRS)

    Fox, Robert A. (Principal Investigator)

    1992-01-01

    The studies conducted in this research project examined several aspects of neuroanatomical structures and neurochemical processes related to motion sickness in animal models. A principle objective of these studies was to investigate neurochemical changes in the central nervous system that are related to motion sickness with the objective of defining neural mechanisms important to this malady. For purposes of exposition, the studies and research finding have been classified into five categories. These are: immunoreactivity in the brainstem, vasopressin effects, lesion studies of area postrema, role of the vagus nerve, and central nervous system structure related to adaptation to microgravity.

  17. Abnormal relationships between the neural response to high- and low-calorie foods and endogenous acylated ghrelin in women with active and weight-recovered anorexia nervosa

    PubMed Central

    Holsen, Laura M.; Lawson, Elizabeth A.; Christensen, Kara; Klibanski, Anne; Goldstein, Jill M.

    2014-01-01

    Evidence contributing to the understanding of neurobiological mechanisms underlying appetite dysregulation in anorexia nervosa draws heavily on separate lines of research into neuroendocrine and neural circuitry functioning. In particular, studies consistently cite elevated ghrelin and abnormal activation patterns in homeostatic (hypothalamus) and hedonic (striatum, amygdala, insula) regions governing appetite. The current preliminary study examined the interaction of these systems, based on research demonstrating associations between circulating ghrelin levels and activity in these regions in healthy individuals. In a cross-sectional design, we studied 13 women with active anorexia nervosa (AN), 9 women weight-recovered from AN (AN-WR), and 12 healthy-weight control women using a food cue functional magnetic resonance imaging paradigm, with assessment of fasting levels of acylated ghrelin. Healthy-weight control women exhibited significant positive associations between fasting acylated ghrelin and activity in the right amygdala, hippocampus, insula, and orbitofrontal cortex in response to high-calorie foods, associations which were absent in the AN and AN-WR groups. Women with AN-WR demonstrated a negative relationship between ghrelin and activity in the left hippocampus in response to high-calorie foods, while women with AN showed a positive association between ghrelin and activity in the right orbitofrontal cortex in response to low-calorie foods. Findings suggest a breakdown in the interaction between ghrelin signaling and neural activity in relation to reward responsivity in AN, a phenomenon that may be further characterized using pharmacogenetic studies. PMID:24862390

  18. The association between the 5-HTTLPR and neural correlates of fear conditioning and connectivity.

    PubMed

    Klucken, Tim; Schweckendiek, Jan; Blecker, Carlo; Walter, Bertram; Kuepper, Yvonne; Hennig, Juergen; Stark, Rudolf

    2015-05-01

    Strong evidence links the 5-HTTLPR genotype to the modulation of amygdala reactivity during fear conditioning, which is considered to convey the increased vulnerability for anxiety disorders in s-allele carriers. In addition to amygdala reactivity, the 5-HTTLPR has been shown to be related to alterations in structural and effective connectivity. The aim of this study was to investigate the effects of 5-HTTLPR genotype on amygdala reactivity and effective connectivity during fear conditioning, as well as structural connectivity [as measured by diffusion tensor imaging (DTI)]. To integrate different classification strategies, we used the bi-allelic (s-allele vs l/l-allele group) as well as the tri-allelic (low-functioning vs high-functioning) classification approach. S-allele carriers showed exaggerated amygdala reactivity and elevated amygdala-insula coupling during fear conditioning (CS + > CS-) compared with the l/l-allele group. In addition, DTI analysis showed increased fractional anisotropy values in s-allele carriers within the uncinate fasciculus. Using the tri-allelic classification approach, increased amygdala reactivity and amygdala insula coupling were observed in the low-functioning compared with the high-functioning group. No significant differences between the two groups were found in structural connectivity. The present results add to the current debate on the influence of the 5-HTTLPR on brain functioning. These differences between s-allele and l/l-allele carriers may contribute to altered vulnerability for psychiatric disorders.

  19. Compatibility of DAPl and silver staining for combined anterograde and retrograde tracing of neural connections.

    PubMed

    Rhoades, R W

    1980-11-10

    The geniculocortical and corticogeniculate pathways in hamster were used to test the compatibility of 4'6 diamidino-2 phenylindole 2HCl (DAPl)6,10 and anterograde degeneration techniques for tracing reciprocal connections in the brain. The two methods were compatible within a single brain and, with some loss of sensitivity in the retrograde labeling, within a single section.

  20. Identifying functional connectivity in large-scale neural ensemble recordings: a multiscale data mining approach.

    PubMed

    Eldawlatly, Seif; Jin, Rong; Oweiss, Karim G

    2009-02-01

    Identifying functional connectivity between neuronal elements is an essential first step toward understanding how the brain orchestrates information processing at the single-cell and population levels to carry out biological computations. This letter suggests a new approach to identify functional connectivity between neuronal elements from their simultaneously recorded spike trains. In particular, we identify clusters of neurons that exhibit functional interdependency over variable spatial and temporal patterns of interaction. We represent neurons as objects in a graph and connect them using arbitrarily defined similarity measures calculated across multiple timescales. We then use a probabilistic spectral clustering algorithm to cluster the neurons in the graph by solving a minimum graph cut optimization problem. Using point process theory to model population activity, we demonstrate the robustness of the approach in tracking a broad spectrum of neuronal interaction, from synchrony to rate co-modulation, by systematically varying the length of the firing history interval and the strength of the connecting synapses that govern the discharge pattern of each neuron. We also demonstrate how activity-dependent plasticity can be tracked and quantified in multiple network topologies built to mimic distinct behavioral contexts. We compare the performance to classical approaches to illustrate the substantial gain in performance.

  1. Neural Connectivity Patterns Underlying Symbolic Number Processing Indicate Mathematical Achievement in Children

    ERIC Educational Resources Information Center

    Park, Joonkoo; Li, Rosa; Brannon, Elizabeth M.

    2014-01-01

    In early childhood, humans learn culturally specific symbols for number that allow them entry into the world of complex numerical thinking. Yet little is known about how the brain supports the development of the uniquely human symbolic number system. Here, we use functional magnetic resonance imaging along with an effective connectivity analysis…

  2. A neural model for compensation of sensory abnormalities in autism through feedback from a measure of global perception.

    PubMed

    Noriega, Gerardo

    2008-08-01

    Sensory abnormalities and weak central coherence (WCC), a processing bias for features and local information, are important characteristics associated with autism. This paper introduces a self-organizing map (SOM)-based computational model of sensory abnormalities in autism, and of a feedback system to compensate for them. Feedback relies on a measure of balance of coverage over four (sensory) domains. Different methods to compute this measure are discussed, as is the flexibility to configure the system using different control mechanisms. Statistically significant improvements throughout training are demonstrated for compensation of a simple (i.e., monotonically decreasing) hypersensitivity in one of the domains. Fine-tuning control parameters can lead to further gains, but a standard setup results in good performance. Significant improvements are also shown for complex hypersensitivities (i.e., increasing and decreasing through time) in two domains. Although naturally best suited to compensate hypersensitivities--stimuli filtering may mitigate neuron migration to a hypersensitive domain--the system is also shown to perform effectively when compensating hyposensitivities. With poor coverage balance in the model akin to poor global perception, WCC would be consistent with inadequate feedback, resulting in uncontrolled hyper- and/or hyposensitivities characteristic of autism, as seen in the topologies of the resulting SOMs.

  3. Connecting Neurons to a Mobile Robot: An In Vitro Bidirectional Neural Interface

    PubMed Central

    Novellino, A.; D'Angelo, P.; Cozzi, L.; Chiappalone, M.; Sanguineti, V.; Martinoia, S.

    2007-01-01

    One of the key properties of intelligent behaviors is the capability to learn and adapt to changing environmental conditions. These features are the result of the continuous and intense interaction of the brain with the external world, mediated by the body. For this reason “embodiment” represents an innovative and very suitable experimental paradigm when studying the neural processes underlying learning new behaviors and adapting to unpredicted situations. To this purpose, we developed a novel bidirectional neural interface. We interconnected in vitro neurons, extracted from rat embryos and plated on a microelectrode array (MEA), to external devices, thus allowing real-time closed-loop interaction. The novelty of this experimental approach entails the necessity to explore different computational schemes and experimental hypotheses. In this paper, we present an open, scalable architecture, which allows fast prototyping of different modules and where coding and decoding schemes and different experimental configurations can be tested. This hybrid system can be used for studying the computational properties and information coding in biological neuronal networks with far-reaching implications for the future development of advanced neuroprostheses. PMID:18350128

  4. Real Time Selective Harmonic Minimization for Multilevel Inverters Connected to Solar Panels Using Artificial Neural Network Angle Generation

    SciTech Connect

    Tolbert, Leon M; Ozpineci, Burak; Filho, Faete; Cao, Yue

    2011-01-01

    This work approximates the selective harmonic elimination problem using artificial neural networks (ANNs) to generate the switching angles in an 11-level full-bridge cascade inverter powered by five varying dc input sources. Each of the five full bridges of the cascade inverter was connected to a separate 195-W solar panel. The angles were chosen such that the fundamental was kept constant and the low-order harmonics were minimized or eliminated. A nondeterministic method is used to solve the system for the angles and to obtain the data set for the ANN training. The method also provides a set of acceptable solutions in the space where solutions do not exist by analytical methods. The trained ANN is a suitable tool that brings a small generalization effect on the angles' precision and is able to perform in real time (50-/60-Hz time window).

  5. Theory of Mind and the Whole Brain Functional Connectivity: Behavioral and Neural Evidences with the Amsterdam Resting State Questionnaire.

    PubMed

    Marchetti, Antonella; Baglio, Francesca; Costantini, Isa; Dipasquale, Ottavia; Savazzi, Federica; Nemni, Raffaello; Sangiuliano Intra, Francesca; Tagliabue, Semira; Valle, Annalisa; Massaro, Davide; Castelli, Ilaria

    2015-01-01

    A topic of common interest to psychologists and philosophers is the spontaneous flow of thoughts when the individual is awake but not involved in cognitive demands. This argument, classically referred to as the "stream of consciousness" of James, is now known in the psychological literature as "Mind-Wandering." Although of great interest, this construct has been scarcely investigated so far. Diaz et al. (2013) created the Amsterdam Resting State Questionnaire (ARSQ), composed of 27 items, distributed in seven factors: discontinuity of mind, theory of mind (ToM), self, planning, sleepiness, comfort, and somatic awareness. The present study aims at: testing psychometric properties of the ARSQ in a sample of 670 Italian subjects; exploring the neural correlates of a subsample of participants (N = 28) divided into two groups on the basis of the scores obtained in the ToM factor. Results show a satisfactory reliability of the original factional structure in the Italian sample. In the subjects with a high mean in the ToM factor compared to low mean subjects, functional MRI revealed: a network (48 nodes) with higher functional connectivity (FC) with a dominance of the left hemisphere; an increased within-lobe FC in frontal and insular lobes. In both neural and behavioral terms, our results support the idea that the mind, which does not rest even when explicitly asked to do so, has various and interesting mentalistic-like contents.

  6. Theory of Mind and the Whole Brain Functional Connectivity: Behavioral and Neural Evidences with the Amsterdam Resting State Questionnaire

    PubMed Central

    Marchetti, Antonella; Baglio, Francesca; Costantini, Isa; Dipasquale, Ottavia; Savazzi, Federica; Nemni, Raffaello; Sangiuliano Intra, Francesca; Tagliabue, Semira; Valle, Annalisa; Massaro, Davide; Castelli, Ilaria

    2015-01-01

    A topic of common interest to psychologists and philosophers is the spontaneous flow of thoughts when the individual is awake but not involved in cognitive demands. This argument, classically referred to as the “stream of consciousness” of James, is now known in the psychological literature as “Mind-Wandering.” Although of great interest, this construct has been scarcely investigated so far. Diaz et al. (2013) created the Amsterdam Resting State Questionnaire (ARSQ), composed of 27 items, distributed in seven factors: discontinuity of mind, theory of mind (ToM), self, planning, sleepiness, comfort, and somatic awareness. The present study aims at: testing psychometric properties of the ARSQ in a sample of 670 Italian subjects; exploring the neural correlates of a subsample of participants (N = 28) divided into two groups on the basis of the scores obtained in the ToM factor. Results show a satisfactory reliability of the original factional structure in the Italian sample. In the subjects with a high mean in the ToM factor compared to low mean subjects, functional MRI revealed: a network (48 nodes) with higher functional connectivity (FC) with a dominance of the left hemisphere; an increased within-lobe FC in frontal and insular lobes. In both neural and behavioral terms, our results support the idea that the mind, which does not rest even when explicitly asked to do so, has various and interesting mentalistic-like contents. PMID:26696924

  7. Resilience and cross-network connectivity: A neural model for post-trauma survival.

    PubMed

    Marcella, Brunetti; Laura, Marzetti; Gianna, Sepede; Filippo, Zappasodi; Vittorio, Pizzella; Fabiola, Sarchione; Federica, Vellante; Giovanni, Martinotti; Massimo, Di Giannantonio

    2017-04-10

    Literature on the neurobiological bases of Post-Traumatic Stress Disorder (PTSD) considers medial Prefrontal cortex (mPFC), a core region of the Default Mode Network (DMN), as a region involved in response regulation to stressors. Disrupted functioning of the DMN has been recognized at the basis of the pathophysiology of a number of mental disorders. Furthermore, in the evaluation of the protective factors to trauma consequence, an important role has been assigned to resilience. Our aim was to investigate the specific relation of resilience and PTSD symptoms severity with resting state brain connectivity in a traumatized population using magnetoencephalography (MEG), a non-invasive imaging technique with high temporal resolution and documented advantages in clinical applications. Nineteen Trauma Exposed non-PTSD (TENP) and 19 PTSD patients participated to a resting state MEG session. MEG functional connectivity of mPFC seed to the whole brain was calculated. Correlation between mPFC functional connectivity and Clinician Administered PTSD Scale (CAPS) or Connor-Davidson Resilience Scale (CD-RISC) total score was also assessed. In the whole group, it has been evidenced that the higher was the resilience, the lower was the cross-network connectivity between DMN and Salience Network (SN) nodes. Contrarily, in the TENP group, the negative correlation between resilience and DMN-SN cross-interaction disappeared, suggesting a protective role of resilience for brain functioning. Regarding our findings as a continuum between healthy and pathological after trauma outcomes, we could suggest a link between resilience and the good dialogue between the networks needed to face a traumatic event and its long-term consequence on individuals' lives.

  8. Building Neural Networks Within the Academy: Connecting Neuroscience to Other Disciplines

    PubMed Central

    Wichlinski, Lawrence J.

    2009-01-01

    Never before in human history has there been a more exciting time to be studying neuroscience. By extension, the opportunities have never been greater to examine how contemporary findings in neuroscience might relate to other areas of human inquiry. Over the last two decades I have participated in a number of formal and informal attempts to connect neuroscience and psychology to other academic disciplines in the context of interdisciplinary courses. Herein lies a brief overview of my experiences with these undertakings. PMID:23493585

  9. Central Thalamic Deep-Brain Stimulation Alters Striatal-Thalamic Connectivity in Cognitive Neural Behavior

    PubMed Central

    Lin, Hui-Ching; Pan, Han-Chi; Lin, Sheng-Huang; Lo, Yu-Chun; Shen, Elise Ting-Hsin; Liao, Lun-De; Liao, Pei-Han; Chien, Yi-Wei; Liao, Kuei-Da; Jaw, Fu-Shan; Chu, Kai-Wen; Lai, Hsin-Yi; Chen, You-Yin

    2016-01-01

    Central thalamic deep brain stimulation (CT-DBS) has been proposed as an experimental therapeutic approach to produce consistent sustained regulation of forebrain arousal for several neurological diseases. We investigated local field potentials (LFPs) induced by CT-DBS from the thalamic central lateral nuclei (CL) and the striatum as potential biomarkers for the enhancement of lever-pressing skill learning. LFPs were simultaneously recorded from multiple sites in the CL, ventral striatum (Vstr), and dorsal striatum (Dstr). LFP oscillation power and functional connectivity were assessed and compared between the CT-DBS and sham control groups. The theta and alpha LFP oscillations were significantly increased in the CL and striatum in the CT-DBS group. Furthermore, interhemispheric coherences between bilateral CL and striatum were increased in the theta band. Additionally, enhancement of c-Fos activity, dopamine D2 receptor (Drd2), and α4-nicotinic acetylcholine receptor (α4-nAChR) occurred after CT-DBS treatment in the striatum and hippocampus. CT-DBS strengthened thalamic-striatal functional connectivity, which demonstrates that the inter-regional connectivity enhancement might contribute to synaptic plasticity in the striatum. Altered dopaminergic and cholinergic receptors resulted in modulation of striatal synaptic plasticity's ability to regulate downstream signaling cascades for higher brain functions of lever-pressing skill learning. PMID:26793069

  10. Analysis of nonlocal neural fields for both general and gamma-distributed connectivities

    NASA Astrophysics Data System (ADS)

    Hutt, Axel; Atay, Fatihcan M.

    2005-04-01

    This work studies the stability of equilibria in spatially extended neuronal ensembles. We first derive the model equation from statistical properties of the neuron population. The obtained integro-differential equation includes synaptic and space-dependent transmission delay for both general and gamma-distributed synaptic connectivities. The latter connectivity type reveals infinite, finite, and vanishing self-connectivities. The work derives conditions for stationary and nonstationary instabilities for both kernel types. In addition, a nonlinear analysis for general kernels yields the order parameter equation of the Turing instability. To compare the results to findings for partial differential equations (PDEs), two typical PDE-types are derived from the examined model equation, namely the general reaction-diffusion equation and the Swift-Hohenberg equation. Hence, the discussed integro-differential equation generalizes these PDEs. In the case of the gamma-distributed kernels, the stability conditions are formulated in terms of the mean excitatory and inhibitory interaction ranges. As a novel finding, we obtain Turing instabilities in fields with local inhibition-lateral excitation, while wave instabilities occur in fields with local excitation and lateral inhibition. Numerical simulations support the analytical results.

  11. Central Thalamic Deep-Brain Stimulation Alters Striatal-Thalamic Connectivity in Cognitive Neural Behavior.

    PubMed

    Lin, Hui-Ching; Pan, Han-Chi; Lin, Sheng-Huang; Lo, Yu-Chun; Shen, Elise Ting-Hsin; Liao, Lun-De; Liao, Pei-Han; Chien, Yi-Wei; Liao, Kuei-Da; Jaw, Fu-Shan; Chu, Kai-Wen; Lai, Hsin-Yi; Chen, You-Yin

    2015-01-01

    Central thalamic deep brain stimulation (CT-DBS) has been proposed as an experimental therapeutic approach to produce consistent sustained regulation of forebrain arousal for several neurological diseases. We investigated local field potentials (LFPs) induced by CT-DBS from the thalamic central lateral nuclei (CL) and the striatum as potential biomarkers for the enhancement of lever-pressing skill learning. LFPs were simultaneously recorded from multiple sites in the CL, ventral striatum (Vstr), and dorsal striatum (Dstr). LFP oscillation power and functional connectivity were assessed and compared between the CT-DBS and sham control groups. The theta and alpha LFP oscillations were significantly increased in the CL and striatum in the CT-DBS group. Furthermore, interhemispheric coherences between bilateral CL and striatum were increased in the theta band. Additionally, enhancement of c-Fos activity, dopamine D2 receptor (Drd2), and α4-nicotinic acetylcholine receptor (α4-nAChR) occurred after CT-DBS treatment in the striatum and hippocampus. CT-DBS strengthened thalamic-striatal functional connectivity, which demonstrates that the inter-regional connectivity enhancement might contribute to synaptic plasticity in the striatum. Altered dopaminergic and cholinergic receptors resulted in modulation of striatal synaptic plasticity's ability to regulate downstream signaling cascades for higher brain functions of lever-pressing skill learning.

  12. Deep dreaming, aberrant salience and psychosis: Connecting the dots by artificial neural networks.

    PubMed

    Keshavan, Matcheri S; Sudarshan, Mukund

    2017-01-24

    Why some individuals, when presented with unstructured sensory inputs, develop altered perceptions not based in reality, is not well understood. Machine learning approaches can potentially help us understand how the brain normally interprets sensory inputs. Artificial neural networks (ANN) progressively extract higher and higher-level features of sensory input and identify the nature of an object based on a priori information. However, some ANNs which use algorithms such as the "deep-dreaming" developed by Google, allow the network to over-emphasize some objects it "thinks" it recognizes in those areas, and iteratively enhance such outputs leading to representations that appear farther and farther from "reality". We suggest that such "deep dreaming" ANNs may model aberrant salience, a mechanism suggested for pathogenesis of psychosis. Such models can generate testable predictions for psychosis.

  13. Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions.

    PubMed

    Li, Shuhui; Fairbank, Michael; Johnson, Cameron; Wunsch, Donald C; Alonso, Eduardo; Proaño, Julio L

    2014-04-01

    Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.

  14. Happier People Show Greater Neural Connectivity during Negative Self-Referential Processing

    PubMed Central

    Kim, Eun Joo; Kyeong, Sunghyon; Cho, Sang Woo; Chun, Ji-Won; Park, Hae-Jeong; Kim, Jihye; Kim, Joohan; Dolan, Raymond J.; Kim, Jae-Jin

    2016-01-01

    Life satisfaction is an essential component of subjective well-being and provides a fundamental resource for optimal everyday functioning. The goal of the present study was to examine how life satisfaction influences self-referential processing of emotionally valenced stimuli. Nineteen individuals with high life satisfaction (HLS) and 21 individuals with low life satisfaction (LLS) were scanned using functional MRI while performing a face-word relevance rating task, which consisted of 3 types of face stimuli (self, public other, and unfamiliar other) and 3 types of word stimuli (positive, negative, and neutral). We found a significant group x word valence interaction effect, most strikingly in the dorsal medial prefrontal cortex. In the positive word condition dorsal medial prefrontal cortex activity was significantly higher in the LLS group, whereas in the negative word condition it was significantly higher in the HLS group. The two groups showed distinct functional connectivity of the dorsal medial prefrontal cortex with emotional processing-related regions. The findings suggest that, in response to emotional stimuli, individuals with HLS may successfully recruit emotion regulation-related regions in contrast to individuals with LLS. The difference in functional connectivity during self-referential processing may lead to an influence of life satisfaction on responses to emotion-eliciting stimuli. PMID:26900857

  15. Happier People Show Greater Neural Connectivity during Negative Self-Referential Processing.

    PubMed

    Kim, Eun Joo; Kyeong, Sunghyon; Cho, Sang Woo; Chun, Ji-Won; Park, Hae-Jeong; Kim, Jihye; Kim, Joohan; Dolan, Raymond J; Kim, Jae-Jin

    2016-01-01

    Life satisfaction is an essential component of subjective well-being and provides a fundamental resource for optimal everyday functioning. The goal of the present study was to examine how life satisfaction influences self-referential processing of emotionally valenced stimuli. Nineteen individuals with high life satisfaction (HLS) and 21 individuals with low life satisfaction (LLS) were scanned using functional MRI while performing a face-word relevance rating task, which consisted of 3 types of face stimuli (self, public other, and unfamiliar other) and 3 types of word stimuli (positive, negative, and neutral). We found a significant group x word valence interaction effect, most strikingly in the dorsal medial prefrontal cortex. In the positive word condition dorsal medial prefrontal cortex activity was significantly higher in the LLS group, whereas in the negative word condition it was significantly higher in the HLS group. The two groups showed distinct functional connectivity of the dorsal medial prefrontal cortex with emotional processing-related regions. The findings suggest that, in response to emotional stimuli, individuals with HLS may successfully recruit emotion regulation-related regions in contrast to individuals with LLS. The difference in functional connectivity during self-referential processing may lead to an influence of life satisfaction on responses to emotion-eliciting stimuli.

  16. Cadherin-Based Transsynaptic Networks in Establishing and Modifying Neural Connectivity

    PubMed Central

    Friedman, Lauren G.; Benson, Deanna L.; Huntley, George W.

    2015-01-01

    It is tacitly understood that cell adhesion molecules (CAMs) are critically important for the development of cells, circuits, and synapses in the brain. What is less clear is what CAMs continue to contribute to brain structure and function after the early period of development. Here, we focus on the cadherin family of CAMs to first briefly recap their multidimensional roles in neural development and then to highlight emerging data showing that with maturity, cadherins become largely dispensible for maintaining neuronal and synaptic structure, instead displaying new and narrower roles at mature synapses where they critically regulate dynamic aspects of synaptic signaling, structural plasticity, and cognitive function. At mature synapses, cadherins are an integral component of multiprotein networks, modifying synaptic signaling, morphology, and plasticity through collaborative interactions with other CAM family members as well as a variety of neurotransmitter receptors, scaffolding proteins, and other effector molecules. Such recognition of the ever-evolving functions of synaptic cadherins may yield insight into the pathophysiology of brain disorders in which cadherins have been implicated and that manifest at different times of life. PMID:25733148

  17. Neural systems for social cognition: gray matter volume abnormalities in boys at high genetic risk of autism symptoms, and a comparison with idiopathic autism spectrum disorder.

    PubMed

    Goddard, Marcia N; Swaab, Hanna; Rombouts, Serge A R B; van Rijn, Sophie

    2016-09-01

    Klinefelter syndrome (47, XXY) is associated with several physical, cognitive, and behavioral consequences. In terms of social development, there is an increased risk of autism symptomatology. However, it remains unclear how social deficits are related to abnormal brain development and to what degree underlying mechanisms of social dysfunction in 47, XXY are similar to, or different from, those in idiopathic autism (ASD). This study was aimed at investigating the neural architecture of brain structures related to social information processing in boys with 47, XXY, also in comparison with boys with idiopathic ASD. MRI scans of 16 boys with 47, XXY, 16 with ASD, and 16 nonclinical, male controls were analyzed using voxel-based morphometry (VBM). A region of interest mask containing the superior temporal cortex, amygdala, orbitofrontal cortex (OFC), insular cortex, and medial frontal cortex was used. The Social Responsiveness Scale (SRS) was used to assess degree of autism spectrum symptoms. The 47, XXY group could not be distinguished from the ASD group on mean SRS scores, and their scores were significantly higher than in controls. VBM showed that boys with 47, XXY have significant gray matter volume reductions in the left and right insula, and the left OFC, compared with controls and boys with ASD. Additionally, boys with 47, XXY had significantly less gray matter in the right superior temporal gyrus than controls. These results imply social challenges associated with 47, XXY may be rooted in neural anatomy, and autism symptoms in boys with 47, XXY and boys with ASD might have, at least partially, different underlying etiologies.

  18. Congenital Abnormalities

    MedlinePlus

    ... Listen Español Text Size Email Print Share Congenital Abnormalities Page Content Article Body About 3% to 4% ... of congenital abnormalities earlier. 5 Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic ...

  19. Preterm birth results in alterations in neural connectivity at age 16 years.

    PubMed

    Mullen, Katherine M; Vohr, Betty R; Katz, Karol H; Schneider, Karen C; Lacadie, Cheryl; Hampson, Michelle; Makuch, Robert W; Reiss, Allan L; Constable, R Todd; Ment, Laura R

    2011-02-14

    Very low birth weight preterm (PT) children are at high risk for brain injury. Employing diffusion tensor imaging (DTI), we tested the hypothesis that PT adolescents would demonstrate microstructural white matter disorganization relative to term controls at 16 years of age. Forty-four PT subjects (600-1250 g birth weight) without neonatal brain injury and 41 term controls were evaluated at age 16 years with DTI, the Wechsler Intelligence Scale for Children-III (WISC), the Peabody Picture Vocabulary Test-Revised (PPVT), and the Comprehensive Test of Phonological Processing (CTOPP). PT subjects scored lower than term subjects on WISC full scale (p=0.003), verbal (p=0.043), and performance IQ tests (p=0.001), as well as CTOPP phonological awareness (p=0.004), but scored comparably to term subjects on PPVT and CTOPP Rapid Naming tests. PT subjects had lower fractional anisotropy (FA) values in multiple regions including bilateral uncinate fasciculi (left: p=0.01; right: p=0.004), bilateral external capsules (left: p<0.001; right: p<0.001), the splenium of the corpus callosum (p=0.008), and white matter serving the inferior frontal gyrus bilaterally (left: p<0.001; right: p=0.011). FA values in both the left and right uncinate fasciculi correlated with PPVT scores (a semantic language task) in the PT subjects (left: r=0.314, p=0.038; right: r=0.336, p=0.026). FA values in the left and right arcuate fasciculi correlated with CTOPP Rapid Naming scores (a phonologic task) in the PT subjects (left: r=0.424, p=0.004; right: r=0.301, p=0.047). These data support for the first time that dual pathways underlying language function are present in PT adolescents. The striking bilateral dorsal correlations for the PT group suggest that prematurely born subjects rely more heavily on the right hemisphere than typically developing adults for performance of phonological language tasks. These findings may represent either a delay in maturation or the engagement of alternative neural

  20. Preterm Birth Results in Alterations in Neural Connectivity at Age 16 Years

    PubMed Central

    Mullen, Katherine M.; Vohr, Betty R.; Katz, Karol H.; Schneider, Karen C.; Lacadie, Cheryl; Hampson, Michelle; Makuch, Robert W.; Reiss, Allan R.; Constable, R. Todd; Ment, Laura R.

    2010-01-01

    maturation or the engagement of alternative neural pathways for language in the developing PT brain. PMID:21073965

  1. Effect of intermodular connection on fast sparse synchronization in clustered small-world neural networks

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Yoon; Lim, Woochang

    2015-11-01

    We consider a clustered network with small-world subnetworks of inhibitory fast spiking interneurons and investigate the effect of intermodular connection on the emergence of fast sparsely synchronized rhythms by varying both the intermodular coupling strength Jinter and the average number of intermodular links per interneuron Msyn(inter ). In contrast to the case of nonclustered networks, two kinds of sparsely synchronized states such as modular and global synchronization are found. For the case of modular sparse synchronization, the population behavior reveals the modular structure, because the intramodular dynamics of subnetworks make some mismatching. On the other hand, in the case of global sparse synchronization, the population behavior is globally identical, independently of the cluster structure, because the intramodular dynamics of subnetworks make perfect matching. We introduce a realistic cross-correlation modularity measure, representing the matching degree between the instantaneous subpopulation spike rates of the subnetworks, and examine whether the sparse synchronization is global or modular. Depending on its magnitude, the intermodular coupling strength Jinter seems to play "dual" roles for the pacing between spikes in each subnetwork. For large Jinter, due to strong inhibition it plays a destructive role to "spoil" the pacing between spikes, while for small Jinter it plays a constructive role to "favor" the pacing between spikes. Through competition between the constructive and the destructive roles of Jinter, there exists an intermediate optimal Jinter at which the pacing degree between spikes becomes maximal. In contrast, the average number of intermodular links per interneuron Msyn(inter ) seems to play a role just to favor the pacing between spikes. With increasing Msyn(inter ), the pacing degree between spikes increases monotonically thanks to the increase in the degree of effectiveness of global communication between spikes. Furthermore, we

  2. Neural Signatures of the Reading-Writing Connection: Greater Involvement of Writing in Chinese Reading than English Reading

    PubMed Central

    Cao, Fan; Perfetti, Charles A.

