Science.gov

Sample records for abnormal sensory perception

  1. A neural model for compensation of sensory abnormalities in autism through feedback from a measure of global perception.

    PubMed

    Noriega, Gerardo

    2008-08-01

    Sensory abnormalities and weak central coherence (WCC), a processing bias for features and local information, are important characteristics associated with autism. This paper introduces a self-organizing map (SOM)-based computational model of sensory abnormalities in autism, and of a feedback system to compensate for them. Feedback relies on a measure of balance of coverage over four (sensory) domains. Different methods to compute this measure are discussed, as is the flexibility to configure the system using different control mechanisms. Statistically significant improvements throughout training are demonstrated for compensation of a simple (i.e., monotonically decreasing) hypersensitivity in one of the domains. Fine-tuning control parameters can lead to further gains, but a standard setup results in good performance. Significant improvements are also shown for complex hypersensitivities (i.e., increasing and decreasing through time) in two domains. Although naturally best suited to compensate hypersensitivities--stimuli filtering may mitigate neuron migration to a hypersensitive domain--the system is also shown to perform effectively when compensating hyposensitivities. With poor coverage balance in the model akin to poor global perception, WCC would be consistent with inadequate feedback, resulting in uncontrolled hyper- and/or hyposensitivities characteristic of autism, as seen in the topologies of the resulting SOMs.

  2. Studying Sensory Perception.

    ERIC Educational Resources Information Center

    Ackerly, Spafford C.

    2001-01-01

    Explains the vestibular organ's role in balancing the body and stabilizing the visual world using the example of a hunter. Describes the relationship between sensory perception and learning. Recommends using optical illusions to illustrate the distinctions between external realities and internal perceptions. (Contains 13 references.) (YDS)

  3. Sensory Perception: Lessons from Synesthesia

    PubMed Central

    Harvey, Joshua Paul

    2013-01-01

    Synesthesia, the conscious, idiosyncratic, repeatable, and involuntary sensation of one sensory modality in response to another, is a condition that has puzzled both researchers and philosophers for centuries. Much time has been spent proving the condition’s existence as well as investigating its etiology, but what can be learned from synesthesia remains a poorly discussed topic. Here, synaesthesia is presented as a possible answer rather than a question to the current gaps in our understanding of sensory perception. By first appreciating the similarities between normal sensory perception and synesthesia, one can use what is known about synaesthesia, from behavioral and imaging studies, to inform our understanding of “normal” sensory perception. In particular, in considering synesthesia, one can better understand how and where the different sensory modalities interact in the brain, how different sensory modalities can interact without confusion ― the binding problem ― as well as how sensory perception develops. PMID:23766741

  4. Sensory adaptation for timing perception

    PubMed Central

    Roseboom, Warrick; Linares, Daniel; Nishida, Shin'ya

    2015-01-01

    Recent sensory experience modifies subjective timing perception. For example, when visual events repeatedly lead auditory events, such as when the sound and video tracks of a movie are out of sync, subsequent vision-leads-audio presentations are reported as more simultaneous. This phenomenon could provide insights into the fundamental problem of how timing is represented in the brain, but the underlying mechanisms are poorly understood. Here, we show that the effect of recent experience on timing perception is not just subjective; recent sensory experience also modifies relative timing discrimination. This result indicates that recent sensory history alters the encoding of relative timing in sensory areas, excluding explanations of the subjective phenomenon based only on decision-level changes. The pattern of changes in timing discrimination suggests the existence of two sensory components, similar to those previously reported for visual spatial attributes: a lateral shift in the nonlinear transducer that maps relative timing into perceptual relative timing and an increase in transducer slope around the exposed timing. The existence of these components would suggest that previous explanations of how recent experience may change the sensory encoding of timing, such as changes in sensory latencies or simple implementations of neural population codes, cannot account for the effect of sensory adaptation on timing perception. PMID:25788590

  5. Bilateral Sensory Abnormalities in Patients with Unilateral Neuropathic Pain; A Quantitative Sensory Testing (QST) Study

    PubMed Central

    Konopka, Karl-Heinz; Harbers, Marten; Houghton, Andrea; Kortekaas, Rudie; van Vliet, Andre; Timmerman, Wia; den Boer, Johan A.; Struys, Michel M.R.F.; van Wijhe, Marten

    2012-01-01

    In patients who experience unilateral chronic pain, abnormal sensory perception at the non-painful side has been reported. Contralateral sensory changes in these patients have been given little attention, possibly because they are regarded as clinically irrelevant. Still, bilateral sensory changes in these patients could become clinically relevant if they challenge the correct identification of their sensory dysfunction in terms of hyperalgesia and allodynia. Therefore, we have used the standardized quantitative sensory testing (QST) protocol of the German Research Network on Neuropathic Pain (DFNS) to investigate somatosensory function at the painful side and the corresponding non-painful side in unilateral neuropathic pain patients using gender- and age-matched healthy volunteers as a reference cohort. Sensory abnormalities were observed across all QST parameters at the painful side, but also, to a lesser extent, at the contralateral, non-painful side. Similar relative distributions regarding sensory loss/gain for non-nociceptive and nociceptive stimuli were found for both sides. Once a sensory abnormality for a QST parameter at the affected side was observed, the prevalence of an abnormality for the same parameter at the non-affected side was as high as 57% (for Pressure Pain Threshold). Our results show that bilateral sensory dysfunction in patients with unilateral neuropathic pain is more rule than exception. Therefore, this phenomenon should be taken into account for appropriate diagnostic evaluation in clinical practice. This is particularly true for mechanical stimuli where the 95% Confidence Interval for the prevalence of sensory abnormalities at the non-painful side ranges between 33% and 50%. PMID:22629414

  6. Sensory Abnormalities in Autism: A Brief Report

    ERIC Educational Resources Information Center

    Klintwall Lars; Holm, Anette; Eriksson, Mats; Carlsson, Lotta Hoglund; Olsson, Martina Barnevik; Hedvall, Asa; Gillberg, Christopher; Fernell, Elisabeth

    2011-01-01

    Sensory abnormalities were assessed in a population-based group of 208 20-54-month-old children, diagnosed with autism spectrum disorder (ASD) and referred to a specialized habilitation centre for early intervention. The children were subgrouped based upon degree of autistic symptoms and cognitive level by a research team at the centre. Parents…

  7. Sensory abnormalities in autism. A brief report.

    PubMed

    Klintwall, Lars; Holm, Anette; Eriksson, Mats; Carlsson, Lotta Höglund; Olsson, Martina Barnevik; Hedvall, Asa; Gillberg, Christopher; Fernell, Elisabeth

    2011-01-01

    Sensory abnormalities were assessed in a population-based group of 208 20-54-month-old children, diagnosed with autism spectrum disorder (ASD) and referred to a specialized habilitation centre for early intervention. The children were subgrouped based upon degree of autistic symptoms and cognitive level by a research team at the centre. Parents were interviewed systematically about any abnormal sensory reactions in the child. In the whole group, pain and hearing were the most commonly affected modalities. Children in the most typical autism subgroup (nuclear autism with no learning disability) had the highest number of affected modalities. The children who were classified in an "autistic features" subgroup had the lowest number of affected modalities. There were no group differences in number of affected sensory modalities between groups of different cognitive levels or level of expressive speech. The findings provide support for the notion that sensory abnormality is very common in young children with autism. This symptom has been proposed for inclusion among the diagnostic criteria for ASD in the upcoming DSM-V.

  8. Autistic traits and abnormal sensory experiences in adults.

    PubMed

    Horder, Jamie; Wilson, C Ellie; Mendez, M Andreina; Murphy, Declan G

    2014-06-01

    Sensory processing abnormalities are common in autism spectrum disorders (ASD), and now form part of the Diagnostic and Statistical Manual 5th Edition (DSM-5) diagnostic criteria, but it is unclear whether they characterize the 'broader phenotype' of the disorder. We recruited adults (n = 772) with and without an ASD and administered the Autism Quotient (AQ) along with the Adult/Adolescent Sensory Profile (AASP), the Cardiff Anomalous Perceptions Scale (CAPS), and the Glasgow Sensory Questionnaire (GSQ), all questionnaire measures of abnormal sensory responsivity. Autism traits were significantly correlated with scores on all three sensory scales (AQ/GSQ r = 0.478; AQ/AASP r = 0.344; AQ/CAPS r = 0.333; all p < 0.001). This relationship was linear across the whole range of AQ scores and was true both in those with, and without, an ASD diagnosis. It survived correction for anxiety trait scores, and other potential confounds such as mental illness and migraine.

  9. Describing the Sensory Abnormalities of Children and Adults with Autism

    ERIC Educational Resources Information Center

    Leekam, Susan R.; Nieto, Carmen; Libby, Sarah J.; Wing, Lorna; Gould, Judith

    2007-01-01

    Patterns of sensory abnormalities in children and adults with autism were examined using the Diagnostic Interview for Social and Communication Disorders (DISCO). This interview elicits detailed information about responsiveness to a wide range of sensory stimuli. Study 1 showed that over 90% of children with autism had sensory abnormalities and had…

  10. Motor-sensory confluence in tactile perception.

    PubMed

    Saig, Avraham; Gordon, Goren; Assa, Eldad; Arieli, Amos; Ahissar, Ehud

    2012-10-03

    Perception involves motor control of sensory organs. However, the dynamics underlying emergence of perception from motor-sensory interactions are not yet known. Two extreme possibilities are as follows: (1) motor and sensory signals interact within an open-loop scheme in which motor signals determine sensory sampling but are not affected by sensory processing and (2) motor and sensory signals are affected by each other within a closed-loop scheme. We studied the scheme of motor-sensory interactions in humans using a novel object localization task that enabled monitoring the relevant overt motor and sensory variables. We found that motor variables were dynamically controlled within each perceptual trial, such that they gradually converged to steady values. Training on this task resulted in improvement in perceptual acuity, which was achieved solely by changes in motor variables, without any change in the acuity of sensory readout. The within-trial dynamics is captured by a hierarchical closed-loop model in which lower loops actively maintain constant sensory coding, and higher loops maintain constant sensory update flow. These findings demonstrate interchangeability of motor and sensory variables in perception, motor convergence during perception, and a consistent hierarchical closed-loop perceptual model.

  11. Dendritic Spikes in Sensory Perception

    PubMed Central

    Manita, Satoshi; Miyakawa, Hiroyoshi; Kitamura, Kazuo; Murayama, Masanori

    2017-01-01

    What is the function of dendritic spikes? One might argue that they provide conditions for neuronal plasticity or that they are essential for neural computation. However, despite a long history of dendritic research, the physiological relevance of dendritic spikes in brain function remains unknown. This could stem from the fact that most studies on dendrites have been performed in vitro. Fortunately, the emergence of novel techniques such as improved two-photon microscopy, genetically encoded calcium indicators (GECIs), and optogenetic tools has provided the means for vital breakthroughs in in vivo dendritic research. These technologies enable the investigation of the functions of dendritic spikes in behaving animals, and thus, help uncover the causal relationship between dendritic spikes, and sensory information processing and synaptic plasticity. Understanding the roles of dendritic spikes in brain function would provide mechanistic insight into the relationship between the brain and the mind. In this review article, we summarize the results of studies on dendritic spikes from a historical perspective and discuss the recent advances in our understanding of the role of dendritic spikes in sensory perception. PMID:28261060

  12. Sensory perception: lessons from synesthesia: using synesthesia to inform the understanding of sensory perception.

    PubMed

    Harvey, Joshua Paul

    2013-06-01

    Synesthesia, the conscious, idiosyncratic, repeatable, and involuntary sensation of one sensory modality in response to another, is a condition that has puzzled both researchers and philosophers for centuries. Much time has been spent proving the condition's existence as well as investigating its etiology, but what can be learned from synesthesia remains a poorly discussed topic. Here, synaesthesia is presented as a possible answer rather than a question to the current gaps in our understanding of sensory perception. By first appreciating the similarities between normal sensory perception and synesthesia, one can use what is known about synaesthesia, from behavioral and imaging studies, to inform our understanding of "normal" sensory perception. In particular, in considering synesthesia, one can better understand how and where the different sensory modalities interact in the brain, how different sensory modalities can interact without confusion - the binding problem - as well as how sensory perception develops.

  13. Sensory abnormalities and pain in Parkinson disease and its modulation by treatment of motor symptoms.

    PubMed

    Cury, R G; Galhardoni, R; Fonoff, E T; Perez Lloret, S; Dos Santos Ghilardi, M G; Barbosa, E R; Teixeira, M J; Ciampi de Andrade, D

    2016-02-01

    Pain and sensory abnormalities are present in a large proportion of Parkinson disease (PD) patients and have a significant negative impact in quality of life. It remains undetermined whether pain occurs secondary to motor impairment and to which extent it can be relieved by improvement of motor symptoms. The aim of this review was to examine the current knowledge on the mechanisms behind sensory changes and pain in PD and to assess the modulatory effects of motor treatment on these sensory abnormalities. A comprehensive literature search was performed. We selected studies investigating sensory changes and pain in PD and the effects of levodopa administration and deep brain stimulation (DBS) on these symptoms. PD patients have altered sensory and pain thresholds in the off-medication state. Both levodopa and DBS improve motor symptoms (i.e.: bradykinesia, tremor) and change sensory abnormalities towards normal levels. However, there is no direct correlation between sensory/pain changes and motor improvement, suggesting that motor and non-motor symptoms do not necessarily share the same mechanisms. Whether dopamine and DBS have a real antinociceptive effect or simply a modulatory effect in pain perception remain uncertain. These data may provide useful insights into a mechanism-based approach to pain in PD, pointing out the role of the dopaminergic system in pain perception and the importance of the characterization of different pain syndromes related to PD before specific treatment can be instituted.

  14. A physical basis for sensory perception

    NASA Astrophysics Data System (ADS)

    Norwich, Kenneth H.

    2014-11-01

    It is argued that the process of perception takes origin within physics itself. A simple, physical model of a biological sensory receptor unit, a unit which mediates perception at its most elemental level, is developed. This model will be not just a detector of sensory signals (like a light meter or sound level meter), but will transduce these signals to the level of consciousness. The properties of this physical model of the sensory receptor unit are drawn from classical physics. Because of its simplicity, the receptor model allows for perception of only discrete quantities of incident signal energy. My primary goal in presenting this reduced model of perception is to teach concepts without the need for detailed anatomy or physiology. Using the simple mathematical properties of the receptor model, we are able to derive a number of the empirical equations of sensory science. Since the idea has been advanced that the process of perception, at a fundamental level, belongs to physics whose validity is universal, it is suggested that the “laws” of perception of the world manifested by organisms anywhere within the universe will be similar to the laws we observe here on earth.

  15. Sensory Perception, Rationalism and Outdoor Environmental Education

    ERIC Educational Resources Information Center

    Auer, Matthew R.

    2008-01-01

    There is a strong emphasis on sensory perception and "hands-on" learning in the outdoor environmental education of children. In addition, normative concerns infuse children's environmental curricula, and in particular, the notion that environmental education is not a passive undertaking; when one appreciates the essential value of the…

  16. The pattern of sensory processing abnormalities in autism.

    PubMed

    Kern, Janet K; Trivedi, Madhukar H; Garver, Carolyn R; Grannemann, Bruce D; Andrews, Alonzo A; Savla, Jayshree S; Johnson, Danny G; Mehta, Jyutika A; Schroeder, Jennifer L

    2006-09-01

    The study was undertaken to evaluate the nature of sensory dysfunction in persons with autism. The cross-sectional study examined auditory, visual, oral, and touch sensory processing, as measured by the Sensory Profile, in 104 persons with a diagnosis of autism, 3-56 years of age, gender-and age-matched to community controls. Persons with autism had abnormal auditory, visual, touch, and oral sensory processing that was significantly different from controls. This finding was also apparent when the high and low thresholds of these modalities were examined separately. At later ages for the group with autism, lower levels of abnormal sensory processing were found, except for low threshold touch, which did not improve significantly. There was a significant interaction in low threshold auditory and low threshold visual, suggesting that the two groups change differently over time on these variables. These results suggest that sensory abnormalities in autism are global in nature (involving several modalities) but have the potential to improve with age.

  17. Autistic Traits and Abnormal Sensory Experiences in Adults

    ERIC Educational Resources Information Center

    Horder, Jamie; Wilson, C. Ellie; Mendez, M. Andreina; Murphy, Declan G.

    2014-01-01

    Sensory processing abnormalities are common in autism spectrum disorders (ASD), and now form part of the "Diagnostic and Statistical Manual 5th Edition" (DSM-5) diagnostic criteria, but it is unclear whether they characterize the "broader phenotype" of the disorder. We recruited adults (n = 772) with and without an ASD and…

  18. Psychology Faculty Perceptions of Abnormal Psychology Textbooks

    ERIC Educational Resources Information Center

    Rapport, Zachary

    2011-01-01

    The problem. The purpose of the current study was to investigate the perceptions and opinions of psychology professors regarding the accuracy and inclusiveness of abnormal psychology textbooks. It sought answers from psychology professors to the following questions: (1) What are the expectations of the psychology faculty at a private university of…

  19. Neural correlates of abnormal sensory discrimination in laryngeal dystonia.

    PubMed

    Termsarasab, Pichet; Ramdhani, Ritesh A; Battistella, Giovanni; Rubien-Thomas, Estee; Choy, Melissa; Farwell, Ian M; Velickovic, Miodrag; Blitzer, Andrew; Frucht, Steven J; Reilly, Richard B; Hutchinson, Michael; Ozelius, Laurie J; Simonyan, Kristina

    2016-01-01

    Aberrant sensory processing plays a fundamental role in the pathophysiology of dystonia; however, its underpinning neural mechanisms in relation to dystonia phenotype and genotype remain unclear. We examined temporal and spatial discrimination thresholds in patients with isolated laryngeal form of dystonia (LD), who exhibited different clinical phenotypes (adductor vs. abductor forms) and potentially different genotypes (sporadic vs. familial forms). We correlated our behavioral findings with the brain gray matter volume and functional activity during resting and symptomatic speech production. We found that temporal but not spatial discrimination was significantly altered across all forms of LD, with higher frequency of abnormalities seen in familial than sporadic patients. Common neural correlates of abnormal temporal discrimination across all forms were found with structural and functional changes in the middle frontal and primary somatosensory cortices. In addition, patients with familial LD had greater cerebellar involvement in processing of altered temporal discrimination, whereas sporadic LD patients had greater recruitment of the putamen and sensorimotor cortex. Based on the clinical phenotype, adductor form-specific correlations between abnormal discrimination and brain changes were found in the frontal cortex, whereas abductor form-specific correlations were observed in the cerebellum and putamen. Our behavioral and neuroimaging findings outline the relationship of abnormal sensory discrimination with the phenotype and genotype of isolated LD, suggesting the presence of potentially divergent pathophysiological pathways underlying different manifestations of this disorder.

  20. Chronic sensory stroke with and without central pain is associated with bilaterally distributed sensory abnormalities as detected by quantitative sensory testing.

    PubMed

    Krause, Thomas; Asseyer, Susanna; Geisler, Frederik; Fiebach, Jochen B; Oeltjenbruns, Jochen; Kopf, Andreas; Villringer, Kersten; Villringer, Arno; Jungehulsing, Gerhard J

    2016-01-01

    Approximately 20% of patients suffering from stroke with pure or predominant sensory symptoms (referred to as sensory stroke patients) develop central poststroke pain (CPSP). It is largely unknown what distinguishes these patients from those who remain pain free. Using quantitative sensory testing (QST), we analyzed the somatosensory profiles of 50 patients with chronic sensory stroke, of which 25 suffered from CPSP. As compared with reference data from healthy controls, patients with CPSP showed alterations of thermal and mechanical thresholds on the body area contralateral to their stroke (P < 0.01). Patients with sensory stroke but without CPSP (non-pain sensory stroke [NPSS] patients) exhibited similar albeit less pronounced contralesional changes. Paradoxical heat sensation (PHS) and dynamic mechanical allodynia (DMA) showed higher values in CPSP, and an elevated cold detection threshold (CDT) was seen more often in CPSP than in patients with NPSS (P < 0.05). In patients with CPSP, changes in CDT, PHS, dynamic mechanical allodynia, and temporal pain summation (wind-up ratio) each correlated with the presence of pain (P < 0.05). On the homologous ipsilesional body area, both patient groups showed additional significant abnormalities as compared with the reference data, which strongly resembled the contralesional changes. In summary, our analysis reveals that CPSP is associated with impaired temperature perception and positive sensory signs, but differences between patients with CPSP and NPSS are subtle. Both patients with CPSP and NPSS show considerable QST changes on the ipsilesional body side. These results are in part paralleled by recent findings of bilaterally spread cortical atrophy in CPSP and might reflect chronic maladaptive cortical plasticity, particularly in patients with CPSP.

  1. The role of oral processing in dynamic sensory perception.

    PubMed

    Foster, Kylie D; Grigor, John M V; Cheong, Jean Ne; Yoo, Michelle J Y; Bronlund, John E; Morgenstern, Marco P

    2011-03-01

    Food oral processing is not only important for the ingestion and digestion of food, but also plays an important role in the perception of texture and flavor. This overall sensory perception is dynamic and occurs during all stages of oral processing. However, the relationships between oral operations and sensory perception are not yet fully understood. This article reviews recent progress and research findings on oral food processing, with a focus on the dynamic character of sensory perception of solid foods. The reviewed studies are discussed in terms of both physiology and food properties, and cover first bite, mastication, and swallowing. Little is known about the dynamics of texture and flavor perception during mastication and the importance on overall perception. Novel approaches use time intensity and temporal dominance techniques, and these will be valuable tools for future research on the dynamics of texture and flavor perception.

  2. A neural model to study sensory abnormalities and multisensory effects in autism.

    PubMed

    Noriega, Gerardo

    2015-03-01

    Computational modeling plays an increasingly prominent role in complementing critical research in the genetics, neuroscience, and psychology of autism. This paper presents a model that supports the notion that weak central coherence, a processing bias for features and local information, may be responsible for perception abnormalities by failing to "control" sensory issues in autism. The model has a biologically plausible architecture based on a self-organizing map. It incorporates temporal information in input stimuli, with emphasis on real auditory signals, and provides a mechanism to model multisensory effects. Through comprehensive simulations the paper studies the effect of a control mechanism (akin to central coherence) in compensating the effects of temporal information in the presentation of stimuli, sensory abnormalities, and crosstalk between domains. The mechanism is successful in balancing out timing effects, basic hypersensitivities and, to a lesser degree, multisensory effects. An analysis of the effect of the control mechanism's onset time on performance suggests that most of the potential benefits are still attainable even when started rather late in the learning process. This high level of adaptability shown by the neural network highlights the importance of appropriate teaching and intervention throughout the lifetime of persons with autism and other neurological disorders.

  3. Mapping the sensory perception of apple using descriptive sensory evaluation in a genome wide association study

    PubMed Central

    Amyotte, Beatrice; Bowen, Amy J.; Banks, Travis; Rajcan, Istvan; Somers, Daryl J.

    2017-01-01

    Breeding apples is a long-term endeavour and it is imperative that new cultivars are selected to have outstanding consumer appeal. This study has taken the approach of merging sensory science with genome wide association analyses in order to map the human perception of apple flavour and texture onto the apple genome. The goal was to identify genomic associations that could be used in breeding apples for improved fruit quality. A collection of 85 apple cultivars was examined over two years through descriptive sensory evaluation by a trained sensory panel. The trained sensory panel scored randomized sliced samples of each apple cultivar for seventeen taste, flavour and texture attributes using controlled sensory evaluation practices. In addition, the apple collection was subjected to genotyping by sequencing for marker discovery. A genome wide association analysis suggested significant genomic associations for several sensory traits including juiciness, crispness, mealiness and fresh green apple flavour. The findings include previously unreported genomic regions that could be used in apple breeding and suggest that similar sensory association mapping methods could be applied in other plants. PMID:28231290

  4. The Bayesian brain: phantom percepts resolve sensory uncertainty.

    PubMed

    De Ridder, Dirk; Vanneste, Sven; Freeman, Walter

    2014-07-01

    Phantom perceptions arise almost universally in people who sustain sensory deafferentation, and in multiple sensory domains. The question arises 'why' the brain creates these false percepts in the absence of an external stimulus? The model proposed answers this question by stating that our brain works in a Bayesian way, and that its main function is to reduce environmental uncertainty, based on the free-energy principle, which has been proposed as a universal principle governing adaptive brain function and structure. The Bayesian brain can be conceptualized as a probability machine that constantly makes predictions about the world and then updates them based on what it receives from the senses. The free-energy principle states that the brain must minimize its Shannonian free-energy, i.e. must reduce by the process of perception its uncertainty (its prediction errors) about its environment. As completely predictable stimuli do not reduce uncertainty, they are not worthwhile of conscious processing. Unpredictable things on the other hand are not to be ignored, because it is crucial to experience them to update our understanding of the environment. Deafferentation leads to topographically restricted prediction errors based on temporal or spatial incongruity. This leads to an increase in topographically restricted uncertainty, which should be adaptively addressed by plastic repair mechanisms in the respective sensory cortex or via (para)hippocampal involvement. Neuroanatomically, filling in as a compensation for missing information also activates the anterior cingulate and insula, areas also involved in salience, stress and essential for stimulus detection. Associated with sensory cortex hyperactivity and decreased inhibition or map plasticity this will result in the perception of the false information created by the deafferented sensory areas, as a way to reduce increased topographically restricted uncertainty associated with the deafferentation. In conclusion, the

  5. Sensory perception changes induced by transcranial magnetic stimulation over the primary somatosensory cortex in Parkinson's disease.

    PubMed

    Palomar, Francisco J; Díaz-Corrales, Francisco; Carrillo, Fatima; Fernández-del-Olmo, Miguel; Koch, Giacomo; Mir, Pablo

    2011-09-01

    Sensory symptoms are common nonmotor manifestations of Parkinson's disease. It has been hypothesized that abnormal central processing of sensory signals occurs in Parkinson's disease and is related to dopaminergic treatment. The objective of this study was to investigate the alterations in sensory perception induced by transcranial magnetic stimulation of the primary somatosensory cortex in patients with Parkinson's disease and the modulatory effects of dopaminergic treatment. Fourteen patients with Parkinson's disease with and without dopaminergic treatment and 13 control subjects were included. Twenty milliseconds after peripheral electrical tactile stimuli in the contralateral thumb, paired-pulse transcranial magnetic stimulation over the right primary somatosensory cortex was delivered. We evaluated the perception of peripheral electrical tactile stimuli at 2 conditioning stimulus intensities, set at 70% and 90% of the right resting motor threshold, using different interstimulus intervals. At 70% of the resting motor threshold, paired-pulse transcranial magnetic stimulation over the right primary somatosensory cortex induced an increase in positive responses at short interstimulus intervals (1-7 ms) in controls but not in patients with dopaminergic treatment. At 90% of the resting motor threshold, controls and patients showed similar transcranial magnetic stimulation effects. Changes in peripheral electrical tactile stimuli perception after paired-pulse transcranial magnetic stimulation over the primary somatosensory cortex are altered in patients with Parkinson's disease with dopaminergic treatment compared with controls. These findings suggest that primary somatosensory cortex excitability could be involved in changes in somatosensory integration in Parkinson's disease with dopaminergic treatment.

  6. Multistability in perception: binding sensory modalities, an overview.

    PubMed

    Schwartz, Jean-Luc; Grimault, Nicolas; Hupé, Jean-Michel; Moore, Brian C J; Pressnitzer, Daniel

    2012-04-05

    This special issue presents research concerning multistable perception in different sensory modalities. Multistability occurs when a single physical stimulus produces alternations between different subjective percepts. Multistability was first described for vision, where it occurs, for example, when different stimuli are presented to the two eyes or for certain ambiguous figures. It has since been described for other sensory modalities, including audition, touch and olfaction. The key features of multistability are: (i) stimuli have more than one plausible perceptual organization; (ii) these organizations are not compatible with each other. We argue here that most if not all cases of multistability are based on competition in selecting and binding stimulus information. Binding refers to the process whereby the different attributes of objects in the environment, as represented in the sensory array, are bound together within our perceptual systems, to provide a coherent interpretation of the world around us. We argue that multistability can be used as a method for studying binding processes within and across sensory modalities. We emphasize this theme while presenting an outline of the papers in this issue. We end with some thoughts about open directions and avenues for further research.

  7. Multistability in perception: binding sensory modalities, an overview

    PubMed Central

    Schwartz, Jean-Luc; Grimault, Nicolas; Hupé, Jean-Michel; Moore, Brian C. J.; Pressnitzer, Daniel

    2012-01-01

    This special issue presents research concerning multistable perception in different sensory modalities. Multistability occurs when a single physical stimulus produces alternations between different subjective percepts. Multistability was first described for vision, where it occurs, for example, when different stimuli are presented to the two eyes or for certain ambiguous figures. It has since been described for other sensory modalities, including audition, touch and olfaction. The key features of multistability are: (i) stimuli have more than one plausible perceptual organization; (ii) these organizations are not compatible with each other. We argue here that most if not all cases of multistability are based on competition in selecting and binding stimulus information. Binding refers to the process whereby the different attributes of objects in the environment, as represented in the sensory array, are bound together within our perceptual systems, to provide a coherent interpretation of the world around us. We argue that multistability can be used as a method for studying binding processes within and across sensory modalities. We emphasize this theme while presenting an outline of the papers in this issue. We end with some thoughts about open directions and avenues for further research. PMID:22371612

  8. Spatial sensory organization and body representation in pain perception.

    PubMed

    Haggard, Patrick; Iannetti, Gian Domenico; Longo, Matthew R

    2013-02-18

    Pain is a subjective experience that protects the body. This function implies a special relation between the brain mechanisms underlying pain perception and representation of the body. All sensory systems involve the body for the trivial reason that sensory receptors are located in the body. The nociceptive system of detecting noxious stimuli comprises two classes of peripheral afferents, Aδ and C nociceptors, that cover almost the entire body surface. We review evidence from experimental studies of pain in humans and other animals suggesting that Aδ skin nociceptors project to a spatially-organised, somatotopic map in the primary somatosensory cortex. While the relation between pain perception and homeostatic regulation of bodily systems is widely acknowledged, the organization of nociceptive information into spatial maps of the body has received little attention. Importantly, the somatotopic neural organization of pain systems can shed light on pain-related plasticity and pain modulation. Finally, we show that the neural coding of noxious stimuli, and consequent experience of pain, are both strongly influenced when cognitive representations of the body are activated by viewing the body, as opposed to viewing another object - an effect we term 'visual analgesia'. We argue that pain perception involves some of the representational properties of exteroceptive senses, such as vision and touch. Pain, however, has the unique feature that the content of representation is the body itself, rather than any external object of perception. We end with some suggestions regarding how linking pain to body representation could shed light on clinical conditions, notably chronic pain.

  9. Sensory Perception: An Overlooked Target of Occupational Exposure to Metals

    PubMed Central

    Gobba, Fabriziomaria

    2003-01-01

    The effect of exposure to industrial metals on sensory perception of workers has received only modest interest from the medical community to date. Nevertheless, some experimental and epidemiological data exist showing that industrial metals can affect vision, hearing and olfactory function, and a similar effect is also suggested for touch and taste. In this review the main industrial metals involved are discussed. An important limit in available knowledge is that, to date, the number of chemicals studied is relatively small. Another is that the large majority of the studies have evaluated the effect of a single chemical on a single sense. As an example, we know that mercury can impair hearing, smell, taste, touch and also vision, but we have scant idea if, in the same worker, a relation exists between impairments in different senses, or if impairments are independent. Moreover, workers are frequently exposed to different chemicals; a few available results suggest that a co-exposure may have no effect, or result in both an increase and a decrease of the effect, as observed for hearing loss, but this aspect certainly deserves much more study. As a conclusion, exposure to industrial metals can affect sensory perception, but knowledge of this effect is yet incomplete, and is largely inadequate especially for an estimation of “safe” thresholds of exposure. These data support the desirability of further good quality studies in this field. PMID:18365054

  10. Nurses with sensory disabilities: their perceptions and characteristics.

    PubMed

    Neal-Boylan, Leslie; Fennie, Kristopher; Baldauf-Wagner, Sara

    2011-01-01

    A survey design was used to explore the perceptions and characteristics of registered nurses (RNs) with sensory disabilities and their risk for leaving their jobs. An earlier study found that nurses with disabilities are leaving nursing and that employers do not appear to support these nurses. Work instability and the mismatch between a nurse's perceptions of his or her ability and the demands of their work increase risk for job retention problems. This study's convenience sample of U.S. RNs had hearing, vision, or communication disabilities. Participants completed a demographic form, three U.S. Census questions, and the Nurse-Work Instability Survey. Hospital nurses were three times more likely to be at risk for retention problems. Nurses with hearing disabilities were frustrated at work. Hearing difficulties increased with years spent working as a nurse. Many nurses with sensory disabilities have left nursing. Early intervention may prevent work instability and increase retention, and rehabilitation nurses are ideally positioned to lead early intervention programs.

  11. "Chilled" pork--Part II. Consumer perception of sensory quality.

    PubMed

    Ngapo, T M; Riendeau, L; Laberge, C; Fortin, J

    2012-12-01

    The objective of this study was to compare consumer perception of the sensory quality of grilled Canadian pork destined for Japanese and domestic markets, with particular reference to export selection criteria imposed by Japanese importers and transportation conditions. Consumers from Quebec, Canada tasted local and export quality pork subjected to "chilled" (aged 43 days at -1.7 °C) or conventional ageing (5 days at 3.1 °C). Consumers' scores (out of 10) were higher (P<0.05) in the "chilled" than conventionally aged pork for tenderness (6.8 vs 5.7), juiciness (6.6 vs 6.0), taste liking (6.4 vs 5.9) and overall acceptability (6.7 vs 6.1). When informed that the conventionally aged, domestic quality pork was destined for the domestic market, consumer scores increased significantly (P<0.05). No effect of information was observed on the perception of the 'chilled' export quality meat, perhaps a consequence of the high sensory quality observed prior to labelling.

  12. Abnormal cortical sensory activation in dystonia: an fMRI study.

    PubMed

    Butterworth, Stephen; Francis, Sue; Kelly, Edward; McGlone, Francis; Bowtell, Richard; Sawle, Guy V

    2003-06-01

    Despite the obvious motor manifestations of focal dystonia, it is recognised that the sensory system plays an important role in this condition. This functional magnetic resonance imaging study examines the sensory representations of individual digits both within the subregions of the primary sensory cortex (SI) and in other nonprimary sensory areas. Patients with focal dystonia and controls were scanned during vibrotactile stimulation of both the index (digit 2) and little (digit 5) fingers of their dominant hand (which was the affected hand in all the dystonic subjects). The activation maps obtained were analysed for location, size, and magnitude of activation and three-dimensional (3-D) orientation of digit representations. Data from both groups were compared. There were significant differences in the average 3-D separation between the two digit representations in area 1 of SI between subject groups (9.6 +/- 1.2 mm for controls and 4.1 +/- 0.2 mm for dystonic subjects). There were also strong trends for reversed ordering of the representation of the two digits in both the secondary sensory cortex and posterior parietal area between the two groups. In addition, in dystonic subjects, there was significant under activation in the secondary somatosensory cortex (SII/area 40) for both digits and in the posterior parietal area for digit 5. These results indicate the presence of widespread activation abnormalities in the cortical sensory system in dystonia.

  13. The Sensory Perception Quotient (SPQ): development and validation of a new sensory questionnaire for adults with and without autism

    PubMed Central

    2014-01-01

    Background Questionnaire-based studies suggest atypical sensory perception in over 90% of individuals with autism spectrum conditions (ASC). Sensory questionnaire-based studies in ASC mainly record parental reports of their child’s sensory experience; less is known about sensory reactivity in adults with ASC. Given the DSM-5 criteria for ASC now include sensory reactivity, there is a need for an adult questionnaire investigating basic sensory functioning. We aimed to develop and validate the Sensory Perception Quotient (SPQ), which assesses basic sensory hyper- and hyposensitivity across all five modalities. Methods A total of 359 adults with (n = 196) and without (n = 163) ASC were asked to fill in the SPQ, the Sensory Over-Responsivity Inventory (SensOR) and the Autism-Spectrum Quotient (AQ) online. Results Adults with ASC reported more sensory hypersensitivity on the SPQ compared to controls (P < .001). SPQ scores were correlated with AQ scores both across groups (r = .-38) and within the ASC (r = -.18) and control groups (r = -.15). Principal component analyses conducted separately in both groups indicated that one factor comprising 35 items consistently assesses sensory hypersensitivity. The SPQ showed high internal consistency for both the total SPQ (Cronbach’s alpha = .92) and the reduced 35-item version (alpha = .93). The SPQ was significantly correlated with the SensOR across groups (r = -.46) and within the ASC (r = -.49) and control group (r = -.21). Conclusions The SPQ shows good internal consistency and concurrent validity and differentiates between adults with and without ASC. Adults with ASC report more sensitivity to sensory stimuli on the SPQ. Finally, greater sensory sensitivity is associated with more autistic traits. The SPQ provides a new tool to measure individual differences on this dimension. PMID:24791196

  14. Effects of clozapine on perceptual abnormalities and sensory gating: a preliminary cross-sectional study in schizophrenia.

    PubMed

    Micoulaud-Franchi, Jean-Arthur; Aramaki, Mitsuko; Geoffroy, Pierre Alexis; Richieri, Raphaëlle; Cermolacce, Michel; Faget, Catherine; Ystad, Sølvi; Kronland-Martinet, Richard; Lancon, Christophe; Vion-Dury, Jean

    2015-04-01

    The aim of the present study was to investigate the effect of second-generation antipsychotics (clozapine or another second-generation antipsychotic) on perceptual abnormalities related to sensory gating deficit. Although clozapine is known to improve sensory gating assessed neurophysiologically, we hypothesized that patients with schizophrenia treated with clozapine would report less perceptual abnormalities related to sensory gating deficit than patients treated with other second-generation antipsychotics do. Forty patients with a diagnosis of schizophrenia were investigated (10 patients treated with clozapine and 30 patients treated with another second-generation antipsychotic drug). Perceptual abnormalities were assessed with the Sensory Gating Inventory. Sensory gating was assessed through electroencephalogram with the auditory event-related potential method by measuring P50 amplitude changes in a dual click conditioning-testing procedure. Patients treated with clozapine present normal sensory gating and report less perceptual abnormalities related to sensory gating than patients treated with other second-generation antipsychotics do. Although the cross-sectional design of this study is limited because causal inferences cannot be clearly concluded, the present study suggests clinical and neurophysiological advantages of clozapine compared with other second-generation antipsychotics and provides a basis for future investigations on the effect of this treatment on perceptual abnormalities related to sensory gating deficit in patients with schizophrenia.

  15. Distal attribution and distance perception in sensory substitution

    PubMed Central

    Siegle, Joshua H.; Warren, William H.

    2013-01-01

    In sensory substitution, the user may be directly aware of distal objects, as in everyday perception, or make explicit cognitive inferences based on an awareness of the proximal stimulation. Anecdotal evidence supports the experience of distal attribution, but so far there have been few rigorous experimental tests of the claim. In this study, blindfolded participants observed a target light using a device consisting of a finger-mounted photodiode that drives tactile vibration on the back. With the blindfold off and the target removed, participants moved a reference object to match the perceived egocentric distance of the target. Participants who were instructed to attend to the distal target improved significantly during two hours of practice, whereas those instructed to attend to proximal variables showed no improvement. Unsigned error increased with ratings of proximal attention but decreased with ratings of target object solidity, consistent with distal attribution. Performance transferred to the non-dominant arm and to a rotated body orientation, demonstrating that learning did not depend on a joint-specific sensorimotor relationship between target distance and arm configuration. The results experimentally confirm that distal attribution can occur in sensory substitution, based on a perceptual strategy rather than an explicit cognitive strategy. Moreover, they suggest that the informational basis for distal attribution is not a joint-specific sensorimotor relation, but a more abstract spatial invariant. PMID:20402243

  16. Sensory Entrainment Mechanisms in Auditory Perception: Neural Synchronization Cortico-Striatal Activation

    PubMed Central

    Sameiro-Barbosa, Catia M.; Geiser, Eveline

    2016-01-01

    The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system. PMID:27559306

  17. Abnormal Pitch Perception Produced by Cochlear Implant Stimulation

    PubMed Central

    Zeng, Fan-Gang; Tang, Qing; Lu, Thomas

    2014-01-01

    Contemporary cochlear implants with multiple electrode stimulation can produce good speech perception but poor music perception. Hindered by the lack of a gold standard to quantify electric pitch, relatively little is known about the nature and extent of the electric pitch abnormalities and their impact on cochlear implant performance. Here we overcame this obstacle by comparing acoustic and electric pitch perception in 3 unilateral cochlear-implant subjects who had functionally usable acoustic hearing throughout the audiometric frequency range in the non-implant ear. First, to establish a baseline, we measured and found slightly impaired pure tone frequency discrimination and nearly perfect melody recognition in all 3 subjects’ acoustic ear. Second, using pure tones in the acoustic ear to match electric pitch induced by an intra-cochlear electrode, we found that the frequency-electrode function was not only 1–2 octaves lower, but also 2 times more compressed in frequency range than the normal cochlear frequency-place function. Third, we derived frequency difference limens in electric pitch and found that the equivalent electric frequency discrimination was 24 times worse than normal-hearing controls. These 3 abnormalities are likely a result of a combination of broad electric field, distant intra-cochlear electrode placement, and non-uniform spiral ganglion cell distribution and survival, all of which are inherent to the electrode-nerve interface in contemporary cochlear implants. Previous studies emphasized on the “mean” shape of the frequency-electrode function, but the present study indicates that the large “variance” of this function, reflecting poor electric pitch discriminability, is the main factor limiting contemporary cochlear implant performance. PMID:24551131

  18. Abnormal Size-Dependent Modulation of Motion Perception in Children with Autism Spectrum Disorder (ASD)

    PubMed Central

    Sysoeva, Olga V.; Galuta, Ilia A.; Davletshina, Maria S.; Orekhova, Elena V.; Stroganova, Tatiana A.

    2017-01-01

    Excitation/Inhibition (E/I) imbalance in neural networks is now considered among the core neural underpinnings of autism psychopathology. In motion perception at least two phenomena critically depend on E/I balance in visual cortex: spatial suppression (SS), and spatial facilitation (SF) corresponding to impoverished or improved motion perception with increasing stimuli size, respectively. While SS is dominant at high contrast, SF is evident for low contrast stimuli, due to the prevalence of inhibitory contextual modulations in the former, and excitatory ones in the latter case. Only one previous study (Foss-Feig et al., 2013) investigated SS and SF in Autism Spectrum Disorder (ASD). Our study aimed to replicate previous findings, and to explore the putative contribution of deficient inhibitory influences into an enhanced SF index in ASD—a cornerstone for interpretation proposed by Foss-Feig et al. (2013). The SS and SF were examined in 40 boys with ASD, broad spectrum of intellectual abilities (63 < IQ < 127) and 44 typically developing (TD) boys, aged 6–15 years. The stimuli of small (1°) and large (12°) radius were presented under high (100%) and low (1%) contrast conditions. Social Responsiveness Scale and Sensory Profile Questionnaire were used to assess the autism severity and sensory processing abnormalities. We found that the SS index was atypically reduced, while SF index abnormally enhanced in children with ASD. The presence of abnormally enhanced SF in children with ASD was the only consistent finding between our study and that of Foss-Feig et al. While the SS and SF indexes were strongly interrelated in TD participants, this correlation was absent in their peers with ASD. In addition, the SF index but not the SS index correlated with the severity of autism and the poor registration abilities. The pattern of results is partially consistent with the idea of hypofunctional inhibitory transmission in visual areas in ASD. Nonetheless, the absence of

  19. Abnormal Size-Dependent Modulation of Motion Perception in Children with Autism Spectrum Disorder (ASD).

    PubMed

    Sysoeva, Olga V; Galuta, Ilia A; Davletshina, Maria S; Orekhova, Elena V; Stroganova, Tatiana A

    2017-01-01

    Excitation/Inhibition (E/I) imbalance in neural networks is now considered among the core neural underpinnings of autism psychopathology. In motion perception at least two phenomena critically depend on E/I balance in visual cortex: spatial suppression (SS), and spatial facilitation (SF) corresponding to impoverished or improved motion perception with increasing stimuli size, respectively. While SS is dominant at high contrast, SF is evident for low contrast stimuli, due to the prevalence of inhibitory contextual modulations in the former, and excitatory ones in the latter case. Only one previous study (Foss-Feig et al., 2013) investigated SS and SF in Autism Spectrum Disorder (ASD). Our study aimed to replicate previous findings, and to explore the putative contribution of deficient inhibitory influences into an enhanced SF index in ASD-a cornerstone for interpretation proposed by Foss-Feig et al. (2013). The SS and SF were examined in 40 boys with ASD, broad spectrum of intellectual abilities (63 < IQ < 127) and 44 typically developing (TD) boys, aged 6-15 years. The stimuli of small (1°) and large (12°) radius were presented under high (100%) and low (1%) contrast conditions. Social Responsiveness Scale and Sensory Profile Questionnaire were used to assess the autism severity and sensory processing abnormalities. We found that the SS index was atypically reduced, while SF index abnormally enhanced in children with ASD. The presence of abnormally enhanced SF in children with ASD was the only consistent finding between our study and that of Foss-Feig et al. While the SS and SF indexes were strongly interrelated in TD participants, this correlation was absent in their peers with ASD. In addition, the SF index but not the SS index correlated with the severity of autism and the poor registration abilities. The pattern of results is partially consistent with the idea of hypofunctional inhibitory transmission in visual areas in ASD. Nonetheless, the absence of

  20. Sensory migraine aura is not associated with structural grey matter abnormalities.

    PubMed

    Hougaard, Anders; Amin, Faisal Mohammad; Arngrim, Nanna; Vlachou, Maria; Larsen, Vibeke Andrée; Larsson, Henrik B W; Ashina, Messoud

    2016-01-01

    Migraine with aura (MA) is characterized by cortical dysfunction. Frequent aura attacks may alter cerebral cortical structure in patients, or structural grey matter abnormalities may predispose MA patients to aura attacks. In the present study we aimed to investigate cerebral grey matter structure in a large group of MA patients with and without sensory aura (i.e. gradually developing, transient unilateral sensory disturbances). We included 60 patients suffering from migraine with typical visual aura and 60 individually age and sex-matched controls. Twenty-nine of the patients additionally experienced sensory aura regularly. We analysed high-resolution structural MR images using two complimentary approaches and compared patients with and without sensory aura. Patients were also compared to controls. We found no differences of grey matter density or cortical thickness between patients with and without sensory aura and no differences for the cortical visual areas between patients and controls. The somatosensory cortex was thinner in patients (1.92 mm vs. 1.96 mm, P = 0.043) and the anterior cingulate cortex of patients had a decreased grey matter density (P = 0.039) compared to controls. These differences were not correlated to the clinical characteristics. Our results suggest that sensory migraine aura is not associated with altered grey matter structure and that patients with visual aura have normal cortical structure of areas involved in visual processing. The observed decreased grey matter volume of the cingulate gyrus in patients compared to controls have previously been reported in migraine with and without aura, but also in a wide range of other neurologic and psychiatric disorders. Most likely, this finding reflects general bias between patients and healthy controls.

  1. FMRI reveals abnormal central processing of sensory and pain stimuli in ill Gulf War veterans.

    PubMed

    Gopinath, Kaundinya; Gandhi, Parina; Goyal, Aman; Jiang, Lei; Fang, Yan; Ouyang, Luo; Ganji, Sandeepkumar; Buhner, David; Ringe, Wendy; Spence, Jeffrey; Biggs, Melanie; Briggs, Richard; Haley, Robert

    2012-06-01

    Many veterans chronically ill from the 1991 Gulf War exhibit symptoms of altered sensation, including chronic pain. In this study of 55 veterans of a Construction Battalion previously examined in 1995-1996 and 1997-1998, brain activation to innocuous and noxious heat stimuli was assessed in 2008-2009 with a quantitative sensory testing fMRI protocol in control veterans and groups representing three syndrome variants. Testing outside the scanner revealed no significant differences in warm detection or heat pain threshold among the four groups. In the fMRI study, Syndrome 1 and Syndrome 2, but not Syndrome 3, exhibited hypo-activation to innocuous heat and hyper-activation to noxious heat stimuli compared to controls. The results indicate abnormal central processing of sensory and painful stimuli in 2 of 3 variants of Gulf War illness and call for a more comprehensive study with a larger, representative sample of veterans.

  2. Disturbed sensory perception of changes in thermoalgesic stimuli in patients with small fiber neuropathies.

    PubMed

    Medici, Conrado; Barraza, Gonzalo; Castillo, Carlos D; Morales, Merche; Schestatsky, Pedro; Casanova-Mollà, Jordi; Valls-Sole, Josep

    2013-10-01

    The assessment of functional deficits in small fibre neuropathies (SFN) requires using ancillary tests other than conventional neurophysiological techniques. One of the tests with most widespread use is thermal threshold determination, as part of quantitative sensory testing. Thermal thresholds typically reflect one point in the whole subjective experience elicited by a thermal stimulus. We reasoned that more information could be obtained by analyzing the subjective description of the ongoing sensation elicited by slow temperature changes (dynamic thermal testing, DTT). Twenty SFN patients and 20 healthy subjects were requested to describe, by using an electronic visual analog scale system, the sensation perceived when the temperature of a thermode was made to slowly change according to a predetermined pattern. The thermode was attached to the left ventral forearm or the distal third of the left leg and the stimulus was either a monophasic heat or cold stimuli that reached 120% of pain threshold and reversed to get back to baseline at a rate of 0.5 °C/s. Abnormalities seen in patients in comparison to healthy subjects were: (1) delayed perception of temperature changes, both at onset and at reversal, (2) longer duration of pain perception at peak temperature, and (3) absence of an overshoot sensation after reversal, ie, a transient perception of the opposite sensation before the temperature reached again baseline. The use of DTT increases the yield of thermal testing for clinical and physiological studies. It adds information that can be discriminant between healthy subjects and SFN patients and shows physiological details about the process of activation and inactivation of temperature receptors that may be abnormal in SFN.

  3. Sensory Perception and Aging in Model Systems: From the Outside In

    PubMed Central

    Linford, Nancy J.; Kuo, Tsung-Han; Chan, Tammy P.; Pletcher, Scott D.

    2014-01-01

    Sensory systems provide organisms from bacteria to human with the ability to interact with the world. Numerous senses have evolved that allow animals to detect and decode cues from sources in both their external and internal environments. Recent advances in understanding the central mechanisms by which the brains of simple organisms evaluate different cues and initiate behavioral decisions, coupled with observations that sensory manipulations are capable of altering organism lifespan, have opened the door for powerful new research into aging. While direct links between sensory perception and aging have been established only recently, here we discuss these initial discoveries and evaluate the potential for different forms of sensory processing to modulate lifespan across taxa. Harnessing the neurobiology of simple model systems to study the biological impact of sensory experiences will yield insights into the broad influence of sensory perception in mammals and may help uncover new mechanisms of healthy aging. PMID:21756108

  4. Perceptibility and the "Choice Experience": User Sensory Perceptions and Experiences Inform Vaginal Prevention Product Design.

    PubMed

    Guthrie, Kate Morrow; Dunsiger, Shira; Vargas, Sara E; Fava, Joseph L; Shaw, Julia G; Rosen, Rochelle K; Kiser, Patrick F; Kojic, E Milu; Friend, David R; Katz, David F

    The development of pericoital (on demand) vaginal HIV prevention technologies remains a global health priority. Clinical trials to date have been challenged by nonadherence, leading to an inability to demonstrate product efficacy. The work here provides new methodology and results to begin to address this limitation. We created validated scales that allow users to characterize sensory perceptions and experiences when using vaginal gel formulations. In this study, we sought to understand the user sensory perceptions and experiences (USPEs) that characterize the preferred product experience for each participant. Two hundred four women evaluated four semisolid vaginal formulations using the USPE scales at four randomly ordered formulation evaluation visits. Women were asked to select their preferred formulation experience for HIV prevention among the four formulations evaluated. The scale scores on the Sex-associated USPE scales (e.g., Initial Penetration and Leakage) for each participant's selected formulation were used in a latent class model analysis. Four classes of preferred formulation experiences were identified. Sociodemographic and sexual history variables did not predict class membership; however, four specific scales were significantly related to class: Initial Penetration, Perceived Wetness, Messiness, and Leakage. The range of preferred user experiences represented by the scale scores creates a potential target range for product development, such that products that elicit scale scores that fall within the preferred range may be more acceptable, or tolerable, to the population under study. It is recommended that similar analyses should be conducted with other semisolid vaginal formulations, and in other cultures, to determine product property and development targets.

  5. Action preparation modulates sensory perception in unseen personal space: An electrophysiological investigation.

    PubMed

    Job, Xavier E; de Fockert, Jan W; van Velzen, José

    2016-08-01

    Behavioural and electrophysiological evidence has demonstrated that preparation of goal-directed actions modulates sensory perception at the goal location before the action is executed. However, previous studies have focused on sensory perception in areas of peripersonal space. The present study investigated visual and tactile sensory processing at the goal location of upcoming movements towards the body, much of which is not visible, as well as visible peripersonal space. A motor task cued participants to prepare a reaching movement towards goals either in peripersonal space in front of them or personal space on the upper chest. In order to assess modulations of sensory perception during movement preparation, event-related potentials (ERPs) were recorded in response to task-irrelevant visual and tactile probe stimuli delivered randomly at one of the goal locations of the movements. In line with previous neurophysiological findings, movement preparation modulated visual processing at the goal of a movement in peripersonal space. Movement preparation also modulated somatosensory processing at the movement goal in personal space. The findings demonstrate that tactile perception in personal space is subject to similar top-down sensory modulation by motor preparation as observed for visual stimuli presented in peripersonal space. These findings show for the first time that the principles and mechanisms underlying adaptive modulation of sensory processing in the context of action extend to tactile perception in unseen personal space.

  6. The interplay between sensory processing abnormalities, intolerance of uncertainty, anxiety and restricted and repetitive behaviours in autism spectrum disorder.

    PubMed

    Wigham, Sarah; Rodgers, Jacqui; South, Mikle; McConachie, Helen; Freeston, Mark

    2015-04-01

    Sensory processing abnormalities, anxiety and restricted and repetitive behaviours (RRBs) frequently co-occur in autism spectrum disorders (ASD). Though the relationship between these phenomena is not well understood, emerging evidence indicates intolerance of uncertainty (IU) may play an important role. This study aimed to determine pathways between sensory abnormalities and RRBs, and the role anxiety and IU may have. We gathered caregiver report data for 53 children with ASD aged 8-16 years. We found sensory under responsiveness and sensory over responsiveness were significantly associated with repetitive motor and insistence on sameness behaviours, and the relationships significantly mediated by IU and anxiety. Our findings indicate different mechanisms may underpin repetitive motor and insistence on sameness RRBs, which can inform treatment interventions.