    2016-01-01

    Research on cross-linguistic comparisons of the neural correlates of reading has consistently found that the left middle frontal gyrus (MFG) is more involved in Chinese than in English. However, there is a lack of consensus on the interpretation of the language difference. Because this region has been found to be involved in writing, we hypothesize that reading Chinese characters involves this writing region to a greater degree because Chinese speakers learn to read by repeatedly writing the characters. To test this hypothesis, we recruited English L1 learners of Chinese, who performed a reading task and a writing task in each language. The English L1 sample had learned some Chinese characters through character-writing and others through phonological learning, allowing a test of writing-on-reading effect. We found that the left MFG was more activated in Chinese than English regardless of task, and more activated in writing than in reading regardless of language. Furthermore, we found that this region was more activated for reading Chinese characters learned by character-writing than those learned by phonological learning. A major conclusion is that writing regions are also activated in reading, and that this reading-writing connection is modulated by the learning experience. We replicated the main findings in a group of native Chinese speakers, which excluded the possibility that the language differences observed in the English L1 participants were due to different language proficiency level. PMID:27992505

  3. Training Recurrent Neural Networks With the Levenberg-Marquardt Algorithm for Optimal Control of a Grid-Connected Converter.

    PubMed

    Fu, Xingang; Li, Shuhui; Fairbank, Michael; Wunsch, Donald C; Alonso, Eduardo

    2015-09-01

    This paper investigates how to train a recurrent neural network (RNN) using the Levenberg-Marquardt (LM) algorithm as well as how to implement optimal control of a grid-connected converter (GCC) using an RNN. To successfully and efficiently train an RNN using the LM algorithm, a new forward accumulation through time (FATT) algorithm is proposed to calculate the Jacobian matrix required by the LM algorithm. This paper explores how to incorporate FATT into the LM algorithm. The results show that the combination of the LM and FATT algorithms trains RNNs better than the conventional backpropagation through time algorithm. This paper presents an analytical study on the optimal control of GCCs, including theoretically ideal optimal and suboptimal controllers. To overcome the inapplicability of the optimal GCC controller under practical conditions, a new RNN controller with an improved input structure is proposed to approximate the ideal optimal controller. The performance of an ideal optimal controller and a well-trained RNN controller was compared in close to real-life power converter switching environments, demonstrating that the proposed RNN controller can achieve close to ideal optimal control performance even under low sampling rate conditions. The excellent performance of the proposed RNN controller under challenging and distorted system conditions further indicates the feasibility of using an RNN to approximate optimal control in practical applications.

  4. Fetal neural tube stem cells from Pax3 mutant mice proliferate, differentiate, and form synaptic connections when stimulated with folic acid.

    PubMed

    Ichi, Shunsuke; Nakazaki, Hiromichi; Boshnjaku, Vanda; Singh, Ravneet Monny; Mania-Farnell, Barbara; Xi, Guifa; McLone, David G; Tomita, Tadanori; Mayanil, Chandra Shekhar K

    2012-01-20

    Although maternal intake of folic acid (FA) prevents neural tube defects in 70% of the population, the exact mechanism of prevention has not been elucidated. We hypothesized that FA affects neural stem cell (NSC) proliferation and differentiation. This hypothesis was examined in a folate-responsive spina bifida mouse model, Splotch (Sp(-/-)), which has a homozygous loss-of-function mutation in the Pax3 gene. Neurospheres were generated with NSCs from the lower lumbar neural tube of E10.5 wild-type (WT) and Sp(-/-) embryos, in the presence and absence of FA. In the absence of FA, the number of neurospheres generated from Sp(-/-) embryos compared with WT was minimal (P<0.05). Addition of FA to Sp(-/-) cultures increased the expression of a Pax3 downstream target, fgfr4, and rescued NSC proliferative potential, as demonstrated by a significant increase in neurosphere formation (P<0.01). To ascertain if FA affected cell differentiation, FA-stimulated Sp(-/-) neurospheres were allowed to differentiate in the continued presence or absence of FA. Neurospheres from both conditions expressed multi-potent stem cell characteristics and the same differentiation potential as WT. Further, multiple neurospheres from both WT and FA-stimulated Sp(-/-) cell cultures formed extensive synaptic connections. On the whole, FA-mediated rescue of neural tube defects in Sp(-/-) embryos promotes NSC proliferation at an early embryonic stage. FA-stimulated Sp(-/-) neurospheres differentiate and form synaptic connections, comparable to WT.

  5. Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity.

    PubMed

    Dummer, Benjamin; Wieland, Stefan; Lindner, Benjamin

    2014-01-01

    A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i) a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii) a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide an excellent approximations to the autocorrelation of spike trains in the recurrent network.

  6. Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity

    PubMed Central

    Dummer, Benjamin; Wieland, Stefan; Lindner, Benjamin

    2014-01-01

    A major source of random variability in cortical networks is the quasi-random arrival of presynaptic action potentials from many other cells. In network studies as well as in the study of the response properties of single cells embedded in a network, synaptic background input is often approximated by Poissonian spike trains. However, the output statistics of the cells is in most cases far from being Poisson. This is inconsistent with the assumption of similar spike-train statistics for pre- and postsynaptic cells in a recurrent network. Here we tackle this problem for the popular class of integrate-and-fire neurons and study a self-consistent statistics of input and output spectra of neural spike trains. Instead of actually using a large network, we use an iterative scheme, in which we simulate a single neuron over several generations. In each of these generations, the neuron is stimulated with surrogate stochastic input that has a similar statistics as the output of the previous generation. For the surrogate input, we employ two distinct approximations: (i) a superposition of renewal spike trains with the same interspike interval density as observed in the previous generation and (ii) a Gaussian current with a power spectrum proportional to that observed in the previous generation. For input parameters that correspond to balanced input in the network, both the renewal and the Gaussian iteration procedure converge quickly and yield comparable results for the self-consistent spike-train power spectrum. We compare our results to large-scale simulations of a random sparsely connected network of leaky integrate-and-fire neurons (Brunel, 2000) and show that in the asynchronous regime close to a state of balanced synaptic input from the network, our iterative schemes provide an excellent approximations to the autocorrelation of spike trains in the recurrent network. PMID:25278869

  7. Energy-based stochastic control of neural mass models suggests time-varying effective connectivity in the resting state.

    PubMed

    Sotero, Roberto C; Shmuel, Amir

    2012-06-01

    Several studies posit energy as a constraint on the coding and processing of information in the brain due to the high cost of resting and evoked cortical activity. This suggestion has been addressed theoretically with models of a single neuron and two coupled neurons. Neural mass models (NMMs) address mean-field based modeling of the activity and interactions between populations of neurons rather than a few neurons. NMMs have been widely employed for studying the generation of EEG rhythms, and more recently as frameworks for integrated models of neurophysiology and functional MRI (fMRI) responses. To date, the consequences of energy constraints on the activity and interactions of ensembles of neurons have not been addressed. Here we aim to study the impact of constraining energy consumption during the resting-state on NMM parameters. To this end, we first linearized the model, then used stochastic control theory by introducing a quadratic cost function, which transforms the NMM into a stochastic linear quadratic regulator (LQR). Solving the LQR problem introduces a regime in which the NMM parameters, specifically the effective connectivities between neuronal populations, must vary with time. This is in contrast to current NMMs, which assume a constant parameter set for a given condition or task. We further simulated energy-constrained stochastic control of a specific NMM, the Wilson and Cowan model of two coupled neuronal populations, one of which is excitatory and the other inhibitory. These simulations demonstrate that with varying weights of the energy-cost function, the NMM parameters show different time-varying behavior. We conclude that constraining NMMs according to energy consumption may create more realistic models. We further propose to employ linear NMMs with time-varying parameters as an alternative to traditional nonlinear NMMs with constant parameters.

  8. CROSS-DISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Small-World Connections to Induce Firing Activity and Phase Synchronization in Neural Networks

    NASA Astrophysics Data System (ADS)

    Qin, Ying-Hua; Luo, Xiao-Shu

    2009-07-01

    We investigate how the firing activity and the subsequent phase synchronization of neural networks with small-world topological connections depend on the probability p of adding-links. Network elements are described by two-dimensional map neurons (2DMNs) in a quiescent original state. Neurons burst for a given coupling strength when the topological randomness p increases, which is absent in a regular-lattice neural network. The bursting activity becomes frequent and synchronization of neurons emerges as topological randomness further increases. The maximal firing frequency and phase synchronization appear at a particular value of p. However, if the randomness p further increases, the firing frequency decreases and synchronization is apparently destroyed.

  9. Alveolar abnormalities

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...

  10. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... 2012:chap 71. Zaiac MN, Walker A. Nail abnormalities associated with systemic pathologies. Clin Dermatol . 2013;31: ...

  11. Data-driven inference of network connectivity for modeling the dynamics of neural codes in the insect antennal lobe

    PubMed Central

    Shlizerman, Eli; Riffell, Jeffrey A.; Kutz, J. Nathan

    2014-01-01

    The antennal lobe (AL), olfactory processing center in insects, is able to process stimuli into distinct neural activity patterns, called olfactory neural codes. To model their dynamics we perform multichannel recordings from the projection neurons in the AL driven by different odorants. We then derive a dynamic neuronal network from the electrophysiological data. The network consists of lateral-inhibitory neurons and excitatory neurons (modeled as firing-rate units), and is capable of producing unique olfactory neural codes for the tested odorants. To construct the network, we (1) design a projection, an odor space, for the neural recording from the AL, which discriminates between distinct odorants trajectories (2) characterize scent recognition, i.e., decision-making based on olfactory signals and (3) infer the wiring of the neural circuit, the connectome of the AL. We show that the constructed model is consistent with biological observations, such as contrast enhancement and robustness to noise. The study suggests a data-driven approach to answer a key biological question in identifying how lateral inhibitory neurons can be wired to excitatory neurons to permit robust activity patterns. PMID:25165442

  12. Abnormalities in Functional Connectivity in Collegiate Football Athletes with and without a Concussion History: Implications and Role of Neuroactive Kynurenine Pathway Metabolites.

    PubMed

    Meier, Timothy B; Lancaster, Melissa A; Mayer, Andrew R; Teague, T Kent; Savitz, Jonathan

    2017-02-15

    There is a great need to identify potential long-term consequences of contact sport exposure and to identify molecular pathways that may be associated with these changes. We tested the hypothesis that football players with (Ath-mTBI) (n = 25) and without a concussion history (Ath) (n = 24) have altered resting state functional connectivity in regions with previously documented structural changes relative to healthy controls without football or concussion history (HC) (n = 27). As a secondary aim, we tested the hypothesis that group differences in functional connectivity are moderated by the relative ratio of neuroprotective to neurotoxic metabolites of the kynurenine pathway. Ath-mTBI had significantly increased connectivity of motor cortex to the supplementary motor area relative to Ath and HC. In contrast, both Ath-mTBI and Ath had increased connectivity between the left orbital frontal cortex and the right lateral frontal cortex, and between the left cornu ammonis areas 2 and 3/dentate gyrus (CA2-3/DG) of the hippocampus and the middle and posterior cingulate cortices, relative to HC. The relationship between the ratio of plasma concentrations of kynurenic acid to quinolinic acid (KYNA/QUIN) and left pregenual anterior cingulate cortex connectivity to multiple regions as well as KYNA/QUIN and right CA2-3/DG connectivity to multiple regions differed significantly according to football and concussion history. The results suggest that football exposure with and without concussion history can have a significant effect on intrinsic brain connectivity and implicate the kynurenine metabolic pathway as one potential moderator of functional connectivity dependent on football exposure and concussion history.

  13. Brief Report: Anomalous Neural Deactivations and Functional Connectivity during Receptive Language in Autism Spectrum Disorder--A Functional MRI Study

    ERIC Educational Resources Information Center

    Karten, Ariel; Hirsch, Joy

    2015-01-01

    Neural mechanisms that underlie language disability in autism spectrum disorder (ASD) have been associated with reduced excitatory processes observed as positive blood oxygen level dependent (BOLD) responses. However, negative BOLD responses (NBR) associated with language and inhibitory processes have been less studied in ASD. In this study,…

  14. The neural basis of trait self-esteem revealed by the amplitude of low-frequency fluctuations and resting state functional connectivity

    PubMed Central

    Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang

    2016-01-01

    Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition. PMID:26400859

  15. The neural basis of trait self-esteem revealed by the amplitude of low-frequency fluctuations and resting state functional connectivity.

    PubMed

    Pan, Weigang; Liu, Congcong; Yang, Qian; Gu, Yan; Yin, Shouhang; Chen, Antao

    2016-03-01

    Self-esteem is an affective, self-evaluation of oneself and has a significant effect on mental and behavioral health. Although research has focused on the neural substrates of self-esteem, little is known about the spontaneous brain activity that is associated with trait self-esteem (TSE) during the resting state. In this study, we used the resting-state functional magnetic resonance imaging (fMRI) signal of the amplitude of low-frequency fluctuations (ALFFs) and resting state functional connectivity (RSFC) to identify TSE-related regions and networks. We found that a higher level of TSE was associated with higher ALFFs in the left ventral medial prefrontal cortex (vmPFC) and lower ALFFs in the left cuneus/lingual gyrus and right lingual gyrus. RSFC analyses revealed that the strengths of functional connectivity between the left vmPFC and bilateral hippocampus were positively correlated with TSE; however, the connections between the left vmPFC and right inferior frontal gyrus and posterior superior temporal sulcus were negatively associated with TSE. Furthermore, the strengths of functional connectivity between the left cuneus/lingual gyrus and right dorsolateral prefrontal cortex and anterior cingulate cortex were positively related to TSE. These findings indicate that TSE is linked to core regions in the default mode network and social cognition network, which is involved in self-referential processing, autobiographical memory and social cognition.

  16. Patterns of Neural Connectivity during an Attention Bias Task Moderate Associations between Early Childhood Temperament and Internalizing Symptoms in Young Adulthood

    PubMed Central

    Hardee, Jillian E.; Benson, Brenda E.; Bar-Haim, Yair; Mogg, Karin; Bradley, Brendan P; Chen, Gang; Britton, Jennifer C.; Ernst, Monique; Fox, Nathan A.; Pine, Daniel S.; Pérez-Edgar, Koraly

    2013-01-01

    Background Biased attention to threat is found in both individuals with anxiety symptoms and children with the childhood temperament of behavioral inhibition (BI). Although perturbed fronto-amygdala function is implicated in biased attention among anxious individuals, no work has examined the neural correlates of attention biases in BI. Work in this area may clarify underlying mechanisms for anxiety in a sample at risk for internalizing disorders. We examined the relations among early childhood BI, fronto-amygdala connectivity during an attention bias task in young adulthood, and internalizing symptoms, assessed in young adulthood. Methods Children were assessed for BI at multiple age points from infancy through age seven. Based on a composite of observational and maternal report data, we selected 21 young adults classified as having a history of BI and 23 classified as non-BI for this study (N=44). Participants completed an event-related fMRI attention-bias task involving threat (angry faces) and neutral trials. Internalizing symptoms were assessed by self-report and diagnostic interviews. Results The young adults characterized in childhood with BI exhibited greater strength in threat-related connectivity than non-behaviorally inhibited young adults. Between-group differences manifested in connections between the amygdala and two frontal regions: dorsolateral prefrontal cortex and anterior insula. Amygdala-insula connectivity also interacted with childhood BI to predict young adult internalizing symptoms. Conclusions BI during early childhood predicts differences as young adults in threat and attention-related fronto-amygdala connectivity. Connectivity strength, in turn, moderated the relations between early BI and later psychopathology. PMID:23489415

  17. Abnormal corpus callosum connectivity, socio-communicative deficits, and motor deficits in children with autism spectrum disorder: a diffusion tensor imaging study.

    PubMed

    Hanaie, Ryuzo; Mohri, Ikuko; Kagitani-Shimono, Kuriko; Tachibana, Masaya; Matsuzaki, Junko; Watanabe, Yoshiyuki; Fujita, Norihiko; Taniike, Masako

    2014-09-01

    In addition to social and communicative deficits, many studies have reported motor deficits in autism spectrum disorder (ASD). This study investigated the macro and microstructural properties of the corpus callosum (CC) of 18 children with ASD and 12 typically developing controls using diffusion tensor imaging tractography. We aimed to explore whether abnormalities of the CC were related to motor deficits, as well as social and communication deficits in children with ASD. The ASD group displayed abnormal macro and microstructure of the total CC and its subdivisions and its structural properties were related to socio-communicative deficits, but not to motor deficits in ASD. These findings advance our understanding of the contributions of the CC to ASD symptoms.

  18. States of Mind: Characterizing the Neural Bases of Focus and Mind-wandering through Dynamic Functional Connectivity.

    PubMed

    Mooneyham, Benjamin W; Mrazek, Michael D; Mrazek, Alissa J; Mrazek, Kaita L; Phillips, Dawa T; Schooler, Jonathan W

    2017-03-01

    During tasks that require continuous engagement, the mind alternates between mental states of focused attention and mind-wandering. Existing research has assessed the functional connectivity of intrinsic brain networks underlying the experience and training of these mental states using "static" approaches that assess connectivity across an entire task. To disentangle the different functional connectivity between brain regions that occur as the mind fluctuates between discrete brain states, we employed a dynamic functional connectivity approach that characterized brain activity using a sliding window. This approach identified distinct states of functional connectivity between regions of the executive control, salience, and default networks during a task requiring sustained attention to the sensations of breathing. The frequency of these distinct brain states demonstrated opposing correlations with dispositional mindfulness, suggesting a correspondence to the mental states of focused attention and mind-wandering. We then determined that an intervention emphasizing the cultivation of mindfulness increased the frequency of the state that had been associated with a greater propensity for focused attention, especially for those who improved most in dispositional mindfulness. These findings provide supporting evidence that mind-wandering involves the corecruitment of brain regions within the executive and default networks. More generally, this work illustrates how emerging neuroimaging methods may allow for the characterization of discrete brain states based on patterns of functional connectivity even when external indications of these states are difficult or impossible to measure.

  19. A reinforcement learning trained fuzzy neural network controller for maintaining wireless communication connections in multi-robot systems

    NASA Astrophysics Data System (ADS)

    Zhong, Xu; Zhou, Yu

    2014-05-01

    This paper presents a decentralized multi-robot motion control strategy to facilitate a multi-robot system, comprised of collaborative mobile robots coordinated through wireless communications, to form and maintain desired wireless communication coverage in a realistic environment with unstable wireless signaling condition. A fuzzy neural network controller is proposed for each robot to maintain the wireless link quality with its neighbors. The controller is trained through reinforcement learning to establish the relationship between the wireless link quality and robot motion decision, via consecutive interactions between the controller and environment. The tuned fuzzy neural network controller is applied to a multi-robot deployment process to form and maintain desired wireless communication coverage. The effectiveness of the proposed control scheme is verified through simulations under different wireless signal propagation conditions.

  20. Detection of abnormal resting-state networks in individual patients suffering from focal epilepsy: an initial step toward individual connectivity assessment

    PubMed Central

    Dansereau, Christian L.; Bellec, Pierre; Lee, Kangjoo; Pittau, Francesca; Gotman, Jean; Grova, Christophe

    2014-01-01

    The spatial coherence of spontaneous slow fluctuations in the blood-oxygen-level dependent (BOLD) signal at rest is routinely used to characterize the underlying resting-state networks (RSNs). Studies have demonstrated that these patterns are organized in space and highly reproducible from subject to subject. Moreover, RSNs reorganizations have been suggested in pathological conditions. Comparisons of RSNs organization have been performed between groups of subjects but have rarely been applied at the individual level, a step required for clinical application. Defining the notion of modularity as the organization of brain activity in stable networks, we propose Detection of Abnormal Networks in Individuals (DANI) to identify modularity changes at the individual level. The stability of each RSN was estimated using a spatial clustering method: Bootstrap Analysis of Stable Clusters (BASC) (Bellec et al., 2010). Our contributions consisted in (i) providing functional maps of the most stable cores of each networks and (ii) in detecting “abnormal” individual changes in networks organization when compared to a population of healthy controls. DANI was first evaluated using realistic simulated data, showing that focussing on a conservative core size (50% most stable regions) improved the sensitivity to detect modularity changes. DANI was then applied to resting state fMRI data of six patients with focal epilepsy who underwent multimodal assessment using simultaneous EEG/fMRI acquisition followed by surgery. Only patient with a seizure free outcome were selected and the resected area was identified using a post-operative MRI. DANI automatically detected abnormal changes in 5 out of 6 patients, with excellent sensitivity, showing for each of them at least one “abnormal” lateralized network closely related to the epileptic focus. For each patient, we also detected some distant networks as abnormal, suggesting some remote reorganization in the epileptic brain. PMID

  1. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  2. Voltage-sensitive-dye imaging of microstimulation-evoked neural activity through intracortical horizontal and callosal connections in cat visual cortex

    NASA Astrophysics Data System (ADS)

    Suzurikawa, Jun; Tani, Toshiki; Nakao, Masayuki; Tanaka, Shigeru; Takahashi, Hirokazu

    2009-12-01

    Recently, intrinsic signal optical imaging has been widely used as a routine procedure for visualizing cortical functional maps. We do not, however, have a well-established imaging method for visualizing cortical functional connectivity indicating spatio-temporal patterns of activity propagation in the cerebral cortex. In the present study, we developed a novel experimental setup for investigating the propagation of neural activities combining the intracortical microstimulation (ICMS) technique with voltage sensitive dye (VSD) imaging, and demonstrated the feasibility of this setup applying to the measurement of time-dependent intra- and inter-hemispheric spread of ICMS-evoked excitation in the cat visual cortices, areas 17 and 18. A microelectrode array for the ICMS was inserted with a specially designed easy-to-detach electrode holder around the 17/18 transition zones (TZs), where the left and right hemispheres were interconnected via the corpus callosum. The microelectrode array was stably anchored in agarose without any holder, which enabled us to visualize evoked activities even in the vicinity of penetration sites as well as in a wide recording region that covered a part of both hemispheres. The VSD imaging could successfully visualize ICMS-evoked excitation and subsequent propagation in the visual cortices contralateral as well as ipsilateral to the ICMS. Using the orientation maps as positional references, we showed that the activity propagation patterns were consistent with previously reported anatomical patterns of intracortical and interhemispheric connections. This finding indicates that our experimental system can serve for the investigation of cortical functional connectivity.

  3. A Preliminary Study of Functional Connectivity in Comorbid Adolescent Depression

    PubMed Central

    Cullen, Kathryn R.; Gee, Dylan G.; Klimes-Dougan, Bonnie; Gabbay, Vilma; Hulvershorn, Leslie; Mueller, Bryon A.; Camchong, Jazmin; Bell, Christopher J.; Houri, Alaa; Kumra, Sanjiv; Lim, Kelvin O.; Castellanos, F. Xavier; Milham, Michael P.

    2009-01-01

    Major Depressive Disorder (MDD) begins frequently in adolescence and is associated with severe outcomes, but the developmental neurobiology of MDD is not well understood. Research in adults has implicated fronto-limbic neural networks in the pathophysiology of MDD, particularly in relation to the subgenual anterior cingulate cortex (ACC). Developmental changes in brain networks during adolescence highlight the need to examine MDD-related circuitry in teens separately from adults. Using resting state functional magnetic resonance imaging (fMRI), this study examined functional connectivity in adolescents with MDD (n=12) and healthy adolescents (n=14). Seed-based connectivity analysis revealed that adolescents with MDD have decreased functional connectivity in a subgenual ACC-based neural network that includes the supragenual ACC (BA 32), the right medial frontal cortex (BA 10), the left inferior (BA 47) and superior frontal cortex (BA 22), superior temporal gyrus (BA 22), and the insular cortex (BA 13). These preliminary data suggest that MDD in adolescence is associated with abnormal connectivity within neural circuits that mediate emotion processing. Future research in larger, un-medicated samples will be necessary to confirm this finding. We conclude that hypothesis-driven, seed-based analyses of resting state fMRI data hold promise for advancing our current understanding of abnormal development of neural circuitry in adolescents with MDD. PMID:19446602

  4. Withdrawal-associated increases and decreases in functional neural connectivity associated with altered emotional regulation in alcoholism.

    PubMed

    O'Daly, Owen G; Trick, Leanne; Scaife, Jess; Marshall, Jane; Ball, David; Phillips, Mary L; Williams, Stephen S C; Stephens, David N; Duka, Theodora

    2012-09-01

    Alcoholic patients who have undergone multiple detoxifications/relapses show altered processing of emotional signals. We performed functional magnetic resonance imaging during performance of implicit and explicit versions of a task in which subjects were presented with morphs of fearful facial emotional expressions. Participants were abstaining, multiply detoxified (MDTx; n=12) or singly detoxified patients (SDTx; n=17), and social drinker controls (n=31). Alcoholic patients were less able than controls to recognize fearful expressions, and showed lower activation in prefrontal areas, including orbitofrontal cortex and insula, which mediate emotional processing. The decrease in activation was greater in MDTx patients who also showed decreased connectivity between insula and prefrontal areas, and between amygdala and globus pallidus. In the explicit condition, the strength of connectivity between insula and areas involved in regulation of emotion (inferior frontal cortex and frontal pole) was negatively correlated with both the number of detoxifications and dependency (measured by the severity of alcohol dependency (SADQ) and control over drinking score (Impaired Control questionnaire, ICQ)). In contrast, increased connectivity was found between insula and the colliculus neuronal cluster, and between amygdala and stria terminalis bed nucleus. In the implicit condition, number of detoxifications and ICQ score correlated positively with connectivity between amygdala and prefrontal cortical areas involved in attentional and executive processes. Repeated episodes of detoxification from alcohol are associated with altered function both in fear perception pathways and in cortical modulation of emotions. Such changes may confer increased sensitivity to emotional stress and impaired social competence, contributing to relapse.

  5. Functional connectivity of neural motor networks is disrupted in children with developmental coordination disorder and attention-deficit/hyperactivity disorder.

    PubMed

    McLeod, Kevin R; Langevin, Lisa Marie; Goodyear, Bradley G; Dewey, Deborah

    2014-01-01

    Developmental coordination disorder (DCD) and attention deficit/hyperactivity disorder (ADHD) are prevalent childhood disorders that frequently co-occur. Evidence from neuroimaging research suggests that children with these disorders exhibit disruptions in motor circuitry, which could account for the high rate of co-occurrence. The primary objective of this study was to investigate the functional connections of the motor network in children with DCD and/or ADHD compared to typically developing controls, with the aim of identifying common neurophysiological substrates. Resting-state fMRI was performed on seven children with DCD, 21 with ADHD, 18 with DCD + ADHD and 23 controls. Resting-state connectivity of the primary motor cortex was compared between each group and controls, using age as a co-factor. Relative to controls, children with DCD and/or ADHD exhibited similar reductions in functional connectivity between the primary motor cortex and the bilateral inferior frontal gyri, right supramarginal gyrus, angular gyri, insular cortices, amygdala, putamen, and pallidum. In addition, children with DCD and/or ADHD exhibited different age-related patterns of connectivity, compared to controls. These findings suggest that children with DCD and/or ADHD exhibit disruptions in motor circuitry, which may contribute to problems with motor functioning and attention. Our results support the existence of common neurophysiological substrates underlying both motor and attention problems.

  6. Sleep modulates cortical connectivity and excitability in humans: Direct evidence from neural activity induced by single-pulse electrical stimulation.

    PubMed

    Usami, Kiyohide; Matsumoto, Riki; Kobayashi, Katsuya; Hitomi, Takefumi; Shimotake, Akihiro; Kikuchi, Takayuki; Matsuhashi, Masao; Kunieda, Takeharu; Mikuni, Nobuhiro; Miyamoto, Susumu; Fukuyama, Hidenao; Takahashi, Ryosuke; Ikeda, Akio

    2015-11-01

    Sleep-induced changes in human brain connectivity/excitability and their physiologic basis remain unclear, especially in the frontal lobe. We investigated sleep-induced connectivity and excitability changes in 11 patients who underwent chronic implantation of subdural electrodes for epilepsy surgery. Single-pulse electrical stimuli were directly injected to a part of the cortices, and cortico-cortical evoked potentials (CCEPs) and CCEP-related high-gamma activities (HGA: 100-200 Hz) were recorded from adjacent and remote cortices as proxies of effective connectivity and induced neuronal activity, respectively. HGA power during the initial CCEP component (N1) correlated with the N1 size itself across all states investigated. The degree of cortical connectivity and excitability changed during sleep depending on sleep stage, approximately showing dichotomy of awake vs. non-rapid eye movement (REM) [NREM] sleep. On the other hand, REM sleep partly had properties of both awake and NREM sleep, placing itself in the intermediate state between them. Compared with the awake state, single-pulse stimulation especially during NREM sleep induced increased connectivity (N1 size) and neuronal excitability (HGA increase at N1), which was immediately followed by intense inhibition (HGA decrease). The HGA decrease was temporally followed by the N2 peak (the second CCEP component), and then by HGA re-increase during sleep across all lobes. This HGA rebound or re-increase of neuronal synchrony was largest in the frontal lobe compared with the other lobes. These properties of sleep-induced changes of the cortex may be related to unconsciousness during sleep and frequent nocturnal seizures in frontal lobe epilepsy.

  7. The Circadian Clock Gene Period1 Connects the Molecular Clock to Neural Activity in the Suprachiasmatic Nucleus

    PubMed Central

    Block, Gene D.; Colwell, Christopher S.

    2015-01-01

    The neural activity patterns of suprachiasmatic nucleus (SCN) neurons are dynamically regulated throughout the circadian cycle with highest levels of spontaneous action potentials during the day. These rhythms in electrical activity are critical for the function of the circadian timing system and yet the mechanisms by which the molecular clockwork drives changes in the membrane are not well understood. In this study, we sought to examine how the clock gene Period1 (Per1) regulates the electrical activity in the mouse SCN by transiently and selectively decreasing levels of PER1 through use of an antisense oligodeoxynucleotide. We found that this treatment effectively reduced SCN neural activity. Direct current injection to restore the normal membrane potential partially, but not completely, returned firing rate to normal levels. The antisense treatment also reduced baseline [Ca2+]i levels as measured by Fura2 imaging technique. Whole cell patch clamp recording techniques were used to examine which specific potassium currents were altered by the treatment. These recordings revealed that the large conductance [Ca2+]i-activated potassium currents were reduced in antisense-treated neurons and that blocking this current mimicked the effects of the anti-sense on SCN firing rate. These results indicate that the circadian clock gene Per1 alters firing rate in SCN neurons and raise the possibility that the large conductance [Ca2+]i-activated channel is one of the targets. PMID:26553726

  8. Intranasal Oxytocin Enhances Connectivity in the Neural Circuitry Supporting Social Motivation and Social Perception in Children with Autism

    PubMed Central

    Gordon, Ilanit; Jack, Allison; Pretzsch, Charlotte M.; Vander Wyk, Brent; Leckman, James F.; Feldman, Ruth; Pelphrey, Kevin A.

    2016-01-01

    Oxytocin (OT) has become a focus in investigations of autism spectrum disorder (ASD). The social deficits that characterize ASD may relate to reduced connectivity between brain sites on the mesolimbic reward pathway (nucleus accumbens; amygdala) that receive OT projections and contribute to social motivation, and cortical sites involved in social perception. Using functional magnetic resonance imaging and a randomized, double blind, placebo-controlled crossover design, we show that OT administration in ASD increases activity in brain regions important for perceiving social-emotional information. Further, OT enhances connectivity between nodes of the brain’s reward and socioemotional processing systems, and does so preferentially for social (versus nonsocial) stimuli. This effect is observed both while viewing coherent versus scrambled biological motion, and while listening to happy versus angry voices. Our findings suggest a mechanism by which intranasal OT may bolster social motivation—one that could, in future, be harnessed to augment behavioral treatments for ASD. PMID:27845765

  9. Toward on-chip functional neuronal networks: computational study on the effect of synaptic connectivity on neural activity.

    PubMed

    Foroushani, Armin Najarpour; Ghafar-Zadeh, Ebrahim

    2014-01-01

    This paper presents a new unified computational-experimental approach to study the role of the synaptic activity on the activity of neurons in the small neuronal networks (NNs). In a neuronal tissue/organ, this question is investigated with higher complexities by recording action potentials from population of neurons in order to find the relationship between connectivity and the recorded activities. In this approach, we study the dynamics of very small cortical neuronal networks, which can be experimentally synthesized on chip with constrained connectivity. Multi-compartmental Hodgkin-Huxley model is used in NEURON software to reproduce cells by extracting the experimental data from the synthesized NNs. We thereafter demonstrate how the type of synaptic activity affects the network response to specific spike train using the simulation results.

  10. A re-assessment of long distance growth and connectivity of neural stem cells after severe spinal cord injury.

    PubMed

    Sharp, Kelli G; Yee, Kelly Matsudaira; Steward, Oswald

    2014-07-01

    As part of the NIH "Facilities of Research Excellence-Spinal Cord Injury" project to support independent replication, we repeated key parts of a study reporting robust engraftment of neural stem cells (NSCs) treated with growth factors after complete spinal cord transection in rats. Rats (n=20) received complete transections at thoracic level 3 (T3) and 2weeks later received NSC transplants in a fibrin matrix with a growth factor cocktail using 2 different transplantation methods (with and without removal of scar tissue). Control rats (n=9) received transections only. Hindlimb locomotor function was assessed with the BBB scale. Nine weeks post injury, reticulospinal tract axons were traced in 6 rats by injecting BDA into the reticular formation. Transplants grew to fill the lesion cavity in most rats although grafts made with scar tissue removal had large central cavities. Grafts blended extensively with host tissue obliterating the astroglial boundary at the cut ends, but in most cases there was a well-defined partition within the graft that separated rostral and caudal parts of the graft. In some cases, the partition contained non-neuronal scar tissue. There was extensive outgrowth of GFP labeled axons from the graft, but there was minimal ingrowth of host axons into the graft revealed by tract tracing and immunocytochemistry for 5HT. There were no statistically significant differences between transplant and control groups in the degree of locomotor recovery. Our results confirm the previous report that NSC transplants can fill lesion cavities and robustly extend axons, but reveal that most grafts do not create a continuous bridge of neural tissue between rostral and caudal segments.

  11. Human Neural Stem Cell Transplantation Rescues Cognitive Defects in APP/PS1 Model of Alzheimer’s Disease by Enhancing Neuronal Connectivity and Metabolic Activity

    PubMed Central

    Li, Xueyuan; Zhu, Hua; Sun, Xicai; Zuo, Fuxing; Lei, Jianfeng; Wang, Zhanjing; Bao, Xinjie; Wang, Renzhi

    2016-01-01

    Alzheimer’s disease (AD), the most frequent type of dementia, is featured by Aβ pathology, neural degeneration and cognitive decline. To date, there is no cure for this disease. Neural stem cell (NSC) transplantation provides new promise for treating AD. Many studies report that intra-hippocampal transplantation of murine NSCs improved cognition in rodents with AD by alleviating neurodegeneration via neuronal complement or replacement. However, few reports examined the potential of human NSC transplantation for AD. In this study, we implanted human brain-derived NSCs (hNSCs) into bilateral hippocampus of an amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic (Tg) mouse model of AD to test the effects of hNSC transplantation on Alzheimer’s behavior and neuropathology. Six weeks later, transplanted hNSCs engrafted into the brains of AD mice, migrated dispersedly in broad brain regions, and some of them differentiated into neural cell types of central nervous system (CNS). The hNSC transplantation restored the recognition, learning and memory deficits but not anxiety tasks in AD mice. Although Aβ plaques were not significantly reduced, the neuronal, synaptic and nerve fiber density was significantly increased in the frontal cortex and hippocampus of hNSC-treated AD mice, suggesting of improved neuronal connectivity in AD brains after hNSC transplantation. Ultrastructural analysis confirmed that synapses and nerve fibers maintained relatively well-structured shapes in these mice. Furthermore, in vivo magnetic resonance spectroscopy (MRS) showed that hNSC-treated mice had notably increased levels of N-acetylaspartate (NAA) and Glu in the frontal cortex and hippocampus, suggesting that neuronal metabolic activity was improved in AD brains after hNSC transplantation. These results suggest that transplanted hNSCs rescued Alzheimer’s cognition by enhancing neuronal connectivity and metabolic activity through a compensation mechanism in APP/PS1 mice. This

  12. Neural networks in psychiatry.

    PubMed

    Hulshoff Pol, Hilleke; Bullmore, Edward

    2013-01-01

    Over the past three decades numerous imaging studies have revealed structural and functional brain abnormalities in patients with neuropsychiatric diseases. These structural and functional brain changes are frequently found in multiple, discrete brain areas and may include frontal, temporal, parietal and occipital cortices as well as subcortical brain areas. However, while the structural and functional brain changes in patients are found in anatomically separated areas, these are connected through (long distance) fibers, together forming networks. Thus, instead of representing separate (patho)-physiological entities, these local changes in the brains of patients with psychiatric disorders may in fact represent different parts of the same 'elephant', i.e., the (altered) brain network. Recent developments in quantitative analysis of complex networks, based largely on graph theory, have revealed that the brain's structure and functions have features of complex networks. Here we briefly introduce several recent developments in neural network studies relevant for psychiatry, including from the 2013 special issue on Neural Networks in Psychiatry in European Neuropsychopharmacology. We conclude that new insights will be revealed from the neural network approaches to brain imaging in psychiatry that hold the potential to find causes for psychiatric disorders and (preventive) treatments in the future.

  13. Functional connectivity associated with hand shape generation: Imitating novel hand postures and pantomiming tool grips challenge different nodes of a shared neural network.

    PubMed

    Vingerhoets, Guy; Clauwaert, Amanda

    2015-09-01

    Clinical research suggests that imitating meaningless hand postures and pantomiming tool-related hand shapes rely on different neuroanatomical substrates. We investigated the BOLD responses to different tasks of hand posture generation in 14 right handed volunteers. Conjunction and contrast analyses were applied to select regions that were either common or sensitive to imitation and/or pantomime tasks. The selection included bilateral areas of medial and lateral extrastriate cortex, superior and inferior regions of the lateral and medial parietal lobe, primary motor and somatosensory cortex, and left dorsolateral prefrontal, and ventral and dorsal premotor cortices. Functional connectivity analysis revealed that during hand shape generation the BOLD-response of every region correlated significantly with every other area regardless of the hand posture task performed, although some regions were more involved in some hand postures tasks than others. Based on between-task differences in functional connectivity we predict that imitation of novel hand postures would suffer most from left superior parietal disruption and that pantomiming hand postures for tools would be impaired following left frontal damage, whereas both tasks would be sensitive to inferior parietal dysfunction. We also unveiled that posterior temporal cortex is committed to pantomiming tool grips, but that the involvement of this region to the execution of hand postures in general appears limited. We conclude that the generation of hand postures is subserved by a highly interconnected task-general neural network. Depending on task requirements some nodes/connections will be more engaged than others and these task-sensitive findings are in general agreement with recent lesion studies.

  14. Heath monitoring of a glass transfer robot in the mass production line of liquid crystal display using abnormal operating sounds based on wavelet packet transform and artificial neural network

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Youl; Lee, Young-Joon; Lee, Sang-Kwon

    2012-07-01

    This paper presents the fault detect method of a moving transfer robot in the mass production line of liquid crystal display (LCD) manufacturers based on the wavelet packet transform (WPT) for feature extraction and the artificial neural network (ANN) for fault classification. Most of fault detection methods in a mechanical system have been researched based on the vibration signal. Unlike the existing methodologies, this study aims to minimize the uncertainty of a field engineer's decision making process for determining whether a fault is present or not based on the human auditory perception by developing a fault diagnosis system that uses the abnormal operating sound radiated from a moving transfer robot as a source signal. Abnormal operating sound radiated from a moving transfer robot has been used for this work instead of other source signals such as vibration, acoustic emission, electrical signal, etc. Its advantage as a source signal makes it possible to monitor the status of multiple faults by using only a microphone despite a relatively low sensitivity. In the application of ANN, since it is important to minimize the error of trained ANN in terms of the accuracy of fault diagnosis logic, in the paper, the number of input and target data samples was increased through a regeneration process based on statistical properties, and then the uncorrelated nodes in the input vector were also removed to improve the orthogonality of the input vector based on the entropy based feature selection method. Consequently, it can be concluded that the abnormal operating sound is sufficiently useful as a source signal for the fault diagnosis of mechanical components as well as other source signals.

  15. Abnormal structure and functional connectivity of the anterior insula at pain-free periovulation is associated with perceived pain during menstruation.

    PubMed

    Dun, Wang-Huan; Yang, Jing; Yang, Ling; Ding, Dun; Ma, Xue-Ying; Liang, Feng-Li; von Deneen, Karen M; Ma, Shao-Hui; Xu, Xiao-Ling; Liu, Jixin; Zhang, Ming

    2016-11-10

    Neuroimaging studies have demonstrated the critical role of the insula in pain pathways and its close relation with the perceived intensity of nociceptive stimuli. We aimed to identify the structural and functional characteristics of the insula during periovulatory phase in women with primary dysmenorrhea (PDM), and further investigate its association with the intensity of perceived pain during menstruation. Optimized voxel-based morphometry and functional connectivity (FC) analyses were applied by using 3-dimensional T1-weighted and resting functional magnetic resonance imaging (fMRI) in 36 patients at the peri-ovulation phase and 29 age-, education-, and gender-matched healthy controls (HC). A visual analogue scale (VAS) was used to examine the intensity of the abdominal pain at periovulation and menstruation. In our results, PDM patients had significant higher VAS-rating during menstruaion than periovulation. Compared with the HC, PDM patients had lower gray matter density in the left anterior insula (aINS). Taken the left aINS as a seed region, we further found hypoconnectivity between aINS and medial prefrontal cortex (mPFC), which showed negative relation with the VAS during menstruation. As the aINS is a key site of the salience network (SN) and the mPFC is a critical region in the default mode network (DMN), it's implicated a trait-related central-alteration that communications between pain attention and perception networks were disrupted without the ongoing menstrual pain. Moreover, result of correlation analysis, at least in part, suggested a possible role of altered FC (pain-free period) in predicting pain perception (menstruation).

  16. Leukocyte abnormalities.

    PubMed

    Gabig, T G

    1980-07-01

    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  17. Limitations of short range Mexican hat connection for driving target selection in a 2D neural field: activity suppression and deviation from input stimuli

    PubMed Central

    Mégardon, Geoffrey; Tandonnet, Christophe; Sumner, Petroc; Guillaume, Alain

    2015-01-01

    Dynamic Neural Field models (DNF) often use a kernel of connection with short range excitation and long range inhibition. This organization has been suggested as a model for brain structures or for artificial systems involved in winner-take-all processes such as saliency localization, perceptual decision or target/action selection. A good example of such a DNF is the superior colliculus (SC), a key structure for eye movements. Recent results suggest that the superficial layers of the SC (SCs) exhibit relatively short range inhibition with a longer time constant than excitation. The aim of the present study was to further examine the properties of a DNF with such an inhibition pattern in the context of target selection. First we tested the effects of stimulus size and shape on when and where self-maintained clusters of firing neurons appeared, using three variants of the model. In each model variant, small stimuli led to rapid formation of a spiking cluster, a range of medium sizes led to the suppression of any activity on the network and hence to no target selection, while larger sizes led to delayed selection of multiple loci. Second, we tested the model with two stimuli separated by a varying distance. Again single, none, or multiple spiking clusters could occur, depending on distance and relative stimulus strength. For short distances, activity attracted toward the strongest stimulus, reminiscent of well-known behavioral data for saccadic eye movements, while for larger distances repulsion away from the second stimulus occurred. All these properties predicted by the model suggest that the SCs, or any other neural structure thought to implement a short range MH, is an imperfect winner-take-all system. Although, those properties call for systematic testing, the discussion gathers neurophysiological and behavioral data suggesting that such properties are indeed present in target selection for saccadic eye movements. PMID:26539103

  18. Neurophysiological assessment of neural network plasticity and connectivity: Progress towards early functional biomarkers for disease interception therapies in Alzheimer's disease.

    PubMed

    Walsh, C; Drinkenburg, W H I M; Ahnaou, A

    2017-02-01

    Despite a great deal of research into Alzheimer's disease (AD) over the last 20 years, an effective treatment to halt or slow its progression has yet to be developed. With many aspects of the disease progression still to be elucidated, focus has shifted from reducing levels of amyloid β (Aβ) in the brains of AD patients towards tau, another pathology, which initiates much earlier in deeper brainstem networks and is thought to propagate via cell-to-cell processes prior to the onset of amyloid pathology and cognitive impairments. In-vitro, ex-vivo molecular biology/biochemistry read-outs, and various transgenic animal models have been developed, yet clinical failures have highlighted a clear disconnect and inadequate use of such animal models in translational research across species. AD pathology is now estimated to begin at least 10-20 years before clinical symptoms, and imaging and cerebrospinal fluid biomarkers are leading the way in assessing the disease progression at a stage where neuronal damage has already occurred. Here, we emphasize the relevance of assessing early disruptions in network connectivity and plasticity that occur before neuropathological damage and progressive memory dysfunction, which can have high translational value for discovery of pre-symptomatic AD biomarkers and early mechanism-based disease interception therapeutics.

  19. Detection of preclinical neural dysfunction from functional connectivity graphs derived from task fMRI. An example from degeneration.

    PubMed

    Vives-Gilabert, Yolanda; Abdulkadir, Ahmed; Kaller, Christoph P; Mader, Wolfgang; Wolf, Robert C; Schelter, Björn; Klöppel, Stefan

    2013-12-30

    The early, preferably pre-clinical, identification of neurodegenerative diseases is important as treatment will be most successful before substantial neuronal loss. Here, we reasoned that functional brain changes as measured using functional magnetic resonance imaging (fMRI) will precede neurodegeneration. Three independent cohorts of patients with the genetic mutation leading to Huntington's Disease (HD) but without any clinical symptoms and matched controls performed three different fMRI tasks: Sequential finger tapping engaged the motor system, which is primarily affected by HD, whereas a working-memory task and a task aiming to induce irritation represented the range of low- and high-level cognitive functions also affected by HD. Each diagnostic group of every cohort included 11-16 subjects. After segmentation into 76 cortical and 14 subcortical regions, we extracted functional connectivity patterns through pairwise correlation between the signals in the regions. The resulting coefficients were directly embedded as input to a pattern classifier aiming to separate controls from gene mutation carriers. Alternatively, graph-theory measures such as degree and clustering coefficient were used as features for the discrimination. Classification accuracy never outperformed the accuracy of a grouping based on parameter estimates from a general-linear model approach or a grouping based on features extracted from anatomical images as reported in a previous analysis. Despite good within-subject stability between two runs of the same task, a high between-subject variability led to chance-level accuracy. These results indicate that standard graph-metrics are insufficient to detect subtle disease related changes when within-group variability is high. Developing methods that reduce variability related to noise should be the focus of future studies.

  20. Sculpting Neural Circuits by Axon and Dendrite Pruning

    PubMed Central

    Riccomagno, Martin M.; Kolodkin, Alex L.

    2015-01-01

    The assembly of functional neural circuits requires the combined action of progressive and regressive events. Regressive events encompass a variety of inhibitory developmental processes, including axon and dendrite pruning, which facilitate the removal of exuberant neuronal connections. Most axon pruning involves the removal of axons that had already made synaptic connections, thus, axon pruning is tightly associated with synapse elimination. In many instances these developmental processes are regulated by the interplay between neurons and glial cells that act instructively during neural remodeling. Owing to the importance of axon and dendritic pruning, these remodeling events require precise spatial and temporal control, and this is achieved by a range of distinct molecular mechanisms. Disruption of these mechanisms results in abnormal pruning, which has been linked to brain dysfunction. Therefore, understanding the mechanisms of axon and dendritic pruning will be instrumental in advancing our knowledge of neural disease and mental disorders. PMID:26436703

  1. Largely typical patterns of resting-state functional connectivity in high-functioning adults with autism.

    PubMed

    Tyszka, J Michael; Kennedy, Daniel P; Paul, Lynn K; Adolphs, Ralph

    2014-07-01

    A leading hypothesis for the neural basis of autism postulates globally abnormal brain connectivity, yet the majority of studies report effects that are either very weak, inconsistent across studies, or explain results incompletely. Here we apply multiple analytical approaches to resting-state BOLD-fMRI data at the whole-brain level. Neurotypical and high-functioning adults with autism displayed very similar patterns and strengths of resting-state connectivity. We found only limited evidence in autism for abnormal resting-state connectivity at the regional level and no evidence for altered connectivity at the whole-brain level. Regional abnormalities in functional connectivity in autism spectrum disorder were primarily in the frontal and temporal cortices. Within these regions, functional connectivity with other brain regions was almost exclusively lower in the autism group. Further examination showed that even small amounts of head motion during scanning have large effects on functional connectivity measures and must be controlled carefully. Consequently, we suggest caution in the interpretation of apparent positive findings until all possible confounding effects can be ruled out. Additionally, we do not rule out the possibility that abnormal connectivity in autism is evident at the microstructural synaptic level, which may not be reflected sensitively in hemodynamic changes measured with BOLD-fMRI.

  2. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules.

    PubMed

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-10-14

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial-temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional-integral-derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions.

  3. Self-Tuning Fully-Connected PID Neural Network System for Distributed Temperature Sensing and Control of Instrument with Multi-Modules

    PubMed Central

    Zhang, Zhen; Ma, Cheng; Zhu, Rong

    2016-01-01

    High integration of multi-functional instruments raises a critical issue in temperature control that is challenging due to its spatial–temporal complexity. This paper presents a multi-input multi-output (MIMO) self-tuning temperature sensing and control system for efficiently modulating the temperature environment within a multi-module instrument. The smart system ensures that the internal temperature of the instrument converges to a target without the need of a system model, thus making the control robust. The system consists of a fully-connected proportional–integral–derivative (PID) neural network (FCPIDNN) and an on-line self-tuning module. The experimental results show that the presented system can effectively control the internal temperature under various mission scenarios, in particular, it is able to self-reconfigure upon actuator failure. The system provides a new scheme for a complex and time-variant MIMO control system which can be widely applied for the distributed measurement and control of the environment in instruments, integration electronics, and house constructions. PMID:27754436

  4. Stimulation of adenosine A2A receptors reduces intracellular cholesterol accumulation and rescues mitochondrial abnormalities in human neural cell models of Niemann-Pick C1.

    PubMed

    Ferrante, A; De Nuccio, C; Pepponi, R; Visentin, S; Martire, A; Bernardo, A; Minghetti, L; Popoli, P

    2016-04-01

    Niemann Pick C 1 (NPC1) disease is an incurable, devastating lysosomal-lipid storage disorder characterized by hepatosplenomegaly, progressive neurological impairment and early death. Current treatments are very limited and the research of new therapeutic targets is thus mandatory. We recently showed that the stimulation of adenosine A2A receptors (A2ARs) rescues the abnormal phenotype of fibroblasts from NPC1 patients suggesting that A2AR agonists could represent a therapeutic option for this disease. However, since all NPC1 patients develop severe neurological symptoms which can be ascribed to the complex pathology occurring in both neurons and oligodendrocytes, in the present paper we tested the effects of the A2AR agonist CGS21680 in human neuronal and oligodendroglial NPC1 cell lines (i.e. neuroblastoma SH-SY5Y and oligodendroglial MO3.13 transiently transfected with NPC1 small interfering RNA). The down-regulation of the NPC1 protein effectively resulted in intracellular cholesterol accumulation and altered mitochondrial membrane potential. Both effects were significantly attenuated by CGS21680 (500 nM). The protective effects of CGS were prevented by the selective A2AR antagonist ZM241385 (500 nM). The involvement of calcium modulation was demonstrated by the ability of Bapta-AM (5-7 μM) in reverting the effect of CGS. The A2A-dependent activity was prevented by the PKA-inhibitor KT5720, thus showing the involvement of the cAMP/PKA signaling. These findings provide a clear in vitro proof of concept that A2AR agonists are promising potential drugs for NPC disease.

  5. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human autism core symptoms and related neural morphofunctional abnormalities

    PubMed Central

    Wöhr, M; Orduz, D; Gregory, P; Moreno, H; Khan, U; Vörckel, K J; Wolfer, D P; Welzl, H; Gall, D; Schiffmann, S N; Schwaller, B

    2015-01-01

    Gene mutations and gene copy number variants are associated with autism spectrum disorders (ASDs). Affected gene products are often part of signaling networks implicated in synapse formation and/or function leading to alterations in the excitation/inhibition (E/I) balance. Although the network of parvalbumin (PV)-expressing interneurons has gained particular attention in ASD, little is known on PV's putative role with respect to ASD. Genetic mouse models represent powerful translational tools for studying the role of genetic and neurobiological factors underlying ASD. Here, we report that PV knockout mice (PV−/−) display behavioral phenotypes with relevance to all three core symptoms present in human ASD patients: abnormal reciprocal social interactions, impairments in communication and repetitive and stereotyped patterns of behavior. PV-depleted mice also showed several signs of ASD-associated comorbidities, such as reduced pain sensitivity and startle responses yet increased seizure susceptibility, whereas no evidence for behavioral phenotypes with relevance to anxiety, depression and schizophrenia was obtained. Reduced social interactions and communication were also observed in heterozygous (PV+/−) mice characterized by lower PV expression levels, indicating that merely a decrease in PV levels might be sufficient to elicit core ASD-like deficits. Structural magnetic resonance imaging measurements in PV−/− and PV+/− mice further revealed ASD-associated developmental neuroanatomical changes, including transient cortical hypertrophy and cerebellar hypoplasia. Electrophysiological experiments finally demonstrated that the E/I balance in these mice is altered by modification of both inhibitory and excitatory synaptic transmission. On the basis of the reported changes in PV expression patterns in several, mostly genetic rodent models of ASD, we propose that in these models downregulation of PV might represent one of the points of convergence, thus

  6. Nonlinear Neural Network Oscillator.

    DTIC Science & Technology

    A nonlinear oscillator (10) includes a neural network (12) having at least one output (12a) for outputting a one dimensional vector. The neural ... neural network and the input of the input layer for modifying a magnitude and/or a polarity of the one dimensional output vector prior to the sample of...first or a second direction. Connection weights of the neural network are trained on a deterministic sequence of data from a chaotic source or may be a

  7. The spacing principle for unlearning abnormal neuronal synchrony.

    PubMed

    Popovych, Oleksandr V; Xenakis, Markos N; Tass, Peter A

    2015-01-01

    Desynchronizing stimulation techniques were developed to specifically counteract abnormal neuronal synchronization relevant to several neurological and psychiatric disorders. The goal of our approach is to achieve an anti-kindling, where the affected neural networks unlearn abnormal synaptic connectivity and, hence, abnormal neuronal synchrony, by means of desynchronizing stimulation, in particular, Coordinated Reset (CR) stimulation. As known from neuroscience, psychology and education, learning effects can be enhanced by means of the spacing principle, i.e. by delivering repeated stimuli spaced by pauses as opposed to delivering a massed stimulus (in a single long stimulation session). To illustrate that the spacing principle may boost the anti-kindling effect of CR neuromodulation, in this computational study we carry this approach to extremes. To this end, we deliver spaced CR neuromodulation at particularly weak intensities which render permanently delivered CR neuromodulation ineffective. Intriguingly, spaced CR neuromodulation at these particularly weak intensities effectively induces an anti-kindling. In fact, the spacing principle enables the neuronal population to successively hop from one attractor to another one, finally approaching attractors characterized by down-regulated synaptic connectivity and synchrony. Our computational results might open up novel opportunities to effectively induce sustained desynchronization at particularly weak stimulation intensities, thereby avoiding side effects, e.g., in the case of deep brain stimulation.

  8. Probabilistic Analysis of Neural Networks

    DTIC Science & Technology

    1990-11-26

    provide an understanding of the basic mechanisms of learning and recognition in neural networks . The main areas of progress were analysis of neural ... networks models, study of network connectivity, and investigation of computer network theory.

  9. The developmental cognitive neuroscience of functional connectivity.

    PubMed

    Stevens, Michael C

    2009-06-01

    Developmental cognitive neuroscience is a rapidly growing field that examines the relationships between biological development and cognitive ability. In the past decade, there has been ongoing refinement of concepts and methodology related to the study of 'functional connectivity' among distributed brain regions believed to underlie cognition and behavioral control. Due to the recent availability of relatively easy-to-use tools for functional connectivity analysis, there has been a sharp upsurge of studies that seek to characterize normal and psychopathologically abnormal brain functional integration. However, relatively few studies have applied functional and effective connectivity analysis techniques to developmental cognitive neuroscience. Functional and effective connectivity analysis methods are ideally suited to advance our understanding of the neural substrates of cognitive development, particularly in understanding how and why changes in the functional 'wiring' of neural networks promotes optimal cognitive control throughout development. The purpose of this review is to summarize the central concepts, methods, and findings of functional integration neuroimaging research to discuss key questions in the field of developmental cognitive neuroscience. These ideas will be presented within a context that merges relevant concepts and proposals from different developmental theorists. The review will outline a few general predictions about likely relationships between typical 'executive' cognitive maturation and changes in brain network functional integration during adolescence. Although not exhaustive, this conceptual review also will showcase some of recent findings that have emerged to support these predictions.

  10. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  11. Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease

    PubMed Central

    Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman

    2014-01-01

    Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970

  12. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem.

  13. Neural networks underlying implicit and explicit moral evaluations in psychopathy

    PubMed Central

    Yoder, K J; Harenski, C; Kiehl, K A; Decety, J

    2015-01-01

    Psychopathy, characterized by symptoms of emotional detachment, reduced guilt and empathy and a callous disregard for the rights and welfare of others, is a strong risk factor for immoral behavior. Psychopathy is also marked by abnormal attention with downstream consequences on emotional processing. To examine the influence of task demands on moral evaluation in psychopathy, functional magnetic resonance imaging was used to measure neural response and functional connectivity in 88 incarcerated male subjects (28 with Psychopathy Checklist Revised (PCL-R) scores ⩾30) while they viewed dynamic visual stimuli depicting interpersonal harm and interpersonal assistance in two contexts, implicit and explicit. During the implicit task, high psychopathy was associated with reduced activity in the dorsolateral prefrontal cortex and caudate when viewing harmful compared with helpful social interactions. Functional connectivity seeded in the right amygdala and right temporoparietal junction revealed decreased coupling with the anterior cingulate cortex (ACC), anterior insula, striatum and ventromedial prefrontal cortex. In the explicit task, higher trait psychopathy predicted reduced signal change in ACC and amygdala, accompanied by decreased functional connectivity to temporal pole, insula and striatum, but increased connectivity with dorsal ACC. Psychopathy did not influence behavioral performance in either task, despite differences in neural activity and functional connectivity. These findings provide the first direct evidence that hemodynamic activity and neural coupling within the salience network are disrupted in psychopathy, and that the effects of psychopathy on moral evaluation are influenced by attentional demands. PMID:26305476

  14. Neural networks underlying implicit and explicit moral evaluations in psychopathy.

    PubMed

    Yoder, K J; Harenski, C; Kiehl, K A; Decety, J

    2015-08-25

    Psychopathy, characterized by symptoms of emotional detachment, reduced guilt and empathy and a callous disregard for the rights and welfare of others, is a strong risk factor for immoral behavior. Psychopathy is also marked by abnormal attention with downstream consequences on emotional processing. To examine the influence of task demands on moral evaluation in psychopathy, functional magnetic resonance imaging was used to measure neural response and functional connectivity in 88 incarcerated male subjects (28 with Psychopathy Checklist Revised (PCL-R) scores ⩾ 30) while they viewed dynamic visual stimuli depicting interpersonal harm and interpersonal assistance in two contexts, implicit and explicit. During the implicit task, high psychopathy was associated with reduced activity in the dorsolateral prefrontal cortex and caudate when viewing harmful compared with helpful social interactions. Functional connectivity seeded in the right amygdala and right temporoparietal junction revealed decreased coupling with the anterior cingulate cortex (ACC), anterior insula, striatum and ventromedial prefrontal cortex. In the explicit task, higher trait psychopathy predicted reduced signal change in ACC and amygdala, accompanied by decreased functional connectivity to temporal pole, insula and striatum, but increased connectivity with dorsal ACC. Psychopathy did not influence behavioral performance in either task, despite differences in neural activity and functional connectivity. These findings provide the first direct evidence that hemodynamic activity and neural coupling within the salience network are disrupted in psychopathy, and that the effects of psychopathy on moral evaluation are influenced by attentional demands.