  7. Effects of Acupuncture on Sensory Perception: A Systematic Review and Meta-Analysis

    PubMed Central

    Baeumler, Petra I.; Fleckenstein, Johannes; Takayama, Shin; Simang, Michael; Seki, Takashi; Irnich, Dominik

    2014-01-01

    Background The effect of acupuncture on sensory perception has never been systematically reviewed; although, studies on acupuncture mechanisms are frequently based on the idea that changes in sensory thresholds reflect its effect on the nervous system. Methods Pubmed, EMBASE and Scopus were screened for studies investigating the effect of acupuncture on thermal or mechanical detection or pain thresholds in humans published in English or German. A meta-analysis of high quality studies was performed. Results Out of 3007 identified articles 85 were included. Sixty five studies showed that acupuncture affects at least one sensory threshold. Most studies assessed the pressure pain threshold of which 80% reported an increase after acupuncture. Significant short- and long-term effects on the pressure pain threshold in pain patients were revealed by two meta-analyses including four and two high quality studies, respectively. In over 60% of studies, acupuncture reduced sensitivity to noxious thermal stimuli, but measuring methods might influence results. Few but consistent data indicate that acupuncture reduces pin-prick like pain but not mechanical detection. Results on thermal detection are heterogeneous. Sensory threshold changes were equally frequent reported after manual acupuncture as after electroacupuncture. Among 48 sham-controlled studies, 25 showed stronger effects on sensory thresholds through verum than through sham acupuncture, but in 9 studies significant threshold changes were also observed after sham acupuncture. Overall, there is a lack of high quality acupuncture studies applying comprehensive assessments of sensory perception. Conclusions Our findings indicate that acupuncture affects sensory perception. Results are most compelling for the pressure pain threshold, especially in pain conditions associated with tenderness. Sham acupuncture can also cause such effects. Future studies should incorporate comprehensive, standardized assessments of sensory

  8. The Interplay between Sensory Processing Abnormalities, Intolerance of Uncertainty, Anxiety and Restricted and Repetitive Behaviours in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Wigham, Sarah; Rodgers, Jacqui; South, Mikle; McConachie, Helen; Freeston, Mark

    2015-01-01

    Sensory processing abnormalities, anxiety and restricted and repetitive behaviours (RRBs) frequently co-occur in Autism Spectrum Disorders (ASD). Though the relationship between these phenomena is not well understood, emerging evidence indicates intolerance of uncertainty (IU) may play an important role. This study aimed to determine pathways…

  9. Abnormal fermentations in table-olive processing: microbial origin and sensory evaluation

    PubMed Central

    Lanza, Barbara

    2013-01-01

    The process of transformation of table olives from tree to table is the result of complex biochemical reactions that are determined by the interactions between the indigenous microflora of the olives, together with a variety of contaminating microrganisms from different sources [fiber-glass fermenters, polyvinyl chloride (PVC) tanks, pipelines, pumps, and water], with the compositional characteristics of the fruit. One of the most important aspects of improving the quality of table olives is the use of selected microorganisms to drive the fermentation. These can supplant the indigenous microflora and, in particular, the complementary microflora that are responsible for spoilage of canned olives. In this context, from a technological point of view, a well-characterized collection of microrganisms (lactic acid bacteria, yeast) that can be isolated from the matrix to be processed (the olive fruit) will provide the basis for the development of starter culture systems. These cultures can be fully compatible with the typical products and will guarantee high quality standards. Inoculation of the brine with such selected starter cultures will reduce the probability of spoilage, and help to achieve an improved and more predictable fermentation process. Control of the fermentation processes can thus occur through chemical, chemico-physical and microbiological approaches, and since 2008, also through organoleptic evaluation (COI/OT/MO/Doc. No 1. Method for the sensory analysis of table olives). This last has established the necessary criteria and procedures for sensory analysis of the negative, gustatory and kinaesthetic sensations of table olives, which can also be attributed to abnormal proliferation of microrganisms. It also sets out the system for commercial classification, through assessment of the median of the defect predominantly perceived. PMID:23675370

  10. Prestimulus influences on auditory perception from sensory representations and decision processes.

    PubMed

    Kayser, Stephanie J; McNair, Steven W; Kayser, Christoph

    2016-04-26

    The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task.

  11. Prestimulus influences on auditory perception from sensory representations and decision processes

    PubMed Central

    McNair, Steven W.

    2016-01-01

    The qualities of perception depend not only on the sensory inputs but also on the brain state before stimulus presentation. Although the collective evidence from neuroimaging studies for a relation between prestimulus state and perception is strong, the interpretation in the context of sensory computations or decision processes has remained difficult. In the auditory system, for example, previous studies have reported a wide range of effects in terms of the perceptually relevant frequency bands and state parameters (phase/power). To dissociate influences of state on earlier sensory representations and higher-level decision processes, we collected behavioral and EEG data in human participants performing two auditory discrimination tasks relying on distinct acoustic features. Using single-trial decoding, we quantified the relation between prestimulus activity, relevant sensory evidence, and choice in different task-relevant EEG components. Within auditory networks, we found that phase had no direct influence on choice, whereas power in task-specific frequency bands affected the encoding of sensory evidence. Within later-activated frontoparietal regions, theta and alpha phase had a direct influence on choice, without involving sensory evidence. These results delineate two consistent mechanisms by which prestimulus activity shapes perception. However, the timescales of the relevant neural activity depend on the specific brain regions engaged by the respective task. PMID:27071110

  12. Determination of absolute threshold and just noticeable difference in the sensory perception of pungency.

    PubMed

    Orellana-Escobedo, L; Ornelas-Paz, J J; Olivas, G I; Guerrero-Beltran, J A; Jimenez-Castro, J; Sepulveda, D R

    2012-03-01

    Absolute threshold and just noticeable difference (JND) were determined for the perception of pungency using chili pepper in aqueous solutions. Absolute threshold and JND were determined using 2 alternative forced-choice sensory tests tests. High-performance liquid chromatography technique was used to determine capsaicinoids concentration in samples used for sensory analysis. Sensory absolute threshold was 0.050 mg capsaicinoids/kg sample. Five JND values were determined using 5 reference solutions with different capsaicinoids concentration. JND values changed proportionally as capsaicinoids concentration of the reference sample solutions changed. Weber fraction remained stable for the first 4 reference capsaicinoid solutions (0.05, 0.11, 0.13, and 0.17 mg/kg) but changed when the most concentrated reference capsaicinoids solution was used (0.23 mg/kg). Quantification limit for instrumental analysis was 1.512 mg/kg capsaicinoids. Sensory methods employed in this study proved to be more sensitive than instrumental methods. Practical Application: A better understanding of the process involved in the sensory perception of pungency is currently required because "hot" foods are becoming more popular in western cuisine. Absolute thresholds and differential thresholds are useful tools in the formulation and development of new food products. These parameters may help in defining how much chili pepper is required in a formulated product to ensure a perceptible level of pungency, as well as in deciding how much more chili pepper is required in a product to produce a perceptible increase in its pungency.

  13. Sensory and Emotional Perception of Wooden Surfaces through Fingertip Touch

    PubMed Central

    Bhatta, Shiv R.; Tiippana, Kaisa; Vahtikari, Katja; Hughes, Mark; Kyttä, Marketta

    2017-01-01

    Previous studies on tactile experiences have investigated a wide range of material surfaces across various skin sites of the human body in self-touch or other touch modes. Here, we investigate whether the sensory and emotional aspects of touch are related when evaluating wooden surfaces using fingertips in the absence of other sensory modalities. Twenty participants evaluated eight different pine and oak wood surfaces, using sensory and emotional touch descriptors, through the lateral motion of active fingertip exploration. The data showed that natural and smooth wood surfaces were perceived more positively in emotional touch than coated surfaces. We highlight the importance of preserving the naturalness of the surface texture in the process of wood-surface treatment so as to improve positive touch experiences, as well as avoid negative ones. We argue that the results may offer possibilities in the design of wood-based interior products with a view to improving consumer touch experiences. PMID:28348541

  14. Shared Sensory Estimates for Human Motion Perception and Pursuit Eye Movements

    PubMed Central

    Mukherjee, Trishna; Battifarano, Matthew; Simoncini, Claudio

    2015-01-01

    Are sensory estimates formed centrally in the brain and then shared between perceptual and motor pathways or is centrally represented sensory activity decoded independently to drive awareness and action? Questions about the brain's information flow pose a challenge because systems-level estimates of environmental signals are only accessible indirectly as behavior. Assessing whether sensory estimates are shared between perceptual and motor circuits requires comparing perceptual reports with motor behavior arising from the same sensory activity. Extrastriate visual cortex both mediates the perception of visual motion and provides the visual inputs for behaviors such as smooth pursuit eye movements. Pursuit has been a valuable testing ground for theories of sensory information processing because the neural circuits and physiological response properties of motion-responsive cortical areas are well studied, sensory estimates of visual motion signals are formed quickly, and the initiation of pursuit is closely coupled to sensory estimates of target motion. Here, we analyzed variability in visually driven smooth pursuit and perceptual reports of target direction and speed in human subjects while we manipulated the signal-to-noise level of motion estimates. Comparable levels of variability throughout viewing time and across conditions provide evidence for shared noise sources in the perception and action pathways arising from a common sensory estimate. We found that conditions that create poor, low-gain pursuit create a discrepancy between the precision of perception and that of pursuit. Differences in pursuit gain arising from differences in optic flow strength in the stimulus reconcile much of the controversy on this topic. PMID:26041919

  15. Mutations in the Heme Exporter FLVCR1 Cause Sensory Neurodegeneration with Loss of Pain Perception

    PubMed Central

    Chiabrando, Deborah; Castori, Marco; di Rocco, Maja; Ungelenk, Martin; Gießelmann, Sebastian; Di Capua, Matteo; Madeo, Annalisa; Grammatico, Paola; Hübner, Christian A.; Altruda, Fiorella; Silengo, Lorenzo; Tolosano, Emanuela; Kurth, Ingo

    2016-01-01

    Pain is necessary to alert us to actual or potential tissue damage. Specialized nerve cells in the body periphery, so called nociceptors, are fundamental to mediate pain perception and humans without pain perception are at permanent risk for injuries, burns and mutilations. Pain insensitivity can be caused by sensory neurodegeneration which is a hallmark of hereditary sensory and autonomic neuropathies (HSANs). Although mutations in several genes were previously associated with sensory neurodegeneration, the etiology of many cases remains unknown. Using next generation sequencing in patients with congenital loss of pain perception, we here identify bi-allelic mutations in the FLVCR1 (Feline Leukemia Virus subgroup C Receptor 1) gene, which encodes a broadly expressed heme exporter. Different FLVCR1 isoforms control the size of the cytosolic heme pool required to sustain metabolic activity of different cell types. Mutations in FLVCR1 have previously been linked to vision impairment and posterior column ataxia in humans, but not to HSAN. Using fibroblasts and lymphoblastoid cell lines from patients with sensory neurodegeneration, we here show that the FLVCR1-mutations reduce heme export activity, enhance oxidative stress and increase sensitivity to programmed cell death. Our data link heme metabolism to sensory neuron maintenance and suggest that intracellular heme overload causes early-onset degeneration of pain-sensing neurons in humans. PMID:27923065

  16. Strand I: Physical Health. Sensory Perception. Health Curriculum Materials Grades 4, 5, 6.

    ERIC Educational Resources Information Center

    New York State Education Dept., Albany. Bureau of Elementary Curriculum Development.

    GRADES OR AGES: Grades 4, 5, and 6. SUBJECT MATTER: Sensory perceptions, the organs involved, and eye and hearing care. ORGANIZATION AND PHYSICAL APPEARANCE: The guide is divided into six different sectional steps organized around a gradual, ascending understanding of the sense organs. OBJECTIVES AND ACTIVITIES: The material is divided into…

  17. Time perception impairs sensory-motor integration in Parkinson's disease.

    PubMed

    Lucas, Marina; Chaves, Fernanda; Teixeira, Silmar; Carvalho, Diana; Peressutti, Caroline; Bittencourt, Juliana; Velasques, Bruna; Menéndez-González, Manuel; Cagy, Mauricio; Piedade, Roberto; Nardi, Antonio Egidio; Machado, Sergio; Ribeiro, Pedro; Arias-Carrión, Oscar

    2013-10-16

    It is well known that perception and estimation of time are fundamental for the relationship between humans and their environment. However, this temporal information processing is inefficient in patients with Parkinson' disease (PD), resulting in temporal judgment deficits. In general, the pathophysiology of PD has been described as a dysfunction in the basal ganglia, which is a multisensory integration station. Thus, a deficit in the sensorimotor integration process could explain many of the Parkinson symptoms, such as changes in time perception. This physiological distortion may be better understood if we analyze the neurobiological model of interval timing, expressed within the conceptual framework of a traditional information-processing model called "Scalar Expectancy Theory". Therefore, in this review we discuss the pathophysiology and sensorimotor integration process in PD, the theories and neural basic mechanisms involved in temporal processing, and the main clinical findings about the impact of time perception in PD.

  18. Health science students’ perceptions of motor and sensory aphasia caused by stroke

    PubMed Central

    Byeon, Haewon; Koh, Hyeung Woo

    2016-01-01

    [Purpose] This study explored health science students’ perceptions of motor aphasia and sensory aphasia caused by stroke to provide basic material for the improvement of rehabilitation practitioners’ perceptions of aphasia. [Subjects and Methods] The subjects of this study were 642 freshmen and sophomores majoring in health science. Perceptions of aphasia were surveyed on a semantic differential scale using the Anchoring Vignette Method and the difference in perception of the two types of aphasia was analyzed using multi-dimensional scaling. [Results] The analysis revealed that motor aphasia and sensory aphasia have mutually corresponding images. Motor aphasia had high levels of ‘quiet’, ‘passive’ ‘dumb’, ‘unstable’ and ‘gloomy’ images, while sensory aphasia had high levels of ‘noisy’, ‘unstable’, ‘cheerful’, ‘sensitive’, ‘fluctuating in emotions’, ‘active’, ‘dumb’ and ‘gloomy’ images. [Conclusion] A systematic education is required to be implemented in the future to improve health science students’ negative perceptions of the aftereffects of stroke such as aphasia. PMID:27390413

  19. Visceral perception: sensory transduction in visceral afferents and nutrients.

    PubMed

    Raybould, H E

    2002-07-01

    The possible mechanisms that may be involved in nutrient detection in the wall of the gastrointestinal tract are reviewed. There is strong functional and electrophysiological evidence that both intrinsic and extrinsic primary afferent neurones mediate mechano- and chemosensitive responses in the gastrointestinal tract. This review focuses on the extrinsic afferent pathways as these are the ones that convey information to the central nervous system which is clearly necessary for perception to occur.

  20. The social-sensory interface: category interactions in person perception

    PubMed Central

    Freeman, Jonathan B.; Johnson, Kerri L.; Adams, Reginald B.; Ambady, Nalini

    2012-01-01

    Research is increasingly challenging the claim that distinct sources of social information—such as sex, race, and emotion—are processed in discrete fashion. Instead, there appear to be functionally relevant interactions that occur. In the present article, we describe research examining how cues conveyed by the human face, voice, and body interact to form the unified representations that guide our perceptions of and responses to other people. We explain how these information sources are often thrown into interaction through bottom-up forces (e.g., phenotypic cues) as well as top-down forces (e.g., stereotypes and prior knowledge). Such interactions point to a person perception process that is driven by an intimate interface between bottom-up perceptual and top-down social processes. Incorporating data from neuroimaging, event-related potentials (ERP), computational modeling, computer mouse-tracking, and other behavioral measures, we discuss the structure of this interface, and we consider its implications and adaptive purposes. We argue that an increased understanding of person perception will likely require a synthesis of insights and techniques, from social psychology to the cognitive, neural, and vision sciences. PMID:23087622

  1. Relation of sensory perception with chemical composition of bioprocessed lingonberry.

    PubMed

    Viljanen, Kaarina; Heiniö, Raija-Liisa; Juvonen, Riikka; Kössö, Tuija; Puupponen-Pimiä, Riitta

    2014-08-15

    The impact of bioprocessing on lingonberry flavour was studied by sensory evaluation and chemical analysis (organic acids, mannitol, phenolic compounds, sugars and volatile compounds). Bioprocessing of lingonberries with enzymes, lactic acid bacteria (LAB) or yeast, or their combination (excluding pure LAB fermentation) affected their perceived flavour and chemical composition. Sweetness was associated especially with enzyme treatment but also with enzyme+LAB treatment. Yeast fermentation caused significant changes in volatile aroma compounds and perceived flavour, whereas minor changes were detected in LAB or enzyme-treated berries. Increased concentration of organic acids, ethanol and some phenolic acids correlated with perceived fermented odour/flavour in yeast fermentations, in which increase in benzoic acid level was significant. In enzymatic treatment decreasing anthocyanins correlated well with decreased perceived colour intensity. Enzyme treatment is a potential tool to decrease naturally acidic flavour of lingonberry. Fermentation, especially with yeast, could be an interesting new approach to increase the content of natural preservatives, such as antimicrobial benzoic acid.

  2. Abnormal Tilt Perception During Centrifugation in Patients with Vestibular Migraine.

    PubMed

    Wang, Joanne; Lewis, Richard F

    2016-06-01

    Vestibular migraine (VM), defined as vestibular symptoms caused by migraine mechanisms, is very common but poorly understood. Because dizziness is often provoked in VM patients when the semicircular canals and otolith organs are stimulated concurrently (e.g., tilting the head relative to gravity), we measured tilt perception and eye movements in patients with VM and in migraine and normal control subjects during fixed-radius centrifugation, a paradigm that simultaneously modulates afferent signals from the semicircular canals and otoliths organs. Twenty-four patients (8 in each category) were tested with a motion paradigm that generated an inter-aural centrifugal force of 0.36 G, resulting in a 20° tilt of the gravito-inertial force in the roll plane. We found that percepts of roll tilt developed slower in VM patients than in the two control groups, but that eye movement responses, including the shift in the eye's rotational axis, were equivalent in all three groups. These results demonstrate a change in vestibular perception in VM that is unaccompanied by changes in vestibular-mediated eye movements and suggest that either the brain's integration of canal and otolith signals or the dynamics of otolith responses are aberrant in patients with VM.

  3. The effects of negative emotions on sensory perception: fear but not anger decreases tactile sensitivity.

    PubMed

    Kelley, Nicholas J; Schmeichel, Brandon J

    2014-01-01

    Emotions and sensory perceptions are closely intertwined. Of the five senses, sight has been by far the most extensively studied sense in emotion research. Relatively less is known about how emotions influence the other four senses. Touch is essential for nonverbal communication in both humans and other animals. The current investigation tested competing hypotheses about the effect of fear on tactile perception. One hypothesis based on evolutionary considerations predicts that fear enhances sensory perception, including tactile sensitivity. A competing hypothesis based on research on peripheral psychophysiology predicts that fear should decrease tactile sensitivity. Two experiments that induced negative emotional states and measured two-point discrimination ability at the fingertip found that fear reduces tactile sensitivity relative to anger or a neutral control condition (Studies 1 and 2). These findings did not appear to be driven by participants' naïve beliefs about the influence of emotions on touch (Study 3). The results represent the first evidence of the causal impact of emotional states on tactile sensitivity, are consistent with prior evidence for the peripheral physiological effects of fear, and offer novel empirical grounds for developing and advancing theories of emotional influences on sensory perception.

  4. The effects of negative emotions on sensory perception: fear but not anger decreases tactile sensitivity

    PubMed Central

    Kelley, Nicholas J.; Schmeichel, Brandon J.

    2014-01-01

    Emotions and sensory perceptions are closely intertwined. Of the five senses, sight has been by far the most extensively studied sense in emotion research. Relatively less is known about how emotions influence the other four senses. Touch is essential for nonverbal communication in both humans and other animals. The current investigation tested competing hypotheses about the effect of fear on tactile perception. One hypothesis based on evolutionary considerations predicts that fear enhances sensory perception, including tactile sensitivity. A competing hypothesis based on research on peripheral psychophysiology predicts that fear should decrease tactile sensitivity. Two experiments that induced negative emotional states and measured two-point discrimination ability at the fingertip found that fear reduces tactile sensitivity relative to anger or a neutral control condition (Studies 1 and 2). These findings did not appear to be driven by participants’ naïve beliefs about the influence of emotions on touch (Study 3). The results represent the first evidence of the causal impact of emotional states on tactile sensitivity, are consistent with prior evidence for the peripheral physiological effects of fear, and offer novel empirical grounds for developing and advancing theories of emotional influences on sensory perception. PMID:25202299

  5. The evolutionarily conserved transcription factor PRDM12 controls sensory neuron development and pain perception.

    PubMed

    Nagy, Vanja; Cole, Tiffany; Van Campenhout, Claude; Khoung, Thang M; Leung, Calvin; Vermeiren, Simon; Novatchkova, Maria; Wenzel, Daniel; Cikes, Domagoj; Polyansky, Anton A; Kozieradzki, Ivona; Meixner, Arabella; Bellefroid, Eric J; Neely, G Gregory; Penninger, Josef M

    2015-01-01

    PR homology domain-containing member 12 (PRDM12) belongs to a family of conserved transcription factors implicated in cell fate decisions. Here we show that PRDM12 is a key regulator of sensory neuronal specification in Xenopus. Modeling of human PRDM12 mutations that cause hereditary sensory and autonomic neuropathy (HSAN) revealed remarkable conservation of the mutated residues in evolution. Expression of wild-type human PRDM12 in Xenopus induced the expression of sensory neuronal markers, which was reduced using various human PRDM12 mutants. In Drosophila, we identified Hamlet as the functional PRDM12 homolog that controls nociceptive behavior in sensory neurons. Furthermore, expression analysis of human patient fibroblasts with PRDM12 mutations uncovered possible downstream target genes. Knockdown of several of these target genes including thyrotropin-releasing hormone degrading enzyme (TRHDE) in Drosophila sensory neurons resulted in altered cellular morphology and impaired nociception. These data show that PRDM12 and its functional fly homolog Hamlet are evolutionary conserved master regulators of sensory neuronal specification and play a critical role in pain perception. Our data also uncover novel pathways in multiple species that regulate evolutionary conserved nociception.

  6. Sensory signals in neural populations underlying tactile perception and manipulation.

    PubMed

    Goodwin, Antony W; Wheat, Heather E

    2004-01-01

    For humans to manipulate an object successfully, the motor control system must have accurate information about parameters such as the shape of the stimulus, its position of contact on the skin, and the magnitude and direction of contact force. The same information is required for perception during haptic exploration of an object. Much of these data are relayed by the mechanoreceptive afferents innervating the glabrous skin of the digits. Single afferent responses are modulated by all the relevant stimulus parameters. Thus, only in complete population reconstructions is it clear how each of the parameters can be signaled to the brain independently when many are changing simultaneously, as occurs in most normal movements or haptic exploration. Modeling population responses reveals how resolution is affected by neural noise and intrinsic properties of the population such as the pattern and density of innervation and the covariance of response variability.

  7. Cracking the Neural Code for Sensory Perception by Combining Statistics, Intervention, and Behavior.

    PubMed

    Panzeri, Stefano; Harvey, Christopher D; Piasini, Eugenio; Latham, Peter E; Fellin, Tommaso

    2017-02-08

    The two basic processes underlying perceptual decisions-how neural responses encode stimuli, and how they inform behavioral choices-have mainly been studied separately. Thus, although many spatiotemporal features of neural population activity, or "neural codes," have been shown to carry sensory information, it is often unknown whether the brain uses these features for perception. To address this issue, we propose a new framework centered on redefining the neural code as the neural features that carry sensory information used by the animal to drive appropriate behavior; that is, the features that have an intersection between sensory and choice information. We show how this framework leads to a new statistical analysis of neural activity recorded during behavior that can identify such neural codes, and we discuss how to combine intersection-based analysis of neural recordings with intervention on neural activity to determine definitively whether specific neural activity features are involved in a task.

  8. Effects of static magnetic fields on cognition, vital signs, and sensory perception: a meta-analysis.

    PubMed

    Heinrich, Angela; Szostek, Anne; Nees, Frauke; Meyer, Patric; Semmler, Wolfhard; Flor, Herta

    2011-10-01

    To evaluate whether cognitive processes, sensory perception, and vital signs might be influenced by static magnetic fields in magnetic resonance imaging (MRI), which could pose a risk for health personnel and patients, we conducted a meta-analysis of studies that examined effects of static magnetic fields. Studies covering the time from 1992 to 2007 were selected. Cohen's d effects sizes were used and combined in different categories of neuropsychology (reaction time, visual processing, eye-hand coordination, and working memory). Additionally, effects of static magnetic fields on sensory perception and vital signs were analyzed. In the category "neuropsychology," only effects on the visual system were homogeneous, showing a statistically significant impairment as a result of exposure to static magnetic fields (d = -0.415). Vital signs were not affected and effects on sensory perceptions included an increase of dizziness and vertigo, primarily caused by movement during static magnetic field gradient exposures. The number of studies dealing with this topic is very small and the experimental set-up of some of the analyzed studies makes it difficult to accurately determine the effects of static magnetic fields by themselves, excluding nonspecific factors. The implications of these results for MRI lead to suggestions for improvement in research designs.

  9. Altering Visual Perception Abnormalities: A Marker for Body Image Concern

    PubMed Central

    Duncum, Anna J. F.; Mundy, Matthew E.

    2016-01-01

    The body image concern (BIC) continuum ranges from a healthy and positive body image, to clinical diagnoses of abnormal body image, like body dysmorphic disorder (BDD). BDD and non-clinical, yet high-BIC participants have demonstrated a local visual processing bias, characterised by reduced inversion effects. To examine whether this bias is a potential marker of BDD, the visual processing of individuals across the entire BIC continuum was examined. Dysmorphic Concern Questionnaire (DCQ; quantified BIC) scores were expected to correlate with higher discrimination accuracy and faster reaction times of inverted stimuli, indicating reduced inversion effects (occurring due to increased local visual processing). Additionally, an induced global or local processing bias via Navon stimulus presentation was expected to alter these associations. Seventy-four participants completed the DCQ and upright-inverted face and body stimulus discrimination task. Moderate positive associations were revealed between DCQ scores and accuracy rates for inverted face and body stimuli, indicating a graded local bias accompanying increases in BIC. This relationship supports a local processing bias as a marker for BDD, which has significant assessment implications. Furthermore, a moderate negative relationship was found between DCQ score and inverted face accuracy after inducing global processing, indicating the processing bias can temporarily be reversed in high BIC individuals. Navon stimuli were successfully able to alter the visual processing of individuals across the BIC continuum, which has important implications for treating BDD. PMID:27003715

  10. Peripheral tactile sensory perception of older adults improved using subsensory electrical noise stimulation.

    PubMed

    Breen, Paul P; Serrador, Jorge M; O'Tuathail, Claire; Quinlan, Leo R; McIntosh, Caroline; ÓLaighin, Gearóid

    2016-08-01

    Loss of tactile sensory function is common with aging and can lead to numbness and difficulty with balance and gait. In previous work we found that subsensory electrical noise stimulation (SENS) applied to the tibial nerve improved tactile perception in the soles of the feet of healthy adults. In this work we aimed to determine if SENS remained effective in an older adult population with significant levels of sensory loss. Older adult subjects (N=8, female = 4, aged 65-80) had SENS applied via surface electrodes placed proximally to the medial and lateral malleoli. Vibration perception thresholds (VPTs) were assessed in six conditions, two control conditions (no SENS) and four SENS conditions (zero mean ±15µA, 30µA, 45µA and 60µA SD). VPT was assessed at three sites on the plantar aspect of the foot. Vibration perception was significantly improved in the presence of ±30µA SENS and by 16.2±2.4% (mean ± s.e.m.) when optimised for each subject. The improvement in perception was similar across all VPT test sites.

  11. Quantifying the sensory and emotional perception of touch: differences between glabrous and hairy skin

    PubMed Central

    Ackerley, Rochelle; Saar, Karin; McGlone, Francis; Backlund Wasling, Helena

    2014-01-01

    The perception of touch is complex and there has been a lack of ways to describe the full tactile experience quantitatively. Guest et al. (2011) developed a Touch Perception Task (TPT) in order to capture such experiences, and here we used the TPT to examine differences in sensory and emotional aspects of touch at different skin sites. We compared touch on three skin sites: the hairy arm and cheek, and the glabrous palm. The hairy skin contains C-tactile (CT) afferents, which play a role in affective touch, whereas glabrous skin does not contain CT afferents and is involved in more discriminative touch. In healthy volunteers, three different materials (soft brush, sandpaper, fur) were stroked across these skin sites during self-touch or experimenter-applied touch. After each stimulus, participants rated the tactile experience using descriptors in the TPT. Sensory and emotional descriptors were analyzed using factor analyses. Five sensory factors were found: Texture, Pile, Moisture, Heat/Sharp and Cold/Slip, and three emotional factors: Positive Affect, Arousal, and Negative Affect. Significant differences were found in the use of descriptors in touch to hairy vs. glabrous skin: this was most evident in touch on forearm skin, which produced higher emotional content. The touch from another was also judged as more emotionally positive then self-touch, and participants readily discriminated between the materials on all factors. The TPT successfully probed sensory and emotional percepts of the touch experience, which aided in identifying skin where emotional touch was more pertinent. It also highlights the potentially important role for CTs in the affective processing of inter-personal touch, in combination with higher-order influences, such as through cultural belonging and previous experiences. PMID:24574985

  12. Brief Report: Sensory Abnormalities as Distinguishing Symptoms of Autism Spectrum Disorders in Young Children

    ERIC Educational Resources Information Center

    Wiggins, Lisa D.; Robins, Diana L.; Bakeman, Roger; Adamson, Lauren B.