  15. Modular, Hierarchical Learning By Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Baldi, Pierre F.; Toomarian, Nikzad

    1996-01-01

    Modular and hierarchical approach to supervised learning by artificial neural networks leads to neural networks more structured than neural networks in which all neurons fully interconnected. These networks utilize general feedforward flow of information and sparse recurrent connections to achieve dynamical effects. The modular organization, sparsity of modular units and connections, and fact that learning is much more circumscribed are all attractive features for designing neural-network hardware. Learning streamlined by imitating some aspects of biological neural networks.

  16. Large brains in autism: the challenge of pervasive abnormality.

    PubMed

    Herbert, Martha R

    2005-10-01

    The most replicated finding in autism neuroanatomy-a tendency to unusually large brains-has seemed paradoxical in relation to the specificity of the abnormalities in three behavioral domains that define autism. We now know a range of things about this phenomenon, including that brains in autism have a growth spurt shortly after birth and then slow in growth a few short years afterward, that only younger but not older brains are larger in autism than in controls, that white matter contributes disproportionately to this volume increase and in a nonuniform pattern suggesting postnatal pathology, that functional connectivity among regions of autistic brains is diminished, and that neuroinflammation (including microgliosis and astrogliosis) appears to be present in autistic brain tissue from childhood through adulthood. Alongside these pervasive brain tissue and functional abnormalities, there have arisen theories of pervasive or widespread neural information processing or signal coordination abnormalities (such as weak central coherence, impaired complex processing, and underconnectivity), which are argued to underlie the specific observable behavioral features of autism. This convergence of findings and models suggests that a systems- and chronic disease-based reformulation of function and pathophysiology in autism needs to be considered, and it opens the possibility for new treatment targets.

  17. Skeletal abnormalities in homocystinuria.

    PubMed Central

    Brenton, D. P.

    1977-01-01

    The skeletal changes of thirty-four patients with the biochemical and clinical features of cystathionine synthase deficiency are described. It is emphasized that there is clinical evidence of excessive bone growth and the formation for bone which is structurally weaker than normal. The similarities and differences between this condition and Marfan's syndrome are stressed and the possible nature of the connective tissue defect leading to the skeletal changes discussed. The most characteristic skeletal changes in homocystinuria are the skeletal disproportion (pubis-heel length greater than crown-pubis length), the abnormal vertebrae, sternal deformities, genu valgum and large metaphyses and epiphyses. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 PMID:917963

  18. Generalized Adaptive Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1993-01-01

    Mathematical model of supervised learning by artificial neural network provides for simultaneous adjustments of both temperatures of neurons and synaptic weights, and includes feedback as well as feedforward synaptic connections. Extension of mathematical model described in "Adaptive Neurons For Artificial Neural Networks" (NPO-17803). Dynamics of neural network represented in new model by less-restrictive continuous formalism.

  19. Evolvable Neural Software System

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A.

    2009-01-01

    The Evolvable Neural Software System (ENSS) is composed of sets of Neural Basis Functions (NBFs), which can be totally autonomously created and removed according to the changing needs and requirements of the software system. The resulting structure is both hierarchical and self-similar in that a given set of NBFs may have a ruler NBF, which in turn communicates with other sets of NBFs. These sets of NBFs may function as nodes to a ruler node, which are also NBF constructs. In this manner, the synthetic neural system can exhibit the complexity, three-dimensional connectivity, and adaptability of biological neural systems. An added advantage of ENSS over a natural neural system is its ability to modify its core genetic code in response to environmental changes as reflected in needs and requirements. The neural system is fully adaptive and evolvable and is trainable before release. It continues to rewire itself while on the job. The NBF is a unique, bilevel intelligence neural system composed of a higher-level heuristic neural system (HNS) and a lower-level, autonomic neural system (ANS). Taken together, the HNS and the ANS give each NBF the complete capabilities of a biological neural system to match sensory inputs to actions. Another feature of the NBF is the Evolvable Neural Interface (ENI), which links the HNS and ANS. The ENI solves the interface problem between these two systems by actively adapting and evolving from a primitive initial state (a Neural Thread) to a complicated, operational ENI and successfully adapting to a training sequence of sensory input. This simulates the adaptation of a biological neural system in a developmental phase. Within the greater multi-NBF and multi-node ENSS, self-similar ENI s provide the basis for inter-NBF and inter-node connectivity.

  20. Determination of effective brain connectivity from functional connectivity with application to resting state connectivities

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Sarkar, S.; Pandejee, Grishma Mehta; Henderson, J. A.

    2014-07-01

    Neural field theory insights are used to derive effective brain connectivity matrices from the functional connectivity matrix defined by activity covariances. The symmetric case is exactly solved for a resting state system driven by white noise, in which strengths of connections, often termed effective connectivities, are inferred from functional data; these include strengths of connections that are underestimated or not detected by anatomical imaging. Proximity to criticality is calculated and found to be consistent with estimates obtainable from other methods. Links between anatomical, effective, and functional connectivity and resting state activity are quantified, with applicability to other complex networks. Proof-of-principle results are illustrated using published experimental data on anatomical connectivity and resting state functional connectivity. In particular, it is shown that functional connection matrices can be used to uncover the existence and strength of connections that are missed from anatomical connection matrices, including interhemispheric connections that are difficult to track with techniques such as diffusion spectrum imaging.

  1. Abnormal insula functional network is associated with episodic memory decline in amnestic mild cognitive impairment.

    PubMed

    Xie, Chunming; Bai, Feng; Yu, Hui; Shi, Yongmei; Yuan, Yonggui; Chen, Gang; Li, Wenjun; Chen, Guangyu; Zhang, Zhijun; Li, Shi-Jiang

    2012-10-15

    Abnormalities of functional connectivity in the default mode network (DMN) recently have been reported in patients with amnestic mild cognitive impairment (aMCI), Alzheimer's disease (AD) or other psychiatric diseases. As such, these abnormalities may be epiphenomena instead of playing a causal role in AD progression. To date, few studies have investigated specific brain networks, which extend beyond the DMN involved in the early AD stages, especially in aMCI. The insula is one site affected by early pathological changes in AD and is a crucial hub of the human brain networks. Currently, we explored the contribution of the insula networks to cognitive performance in aMCI patients. Thirty aMCI and 26 cognitively normal (CN) subjects participated in this study. Intrinsic connectivity of the insula networks was measured, using the resting-state functional connectivity fMRI approach. We examined the differential connectivity of insula networks between groups, and the neural correlation between the altered insula networks connectivity and the cognitive performance in aMCI patients and CN subjects, respectively. Insula subregional volumes were also investigated. AMCI subjects, when compared to CN subjects, showed significantly reduced right posterior insula volumes, cognitive deficits and disrupted intrinsic connectivity of the insula networks. Specifically, decreased intrinsic connectivity was primarily located in the frontal-parietal network and the cingulo-opercular network, including the anterior prefrontal cortex (aPFC), anterior cingulate cortex, operculum, inferior parietal cortex and precuneus. Increased intrinsic connectivity was primarily situated in the visual-auditory pathway, which included the posterior superior temporal gyrus and middle occipital gyrus. Conjunction analysis was performed; and significantly decreased intrinsic connectivity in the overlapping regions of the anterior and posterior insula networks, including the bilateral aPFC, left

  2. Rapid Postnatal Expansion of Neural Networks Occurs in an Environment of Altered Neurovascular and Neurometabolic Coupling

    PubMed Central

    Ma, Ying; Shaik, Mohammed A.; Kim, Sharon H.

    2016-01-01

    In the adult brain, increases in neural activity lead to increases in local blood flow. However, many prior measurements of functional hemodynamics in the neonatal brain, including functional magnetic resonance imaging (fMRI) in human infants, have noted altered and even inverted hemodynamic responses to stimuli. Here, we demonstrate that localized neural activity in early postnatal mice does not evoke blood flow increases as in the adult brain, and elucidate the neural and metabolic correlates of these altered functional hemodynamics as a function of developmental age. Using wide-field GCaMP imaging, the development of neural responses to somatosensory stimulus is visualized over the entire bilaterally exposed cortex. Neural responses are observed to progress from tightly localized, unilateral maps to bilateral responses as interhemispheric connectivity becomes established. Simultaneous hemodynamic imaging confirms that spatiotemporally coupled functional hyperemia is not present during these early stages of postnatal brain development, and develops gradually as cortical connectivity is established. Exploring the consequences of this lack of functional hyperemia, measurements of oxidative metabolism via flavoprotein fluorescence suggest that neural activity depletes local oxygen to below baseline levels at early developmental stages. Analysis of hemoglobin oxygenation dynamics at the same age confirms oxygen depletion for both stimulus-evoked and resting-state neural activity. This state of unmet metabolic demand during neural network development poses new questions about the mechanisms of neurovascular development and its role in both normal and abnormal brain development. These results also provide important insights for the interpretation of fMRI studies of the developing brain. SIGNIFICANCE STATEMENT This work demonstrates that the postnatal development of neuronal connectivity is accompanied by development of the mechanisms that regulate local blood flow in

  3. Growth-Related Neural Reorganization and the Autism Phenotype: A Test of the Hypothesis that Altered Brain Growth Leads to Altered Connectivity

    ERIC Educational Resources Information Center

    Lewis, John D.; Elman, Jeffrey L.

    2008-01-01

    Theoretical considerations, and findings from computational modeling, comparative neuroanatomy and developmental neuroscience, motivate the hypothesis that a deviant brain growth trajectory will lead to deviant patterns of change in cortico-cortical connectivity. Differences in brain size during development will alter the relative cost and…

  4. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity

    PubMed Central

    Meredith, M. Alex; Clemo, H. Ruth; Corley, Sarah B.; Chabot, Nicole; Lomber, Stephen G.

    2016-01-01

    Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were ‘unmasked.’ These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices. PMID:26724756

  5. Epileptic Seizures From Abnormal Networks: Why Some Seizures Defy Predictability

    PubMed Central

    Azhar, Feraz; Kudela, Pawel; Bergey, Gregory K.; Franaszczuk, Piotr J.

    2011-01-01

    Summary Seizure prediction has proven to be difficult in clinically realistic environments. Is it possible that fluctuations in cortical firing could influence the onset of seizures in an ictal zone? To test this, we have now used neural network simulations in a computational model of cortex having a total of 65,536 neurons with intercellular wiring patterned after histological data. A spatially distributed Poisson driven background input representing the activity of neighboring cortex affected 1% of the neurons. Gamma distributions were fit to the interbursting phase intervals, a non-parametric test for randomness was applied, and a dynamical systems analysis was performed to search for period-1 orbits in the intervals. The non-parametric analysis suggests that intervals are being drawn at random from their underlying joint distribution and the dynamical systems analysis is consistent with a nondeterministic dynamical interpretation of the generation of bursting phases. These results imply that in a region of cortex with abnormal connectivity analogous to a seizure focus, it is possible to initiate seizure activity with fluctuations of input from the surrounding cortical regions. These findings suggest one possibility for ictal generation from abnormal focal epileptic networks. This mechanism additionally could help explain the difficulty in predicting partial seizures in some patients. PMID:22169211

  6. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  7. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  8. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  9. Skeletal limb abnormalities

    MedlinePlus

    ... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...

  10. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.

    PubMed

    Riera-Fernández, Pablo; Munteanu, Cristian R; Escobar, Manuel; Prado-Prado, Francisco; Martín-Romalde, Raquel; Pereira, David; Villalba, Karen; Duardo-Sánchez, Aliuska; González-Díaz, Humberto

    2012-01-21

    Graph and Complex Network theory is expanding its application to different levels of matter organization such as molecular, biological, technological, and social networks. A network is a set of items, usually called nodes, with connections between them, which are called links or edges. There are many different experimental and/or theoretical methods to assign node-node links depending on the type of network we want to construct. Unfortunately, the use of a method for experimental reevaluation of the entire network is very expensive in terms of time and resources; thus the development of cheaper theoretical methods is of major importance. In addition, different methods to link nodes in the same type of network are not totally accurate in such a way that they do not always coincide. In this sense, the development of computational methods useful to evaluate connectivity quality in complex networks (a posteriori of network assemble) is a goal of major interest. In this work, we report for the first time a new method to calculate numerical quality scores S(L(ij)) for network links L(ij) (connectivity) based on the Markov-Shannon Entropy indices of order k-th (θ(k)) for network nodes. The algorithm may be summarized as follows: (i) first, the θ(k)(j) values are calculated for all j-th nodes in a complex network already constructed; (ii) A Linear Discriminant Analysis (LDA) is used to seek a linear equation that discriminates connected or linked (L(ij)=1) pairs of nodes experimentally confirmed from non-linked ones (L(ij)=0); (iii) the new model is validated with external series of pairs of nodes; (iv) the equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. This method was used to study different types of large networks. The linear models obtained produced the following results in terms of overall accuracy for network reconstruction

  11. Abnormal brain white matter network in young smokers: a graph theory analysis study.

    PubMed

    Zhang, Yajuan; Li, Min; Wang, Ruonan; Bi, Yanzhi; Li, Yangding; Yi, Zhang; Liu, Jixin; Yu, Dahua; Yuan, Kai

    2017-03-13

    Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in some specific fiber bundles in smokers. However, little is known about the changes in topological organization of WM structural network in young smokers. In current study, we acquired DTI datasets from 58 male young smokers and 51 matched nonsmokers and constructed the WM networks by the deterministic fiber tracking approach. Graph theoretical analysis was used to compare the topological parameters of WM network (global and nodal) and the inter-regional fractional anisotropy (FA) weighted WM connections between groups. The results demonstrated that both young smokers and nonsmokers had small-world topology in WM network. Further analysis revealed that the young smokers exhibited the abnormal topological organization, i.e., increased network strength, global efficiency, and decreased shortest path length. In addition, the increased nodal efficiency predominately was located in frontal cortex, striatum and anterior cingulate gyrus (ACG) in smokers. Moreover, based on network-based statistic (NBS) approach, the significant increased FA-weighted WM connections were mainly found in the PFC, ACG and supplementary motor area (SMA) regions. Meanwhile, the network parameters were correlated with the nicotine dependence severity (FTND) scores, and the nodal efficiency of orbitofrontal cortex was positive correlation with the cigarette per day (CPD) in young smokers. We revealed the abnormal topological organization of WM network in young smokers, which may improve our understanding of the neural mechanism of young smokers form WM topological organization level.

  12. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... PROBLEMS Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... treat abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  13. Temporal abnormalities in children with developmental dyscalculia.

    PubMed

    Vicario, Carmelo Mario; Rappo, Gaetano; Pepi, Annamaria; Pavan, Andrea; Martino, Davide

    2012-01-01

    Recent imaging studies have associated Developmental dyscalculia (DD) to structural and functional alterations corresponding Parietal and the Prefrontal cortex (PFC). Since these areas were shown also to be involved in timing abilities, we hypothesized that time processing is abnormal in DD. We compared time processing abilities between 10 children with pure DD (8 years old) and 11 age-matched healthy children. Results show that the DD group underestimated duration of a sub-second scale when asked to perform a time comparison task. The timing abnormality observed in our DD participants is consistent with evidence of a shared fronto-parietal neural network for representing time and quantity.

  14. European Seminar on Neural Computing

    DTIC Science & Technology

    1988-08-31

    weights) There are three distinct approaches currently being of the connections between PE’s, analogous to synaptic taken for supporting neural ...for creation of dedicated re- * Connectionist models for artificial intelligence (Al) search centers, analogous to the Computer and Neural System...IONDOIL ONRL Report 8 Oo Ln 0In t m S D TIC European Seminar on Neural Computing 1 IELECTE is MAY 161990 L D % Claire Zomzely-Neurath 31 August 1988

  15. A new class of methods for functional connectivity estimation

    NASA Astrophysics Data System (ADS)

    Lin, Wutu

    Measuring functional connectivity from neural recordings is important in understanding processing in cortical networks. The covariance-based methods are the current golden standard for functional connectivity estimation. However, the link between the pair-wise correlations and the physiological connections inside the neural network is unclear. Therefore, the power of inferring physiological basis from functional connectivity estimation is limited. To build a stronger tie and better understand the relationship between functional connectivity and physiological neural network, we need (1) a realistic model to simulate different types of neural recordings with known ground truth for benchmarking; (2) a new functional connectivity method that produce estimations closely reflecting the physiological basis. In this thesis, (1) I tune a spiking neural network model to match with human sleep EEG data, (2) introduce a new class of methods for estimating connectivity from different kinds of neural signals and provide theory proof for its superiority, (3) apply it to simulated fMRI data as an application.

  16. The Skin-Brain Connection Hypothesis, Bringing Together CCL27-Mediated T-Cell Activation in the Skin and Neural Cell Damage in the Adult Brain.

    PubMed

    Blatt, Nataliya L; Khaiboullin, Timur I; Lombardi, Vincent C; Rizvanov, Albert A; Khaiboullina, Svetlana F

    2016-01-01

    Recent discovery of an association of low serum melatonin levels with relapse in multiple sclerosis (MS) opens a new horizon in understanding the pathogenesis of this disease. Skin is the main organ for sensing seasonal changes in duration of sunlight exposure. Level of melatonin production is dependent on light exposure. The molecular mechanisms connecting peripheral (skin) sensing of the light exposure and developing brain inflammation (MS) have not been investigated. We hypothesize that there is a connection between the reaction of skin to seasonal changes in sunlight exposure and the risk of MS and that seasonal changes in light exposure cause peripheral (skin) inflammation, the production of cytokines, and the subsequent inflammation of the brain. In skin of genetically predisposed individuals, cytokines attract memory cutaneous lymphocyte-associated antigen (CLA+) T lymphocytes, which then maintain local inflammation. Once inflammation is resolved, CLA+ lymphocytes return to the circulation, some of which eventually migrate to the brain. Once in the brain these lymphocytes may initiate an inflammatory response. Our observation of increased CC chemokine ligand 27 (CCL27) in MS sera supports the involvement of skin in the pathogenesis of MS. Further, the importance of our data is that CCL27 is a chemokine released by activated keratinocytes, which is upregulated in inflamed skin. We propose that high serum levels of CCL27 in MS are the result of skin inflammation due to exposure to seasonal changes in the sunlight. Future studies will determine whether CCL27 serum level correlates with seasonal changes in sunlight exposure, MS exacerbation, and skin inflammation.

  17. The Skin–Brain Connection Hypothesis, Bringing Together CCL27-Mediated T-Cell Activation in the Skin and Neural Cell Damage in the Adult Brain

    PubMed Central

    Blatt, Nataliya L.; Khaiboullin, Timur I.; Lombardi, Vincent C.; Rizvanov, Albert A.; Khaiboullina, Svetlana F.

    2017-01-01

    Recent discovery of an association of low serum melatonin levels with relapse in multiple sclerosis (MS) opens a new horizon in understanding the pathogenesis of this disease. Skin is the main organ for sensing seasonal changes in duration of sunlight exposure. Level of melatonin production is dependent on light exposure. The molecular mechanisms connecting peripheral (skin) sensing of the light exposure and developing brain inflammation (MS) have not been investigated. We hypothesize that there is a connection between the reaction of skin to seasonal changes in sunlight exposure and the risk of MS and that seasonal changes in light exposure cause peripheral (skin) inflammation, the production of cytokines, and the subsequent inflammation of the brain. In skin of genetically predisposed individuals, cytokines attract memory cutaneous lymphocyte-associated antigen (CLA+) T lymphocytes, which then maintain local inflammation. Once inflammation is resolved, CLA+ lymphocytes return to the circulation, some of which eventually migrate to the brain. Once in the brain these lymphocytes may initiate an inflammatory response. Our observation of increased CC chemokine ligand 27 (CCL27) in MS sera supports the involvement of skin in the pathogenesis of MS. Further, the importance of our data is that CCL27 is a chemokine released by activated keratinocytes, which is upregulated in inflamed skin. We propose that high serum levels of CCL27 in MS are the result of skin inflammation due to exposure to seasonal changes in the sunlight. Future studies will determine whether CCL27 serum level correlates with seasonal changes in sunlight exposure, MS exacerbation, and skin inflammation. PMID:28138328

  18. miR-124, -128, and -137 Orchestrate Neural Differentiation by Acting on Overlapping Gene Sets Containing a Highly Connected Transcription Factor Network.

    PubMed

    Santos, Márcia C T; Tegge, Allison N; Correa, Bruna R; Mahesula, Swetha; Kohnke, Luana Q; Qiao, Mei; Ferreira, Marco A R; Kokovay, Erzsebet; Penalva, Luiz O F

    2016-01-01

    The ventricular-subventricular zone harbors neural stem cells (NSCs) that can differentiate into neurons, astrocytes, and oligodendrocytes. This process requires loss of stem cell properties and gain of characteristics associated with differentiated cells. miRNAs function as important drivers of this transition; miR-124, -128, and -137 are among the most relevant ones and have been shown to share commonalities and act as proneurogenic regulators. We conducted biological and genomic analyses to dissect their target repertoire during neurogenesis and tested the hypothesis that they act cooperatively to promote differentiation. To map their target genes, we transfected NSCs with antagomiRs and analyzed differences in their mRNA profile throughout differentiation with respect to controls. This strategy led to the identification of 910 targets for miR-124, 216 for miR-128, and 652 for miR-137. The target sets show extensive overlap. Inspection by gene ontology and network analysis indicated that transcription factors are a major component of these miRNAs target sets. Moreover, several of these transcription factors form a highly interconnected network. Sp1 was determined to be the main node of this network and was further investigated. Our data suggest that miR-124, -128, and -137 act synergistically to regulate Sp1 expression. Sp1 levels are dramatically reduced as cells differentiate and silencing of its expression reduced neuronal production and affected NSC viability and proliferation. In summary, our results show that miRNAs can act cooperatively and synergistically to regulate complex biological processes like neurogenesis and that transcription factors are heavily targeted to branch out their regulatory effect.

  19. High serotonin levels during brain development alter the structural input-output connectivity of neural networks in the rat somatosensory layer IV

    PubMed Central

    Miceli, Stéphanie; Negwer, Moritz; van Eijs, Fenneke; Kalkhoven, Carla; van Lierop, Ilja; Homberg, Judith; Schubert, Dirk

    2013-01-01

    Homeostatic regulation of serotonin (5-HT) concentration is critical for “normal” topographical organization and development of thalamocortical (TC) afferent circuits. Down-regulation of the serotonin transporter (SERT) and the consequent impaired reuptake of 5-HT at the synapse, results in a reduced terminal branching of developing TC afferents within the primary somatosensory cortex (S1). Despite the presence of multiple genetic models, the effect of high extracellular 5-HT levels on the structure and function of developing intracortical neural networks is far from being understood. Here, using juvenile SERT knockout (SERT−/−) rats we investigated, in vitro, the effect of increased 5-HT levels on the structural organization of (i) the TC projections of the ventroposteromedial thalamic nucleus toward S1, (ii) the general barrel-field pattern, and (iii) the electrophysiological and morphological properties of the excitatory cell population in layer IV of S1 [spiny stellate (SpSt) and pyramidal cells]. Our results confirmed previous findings that high levels of 5-HT during development lead to a reduction of the topographical precision of TCA projections toward the barrel cortex. Also, the barrel pattern was altered but not abolished in SERT−/− rats. In layer IV, both excitatory SpSt and pyramidal cells showed a significantly reduced intracolumnar organization of their axonal projections. In addition, the layer IV SpSt cells gave rise to a prominent projection toward the infragranular layer Vb. Our findings point to a structural and functional reorganization of TCAs, as well as early stage intracortical microcircuitry, following the disruption of 5-HT reuptake during critical developmental periods. The increased projection pattern of the layer IV neurons suggests that the intracortical network changes are not limited to the main entry layer IV but may also affect the subsequent stages of the canonical circuits of the barrel cortex. PMID:23761736

  20. The implication of salience network abnormalities in young male adult smokers.

    PubMed

    Li, Yangding; Yuan, Kai; Guan, Yanyan; Cheng, Jiadong; Bi, Yanzhi; Shi, Sha; Xue, Ting; Lu, Xiaoqi; Qin, Wei; Yu, Dahua; Tian, Jie

    2016-07-20

    Studying the neural correlates of smoking behaviors in young adulthood is of great importance to improve treatment outcomes. In previous addiction studies, the important roles of the salience network (SN) in drug cue processing and cognitive control have been revealed. Unfortunately, few studies focused on the resting-state functional connectivity and structural integrity abnormalities of SN in young adult smokers, and less is known about its association with smoking behaviors and cognitive control deficits. Thirty-one young male adult smokers and 30 age-, education- and gender-matched nonsmokers participated in this study. The structural and functional connectivity differences of SN were investigated between young adult smokers and nonsmokers by using diffusion tensor imaging (DTI) and resting-state functional connectivity (RSFC), which were then correlated with the smoking behavioral assessments (pack-years and Fagerström Test for Nicotine Dependence (FTND)) as well as impaired cognitive control measured by the Stroop task. Within SN, reduced RSFC and increased fractional anisotropy (FA) were found between the anterior cingulate cortex (ACC) and the right insula in young adult smokers relative to nonsmokers. The RSFC between the ACC and right insula was negatively correlated with the number of errors during the incongruent condition of the Stroop task in young adult smokers. Additionally, the right insula-ACC RSFC was negatively correlated with pack-years in young adult smokers. Our results revealed abnormal RSFC and structural integrity within the SN in young adult smokers, which shed new insights into the neural mechanism of nicotine dependence.

  1. Semantic Interpretation of An Artificial Neural Network

    DTIC Science & Technology

    1995-12-01

    success for stock market analysis/prediction is artificial neural networks. However, knowledge embedded in the neural network is not easily translated...interpret neural network knowledge. The first, called Knowledge Math, extends the use of connection weights, generating rules for general (i.e. non-binary

  2. Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease.

    PubMed

    Koenig, Katherine A; Lowe, Mark J; Harrington, Deborah L; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S; Rao, Stephen M

    2014-09-01

    Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive-motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis.

  3. Functional Connectivity of Primary Motor Cortex Is Dependent on Genetic Burden in Prodromal Huntington Disease

    PubMed Central

    Koenig, Katherine A.; Lowe, Mark J.; Harrington, Deborah L.; Lin, Jian; Durgerian, Sally; Mourany, Lyla; Paulsen, Jane S.

    2014-01-01

    Abstract Subtle changes in motor function have been observed in individuals with prodromal Huntington disease (prHD), but the underlying neural mechanisms are not well understood nor is the cumulative effect of the disease (disease burden) on functional connectivity. The present study examined the resting-state functional magnetic resonance imaging (rs-fMRI) connectivity of the primary motor cortex (M1) in 16 gene-negative (NEG) controls and 48 gene-positive prHD participants with various levels of disease burden. The results showed that the strength of the left M1 connectivity with the ipsilateral M1 and somatosensory areas decreased as disease burden increased and correlated with motor symptoms. Weakened M1 connectivity within the motor areas was also associated with abnormalities in long-range connections that evolved with disease burden. In this study, M1 connectivity was decreased with visual centers (bilateral cuneus), but increased with a hub of the default mode network (DMN; posterior cingulate cortex). Changes in connectivity measures were associated with worse performance on measures of cognitive–motor functioning. Short- and long-range functional connectivity disturbances were also associated with volume loss in the basal ganglia, suggesting that weakened M1 connectivity is partly a manifestation of striatal atrophy. Altogether, the results indicate that the prodromal phase of HD is associated with abnormal interhemispheric interactions among motor areas and disturbances in the connectivity of M1 with visual centers and the DMN. These changes may, respectively, contribute to increased motor symptoms, visuomotor integration problems, and deficits in the executive control of movement as individuals approach a manifest diagnosis. PMID:25072408

  4. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  5. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  6. The equilibrium of neural firing: A mathematical theory

    SciTech Connect

    Lan, Sizhong

    2014-12-15

    Inspired by statistical thermodynamics, we presume that neuron system has equilibrium condition with respect to neural firing. We show that, even with dynamically changeable neural connections, it is inevitable for neural firing to evolve to equilibrium. To study the dynamics between neural firing and neural connections, we propose an extended communication system where noisy channel has the tendency towards fixed point, implying that neural connections are always attracted into fixed points such that equilibrium can be reached. The extended communication system and its mathematics could be useful back in thermodynamics.

  7. Analysis of connectivity in NeuCube spiking neural network models trained on EEG data for the understanding of functional changes in the brain: A case study on opiate dependence treatment.

    PubMed

    Capecci, Elisa; Kasabov, Nikola; Wang, Grace Y

    2015-08-01

    The paper presents a methodology for the analysis of functional changes in brain activity across different conditions and different groups of subjects. This analysis is based on the recently proposed NeuCube spiking neural network (SNN) framework and more specifically on the analysis of the connectivity of a NeuCube model trained with electroencephalography (EEG) data. The case study data used to illustrate this method is EEG data collected from three groups-subjects with opiate addiction, patients undertaking methadone maintenance treatment, and non-drug users/healthy control group. The proposed method classifies more accurately the EEG data than traditional statistical and artificial intelligence (AI) methods and can be used to predict response to treatment and dose-related drug effect. But more importantly, the method can be used to compare functional brain activities of different subjects and the changes of these activities as a result of treatment, which is a step towards a better understanding of both the EEG data and the brain processes that generated it. The method can also be used for a wide range of applications, such as a better understanding of disease progression or aging.

  8. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies.

  9. Connected Traveler

    SciTech Connect

    Schroeder, Alex

    2015-11-01

    The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing efficient traveler behavior. This poster outlines various aspects of the Connected Traveler project, including market opportunity, understanding traveler behavior and decision-making, automation and connectivity, and a projected timeline for Connected Traveler's key milestones.

  10. Abnormal dopaminergic modulation of striato-cortical networks underlies levodopa-induced dyskinesias in humans.

    PubMed

    Herz, Damian M; Haagensen, Brian N; Christensen, Mark S; Madsen, Kristoffer H; Rowe, James B; Løkkegaard, Annemette; Siebner, Hartwig R

    2015-06-01

    Dopaminergic signalling in the striatum contributes to reinforcement of actions and motivational enhancement of motor vigour. Parkinson's disease leads to progressive dopaminergic denervation of the striatum, impairing the function of cortico-basal ganglia networks. While levodopa therapy alleviates basal ganglia dysfunction in Parkinson's disease, it often elicits involuntary movements, referred to as levodopa-induced peak-of-dose dyskinesias. Here, we used a novel pharmacodynamic neuroimaging approach to identify the changes in cortico-basal ganglia connectivity that herald the emergence of levodopa-induced dyskinesias. Twenty-six patients with Parkinson's disease (age range: 51-84 years; 11 females) received a single dose of levodopa and then performed a task in which they had to produce or suppress a movement in response to visual cues. Task-related activity was continuously mapped with functional magnetic resonance imaging. Dynamic causal modelling was applied to assess levodopa-induced modulation of effective connectivity between the pre-supplementary motor area, primary motor cortex and putamen when patients suppressed a motor response. Bayesian model selection revealed that patients who later developed levodopa-induced dyskinesias, but not patients without dyskinesias, showed a linear increase in connectivity between the putamen and primary motor cortex after levodopa intake during movement suppression. Individual dyskinesia severity was predicted by levodopa-induced modulation of striato-cortical feedback connections from putamen to the pre-supplementary motor area (Pcorrected = 0.020) and primary motor cortex (Pcorrected = 0.044), but not feed-forward connections from the cortex to the putamen. Our results identify for the first time, aberrant dopaminergic modulation of striatal-cortical connectivity as a neural signature of levodopa-induced dyskinesias in humans. We argue that excessive striato-cortical connectivity in response to levodopa produces an

  11. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  12. Predicting individual brain functional connectivity using a Bayesian hierarchical model.