    2009-01-01

    The purpose of this study was to explore the sensory profile of young children with ASD compared to young children with other developmental delays (DD) at first ASD assessment. Results found that young children with ASD had more tactile and taste/smell sensitivities and difficulties with auditory filtering than young children with other DD.…

  13. Brief Report: Assessment of Sensory Abnormalities in People with Autistic Spectrum Disorders

    ERIC Educational Resources Information Center

    Harrison, James; Hare, Dougal Julian

    2004-01-01

    Sensory functioning has long been considered crucial in the life of people with autistic spectrum disorders (ASD) (Gillberg, C., & Coleman, M. (1992). "The Biology of Autistic Syndromes" (2nd ed.). London: Mac Keith press.) However, much of the research is methodologically flawed and based on child populations and adults' retrospective accounts (O…

  14. Knockdown of poc1b causes abnormal photoreceptor sensory cilium and vision impairment in zebrafish.

    PubMed

    Zhang, Conghui; Zhang, Qi; Wang, Fang; Liu, Qin

    2015-10-02

    Proteomic analysis of the mouse photoreceptor sensory cilium identified a set of cilia proteins, including Poc1 centriolar protein b (Poc1b). Previous functional studies in human cells and zebrafish embryos implicated that Poc1b plays important roles in centriole duplication and length control, as well as ciliogenesis. To study the function of Poc1b in photoreceptor sensory cilia and other primary cilia, we expressed a tagged recombinant Poc1b protein in cultured renal epithelial cells and rat retina. Poc1b was localized to the centrioles and spindle bundles during cell cycle progression, and to the basal body of photoreceptor sensory cilia. A morpholino knockdown and complementation assay of poc1b in zebrafish showed that loss of poc1b led to a range of morphological anomalies of cilia commonly associated with human ciliopathies. In the retina, the development of retinal laminae was significantly delayed and the length of photoreceptor outer segments was shortened. Visual behavior studies revealed impaired visual function in the poc1b morphants. In addition, ciliopathy-associated developmental defects, such as small eyes, curved body axis, heart defects, and shortened cilia in Kupffer's vesicle, were observed as well. These data suggest that poc1b is required for normal development and ciliogenesis of retinal photoreceptor sensory cilia and other cilia. Furthermore, this conclusion is supported by recent findings that mutations in POC1B gene have been identified in patients with inherited retinal dystrophy and syndromic retinal ciliopathy.

  15. Impact of model fat emulsions on sensory perception using repeated spoon to spoon ingestion.

    PubMed

    Appelqvist, I A M; Poelman, A A M; Cochet-Broch, M; Delahunty, C M

    2016-06-01

    Eating is a dynamic behaviour, in which food interacts with the mechanical and physiological environment of the mouth. This dynamic interaction changes the oral surfaces leaving particles of food and building up a film on the oral surfaces, which may impact on the temporal perception during the eating experience. The effect of repeated spoon to spoon ingestion of oil in water emulsion products (2%-50% w/w oil) was evaluated using descriptive in-mouth and after swallowing sensory attributes. Descriptive sensory analysis indicated that fatty mouthfeel and afterfeel perception (measured post swallowing) increased with the number of spoonfuls for emulsions containing 50% fat. This effect is likely due to the build-up of oil droplet layers deposited on the mouth surfaces. There was an enhancement of fatty afterfeel intensity for 50% fat emulsions containing the more lipophilic aroma ethylhexanoate compared to ethyl butanoate, indicating a cross-modal interaction. No increase in these attributes from spoon to spoon was observed for the low oil emulsions; since most of the oil in the emulsion was swallowed and very little oil was likely to be left in the mouth. Sweetness perception increased as fat level increased in the emulsion due to an increase in the effective concentration of sugar in the aqueous phase. However, the sweetness perceived did not change from spoon to spoon, suggesting that any oil-droplets deposited on the oral surfaces did not form a complete barrier, restricting access of the sucrose to the taste buds. This study highlights the importance of measuring the dynamic nature of eating and demonstrated change in sensory perception occurring with repeated ingestion of model emulsions, which was likely due to a change in mouth environment.

  16. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance.

    PubMed

    Halfwerk, Wouter; Slabbekoorn, Hans

    2015-04-01

    Anthropogenic sensory pollution is affecting ecosystems worldwide. Human actions generate acoustic noise, emanate artificial light and emit chemical substances. All of these pollutants are known to affect animals. Most studies on anthropogenic pollution address the impact of pollutants in unimodal sensory domains. High levels of anthropogenic noise, for example, have been shown to interfere with acoustic signals and cues. However, animals rely on multiple senses, and pollutants often co-occur. Thus, a full ecological assessment of the impact of anthropogenic activities requires a multimodal approach. We describe how sensory pollutants can co-occur and how covariance among pollutants may differ from natural situations. We review how animals combine information that arrives at their sensory systems through different modalities and outline how sensory conditions can interfere with multimodal perception. Finally, we describe how sensory pollutants can affect the perception, behaviour and endocrinology of animals within and across sensory modalities. We conclude that sensory pollution can affect animals in complex ways due to interactions among sensory stimuli, neural processing and behavioural and endocrinal feedback. We call for more empirical data on covariance among sensory conditions, for instance, data on correlated levels in noise and light pollution. Furthermore, we encourage researchers to test animal responses to a full-factorial set of sensory pollutants in the presence or the absence of ecologically important signals and cues. We realize that such approach is often time and energy consuming, but we think this is the only way to fully understand the multimodal impact of sensory pollution on animal performance and perception.

  17. Pollution going multimodal: the complex impact of the human-altered sensory environment on animal perception and performance

    PubMed Central

    Halfwerk, Wouter; Slabbekoorn, Hans

    2015-01-01

    Anthropogenic sensory pollution is affecting ecosystems worldwide. Human actions generate acoustic noise, emanate artificial light and emit chemical substances. All of these pollutants are known to affect animals. Most studies on anthropogenic pollution address the impact of pollutants in unimodal sensory domains. High levels of anthropogenic noise, for example, have been shown to interfere with acoustic signals and cues. However, animals rely on multiple senses, and pollutants often co-occur. Thus, a full ecological assessment of the impact of anthropogenic activities requires a multimodal approach. We describe how sensory pollutants can co-occur and how covariance among pollutants may differ from natural situations. We review how animals combine information that arrives at their sensory systems through different modalities and outline how sensory conditions can interfere with multimodal perception. Finally, we describe how sensory pollutants can affect the perception, behaviour and endocrinology of animals within and across sensory modalities. We conclude that sensory pollution can affect animals in complex ways due to interactions among sensory stimuli, neural processing and behavioural and endocrinal feedback. We call for more empirical data on covariance among sensory conditions, for instance, data on correlated levels in noise and light pollution. Furthermore, we encourage researchers to test animal responses to a full-factorial set of sensory pollutants in the presence or the absence of ecologically important signals and cues. We realize that such approach is often time and energy consuming, but we think this is the only way to fully understand the multimodal impact of sensory pollution on animal performance and perception. PMID:25904319

  18. Fusion of multi-sensory saliency maps for automated perception and control

    NASA Astrophysics Data System (ADS)

    Huber, David J.; Khosla, Deepak; Dow, Paul A.

    2009-05-01

    In many real-world situations and applications that involve humans or machines (e.g., situation awareness, scene understanding, driver distraction, workload reduction, assembly, robotics, etc.) multiple sensory modalities (e.g., vision, auditory, touch, etc.) are used. The incoming sensory information can overwhelm processing capabilities of both humans and machines. An approach for estimating what is most important in our sensory environment (bottom-up or goal-driven) and using that as a basis for workload reduction or taking an action could be of great benefit in applications involving humans, machines or human-machine interactions. In this paper, we describe a novel approach for determining high saliency stimuli in multi-modal sensory environments, e.g., vision, sound, touch, etc. In such environments, the high saliency stimuli could be a visual object, a sound source, a touch event, etc. The high saliency stimuli are important and should be attended to from perception, cognition or/and action perspective. The system accomplishes this by the fusion of saliency maps from multiple sensory modalities (e.g., visual and auditory) into a single, fused multimodal saliency map that is represented in a common, higher-level coordinate system. This paper describes the computational model and method for generating multi-modal or fused saliency map. The fused saliency map can be used to determine primary and secondary foci of attention as well as for active control of a hardware/device. Such a computational model of fused saliency map would be immensely useful for a machine-based or robot-based application in a multi-sensory environment. We describe the approach, system and present preliminary results on a real-robotic platform.

  19. Taste perception and sensory sensitivity: Relationship to feeding problems in boys with Barth Syndrome

    PubMed Central

    Reynolds, Stacey; Kreider, Consuelo M.; Meeley, Lauren E.; Bendixen, Roxanna M.

    2015-01-01

    Background Feeding problems are common in boys with Barth syndrome and may contribute to the population’s propensity for growth delay and muscle weakness. The purpose of this study was to quantify and describe these feeding issues and examine altered taste perception and sensory sensitivity as contributing factors. Methodology A cross-sectional, two-group comparison design was used to examine feeding preferences and behaviors, chemical taste perception, and sensory sensitivities in fifty boys with (n=24) and without (n=26) Barth ages 4–17 years. Taste perception was measured using chemical test strips saturated with phenylthiocarbamide (PTC) and sodium benzoate (NaB). Feeding problems were documented by parents using a Food Inventory, while sensory sensitivities were recorded using a Short Sensory Profile. Results Boys with Barth differed significantly from typical peers with regards to problem feeding behaviors. For boys with Barth, food refusal and food selectivity were identified as being present in 50% the sample, while 70% of had identified problems related to gagging or swallowing foods. About half of all Barth families noted that their child’s eating habits did not match the family’s and that separate meals were often prepared. As demonstrated in previous research, about 50% of boys with Barth demonstrated probable or definite differences in taste/smell sensitivity, which was significantly higher than controls. On tests of chemical taste perception, boys with Barth were significantly more likely to be supertasters to PTC and non-tasters to NaB. Taster-status did not directly relate to the presence of feeding problems, however, taste/smell sensitivity did significantly relate to food selectivity by type and texture. Conclusions Results indicate feeding problems in at least 50–70% of boys with Barth syndrome, and suggest that behaviors are often present before 6 months of age. Differences in taste perception may influence dietary choices in boys with

  20. Age-dependent gait abnormalities in mice lacking the Rnf170 gene linked to human autosomal-dominant sensory ataxia.

    PubMed

    Kim, Youngsoo; Kim, Seong Hun; Kim, Kook Hwan; Chae, Sujin; Kim, Chanki; Kim, Jeongjin; Shin, Hee-Sup; Lee, Myung-Shik; Kim, Daesoo

    2015-12-20

    Really interesting new gene (RING) finger protein 170 (RNF170) is an E3 ubiquitin ligase known to mediate ubiquitination-dependent degradation of type-I inositol 1,4,5-trisphosphate receptors (ITPR1). It has recently been demonstrated that a point mutation of RNF170 gene is linked with autosomal-dominant sensory ataxia (ADSA), which is characterized by an age-dependent increase of walking abnormalities, a rare genetic disorder reported in only two families. Although this mutant allele is known to be dominant, the functional identity thereof has not been clearly established. Here, we generated mice lacking Rnf170 (Rnf170(-/-)) to evaluate the effect of its loss of function in vivo. Remarkably, Rnf170(-/-) mice began to develop gait abnormalities in old age (12 months) in the form of asynchronous stepping between diagonal limb pairs with a fixed step sequence during locomotion, while age-matched wild-type mice showed stable gait patterns using several step sequence repertoires. As reported in ADSA patients, they also showed a reduced sensitivity for proprioception and thermal nociception. Protein blot analysis revealed that the amount of Itpr1 protein was significantly elevated in the cerebellum and spinal cord but intact in the cerebral cortex in Rnf170(-/-) mice. These results suggest that the loss of Rnf170 gene function mediates ADSA-associated phenotypes and this gives insights on the cure of patients with ADSA and other age-dependent walking abnormalities.

  1. Sensory biology. Evolution of sweet taste perception in hummingbirds by transformation of the ancestral umami receptor.

    PubMed

    Baldwin, Maude W; Toda, Yasuka; Nakagita, Tomoya; O'Connell, Mary J; Klasing, Kirk C; Misaka, Takumi; Edwards, Scott V; Liberles, Stephen D

    2014-08-22

    Sensory systems define an animal's capacity for perception and can evolve to promote survival in new environmental niches. We have uncovered a noncanonical mechanism for sweet taste perception that evolved in hummingbirds since their divergence from insectivorous swifts, their closest relatives. We observed the widespread absence in birds of an essential subunit (T1R2) of the only known vertebrate sweet receptor, raising questions about how specialized nectar feeders such as hummingbirds sense sugars. Receptor expression studies revealed that the ancestral umami receptor (the T1R1-T1R3 heterodimer) was repurposed in hummingbirds to function as a carbohydrate receptor. Furthermore, the molecular recognition properties of T1R1-T1R3 guided taste behavior in captive and wild hummingbirds. We propose that changing taste receptor function enabled hummingbirds to perceive and use nectar, facilitating the massive radiation of hummingbird species.

  2. Somatosensory Representations Link the Perception of Emotional Expressions and Sensory Experience123

    PubMed Central

    2016-01-01

    Abstract Studies of human emotion perception have linked a distributed set of brain regions to the recognition of emotion in facial, vocal, and body expressions. In particular, lesions to somatosensory cortex in the right hemisphere have been shown to impair recognition of facial and vocal expressions of emotion. Although these findings suggest that somatosensory cortex represents body states associated with distinct emotions, such as a furrowed brow or gaping jaw, functional evidence directly linking somatosensory activity and subjective experience during emotion perception is critically lacking. Using functional magnetic resonance imaging and multivariate decoding techniques, we show that perceiving vocal and facial expressions of emotion yields hemodynamic activity in right somatosensory cortex that discriminates among emotion categories, exhibits somatotopic organization, and tracks self-reported sensory experience. The findings both support embodied accounts of emotion and provide mechanistic insight into how emotional expressions are capable of biasing subjective experience in those who perceive them. PMID:27280154

  3. Cytokine expression correlates with differential sensory perception between lye and no-lye relaxers.

    PubMed

    Tackey, Robert N; Bryant, Harold; Parks, Felicia M

    2013-01-01

    Differences in perceived sensory scalp discomfort between guanidine carbonate/calcium hydroxide (no-lye) and sodium hydroxide (lye) relaxer technologies have been reported by users for decades. However, the biochemical processes responsible for the perceived differences have not been fully studied. We have used an in vitro three-dimensional skin model with well-developed epidermis to explore the expression of cytokines that may partially explain the biological response resulting in differences in sensory perception. The cytokines selected were prostaglandin E2 (PGE2), interleukin-1a (IL-1a), and IL-1 receptor antagonist (IL-1ra) because they have been shown to participate in irritant-induced discomfort. We show that lye relaxer induced over 350% increase in PGE2 expression over untreated control compared to 200% by no-lye in the early phase (4 h) postexposure epidermal response. Expression of IL-1a in the early phase showed no significant difference between lye and no-lye; however, no-lye induced higher levels (p < 0.0001) in 24 and 48 h. Concomitantly, no-lye induced increased expression of IL-1ra compared to lye at all time points. Given the association of PGE2 with nociceptive activation, these findings suggest that the perceived variation in sensory discomfort reported by consumers between lye and no-lye relaxers may be associated with differences in induced PGE2 expression.

  4. Sensory augmentation: integration of an auditory compass signal into human perception of space

    PubMed Central

    Schumann, Frank; O’Regan, J. Kevin

    2017-01-01

    Bio-mimetic approaches to restoring sensory function show great promise in that they rapidly produce perceptual experience, but have the disadvantage of being invasive. In contrast, sensory substitution approaches are non-invasive, but may lead to cognitive rather than perceptual experience. Here we introduce a new non-invasive approach that leads to fast and truly perceptual experience like bio-mimetic techniques. Instead of building on existing circuits at the neural level as done in bio-mimetics, we piggy-back on sensorimotor contingencies at the stimulus level. We convey head orientation to geomagnetic North, a reliable spatial relation not normally sensed by humans, by mimicking sensorimotor contingencies of distal sounds via head-related transfer functions. We demonstrate rapid and long-lasting integration into the perception of self-rotation. Short training with amplified or reduced rotation gain in the magnetic signal can expand or compress the perceived extent of vestibular self-rotation, even with the magnetic signal absent in the test. We argue that it is the reliability of the magnetic signal that allows vestibular spatial recalibration, and the coding scheme mimicking sensorimotor contingencies of distal sounds that permits fast integration. Hence we propose that contingency-mimetic feedback has great potential for creating sensory augmentation devices that achieve fast and genuinely perceptual experiences. PMID:28195187

  5. Sensory and decision-related activity propagate in a cortical feedback loop during touch perception

    PubMed Central

    Kwon, Sung Eun; Yang, Hongdian; Minamisawa, Genki; O’Connor, Daniel H.

    2016-01-01

    The brain transforms physical sensory stimuli into meaningful perceptions. In animals making choices about sensory stimuli, neuronal activity in successive cortical stages reflects a progression from sensation to decision. Feedforward and feedback pathways connecting cortical areas are critical for this transformation. However, the computational roles of these pathways are poorly understood because pathway-specific activity has rarely been monitored during a perceptual task. Using cellular-resolution, pathway-specific imaging, we measured neuronal activity across primary (S1) and secondary (S2) somatosensory cortices of mice performing a tactile detection task. S1 encoded the stimulus better than S2, while S2 activity more strongly reflected perceptual choice. S1 neurons projecting to S2 fed forward activity that predicted choice. Activity encoding touch and choice propagated in an S1–S2 loop along feedforward and feedback axons. Our results suggest that sensory inputs converge into a perceptual outcome as feedforward computations are reinforced in a feedback loop. PMID:27437910

  6. Sensory-motor system identification of active perception in ecologically valid environments

    NASA Astrophysics Data System (ADS)

    Abbott, William; Thomik, Andreas; Faisal, A. Aldo

    2015-03-01

    The brain is a dynamical system mapping sensory inputs to motor actions. This relationship has been widely characterised by reductionist controlled experiments. Here we present work moving out of the lab ``into the wild'' to capture, rather than constrain, sensory inputs and motor outputs, by recording 90% of sensory inputs using head mounted eye-tracking, scene camera and microphone as well as recording 95% of skeletal motor outputs by motion tracking 51 degrees of freedom in the body and a total of 40 degrees of freedom from the hands. We can thus begin to systematically characterise the perception-action loop through system identification. This enables use to evaluate classical relationships in ecologically valid settings and behaviours including 3 daily scenarios: breakfast in the kitchen, evening chores and activities and in-door ambulation . This level of data richness (97 DOF, 60Hz), coupled with the extensive recordings of natural perceptual and behavioural data (total > 30 hrs, 10 subjects) enables us to answer general questions of how lab tasks and protocols will produce systematically different results from those found in daily life.

  7. Sensory augmentation: integration of an auditory compass signal into human perception of space.

    PubMed

    Schumann, Frank; O'Regan, J Kevin

    2017-02-14

    Bio-mimetic approaches to restoring sensory function show great promise in that they rapidly produce perceptual experience, but have the disadvantage of being invasive. In contrast, sensory substitution approaches are non-invasive, but may lead to cognitive rather than perceptual experience. Here we introduce a new non-invasive approach that leads to fast and truly perceptual experience like bio-mimetic techniques. Instead of building on existing circuits at the neural level as done in bio-mimetics, we piggy-back on sensorimotor contingencies at the stimulus level. We convey head orientation to geomagnetic North, a reliable spatial relation not normally sensed by humans, by mimicking sensorimotor contingencies of distal sounds via head-related transfer functions. We demonstrate rapid and long-lasting integration into the perception of self-rotation. Short training with amplified or reduced rotation gain in the magnetic signal can expand or compress the perceived extent of vestibular self-rotation, even with the magnetic signal absent in the test. We argue that it is the reliability of the magnetic signal that allows vestibular spatial recalibration, and the coding scheme mimicking sensorimotor contingencies of distal sounds that permits fast integration. Hence we propose that contingency-mimetic feedback has great potential for creating sensory augmentation devices that achieve fast and genuinely perceptual experiences.

  8. Endogenous hallucinogens as ligands of the trace amine receptors: a possible role in sensory perception.

    PubMed

    Wallach, J V

    2009-01-01

    While the endogenous hallucinogens, N,N-dimethyltryptamine, 5-hydroxy-N,N-dimethyl-tryptamine and 5-methoxy-N,N-dimethyltryptamine, have been acknowledged as naturally occurring components of the mammalian body for decades, their biological function remains as elusive now as it was at the time of their discovery. The recent discovery of the trace amine associated receptors and the activity of DMT and other hallucinogenic compounds at these receptor sites leads to the hypothesis that the endogenous hallucinogens act as neurotransmitters of a subclass of these trace amine receptors. Additionally, while activity at the serotonin 5-HT2A receptor has been proposed as being responsible for the hallucinogenic affects of administered hallucinogens, in their natural setting the 5-HT2A receptor may not interact with the endogenous hallucinogens at all. Additionally 5-HT2A agonist activity is unable to account for the visual altering effects of many of the administered hallucinogens; these effects may be mediated by one of the endogenous hallucinogen trace amine receptors rather than the serotonin 5-HT2A receptor. Therefore, activity at the trace amine receptors, in addition to serotonin receptors, may play a large role in the sensory altering effects of administered hallucinogens and the trace amine receptors along with their endogenous hallucinogen ligands may serve an endogenous role in mediating sensory perception in the mammalian central nervous system. Thus the theory proposed states that these compounds act as true endogenous hallucinogenic transmitters acting in regions of the central nervous system involved in sensory perception.

  9. Sensory perception in the fungus Phycomyces blakesleeanus: a model organism for space research?

    NASA Astrophysics Data System (ADS)

    Corrochano, Luis M.

    2016-07-01

    Fungi use signals from the environment to regulate growth, development, and metabolism. The growth of the fruiting bodies, sporangiophores, of Phycomyces blakesleeanus is governed by several environmental signals, including light, gravity, touch, wind, and the presence of nearby objects. These signals allow sporangiophore growth towards open air for efficient spore dispersal. The sporangiophores of Phycomyces are giant isolated cells that can reach several cm in length. The large size of the sporangiophores facilitates genetic screens for tropic mutants, and the sexual cycle allows the genetic analysis of tropic mutations. The availability of the Phycomyces genome sequence and a collection of SNPs allow gene identification by genome mapping and gene sequencing. In addition, the size of the sporangiophore facilitates physiological analysis of tropic growth using computerized tracking devices. These experimental approaches will help to understand the mechanisms of sensory perception and how cell growth is regulated by environmental signals. The perception of light by Phycomyces has been investigated in most detail. Most fungi use proteins similar to WC-1 and WC-2 from Neurospora crassa for sensing blue light. In N. crassa and other fungi these two proteins form a photoreceptor and transcription factor complex that binds to the promoters of light-regulated genes to activate transcription. Phycomyces have multiple wc genes and two of them encode a photoreceptor complex composed of MadA and MadB that is required for all responses to light. The tropic response to gravity is much slower than to light, and require the presence of floating lipid globules and protein crystals that may be part of the gravity sensory system. Light and gravity interact to modify the direction of growth of the sporangiophore but the mechanisms that allow the coordination of a single response to different environmental signals remain to be defined. The giant sporangiophore of Phycomyces is an

  10. A Hierarchical Generative Framework of Language Processing: Linking Language Perception, Interpretation, and Production Abnormalities in Schizophrenia

    PubMed Central

    Brown, Meredith; Kuperberg, Gina R.

    2015-01-01

    Language and thought dysfunction are central to the schizophrenia syndrome. They are evident in the major symptoms of psychosis itself, particularly as disorganized language output (positive thought disorder) and auditory verbal hallucinations (AVHs), and they also manifest as abnormalities in both high-level semantic and contextual processing and low-level perception. However, the literatures characterizing these abnormalities have largely been separate and have sometimes provided mutually exclusive accounts of aberrant language in schizophrenia. In this review, we propose that recent generative probabilistic frameworks of language processing can provide crucial insights that link these four lines of research. We first outline neural and cognitive evidence that real-time language comprehension and production normally involve internal generative circuits that propagate probabilistic predictions to perceptual cortices — predictions that are incrementally updated based on prediction error signals as new inputs are encountered. We then explain how disruptions to these circuits may compromise communicative abilities in schizophrenia by reducing the efficiency and robustness of both high-level language processing and low-level speech perception. We also argue that such disruptions may contribute to the phenomenology of thought-disordered speech and false perceptual inferences in the language system (i.e., AVHs). This perspective suggests a number of productive avenues for future research that may elucidate not only the mechanisms of language abnormalities in schizophrenia, but also promising directions for cognitive rehabilitation. PMID:26640435

  11. Perception Evolution Network Based on Cognition Deepening Model--Adapting to the Emergence of New Sensory Receptor.

    PubMed

    Xing, Youlu; Shen, Furao; Zhao, Jinxi

    2016-03-01

    The proposed perception evolution network (PEN) is a biologically inspired neural network model for unsupervised learning and online incremental learning. It is able to automatically learn suitable prototypes from learning data in an incremental way, and it does not require the predefined prototype number or the predefined similarity threshold. Meanwhile, being more advanced than the existing unsupervised neural network model, PEN permits the emergence of a new dimension of perception in the perception field of the network. When a new dimension of perception is introduced, PEN is able to integrate the new dimensional sensory inputs with the learned prototypes, i.e., the prototypes are mapped to a high-dimensional space, which consists of both the original dimension and the new dimension of the sensory inputs. In the experiment, artificial data and real-world data are used to test the proposed PEN, and the results show that PEN can work effectively.