    PubMed

    Dai, Tian; Guo, Ying

    2017-02-15

    Network-oriented analysis of functional magnetic resonance imaging (fMRI), especially resting-state fMRI, has revealed important association between abnormal connectivity and brain disorders such as schizophrenia, major depression and Alzheimer's disease. Imaging-based brain connectivity measures have become a useful tool for investigating the pathophysiology, progression and treatment response of psychiatric disorders and neurodegenerative diseases. Recent studies have started to explore the possibility of using functional neuroimaging to help predict disease progression and guide treatment selection for individual patients. These studies provide the impetus to develop statistical methodology that would help provide predictive information on disease progression-related or treatment-related changes in neural connectivity. To this end, we propose a prediction method based on Bayesian hierarchical model that uses individual's baseline fMRI scans, coupled with relevant subject characteristics, to predict the individual's future functional connectivity. A key advantage of the proposed method is that it can improve the accuracy of individualized prediction of connectivity by combining information from both group-level connectivity patterns that are common to subjects with similar characteristics as well as individual-level connectivity features that are particular to the specific subject. Furthermore, our method also offers statistical inference tools such as predictive intervals that help quantify the uncertainty or variability of the predicted outcomes. The proposed prediction method could be a useful approach to predict the changes in individual patient's brain connectivity with the progression of a disease. It can also be used to predict a patient's post-treatment brain connectivity after a specified treatment regimen. Another utility of the proposed method is that it can be applied to test-retest imaging data to develop a more reliable estimator for individual

  13. Limitations of opto-electronic neural networks

    NASA Technical Reports Server (NTRS)

    Yu, Jeffrey; Johnston, Alan; Psaltis, Demetri; Brady, David

    1989-01-01

    Consideration is given to the limitations of implementing neurons, weights, and connections in neural networks for electronics and optics. It is shown that the advantages of each technology are utilized when electronically fabricated neurons are included and a combination of optics and electronics are employed for the weights and connections. The relationship between the types of neural networks being constructed and the choice of technologies to implement the weights and connections is examined.

  14. The Role of Corpus Callosum Development in Functional Connectivity and Cognitive Processing

    PubMed Central

    Findlay, Anne M.; Honma, Susanne; Jeremy, Rita J.; Strominger, Zoe; Bukshpun, Polina; Wakahiro, Mari; Brown, Warren S.; Paul, Lynn K.; Barkovich, A. James; Mukherjee, Pratik; Nagarajan, Srikantan S.; Sherr, Elliott H.

    2012-01-01

    The corpus callosum is hypothesized to play a fundamental role in integrating information and mediating complex behaviors. Here, we demonstrate that lack of normal callosal development can lead to deficits in functional connectivity that are related to impairments in specific cognitive domains. We examined resting-state functional connectivity in individuals with agenesis of the corpus callosum (AgCC) and matched controls using magnetoencephalographic imaging (MEG-I) of coherence in the alpha (8–12 Hz), beta (12–30 Hz) and gamma (30–55 Hz) bands. Global connectivity (GC) was defined as synchronization between a region and the rest of the brain. In AgCC individuals, alpha band GC was significantly reduced in the dorsolateral pre-frontal (DLPFC), posterior parietal (PPC) and parieto-occipital cortices (PO). No significant differences in GC were seen in either the beta or gamma bands. We also explored the hypothesis that, in AgCC, this regional reduction in functional connectivity is explained primarily by a specific reduction in interhemispheric connectivity. However, our data suggest that reduced connectivity in these regions is driven by faulty coupling in both inter- and intrahemispheric connectivity. We also assessed whether the degree of connectivity correlated with behavioral performance, focusing on cognitive measures known to be impaired in AgCC individuals. Neuropsychological measures of verbal processing speed were significantly correlated with resting-state functional connectivity of the left medial and superior temporal lobe in AgCC participants. Connectivity of DLPFC correlated strongly with performance on the Tower of London in the AgCC cohort. These findings indicate that the abnormal callosal development produces salient but selective (alpha band only) resting-state functional connectivity disruptions that correlate with cognitive impairment. Understanding the relationship between impoverished functional connectivity and cognition is a key step

  15. Enhancement of oscillatory activity in the endopiriform nucleus of rats raised under abnormal oral conditions.

    PubMed

    Yoshimura, Hiroshi; Hasumoto-Honjo, Miho; Sugai, Tokio; Segami, Natsuki; Kato, Nobuo

    2014-02-21

    Endopiriform nucleus (EPN) is located deep to the piriform cortex, and has neural connections with not only neighboring sensory areas but also subcortical areas where emotional and nociceptive information is processed. Well-balanced oral condition might play an important role in stability of brain activities. When the oral condition is impaired, several areas in the brain might be affected. In the present study, we investigated whether abnormal conditions of oral region influence neural activities in the EPN. Orthodontic appliance that generates continuous force and chronic pain-related stress was fixed to maxillary incisors of rats, and raised. Field potential recordings were made from the EPN of brain slices. We previously reported that the EPN has an ability to generate membrane potential oscillation. In the present study, we have applied the same methods to assess activities of neuron clusters in the EPN. In the case of normal rats, stable field potential oscillations were induced in the EPN by application of low-frequency electrical stimulation under the medium with caffeine. In the case of rats with the orthodontic appliance, stable field potential oscillations were also induced, but both duration of oscillatory activities and wavelet number were increased. The enhanced oscillations were depressed by blockade of NMDA receptors. Thus, impairment of oral health under application of continuous orthodontic force and chronic pain-related stress enhanced neural activities in the EPN, in which up-regulation of NMDA receptors may be concerned. These findings suggest that the EPN might be involved in information processing with regard to abnormal conditions of oral region.

  16. In Search of Neural Endophenotypes of Postpartum Psychopathology and Disrupted Maternal Caregiving

    PubMed Central

    Moses-Kolko, E. L.; Horner, M. S.; Phillips, M. L.; Hipwell, A. E.; Swain, J. E.

    2015-01-01

    This is a selective review that provides the context for the study of perinatal affective disorder mechanisms and outlines directions for future research. We integrate existing literature along neural networks of interest for affective disorders and maternal caregiving: (i) the salience/fear network; (ii) the executive network; (iii) the reward/social attachment network; and (iv) the default mode network. Extant salience/fear network research reveals disparate responses and corticolimbic coupling to various stimuli based upon a predominantly depressive versus anxious (post-traumatic stress disorder) clinical phenotype. Executive network and default mode connectivity abnormalities have been described in postpartum depression (PPD), although studies are very limited in these domains. Reward/social attachment studies confirm a robust ventral striatal response to infant stimuli, including cry and happy infant faces, which is diminished in depressed, insecurely attached and substance-using mothers. The adverse parenting experiences received and the attachment insecurity of current mothers are factors that are associated with a diminution in infant stimulus-related neural activity similar to that in PPD, and raise the need for additional studies that integrate mood and attachment concepts in larger study samples. Several studies examining functional connectivity in resting state and emotional activation functional magnetic resonance imaging paradigms have revealed attenuated corticolimbic connectivity, which remains an important outcome that requires dissection with increasing precision to better define neural treatment targets. Methodological progress is expected in the coming years in terms of refining clinical phenotypes of interest and experimental paradigms, as well as enlarging samples to facilitate the examination of multiple constructs. Functional imaging promises to determine neural mechanisms underlying maternal psychopathology and impaired caregiving, such

  17. Disruptions in Functional Network Connectivity during Alcohol Intoxicated Driving

    PubMed Central

    Rzepecki-Smith, Catherine I.; Meda, Shashwath A.; Calhoun, Vince D.; Stevens, Michael C.; Jafri, Madiha J.; Astur, Robert S.; Pearlson, Godfrey D.

    2009-01-01

    Background: Driving while under the influence of alcohol is a major public health problem whose neural basis is not well understood. In a recently published fMRI study (Meda et al, 2009), our group identified five, independent critical driving-associated brain circuits whose inter-regional connectivity was disrupted by alcohol intoxication. However, the functional connectivity between these circuits has not yet been explored in order to determine how these networks communicate with each other during sober and alcohol-intoxicated states. Methods: In the current study, we explored such differences in connections between the above brain circuits and driving behavior, under the influence of alcohol versus placebo. Forty social drinkers who drove regularly underwent fMRI scans during virtual reality driving simulations following two alcohol doses, placebo and an individualized dose producing blood alcohol concentrations (BACs) of 0.10%. Results: At the active dose, we found specific disruptions of functional network connectivity between the frontal-temporal-basal ganglia and the cerebellar circuits. The temporal connectivity between these two circuits was found to be less correlated (p <0.05) when driving under the influence of alcohol. This disconnection was also associated with an abnormal driving behavior (unstable motor vehicle steering). Conclusions: Connections between frontal-temporal-basal ganglia and cerebellum have recently been explored; these may be responsible in part for maintaining normal motor behavior by integrating their overlapping motor control functions. These connections appear to be disrupted by alcohol intoxication, in turn associated with an explicit type of impaired driving behavior. PMID:20028354

  18. White-matter abnormalities in attention deficit hyperactivity disorder: a diffusion tensor imaging study.

    PubMed

    Silk, Timothy J; Vance, Alasdair; Rinehart, Nicole; Bradshaw, John L; Cunnington, Ross

    2009-09-01

    Current evidence suggests that attention deficit hyperactivity disorder (ADHD) involves dysfunction in wide functional networks of brain areas associated with attention and cognition. This study examines the structural integrity of white-matter neural pathways, which underpin these functional networks, connecting fronto-striatal and fronto-parietal circuits, in children with ADHD. Fifteen right-handed 8 to 18-year-old males with ADHD-combined type and 15 right-handed, age, verbal, and performance IQ-matched, healthy males underwent diffusion tensor imaging. A recent method of tract-based spatial statistics was used to examine fractional anisotropy (FA) and mean diffusivity within major white-matter pathways throughout the whole-brain. White-matter abnormalities were found in several distinct clusters within left fronto-temporal regions and right parietal-occipital regions. Specifically, participants with ADHD showed greater FA in white-matter regions underlying inferior parietal, occipito-parietal, inferior frontal, and inferior temporal cortex. Secondly, eigenvalue analysis suggests that the difference in FA in ADHD may relate to a lesser degree of neural branching within key white-matter pathways. Tractography methods showed these regions to generally form part of white-matter pathways connecting prefrontal and parieto-occipital areas with the striatum and the cerebellum. Our findings demonstrate anomalous white-matter development in ADHD in distinct cortical regions that have previously been shown to be dysfunctional or hypoactive in fMRI studies of ADHD. These data add to an emerging picture of abnormal development within fronto-parietal cortical networks that may underpin the cognitive and attentional disturbances associated with ADHD.

  19. Functional Connectivity of Left Heschl’s Gyrus in Vulnerability to Auditory Hallucinations in Schizophrenia

    PubMed Central

    Shinn, Ann K.; Baker, Justin T.; Cohen, Bruce M.; Öngür, Dost

    2012-01-01

    Background Schizophrenia is a heterogeneous disorder that may consist of multiple etiologies and disease processes. Auditory hallucinations (AH), which are common and often disabling, represent a narrower and more basic dimension of psychosis than schizophrenia. Previous studies suggest that abnormal primary auditory cortex activity is associated with AH pathogenesis. We thus investigated functional connectivity, using a seed in primary auditory cortex, in schizophrenia patients with and without AH and healthy controls, to examine neural circuit abnormalities associated more specifically with AH than the myriad other symptoms that comprise schizophrenia. Methods Using resting-state fMRI (rsfMRI), we investigated functional connectivity of the primary auditory cortex, located on Heschl’s gyrus, in schizophrenia spectrum patients with AH. Participants were patients with schizophrenia, schizoaffective disorder, or schizophreniform disorder with lifetime AH (n=27); patients with the same diagnoses but no lifetime AH (n=14); and healthy controls (n=28). Results Patients with AH vulnerability showed increased left Heschl’s gyrus functional connectivity with left frontoparietal regions and decreased functional connectivity with right hippocampal formation and mediodorsal thalamus compared to patients without lifetime AH. Furthermore, among AH patients, left Heschl’s gyrus functional connectivity covaried positively with AH severity in left inferior frontal gyrus (Broca’s area), left lateral STG, right pre- and postcentral gyri, cingulate cortex, and orbitofrontal cortex. There were no differences between patients with and without lifetime AH in right Heschl’s gyrus seeded functional connectivity. Conclusions Abnormal interactions between left Heschl’s gyrus and regions involved in speech/language, memory, and the monitoring of self-generated events may contribute to AH vulnerability. PMID:23287311

  20. Nested neural networks

    NASA Technical Reports Server (NTRS)

    Baram, Yoram

    1988-01-01

    Nested neural networks, consisting of small interconnected subnetworks, allow for the storage and retrieval of neural state patterns of different sizes. The subnetworks are naturally categorized by layers of corresponding to spatial frequencies in the pattern field. The storage capacity and the error correction capability of the subnetworks generally increase with the degree of connectivity between layers (the nesting degree). Storage of only few subpatterns in each subnetworks results in a vast storage capacity of patterns and subpatterns in the nested network, maintaining high stability and error correction capability.

  1. Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits.

    PubMed

    Finger, Elizabeth Carrie; Marsh, Abigail; Blair, Karina Simone; Majestic, Catherine; Evangelou, Iordanis; Gupta, Karan; Schneider, Marguerite Reid; Sims, Courtney; Pope, Kayla; Fowler, Katherine; Sinclair, Stephen; Tovar-Moll, Fernanda; Pine, Daniel; Blair, Robert James

    2012-06-30

    Youths with conduct disorder or oppositional defiant disorder and psychopathic traits (CD/ODD+PT) are at high risk of adult antisocial behavior and psychopathy. Neuroimaging studies demonstrate functional abnormalities in orbitofrontal cortex and the amygdala in both youths and adults with psychopathic traits. Diffusion tensor imaging in psychopathic adults demonstrates disrupted structural connectivity between these regions (uncinate fasiculus). The current study examined whether functional neural abnormalities present in youths with CD/ODD+PT are associated with similar white matter abnormalities. Youths with CD/ODD+PT and comparison participants completed 3.0 T diffusion tensor scans and functional magnetic resonance imaging scans. Diffusion tensor imaging did not reveal disruption in structural connections within the uncinate fasiculus or other white matter tracts in youths with CD/ODD+PT, despite the demonstration of disrupted amygdala-prefrontal functional connectivity in these youths. These results suggest that disrupted amygdala-frontal white matter connectivity as measured by fractional anisotropy is less sensitive than imaging measurements of functional perturbations in youths with psychopathic traits. If white matter tracts are intact in youths with this disorder, childhood may provide a critical window for intervention and treatment, before significant structural brain abnormalities solidify.

  2. Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits

    PubMed Central

    Finger, Elizabeth Carrie; Marsh, Abigail; Blair, Karina Simone; Majestic, Catherine; Evangelou, Iordanis; Gupta, Karan; Schneider, Marguerite Reid; Sims, Courtney; Pope, Kayla; Fowler, Katherine; Sinclair, Stephen; Tovar-Moll, Fernanda; Pine, Daniel; Blair, Robert James

    2012-01-01

    Youths with conduct disorder or oppositional defiant disorder and psychopathic traits (CD/ODD+PT) are at high risk of adult anti-social behaviour and psychopathy. Neuroimaging studies demonstrate functional abnormalities in orbitofrontal cortex and the amygdala in both youths and adults with psychopathic traits. Diffusion tensor imaging in psychopathic adults demonstrates disrupted structural connectivity between these regions (uncinate fasiculus). The current study examined whether functional neural abnormalities present in youths with CD/ODD+PT are associated with similar white matter abnormalities. Youths with CD/ODD+PT and comparison participants completed 3.0 T diffusion tensor scans and functional MRI scans. Diffusion tensor imaging did not reveal disruption in structural connections within the uncinate fasiculus or other white matter tracts in youths with CD/ODD+PT, despite the demonstration of disrupted amygdala-prefrontal functional connectivity in these youths. These results suggest that disrupted amygdala-frontal white matter connectivity as measured by fractional anisotropy is less sensitive than imaging measurements of functional perturbations in youths with psychopathic traits. If white matter tracts are intact in youths with this disorder, childhood may provide a critical window for intervention and treatment, before significant structural brain abnormalities solidify. PMID:22819939

  3. Measuring functional connectivity using MEG: Methodology and comparison with fcMRI

    PubMed Central

    Brookes, Matthew J.; Hale, Joanne R.; Zumer, Johanna M.; Stevenson, Claire M.; Francis, Susan T.; Barnes, Gareth R.; Owen, Julia P.; Morris, Peter G.; Nagarajan, Srikantan S.

    2011-01-01

    Functional connectivity (FC) between brain regions is thought to be central to the way in which the brain processes information. Abnormal connectivity is thought to be implicated in a number of diseases. The ability to study FC is therefore a key goal for neuroimaging. Functional connectivity (fc) MRI has become a popular tool to make connectivity measurements but the technique is limited by its indirect nature. A multimodal approach is therefore an attractive means to investigate the electrodynamic mechanisms underlying hemodynamic connectivity. In this paper, we investigate resting state FC using fcMRI and magnetoencephalography (MEG). In fcMRI, we exploit the advantages afforded by ultra high magnetic field. In MEG we apply envelope correlation and coherence techniques to source space projected MEG signals. We show that beamforming provides an excellent means to measure FC in source space using MEG data. However, care must be taken when interpreting these measurements since cross talk between voxels in source space can potentially lead to spurious connectivity and this must be taken into account in all studies of this type. We show good spatial agreement between FC measured independently using MEG and fcMRI; FC between sensorimotor cortices was observed using both modalities, with the best spatial agreement when MEG data are filtered into the β band. This finding helps to reduce the potential confounds associated with each modality alone: while it helps reduce the uncertainties in spatial patterns generated by MEG (brought about by the ill posed inverse problem), addition of electrodynamic metric confirms the neural basis of fcMRI measurements. Finally, we show that multiple MEG based FC metrics allow the potential to move beyond what is possible using fcMRI, and investigate the nature of electrodynamic connectivity. Our results extend those from previous studies and add weight to the argument that neural oscillations are intimately related to functional

  4. Analog hardware for learning neural networks

    NASA Technical Reports Server (NTRS)

    Eberhardt, Silvio P. (Inventor)

    1991-01-01

    This is a recurrent or feedforward analog neural network processor having a multi-level neuron array and a synaptic matrix for storing weighted analog values of synaptic connection strengths which is characterized by temporarily changing one connection strength at a time to determine its effect on system output relative to the desired target. That connection strength is then adjusted based on the effect, whereby the processor is taught the correct response to training examples connection by connection.

  5. Resting-State EEG Source Localization and Functional Connectivity in Schizophrenia-Like Psychosis of Epilepsy

    PubMed Central

    Canuet, Leonides; Ishii, Ryouhei; Pascual-Marqui, Roberto D.; Iwase, Masao; Kurimoto, Ryu; Aoki, Yasunori; Ikeda, Shunichiro; Takahashi, Hidetoshi; Nakahachi, Takayuki; Takeda, Masatoshi

    2011-01-01

    Background It is unclear whether, like in schizophrenia, psychosis-related disruption in connectivity between certain regions, as an index of intrinsic functional disintegration, occurs in schizophrenia-like psychosis of epilepsy (SLPE). In this study, we sought to determine abnormal patterns of resting-state EEG oscillations and functional connectivity in patients with SLPE, compared with nonpsychotic epilepsy patients, and to assess correlations with psychopathological deficits. Methodology/Principal Findings Resting EEG was recorded in 21 patients with focal epilepsy and SLPE and in 21 clinically-matched non-psychotic epilepsy controls. Source current density and functional connectivity were determined using eLORETA software. For connectivity analysis, a novel nonlinear connectivity measure called “lagged phase synchronization” was used. We found increased theta oscillations in regions involved in the default mode network (DMN), namely the medial and lateral parietal cortex bilaterally in the psychotic patients relative to their nonpsychotic counterparts. In addition, patients with psychosis had increased beta temporo-prefrontal connectivity in the hemisphere with predominant seizure focus. This functional connectivity in temporo-prefrontal circuits correlated with positive symptoms. Additionally, there was increased interhemispheric phase synchronization between the auditory cortex of the affected temporal lobe and the Broca's area correlating with auditory hallucination scores. Conclusions/Significance In addition to dysfunction of parietal regions that are part of the DMN, resting-state disrupted connectivity of the medial temporal cortex with prefrontal areas that are either involved in the DMN or implicated in psychopathological dysfunction may be critical to schizophrenia-like psychosis, especially in individuals with temporal lobe epilepsy. This suggests that DMN deficits might be a core neurobiological feature of the disorder, and that abnormalities

  6. XYY chromosome abnormality in sexual homicide perpetrators.

    PubMed

    Briken, Peer; Habermann, Niels; Berner, Wolfgang; Hill, Andreas

    2006-03-05

    In a retrospective investigation of the court reports about sexual homicide perpetrators chromosome analysis had been carried out in 13 of 166 (7.8%) men. Three men (1.8%) with XYY chromosome abnormality were found. This rate is much higher than that found in unselected samples of prisoners (0.7-0.9%) or in the general population (0.01%). The three men had shown prepubescent abnormalities, school problems, and had suffered from physical abuse. The chromosome analysis in all cases had been carried out in connection with the forensic psychiatric court report due to the sexual homicide. However, two men had earlier psychiatric referrals. All were diagnosed as sexual sadistic, showed a psychopathic syndrome or psychopathy according to the Psychopathy Checklist-Revised [Hare RD, 1991, The Hare Psychopathy Checklist-Revised, Toronto, Ontario, Canada: Multi-Health Systems]. Two were multiple murderers. Especially forensic psychiatrists should be vigilant of the possibility of XYY chromosome abnormalities in sexual offenders.

  7. Alterations in Brain Structure and Functional Connectivity in Alcohol Dependent Patients and Possible Association with Impulsivity

    PubMed Central

    Dong, Yue; Ma, Mengying; Ma, Yi; Dong, Yuru; Niu, Yajuan; Jiang, Yin; Wang, Hong; Wang, Zhiyan; Wu, Liuzhen; Sun, Hongqiang; Cui, Cailian

    2016-01-01

    Background Previous studies have documented that heightened impulsivity likely contributes to the development and maintenance of alcohol use disorders. However, there is still a lack of studies that comprehensively detected the brain changes associated with abnormal impulsivity in alcohol addicts. This study was designed to investigate the alterations in brain structure and functional connectivity associated with abnormal impulsivity in alcohol dependent patients. Methods Brain structural and functional magnetic resonance imaging data as well as impulsive behavior data were collected from 20 alcohol dependent patients and 20 age- and sex-matched healthy controls respectively. Voxel-based morphometry was used to investigate the differences of grey matter volume, and tract-based spatial statistics was used to detect abnormal white matter regions between alcohol dependent patients and healthy controls. The alterations in resting-state functional connectivity in alcohol dependent patients were examined using selected brain areas with gray matter deficits as seed regions. Results Compared with healthy controls, alcohol dependent patients had significantly reduced gray matter volume in the mesocorticolimbic system including the dorsal posterior cingulate cortex, the dorsal anterior cingulate cortex, the medial prefrontal cortex, the orbitofrontal cortex and the putamen, decreased fractional anisotropy in the regions connecting the damaged grey matter areas driven by higher radial diffusivity value in the same areas and decreased resting-state functional connectivity within the reward network. Moreover, the gray matter volume of the left medial prefrontal cortex exhibited negative correlations with various impulse indices. Conclusions These findings suggest that chronic alcohol dependence could cause a complex neural changes linked to abnormal impulsivity. PMID:27575491

  8. An Auditory Processing Abnormality Specific to Liability for Schizophrenia

    PubMed Central

    Force, Rachel B.; Venables, Noah C.; Sponheim, Scott R.

    2013-01-01

    Abnormal brain activity during the processing of simple sounds is evident in individuals with increased genetic liability for schizophrenia; however, the diagnostic specificity of these abnormalities has yet to be fully examined. Because recent evidence suggests that schizophrenia and bipolar disorder may share aspects of genetic etiology the present study was conducted to determine whether individuals with heightened genetic liability for each disorder manifested distinct neural abnormalities during auditory processing. Utilizing a dichotic listening paradigm, we assessed target tone discrimination and electrophysiological responses in schizophrenia patients, first-degree biological relatives of schizophrenia patients, bipolar disorder patients, first-degree biological relatives of bipolar patients and nonpsychiatric control participants. Schizophrenia patients and relatives of schizophrenia patients demonstrated reductions in an early neural response (i.e. N1) suggestive of deficient sensory registration of auditory stimuli. Bipolar patients and relatives of bipolar patients demonstrated no such abnormality. Both schizophrenia and bipolar patients failed to significantly augment N1 amplitude with attention. Schizophrenia patients also failed to show sensitivity of longer-latency neural processes (N2) to stimulus frequency suggesting a disorder specific deficit in stimulus classification. Only schizophrenia patients exhibited reduced target tone discrimination accuracy. Reduced N1 responses reflective of early auditory processing abnormalities are suggestive of a marker of genetic liability for schizophrenia and may serve as an endophenotype for the disorder. PMID:18571375

  9. Neural network regulation driven by autonomous neural firings

    NASA Astrophysics Data System (ADS)

    Cho, Myoung Won

    2016-07-01

    Biological neurons naturally fire spontaneously due to the existence of a noisy current. Such autonomous firings may provide a driving force for network formation because synaptic connections can be modified due to neural firings. Here, we study the effect of autonomous firings on network formation. For the temporally asymmetric Hebbian learning, bidirectional connections lose their balance easily and become unidirectional ones. Defining the difference between reciprocal connections as new variables, we could express the learning dynamics as if Ising model spins interact with each other in magnetism. We present a theoretical method to estimate the interaction between the new variables in a neural system. We apply the method to some network systems and find some tendencies of autonomous neural network regulation.

  10. [The relativity of abnormity].

    PubMed

    Nilson, Annika

    2006-01-01

    In the late 19th century and in the beginning of the 20th century, mental diseases and abnormal behavior was considered to be a great danger to culture and society. "Degeneration" was the buzzword of the time, used and misused by artists and scientists alike. At the same time, some scientists saw abnormity as the key to unlock the mysteries of the ordinary mind. Naturalistic curiosity left Pandoras box open when religion declined in Darwins wake. Two swedish scientists, the physician Bror Gadelius (1862-1938) and his friend the philosopher Axel Herrlin (1870-1937), inspired by the French psychologist Theodule Ribots (1839-1916) "psychology without a soul", denied all fixed demarcation lines between abnormity and normality. All humans are natures creatures ruled by physiological laws, not ruled by God or convention. Even ordinary morality was considered to be an utterly backward explanation and guideline for complex human behavior. Different forms of therapy, not various kinds of penalties for wicked and disturbing behavior, are the now the solution for lots of people, "normal" as well as "abnormal". Psychiatry is expanding.

  11. Abnormalities of gonadal differentiation.

    PubMed

    Berkovitz, G D; Seeherunvong, T

    1998-04-01

    Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.

  12. Micro- and Nanotechnologies for Optical Neural Interfaces

    PubMed Central

    Pisanello, Ferruccio; Sileo, Leonardo; De Vittorio, Massimo

    2016-01-01

    In last decade, the possibility to optically interface with the mammalian brain in vivo has allowed unprecedented investigation of functional connectivity of neural circuitry. Together with new genetic and molecular techniques to optically trigger and monitor neural activity, a new generation of optical neural interfaces is being developed, mainly thanks to the exploitation of both bottom-up and top-down nanofabrication approaches. This review highlights the role of nanotechnologies for optical neural interfaces, with particular emphasis on new devices and methodologies for optogenetic control of neural activity and unconventional methods for detection and triggering of action potentials using optically-active colloidal nanoparticles. PMID:27013939

  13. Serotonin mediated immunoregulation and neural functions: Complicity in the aetiology of autism spectrum disorders.

    PubMed

    Jaiswal, Preeti; Mohanakumar, Kochupurackal P; Rajamma, Usha

    2015-08-01

    Serotonergic system has long been implicated in the aetiology of autism spectrum disorders (ASD), since platelet hyperserotonemia is consistently observed in a subset of autistic patients, who respond well to selective serotonin reuptake inhibitors. Apart from being a neurotransmitter, serotonin functions as a neurotrophic factor directing brain development and as an immunoregulator modulating immune responses. Serotonin transporter (SERT) regulates serotonin level in lymphoid tissues to ensure its proper functioning in innate and adaptive responses. Immunological molecules such as cytokines in turn regulate the transcription and activity of SERT. Dysregulation of serotonergic system could trigger signalling cascades that affect normal neural-immune interactions culminating in neurodevelopmental and neural connectivity defects precipitating behavioural abnormalities, or the disease phenotypes. Therefore, we suggest that a better understanding of the cross talk between serotonergic genes, immune systems and serotonergic neurotransmission will open wider avenues to develop pharmacological leads for addressing the core ASD behavioural deficits.

  14. Diagnostic discontinuity in psychosis: a combined study of cortical gyrification and functional connectivity.

    PubMed

    Palaniyappan, Lena; Liddle, Peter F

    2014-05-01

    The point of rarity in brain structure and function that separates the 2 major psychotic disorders--schizophrenia and bipolar disorder--is presently unknown. The aim of this study is to combine surface anatomical and functional imaging modalities to quantify the integrity of cortical connectivity in pursuit of the neural basis of the Kraepelinian "line of divide." We tested the hypothesis that multimodal brain regions show overlapping abnormalities in both disorders, while schizophrenia-specific defects are likely to be localized to sensory processing regions. Cortical folding patterns (gyrification) and functional connectivity hub architecture (degree centrality) were studied in a sample of 39 subjects with established schizophrenia, 20 subjects with psychotic bipolar disorder, and 34 healthy controls. We observed a significant difference between the 2 groups in both gyrification and functional connectivity of the visual processing regions. Further, the aberrant functional connectivity of the visual processing regions predicted persistent symptom burden better than the diagnostic information. Using a spatial similarity analysis, we observed that the degree of overlap between the 2 disorders was small (25%) for changes in cortical gyrification and modest (51%) for changes in functional connectivity measured during a cognitive task (n-back). In conclusion, our results suggest that prominent unimodal sensory processing deficits are more likely to be present in schizophrenia than in bipolar disorder. Further, connectivity-based neuroimaging measures appear to be better indicators of diagnostic discontinuity than the symptom-based clinical information.