  12. Enhanced Olfactory Sensory Perception of Threat in Anxiety: An Event-Related fMRI Study

    PubMed Central

    Krusemark, Elizabeth A.; Li, Wen

    2012-01-01

    The current conceptualization of threat processing in anxiety emphasizes emotional hyper-reactivity, which mediates various debilitating symptoms and derangements in anxiety disorders. Here, we investigated olfactory sensory perception of threat as an alternative causal mechanism of anxiety. Combining an event-related functional magnetic resonance imaging paradigm with an olfactory discrimination task, we examined how anxiety modulates basic perception of olfactory threats at behavioral and neural levels. In spite of subthreshold presentation of negative and neutral odors, a positive systematic association emerged between negative odor discrimination accuracy and anxiety levels. In parallel, the right olfactory primary (piriform) cortex indicated augmented response to subthreshold negative (vs. neutral) odors as a function of individual differences in anxiety. Using a psychophysiological interaction analysis, we further demonstrated amplified functional connectivity between the piriform cortex and emotion-related regions (amygdala and hippocampus) in response to negative odor, particularly in anxiety. Finally, anxiety also intensified skin conductance response to negative (vs. neutral) odor, indicative of potentiated emotional arousal to subliminal olfactory threat in anxiety. Together, these findings elucidate exaggerated processing of olfactory threat in anxiety across behavioral, autonomic physiological, and neural domains. Critically, our data emphasized anxiety-related hyper-sensitivity of the primary olfactory cortex and basic olfactory perception in response to threat, highlighting neurosensory mechanisms that may underlie the deleterious symptoms of anxiety. PMID:22866182

  13. The visual perception of natural motion: abnormal task-related neural activity in DYT1 dystonia.

    PubMed

    Sako, Wataru; Fujita, Koji; Vo, An; Rucker, Janet C; Rizzo, John-Ross; Niethammer, Martin; Carbon, Maren; Bressman, Susan B; Uluğ, Aziz M; Eidelberg, David

    2015-12-01

    Although primary dystonia is defined by its characteristic motor manifestations, non-motor signs and symptoms have increasingly been recognized in this disorder. Recent neuroimaging studies have related the motor features of primary dystonia to connectivity changes in cerebello-thalamo-cortical pathways. It is not known, however, whether the non-motor manifestations of the disorder are associated with similar circuit abnormalities. To explore this possibility, we used functional magnetic resonance imaging to study primary dystonia and healthy volunteer subjects while they performed a motion perception task in which elliptical target trajectories were visually tracked on a computer screen. Prior functional magnetic resonance imaging studies of healthy subjects performing this task have revealed selective activation of motor regions during the perception of 'natural' versus 'unnatural' motion (defined respectively as trajectories with kinematic properties that either comply with or violate the two-thirds power law of motion). Several regions with significant connectivity changes in primary dystonia were situated in proximity to normal motion perception pathways, suggesting that abnormalities of these circuits may also be present in this disorder. To determine whether activation responses to natural versus unnatural motion in primary dystonia differ from normal, we used functional magnetic resonance imaging to study 10 DYT1 dystonia and 10 healthy control subjects at rest and during the perception of 'natural' and 'unnatural' motion. Both groups exhibited significant activation changes across perceptual conditions in the cerebellum, pons, and subthalamic nucleus. The two groups differed, however, in their responses to 'natural' versus 'unnatural' motion in these regions. In healthy subjects, regional activation was greater during the perception of natural (versus unnatural) motion (P < 0.05). By contrast, in DYT1 dystonia subjects, activation was relatively greater

  14. Abnormal Sensory Protein Expression and Urothelial Dysfunction in Ketamine-Related Cystitis in Humans

    PubMed Central

    2016-01-01

    Purpose The aim of this study was to analyze patterns of sensory protein expression and urothelial dysfunction in ketamine-related cystitis (KC) in humans. Methods Biopsies of bladder mucosa were performed in 29 KC patients during cystoscopy. Then specimens were analyzed for tryptase, zonula occludens-1 (ZO-1), E-cadherin, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) with immunofluorescence staining and quantification. In addition, 10 healthy control bladder specimens were analyzed and compared with the KC specimens. Another 16 whole bladder specimens obtained from partial cystectomy were also analyzed for the muscarinic receptors M2 and M3, endothelial nitric oxide synthase (eNOS), inducible nitric oxide synthase (iNOS), β-3 adrenergic receptors (β3-ARs), and the P2X3 receptor by western blotting. In addition, 3 normal control bladder specimens were analyzed and compared with the KC specimens. Results The KC bladder mucosa revealed significantly less expression of ZO-1 and E-cadherin, and greater expression of TUNEL and tryptase activity than the control samples. The expression of M3 and β3-AR in the KC specimens was significantly greater than in the controls. The expression of iNOS, eNOS, M2, and P2X3 was not significantly different between the KC and control specimens. Conclusions The bladder tissue of KC patients revealed significant urothelial dysfunction, which was associated with mast-cell mediated inflammation, increased urothelial cell apoptosis, and increased expression of the M3 and β3-AR. PMID:27706016

  15. Sensory investigation of yogurt flavor perception: mutual influence of volatiles and acidity.

    PubMed

    Ott, A; Hugi, A; Baumgartner, M; Chaintreau, A

    2000-02-01

    The sensory properties of traditional acidic and mild, less acidic yogurts were characterized by a trained panel using a descriptive approach. Many of the descriptive attributes varied almost linearly with pH, showing either a positive or negative correlation with increasing acidity. The panel was very sensitive to acidity differences, as demonstrated by the linear relationship between acidity perception and pH. Important flavor differences were found between the two classes of yogurt. They were mainly due to differences in acidity and not to different concentrations of the three impact aroma compounds, acetaldehyde, 2,3-butanedione, and 2, 3-pentanedione. This emphasizes the importance of acidity in yogurt flavor. Deodorization and impact aroma compound addition had much less influence on yogurt flavor than pH variations.

  16. The use of sensory perception indicators for improving the characterization and modelling of total petroleum hydrocarbon (TPH) grade in soils.

    PubMed

    Roxo, Sónia; de Almeida, José António; Matias, Filipa Vieira; Mata-Lima, Herlander; Barbosa, Sofia

    2016-03-01

    This paper proposes a multistep approach for creating a 3D stochastic model of total petroleum hydrocarbon (TPH) grade in potentially polluted soils of a deactivated oil storage site by using chemical analysis results as primary or hard data and classes of sensory perception variables as secondary or soft data. First, the statistical relationship between the sensory perception variables (e.g. colour, odour and oil-water reaction) and TPH grade is analysed, after which the sensory perception variable exhibiting the highest correlation is selected (oil-water reaction in this case study). The probabilities of cells belonging to classes of oil-water reaction are then estimated for the entire soil volume using indicator kriging. Next, local histograms of TPH grade for each grid cell are computed, combining the probabilities of belonging to a specific sensory perception indicator class and conditional to the simulated values of TPH grade. Finally, simulated images of TPH grade are generated by using the P-field simulation algorithm, utilising the local histograms of TPH grade for each grid cell. The set of simulated TPH values allows several calculations to be performed, such as average values, local uncertainties and the probability of the TPH grade of the soil exceeding a specific threshold value.

  17. Changes in sensory perception of sports drinks when consumed pre, during and post exercise.

    PubMed

    Ali, Ajmol; Duizer, Lisa; Foster, Kylie; Grigor, John; Wei, Wenqi

    2011-03-28

    The aim of this study was to examine sensory perceptions towards different formulations of sports drinks when consumed before, at various points during, and following exercise. Following familiarization 14 recreational runners underwent four trials in a single blind counterbalanced design. Each trial utilised one of four different solutions: 7.5% carbohydrate, 421 mg L(-1) electrolyte (HiC-HiE); 7.5% carbohydrate, 140 mg L(-1) electrolyte (HiC-LoE); 1.3% carbohydrate, 421 mg L(-1) electrolyte (LoC-HiE) and water. Subjects were provided with 50-ml samples to ingest and then rate (using a 100-mm line scale) the intensity of sweetness, saltiness, thirst-quenching ability and overall liking before (-30 min), during (0, 30 and 60 min) and following (90 and 120 min) treadmill running exercise. Ratings of sweetness for all energy-containing drinks were higher during exercise relative to pre- and post-exercise conditions (P<0.05); ratings also increased with duration of exercise (P<0.001). Sweetness ratings for LoC-HiE increased during exercise (P<0.05) but remained the same for other beverages. Ratings of saltiness decreased for all energy-containing drinks during exercise relative to pre-exercise (P<0.05); ratings decreased with duration of exercise in these drinks (P<0.05). Ratings of thirst-quenching ability (P=0.039) and overall liking (P=0.013) increased with duration of exercise with all beverages. Significant changes in sensory perception occur when consuming sports drinks during exercise relative to non-exercise conditions. Temporal changes also occur during exercise itself which leads to enhanced liking of all beverages.

  18. A computational relationship between thalamic sensory neural responses and contrast perception.

    PubMed

    Jiang, Yaoguang; Purushothaman, Gopathy; Casagrande, Vivien A

    2015-01-01

    Uncovering the relationship between sensory neural responses and perceptual decisions remains a fundamental problem in neuroscience. Decades of experimental and modeling work in the sensory cortex have demonstrated that a perceptual decision pool is usually composed of tens to hundreds of neurons, the responses of which are significantly correlated not only with each other, but also with the behavioral choices of an animal. Few studies, however, have measured neural activity in the sensory thalamus of awake, behaving animals. Therefore, it remains unclear how many thalamic neurons are recruited and how the information from these neurons is pooled at subsequent cortical stages to form a perceptual decision. In a previous study we measured neural activity in the macaque lateral geniculate nucleus (LGN) during a two alternative forced choice (2AFC) contrast detection task, and found that single LGN neurons were significantly correlated with the monkeys' behavioral choices, despite their relatively poor contrast sensitivity and a lack of overall interneuronal correlations. We have now computationally tested a number of specific hypotheses relating these measured LGN neural responses to the contrast detection behavior of the animals. We modeled the perceptual decisions with different numbers of neurons and using a variety of pooling/readout strategies, and found that the most successful model consisted of about 50-200 LGN neurons, with individual neurons weighted differentially according to their signal-to-noise ratios (quantified as d-primes). These results supported the hypothesis that in contrast detection the perceptual decision pool consists of multiple thalamic neurons, and that the response fluctuations in these neurons can influence contrast perception, with the more sensitive thalamic neurons likely to exert a greater influence.

  19. Multi-sensory landscape assessment: the contribution of acoustic perception to landscape evaluation.

    PubMed

    Gan, Yonghong; Luo, Tao; Breitung, Werner; Kang, Jian; Zhang, Tianhai

    2014-12-01

    In this paper, the contribution of visual and acoustic preference to multi-sensory landscape evaluation was quantitatively compared. The real landscapes were treated as dual-sensory ambiance and separated into visual landscape and soundscape. Both were evaluated by 63 respondents in laboratory conditions. The analysis of the relationship between respondent's visual and acoustic preference as well as their respective contribution to landscape preference showed that (1) some common attributes are universally identified in assessing visual, aural and audio-visual preference, such as naturalness or degree of human disturbance; (2) with acoustic and visual preferences as variables, a multi-variate linear regression model can satisfactorily predict landscape preference (R(2 )= 0.740), while the coefficients of determination for a unitary linear regression model were 0.345 and 0.720 for visual and acoustic preference as predicting factors, respectively; (3) acoustic preference played a much more important role in landscape evaluation than visual preference in this study (the former is about 4.5 times of the latter), which strongly suggests a rethinking of the role of soundscape in environment perception research and landscape planning practice.

  20. Peripheral optogenetic stimulation induces whisker movement and sensory perception in head-fixed mice

    PubMed Central

    Park, Sunmee; Bandi, Akhil; Lee, Christian R; Margolis, David J

    2016-01-01

    We discovered that optical stimulation of the mystacial pad in Emx1-Cre;Ai27D transgenic mice induces whisker movements due to activation of ChR2 expressed in muscles controlling retraction and protraction. Using high-speed videography in anesthetized mice, we characterize the amplitude of whisker protractions evoked by varying the intensity, duration, and frequency of optogenetic stimulation. Recordings from primary somatosensory cortex (S1) in anesthetized mice indicated that optogenetic whisker pad stimulation evokes robust yet longer latency responses than mechanical whisker stimulation. In head-fixed mice trained to report optogenetic whisker pad stimulation, psychometric curves showed similar dependence on stimulus duration as evoked whisker movements and S1 activity. Furthermore, optogenetic stimulation of S1 in expert mice was sufficient to substitute for peripheral stimulation. We conclude that whisker protractions evoked by optogenetic activation of whisker pad muscles results in cortical activity and sensory perception, consistent with the coding of evoked whisker movements by reafferent sensory input. DOI: http://dx.doi.org/10.7554/eLife.14140.001 PMID:27269285

  1. Listening to music can influence hedonic and sensory perceptions of gelati.

    PubMed

    Kantono, Kevin; Hamid, Nazimah; Shepherd, Daniel; Yoo, Michelle J Y; Grazioli, Gianpaolo; Carr, B Thomas

    2016-05-01

    The dominant taste sensations of three different types of chocolate gelati (milk chocolate, dark chocolate, and bittersweet chocolate) were determined using forty five trained panellists exposed to a silent reference condition and three music samples differing in hedonic ratings. The temporal dominance of sensations (TDS) method was used to measure temporal taste perceptions. The emotional states of panellists were measured after each gelati-music pairing using a scale specifically developed for this study. The TDS difference curves showed significant differences between gelati samples and music conditions (p < 0.05). Sweetness was perceived more dominant when neutral and liked music were played, while bitterness was more dominant for disliked music. A joint Canonical Variate Analysis (CVA) further explained the variability in sensory and emotion data. The first and second dimensions explained 78% of the variance, with the first dimension separating liked and disliked music and the second dimension separating liked music and silence. Gelati samples consumed while listening to liked and neutral music had positive scores, and were separated from those consumed under the disliked music condition along the first dimension. Liked music and disliked music were further correlated with positive and negative emotions respectively. Findings indicate that listening to music influenced the hedonic and sensory impressions of the gelati.

  2. How do esters and dimethyl sulphide concentrations affect fruity aroma perception of red wine? Demonstration by dynamic sensory profile evaluation.

    PubMed

    Lytra, Georgia; Tempere, Sophie; Marchand, Stéphanie; de Revel, Gilles; Barbe, Jean-Christophe

    2016-03-01

    Our study focused on variations in wine aroma perception and molecular composition during tasting over a period of 30min. In parallel, dynamic analytical and sensory methods were applied to study changes in the wines' molecular and aromatic evolution. Dynamic sensory profile evaluations clearly confirmed the evolution of the wine's fruity notes during sensory analysis, highlighting significant differences for red-berry and fresh fruit as well as black berry and jammy fruit, after 5 and 15min, respectively. Dynamic analytical methods revealed a decrease in ester and dimethyl sulphide (DMS) concentrations in the first few minutes. Sensory profiles of aromatic reconstitutions demonstrated that the aromatic modulation of fruity notes observed during wine tasting was explained by changes in ester and DMS concentrations. These results revealed that variations in concentrations of DMS and esters during wine tasting had a qualitative impact, by modulating fruity aromas in red wine.

  3. Carbohydrate in the mouth enhances activation of brain circuitry involved in motor performance and sensory perception.

    PubMed

    Turner, Clare E; Byblow, Winston D; Stinear, Cathy M; Gant, Nicholas

    2014-09-01

    The presence of carbohydrate in the human mouth has been associated with the facilitation of motor output and improvements in physical performance. Oral receptors have been identified as a potential mode of afferent transduction for this novel form of nutrient signalling that is distinct from taste. In the current study oral exposure to carbohydrate was combined with a motor task in a neuroimaging environment to identify areas of the brain involved in this phenomenon. A mouth-rinsing protocol was conducted whilst carbohydrate (CHO) and taste-matched placebo (PLA) solutions were delivered and recovered from the mouths of 10 healthy volunteers within a double-blind, counterbalanced design. This protocol eliminates post-oral factors and controls for the perceptual qualities of solutions. Functional magnetic resonance imaging of the brain was used to identify cortical areas responsive to oral carbohydrate during rest and activity phases of a hand-grip motor task. Mean blood-oxygen-level dependent signal change experienced in the contralateral primary sensorimotor cortex was larger for CHO compared with PLA during the motor task when contrasted with a control condition. Areas of activation associated with CHO exclusively were observed over the primary taste cortex and regions involved in visual perception. Regions in the limbic system associated with reward were also significantly more active with CHO. This is the first demonstration that oral carbohydrate signalling can increase activation within the primary sensorimotor cortex during physical activity and enhance activation of neural networks involved in sensory perception.

  4. The Measurement of the Sensory Recovery Period in Zygoma and Blow-Out Fractures with Neurometer Current Perception Threshold

    PubMed Central

    Oh, Daemyung; Yun, Taebin; Choi, Jaehoon; Jeong, Woonhyeok; Chu, Hojun; Lee, Soyoung

    2016-01-01

    Background Facial hypoesthesia is one of the most troublesome complaints in the management of facial bone fractures. However, there is a lack of literature on facial sensory recovery after facial trauma. The purpose of this study was to evaluate the facial sensory recovery period for facial bone fractures using Neurometer. Methods Sixty-three patients who underwent open reduction of zygomatic and blowout fractures between December 2013 and July 2015 were included in the study. The facial sensory status of the patients was repeatedly examined preoperatively and postoperatively by Neurometer current perception threshold (CPT) until the results were normalized. Results Among the 63 subjects, 30 patients had normal Neurometer results preoperatively and postoperatively. According to fracture types, 17 patients with blowout fracture had a median recovery period of 0.25 months. Twelve patients with zygomatic fracture had a median recovery period of 1.00 month. Four patients with both fracture types had a median recovery period of 0.625 months. The median recovery period of all 33 patients was 0.25 months. There was no statistically significant difference in the sensory recovery period between types and subgroups of zygomatic and blowout fractures. In addition, there was no statistically significant difference in the sensory recovery period according to Neurometer results and the patients' own subjective reports. Conclusions Neurometer CPT is effective for evaluating and comparing preoperative and postoperative facial sensory status and evaluating the sensory recovery period in facial bone fracture patients. PMID:27689047

  5. Biomimetic MEMS to assist, enhance, and expand human sensory perceptions: a survey on state-of-the-art developments

    NASA Astrophysics Data System (ADS)

    Makarczuk, Teresa; Matin, Tina R.; Karman, Salmah B.; Diah, S. Zaleha M.; Davaji, Benyamin; Macqueen, Mark O.; Mueller, Jeanette; Schmid, Ulrich; Gebeshuber, Ille C.

    2011-06-01

    The human senses are of extraordinary value but we cannot change them even if this proves to be a disadvantage in modern times. However, we can assist, enhance and expand these senses via MEMS. Current MEMS cover the range of the human sensory system, and additionally provide data about signals that are too weak for the human sensory system (in terms of signal strength) and signal types that are not covered by the human sensory system. Biomimetics deals with knowledge transfer from biology to technology. In our interdisciplinary approach existing MEMS sensor designs shall be modified and adapted (to keep costs at bay), via biomimetic knowledge transfer of outstanding sensory perception in 'best practice' organisms (e.g. thermoreception, UV sensing, electromagnetic sense). The MEMS shall then be linked to the human body (mainly ex corpore to avoid ethics conflicts), to assist, enhance and expand human sensory perception. This paper gives an overview of senses in humans and animals, respective MEMS sensors that are already on the market and gives a list of possible applications of such devices including sensors that vibrate when a blind person approaches a kerb stone edge and devices that allow divers better orientation under water (echolocation, ultrasound).

  6. Caramel as a Model System for Evaluating the Roles of Mechanical Properties and Oral Processing on Sensory Perception of Texture.

    PubMed

    Wagoner, Ty B; Luck, Paige J; Foegeding, E Allen

    2016-03-01

    Food formulation can have a significant impact on texture perception during oral processing. We hypothesized that slight modifications to caramel formulations would significantly alter mechanical and masticatory parameters, which can be used to explain differences in texture perception. A multidisciplinary approach was applied by evaluating relationships among mechanical properties, sensory texture, and oral processing. Caramels were utilized as a highly adhesive and cohesive model system and the formulation was adjusted to generate distinct differences in sensory hardness and adhesiveness. Descriptive analysis was used to determine sensory texture, and mechanical properties were evaluated by oscillatory rheology, creep recovery, and pressure sensitive tack measurements. Oral processing was measured by determining activity of anterior temporalis and masseter muscles via electromyography and tracking jaw movement during chewing. The substitution of agar or gelatin for corn syrup at 0.6% w/w of the total formulation resulted in increased sensory hardness and decreased adhesiveness. Creep recovery and pressure sensitive tack testing were more effective at differentiating among treatments than oscillatory rheology. Hardness correlated inversely with creep compliance, and both stickiness and tooth adhesiveness correlated with pressure sensitive adhesive force. Harder samples, despite being less adhesive, were associated with increased muscle activity and jaw movement during mastication. Tooth packing, not linked with any mechanical property, correlated with altered jaw movement. The combination of material properties and oral processing parameters were able to explain all sensory texture differences in a highly adhesive food.

  7. Learning New Sensorimotor Contingencies: Effects of Long-Term Use of Sensory Augmentation on the Brain and Conscious Perception

    PubMed Central

    Schumann, Frank; Keyser, Johannes; Goeke, Caspar; Krause, Carina; Wache, Susan; Lytochkin, Aleksey; Ebert, Manuel; Brunsch, Vincent; Wahn, Basil; Kaspar, Kai; Nagel, Saskia K.; Meilinger, Tobias; Bülthoff, Heinrich; Wolbers, Thomas; Büchel, Christian; König, Peter

    2016-01-01

    Theories of embodied cognition propose that perception is shaped by sensory stimuli and by the actions of the organism. Following sensorimotor contingency theory, the mastery of lawful relations between own behavior and resulting changes in sensory signals, called sensorimotor contingencies, is constitutive of conscious perception. Sensorimotor contingency theory predicts that, after training, knowledge relating to new sensorimotor contingencies develops, leading to changes in the activation of sensorimotor systems, and concomitant changes in perception. In the present study, we spell out this hypothesis in detail and investigate whether it is possible to learn new sensorimotor contingencies by sensory augmentation. Specifically, we designed an fMRI compatible sensory augmentation device, the feelSpace belt, which gives orientation information about the direction of magnetic north via vibrotactile stimulation on the waist of participants. In a longitudinal study, participants trained with this belt for seven weeks in natural environment. Our EEG results indicate that training with the belt leads to changes in sleep architecture early in the training phase, compatible with the consolidation of procedural learning as well as increased sensorimotor processing and motor programming. The fMRI results suggest that training entails activity in sensory as well as higher motor centers and brain areas known to be involved in navigation. These neural changes are accompanied with changes in how space and the belt signal are perceived, as well as with increased trust in navigational ability. Thus, our data on physiological processes and subjective experiences are compatible with the hypothesis that new sensorimotor contingencies can be acquired using sensory augmentation. PMID:27959914

  8. Pain-related anxiety influences pain perception differently in men and women: a quantitative sensory test across thermal pain modalities.

    PubMed

    Thibodeau, Michel A; Welch, Patrick G; Katz, Joel; Asmundson, Gordon J G

    2013-03-01

    The sexes differ with respect to perception of experimental pain. Anxiety influences pain perception more in men than in women; however, there lacks research exploring which anxiety constructs influence pain perception differentially between men and women. Furthermore, research examining whether depression is associated with pain perception differently between the sexes remains scant. The present investigation was designed to examine how trait anxiety, pain-related anxiety constructs (ie, fear of pain, pain-related anxiety, anxiety sensitivity), and depression are associated with pain perception between the sexes. A total of 95 nonclinical participants (55% women) completed measures assessing the constructs of interest and participated in quantitative sensory testing using heat and cold stimuli administered by a Medoc Pathway Pain and Sensory Evaluation System. The findings suggest that pain-related anxiety constructs, but not trait anxiety, are associated with pain perception. Furthermore, these constructs are associated with pain intensity ratings in men and pain tolerance levels in women. This contrasts with previous research suggesting that anxiety influences pain perception mostly or uniquely in men. Depression was not systematically associated with pain perception in either sex. Systematic relationships were not identified that allow conclusions regarding how fear of pain, pain-related anxiety, and anxiety sensitivity may contribute to pain perception differentially in men and women; however, anxiety sensitivity was associated with increased pain tolerance, a novel finding needing further examination. The results provide directions for future research and clinical endeavors and support that fear and anxiety are important features associated with hyperalgesia in both men and women.

  9. A review of abnormalities in the perception of visual illusions in schizophrenia.

    PubMed

    King, Daniel J; Hodgekins, Joanne; Chouinard, Philippe A; Chouinard, Virginie-Anne; Sperandio, Irene

    2016-10-11

    Specific abnormalities of vision in schizophrenia have been observed to affect high-level and some low-level integration mechanisms, suggesting that people with schizophrenia may experience anomalies across different stages in the visual system affecting either early or late processing or both. Here, we review the research into visual illusion perception in schizophrenia and the issues which previous research has faced. One general finding that emerged from the literature is that those with schizophrenia are mostly immune to the effects of high-level illusory displays, but this effect is not consistent across all low-level illusions. The present review suggests that this resistance is due to the weakening of top-down perceptual mechanisms and may be relevant to the understanding of symptoms of visual distortion rather than hallucinations as previously thought.

  10. Vibrotactile perception threshold measurements for diagnosis of sensory neuropathy. Description of a reference population.

    PubMed

    Lundström, R; Strömberg, T; Lundborg, G

    1992-01-01

    Recognition of the fact that impairment of the tactile sense may occur independently of other disturbances in the vibration syndrome has rekindled an interest in developing a diagnostic method for early detection of vibration-induced neuropathy. There is also evidence suggesting that vibrotactile measurements represent a valuable diagnostic tool in compressive neuropathies, such as the carpal tunnel syndrome. The method may also become useful for diagnosing sensory neuropathies caused by other factors, such as solvents, pesticides, heavy metals, alcoholism, and diabetes. However, before vibrotactile measurement can be accepted and established as a tool for clinical diagnostic purposes, for screening, and in research, the level and the shape of the normal threshold curve have to be specified. With the purpose of assembling normative data, the vibrotactile perception thresholds (8-500 Hz) of the right index fingertip were measured in 171 healthy males (19-75 years) not exposed to vibration. A Békésy audiometer was modified to operate in combination with a vibration exciter, instead of headphones, at frequencies lower than usual (8-500 Hz). The results showed that the perception thresholds increased from about 100 dB to about 140 dB (rel. 10(-6) m/s2rms) as a function of frequency and age. The frequency-dependent changes were not linear, however, but displayed a peak in sensitivity at 125 Hz. Threshold changes due to aging were most pronounced at the highest frequencies. It is of the utmost importance that these natural changes are taken into account when making comparisons between groups or individuals.

  11. Intact perception but abnormal orientation towards face-like objects in young children with ASD

    PubMed Central

    Guillon, Quentin; Rogé, Bernadette; Afzali, Mohammad H.; Baduel, Sophie; Kruck, Jeanne; Hadjikhani, Nouchine

    2016-01-01

    There is ample behavioral evidence of diminished orientation towards faces as well as the presence of face perception impairments in autism spectrum disorder (ASD), but the underlying mechanisms of these deficits are still unclear. We used face-like object stimuli that have been shown to evoke pareidolia in typically developing (TD) individuals to test the effect of a global face-like configuration on orientation and perceptual processes in young children with ASD and age-matched TD controls. We show that TD children were more likely to look first towards upright face-like objects than children with ASD, showing that a global face-like configuration elicit a stronger orientation bias in TD children as compared to children with ASD. However, once they were looking at the stimuli, both groups spent more time exploring the upright face-like object, suggesting that they both perceived it as a face. Our results are in agreement with abnormal social orienting in ASD, possibly due to an abnormal tuning of the subcortical pathway, leading to poor orienting and attention towards faces. Our results also indicate that young children with ASD can perceive a generic face holistically, such as face-like objects, further demonstrating holistic processing of faces in ASD. PMID:26912096

  12. Developmental visual perception deficits with no indications of prosopagnosia in a child with abnormal eye movements.

    PubMed

    Gilaie-Dotan, Sharon; Doron, Ravid

    2017-04-08

    Visual categories are associated with eccentricity biases in high-order visual cortex: Faces and reading with foveally-biased regions, while common objects and space with mid- and peripherally-biased regions. As face perception and reading are among the most challenging human visual skills, and are often regarded as the peak achievements of a distributed neural network supporting common objects perception, it is unclear why objects, which also rely on foveal vision to be processed, are associated with mid-peripheral rather than with a foveal bias. Here, we studied BN, a 9 y.o. boy who has normal basic-level vision, abnormal (limited) oculomotor pursuit and saccades, and shows developmental object and contour integration deficits but with no indication of prosopagnosia. Although we cannot infer causation from the data presented here, we suggest that normal pursuit and saccades could be critical for the development of contour integration and object perception. While faces and perhaps reading, when fixated upon, take up a small portion of central visual field and require only small eye movements to be properly processed, common objects typically prevail in mid-peripheral visual field and rely on longer-distance voluntary eye movements as saccades to be brought to fixation. While retinal information feeds into early visual cortex in an eccentricity orderly manner, we hypothesize that propagation of non-foveal information to mid and high-order visual cortex critically relies on circuitry involving eye movements. Limited or atypical eye movements, as in the case of BN, may hinder normal information flow to mid-eccentricity biased high-order visual cortex, adversely affecting its development and consequently inducing visual perceptual deficits predominantly for categories associated with these regions.

  13. Strawberry Flavor: Diverse Chemical Compositions, a Seasonal Influence, and Effects on Sensory Perception

    PubMed Central

    Schwieterman, Michael L.; Colquhoun, Thomas A.; Jaworski, Elizabeth A.; Bartoshuk, Linda M.; Gilbert, Jessica L.; Tieman, Denise M.; Odabasi, Asli Z.; Moskowitz, Howard R.; Folta, Kevin M.; Klee, Harry J.; Sims, Charles A.; Whitaker, Vance M.; Clark, David G.