  15. Cool & Connected

    EPA Pesticide Factsheets

    The Cool & Connected planning assistance program helps communities develop strategies and an action plan for using broadband to promote environmentally and economically sustainable community development.

  16. Control of Abnormal Synchronization in Neurological Disorders

    PubMed Central

    Popovych, Oleksandr V.; Tass, Peter A.

    2014-01-01

    In the nervous system, synchronization processes play an important role, e.g., in the context of information processing and motor control. However, pathological, excessive synchronization may strongly impair brain function and is a hallmark of several neurological disorders. This focused review addresses the question of how an abnormal neuronal synchronization can specifically be counteracted by invasive and non-invasive brain stimulation as, for instance, by deep brain stimulation for the treatment of Parkinson’s disease, or by acoustic stimulation for the treatment of tinnitus. On the example of coordinated reset (CR) neuromodulation, we illustrate how insights into the dynamics of complex systems contribute to successful model-based approaches, which use methods from synergetics, non-linear dynamics, and statistical physics, for the development of novel therapies for normalization of brain function and synaptic connectivity. Based on the intrinsic multistability of the neuronal populations induced by spike timing-dependent plasticity (STDP), CR neuromodulation utilizes the mutual interdependence between synaptic connectivity and dynamics of the neuronal networks in order to restore more physiological patterns of connectivity via desynchronization of neuronal activity. The very goal is to shift the neuronal population by stimulation from an abnormally coupled and synchronized state to a desynchronized regime with normalized synaptic connectivity, which significantly outlasts the stimulation cessation, so that long-lasting therapeutic effects can be achieved. PMID:25566174

  17. Evidence for intact local connectivity but disrupted regional function in the occipital lobe in children and adolescents with schizophrenia.

    PubMed

    White, Tonya; Moeller, Steen; Schmidt, Marcus; Pardo, Jose V; Olman, Cheryl

    2012-08-01

    It has long been known that specific visual frequencies result in greater blood flow to the striate cortex. These peaks are thought to reflect synchrony of local neuronal firing that is reflective of local cortical networks. Since disrupted neural connectivity is a possible etiology for schizophrenia, our goal was to investigate whether localized connectivity, as measured by aberrant synchrony, is abnormal in children and adolescents with schizophrenia. Subjects included 25 children and adolescents with schizophrenia and 39 controls matched for age and gender. Subjects were scanned on a Siemens 3 Tesla Trio scanner while observing flashing checkerboard presented at either 1, 4, 8, or 12 Hz. Image processing included both a standard GLM model and a Fourier transform analysis. Patients had significantly smaller volume of activation in the occipital lobe compared to controls. There were no differences in the integral or percent signal change of the hemodynamic response function for each of the four frequencies. Occipital activation was stable during development between childhood and late adolescence. Finally, both patients and controls demonstrated an increased response between 4 and 8 Hz consistent with synchrony or entrainment in the neuronal response. Children and adolescents with schizophrenia had a significantly lower volume of activation in the occipital lobe in response to the flashing checkerboard task. However, features of intact local connectivity in patients, such as the hemodynamic response function and maximal response at 8 Hz, were normal. These results are consistent with abnormalities in regional connectivity with preserved local connectivity in early-onset schizophrenia.

  18. The Psychoactive Designer Drug and Bath Salt Constituent MDPV Causes Widespread Disruption of Brain Functional Connectivity.

    PubMed

    Colon-Perez, Luis M; Tran, Kelvin; Thompson, Khalil; Pace, Michael C; Blum, Kenneth; Goldberger, Bruce A; Gold, Mark S; Bruijnzeel, Adriaan W; Setlow, Barry; Febo, Marcelo

    2016-08-01

    The abuse of 'bath salts' has raised concerns because of their adverse effects, which include delirium, violent behavior, and suicide ideation in severe cases. The bath salt constituent 3,4-methylenedioxypyrovalerone (MDPV) has been closely linked to these and other adverse effects. The abnormal behavioral pattern produced by acute high-dose MDPV intake suggests possible disruptions of neural communication between brain regions. Therefore, we determined if MDPV exerts disruptive effects on brain functional connectivity, particularly in areas of the prefrontal cortex. Male rats were imaged following administration of a single dose of MDPV (0.3, 1.0, or 3.0 mg/kg) or saline. Resting state brain blood oxygenation level-dependent (BOLD) images were acquired at 4.7 T. To determine the role of dopamine transmission in MDPV-induced changes in functional connectivity, a group of rats received the dopamine D1/D2 receptor antagonist cis-flupenthixol (0.5 mg/kg) 30 min before MDPV. MDPV dose-dependently reduced functional connectivity. Detailed analysis of its effects revealed that connectivity between frontal cortical and striatal areas was reduced. This included connectivity between the prelimbic prefrontal cortex and other areas of the frontal cortex and the insular cortex with hypothalamic, ventral, and dorsal striatal areas. Although the reduced connectivity appeared widespread, connectivity between these regions and somatosensory cortex was not as severely affected. Dopamine receptor blockade did not prevent the MDPV-induced decrease in functional connectivity. The results provide a novel signature of MDPV's in vivo mechanism of action. Reduced brain functional connectivity has been reported in patients suffering from psychosis and has been linked to cognitive dysfunction, audiovisual hallucinations, and negative affective states akin to those reported for MDPV-induced intoxication. The present results suggest that disruption of functional connectivity networks

  19. The role of anxiety in stuttering: Evidence from functional connectivity.

    PubMed

    Yang, Yang; Jia, Fanlu; Siok, Wai Ting; Tan, Li Hai

    2017-03-27

    Persistent developmental stuttering is a neurologically based speech disorder associated with cognitive-linguistic, motor and emotional abnormalities. Previous studies investigating the relationship between anxiety and stuttering have yielded mixed results, but it has not yet been examined whether anxiety influences brain activity underlying stuttering. Here, using functional magnetic resonance imaging (fMRI), we investigated the functional connectivity associated with state anxiety in a syllable repetition task, and trait anxiety during rest in adults who stutter (N=19) and fluent controls (N=19). During the speech task, people who stutter (PWS) showed increased functional connectivity of the right amygdala with the prefrontal gyrus (the left ventromedial frontal gyrus and right middle frontal gyrus) and the left insula compared to controls. During rest, PWS showed stronger functional connectivity between the right hippocampus and the left orbital frontal gyrus, and between the left hippocampus and left motor areas than controls. Taken together, our results suggest aberrant bottom-up and/or top-down interactions for anxiety regulation, which might be responsible for the higher level of state anxiety during speech and for the anxiety-prone trait in PWS. To our knowledge, this is the first study to examine the neural underpinnings of anxiety in PWS, thus yielding new insight into the causes of stuttering which might aid strategies for the diagnosis and treatment of stuttering.

  20. Heritable bovine fetal abnormalities.

    PubMed

    Whitlock, B K; Kaiser, L; Maxwell, H S

    2008-08-01

    The etiologies for congenital bovine fetal anomalies can be divided into heritable, toxic, nutritional, and infectious categories. Although uncommon in most herds, inherited congenital anomalies are probably present in all breeds of cattle and propagated as a result of specific trait selection that inadvertently results in propagation of the defect. In some herds, the occurrence of inherited anomalies has become frequent, and economically important. Anomalous traits can affect animals in a range of ways, some being lethal or requiring euthanasia on humane grounds, others altering structure, function, or performance of affected animals. Veterinary practitioners should be aware of the potential for inherited defects, and be prepared to investigate and report animals exhibiting abnormal characteristics. This review will discuss the morphologic characteristics, mode of inheritance, breeding lines affected, and the availability of genetic testing for selected heritable bovine fetal abnormalities.

  1. Liver abnormalities in pregnancy.

    PubMed

    Than, Nwe Ni; Neuberger, James

    2013-08-01

    Abnormalities of liver function (notably rise in alkaline phosphatase and fall in serum albumin) are common in normal pregnancy, whereas rise in serum bilirubin and aminotransferase suggest either exacerbation of underlying pre-existing liver disease, liver disease related to pregnancy or liver disease unrelated to pregnancy. Pregnant women appear to have a worse outcome when infected with Hepatitis E virus. Liver diseases associated with pregnancy include abnormalities associated hyperemesis gravidarum, acute fatty liver disease, pre-eclampsia, cholestasis of pregnancy and HELLP syndrome. Prompt investigation and diagnosis is important in ensuring a successful maternal and foetal outcome. In general, prompt delivery is the treatment of choice for acute fatty liver, pre-eclampsia and HELLP syndrome and ursodeoxycholic acid is used for cholestasis of pregnancy although it is not licenced for this indication.

  2. Deep neural network with weight sparsity control and pre-training extracts hierarchical features and enhances classification performance: Evidence from whole-brain resting-state functional connectivity patterns of schizophrenia.

    PubMed

    Kim, Junghoe; Calhoun, Vince D; Shim, Eunsoo; Lee, Jong-Hwan

    2016-01-01

    Functional connectivity (FC) patterns obtained from resting-state functional magnetic resonance imaging data are commonly employed to study neuropsychiatric conditions by using pattern classifiers such as the support vector machine (SVM). Meanwhile, a deep neural network (DNN) with multiple hidden layers has shown its ability to systematically extract lower-to-higher level information of image and speech data from lower-to-higher hidden layers, markedly enhancing classification accuracy. The objective of this study was to adopt the DNN for whole-brain resting-state FC pattern classification of schizophrenia (SZ) patients vs. healthy controls (HCs) and identification of aberrant FC patterns associated with SZ. We hypothesized that the lower-to-higher level features learned via the DNN would significantly enhance the classification accuracy, and proposed an adaptive learning algorithm to explicitly control the weight sparsity in each hidden layer via L1-norm regularization. Furthermore, the weights were initialized via stacked autoencoder based pre-training to further improve the classification performance. Classification accuracy was systematically evaluated as a function of (1) the number of hidden layers/nodes, (2) the use of L1-norm regularization, (3) the use of the pre-training, (4) the use of framewise displacement (FD) removal, and (5) the use of anatomical/functional parcellation. Using FC patterns from anatomically parcellated regions without FD removal, an error rate of 14.2% was achieved by employing three hidden layers and 50 hidden nodes with both L1-norm regularization and pre-training, which was substantially lower than the error rate from the SVM (22.3%). Moreover, the trained DNN weights (i.e., the learned features) were found to represent the hierarchical organization of aberrant FC patterns in SZ compared with HC. Specifically, pairs of nodes extracted from the lower hidden layer represented sparse FC patterns implicated in SZ, which was

  3. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  4. Movement and Learning: A Valuable Connection

    ERIC Educational Resources Information Center

    Stevens-Smith, Deborah

    2004-01-01

    In this article, the author discusses the relatedness between movement and learning for students. The process of learning involves basic nerve cells that transmit information and create numerous neural connections essential to learning. One way to increase learning is to encourage creation of more synaptic connections in the brain through…

  5. Anatomical Abnormalities in Autism?

    PubMed

    Haar, Shlomi; Berman, Sigal; Behrmann, Marlene; Dinstein, Ilan

    2016-04-01

    Substantial controversy exists regarding the presence and significance of anatomical abnormalities in autism spectrum disorders (ASD). The release of the Autism Brain Imaging Data Exchange (∼1000 participants, age 6-65 years) offers an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across groups and to resolve many of the outstanding questions. Comprehensive univariate analyses using volumetric, thickness, and surface area measures of over 180 anatomically defined brain areas, revealed significantly larger ventricular volumes, smaller corpus callosum volume (central segment only), and several cortical areas with increased thickness in the ASD group. Previously reported anatomical abnormalities in ASD including larger intracranial volumes, smaller cerebellar volumes, and larger amygdala volumes were not substantiated by the current study. In addition, multivariate classification analyses yielded modest decoding accuracies of individuals' group identity (<60%), suggesting that the examined anatomical measures are of limited diagnostic utility for ASD. While anatomical abnormalities may be present in distinct subgroups of ASD individuals, the current findings show that many previously reported anatomical measures are likely to be of low clinical and scientific significance for understanding ASD neuropathology as a whole in individuals 6-35 years old.

  6. Making Connections

    ERIC Educational Resources Information Center

    Turner, Paul

    2015-01-01

    This article aims to illustrate a process of making connections, not between mathematics and other activities, but within mathematics itself--between diverse parts of the subject. Novel connections are still possible in previously explored mathematics when the material happens to be unfamiliar, as may be the case for a learner at any career stage.…

  7. Neural Networks

    DTIC Science & Technology

    1990-01-01

    FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO 11 TITLE (Include Security Classification) NEURAL NETWORKS 12. PERSONAL...SUB-GROUP Neural Networks Optical Architectures Nonlinear Optics Adaptation 19. ABSTRACT (Continue on reverse if necessary and identify by block number...341i Y C-odes , lo iii/(iv blank) 1. INTRODUCTION Neural networks are a type of distributed processing system [1

  8. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  9. [Molecular abnormalities in lymphomas].

    PubMed

    Delsol, G

    2010-11-01

    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  10. Normal and Abnormal Development of Motor Behavior: Lessons From Experiments in Rats

    PubMed Central

    Gramsbergen, Albert

    2001-01-01

    In this essay a few relevant aspects of the neural and behavioral development of the brain in the human and in the rat are reviewed and related to the consequences of lesions in the central and peripheral nervous system at early and later age. Movements initially are generated by local circuits in the spinal cord and without the involvement of descending projections. After birth, both in humans and in rats it seems that the devlopment of postural control is the limiting factor for several motor behaviors to mature. Strong indications exist that the cerebellum is significantly involved in this control. Lesions in the CNS at early stages interfere with fundamental processes of neural development, such as the establishment of fiber connections and cell death patterns. Consequently, the functional effects are strongly dependent on the stage of development. The young and undisturbed CNS, on the other hand, has a much greater capacity than the adult nervous system for compensating abnormal reinnervation in the peripheral nervous system. Animal experiments indicated that the cerebellar cortex might play an important part in this compensation. This possibility should be investigated further as it might offer important perspectives for treatment in the human. PMID:11530886

  11. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  12. Feature Extraction Using an Unsupervised Neural Network

    DTIC Science & Technology

    1991-05-03

    A novel unsupervised neural network for dimensionality reduction which seeks directions emphasizing distinguishing features in the data is presented. A statistical framework for the parameter estimation problem associated with this neural network is given and its connection to exploratory projection pursuit methods is established. The network is shown to minimize a loss function (projection index) over a

  13. Self-organization of neural networks

    NASA Astrophysics Data System (ADS)

    Clark, John W.; Winston, Jeffrey V.; Rafelski, Johann

    1984-05-01

    The plastic development of a neural-network model operating autonomously in discrete time is described by the temporal modification of interneuronal coupling strengths according to momentary neural activity. A simple algorithm (“brainwashing”) is found which, applied to nets with initially quasirandom connectivity, leads to model networks with properties conductive to the simulation of memory and learning phenomena.

  14. Adaptive Neurons For Artificial Neural Networks

    NASA Technical Reports Server (NTRS)

    Tawel, Raoul

    1990-01-01

    Training time decreases dramatically. In improved mathematical model of neural-network processor, temperature of neurons (in addition to connection strengths, also called weights, of synapses) varied during supervised-learning phase of operation according to mathematical formalism and not heuristic rule. Evidence that biological neural networks also process information at neuronal level.

  15. Striatal Abnormalities and Spontaneous Dyskinesias in Non-Clinical Psychosis

    PubMed Central

    Mittal, Vijay A.; Orr, Joseph M.; Turner, Jessica A.; Pelletier, Andrea L.; Dean, Derek J.; Lunsford-Avery, Jessica; Gupta, Tina

    2013-01-01

    Background Accumulating evidence suggests that individuals experiencing non-clinical psychosis (NCP) represent a critical group for improving understanding of etiological factors underlying the broader psychosis continuum. Although a wealth of evidence supports widespread neural dysfunction in formal psychosis, there has been little empirical evidence to support our understanding of putative vulnerability markers or brain structure in NCP. In this study, we examined the neural correlates of spontaneous movement abnormalities, a neural biomarker previously detected in NCP that is linked to abnormalities in the striatal dopamine. Methods We screened a total of 1,285 adolescents/young adults, and those scoring in the upper 15 percentile on a NCP scale were invited to participate; 20 of those invited agreed and these individuals were matched with healthy controls. Participants were administered a structural scan, clinical interviews, and an instrumental motor assessment. Results The NCP group showed elevated force variability, smaller putamen (but not caudate), and there was a significant relationship between motor dysfunction and striatal abnormalities for the sample. Elevated force variability was associated with both higher positive and negative symptoms, and there was a strong trend (p=.06) to suggest that smaller left putamen volumes were associated with elevated positive symptoms. Conclusions The results are among the first to suggest an association between neural structure and a risk marker in NCP. Findings indicate that vulnerabilities seen in schizophrenia also characterize the lower end of the psychosis spectrum. PMID:24156901

  16. Nonequilibrium landscape theory of neural networks.

    PubMed

    Yan, Han; Zhao, Lei; Hu, Liang; Wang, Xidi; Wang, Erkang; Wang, Jin

    2013-11-05

    The brain map project aims to map out the neuron connections of the human brain. Even with all of the wirings mapped out, the global and physical understandings of the function and behavior are still challenging. Hopfield quantified the learning and memory process of symmetrically connected neural networks globally through equilibrium energy. The energy basins of attractions represent memories, and the memory retrieval dynamics is determined by the energy gradient. However, the realistic neural networks are asymmetrically connected, and oscillations cannot emerge from symmetric neural networks. Here, we developed a nonequilibrium landscape-flux theory for realistic asymmetrically connected neural networks. We uncovered the underlying potential landscape and the associated Lyapunov function for quantifying the global stability and function. We found the dynamics and oscillations in human brains responsible for cognitive processes and physiological rhythm regulations are determined not only by the landscape gradient but also by the flux. We found that the flux is closely related to the degrees of the asymmetric connections in neural networks and is the origin of the neural oscillations. The neural oscillation landscape shows a closed-ring attractor topology. The landscape gradient attracts the network down to the ring. The flux is responsible for coherent oscillations on the ring. We suggest the flux may provide the driving force for associations among memories. We applied our theory to rapid-eye movement sleep cycle. We identified the key regulation factors for function through global sensitivity analysis of landscape topography against wirings, which are in good agreements with experiments.

  17. Altered Activity and Functional Connectivity of Superior Temporal Gyri in Anxiety Disorders: A Functional Magnetic Resonance Imaging Study

    PubMed Central

    Zhao, Xiaohu; Xi, Qian; Li, Chunbo; He, Hongjian

    2014-01-01

    Objective The prior functional MRI studies have demonstrated significantly abnormal activity in the bilateral superior temporal gyrus (STG) of anxiety patients. The purpose of the current investigation was to determine whether the abnormal activity in these regions was related to a loss of functional connectivity between these regions. Materials and Methods Ten healthy controls and 10 anxiety patients underwent noninvasive fMRI while actively listening to emotionally neutral words alternated by silence (Task 1) or threat-related words (Task 2). The participants were instructed to silently make a judgment of each word's valence (i.e., unpleasant, pleasant, or neutral). A coherence analysis was applied to the functional MRI data to examine the functional connectivity between the left and the right STG, which was selected as the primary region of interest on the basis of our prior results. Results The data demonstrated that the anxiety patients exhibited significantly increased activation in the bilateral STG than the normal controls. The functional connectivity analysis indicated that the patient group showed significantly decreased degree of connectivity between the bilateral STG during processing Task 2 compared to Task 1 (t = 2.588, p = 0.029). In addition, a significantly decreased connectivity was also observed in the patient group compared to the control group during processing Task 2 (t = 2.810, p = 0.012). Conclusion Anxiety patients may exhibit increased activity of the STG but decreased functional connectivity between the left and right STG, which may reflect the underlying neural abnormality of anxiety disorder, and this will provide new insights into this disease. PMID:25053913

  18. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  19. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  20. Cortical connectivity and memory performance in cognitive decline: A study via graph theory from EEG data.

    PubMed

    Vecchio, F; Miraglia, F; Quaranta, D; Granata, G; Romanello, R; Marra, C; Bramanti, P; Rossini, P M

    2016-03-01

    Functional brain abnormalities including memory loss are found to be associated with pathological changes in connectivity and network neural structures. Alzheimer's disease (AD) interferes with memory formation from the molecular level, to synaptic functions and neural networks organization. Here, we determined whether brain connectivity of resting-state networks correlate with memory in patients affected by AD and in subjects with mild cognitive impairment (MCI). One hundred and forty-four subjects were recruited: 70 AD (MMSE Mini Mental State Evaluation 21.4), 50 MCI (MMSE 25.2) and 24 healthy subjects (MMSE 29.8). Undirected and weighted cortical brain network was built to evaluate graph core measures to obtain Small World parameters. eLORETA lagged linear connectivity as extracted by electroencephalogram (EEG) signals was used to weight the network. A high statistical correlation between Small World and memory performance was found. Namely, higher Small World characteristic in EEG gamma frequency band during the resting state, better performance in short-term memory as evaluated by the digit span tests. Such Small World pattern might represent a biomarker of working memory impairment in older people both in physiological and pathological conditions.

  1. Abnormal band of lateral meniscus.

    PubMed

    Giordano, Brian; Goldblatt, John

    2009-01-01

    This article describes a case of an "abnormal band" of the lateral meniscus, extending from the posterior horn of the true lateral meniscus to its antero-mid portion, observed during arthroscopy in a 45-year-old white man of Bosnian descent. The periphery of the aberrant lateral meniscus was freely mobile, and not connected to the underlying true lateral meniscus. Preoperative physical examination findings were consistent with medial-sided meniscal pathology only; however, evidence of an anomalous lateral meniscus was seen with magnetic resonance imaging. This anatomical pattern is rare and has been reported in the literature only once, in a report of 2 Asian patients. This article illustrates an anatomical variant of the lateral meniscus in a non-Asian patient with a clinical presentation that has not been previously described. In addition to the case report, the article presents a comprehensive review of the existing body of literature on anomalous lateral meniscus patterns. We believe that the definitions of the types of aberrant meniscus can be clarified to establish improved accuracy in reporting.

  2. Differences in resting-state fMRI functional network connectivity between schizophrenia and psychotic bipolar probands and their unaffected first-degree relatives

    PubMed Central

    Meda, Shashwath A.; Gill, Adrienne; Stevens, Michael C.; Lorenzoni, Raymond P.; Glahn, David C.; Calhoun, Vince D.; Sweeney, John A.; Tamminga, Carol A.; Keshavan, Matcheri S.; Thaker, Gunvant; Pearlson, Godfrey D.

    2013-01-01

    Background Schizophrenia and bipolar disorder share overlapping symptoms and genetic etiology. Functional brain dysconnectivity is seen in both disorders. Methods We compared 70 schizophrenia and 64 psychotic bipolar probands, their respective unaffected first-degree relatives (N= 70 and 52) and 118 healthy subjects, all group age-, sex- and ethnicity-matched. We used functional network connectivity (FNC) analysis to measure differential connectivity among 16 fMRI RSNs. First, we examined connectivity differences between probands and controls. Next, we probed these dysfunctional connections in relatives for potential endophenotypes. Network connectivity was then correlated with PANSS scores to reveal clinical relationships. Results Three different network pairs were differentially connected in probands (FDR-corrected q<0.05) involving 5 individual resting-state networks: (A) Fronto/Occipital, (B) anterior Default Mode/Prefrontal, (C) Meso/Paralimbic, (D) Fronto-Temporal/Paralimbic & (E) Sensory-motor. One abnormal pair was unique to schizophrenia, (C-E), one unique to bipolar, (C-D) and one (A-B) shared. Two of these 3 combinations (A-B, C-E) were also abnormal in bipolar relatives, but none in schizophrenia relatives (non-significant trend for C-E). The Paralimbic circuit (C-D), that uniquely distinguished bipolar probands, contained multiple mood-relevant regions. Network relationship C-D correlated significantly with PANSS negative scores in bipolar probands and A-B was correlated to PANSS positive and general scores in schizophrenia. Conclusions Schizophrenia and psychotic bipolar probands share several abnormal RSN connections, but there are also unique neural network underpinnings between disorders. We identified specific connections and clinical relationships that may also be candidate psychosis endophenotypes, although these do not segregate straightforwardly with conventional diagnoses. PMID:22401986

  3. Increased resting state functional connectivity in the fronto-parietal and default mode network in anorexia nervosa

    PubMed Central

    Boehm, Ilka; Geisler, Daniel; King, Joseph A.; Ritschel, Franziska; Seidel, Maria; Deza Araujo, Yacila; Petermann, Juliane; Lohmeier, Heidi; Weiss, Jessika; Walter, Martin; Roessner, Veit; Ehrlich, Stefan

    2014-01-01

    The etiology of anorexia nervosa (AN) is poorly understood. Results from functional brain imaging studies investigating the neural profile of AN using cognitive and emotional task paradigms are difficult to reconcile. Task-related imaging studies often require a high level of compliance and can only partially explore the distributed nature and complexity of brain function. In this study, resting state functional connectivity imaging was used to investigate well-characterized brain networks potentially relevant to understand the neural mechanisms underlying the symptomatology and etiology of AN. Resting state functional magnetic resonance imaging data was obtained from 35 unmedicated female acute AN patients and 35 closely matched healthy controls female participants (HC) and decomposed using spatial group independent component analyses (ICA). Using validated templates, we identified components covering the fronto-parietal “control” network, the default mode network (DMN), the salience network, the visual and the sensory-motor network. Group comparison revealed an increased functional connectivity between the angular gyrus and the other parts of the fronto-parietal network in patients with AN in comparison to HC. Connectivity of the angular gyrus was positively associated with self-reported persistence in HC. In the DMN, AN patients also showed an increased functional connectivity strength in the anterior insula in comparison to HC. Anterior insula connectivity was associated with self-reported problems with interoceptive awareness. This study, with one of the largest sample to date, shows that acute AN is associated with abnormal brain connectivity in two major resting state networks (RSN). The finding of an increased functional connectivity in the fronto-parietal network adds novel support for the notion of AN as a disorder of excessive cognitive control, whereas the elevated functional connectivity of the anterior insula with the DMN may reflect the high

  4. The contribution of sensory system functional connectivity reduction to clinical pain in fibromyalgia.

    PubMed

    Pujol, Jesus; Macià, Dídac; Garcia-Fontanals, Alba; Blanco-Hinojo, Laura; López-Solà, Marina; Garcia-Blanco, Susana; Poca-Dias, Violant; Harrison, Ben J; Contreras-Rodríguez, Oren; Monfort, Jordi; Garcia-Fructuoso, Ferran; Deus, Joan

    2014-08-01

    Fibromyalgia typically presents with spontaneous body pain with no apparent cause and is considered pathophysiologically to be a functional disorder of somatosensory processing. We have investigated potential associations between the degree of self-reported clinical pain and resting-state brain functional connectivity at different levels of putative somatosensory integration. Resting-state functional magnetic resonance imaging was obtained in 40 women with fibromyalgia and 36 control subjects. A combination of functional connectivity-based measurements were used to assess (1) the basic pain signal modulation system at the level of the periaqueductal gray (PAG); (2) the sensory cortex with an emphasis on the parietal operculum/secondary somatosensory cortex (SII); and (3) the connectivity of these regions with the self-referential "default mode" network. Compared with control subjects, a reduction of functional connectivity was identified across the 3 levels of neural processing, each showing a significant and complementary correlation with the degree of clinical pain. Specifically, self-reported pain in fibromyalgia patients correlated with (1) reduced connectivity between PAG and anterior insula; (2) reduced connectivity between SII and primary somatosensory, visual, and auditory cortices; and (3) increased connectivity between SII and the default mode network. The results confirm previous research demonstrating abnormal functional connectivity in fibromyalgia and show that alterations at different levels of sensory processing may contribute to account for clinical pain. Importantly, reduced functional connectivity extended beyond the somatosensory domain and implicated visual and auditory sensory modalities. Overall, this study suggests that a general weakening of sensory integration underlies clinical pain in fibromyalgia.

  5. Only Connect.

    ERIC Educational Resources Information Center

    LeMieux, Anne C.

    2000-01-01

    Describes how the author connects with today's adolescent readers by means of laughter and literature. Claims young adult literature can facilitate the growth of empathy and provide an impetus for adolescents to transcend the isolation modern culture engenders. (NH)

  6. Metastable dynamics in heterogeneous neural fields

    PubMed Central

    Schwappach, Cordula; Hutt, Axel; beim Graben, Peter

    2015-01-01

    We present numerical simulations of metastable states in heterogeneous neural fields that are connected along heteroclinic orbits. Such trajectories are possible representations of transient neural activity as observed, for example, in the electroencephalogram. Based on previous theoretical findings on learning algorithms for neural fields, we directly construct synaptic weight kernels from Lotka-Volterra neural population dynamics without supervised training approaches. We deliver a MATLAB neural field toolbox validated by two examples of one- and two-dimensional neural fields. We demonstrate trial-to-trial variability and distributed representations in our simulations which might therefore be regarded as a proof-of-concept for more advanced neural field models of metastable dynamics in neurophysiological data. PMID:26175671

  7. Epilepsy and chromosomal abnormalities

    PubMed Central

    2010-01-01

    Background Many chromosomal abnormalities are associated with Central Nervous System (CNS) malformations and other neurological alterations, among which seizures and epilepsy. Some of these show a peculiar epileptic and EEG pattern. We describe some epileptic syndromes frequently reported in chromosomal disorders. Methods Detailed clinical assessment, electrophysiological studies, survey of the literature. Results In some of these congenital syndromes the clinical presentation and EEG anomalies seems to be quite typical, in others the manifestations appear aspecific and no strictly linked with the chromosomal imbalance. The onset of seizures is often during the neonatal period of the infancy. Conclusions A better characterization of the electro clinical patterns associated with specific chromosomal aberrations could give us a valuable key in the identification of epilepsy susceptibility of some chromosomal loci, using the new advances in molecular cytogenetics techniques - such as fluorescent in situ hybridization (FISH), subtelomeric analysis and CGH (comparative genomic hybridization) microarray. However further studies are needed to understand the mechanism of epilepsy associated with chromosomal abnormalities. PMID:20438626

  8. Morphogenetic movements in the neural plate and neural tube: mouse.

    PubMed

    Massarwa, R'ada; Ray, Heather J; Niswander, Lee

    2014-01-01

    The neural tube (NT), the embryonic precursor of the vertebrate brain and spinal cord, is generated by a complex and highly dynamic morphological process. In mammals, the initially flat neural plate bends and lifts bilaterally to generate the neural folds followed by fusion of the folds at the midline during the process of neural tube closure (NTC). Failures in any step of this process can lead to neural tube defects (NTDs), a common class of birth defects that occur in approximately 1 in 1000 live births. These severe birth abnormalities include spina bifida, a failure of closure at the spinal level; craniorachischisis, a failure of NTC along the entire body axis; and exencephaly, a failure of the cranial neural folds to close which leads to degeneration of the exposed brain tissue termed anencephaly. The mouse embryo presents excellent opportunities to explore the genetic basis of NTC in mammals; however, its in utero development has also presented great challenges in generating a deeper understanding of how gene function regulates the cell and tissue behaviors that drive this highly dynamic process. Recent technological advances are now allowing researchers to address these questions through visualization of NTC dynamics in the mouse embryo in real time, thus offering new insights into the morphogenesis of mammalian NTC.