    2014-01-01

    Fresh strawberries (Fragaria x ananassa) are valued for their characteristic red color, juicy texture, distinct aroma, and sweet fruity flavor. In this study, genetic and environmentally induced variation is exploited to capture biochemically diverse strawberry fruit for metabolite profiling and consumer rating. Analyses identify fruit attributes influencing hedonics and sensory perception of strawberry fruit using a psychophysics approach. Sweetness intensity, flavor intensity, and texture liking are dependent on sugar concentrations, specific volatile compounds, and fruit firmness, respectively. Overall liking is most greatly influenced by sweetness and strawberry flavor intensity, which are undermined by environmental pressures that reduce sucrose and total volatile content. The volatile profiles among commercial strawberry varieties are complex and distinct, but a list of perceptually impactful compounds from the larger mixture is better defined. Particular esters, terpenes, and furans have the most significant fits to strawberry flavor intensity. In total, thirty-one volatile compounds are found to be significantly correlated to strawberry flavor intensity, only one of them negatively. Further analysis identifies individual volatile compounds that have an enhancing effect on perceived sweetness intensity of fruit independent of sugar content. These findings allow for consumer influence in the breeding of more desirable fruits and vegetables. Also, this approach garners insights into fruit metabolomics, flavor chemistry, and a paradigm for enhancing liking of natural or processed products. PMID:24523895

  14. The Facts of Sense: A Semiotics of Perception and Sensory Anthropology.

    ERIC Educational Resources Information Center

    Howes, David

    1999-01-01

    Presents four successive perspectives on the senses. The first is on objectivism, the second is a view from sensory psychology, the third on phenomenology, and the fourth is that of sensory anthropology. (Author/VWL)

  15. Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis

    NASA Astrophysics Data System (ADS)

    Black, Joel A.; Dib-Hajj, Sulayman; Baker, David; Newcombe, Jia; Cuzner, M. Louise; Waxman, Stephen G.

    2000-10-01

    Clinical abnormalities in multiple sclerosis (MS) have classically been considered to be caused by demyelination and/or axonal degeneration; the possibility of molecular changes in neurons, such as the deployment of abnormal repertoires of ion channels that would alter neuronal electrogenic properties, has not been considered. Sensory Neuron-Specific sodium channel SNS displays a depolarized voltage dependence, slower activation and inactivation kinetics, and more rapid recovery from inactivation than classical "fast" sodium channels. SNS is selectively expressed in spinal sensory and trigeminal ganglion neurons within the peripheral nervous system and is not expressed within the normal brain. Here we show that sodium channel SNS mRNA and protein, which are not present within the cerebellum of control mice, are expressed within cerebellar Purkinje cells in a mouse model of MS, chronic relapsing experimental allergic encephalomyelitis. We also demonstrate SNS mRNA and protein expression within Purkinje cells from tissue obtained postmortem from patients with MS, but not in control subjects with no neurological disease. These results demonstrate a change in sodium channel expression in neurons within the brain in an animal model of MS and in humans with MS and suggest that abnormal patterns of neuronal ion channel expression may contribute to clinical abnormalities such as ataxia in these disorders.

  16. Knockdown of sodium channel NaV1.6 blocks mechanical pain and abnormal bursting activity of afferent neurons in inflamed sensory ganglia.

    PubMed

    Xie, Wenrui; Strong, Judith A; Ye, Ling; Mao, Ju-Xian; Zhang, Jun-Ming

    2013-08-01

    Inflammatory processes in the sensory ganglia contribute to many forms of chronic pain. We previously showed that local inflammation of the lumbar sensory ganglia rapidly leads to prolonged mechanical pain behaviors and high levels of spontaneous bursting activity in myelinated cells. Abnormal spontaneous activity of sensory neurons occurs early in many preclinical pain models and initiates many other pathological changes, but its molecular basis is not well understood. The sodium channel isoform NaV1.6 can underlie repetitive firing and excitatory persistent and resurgent currents. We used in vivo knockdown of this channel via local injection of siRNA to examine its role in chronic pain after local inflammation of the rat lumbar sensory ganglia. In normal dorsal root ganglion (DRG), quantitative polymerase chain reaction showed that cells capable of firing repetitively had significantly higher relative expression of NaV1.6. In inflamed DRG, spontaneously active bursting cells expressed high levels of NaV1.6 immunoreactivity. In vivo knockdown of NaV1.6 locally in the lumbar DRG at the time of DRG inflammation completely blocked development of pain behaviors and abnormal spontaneous activity, while having only minor effects on unmyelinated C cells. Current research on isoform-specific sodium channel blockers for chronic pain is largely focused on NaV1.8 because it is present primarily in unmyelinated C fiber nociceptors, or on NaV1.7 because lack of this channel causes congenital indifference to pain. However, the results suggest that NaV1.6 may be a useful therapeutic target for chronic pain and that some pain conditions may be mediated primarily by myelinated A fiber sensory neurons.

  17. Genetic Variation of an Odorant Receptor OR7D4 and Sensory Perception of Cooked Meat Containing Androstenone

    PubMed Central

    Lunde, Kathrine; Egelandsdal, Bjørg; Skuterud, Ellen; Mainland, Joel D.; Lea, Tor; Hersleth, Margrethe; Matsunami, Hiroaki

    2012-01-01

    Although odour perception impacts food preferences, the effect of genotypic variation of odorant receptors (ORs) on the sensory perception of food is unclear. Human OR7D4 responds to androstenone, and genotypic variation in OR7D4 predicts variation in the perception of androstenone. Since androstenone is naturally present in meat derived from male pigs, we asked whether OR7D4 genotype correlates with either the ability to detect androstenone or the evaluation of cooked pork tainted with varying levels of androstenone within the naturally-occurring range. Consistent with previous findings, subjects with two copies of the functional OR7D4 RT variant were more sensitive to androstenone than subjects carrying a non-functional OR7D4 WM variant. When pork containing varying levels of androstenone was cooked and tested by sniffing and tasting, subjects with two copies of the RT variant tended to rate the androstenone-containing meat as less favourable than subjects carrying the WM variant. Our data is consistent with the idea that OR7D4 genotype predicts the sensory perception of meat containing androstenone and that genetic variation in an odorant receptor can alter food preferences. PMID:22567099

  18. Multimodal sensory integration during sequential eating--linking chewing activity, aroma release, and aroma perception over time.

    PubMed

    Leclercq, Ségolène; Blancher, Guillaume

    2012-10-01

    The respective effects of chewing activity, aroma release from a gelled candy, and aroma perception were investigated. Specifically, the study aimed at 1) comparing an imposed chewing and swallowing pattern (IP) and free protocol (FP) on panelists for in vivo measurements, 2) investigating carryover effects in sequential eating, and 3) studying the link between instrumental data and their perception counterpart. Chewing activity, in-nose aroma concentration, and aroma perception over time were measured by electromyography, proton transfer reaction-mass spectrometry, and time intensity, respectively. Model gel candies were flavored at 2 intensity levels (low-L and high-H). The panelists evaluated 3 sequences (H then H, H then L, and L then H) in duplicates with both IP and FP. They scored aroma intensity over time while their in-nose aroma concentrations and their chewing activity were measured. Overall, only limited advantages were found in imposing a chewing and swallowing pattern for instrumental and sensory data. In addition, the study highlighted the role of brain integration on perceived intensity and dynamics of perception, in the framework of sequential eating without rinsing. Because of the presence of adaptation phenomena, contrast effect, and potential taste and texture cross-modal interaction with aroma perception, it was concluded that dynamic in-nose concentration data provide only one part of the perception picture and therefore cannot be used alone in prediction models.

  19. Perception of Graphical Virtual Environments by Blind Users via Sensory Substitution

    PubMed Central

    Maidenbaum, Shachar; Buchs, Galit; Abboud, Sami; Lavi-Rotbain, Ori; Amedi, Amir

    2016-01-01

    Graphical virtual environments are currently far from accessible to blind users as their content is mostly visual. This is especially unfortunate as these environments hold great potential for this population for purposes such as safe orientation, education, and entertainment. Previous tools have increased accessibility but there is still a long way to go. Visual-to-audio Sensory-Substitution-Devices (SSDs) can increase accessibility generically by sonifying on-screen content regardless of the specific environment and offer increased accessibility without the use of expensive dedicated peripherals like electrode/vibrator arrays. Using SSDs virtually utilizes similar skills as when using them in the real world, enabling both training on the device and training on environments virtually before real-world visits. This could enable more complex, standardized and autonomous SSD training and new insights into multisensory interaction and the visually-deprived brain. However, whether congenitally blind users, who have never experienced virtual environments, will be able to use this information for successful perception and interaction within them is currently unclear.We tested this using the EyeMusic SSD, which conveys whole-scene visual information, to perform virtual tasks otherwise impossible without vision. Congenitally blind users had to navigate virtual environments and find doors, differentiate between them based on their features (Experiment1:task1) and surroundings (Experiment1:task2) and walk through them; these tasks were accomplished with a 95% and 97% success rate, respectively. We further explored the reactions of congenitally blind users during their first interaction with a more complex virtual environment than in the previous tasks–walking down a virtual street, recognizing different features of houses and trees, navigating to cross-walks, etc. Users reacted enthusiastically and reported feeling immersed within the environment. They highlighted the

  20. Sensory quality of functional beverages: bitterness perception and bitter masking of olive leaf extract fortified fruit smoothies.

    PubMed

    Kranz, Peter; Braun, Nina; Schulze, Nadine; Kunz, Benno

    2010-08-01

    Olive leaf extract (OLE) contains high amounts of oleuropein and hydroxytyrosol. The antioxidant capacity of these polyphenols makes OLE a promising ingredient for functional food. OLE causes very strong bitterness perception and can therefore only be formulated in low concentrations. In this research, bitter detection and recognition thresholds of OLE-fortified fruit smoothies were determined by a trained sensory panel (n = 11). Masking of the OLE's bitter taste was investigated with addition of sodium cyclamate, sodium chloride, and sucrose by means of a standardized ranking method and a scale test. Detection (5.78 mg/100 g) and recognition thresholds (8.05 mg/100 g) of OLE polyphenols confirmed the low formulation limits when bitterness was not masked by other substances. At higher polyphenol levels of 20 mg/100 g, sodium cyclamate and sucrose were able to reduce bitter taste perception by 39.9% and 24.9%, respectively, whereas sodium chloride could not effectively mask bitterness. Practical Application: Development of functional food poses new challenges for the food industry. A major problem in this field is the high bitterness of natural polyphenol-containing extracts with potential health benefits. This research was conducted to understand the sensory impact of olive leaf extract (OLE), a novel food ingredient with very bitter taste. In product development, the data of this research can be considered for formulation limits and the general sensory quality of OLE-fortified food and beverages.

  1. The menthol smoker: tobacco industry research on consumer sensory perception of menthol cigarettes and its role in smoking behavior.

    PubMed

    Kreslake, Jennifer M; Wayne, Geoffrey Ferris; Connolly, Gregory N

    2008-04-01

    The use of menthol in cigarettes is actively promoted by the tobacco industry for its perceived sensory benefits, and smokers of menthol cigarettes commonly differ from nonmenthol smokers in markers of smoking behavior and addiction. In this study, we analyzed internal tobacco industry documents to describe the relationships between sensory perception and the attitudes, preferences, and patterns of cigarette use among menthol smokers. Two unique types of menthol smoker emerged from this analysis: those who cannot tolerate the harshness and irritation associated with smoking nonmenthol cigarettes, and those who seek out the specific menthol flavor and associated physical sensation. Among the first segment of menthol smokers, menthol reduces negative sensory characteristics associated with smoking. This segment of smokers may include a large proportion of occasional smokers or young people, as well as smokers who have "traded down" to a less strong cigarette because of perceived harshness or negative health effects. Some established menthol smokers, on the other hand, appear to be tolerant of and even actively seek stronger sensory attributes, including higher menthol levels. Smokers of these "stronger" menthols have traditionally been disproportionately Black and male. Some beginning or occasional smokers may adopt menthols for their mild properties and to cover up the taste of tobacco, but then develop a stronger desire for the menthol taste over time. Future research measuring smoking behavior and evaluating cessation outcomes of menthol smokers should consider the duration of menthol use and differentiate smokers according to their reasons for using menthols.

  2. Mitochondrial abnormality in sensory, but not motor, axons in paclitaxel-evoked painful peripheral neuropathy in the rat.

    PubMed

    Xiao, W H; Zheng, H; Zheng, F Y; Nuydens, R; Meert, T F; Bennett, G J

    2011-12-29

    The dose-limiting side effect of the anti-neoplastic agent, paclitaxel, is a chronic distal symmetrical peripheral neuropathy that produces sensory dysfunction (hypoesthesia and neuropathic pain) but little or no distal motor dysfunction. Similar peripheral neuropathies are seen with chemotherapeutics in the vinca alkaloid, platinum-complex, and proteasome inhibitor classes. Studies in rats suggest that the cause is a mitotoxic effect on axonal mitochondria. If so, then the absence of motor dysfunction may be due to mitotoxicity that affects sensory axons but spares motor axons. To investigate this, paclitaxel exposure levels in the dorsal root, ventral root, dorsal root ganglion, peripheral nerve, and spinal cord were measured, and the ultrastructure and the respiratory function of mitochondria in dorsal roots and ventral roots were compared. Sensory and motor axons in the roots and nerve had comparably low exposure to paclitaxel and exposure in the spinal cord was negligible. However, sensory neurons in the dorsal root ganglion had a very high and remarkably persistent (up to 10 days or more after the last injection) exposure to paclitaxel. Paclitaxel evoked a significant increase in the incidence of swollen and vacuolated mitochondria in the myelinated and unmyelinated sensory axons of the dorsal root (as seen previously in the peripheral nerve) but not in the motor axons of the ventral root. Stimulated mitochondrial respiration in the dorsal root was significantly depressed in paclitaxel-treated animals examined 2-4 weeks after the last injection, whereas respiration in the ventral root was normal. We conclude that the absence of motor dysfunction in paclitaxel-evoked peripheral neuropathy may be due to the absence of a mitotoxic effect in motor neuron axons, whereas the sensory dysfunction may be due to a mitotoxic effect resulting from the primary afferent neuron's cell body being exposed to high and persistent levels of paclitaxel.

  3. Sensory development.

    PubMed

    Clark-Gambelunghe, Melinda B; Clark, David A

    2015-04-01

    Sensory development is complex, with both morphologic and neural components. Development of the senses begins in early fetal life, initially with structures and then in-utero stimulation initiates perception. After birth, environmental stimulants accelerate each sensory organ to nearly complete maturity several months after birth. Vision and hearing are the best studied senses and the most crucial for learning. This article focuses on the cranial senses of vision, hearing, smell, and taste. Sensory function, embryogenesis, external and genetic effects, and common malformations that may affect development are discussed, and the corresponding sensory organs are examined and evaluated.

  4. Migraine is associated with altered processing of sensory stimuli.

    PubMed

    Harriott, Andrea M; Schwedt, Todd J

    2014-11-01

    Migraine is associated with derangements in perception of multiple sensory modalities including vision, hearing, smell, and somatosensation. Compared to people without migraine, migraineurs have lower discomfort thresholds in response to special sensory stimuli as well as to mechanical and thermal noxious stimuli. Likewise, the environmental triggers of migraine attacks, such as odors and flashing lights, highlight basal abnormalities in sensory processing and integration. These alterations in sensory processing and perception in migraineurs have been investigated via physiological studies and functional brain imaging studies. Investigations have demonstrated that migraineurs during and between migraine attacks have atypical stimulus-induced activations of brainstem, subcortical, and cortical regions that participate in sensory processing. A lack of normal habituation to repetitive stimuli during the interictal state and a tendency towards development of sensitization likely contribute to migraine-related alterations in sensory processing.

  5. The role of starch and saliva in tribology studies and the sensory perception of protein-added yogurts.

    PubMed

    Morell, Pere; Chen, Jianshe; Fiszman, Susana

    2017-02-22

    Increasing the protein content of yogurts would be a good strategy for enhancing their satiating ability. However, the addition of protein can affect product palatability, contributing astringency or an inhomogeneous texture. Increasingly, studies mimicking oral tribology and oral lubrication have been attracting interest among food researchers because of their link with oral texture sensations. In the present study, four double-protein stirred yogurts were prepared by adding extra skimmed milk powder (MP) or whey protein concentrate (WPC) and by adding a physically modified starch to each (samples MPS and WPCS, respectively) to increase the consistency of the yogurts. The lubricating properties of the four yogurts were examined by tribological methods with the aim of relating these properties to the sensory perception described by flash profiling. Samples were also analysed after mixing with saliva. The tribology results clearly showed that addition of starch reduced the friction coefficient values regardless of the type of protein. Saliva addition produced a further decrease in the friction coefficient values in all the samples. Consequently, adding saliva is recommended when performing tribology measurements of foods in order to give a more realistic picture. The sensory results confirmed that the addition of starch reduced the astringent sensation, especially in sample WPC, while the MP and MPS samples were creamier and smoother. On the other hand, the astringency of sample WPC was not explained by the tribology results. Since this sample was described as "grainy", "gritty", "rough", "acid" and "sour", further studies are necessary to investigate the role of the number, size, shape and distribution of particles in yogurt samples, their role in astringency perception and their interaction with the perception of the tastes mentioned. Oral tribology has shown itself to be an in vitro technique that may aid a better understanding of the dynamics of in

  6. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits.

    PubMed

    Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M

    2016-01-21

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for "closing the loop" is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm.

  7. Synthetic tactile perception induced by transcranial alternating-current stimulation can substitute for natural sensory stimulus in behaving rabbits

    PubMed Central

    Márquez-Ruiz, Javier; Ammann, Claudia; Leal-Campanario, Rocío; Ruffini, Giulio; Gruart, Agnès; Delgado-García, José M.

    2016-01-01

    The use of brain-derived signals for controlling external devices has long attracted the attention from neuroscientists and engineers during last decades. Although much effort has been dedicated to establishing effective brain-to-computer communication, computer-to-brain communication feedback for “closing the loop” is now becoming a major research theme. While intracortical microstimulation of the sensory cortex has already been successfully used for this purpose, its future application in humans partly relies on the use of non-invasive brain stimulation technologies. In the present study, we explore the potential use of transcranial alternating-current stimulation (tACS) for synthetic tactile perception in alert behaving animals. More specifically, we determined the effects of tACS on sensory local field potentials (LFPs) and motor output and tested its capability for inducing tactile perception using classical eyeblink conditioning in the behaving animal. We demonstrated that tACS of the primary somatosensory cortex vibrissa area could indeed substitute natural stimuli during training in the associative learning paradigm. PMID:26790614

  8. Characterization and classification of Japanese consumer perceptions for beef tenderness using descriptive texture characteristics assessed by a trained sensory panel.

    PubMed

    Sasaki, Keisuke; Motoyama, Michiyo; Narita, Takumi; Hagi, Tatsuro; Ojima, Koichi; Oe, Mika; Nakajima, Ikuyo; Kitsunai, Katsuhiro; Saito, Yosuke; Hatori, Hikari; Muroya, Susumu; Nomura, Masaru; Miyaguchi, Yuji; Chikuni, Koichi

    2014-02-01

    Meat tenderness is an important characteristic in terms of consumer preference and satisfaction. However, each consumer may have his/her own criteria to judge meat tenderness, because consumers are neither selected nor trained like an expert sensory panel. This study aimed to characterize consumer tenderness using descriptive texture profiles such as chewiness and hardness assessed by a trained panel. Longissimus muscles cooked at four different end-point temperatures were subjected to a trained sensory panel (n=18) and consumer (n=107) tenderness tests. Multiple regression analysis showed that consumer tenderness was characterized as 'low-chewiness and low hardness texture.' Subsequently, consumers were divided into two groups by cluster analysis according to tenderness perceptions in each participant, and the two groups were characterized as 'tenderness is mainly low-chewiness' and 'tenderness is mainly low-hardness' for tenderness perception, respectively. These results demonstrate objective characteristics and variability of consumer meat tenderness, and provide new information regarding the evaluation and management of meat tenderness for meat manufacturers.

  9. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats

    PubMed Central

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2016-01-01

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat’s sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups. PMID:27784858

  10. Reproductive experience modified dendritic spines on cortical pyramidal neurons to enhance sensory perception and spatial learning in rats.

    PubMed

    Chen, Jeng-Rung; Lim, Seh Hong; Chung, Sin-Cun; Lee, Yee-Fun; Wang, Yueh-Jan; Tseng, Guo-Fang; Wang, Tsyr-Jiuan

    2017-01-27

    Behavioral adaptations during motherhood are aimed at increasing reproductive success. Alterations of hormones during motherhood could trigger brain morphological changes to underlie behavioral alterations. Here we investigated whether motherhood changes a rat's sensory perception and spatial memory in conjunction with cortical neuronal structural changes. Female rats of different statuses, including virgin, pregnant, lactating, and primiparous rats were studied. Behavioral test showed that the lactating rats were most sensitive to heat, while rats with motherhood and reproduction experience outperformed virgin rats in a water maze task. By intracellular dye injection and computer-assisted 3-dimensional reconstruction, the dendritic arbors and spines of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons were revealed for closer analysis. The results showed that motherhood and reproductive experience increased dendritic spines but not arbors or the lengths of the layer III and V pyramidal neurons of the somatosensory cortex and CA1 hippocampal pyramidal neurons. In addition, lactating rats had a higher incidence of spines than pregnant or primiparous rats. The increase of dendritic spines was coupled with increased expression of the glutamatergic postsynaptic marker protein (PSD-95), especially in lactating rats. On the basis of the present results, it is concluded that motherhood enhanced rat sensory perception and spatial memory and was accompanied by increases in dendritic spines on output neurons of the somatosensory cortex and CA1 hippocampus. The effect was sustained for at least 6 weeks after the weaning of the pups.

  11. The Machine behind the Stage: A Neurobiological Approach toward Theoretical Issues of Sensory Perception

    PubMed Central

    Moutoussis, Konstantinos

    2016-01-01

    The purpose of the present article is to try and give a brief, scientific perspective on several issues raised in the Philosophy of Perception literature. This perspective gives a central role to the brain mechanisms that underlie perception: a percept is something that emerges when the brain is activated in a certain way and thus all perceptual experiences (whether veridical, illusory, or hallucinatory) have a common cause behind them, namely a given brain-activation pattern. What distinguishes between different cases of perception is what has caused this activation pattern, i.e., something very separate and very different from the perceptual experience itself. It is argued that separating the perceptual event from its hypothetical content, a direct consequence of the way everyday language is structured, creates unnecessary ontological complications regarding the nature of the hypothetical ‘object’ of perception. A clear distinction between the physical properties of the real world on the one hand (e.g., wavelength reflectance), and the psychological properties of perceptual experiences on the other (e.g., color) is clearly made. Finally, although perception is a way of acquiring knowledge/information about the world, this acquisition should be considered as a cognitive process which is separate to and follows perception. Therefore, the latter should remain neutral with respect to the ‘correctness’ or ‘truth’ of the knowledge acquired. PMID:27679587

  12. Auditory distance perception in humans: a review of cues, development, neuronal bases, and effects of sensory loss.

    PubMed

    Kolarik, Andrew J; Moore, Brian C J; Zahorik, Pavel; Cirstea, Silvia; Pardhan, Shahina

    2016-02-01

    Auditory distance perception plays a major role in spatial awareness, enabling location of objects and avoidance of obstacles in the environment. However, it remains under-researched relative to studies of the directional aspect of sound localization. This review focuses on the following four aspects of auditory distance perception: cue processing, development, consequences of visual and auditory loss, and neurological bases. The several auditory distance cues vary in their effective ranges in peripersonal and extrapersonal space. The primary cues are sound level, reverberation, and frequency. Nonperceptual factors, including the importance of the auditory event to the listener, also can affect perceived distance. Basic internal representations of auditory distance emerge at approximately 6 months of age in humans. Although visual information plays an important role in calibrating auditory space, sensorimotor contingencies can be used for calibration when vision is unavailable. Blind individuals often manifest supranormal abilities to judge relative distance but show a deficit in absolute distance judgments. Following hearing loss, the use of auditory level as a distance cue remains robust, while the reverberation cue becomes less effective. Previous studies have not found evidence that hearing-aid processing affects perceived auditory distance. Studies investigating the brain areas involved in processing different acoustic distance cues are described. Finally, suggestions are given for further research on auditory distance perception, including broader investigation of how background noise and multiple sound sources affect perceived auditory distance for those with sensory loss.

  13. From Sensory Perception to Lexical-Semantic Processing: An ERP Study in Non-Verbal Children with Autism

    PubMed Central

    Cantiani, Chiara; Choudhury, Naseem A.; Yu, Yan H.; Shafer, Valerie L.; Schwartz, Richard G.; Benasich, April A.

    2016-01-01

    This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV) or minimally-verbal (MV) children with Autism Spectrum Disorder (ASD). Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs) of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD. PMID:27560378

  14. From Sensory Perception to Lexical-Semantic Processing: An ERP Study in Non-Verbal Children with Autism.

    PubMed

    Cantiani, Chiara; Choudhury, Naseem A; Yu, Yan H; Shafer, Valerie L; Schwartz, Richard G; Benasich, April A

    2016-01-01

    This study examines electrocortical activity associated with visual and auditory sensory perception and lexical-semantic processing in nonverbal (NV) or minimally-verbal (MV) children with Autism Spectrum Disorder (ASD). Currently, there is no agreement on whether these children comprehend incoming linguistic information and whether their perception is comparable to that of typically developing children. Event-related potentials (ERPs) of 10 NV/MV children with ASD and 10 neurotypical children were recorded during a picture-word matching paradigm. Atypical ERP responses were evident at all levels of processing in children with ASD. Basic perceptual processing was delayed in both visual and auditory domains but overall was similar in amplitude to typically-developing children. However, significant differences between groups were found at the lexical-semantic level, suggesting more atypical higher-order processes. The results suggest that although basic perception is relatively preserved in NV/MV children with ASD, higher levels of processing, including lexical- semantic functions, are impaired. The use of passive ERP paradigms that do not require active participant response shows significant potential for assessment of non-compliant populations such as NV/MV children with ASD.

  15. Primary or secondary tasks? Dual-task interference between cyclist hazard perception and cadence control using cross-modal sensory aids with rider assistance bike computers.

    PubMed

    Yang, Chao-Yang; Wu, Cheng-Tse

    2017-03-01

    This research investigated the risks involved in bicycle riding while using various sensory modalities to deliver training information. To understand the risks associated with using bike computers, this study evaluated hazard perception performance through lab-based simulations of authentic riding conditions. Analysing hazard sensitivity (d') of signal detection theory, the rider's response time, and eye glances provided insights into the risks of using bike computers. In this study, 30 participants were tested with eight hazard perception tasks while they maintained a cadence of 60 ± 5 RPM and used bike computers with different sensory displays, namely visual, auditory, and tactile feedback signals. The results indicated that synchronously using different sense organs to receive cadence feedback significantly affects hazard perception performance; direct visual information leads to the worst rider distraction, with a mean sensitivity to hazards (d') of -1.03. For systems with multiple interacting sensory aids, auditory aids were found to result in the greatest reduction in sensitivity to hazards (d' mean = -0.57), whereas tactile sensory aids reduced the degree of rider distraction (d' mean = -0.23). Our work complements existing work in this domain by advancing the understanding of how to design devices that deliver information subtly, thereby preventing disruption of a rider's perception of road hazards.

  16. Patterns of visual sensory and sensorimotor abnormalities in autism vary in relation to history of early language delay.

    PubMed

    Takarae, Yukari; Luna, Beatriz; Minshew, Nancy J; Sweeney, John A

    2008-11-01

    Visual motion perception and pursuit eye movement deficits have been reported in autism. However, it is unclear whether these impairments are related to each other or to clinical symptoms of the disorder. High-functioning individuals with autism (41 with and 36 without delayed language acquisition) and 46 control subjects participated in the present study. All three subject groups were matched on chronological age and Full-Scale IQ. The autism group with delayed language acquisition had bilateral impairments on visual motion discrimination tasks, whereas the autism group without delay showed marginal impairments only in the left hemifield. Both autism groups showed difficulty tracking visual targets, but only the autism group without delayed language acquisition showed increased pursuit latencies and a failure to show the typical rightward directional advantage in pursuit. We observed correlations between performance on the visual perception and pursuit tasks in both autism groups. However, pursuit performance was correlated with manual motor skills only in the autism group with delayed language, suggesting that general sensorimotor or motor disturbances are a significant additional factor related to pursuit deficits in this subgroup. These findings suggest that there may be distinct neurocognitive phenotypes in autism associated with patterns of early language development.