  9. Neural Network Development Tool (NETS)

    NASA Technical Reports Server (NTRS)

    Baffes, Paul T.

    1990-01-01

    Artificial neural networks formed from hundreds or thousands of simulated neurons, connected in manner similar to that in human brain. Such network models learning behavior. Using NETS involves translating problem to be solved into input/output pairs, designing network configuration, and training network. Written in C.

  10. Neurobiology of social behavior abnormalities in autism and Williams syndrome

    PubMed Central

    Barak, B; Feng, G

    2016-01-01

    Social behavior is a basic behavior mediated by multiple brain regions and neural circuits, and is crucial for the survival and development of animals and humans. Two neuropsychiatric disorders that have prominent social behavior abnormalities are autism spectrum disorders (ASD), which is characterized mainly by hyposociability, and Williams syndrome (WS), whose subjects exhibit hypersociability. Here, we review the unique properties of social behavior in ASD and WS, and discuss the major theories in social behavior in the context of these disorders. We conclude with a discussion of the research questions needing further exploration to enhance our understanding of social behavior abnormalities. PMID:27116389

  11. Smart Sensing and Recognition Based on Models of Neural Networks

    DTIC Science & Technology

    1990-11-15

    associative storage and recall of information (associative memory ). The goal of research described in this report is study of the neural approach to...made use of a fully connected neural network operating as heteroassociative memory . (See Appendix IV.) The connection weights between neuron in the...8217 in neural signal processing or A. Principfes ’brain-like" pro( essing is readily appreciated when one notes the assoc ative memory attributes of the

  12. Altered mGluR5-Homer scaffolds and corticostriatal connectivity in a Shank3 complete knockout model of autism

    PubMed Central

    Wang, Xiaoming; Bey, Alexandra L.; Katz, Brittany M.; Badea, Alexandra; Kim, Namsoo; David, Lisa K.; Duffney, Lara J.; Kumar, Sunil; Mague, Stephen D.; Hulbert, Samuel W.; Dutta, Nisha; Hayrapetyan, Volodya; Yu, Chunxiu; Gaidis, Erin; Zhao, Shengli; Ding, Jin-Dong; Xu, Qiong; Chung, Leeyup; Rodriguiz, Ramona M.; Wang, Fan; Weinberg, Richard J.; Wetsel, William C.; Dzirasa, Kafui; Yin, Henry; Jiang, Yong-hui

    2016-01-01

    Human neuroimaging studies suggest that aberrant neural connectivity underlies behavioural deficits in autism spectrum disorders (ASDs), but the molecular and neural circuit mechanisms underlying ASDs remain elusive. Here, we describe a complete knockout mouse model of the autism-associated Shank3 gene, with a deletion of exons 4–22 (Δe4–22). Both mGluR5-Homer scaffolds and mGluR5-mediated signalling are selectively altered in striatal neurons. These changes are associated with perturbed function at striatal synapses, abnormal brain morphology, aberrant structural connectivity and ASD-like behaviour. In vivo recording reveals that the cortico-striatal-thalamic circuit is tonically hyperactive in mutants, but becomes hypoactive during social behaviour. Manipulation of mGluR5 activity attenuates excessive grooming and instrumental learning differentially, and rescues impaired striatal synaptic plasticity in Δe4–22−/− mice. These findings show that deficiency of Shank3 can impair mGluR5-Homer scaffolding, resulting in cortico-striatal circuit abnormalities that underlie deficits in learning and ASD-like behaviours. These data suggest causal links between genetic, molecular, and circuit mechanisms underlying the pathophysiology of ASDs. PMID:27161151

  13. Demultiplexer circuit for neural stimulation

    DOEpatents

    Wessendorf, Kurt O; Okandan, Murat; Pearson, Sean

    2012-10-09

    A demultiplexer circuit is disclosed which can be used with a conventional neural stimulator to extend the number of electrodes which can be activated. The demultiplexer circuit, which is formed on a semiconductor substrate containing a power supply that provides all the dc electrical power for operation of the circuit, includes digital latches that receive and store addressing information from the neural stimulator one bit at a time. This addressing information is used to program one or more 1:2.sup.N demultiplexers in the demultiplexer circuit which then route neural stimulation signals from the neural stimulator to an electrode array which is connected to the outputs of the 1:2.sup.N demultiplexer. The demultiplexer circuit allows the number of individual electrodes in the electrode array to be increased by a factor of 2.sup.N with N generally being in a range of 2-4.

  14. Genetic Dissection of Neural Circuits

    PubMed Central

    Luo, Liqun; Callaway, Edward M.; Svoboda, Karel

    2009-01-01

    Understanding the principles of information processing in neural circuits requires systematic characterization of the participating cell types and their connections, and the ability to measure and perturb their activity. Genetic approaches promise to bring experimental access to complex neural systems, including genetic stalwarts such as the fly and mouse, but also to nongenetic systems such as primates. Together with anatomical and physiological methods, cell-type-specific expression of protein markers and sensors and transducers will be critical to construct circuit diagrams and to measure the activity of genetically defined neurons. Inactivation and activation of genetically defined cell types will establish causal relationships between activity in specific groups of neurons, circuit function, and animal behavior. Genetic analysis thus promises to reveal the logic of the neural circuits in complex brains that guide behaviors. Here we review progress in the genetic analysis of neural circuits and discuss directions for future research and development. PMID:18341986

  15. Parietal connectivity mediates multisensory facilitation.

    PubMed

    Brang, David; Taich, Zachary J; Hillyard, Steven A; Grabowecky, Marcia; Ramachandran, V S

    2013-09-01

    Our senses interact in daily life through multisensory integration, facilitating perceptual processes and behavioral responses. The neural mechanisms proposed to underlie this multisensory facilitation include anatomical connections directly linking early sensory areas, indirect connections to higher-order multisensory regions, as well as thalamic connections. Here we examine the relationship between white matter connectivity, as assessed with diffusion tensor imaging, and individual differences in multisensory facilitation and provide the first demonstration of a relationship between anatomical connectivity and multisensory processing in typically developed individuals. Using a whole-brain analysis and contrasting anatomical models of multisensory processing we found that increased connectivity between parietal regions and early sensory areas was associated with the facilitation of reaction times to multisensory (auditory-visual) stimuli. Furthermore, building on prior animal work suggesting the involvement of the superior colliculus in this process, using probabilistic tractography we determined that the strongest cortical projection area connected with the superior colliculus includes the region of connectivity implicated in our independent whole-brain analysis.

  16. Neural network architecture for crossbar switch control

    NASA Technical Reports Server (NTRS)

    Troudet, Terry P.; Walters, Stephen M.

    1991-01-01

    A Hopfield neural network architecture for the real-time control of a crossbar switch for switching packets at maximum throughput is proposed. The network performance and processing time are derived from a numerical simulation of the transitions of the neural network. A method is proposed to optimize electronic component parameters and synaptic connections, and it is fully illustrated by the computer simulation of a VLSI implementation of 4 x 4 neural net controller. The extension to larger size crossbars is demonstrated through the simulation of an 8 x 8 crossbar switch controller, where the performance of the neural computation is discussed in relation to electronic noise and inhomogeneities of network components.

  17. Device Connectivity

    PubMed Central

    Walsh, John; Roberts, Ruth; Morris, Richard

    2015-01-01

    Patients with diabetes have to take numerous factors/data into their therapeutic decisions in daily life. Connecting the devices they are using by feeding the data generated into a database/app is supposed to help patients to optimize their glycemic control. As this is not established in practice, the different roadblocks have to be discussed to open the road. That large telecommunication companies are now entering this market might be a big help in pushing this forward. Smartphones offer an ideal platform for connectivity solutions. PMID:25614015

  18. Connected Traveler

    SciTech Connect

    2016-06-01

    The Connected Traveler framework seeks to boost the energy efficiency of personal travel and the overall transportation system by maximizing the accuracy of predicted traveler behavior in response to real-time feedback and incentives. It is anticipated that this approach will establish a feedback loop that 'learns' traveler preferences and customizes incentives to meet or exceed energy efficiency targets by empowering individual travelers with information needed to make energy-efficient choices and reducing the complexity required to validate transportation system energy savings. This handout provides an overview of NREL's Connected Traveler project, including graphics, milestones, and contact information.

  19. Convergent evidence for abnormal striatal synaptic plasticity in dystonia

    PubMed Central

    Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard

    2010-01-01

    Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes

  20. The effect of the neural activity on topological properties of growing neural networks.

    PubMed

    Gafarov, F M; Gafarova, V R

    2016-09-01

    The connectivity structure in cortical networks defines how information is transmitted and processed, and it is a source of the complex spatiotemporal patterns of network's development, and the process of creation and deletion of connections is continuous in the whole life of the organism. In this paper, we study how neural activity influences the growth process in neural networks. By using a two-dimensional activity-dependent growth model we demonstrated the neural network growth process from disconnected neurons to fully connected networks. For making quantitative investigation of the network's activity influence on its topological properties we compared it with the random growth network not depending on network's activity. By using the random graphs theory methods for the analysis of the network's connections structure it is shown that the growth in neural networks results in the formation of a well-known "small-world" network.

  1. Resting‐state connectivity predicts levodopa‐induced dyskinesias in Parkinson's disease

    PubMed Central

    Haagensen, Brian N.; Nielsen, Silas H.; Madsen, Kristoffer H.; Løkkegaard, Annemette; Siebner, Hartwig R.

    2016-01-01

    ABSTRACT Background Levodopa‐induced dyskinesias are a common side effect of dopaminergic therapy in PD, but their neural correlates remain poorly understood. Objectives This study examines whether dyskinesias are associated with abnormal dopaminergic modulation of resting‐state cortico‐striatal connectivity. Methods Twelve PD patients with peak‐of‐dose dyskinesias and 12 patients without dyskinesias were withdrawn from dopaminergic medication. All patients received a single dose of fast‐acting soluble levodopa and then underwent resting‐state functional magnetic resonance imaging before any dyskinesias emerged. Levodopa‐induced modulation of cortico‐striatal resting‐state connectivity was assessed between the putamen and the following 3 cortical regions of interest: supplementary motor area, primary sensorimotor cortex, and right inferior frontal gyrus. These functional connectivity measures were entered into a linear support vector classifier to predict whether an individual patient would develop dyskinesias after levodopa intake. Linear regression analysis was applied to test which connectivity measures would predict dyskinesia severity. Results Dopaminergic modulation of resting‐state connectivity between the putamen and primary sensorimotor cortex in the most affected hemisphere predicted whether patients would develop dyskinesias with a specificity of 100% and a sensitivity of 91% (P < .0001). Modulation of resting‐state connectivity between the supplementary motor area and putamen predicted interindividual differences in dyskinesia severity (R 2 = 0.627, P = .004). Resting‐state connectivity between the right inferior frontal gyrus and putamen neither predicted dyskinesia status nor dyskinesia severity. Conclusions The results corroborate the notion that altered dopaminergic modulation of cortico‐striatal connectivity plays a key role in the pathophysiology of dyskinesias in PD. © 2016 International Parkinson and Movement

  2. Self-regulation of brain oscillations as a treatment for aberrant brain connections in children with autism.

    PubMed

    Pineda, J A; Juavinett, A; Datko, M

    2012-12-01

    Autism is a highly varied developmental disorder typically characterized by deficits in reciprocal social interaction, difficulties with verbal and nonverbal communication, and restricted interests and repetitive behaviors. Although a wide range of behavioral, pharmacological, and alternative medicine strategies have been reported to ameliorate specific symptoms for some individuals, there is at present no cure for the condition. Nonetheless, among the many incompatible observations about aspects of the development, anatomy, and functionality of the autistic brain, it is widely agreed that it is characterized by widespread aberrant connectivity. Such disordered connectivity, be it increased, decreased, or otherwise compromised, may complicate healthy synchronization and communication among and within different neural circuits, thereby producing abnormal processing of sensory inputs necessary for normal social life. It is widely accepted that the innate properties of brain electrical activity produce pacemaker elements and linked networks that oscillate synchronously or asynchronously, likely reflecting a type of functional connectivity. Using phase coherence in multiple frequency EEG bands as a measure of functional connectivity, studies have shown evidence for both global hypoconnectivity and local hyperconnectivity in individuals with ASD. However, the nature of the brain's experience-dependent structural plasticity suggests that these abnormal patterns may be reversed with the proper type of treatment. Indeed, neurofeedback (NF) training, an intervention based on operant conditioning that results in self-regulation of brain electrical oscillations, has shown promise in addressing marked abnormalities in functional and structural connectivity. It is hypothesized that neurofeedback produces positive behavioral changes in ASD children by normalizing the aberrant connections within and between neural circuits. NF exploits the brain's plasticity to normalize aberrant

  3. Evolvable synthetic neural system

    NASA Technical Reports Server (NTRS)

    Curtis, Steven A. (Inventor)

    2009-01-01

    An evolvable synthetic neural system includes an evolvable neural interface operably coupled to at least one neural basis function. Each neural basis function includes an evolvable neural interface operably coupled to a heuristic neural system to perform high-level functions and an autonomic neural system to perform low-level functions. In some embodiments, the evolvable synthetic neural system is operably coupled to one or more evolvable synthetic neural systems in a hierarchy.

  4. Connected Learning.

    ERIC Educational Resources Information Center

    Brown, David E.

    2000-01-01

    California has numerous niche programs stressing both academic rigor and career connections. These occur most successfully where business and elected officials support K-12 partnerships and provide job-shadowing opportunities, internships, and classroom instruction offered by business partners. A sidebar outlines school-to-work principles. (MLH)

  5. Learning Connections

    ERIC Educational Resources Information Center

    Royer, Regina D.; Richards, Patricia O.

    2005-01-01

    In this edition of Learning Connections, the authors show how technology can enhance study of weather patterns, reading comprehension, real-world training, critical thinking, health education, and art criticism. The following sections are included: (1) Social Studies; (2) Language Arts; (3) Computer Science and ICT; (4) Art; and (5) Health.…

  6. Get Connected

    ERIC Educational Resources Information Center

    Horton, Jessica; Hagevik, Rita; Adkinson, Bennett; Parmly, Jilynn

    2013-01-01

    Technology can be both a blessing and a curse in the classroom. Although technology can provide greater access to information and increase student engagement, if screen time replaces time spent outside, then students stand to lose awareness and connectivity to the surrounding natural environment. This article describes how Google Earth can foster…

  7. Neural Networks

    SciTech Connect

    Smith, Patrick I.

    2003-09-23

    Physicists use large detectors to measure particles created in high-energy collisions at particle accelerators. These detectors typically produce signals indicating either where ionization occurs along the path of the particle, or where energy is deposited by the particle. The data produced by these signals is fed into pattern recognition programs to try to identify what particles were produced, and to measure the energy and direction of these particles. Ideally, there are many techniques used in this pattern recognition software. One technique, neural networks, is particularly suitable for identifying what type of particle caused by a set of energy deposits. Neural networks can derive meaning from complicated or imprecise data, extract patterns, and detect trends that are too complex to be noticed by either humans or other computer related processes. To assist in the advancement of this technology, Physicists use a tool kit to experiment with several neural network techniques. The goal of this research is interface a neural network tool kit into Java Analysis Studio (JAS3), an application that allows data to be analyzed from any experiment. As the final result, a physicist will have the ability to train, test, and implement a neural network with the desired output while using JAS3 to analyze the results or output. Before an implementation of a neural network can take place, a firm understanding of what a neural network is and how it works is beneficial. A neural network is an artificial representation of the human brain that tries to simulate the learning process [5]. It is also important to think of the word artificial in that definition as computer programs that use calculations during the learning process. In short, a neural network learns by representative examples. Perhaps the easiest way to describe the way neural networks learn is to explain how the human brain functions. The human brain contains billions of neural cells that are responsible for processing

  8. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders.

    PubMed

    Kana, Rajesh K; Libero, Lauren E; Moore, Marie S

    2011-12-01

    as Theory-of-Mind, cognitive flexibility, and information processing; and 2) how connection abnormalities relate to, and may determine, behavioral symptoms hallmarked by the triad of Impairments in ASD. Furthermore, we will relate the disrupted cortical connectivity model to existing cognitive and neural models of ASD.

  9. Is the ADHD brain wired differently? A review on structural and functional connectivity in attention deficit hyperactivity disorder.

    PubMed

    Konrad, Kerstin; Eickhoff, Simon B

    2010-06-01

    In recent years, a change in perspective in etiological models of attention deficit hyperactivity disorder (ADHD) has occurred in concordance with emerging concepts in other neuropsychiatric disorders such as schizophrenia and autism. These models shift the focus of the assumed pathology from regional brain abnormalities to dysfunction in distributed network organization. In the current contribution, we report findings from functional connectivity studies during resting and task states, as well as from studies on structural connectivity using diffusion tensor imaging, in subjects with ADHD. Although major methodological limitations in analyzing connectivity measures derived from noninvasive in vivo neuroimaging still exist, there is convergent evidence for white matter pathology and disrupted anatomical connectivity in ADHD. In addition, dysfunctional connectivity during rest and during cognitive tasks has been demonstrated. However, the causality between disturbed white matter architecture and cortical dysfunction remains to be evaluated. Both genetic and environmental factors might contribute to disruptions in interactions between different brain regions. Stimulant medication not only modulates regionally specific activation strength but also normalizes dysfunctional connectivity, pointing to a predominant network dysfunction in ADHD. By combining a longitudinal approach with a systems perspective in ADHD in the future, it might be possible to identify at which stage during development disruptions in neural networks emerge and to delineate possible new endophenotypes of ADHD.

  10. Functional Connectivity Anomalies in Adolescents with Psychotic Symptoms

    PubMed Central

    O’Hanlon, Erik; Kraft, Dominik; Oertel-Knöchel, Viola; Clarke, Mary; Kelleher, Ian; Higgins, Niamh; Coughlan, Helen; Creegan, Daniel; Heneghan, Mark; Power, Emmet; Power, Lucy; Ryan, Jessica; Frodl, Thomas; Cannon, Mary

    2017-01-01

    Background Previous magnetic resonance imaging (MRI) research suggests that, prior to the onset of psychosis, high risk youths already exhibit brain abnormalities similar to those present in patients with schizophrenia. Objectives The goal of the present study was to describe the functional organization of endogenous activation in young adolescents who report auditory verbal hallucinations (AVH) in view of the “distributed network” hypothesis of psychosis. We recruited 20 young people aged 13–16 years who reported AVHs and 20 healthy controls matched for age, gender and handedness from local schools. Methods Each participant underwent a semi-structured clinical interview and a resting state (RS) neuroimaging protocol. We explored functional connectivity (FC) involving three different networks: 1) default mode network (DMN) 2) salience network (SN) and 3) central executive network (CEN). In line with previous findings on the role of the auditory cortex in AVHs as reported by young adolescents, we also investigated FC anomalies involving both the primary and secondary auditory cortices (A1 and A2, respectively). Further, we explored between-group inter-hemispheric FC differences (laterality) for both A1 and A2. Compared to the healthy control group, the AVH group exhibited FC differences in all three networks investigated. Moreover, FC anomalies were found in a neural network including both A1 and A2. The laterality analysis revealed no between-group, inter-hemispheric differences. Conclusions The present study suggests that young adolescents with subclinical psychotic symptoms exhibit functional connectivity anomalies directly and indirectly involving the DMN, SN, CEN and also a neural network including both primary and secondary auditory cortical regions. PMID:28125578

  11. Ventrally emigrating neural tube (VENT) cells: a second neural tube-derived cell population.

    PubMed

    Dickinson, Douglas P; Machnicki, Michal; Ali, Mohammed M; Zhang, Zhanying; Sohal, Gurkirpal S

    2004-08-01

    Two embryological fates for cells of the neural tube are well established. Cells from the dorsal part of the developing neural tube emigrate and become neural crest cells, which in turn contribute to the development of the peripheral nervous system and a variety of non-neural structures. Other neural tube cells form the neurons and glial cells of the central nervous system (CNS). This has led to the neural crest being treated as the sole neural tube-derived emigrating cell population, with the remaining neural tube cells assumed to be restricted to forming the CNS. However, this restriction has not been tested fully. Our investigations of chick, quail and duck embryos utilizing a variety of different labelling techniques (DiI, LacZ, GFP and quail chimera) demonstrate the existence of a second neural tube-derived emigrating cell population. These cells originate from the ventral part of the cranial neural tube, emigrate at the exit/entry site of the cranial nerves, migrate in association with the nerves and populate their target tissues. On the basis of its site of origin and route of migration we have named this cell population the ventrally emigrating neural tube (VENT) cells. VENT cells also differ from neural crest cells in that they emigrate considerably after the emigration of neural crest cells, and lack expression of the neural crest cell antigen HNK-1. VENT cells are multipotent, differentiating into cell types belonging to all four basic tissues in the body: the nerve, muscle, connective and epithelium. Thus, the neural tube provides at least two cell populations--neural crest and VENT cells--that contribute to the development of the peripheral nervous system and various non-neural structures. This review describes the origin of the idea of VENT cells, and discusses evidence for their existence and subsequent fates.

  12. Neural wiring optimization.

    PubMed

    Cherniak, Christopher

    2012-01-01

    Combinatorial network optimization theory concerns minimization of connection costs among interconnected components in systems such as electronic circuits. As an organization principle, similar wiring minimization can be observed at various levels of nervous systems, invertebrate and vertebrate, including primate, from placement of the entire brain in the body down to the subcellular level of neuron arbor geometry. In some cases, the minimization appears either perfect, or as good as can be detected with current methods. One question such best-of-all-possible-brains results raise is, what is the map of such optimization, does it have a distinct neural domain?

  13. Selective Manipulation of Neural Circuits.

    PubMed

    Park, Hong Geun; Carmel, Jason B

    2016-04-01

    Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.

  14. The Neural Crest in Cardiac Congenital Anomalies

    PubMed Central

    Keyte, Anna; Hutson, Mary Redmond

    2012-01-01

    This review discusses the function of neural crest as they relate to cardiovascular defects. The cardiac neural crest cells are a subpopulation of cranial neural crest discovered nearly 30 years ago by ablation of premigratory neural crest. The cardiac neural crest cells are necessary for normal cardiovascular development. We begin with a description of the crest cells in normal development, including their function in remodeling the pharyngeal arch arteries, outflow tract septation, valvulogenesis, and development of the cardiac conduction system. The cells are also responsible for modulating signaling in the caudal pharynx, including the second heart field. Many of the molecular pathways that are known to influence specification, migration, patterning and final targeting of the cardiac neural crest cells are reviewed. The cardiac neural crest cells play a critical role in the pathogenesis of various human cardiocraniofacial syndromes such as DiGeorge, Velocardiofacial, CHARGE, Fetal Alcohol, Alagille, LEOPARD, and Noonan syndromes, as well as Retinoic Acid Embryopathy. The loss of neural crest cells or their dysfunction may not always directly cause abnormal cardiovascular development, but are involved secondarily because crest cells represent a major component in the complex tissue interactions in the head, pharynx and outflow tract. Thus many of the human syndromes linking defects in the heart, face and brain can be better understood when considered within the context of a single cardiocraniofacial developmental module with the neural crest being a key cell type that interconnects the regions. PMID:22595346

  15. Degraded attentional modulation of cortical neural populations in strabismic amblyopia

    PubMed Central

    Hou, Chuan; Kim, Yee-Joon; Lai, Xin Jie; Verghese, Preeti

    2016-01-01

    Behavioral studies have reported reduced spatial attention in amblyopia, a developmental disorder of spatial vision. However, the neural populations in the visual cortex linked with these behavioral spatial attention deficits have not been identified. Here, we use functional MRI–informed electroencephalography source imaging to measure the effect of attention on neural population activity in the visual cortex of human adult strabismic amblyopes who were stereoblind. We show that compared with controls, the modulatory effects of selective visual attention on the input from the amblyopic eye are substantially reduced in the primary visual cortex (V1) as well as in extrastriate visual areas hV4 and hMT+. Degraded attentional modulation is also found in the normal-acuity fellow eye in areas hV4 and hMT+ but not in V1. These results provide electrophysiological evidence that abnormal binocular input during a developmental critical period may impact cortical connections between the visual cortex and higher level cortices beyond the known amblyopic losses in V1 and V2, suggesting that a deficit of attentional modulation in the visual cortex is an important component of the functional impairment in amblyopia. Furthermore, we find that degraded attentional modulation in V1 is correlated with the magnitude of interocular suppression and the depth of amblyopia. These results support the view that the visual suppression often seen in strabismic amblyopia might be a form of attentional neglect of the visual input to the amblyopic eye. PMID:26885628

  16. Neurologic Correlates of Gait Abnormalities in Cerebral Palsy: Implications for Treatment

    PubMed Central

    Zhou, Joanne; Butler, Erin E.; Rose, Jessica

    2017-01-01

    Cerebral palsy (CP) is the most common movement disorder in children. A diagnosis of CP is often made based on abnormal muscle tone or posture, a delay in reaching motor milestones, or the presence of gait abnormalities in young children. Neuroimaging of high-risk neonates and of children diagnosed with CP have identified patterns of neurologic injury associated with CP, however, the neural underpinnings of common gait abnormalities remain largely uncharacterized. Here, we review the nature of the brain injury in CP, as well as the neuromuscular deficits and subsequent gait abnormalities common among children with CP. We first discuss brain injury in terms of mechanism, pattern, and time of injury during the prenatal, perinatal, or postnatal period in preterm and term-born children. Second, we outline neuromuscular deficits of CP with a focus on spastic CP, characterized by muscle weakness, shortened muscle-tendon unit, spasticity, and impaired selective motor control, on both a microscopic and functional level. Third, we examine the influence of neuromuscular deficits on gait abnormalities in CP, while considering emerging information on neural correlates of gait abnormalities and the implications for strategic treatment. This review of the neural basis of gait abnormalities in CP discusses what is known about links between the location and extent of brain injury and the type and severity of CP, in relation to the associated neuromuscular deficits, and subsequent gait abnormalities. Targeted treatment opportunities are identified that may improve functional outcomes for children with CP. By providing this context on the neural basis of gait abnormalities in CP, we hope to highlight areas of further research that can reduce the long-term, debilitating effects of CP. PMID:28367118

  17. Neurological abnormalities in young adults born preterm

    PubMed Central

    Allin, M; Rooney, M; Griffiths, T; Cuddy, M; Wyatt, J; Rifkin, L; Murray, R

    2006-01-01

    Objective Individuals born before 33 weeks' gestation (very preterm, VPT) have an increased likelihood of neurological abnormality, impaired cognitive function, and reduced academic performance in childhood. It is currently not known whether neurological signs detected in VPT children persist into adulthood or become attenuated by maturation of the CNS. Method We assessed 153 VPT individuals and 71 term‐born controls at 17–18 years old, using a comprehensive neurological examination. This examination divides neurological signs into primary and integrative domains, the former representing the localising signs of classical neurology, and the latter representing signs requiring integration between different neural networks or systems. Integrative signs are sub‐divided into three groups: sensory integration, motor confusion, and sequencing. The VPT individuals have been followed up since birth, and neonatal information is available on them, along with the results of neurological assessment at 4 and 8 years of age and neuropsychological assessment at 18 years of age. Results The total neurology score and primary and integrative scores were significantly increased in VPT young adults compared to term‐born controls. Within the integrative domain, sensory integration and motor confusion scores were significantly increased in the VPT group, but sequencing was not significantly different between the VPT and term groups. Integrative neurological abnormalities at 18 were strongly associated with reduced IQ but primary abnormalities were not. Conclusions Neurological signs are increased in VPT adults compared to term‐born controls, and are strongly associated with reduced neuropsychological function. PMID:16543529

  18. Altered brain functional connectivity in relation to perception of scrutiny in social anxiety disorder.

    PubMed

    Giménez, Mónica; Pujol, Jesús; Ortiz, Hector; Soriano-Mas, Carles; López-Solà, Marina; Farré, Magí; Deus, Joan; Merlo-Pich, Emilio; Martín-Santos, Rocio

    2012-06-30

    Although the fear of being scrutinized by others in a social context is a key symptom in social anxiety disorder (SAD), the neural processes underlying the perception of scrutiny have not previously been studied by functional magnetic resonance imaging (fMRI). We used fMRI to map brain activation during a perception-of-scrutiny task in 20 SAD patients and 20 controls. A multi-dimensional analytic approach was used. Scrutiny perception was mediated by activation of the medial frontal cortex, insula-operculum region and cerebellum, and the additional recruitment of visual areas and the thalamus in patients. Between-group comparison demonstrated significantly enhanced brain activation in patients in the primary visual cortex and cerebellum. Functional connectivity mapping demonstrated an abnormal connectivity between regions underlying general arousal and attention. SAD patients showed significantly greater task-induced functional connectivity in the thalamo-cortical and the fronto-striatal circuits. A statistically significant increase in task-induced functional connectivity between the anterior cingulate cortex and scrutiny-perception-related regions was observed in the SAD patients, suggesting the existence of enhanced behavior-inhibitory control. The presented data indicate that scrutiny perception in SAD enhances brain activity in arousal-attention systems, suggesting that fMRI may be a useful tool to explore such a behavioral dimension.

  19. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  20. Systemic abnormalities in liver disease

    PubMed Central

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648

  1. Coupling layers regularizes wave propagation in stochastic neural fields

    NASA Astrophysics Data System (ADS)

    Kilpatrick, Zachary P.