  17. A comparison of Japanese and Australian consumers' sensory perceptions of beef.

    PubMed

    Polkinghorne, Rod J; Nishimura, Takanori; Neath, Kate E; Watson, Ray

    2014-01-01

    This paper presents a comparison of Japanese and Australian consumer sensory responses to beef, based on Meat Standards Australia methodology. Japanese and Australian consumers evaluated paired beef samples according to four sensory traits, and the weighted results were combined to produce a Meat Quality score (MQ4). The consumers also categorized the beef samples to one of four grades (unsatisfactory, good everyday, better than everyday and premium). The proportion of samples assigned to each grade was similar for Japanese and Australian consumers for yakiniku and shabu shabu cooking methods; however, Japanese consumers assigned lower scores to the grill samples. In terms of the MQ4 boundary scores between grades, these were very similar for both Japanese and Australian consumers across all cooking methods. In terms of the weightings for the four sensory traits, juiciness was more important for Japanese consumers than Australian for grill and shabu shabu cooking methods. Flavor had the highest weighting for both consumer groups. This study showed that a beef description system based on the MQ4 score, with some adjustments to the weightings and cut-off values, could be useful in describing the eating quality of beef for the Japanese consumer.

  18. Accumulation of Inertial Sensory Information in the Perception of Whole Body Yaw Rotation

    PubMed Central

    de Winkel, Ksander; Bülthoff, Heinrich H.

    2017-01-01

    While moving through the environment, our central nervous system accumulates sensory information over time to provide an estimate of our self-motion, allowing for completing crucial tasks such as maintaining balance. However, little is known on how the duration of the motion stimuli influences our performances in a self-motion discrimination task. Here we study the human ability to discriminate intensities of sinusoidal (0.5 Hz) self-rotations around the vertical axis (yaw) for four different stimulus durations (1, 2, 3 and 5 s) in darkness. In a typical trial, participants experienced two consecutive rotations of equal duration and different peak amplitude, and reported the one perceived as stronger. For each stimulus duration, we determined the smallest detectable change in stimulus intensity (differential threshold) for a reference velocity of 15 deg/s. Results indicate that differential thresholds decrease with stimulus duration and asymptotically converge to a constant, positive value. This suggests that the central nervous system accumulates sensory information on self-motion over time, resulting in improved discrimination performances. Observed trends in differential thresholds are consistent with predictions based on a drift diffusion model with leaky integration of sensory evidence. PMID:28125681

  19. A Bayesian perspective on sensory and cognitive integration in pain perception and placebo analgesia.

    PubMed

    Anchisi, Davide; Zanon, Marco

    2015-01-01

    The placebo effect is a component of any response to a treatment (effective or inert), but we still ignore why it exists. We propose that placebo analgesia is a facet of pain perception, others being the modulating effects of emotions, cognition and past experience, and we suggest that a computational understanding of pain may provide a unifying explanation of these phenomena. Here we show how Bayesian decision theory can account for such features and we describe a model of pain that we tested against experimental data. Our model not only agrees with placebo analgesia, but also predicts that learning can affect pain perception in other unexpected ways, which experimental evidence supports. Finally, the model can also reflect the strategies used by pain perception, showing that modulation by disparate factors is intrinsic to the pain process.

  20. Time perception impairs sensory-motor integration in Parkinson’s disease

    PubMed Central

    2013-01-01

    It is well known that perception and estimation of time are fundamental for the relationship between humans and their environment. However, this temporal information processing is inefficient in patients with Parkinson’ disease (PD), resulting in temporal judgment deficits. In general, the pathophysiology of PD has been described as a dysfunction in the basal ganglia, which is a multisensory integration station. Thus, a deficit in the sensorimotor integration process could explain many of the Parkinson symptoms, such as changes in time perception. This physiological distortion may be better understood if we analyze the neurobiological model of interval timing, expressed within the conceptual framework of a traditional information-processing model called “Scalar Expectancy Theory”. Therefore, in this review we discuss the pathophysiology and sensorimotor integration process in PD, the theories and neural basic mechanisms involved in temporal processing, and the main clinical findings about the impact of time perception in PD. PMID:24131660

  1. A Bayesian Perspective on Sensory and Cognitive Integration in Pain Perception and Placebo Analgesia

    PubMed Central

    Anchisi, Davide; Zanon, Marco

    2015-01-01

    The placebo effect is a component of any response to a treatment (effective or inert), but we still ignore why it exists. We propose that placebo analgesia is a facet of pain perception, others being the modulating effects of emotions, cognition and past experience, and we suggest that a computational understanding of pain may provide a unifying explanation of these phenomena. Here we show how Bayesian decision theory can account for such features and we describe a model of pain that we tested against experimental data. Our model not only agrees with placebo analgesia, but also predicts that learning can affect pain perception in other unexpected ways, which experimental evidence supports. Finally, the model can also reflect the strategies used by pain perception, showing that modulation by disparate factors is intrinsic to the pain process. PMID:25664586

  2. Abnormal development of sensory-motor, visual temporal and parahippocampal cortex in children with learning disabilities and borderline intellectual functioning.

    PubMed

    Baglio, Francesca; Cabinio, Monia; Ricci, Cristian; Baglio, Gisella; Lipari, Susanna; Griffanti, Ludovica; Preti, Maria G; Nemni, Raffaello; Clerici, Mario; Zanette, Michela; Blasi, Valeria

    2014-01-01

    Borderline intellectual functioning (BIF) is a condition characterized by an intelligence quotient (IQ) between 70 and 85. BIF children present with cognitive, motor, social, and adaptive limitations that result in learning disabilities and are more likely to develop psychiatric disorders later in life. The aim of this study was to investigate brain morphometry and its relation to IQ level in BIF children. Thirteen children with BIF and 14 age- and sex-matched typically developing (TD) children were enrolled. All children underwent a full IQ assessment (WISC-III scale) and a magnetic resonance (MR) examination including conventional sequences to assess brain structural abnormalities and high resolution 3D images for voxel-based morphometry analysis. To investigate to what extent the group influenced gray matter (GM) volumes, both univariate and multivariate generalized linear model analysis of variance were used, and the varimax factor analysis was used to explore variable correlations and clusters among subjects. Results showed that BIF children, compared to controls have increased regional GM volume in bilateral sensorimotor and right posterior temporal cortices and decreased GM volume in the right parahippocampal gyrus. GM volumes were highly correlated with IQ indices. The present work is a case study of a group of BIF children showing that BIF is associated with abnormal cortical development in brain areas that have a pivotal role in motor, learning, and behavioral processes. Our findings, although allowing for little generalization to the general population, contribute to the very limited knowledge in this field. Future longitudinal MR studies will be useful in verifying whether cortical features can be modified over time even in association with rehabilitative intervention.

  3. Modelling Relations between Sensory Processing, Speech Perception, Orthographic and Phonological Ability, and Literacy Achievement

    ERIC Educational Resources Information Center

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; De Smedt, Bert; Ghesquiere, Pol

    2008-01-01

    The general magnocellular theory postulates that dyslexia is the consequence of a multimodal deficit in the processing of transient and dynamic stimuli. In the auditory modality, this deficit has been hypothesized to interfere with accurate speech perception, and subsequently disrupt the development of phonological and later reading and spelling…

  4. Effects of Agar Gel Strength and Fat on Oral Breakdown, Volatile Release, and Sensory Perception Using in Vivo and in Vitro Systems.

    PubMed

    Frank, Damian; Eyres, Graham T; Piyasiri, Udayasika; Cochet-Broch, Maeva; Delahunty, Conor M; Lundin, Leif; Appelqvist, Ingrid M

    2015-10-21

    The density and composition of a food matrix affect the rates of oral breakdown and in-mouth flavor release as well as the overall sensory experience. Agar gels of increasing concentration (1.0, 1.7, 2.9, and 5% agarose) with and without added fat (0, 2, 5, and 10%) were spiked with seven aroma volatiles. Differences in oral processing and sensory perception were systematically measured by a trained panel using a discrete interval time intensity method. Volatile release was measured in vivo and in vitro by proton transfer reaction mass spectrometry. Greater oral processing was required as agar gel strength increased, and the intensity of flavor-related sensory attributes decreased. Volatile release was inversely related to gel strength, showing that physicochemical phenomena were the main mechanisms underlying the perceived sensory changes. Fat addition reduced the amount of oral processing and had differential effects on release, depending on the fat solubility or lipophilicity of the volatiles.

  5. Influence of extended aging on beef quality characteristics and sensory perception of steaks from the biceps femoris and semimembranosus.

    PubMed

    Colle, M J; Richard, R P; Killinger, K M; Bohlscheid, J C; Gray, A R; Loucks, W I; Day, R N; Cochran, A S; Nasados, J A; Doumit, M E

    2016-09-01

    The objective was to determine the influence of post-fabrication aging (2, 14, 21, 42, and 63days) on beef quality characteristics and consumer sensory perception of biceps femoris (BF) and semimembranosus (SM) steaks. Lipid oxidation and aerobic plate counts increased (P<0.05) with longer aging periods and retail display times. An aging period by day of retail display interaction (P<0.05) was observed for a* and b* values of the BF and SM. Warner-Bratzler shear force values decreased (P<0.05) with longer aging for the SM, while no difference was observed for the BF. Consumer panel results revealed that longer aging periods increased (P<0.05) acceptability of the SM, tenderness of both muscles, and tended to increase (P=0.07) juiciness of the SM. Our results show that extended aging reduces retail color stability yet has positive effects on consumer perception of tenderness of both muscles and overall acceptability of the SM.

  6. A neuropeptide modulates sensory perception in the entomopathogenic nematode Steinernema carpocapsae

    PubMed Central

    Morris, Robert; Wilson, Leonie; Warnock, Neil D.; Maule, Aaron G.

    2017-01-01

    Entomopathogenic nematodes (EPNs) employ a sophisticated chemosensory apparatus to detect potential hosts. Understanding the molecular basis of relevant host-finding behaviours could facilitate improved EPN biocontrol approaches, and could lend insight to similar behaviours in economically important mammalian parasites. FMRFamide-like peptides are enriched and conserved across the Phylum Nematoda, and have been linked with motor and sensory function, including dispersal and aggregating behaviours in the free living nematode Caenorhabditis elegans. The RNA interference (RNAi) pathway of Steinernema carpocapsae was characterised in silico, and employed to knockdown the expression of the FMRFamide-like peptide 21 (GLGPRPLRFamide) gene (flp-21) in S. carpocapsae infective juveniles; a first instance of RNAi in this genus, and a first in an infective juvenile of any EPN species. Our data show that 5 mg/ml dsRNA and 50 mM serotonin triggers statistically significant flp-21 knockdown (-84%***) over a 48 h timecourse, which inhibits host-finding (chemosensory), dispersal, hyperactive nictation and jumping behaviours. However, whilst 1 mg/ml dsRNA and 50 mM serotonin also triggers statistically significant flp-21 knockdown (-51%**) over a 48 h timecourse, it does not trigger the null sensory phenotypes; statistically significant target knockdown can still lead to false negative results, necessitating appropriate experimental design. SPME GC-MS volatile profiles of two EPN hosts, Galleria mellonella and Tenebrio molitor reveal an array of shared and unique compounds; these differences had no impact on null flp-21 RNAi phenotypes for the behaviours assayed. Localisation of flp-21 / FLP-21 to paired anterior neurons by whole mount in situ hybridisation and immunocytochemistry corroborates the RNAi data, further suggesting a role in sensory modulation. These data can underpin efforts to study these behaviours in other economically important parasites, and could facilitate

  7. Sensory and motor deficits in children with cerebral palsy born preterm correlate with diffusion tensor imaging abnormalities in thalamocortical pathways

    PubMed Central

    HOON, ALEXANDER H; STASHINKO, ELAINE E; NAGAE, LIDIA M; LIN, DORIS DM; KELLER, JENNIFER; BASTIAN, AMY; CAMPBELL, MICHELLE L; LEVEY, ERIC; MORI, SUSUMU; JOHNSTON, MICHAEL V

    2010-01-01

    AIM Cerebral palsy (CP) is frequently linked to white matter injury in children born preterm. Diffusion tensor imaging (DTI) is a powerful technique providing precise identification of white matter microstructure. We investigated the relationship between DTI-observed thalamocortical (posterior thalamic radiation) injury, motor (corticospinal tract) injury, and sensorimotor function. METHOD Twenty-eight children born preterm(16 males, 12 females; mean age 5y 10mo, SD 2y 6mo, range 16mo–13y; mean gestational age at birth 28wks, SD 2.7wks, range 23–34wks) were included in this case–control study. Twenty-one children had spastic diplegia, four had spastic quadriplegia, two had hemiplegia, and one had ataxic hypotonic CP; 15 of the participants walked independently. Normative comparison data were obtained from 35 healthy age-matched children born at term(19 males, 16 females; mean age 5y 9mo, SD 4y 4mo, range 15mo–15y). Two-dimensional DTI color maps were created to evaluate 26 central white matter tracts, which were graded by a neuroradiologist masked to clinical status. Quantitative measures of touch, proprioception, strength (dynamometer), and spasticity (modified Ashworth scale) were obtained from a subset of participants. RESULTS All 28 participants with CP had periventricular white-matter injury on magnetic resonance imaging. Using DTI color maps, there was more severe injury in the posterior thalamic radiation pathways than in the descending corticospinal tracts. Posterior thalamic radiation injury correlated with reduced contralateral touch threshold, proprioception, and motor severity, whereas corticospinal tract injury did not correlate with motor or sensory outcome measures. INTERPRETATION These findings extend previous research demonstrating that CP in preterm children reflects disruption of thalamocortical connections as well as descending corticospinal pathways. PMID:19416315

  8. Modelling relations between sensory processing, speech perception, orthographic and phonological ability, and literacy achievement.

    PubMed

    Boets, Bart; Wouters, Jan; van Wieringen, Astrid; De Smedt, Bert; Ghesquière, Pol

    2008-07-01

    The general magnocellular theory postulates that dyslexia is the consequence of a multimodal deficit in the processing of transient and dynamic stimuli. In the auditory modality, this deficit has been hypothesized to interfere with accurate speech perception, and subsequently disrupt the development of phonological and later reading and spelling skills. In the visual modality, an analogous problem might interfere with literacy development by affecting orthographic skills. In this prospective longitudinal study, we tested dynamic auditory and visual processing, speech-in-noise perception, phonological ability and orthographic ability in 62 five-year-old preschool children. Predictive relations towards first grade reading and spelling measures were explored and the validity of the global magnocellular model was evaluated using causal path analysis. In particular, we demonstrated that dynamic auditory processing was related to speech perception, which itself was related to phonological awareness. Similarly, dynamic visual processing was related to orthographic ability. Subsequently, phonological awareness, orthographic ability and verbal short-term memory were unique predictors of reading and spelling development.

  9. Sensory Feedback Training for Improvement of Finger Perception in Cerebral Palsy

    PubMed Central

    Alves-Pinto, Ana; Aschmann, Simon; Lützow, Ines; Lampe, Renée

    2015-01-01

    Purpose. To develop and to test a feedback training system for improvement of tactile perception and coordination of fingers in children and youth with cerebral palsy. Methods. The fingers of 7 probands with cerebral palsy of different types and severity were stimulated using small vibration motors integrated in the fingers of a hand glove. The vibration motors were connected through a microcontroller to a computer and to a response 5-button keyboard. By pressing an appropriate keyboard button, the proband must indicate in which finger the vibration was felt. The number of incorrect responses and the reaction time were measured for every finger. The perception and coordination of fingers were estimated before and after two-week training using both clinical tests and the measurements. Results. Proper functioning of the developed system in persons with cerebral palsy was confirmed. The tactile sensation of fingers was improved in five of seven subjects after two weeks of training. There was no clear tendency towards improvement of selective use of fingers. Conclusion. The designed feedback system could be used to train tactile perception of fingers in children and youth with cerebral palsy. An extensive study is required to confirm these findings. PMID:26124965

  10. Study of the tactile perception of bathroom tissues: Comparison between the sensory evaluation by a handfeel panel and a tribo-acoustic artificial finger.

    PubMed

    Thieulin, C; Pailler-Mattei, C; Vargiolu, R; Lancelot, S; Zahouani, H

    2017-02-01

    Tactile perception is one of the sensorial modes most stimulated by our daily environment. In particular, perceived softness is an important parameter for judging the sensory quality of surfaces and fabrics. Unfortunately, its assessment greatly depends on the tactile sense of each person, which in turn depends on many factors. Currently, the predominant method for evaluating the tactile perception of fabrics is the human handfeel panel. This qualitative approach does not permit the quantitative measure of touch feel perception. In this study, we present a new artificial finger device to investigate the tactile sensing of ten bathroom tissues. It enables simultaneously measuring the friction and vibrations caused when sliding an artificial finger on the surface of the tissue. The comparison between the results obtained with the artificial finger and the tactile perception evaluated using a handfeel panel showed that the artificial finger is able to separate the two parts of the tactile perception of bathroom tissues: softness and surface texture (velvetiness). The statistical analysis suggests that there is a good correlation between the vibrations measured with the artificial finger and the softness evaluated by the panel. It then shows that the friction measured by the artificial finger is related to the surface texture of a bathroom tissue. The ability of the artificial finger to mimic human touch is demonstrated. Finally, a Principal Component Analysis orders the signatures of the tactile perception of the bathroom tissues in four different groups.

  11. Relating rheology and tribology of commercial dairy colloids to sensory perception.

    PubMed

    Laguna, Laura; Farrell, Grace; Bryant, Michael; Morina, Ardian; Sarkar, Anwesha

    2017-02-22

    This study aims to investigate the relationship between rheological and tribological properties of commercial full fat and fat-free/low fat versions of liquid and soft solid colloidal systems (milk, yoghurt, soft cream cheese) with their sensory properties. Oscillatory measurements (strain, frequency), flow curves and tribological measurements (lubrication behaviour using Stribeck analysis) were conducted. Oral condition was mimicked using artificial saliva at 37 (○)C. Discrimination test was conducted by 63 untrained consumers, followed by a qualitative questionnaire. Consumers significantly discriminated the fat-free/low fat from the full fat versions (p < 0.01) in all product classes, with most common verbatim used being "creamy", "sweet" for the full fat versus "watery", "sour" for the fat-free samples. Flow behaviour of both versions of milk showed overlapping trends with no significant differences identified both in absence and presence of saliva (p > 0.05). Full fat and fat free yoghurts had similar yielding behaviour and elastic modulus (G'), even in simulated oral conditions. However, in case of soft cream cheese, the full fat version had a moderately higher G' than the low fat counterpart. Even in presence of artificial saliva, there was slight but significant difference in viscoelasticity between the cream cheese variants depending on fat content (p < 0.05). Stribeck curve analyses showed that at lower entrainment velocities (1-100 mm s(-1)), both full fat yoghurt and soft cream cheese exhibited a significantly lower traction coefficient when compared to fat-free/low fat versions (p < 0.05), which might be attributed to the lubricating effect of the coalesced fat droplets. Surprisingly, whole and skim milks showed no significant difference in traction coefficients irrespective of the entrainment speeds (p > 0.05). Results suggest that sensory distinction between fat-free and full fat versions, particularly in semi-solid systems could be better

  12. Evaluation of nurses’ changing perceptions when trained to implement a self-management programme for dual sensory impaired older adults in long-term care: a qualitative study

    PubMed Central

    Roets-Merken, Lieve M; Vernooij-Dassen, Myrra J F J; Zuidema, Sytse U; Dees, Marianne K; Hermsen, Pieter G J M; Kempen, Gertrudis I J M; Graff, Maud J L

    2016-01-01

    Objectives To gain insights into the process of nurses’ changing perceptions when trained to implement a self-management programme for dual sensory impaired older adults in long-term care, and into the factors that contributed to these changes in their perceptions. Design Qualitative study alongside a cluster randomised controlled trial. Setting 17 long-term care homes spread across the Netherlands. Participants 34 licensed practical nurses supporting 54 dual sensory impaired older adults. Intervention A 5-month training programme designed to enable nurses to support the self-management of dual sensory impaired older adults in long-term care. Primary outcomes Nurses’ perceptions on relevance and feasibility of the self-management programme collected from nurses’ semistructured coaching diaries over the 5-month training and intervention period, as well as from trainers’ reports. Results Nurses’ initial negative perceptions on relevance and feasibility of the intervention changed to positive as nurses better understood the concept of autonomy. Through interactions with older adults and by self-evaluations of the effect of their behaviour, nurses discovered that their usual care conflicted with client autonomy. From that moment, nurses felt encouraged to adapt their behaviour to the older adults’ autonomy needs. However, nurses’ initial unfamiliarity with conversation techniques required a longer exploration period than planned. Once client autonomy was understood, nurses recommended expanding the intervention as a generic approach to all their clients, whether dual sensory impaired or not. Conclusions Longitudinal data collection enabled exploration of nurses’ changes in perceptions when moving towards self-management support. The training programme stimulated nurses to go beyond ‘protocol thinking’, discovering client autonomy and exploring the need for their own behavioural adaptations. Educational programmes for practical nurses should offer

  13. Empathy hurts: compassion for another increases both sensory and affective components of pain perception.

    PubMed

    Loggia, Marco L; Mogil, Jeffrey S; Bushnell, M Catherine

    2008-05-01

    Recent studies demonstrate that some brain structures activated by pain are also engaged when an individual observes someone else in pain, and that these empathy-related responses are modulated as a function of the affective link between the empath and the individual in pain. In this study we test the hypothesis that empathy-evoked activation in the pain network leads to heightened pain perception. After inducing in half of our subjects a state of high empathy for an actor and in the other half a state of low empathy towards him, we measured the sensitivity to heat stimuli of various intensities in healthy participants while they watched the actor being exposed to similar stimuli. Participants in the "high-empathy" group rated painful (but not non-painful) stimuli applied to themselves as more intense and unpleasant than did those in the "low-empathy" group. Positive correlations between state empathy scores and pain ratings further suggest that this perceptual phenomenon depends on the magnitude of empathic response induced in the participants. The effects were observed when subjects watched the model receiving either neutral or painful stimuli, suggesting that it is empathy itself that alters pain perception, and not necessarily the observation of pain behaviors.

  14. Sensory effect of acetaldehyde on the perception of 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine: Role of acetaldehyde in sensory interactions

    DOE PAGES

    Coetzee, C.; Brand, J.; Jacobson, Daniel A.; ...

    2016-01-28

    Background and Aims-Wine aroma is influenced by complex interactions between various wine constituents. This study investigated the sensory interactive effects of Sauvignon Blanc impact compounds, 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine, with acetaldehyde that typically forms during the oxidation of wine. Methods and Results-Spiked model wines were subjected to sensory descriptive analysis using a trained sensory panel. Additionally, the concentration of each compound varied from below aroma threshold values to high values as reported for wine. Depending on the concentration, acetaldehyde enhanced fruity attributes at a lower concentration, whereas suppression occurred at a higher concentration. Acetaldehyde effectively suppressed the green pepper aroma attributemore » at certain concentration values, whereas 3-mercaptohexan-1-ol suppressed oxidised green apple associated with acetaldehyde. Changes in attributes used for aroma description also occurred because of change in concentration. Conclusions-Complex sensory interactions may occur between Sauvignon Blanc impact compounds and one of the main oxidation-derived compounds, acetaldehyde. Acetaldehyde can enhance or suppress pleasant fruity characters depending on the concentration. Significance of the Study-This study showed the potential positive effect of acetaldehyde on white wine aroma when present at a low concentration. Formation of this compound during winemaking and ageing should, however, be controlled because of negative sensory interactions occurring at a higher concentration. In conclusion, this study may also contribute to the sensory characterisation of Sauvignon Blanc wine undergoing oxidation.« less

  15. Sensory effect of acetaldehyde on the perception of 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine: Role of acetaldehyde in sensory interactions

    SciTech Connect

    Coetzee, C.; Brand, J.; Jacobson, Daniel A.; Du Toit, W. J.

    2016-01-28

    Background and Aims-Wine aroma is influenced by complex interactions between various wine constituents. This study investigated the sensory interactive effects of Sauvignon Blanc impact compounds, 3-mercaptohexan-1-ol and 3-isobutyl-2-methoxypyrazine, with acetaldehyde that typically forms during the oxidation of wine. Methods and Results-Spiked model wines were subjected to sensory descriptive analysis using a trained sensory panel. Additionally, the concentration of each compound varied from below aroma threshold values to high values as reported for wine. Depending on the concentration, acetaldehyde enhanced fruity attributes at a lower concentration, whereas suppression occurred at a higher concentration. Acetaldehyde effectively suppressed the green pepper aroma attribute at certain concentration values, whereas 3-mercaptohexan-1-ol suppressed oxidised green apple associated with acetaldehyde. Changes in attributes used for aroma description also occurred because of change in concentration. Conclusions-Complex sensory interactions may occur between Sauvignon Blanc impact compounds and one of the main oxidation-derived compounds, acetaldehyde. Acetaldehyde can enhance or suppress pleasant fruity characters depending on the concentration. Significance of the Study-This study showed the potential positive effect of acetaldehyde on white wine aroma when present at a low concentration. Formation of this compound during winemaking and ageing should, however, be controlled because of negative sensory interactions occurring at a higher concentration. In conclusion, this study may also contribute to the sensory characterisation of Sauvignon Blanc wine undergoing oxidation.

  16. Structure-from-motion: dissociating perception, neural persistence, and sensory memory of illusory depth and illusory rotation.

    PubMed

    Pastukhov, Alexander; Braun, Jochen

    2013-02-01

    In the structure-from-motion paradigm, physical motion on a screen produces the vivid illusion of an object rotating in depth. Here, we show how to dissociate illusory depth and illusory rotation in a structure-from-motion stimulus using a rotationally asymmetric shape and reversals of physical motion. Reversals of physical motion create a conflict between the original illusory states and the new physical motion: Either illusory depth remains constant and illusory rotation reverses, or illusory rotation stays the same and illusory depth reverses. When physical motion reverses after the interruption in presentation, we find that illusory rotation tends to remain constant for long blank durations (T (blank) ≥ 0.5 s), but illusory depth is stabilized if interruptions are short (T (blank) ≤ 0.1 s). The stability of illusory depth over brief interruptions is consistent with the effect of neural persistence. When this is curtailed using a mask, stability of ambiguous vision (for either illusory depth or illusory rotation) is disrupted. We also examined the selectivity of the neural persistence of illusory depth. We found that it relies on a static representation of an interpolated illusory object, since changes to low-level display properties had little detrimental effect. We discuss our findings with respect to other types of history dependence in multistable displays (sensory stabilization memory, neural fatigue, etc.). Our results suggest that when brief interruptions are used during the presentation of multistable displays, switches in perception are likely to rely on the same neural mechanisms as spontaneous switches, rather than switches due to the initial percept choice at the stimulus onset.

  17. Sensory perception of food and insulin-like signals influence seizure susceptibility.

    PubMed

    Gruninger, Todd R; Gualberto, Daisy G; Garcia, L Rene

    2008-07-04

    Food deprivation is known to affect physiology and behavior. Changes that occur could be the result of the organism's monitoring of internal and external nutrient availability. In C. elegans, male mating is dependent on food availability; food-deprived males mate with lower efficiency compared to their well-fed counterparts, suggesting that the mating circuit is repressed in low-food environments. This behavioral response could be mediated by sensory neurons exposed to the environment or by internal metabolic cues. We demonstrated that food-deprivation negatively regulates sex-muscle excitability through the activity of chemosensory neurons and insulin-like signaling. Specifically, we found that the repressive effects of food deprivation on the mating circuit can be partially blocked by placing males on inedible food, E. coli that can be sensed but not eaten. We determined that the olfactory AWC neurons actively suppress sex-muscle excitability in response to food deprivation. In addition, we demonstrated that loss of insulin-like receptor (DAF-2) signaling in the sex muscles blocks the ability of food deprivation to suppress the mating circuit. During low-food conditions, we propose that increased activity by specific olfactory neurons (AWCs) leads to the release of neuroendocrine signals, including insulin-like ligands. Insulin-like receptor signaling in the sex muscles then reduces cell excitability via activation of downstream molecules, including PLC-gamma and CaMKII.