    2014-02-01

    We explore how layered architectures influence the dynamics of stochastic neural field models. Our main focus is how the propagation of waves of neural activity in each layer is affected by interlaminar coupling. Synaptic connectivities within and between each layer are determined by integral kernels of an integrodifferential equation describing the temporal evolution of neural activity. Excitatory neural fields, with purely positive connectivities, support traveling fronts in each layer, whose speeds are increased when coupling between layers is considered. Studying the effects of noise, we find coupling reduces the variance in the position of traveling fronts, as long as the noise sources to each layer are not completely correlated. Neural fields with asymmetric connectivity support traveling pulses whose speeds are decreased by interlaminar coupling. Again, coupling reduces the variance in traveling pulse position. Asymptotic analysis is performed using a small-noise expansion, assuming interlaminar connectivity scales similarly.

  2. Connections of the macaque Granular Frontal Opercular (GrFO) area: a possible neural substrate for the contribution of limbic inputs for controlling hand and face/mouth actions.

    PubMed

    Gerbella, Marzio; Borra, Elena; Rozzi, Stefano; Luppino, Giuseppe

    2016-01-01

    We traced the connections of the macaque Granular Frontal Opercular (GrFO) area, located in the rostralmost part of the frontal opercular margin, and compared them with those of the caudally adjacent dorsal opercular (DO) and precentral opercular (PrCO) areas. Area GrFO displays strong connections with areas DO, PrCO, and ventrolateral prefrontal (VLPF) area 12l, and even more with the mostly hand-related ventral premotor (PMv) area F5a. Other connections involve the mostly face/mouth-related PMv area F5c, the arm-related area F6/pre-SMA, the hand-related fields of VLPF areas 46v and 12r, and area SII, mostly the hand representation. Furthermore, area GrFO shows rich connectivity with several components of the limbic system including orbitofrontal areas 12o, 12m, and 11, the agranular and dysgranular insula, the agranular cingulate area 24, and the amygdala. Thalamic afferents originate primarily from the parvocellular and the magnocellular subdivisions of the mediodorsal nucleus and from midline and intralaminar nuclei. This connectivity pattern clearly distinguishes area GrFO from areas DO and PrCO, characterized by a connectivity mostly involving oral sensorimotor and gustatory areas/subcortical structures. The present data suggest, based on connectivity patterns, an involvement of area GrFO in the cortical circuits for controlling goal-directed hand and face/mouth actions. In this context, area GrFO could represent a gateway for the access of limbic inputs, for example about subjective values, emotional significance of stimuli or internal states, to the PMv areas involved in selecting appropriate goal-directed hand and mouth/face actions.

  3. Disrupted cortical connectivity theory as an explanatory model for autism spectrum disorders

    NASA Astrophysics Data System (ADS)

    Kana, Rajesh K.; Libero, Lauren E.; Moore, Marie S.

    2011-12-01

    such as Theory-of-Mind, cognitive flexibility, and information processing; and 2) how connection abnormalities relate to, and may determine, behavioral symptoms hallmarked by the triad of Impairments in ASD. Furthermore, we will relate the disrupted cortical connectivity model to existing cognitive and neural models of ASD.

  4. Altered resting-state functional connectivity in post-traumatic stress disorder: a perfusion MRI study

    NASA Astrophysics Data System (ADS)

    Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong

    2013-03-01

    The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.

  5. Connectivity alterations assessed by combining fMRI and MR-compatible hand robots in chronic stroke.

    PubMed

    Mintzopoulos, Dionyssios; Astrakas, Loukas G; Khanicheh, Azadeh; Konstas, Angelos A; Singhal, Aneesh; Moskowitz, Michael A; Rosen, Bruce R; Tzika, A Aria

    2009-08-01

    The aim of this study was to investigate functional reorganization of motor systems by probing connectivity between motor related areas in chronic stroke patients using functional magnetic resonance imaging (fMRI) in conjunction with a novel MR-compatible hand-induced, robotic device (MR_CHIROD). We evaluated data sets obtained from healthy volunteers and right-hand-dominant patients with first-ever left-sided stroke > or =6 months prior and mild to moderate hemiparesis affecting the right hand. We acquired T1-weighted echo planar and fluid attenuation inversion recovery MR images and multi-level fMRI data using parallel imaging by means of the GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) algorithm on a 3 T MR system. Participants underwent fMRI while performing a motor task with the MR_CHIROD in the MR scanner. Changes in effective connectivity among a network of primary motor cortex (M1), supplementary motor area (SMA) and cerebellum (Ce) were assessed using dynamic causal modeling. Relative to healthy controls, stroke patients exhibited decreased intrinsic neural coupling between M1 and Ce, which was consistent with a dysfunctional M1 to Ce connection. Stroke patients also showed increased SMA to M1 and SMA to cerebellum coupling, suggesting that changes in SMA and Ce connectivity may occur to compensate for a dysfunctional M1. The results demonstrate for the first time that connectivity alterations between motor areas may help counterbalance a functionally abnormal M1 in chronic stroke patients. Assessing changes in connectivity by means of fMRI and MR_CHIROD might be used in the future to further elucidate the neural network plasticity that underlies functional recovery in chronic stroke patients.

  6. Reduced prefrontal connectivity in psychopathy.

    PubMed

    Motzkin, Julian C; Newman, Joseph P; Kiehl, Kent A; Koenigs, Michael

    2011-11-30

    Linking psychopathy to a specific brain abnormality could have significant clinical, legal, and scientific implications. Theories on the neurobiological basis of the disorder typically propose dysfunction in a circuit involving ventromedial prefrontal cortex (vmPFC). However, to date there is limited brain imaging data to directly test whether psychopathy may indeed be associated with any structural or functional abnormality within this brain area. In this study, we employ two complementary imaging techniques to assess the structural and functional connectivity of vmPFC in psychopathic and non-psychopathic criminals. Using diffusion tensor imaging, we show that psychopathy is associated with reduced structural integrity in the right uncinate fasciculus, the primary white matter connection between vmPFC and anterior temporal lobe. Using functional magnetic resonance imaging, we show that psychopathy is associated with reduced functional connectivity between vmPFC and amygdala as well as between vmPFC and medial parietal cortex. Together, these data converge to implicate diminished vmPFC connectivity as a characteristic neurobiological feature of psychopathy.

  7. Computer science: Nanoscale connections for brain-like circuits

    NASA Astrophysics Data System (ADS)

    Legenstein, Robert

    2015-05-01

    Tiny circuit elements called memristors have been used as connections in an artificial neural network - enabling the system to learn to recognize letters of the alphabet from imperfect images. See Letter p.61

  8. The neural basis of a deficit in abstract thinking in patients with schizophrenia.

    PubMed

    Oh, Jooyoung; Chun, Ji-Won; Joon Jo, Hang; Kim, Eunseong; Park, Hae-Jeong; Lee, Boreom; Kim, Jae-Jin

    2015-10-30

    Abnormal abstract thinking is a major cause of social dysfunction in patients with schizophrenia, but little is known about its neural basis. In this study, we aimed to determine the characteristic abstract thinking-related brain responses in patients using a task reflecting social situations. We conducted functional magnetic resonance imaging while 16 patients with schizophrenia and 16 healthy controls performed a theme-identification task, in which various emotional pictures depicting social situations were presented. Compared with healthy controls, the patients showed significantly decreased activity in the left frontopolar and right orbitofrontal cortices during theme identification. Activity in these two regions correlated well in the controls, but not in patients. Instead, the patients exhibited a close correlation between activity in both sides of the frontopolar cortex, and a positive correlation between the right orbitofrontal cortex activity and degrees of theme identification. Reduced activity in the left frontopolar and right orbitofrontal cortices and the underlying aberrant connectivity may be implicated in the patients' deficits in abstract thinking. These newly identified features of the neural basis of abnormal abstract thinking are important as they have implications for the impaired social behavior of patients with schizophrenia during real-life situations.

  9. Chromosomal abnormalities and mental illness.

    PubMed

    MacIntyre, D J; Blackwood, D H R; Porteous, D J; Pickard, B S; Muir, W J

    2003-03-01

    Linkage studies of mental illness have provided suggestive evidence of susceptibility loci over many broad chromosomal regions. Pinpointing causative gene mutations by conventional linkage strategies alone is problematic. The breakpoints of chromosomal abnormalities occurring in patients with mental illness may be more direct pointers to the relevant gene locus. Publications that describe patients where chromosomal abnormalities co-exist with mental illness are reviewed along with supporting evidence that this may amount to an association. Chromosomal abnormalities are considered to be of possible significance if (a) the abnormality is rare and there are independent reports of its coexistence with psychiatric illness, or (b) there is colocalisation of the abnormality with a region of suggestive linkage findings, or (c) there is an apparent cosegregation of the abnormality with psychiatric illness within the individual's family. Breakpoints have been described within many of the loci suggested by linkage studies and these findings support the hypothesis that shared susceptibility factors for schizophrenia and bipolar disorder may exist. If these abnormalities directly disrupt coding regions, then combining molecular genetic breakpoint cloning with bioinformatic sequence analysis may be a method of rapidly identifying candidate genes. Full karyotyping of individuals with psychotic illness especially where this coexists with mild learning disability, dysmorphism or a strong family history of mental disorder is encouraged.

  10. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  11. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  12. Application of LMS-Based NN Structure for Power Quality Enhancement in a Distribution Network Under Abnormal Conditions.

    PubMed

    Agarwal, Rahul Kumar; Hussain, Ikhlaq; Singh, Bhim

    2017-03-16

    This paper proposes an application of a least mean-square (LMS)-based neural network (NN) structure for the power quality improvement of a three-phase power distribution network under abnormal conditions. It uses a single-layer neuron structure for the control in a distribution static compensator (DSTATCOM) to attenuate the harmonics such as noise, bias, notches, dc offset, and distortion, injected in the grid current due to connection of several nonlinear loads. This admittance LMS-based NN structure has a simple architecture which reduces the computational complexity and burden which makes it easy to implement. A DSTATCOM is a custom power device which performs various functionalities such as harmonics attenuation, reactive power compensation, load balancing, zero voltage regulation, and power factor correction. Other main contribution of this paper involves operation of the system under abnormal conditions of distribution network which means noise and distortion in voltage and imbalance in three-phase voltages at the point of interconnection. For substantiating and demonstrating the performance of proposed control approach, simulations are carried on MATLAB/Simulink software and corresponding experimental tests are conducted on a developed prototype in the laboratory.

  13. Is Social Phobia a "Mis-Communication" Disorder? Brain Functional Connectivity during Face Perception Differs between Patients with Social Phobia and Healthy Control Subjects.

    PubMed

    Danti, Sabrina; Ricciardi, Emiliano; Gentili, Claudio; Gobbini, Maria Ida; Pietrini, Pietro; Guazzelli, Mario

    2010-01-01

    Recently, a differential recruitment of brain areas throughout the distributed neural system for face perception has been found in social phobic patients as compared to healthy control subjects. These functional abnormalities in social phobic patients extend beyond emotion-related brain areas, such as the amygdala, to include cortical networks that modulate attention and process other facial features, and they are also associated with an alteration of the task-related activation/deactivation trade-off. Functional connectivity is becoming a powerful tool to examine how components of large-scale distributed neural systems are coupled together while performing a specific function. This study was designed to determine whether functional connectivity networks among brain regions within the distributed system for face perception also would differ between social phobic patients and healthy controls. Data were obtained from eight social phobic patients and seven healthy controls by using functional magnetic resonance imaging. Our findings indicated that social phobic patients and healthy controls have different patterns of functional connectivity across brain regions within both the core and the extended systems for face perception and the default mode network. To our knowledge, this is the first study that shows that functional connectivity during brain response to socially relevant stimuli differs between social phobic patients and healthy controls. These results expand our previous findings and indicate that brain functional changes in social phobic patients are not restricted to a single specific brain structure, but rather involve a mis-communication among different sensory and emotional processing brain areas.

  14. Structural Abnormalities of the Inner Macula in Incontinentia Pigmenti

    PubMed Central

    Basilius, Jacob; Young, Marielle P.; Michaelis, Timothy C.; Hobbs, Ronald; Jenkins, Glen; Hartnett, M. Elizabeth

    2016-01-01

    Importance This report presents evidence from spectral domain optical coherence tomography (sdOCT) and fluorescein angiography (FA) of inner foveal structural abnormalities associated with vision loss in Incontinentia pigmenti (IP). Observations Two children had reduced visual behavior in association with abnormalities of the inner foveal layers on sdOCT. FA showed filling defects in retinal and choroidal circulations and irregularities of the foveal avascular zones (FAZ). The foveal/parafoveal ratios were greater than 0.57 in 6 eyes of 3 patients who had extraretinal NV and/or peripheral avascular retina on FA and were treated with laser. Of these, 3 eyes of 2 patients had irregularities in FAZ and poor vision. Conclusions and Relevance Besides traction retinal detachment, visual loss in IP can occur with abnormalities of the inner fovea structure seen on sdOCT, consistent with prior descriptions of foveal hypoplasia. The evolution of abnormalities in the neural and vascular retina suggests a vascular cause of the foveal structural changes. More study is needed to determine any potential benefit of the foveal/parafoveal ratio in children with IP. Even with marked foveal structural abnormalities, vision can be preserved in some patients with IP with vigilant surveillance in the early years of life. PMID:26043102

  15. Current management of umbilical abnormalities and related anomalies.

    PubMed

    Snyder, Charles L

    2007-02-01

    Prenatally, the umbilicus is of paramount importance, providing the gateway between the mother and the fetus. As the fetus becomes increasingly autonomous at the end of the second month of fetal life, the connections (vitelline, urachal) diminish in significance and involute. Disturbances in this process can result in a wide variety of abnormalities, ranging from relatively minor defects identified at birth (umbilical granulation tissue) to life-threatening complications quiescent until late adulthood (urachal carcinoma). This section will review the 'state of the art' in evaluation and management of these umbilical and related abnormalities.

  16. Congenital abnormalities and selective abortion.

    PubMed

    Seller, M J

    1976-09-01

    The technique of amniocentesis, by which an abnormal fetus can be detected in utero, has brought a technological advance in medical science but attendant medical and moral problems. Dr Seller describes those congenital disabilities which can be detected in the fetus before birth, for which the "remedy" is selective abortion. She then discusses the arguments for and against selective abortion, for the issue is not simple, even in the strictly genetic sense of attempting to ensure a population free of congenital abnormality.

  17. Neural Network Function Classifier

    DTIC Science & Technology

    2003-02-07

    neural network sets. Each of the neural networks in a particular set is trained to recognize a particular data set type. The best function representation of the data set is determined from the neural network output. The system comprises sets of trained neural networks having neural networks trained to identify different types of data. The number of neural networks within each neural network set will depend on the number of function types that are represented. The system further comprises

  18. Neural Networks

    NASA Astrophysics Data System (ADS)

    Schwindling, Jerome

    2010-04-01

    This course presents an overview of the concepts of the neural networks and their aplication in the framework of High energy physics analyses. After a brief introduction on the concept of neural networks, the concept is explained in the frame of neuro-biology, introducing the concept of multi-layer perceptron, learning and their use as data classifer. The concept is then presented in a second part using in more details the mathematical approach focussing on typical use cases faced in particle physics. Finally, the last part presents the best way to use such statistical tools in view of event classifers, putting the emphasis on the setup of the multi-layer perceptron. The full article (15 p.) corresponding to this lecture is written in french and is provided in the proceedings of the book SOS 2008.

  19. Intra-regional and inter-regional abnormalities and cognitive control deficits in young adult smokers.

    PubMed

    Feng, Dan; Yuan, Kai; Li, Yangding; Cai, Chenxi; Yin, Junsen; Bi, Yanzhi; Cheng, Jiadong; Guan, Yanyan; Shi, Sha; Yu, Dahua; Jin, Chenwang; Lu, Xiaoqi; Qin, Wei; Tian, Jie

    2016-06-01

    Tobacco use during later adolescence and young adulthood may cause serious neurophysiological changes; rationally, it is extremely important to study the relationship between brain dysfunction and behavioral performances in young adult smokers. Previous resting state studies investigated the neural mechanisms in smokers. Unfortunately, few studies focused on spontaneous activity differences between young adult smokers and nonsmokers from both intra-regional and inter-regional levels, less is known about the association between resting state abnormalities and behavioral deficits. Therefore, we used fractional amplitude of low frequency fluctuation (fALFF) and resting state functional connectivity (RSFC) to investigate the resting state spontaneous activity differences between young adult smokers and nonsmokers. A correlation analysis was carried out to assess the relationship between neuroimaging findings and clinical information (pack-years, cigarette dependence, age of onset and craving score) as well as cognitive control deficits measured by the Stroop task. Consistent with previous addiction findings, our results revealed the resting state abnormalities within frontostriatal circuits, i.e., enhanced spontaneous activity of the caudate and reduced functional strength between the caudate and anterior cingulate cortex (ACC) in young adult smokers. Moreover, the fALFF values of the caudate were correlated with craving and RSFC strength between the caudate and ACC was associated with the cognitive control impairments in young adult smokers. Our findings could lead to a better understanding of intrinsic functional architecture of baseline brain activity in young smokers by providing regional and brain circuit spontaneous neuronal activity properties as well as their association with cognitive control impairments.

  20. Neural Engineering

    NASA Astrophysics Data System (ADS)

    He, Bin

    About the Series: Bioelectric Engineering presents state-of-the-art discussions on modern biomedical engineering with respect to applications of electrical engineering and information technology in biomedicine. This focus affirms Springer's commitment to publishing important reviews of the broadest interest to biomedical engineers, bioengineers, and their colleagues in affiliated disciplines. Recent volumes have covered modeling and imaging of bioelectric activity, neural engineering, biosignal processing, bionanotechnology, among other topics.

  1. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder

    PubMed Central

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T.; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R.

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition. PMID:24424916

  2. Abnormal autonomic and associated brain activities during rest in autism spectrum disorder.

    PubMed

    Eilam-Stock, Tehila; Xu, Pengfei; Cao, Miao; Gu, Xiaosi; Van Dam, Nicholas T; Anagnostou, Evdokia; Kolevzon, Alexander; Soorya, Latha; Park, Yunsoo; Siller, Michael; He, Yong; Hof, Patrick R; Fan, Jin

    2014-01-01

    Autism spectrum disorders are associated with social and emotional deficits, the aetiology of which are not well understood. A growing consensus is that the autonomic nervous system serves a key role in emotional processes, by providing physiological signals essential to subjective states. We hypothesized that altered autonomic processing is related to the socio-emotional deficits in autism spectrum disorders. Here, we investigated the relationship between non-specific skin conductance response, an objective index of sympathetic neural activity, and brain fluctuations during rest in high-functioning adults with autism spectrum disorder relative to neurotypical controls. Compared with control participants, individuals with autism spectrum disorder showed less skin conductance responses overall. They also showed weaker correlations between skin conductance responses and frontal brain regions, including the anterior cingulate and anterior insular cortices. Additionally, skin conductance responses were found to have less contribution to default mode network connectivity in individuals with autism spectrum disorders relative to controls. These results suggest that autonomic processing is altered in autism spectrum disorders, which may be related to the abnormal socio-emotional behaviours that characterize this condition.

  3. Trench connection.

    PubMed

    Jamieson, Alan J; Fujii, Toyonobu

    2011-10-23

    'Trench Connection' was the first international symposium focusing primarily on the hadal zone (depths greater than 6000 m). It was held at the University of Tokyo's Atmosphere and Ocean Research Institute in November 2010. The symposium was successful in having attracted an international collective of scientists and engineers to discuss the latest developments in the exploration and understanding of the deepest environments on Earth. The symposium sessions were categorized into three themes: (i) new deep-submergence technology; (ii) trench ecology and evolution; and (iii) the physical environment. Recent technological developments have overcome the challenges of accessing the extreme depths, which have in turn prompted an international renewed interest in researching physical and biological aspects of the hadal ecosystems. This bringing together of international participants from different disciplines led to healthy discussions throughout the symposium, providing potential opportunities and realizations of where the future of unravelling hadal ecology lies. Hadal science is still at relatively rudimentary levels compared with those of shallower marine environments; however, it became apparent at the symposium that it is now an ever-expanding scientific field.

  4. Hereditary sideroblastic anemia with associated platelet abnormalities.

    PubMed

    Soslau, G; Brodsky, I

    1989-12-01

    A 62 year old male (R.H.) presented with a mild anemia (Hb 11-12 gm%) and a history of multiple hemorrhagic episodes. The marrow had 40-50% sideroblasts. Marrow chromosomes were normal. His wife was hematologically normal, while one daughter, age 30 years, had a sideroblastic anemia (Hb 11-12 gm%) with 40-50% sideroblasts in the marrow. Her anemia was first noted at age 15 years. Administration of vitamin B6 did not correct the anemia in either the father or daughter. Platelet abnormalities inherited jointly with this disorder are described for the first time. Both R.H. and his daughter had prolonged bleeding times, with normal PTT, PT times, fVIII:C, fVIII:Ag levels, and vWF multimers, which may rule out a von Willebrand's disease. They have normal platelet numbers but abnormally low platelet adhesiveness and greatly depressed ADP, collagen, and epinephrine responsiveness. Response to ristocetin was in the low normal range, and aggregation with thrombin was normal. While desmopressin completely normalized R.H.'s bleeding time, none of these platelet parameters were improved. No differences in the SDS PAGE protein patterns of RH platelets could be detected in comparison to normal samples. His platelets took up and released serotonin (5HT) normally, and electron micrographs defined no morphological abnormalities. However, no ATP was released from platelets activated with collagen, and when followed by thrombin about fourfold greater ATP was released by control platelets as compared to RH platelets. The dense granule fraction derived from RH platelets contained about 20% the level of ATP, 40% the level of ADP, and 50% the level of 5HT detected in a normal sample. The results indicate that the bleeding disorder is related to a non-classical heritable storage pool defect. The connection between the inherited sideroblastic anemia and platelet defects is obscure.

  5. Serotonin, neural markers, and memory

    PubMed Central

    Meneses, Alfredo

    2015-01-01

    Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence. PMID:26257650

  6. Serotonin, neural markers, and memory.

    PubMed

    Meneses, Alfredo

    2015-01-01

    Diverse neuropsychiatric disorders present dysfunctional memory and no effective treatment exits for them; likely as result of the absence of neural markers associated to memory. Neurotransmitter systems and signaling pathways have been implicated in memory and dysfunctional memory; however, their role is poorly understood. Hence, neural markers and cerebral functions and dysfunctions are revised. To our knowledge no previous systematic works have been published addressing these issues. The interactions among behavioral tasks, control groups and molecular changes and/or pharmacological effects are mentioned. Neurotransmitter receptors and signaling pathways, during normal and abnormally functioning memory with an emphasis on the behavioral aspects of memory are revised. With focus on serotonin, since as it is a well characterized neurotransmitter, with multiple pharmacological tools, and well characterized downstream signaling in mammals' species. 5-HT1A, 5-HT4, 5-HT5, 5-HT6, and 5-HT7 receptors as well as SERT (serotonin transporter) seem to be useful neural markers and/or therapeutic targets. Certainly, if the mentioned evidence is replicated, then the translatability from preclinical and clinical studies to neural changes might be confirmed. Hypothesis and theories might provide appropriate limits and perspectives of evidence.

  7. Neural recording and modulation technologies

    NASA Astrophysics Data System (ADS)

    Chen, Ritchie; Canales, Andres; Anikeeva, Polina

    2017-01-01

    In the mammalian nervous system, billions of neurons connected by quadrillions of synapses exchange electrical, chemical and mechanical signals. Disruptions to this network manifest as neurological or psychiatric conditions. Despite decades of neuroscience research, our ability to treat or even to understand these conditions is limited by the capability of tools to probe the signalling complexity of the nervous system. Although orders of magnitude smaller and computationally faster than neurons, conventional substrate-bound electronics do not recapitulate the chemical and mechanical properties of neural tissue. This mismatch results in a foreign-body response and the encapsulation of devices by glial scars, suggesting that the design of an interface between the nervous system and a synthetic sensor requires additional materials innovation. Advances in genetic tools for manipulating neural activity have fuelled the demand for devices that are capable of simultaneously recording and controlling individual neurons at unprecedented scales. Recently, flexible organic electronics and bio- and nanomaterials have been developed for multifunctional and minimally invasive probes for long-term interaction with the nervous system. In this Review, we discuss the design lessons from the quarter-century-old field of neural engineering, highlight recent materials-driven progress in neural probes and look at emergent directions inspired by the principles of neural transduction.

  8. [Diagnosticum of abnormalities of plant meiotic division].

    PubMed

    Shamina, N V

    2006-01-01

    Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.

  9. Evolution of the neural language network.

    PubMed

    Friederici, Angela D

    2017-02-01

    The evolution of language correlates with distinct changes in the primate brain. The present article compares language-related brain regions and their white matter connectivity in the developing and mature human brain with the respective structures in the nonhuman primate brain. We will see that the functional specificity of the posterior portion of Broca's area (Brodmann area [BA 44]) and its dorsal fiber connection to the temporal cortex, shown to support the processing of structural hierarchy in humans, makes a crucial neural difference between the species. This neural circuit may thus be fundamental for the human syntactic capacity as the core of language.

  10. Abnormal Fixational Eye Movements in Amblyopia

    PubMed Central

    Shaikh, Aasef G.; Otero-Millan, Jorge; Kumar, Priyanka; Ghasia, Fatema F.

    2016-01-01

    Purpose Fixational saccades shift the foveal image to counteract visual fading related to neural adaptation. Drifts are slow eye movements between two adjacent fixational saccades. We quantified fixational saccades and asked whether their changes could be attributed to pathologic drifts seen in amblyopia, one of the most common causes of blindness in childhood. Methods Thirty-six pediatric subjects with varying severity of amblyopia and eleven healthy age-matched controls held their gaze on a visual target. Eye movements were measured with high-resolution video-oculography during fellow eye-viewing and amblyopic eye-viewing conditions. Fixational saccades and drifts were analyzed in the amblyopic and fellow eye and compared with controls. Results We found an increase in the amplitude with decreased frequency of fixational saccades in children with amblyopia. These alterations in fixational eye movements correlated with the severity of their amblyopia. There was also an increase in eye position variance during drifts in amblyopes. There was no correlation between the eye position variance or the eye velocity during ocular drifts and the amplitude of subsequent fixational saccade. Our findings suggest that abnormalities in fixational saccades in amblyopia are independent of the ocular drift. Discussion This investigation of amblyopia in pediatric age group quantitatively characterizes the fixation instability. Impaired properties of fixational saccades could be the consequence of abnormal processing and reorganization of the visual system in amblyopia. Paucity in the visual feedback during amblyopic eye-viewing condition can attribute to the increased eye position variance and drift velocity. PMID:26930079

  11. Computation and Learning in Neural Networks With Binary Weights

    DTIC Science & Technology

    1992-11-28

    Computation with Formal Neurons", IEEE Trans- actions on Pattern Analysis and Machine Intelligence , vol. 14, no. 1, pp. 87-91, 1992. Presented at...ofI pattern separation, categorization, and associative memory, exhibit variable amounts of sparsed connectivity between neurons. InI Artificial Neural...LEE, Y. C., AND CHEN, H. H. (1986), Non-linear dynamics of artificial neural systems, in "Neural Networks for Computing" (J. Denker, Ed.). Amer. Inst

  12. Electronic implementation of associative memory based on neural network models

    NASA Technical Reports Server (NTRS)

    Moopenn, A.; Lambe, John; Thakoor, A. P.

    1987-01-01

    An electronic embodiment of a neural network based associative memory in the form of a binary connection matrix is described. The nature of false memory errors, their effect on the information storage capacity of binary connection matrix memories, and a novel technique to eliminate such errors with the help of asymmetrical extra connections are discussed. The stability of the matrix memory system incorporating a unique local inhibition scheme is analyzed in terms of local minimization of an energy function. The memory's stability, dynamic behavior, and recall capability are investigated using a 32-'neuron' electronic neural network memory with a 1024-programmable binary connection matrix.

  13. Abnormal insulin levels and vertigo.

    PubMed

    Proctor, C A

    1981-10-01

    Fifty patients with unexplained vertigo (36) or lightheadedness (14) are evaluated, all of whom had abnormal ENGs and normal audiograms. Five hour insulin glucose tolerance tests were performance on all patients, with insulin levels being obtained fasting and at one-half, one, two, and three hours. The results of this investigation were remarkable. Borderline or abnormal insulin levels were discovered in 82% of patients; 90% were found to have either an abnormal glucose tolerance test or at least borderline insulin levels. The response to treatment in these dizzy patients was also startling, with appropriate low carbohydrate diets improving the patient's symptoms in 90% of cases. It is, therefore, apparent that the earliest identification of carbohydrate imbalance with an insulin glucose tolerance test is extremely important in the work-up of the dizzy patients.

  14. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  15. Alterations in functional connectivity for language in prematurely born adolescents.

    PubMed

    Schafer, Robin J; Lacadie, Cheryl; Vohr, Betty; Kesler, Shelli R; Katz, Karol H; Schneider, Karen C; Pugh, Kenneth R; Makuch, Robert W; Reiss, Allan L; Constable, R Todd; Ment, Laura R

    2009-03-01

    Recent data suggest recovery of language systems but persistent structural abnormalities in the prematurely born. We tested the hypothesis that subjects who were born prematurely develop alternative networks for processing language. Subjects who were born prematurely (n = 22; 600-1250 g birth weight), without neonatal brain injury on neonatal cranial ultrasound, and 26 term control subjects were examined with a functional magnetic resonance imaging (fMRI) semantic association task, the Wechsler Intelligence Scale for Children-III (WISC-III) and the Clinical Evaluation of Language Fundamentals (CELF). In-magnet task accuracy and response times were calculated, and fMRI data were evaluated for the effect of group on blood oxygen level dependent (BOLD) activation, the correlation between task accuracy and activation and the functional connectivity between regions activating to task. Although there were differences in verbal IQ and CELF scores between the preterm (PT) and term control groups, there were no significant differences for either accuracy or response time for the in-magnet task. Both groups activated classic semantic processing areas including the left superior and middle temporal gyri and inferior frontal gyrus, and there was no significant difference in activation patterns between groups. Clear differences between the groups were observed in the correlation between task accuracy and activation to task at P < 0.01, corrected for multiple comparisons. Left inferior frontal gyrus correlated with accuracy only for term controls and left sensory motor areas correlated with accuracy only for PT subjects. Left middle temporal gyri correlated with task accuracy for both groups. Connectivity analyses at P < 0.001 revealed the importance of a circuit between left middle temporal gyri and inferior frontal gyrus for both groups. In addition, the PT subjects evidenced greater connectivity between traditional language areas and sensory motor areas but significantly