  18. Perception drives production across sensory modalities: A network for sensorimotor integration of visual speech.

    PubMed

    Venezia, Jonathan H; Fillmore, Paul; Matchin, William; Isenberg, A Lisette; Hickok, Gregory; Fridriksson, Julius

    2016-02-01

    Sensory information is critical for movement control, both for defining the targets of actions and providing feedback during planning or ongoing movements. This holds for speech motor control as well, where both auditory and somatosensory information have been shown to play a key role. Recent clinical research demonstrates that individuals with severe speech production deficits can show a dramatic improvement in fluency during online mimicking of an audiovisual speech signal suggesting the existence of a visuomotor pathway for speech motor control. Here we used fMRI in healthy individuals to identify this new visuomotor circuit for speech production. Participants were asked to perceive and covertly rehearse nonsense syllable sequences presented auditorily, visually, or audiovisually. The motor act of rehearsal, which is prima facie the same whether or not it is cued with a visible talker, produced different patterns of sensorimotor activation when cued by visual or audiovisual speech (relative to auditory speech). In particular, a network of brain regions including the left posterior middle temporal gyrus and several frontoparietal sensorimotor areas activated more strongly during rehearsal cued by a visible talker versus rehearsal cued by auditory speech alone. Some of these brain regions responded exclusively to rehearsal cued by visual or audiovisual speech. This result has significant implications for models of speech motor control, for the treatment of speech output disorders, and for models of the role of speech gesture imitation in development.

  19. Hidden surface microstructures on Carboniferous insect Brodioptera sinensis (Megasecoptera) enlighten functional morphology and sensorial perception

    PubMed Central

    Prokop, Jakub; Pecharová, Martina; Ren, Dong

    2016-01-01

    Megasecoptera are insects with haustellate mouthparts and petiolate wings closely related to Palaeodictyoptera and one of the few insect groups that didn’t survive the Permian-Triassic mass extinction. Recent discovery of Brodioptera sinensis in early Pennsylvanian deposits at Xiaheyan in northern China has increased our knowledge of its external morphology using conventional optical stereomicroscopy. Environmental scanning electron microscopy (ESEM) of structures, such as antennae, mouthparts, wing surfaces, external copulatory organs and cerci have shed light on their micromorphology and supposed function. A comparative study has shown an unexpected dense pattern of setae on the wing membrane of B. sinensis. In addition, unlike the results obtained by stereomicroscopy it revealed that the male and female external genitalia clearly differ in their fine structure and setation. Therefore, the present study resulted in a closer examination of the microstructure and function of previously poorly studied parts of the body of Paleozoic insects and a comparison with homologous structures occurring in other Palaeodictyopteroida, Odonatoptera and Ephemerida. This indicates, that the role and presumptive function of these integumental protuberances is likely to have been a sensory one in the coordination of mouthparts and manipulation of stylets, escape from predators, enhancement of aerodynamic properties and copulatory behaviour. PMID:27321551

  20. Perception drives production across sensory modalities: A network for sensorimotor integration of visual speech

    PubMed Central

    Venezia, Jonathan H.; Fillmore, Paul; Matchin, William; Isenberg, A. Lisette; Hickok, Gregory; Fridriksson, Julius

    2015-01-01

    Sensory information is critical for movement control, both for defining the targets of actions and providing feedback during planning or ongoing movements. This holds for speech motor control as well, where both auditory and somatosensory information have been shown to play a key role. Recent clinical research demonstrates that individuals with severe speech production deficits can show a dramatic improvement in fluency during online mimicking of an audiovisual speech signal suggesting the existence of a visuomotor pathway for speech motor control. Here we used fMRI in healthy individuals to identify this new visuomotor circuit for speech production. Participants were asked to perceive and covertly rehearse nonsense syllable sequences presented auditorily, visually, or audiovisually. The motor act of rehearsal, which is prima facie the same whether or not it is cued with a visible talker, produced different patterns of sensorimotor activation when cued by visual or audiovisual speech (relative to auditory speech). In particular, a network of brain regions including the left posterior middle temporal gyrus and several frontoparietal sensorimotor areas activated more strongly during rehearsal cued by a visible talker versus rehearsal cued by auditory speech alone. Some of these brain regions responded exclusively to rehearsal cued by visual or audiovisual speech. This result has significant implications for models of speech motor control, for the treatment of speech output disorders, and for models of the role of speech gesture imitation in development. PMID:26608242

  1. Planktonic encounter rates in homogeneous isotropic turbulence: the case of predators with limited fields of sensory perception.

    PubMed

    Lewis, D M

    2003-05-07

    It is a well-established fact that encounter rates between different species of planktonic microorganism, either swimming, or passively advected by the flow, are enhanced in the presence of turbulence. However, due to the complexity of the various calculations involved, current encounter rate theories are based on a number of simplifying approximations, which do not reflect reality. In particular, a typical planktonic predator is usually assumed to have perfect 'all round vision', i.e. it can perceive a prey particle at any relative orientation, provided it lies within some given contact radius R. Unfortunately, there is a wide body of experimental evidence that this is not the case. In this study the encounter problem for a predator with a limited field of sensory perception, swimming in a turbulent flow, is examined from first principles and a number of new modelling ideas proposed. A wide range of kinematic simulations are also undertaken to test these predictions. Particular attention is paid to the swimming strategy such a predator might undertake to enhance its encounter rate. It turns out that the predicted optimum swimming strategies differ radically from the results of previous work. Empirical evidence is also presented which appears to support these new findings.

  2. Sensory versus motor loci for integration of multiple motion signals in smooth pursuit eye movements and human motion perception.

    PubMed

    Niu, Yu-Qiong; Lisberger, Stephen G

    2011-08-01

    We have investigated how visual motion signals are integrated for smooth pursuit eye movements by measuring the initiation of pursuit in monkeys for pairs of moving stimuli of the same or differing luminance. The initiation of pursuit for pairs of stimuli of the same luminance could be accounted for as a vector average of the responses to the two stimuli singly. When stimuli comprised two superimposed patches of moving dot textures, the brighter stimulus suppressed the inputs from the dimmer stimulus, so that the initiation of pursuit became winner-take-all when the luminance ratio of the two stimuli was 8 or greater. The dominance of the brighter stimulus could be not attributed to either the latency difference or the ratio of the eye accelerations for the bright and dim stimuli presented singly. When stimuli comprised either spot targets or two patches of dots moving across separate locations in the visual field, the brighter stimulus had a much weaker suppressive influence; the initiation of pursuit could be accounted for by nearly equal vector averaging of the responses to the two stimuli singly. The suppressive effects of the brighter stimulus also appeared in human perceptual judgments, but again only for superimposed stimuli. We conclude that one locus of the interaction of two moving visual stimuli is shared by perception and action and resides in local inhibitory connections in the visual cortex. A second locus resides deeper in sensory-motor processing and may be more closely related to action selection than to stimulus selection.

  3. Factors associated with parental perception of child vulnerability 12 months after abnormal newborn screening results.

    PubMed

    Tluczek, Audrey; McKechnie, Anne Chevalier; Brown, Roger L

    2011-10-01

    We identified factors associated with elevated parental perceptions of child vulnerability (PPCV) 12 months after newborn screening (NBS) of 136 children: healthy, normal results (H, n = 37), cystic fibrosis carriers (CF-C, n = 40), congenital hypothyroidism (CH, n = 36), and cystic fibrosis (CF, n = 23). Controlling for infant and parent characteristics, mixed logit structural equation modeling showed direct paths to elevated PPCV included parent female sex, CF diagnosis, and high documented illness frequency. PPCV was positively associated with maternal parenting stress. Infants with CF and CF carriers had significantly more documented illness frequency than H group infants. The CH group did not differ significantly from the H group and had no paths to PPCV. Unexpectedly high documented illness frequency among infants who are CF carriers warrants further investigation.

  4. Familiarity perception call elicited under restricted sensory cues in peer-social interactions of the domestic chick.

    PubMed

    Koshiba, Mamiko; Shirakawa, Yuka; Mimura, Koki; Senoo, Aya; Karino, Genta; Nakamura, Shun

    2013-01-01

    Social cognitive mechanisms are central to understanding developmental abnormalities, such as autistic spectrum disorder. Peer relations besides parent-infant or pair-bonding interactions are pivotal social relationships that are especially well developed in humans. Cognition of familiarity forms the basis of peer socialization. Domestic chick (Gallus gallus) studies have contributed to our understanding of the developmental process in sensory-motor cognition but many processes remain unknown. In this report, we used chicks, as they are precocial birds, and we could therefore focus on peer interaction without having to consider parenting. The subject chick behavior towards familiar and unfamiliar reference peers was video-recorded, where the subject and the reference were separated by either an opaque or transparent wall. Spectrogram and behavior correlation analyses based on principal component analysis, revealed that chicks elicited an intermediate contact call and a morphologically different distress call, more frequently towards familiar versus unfamiliar chicks in acoustic only conditions. When both visual and acoustic cues were present, subject chicks exhibited approaching and floor pecking behavior, while eliciting joyful (pleasant) calls, irrespective of whether reference peers were familiar or unfamiliar. Our result showed that chicks recognized familiarity using acoustic cues and expressed cognition through modified distress calls. These finding suggests that peer affiliation may be established by acoustic recognition, independent of visual face recognition, and that eventually, both forms of recognition are integrated, with modulation of acoustic recognition.

  5. Influence of sensory and cultural perceptions of white rice, brown rice and beans by Costa Rican adults in their dietary choices.

    PubMed

    Monge-Rojas, Rafael; Mattei, Josiemer; Fuster, Tamara; Willett, Walter; Campos, Hannia

    2014-10-01

    Little is known about the distinct perceptions towards rice and beans that may shape the consumption of these main staple foods among Costa Ricans. We aimed to identify barriers and motivators that could change the current staple into a healthier one, and assess the sensory perceptions of these foods in this population. Focus group discussions and sensory tastings of 8 traditional white or brown rice and beans preparations were conducted in 98 Costa Ricans, aged 40-65 years. Traditional habits and family support emerged as the two main drivers for current consumption. Consuming similar amounts of rice and beans, as well as unfamiliarity with brown rice, are habits engrained in the Costa Rican culture, and are reinforced in the family and community environment. Suggested strategies for consuming more brown rice and more beans included introducing them during childhood, disseminating information of their health benefits that take into account the importance of tradition, lowering the cost, increasing availability, engaging women as agents of change and for brown rice masking the perceived unpleasant sensory characteristics by incorporating them into mixed dishes. Plain brown rice received the lowest mean hedonic liking scores. The preparations rated highest for pleasant were the beans: rice 1:1 ratio regardless of the type of rice. This study identified novel strategies to motivate Costa Rican adults to adapt their food choices into healthier ones within their cultural and sensory acceptability.

  6. Meaning-making matters in product design: Users’ sensory perceptions and experience evaluations of long-acting vaginal gels and intravaginal rings

    PubMed Central

    Rosen, Rochelle K.; van den Berg, Jacob J.; Vargas, Sara E.; Senocak, Natali; Shaw, Julia G.; Buckheit, Robert W.; Smith, Kelley Alison; Guthrie, Kate Morrow

    2015-01-01

    Objective Users’ sensory perceptions and experiences (USPEs) of intravaginal products can inform acceptability and adherence. Focusing on the meanings women derive from formulation/device characteristics facilitates developers’ design iterations toward optimizing user experience. We investigated how users of long acting gels and intravaginal rings (IVRs) impute meaning to characteristics that may affect future product use. Study Design Focus groups were conducted with contraceptive IVR and vaginal lubricant users. Current perceptibility science and historical theory on the cultural acceptability of fertility regulating methods informed the analysis. Results 21 IVR users and 29 lubricant users attended focus groups in which they manipulated products in their hands and discussed reactions to product characteristics. Participants used prior product experiences, and sensory perceptions of prototype manipulations, to inform meanings about product properties and performance for pregnancy, disease prevention, comfort, and perceived efficacy. The meanings derived from product characteristics depended on why the product would be used; a characteristic deemed problematic in one risk context may be considered preferable in another. Conclusions Intravaginal product users create narratives that ascribe influence or causality to product characteristics. These meanings, whether correct or incorrect biologically, will shape vaginal product acceptability, use, and effectiveness. Implications Long-acting, and sustained-release, drug delivery systems will be part of the multipurpose prevention continuum. Developers must consider how sensory experiences and culturally salient assumptions shape the meanings users make of product design characteristics. Those meanings will ultimately impact use and effectiveness. PMID:26276246

  7. Absence of stimulus-driven synchronization effects on sensory perception in autism: Evidence for local underconnectivity?

    PubMed Central

    Tommerdahl, Mark; Tannan, Vinay; Holden, Jameson K; Baranek, Grace T

    2008-01-01

    above that of controls. Conclusion It is speculated that the differences in sensory perceptual capacities in the presence of synchronized conditioning stimuli in autism are due to local under-connectivity in cortex at the minicolumnar organizational level, and that the above-average TOJ thresholds in autism could be attributed to structural differences that have been observed in the frontostrial system of this population. PMID:18435849

  8. Acceptably aware during general anaesthesia: 'dysanaesthesia'--the uncoupling of perception from sensory inputs.

    PubMed

    Pandit, Jaideep J

    2014-07-01

    This review makes the case for 'dysanaesthesia', a term encompassing states of mind that can arise in the course of anaesthesia during surgery, characterised by an uncoupling of sensation and perceptual experience. This is reflected in a macroscopic, functional model of anaesthetically-relevant consciousness. Patients in this state can be aware of events but in a neutral way, not in pain, sometimes personally dissociated from the experiences. This makes events associated with surgery peripheral to their whole experience, such that recall is less likely and if it exists, makes any spontaneous report of awareness unlikely. This state of perception-sensation uncoupling is therefore broadly acceptable (a minimum requirement for acceptable anaesthesia) but since it is likely a dose-related phenomenon, may also represent a precursor for awareness with adverse recall. This hypothesis uniquely explains the often inconsistent responses seen during the experimental paradigm of the 'isolated forearm technique', wherein apparently anaesthetised patients exhibit a positive motor response to verbal command, but no spontaneous movement to surgery. The hypothesis can also explain the relatively high incidence of positive response to relatively direct questions for recall (e.g., using the Brice questionnaire; ∼1:500; the vast majority of these being neutral reports) versus the very low incidence of spontaneous reports of awareness (∼1:15,000; a higher proportion of these being adverse recollections). The hypothesis is consistent with relevant notions from philosophical discussions of consciousness, and neuroscientific evidence. Dysanaesthesia has important implications for research and also for the development of appropriate monitoring.

  9. The role of temporal structure in the investigation of sensory memory, auditory scene analysis, and speech perception: a healthy-aging perspective.

    PubMed

    Rimmele, Johanna Maria; Sussman, Elyse; Poeppel, David

    2015-02-01

    Listening situations with multiple talkers or background noise are common in everyday communication and are particularly demanding for older adults. Here we review current research on auditory perception in aging individuals in order to gain insights into the challenges of listening under noisy conditions. Informationally rich temporal structure in auditory signals--over a range of time scales from milliseconds to seconds--renders temporal processing central to perception in the auditory domain. We discuss the role of temporal structure in auditory processing, in particular from a perspective relevant for hearing in background noise, and focusing on sensory memory, auditory scene analysis, and speech perception. Interestingly, these auditory processes, usually studied in an independent manner, show considerable overlap of processing time scales, even though each has its own 'privileged' temporal regimes. By integrating perspectives on temporal structure processing in these three areas of investigation, we aim to highlight similarities typically not recognized.

  10. Is There a Relationship between Restricted, Repetitive, Stereotyped Behaviors and Interests and Abnormal Sensory Response in Children with Autism Spectrum Disorders?

    ERIC Educational Resources Information Center

    Gabriels, Robin L.; Agnew, John A.; Miller, Lucy Jane; Gralla, Jane; Pan, Zhaoxing; Goldson, Edward; Ledbetter, James C.; Dinkins, Juliet P.; Hooks, Elizabeth

    2008-01-01

    This study examined the relation between restricted, repetitive, and stereotyped behaviors and interests (RBs) and sensory responses in a group of 70 children and adolescents diagnosed with an autism spectrum disorder (ASD). Caregivers completed the Repetitive Behavior Scale-Revised (RBS-R) and the Sensory Profile. Controlling for IQ and age,…

  11. [Olfactory sensory perception].

    PubMed

    Fuentes, Aler; Fresno, María Javiera; Santander, Hugo; Valenzuela, Saúl; Gutiérrez, Mario Felipe; Miralles, Rodolfo

    2011-03-01

    The five senses have had a fundamental importance for survival and socialization of human beings. From an evolutionary point of view the sense of smell is the oldest. This sense has a strong representation within the genome, allowing the existence of many types of receptors that allow us to capture multiple volatile odor producing molecules, sending electrical signals to higher centers to report the outside world. Several cortical areas are activated in the brain, which are interconnected to form an extensive and complex neural network, linking for example, areas involved with memory and emotions, thus giving this sense of perceptual richness. While the concept of flavor is largely related to the sense of taste, smell provides the necessary integration with the rest of the senses and higher functions. Fully understanding the sense of smell is relevant to health professionals. Knowing the characteristics of the receptors, the transduction processes and convergence of information in the higher centers involved, we can properly detect olfactory disorders in our patients.

  12. Indigenous and traditional plants: South African parents’ knowledge, perceptions and uses and their children’s sensory acceptance

    PubMed Central

    2013-01-01

    Background The dietary shift from indigenous and traditional plants (ITPs) to cash crops and exotic plant food sources increases the risk of malnutrition and other nutrition-related non-communicable diseases, especially in poor rural communities. Farm communities in South Africa have been associated with poor nutritional status and extreme poverty. ITPs have been found to be affordable sources of several micronutrients. However, knowledge of and the use of these plants are declining, and little is known about the child’s acceptance of dishes prepared with ITPs. This knowledge can be used to improve the general acceptance of ITPs. This study aimed to gain insight into parents’ knowledge and perceptions and their use of ITPs in a farming community in the North West Province and to assess children’s acceptance of and preference for dishes made with African leafy vegetables (ALVs) and Swiss chard. Methods Parents (n = 29) responsible for food preparation for children in grade 2 to 4 in two schools were purposively selected for four focus group discussions. A sensory evaluation assessed the children’s (n = 98) acceptance of, preference for and intended consumption of dishes made with leafy vegetables. The dishes were made of Amaranthus spp., Cleome gynandra, Cucurbita maxima, Vigna unguiculata and Beta vulgaris. Results Parents mentioned 30 edible ITPs during the focus group discussions. Parents had knowledge of available ITPs and their use as food. Location, seasonal variation and rainfall affected the availability of and access to ITPs. Sun-dried ITPs were stored in sacks for later use. ITPs were perceived as healthy, affordable and delicious, hence acceptable to the parents. The children also evaluated the dishes made with ALVs as acceptable in terms of colour, smell and taste. Swiss chard was preferred, most likely because of the children’s exposure to this vegetable. Children indicated that they would like to eat these leafy vegetables twice a

  13. Sensory Perception in the Human Research and Engineering Directorate: Thrust Areas and Recent Research 2011-2014

    DTIC Science & Technology

    2014-09-01

    research studies the effects of night vision devices on depth perception and target recognition and is incorporated into models of target detection...Vision Perception Laboratory in Building 520. To complete the experimental task, participants will use a depth acuity device. The participant’s task...match the luminance level seen by the unaided eye and thus achieve binocular depth perception . This study quantified the effects of interocular

  14. Comparison of skin barrier function and sensory nerve electric current perception threshold between IgE-high extrinsic and IgE-normal intrinsic types of atopic dermatitis.

    PubMed

    Mori, T; Ishida, K; Mukumoto, S; Yamada, Y; Imokawa, G; Kabashima, K; Kobayashi, M; Bito, T; Nakamura, M; Ogasawara, K; Tokura, Y

    2010-01-01

    Background Two types of atopic dermatitis (AD) have been proposed, with different pathophysiological mechanisms underlying this seemingly heterogeneous disorder. The extrinsic type shows high IgE levels presumably as a consequence of skin barrier damage and feasible allergen permeation, whereas the intrinsic type exhibits normal IgE levels and is not mediated by allergen-specific IgE. Objectives To investigate the relationship between pruritus perception threshold and skin barrier function of patients with AD in a comparison between the extrinsic and intrinsic types. Methods Enrolled in this study were 32 patients with extrinsic AD, 17 with intrinsic AD and 24 healthy individuals. The barrier function of the stratum corneum was assessed by skin surface hydration and transepidermal water loss (TEWL), and pruritus perception was evaluated by the electric current perception threshold (CPT) of sensory nerves upon neuroselective transcutaneous electric stimulation. Results Skin surface hydration was significantly lower and TEWL was significantly higher in extrinsic AD than intrinsic AD or normal controls. Although there was no statistically significant difference in CPT among extrinsic AD, intrinsic AD and normal controls, CPT was significantly correlated with skin surface hydration and inversely with TEWL in intrinsic AD and normal controls, but not extrinsic AD. Finally, CPT was correlated with the visual analogue scale of itch in the nonlesional skin of patients with extrinsic but not intrinsic AD. Conclusions Patients with extrinsic AD have an impaired barrier, which increases the pre-existing pruritus but rather decreases sensitivity to external stimuli. In contrast, patients with intrinsic AD retain a normal barrier function and sensory reactivity to external pruritic stimuli.

  15. Plankton predation rates in turbulence: a study of the limitations imposed on a predator with a non-spherical field of sensory perception.

    PubMed

    Lewis, D M; Bala, S I

    2006-09-07

    This paper presents an extension to previously published work which studied encounter rates of planktonic predators with restricted perception fields, to examine the related problems of prey capture and predation rates. Small-scale turbulence influences planktonic predation in two ways: the extra energy of the flow enhances the number of encounter events between individual predator and prey meso/micro-zooplankton, but it lowers the capture probability (because the time spent by the predator and prey in close proximity is reduced). Typically, an 'encounter' has usually been defined as an event when a potential prey swims (or is advected) to within a distance R of the predator in any direction. However, there is a considerable body of experimental evidence showing that predators perception fields are far from spherical; often they are wedge shaped (e.g. fish larvae), or strongly aligned with the directions of sensory antennae (e.g. copepods); and this is certain to influence optimal predation strategies. This paper presents a theoretical model which for the first time examines the combined problems of both encounter and capture for a predator with a restricted perception field swimming in a turbulent flow. If such a predator adopts a cruising strategy (continuous swimming, possibly with direction changes) the model predictions suggest that predation rates actually vary little with swimming speed, in contrast to predictions made for spherical perception fields. Consequently, cruising predators are predicted to swim at relatively low speeds whilst foraging. However, application of the model to examine the net energy gain of a typical pause-travel predator (the Atlantic cod larva), does predict the existence of an optimal ratio of the length of pauses to time spent swimming (specifically one pause phase to every two travel phases), in line with experimental observations. Kinematic simulations are presented which support these findings.

  16. Sensory aspects of movement disorders.

    PubMed

    Patel, Neepa; Jankovic, Joseph; Hallett, Mark

    2014-01-01

    Movement disorders, which include disorders such as Parkinson's disease, dystonia, Tourette's syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed.

  17. Sensory aspects of movement disorders

    PubMed Central

    Patel, Neepa; Jankovic, Joseph; Hallett, Mark

    2016-01-01

    Movement disorders, which include disorders such as Parkinson’s disease, dystonia, Tourette’s syndrome, restless legs syndrome, and akathisia, have traditionally been considered to be disorders of impaired motor control resulting predominantly from dysfunction of the basal ganglia. This notion has been revised largely because of increasing recognition of associated behavioural, psychiatric, autonomic, and other non-motor symptoms. The sensory aspects of movement disorders include intrinsic sensory abnormalities and the effects of external sensory input on the underlying motor abnormality. The basal ganglia, cerebellum, thalamus, and their connections, coupled with altered sensory input, seem to play a key part in abnormal sensorimotor integration. However, more investigation into the phenomenology and physiological basis of sensory abnormalities, and about the role of the basal ganglia, cerebellum, and related structures in somatosensory processing, and its effect on motor control, is needed. PMID:24331796

  18. Perception of musical tension in short chord sequences: the influence of harmonic function, sensory dissonance, horizontal motion, and musical training.

    PubMed

    Bigand, E; Parncutt, R; Lerdahl, F

    1996-01-01

    This study investigates the effect of four variables (tonal hierarchies, sensory chordal consonance, horizontal motion, and musical training) on perceived musical tension. Participants were asked to evaluate the tension created by a chord X in sequences of three chords [C major-->X-->C major] in a C major context key. The X chords could be major or minor triads major-minor seventh, or minor seventh chords built on the 12 notes of the chromatic scale. The data were compared with Krumhansl's (1990) harmonic hierarchy and with predictions of Lerdahl's (1988) cognitive theory, Hutchinson and Knopoff's (1978) and Parncutt's (1989) sensory-psychoacoustical theories, and the model of horizontal motion defined in the paper. As a main outcome, it appears that judgments of tension arose from a convergence of several cognitive and psychoacoustics influences, whose relative importance varies, depending on musical training.

  19. Unintended Embodiment of Concepts into Percepts: Sensory Activation Boosts Attention for Same-Modality Concepts in the Attentional Blink Paradigm

    ERIC Educational Resources Information Center

    Vermeulen, Nicolas; Mermillod, Martial; Godefroid, Jimmy; Corneille, Olivier

    2009-01-01

    This study shows that sensory priming facilitates reports of same-modality concepts in an attentional blink paradigm. Participants had to detect and report two target words (T1 and T2) presented for 53 ms each among a series of nonwords distractors at a frequency of up to 19 items per second. SOA between target words was set to 53 ms or 213 ms,…

  20. Age-associated variation in sensory perception of iron in drinking water and the potential for overexposure in the human population.

    PubMed

    Mirlohi, Susan; Dietrich, Andrea M; Duncan, Susan E

    2011-08-01

    Humans interact with their environment through the five senses, but little is known about population variability in the ability to assess contaminants. Sensory thresholds and biochemical indicators of metallic flavor perception in humans were evaluated for ferrous (Fe(2+)) iron in drinking water; subjects aged 19-84 years participated. Metallic flavor thresholds for individuals and subpopulations based on age were determined. Oral lipid oxidation and oral pH were measured in saliva as potential biochemical indicators. Individual thresholds were 0.007-14.14 mg/L Fe(2+) and the overall population threshold was 0.17 mg/L Fe(2+) in reagent water. Average thresholds for individuals younger and older than 50 years of age (grouped by the daily recommended nutritional guidelines for iron intake) were significantly different (p = 0.013); the population thresholds for each group were 0.045 mg/L Fe(2+) and 0.498 mg/L Fe(2+), respectively. Many subjects >50 and a few subjects <50 years were insensitive to metallic flavor. There was no correlation between age, oral lipid oxidation, and oral pH. Standardized olfactory assessment found poor sensitivity for Fe(2+) corresponded with conditions of mild, moderate, and total anosmia. The findings demonstrate an age-dependent sensitivity to iron indicating as people age they are less sensitive to metallic perception.

  1. Developmental and sex differences in somatosensory perception--a systematic comparison of 7- versus 14-year-olds using quantitative sensory testing.

    PubMed

    Blankenburg, M; Meyer, D; Hirschfeld, G; Kraemer, N; Hechler, T; Aksu, F; Krumova, E K; Magerl, W; Maier, C; Zernikow, B

    2011-11-01

    There are controversial discussions regarding developmental- and sex-related differences in somatosensory perception, which were found, eg, when comparing younger children (6-8 years), older children (9-12 years), and adolescents (13-16 years) using quantitative sensory testing (QST). The aim of our current study was to systematically assess the impact of age and sex using the QST protocol of the German Research Network on Neuropathic Pain (DFNS). QST, including thermal and mechanical detection and pain thresholds, was assessed in 86 healthy 7-year-old children (42 girls and 44 boys) and 87 healthy 14-year-old adolescents (43 girls and 44 boys). The sample size was calculated a priori to detect medium-sized effects as found in the previous studies with adequate power. Developmental and sex differences were tested using univariate analysis of variance. Children were more sensitive to most pain stimuli, except cold pain stimuli, compared with adolescents, but did not differ in mechanical and thermal detection thresholds except in regard to cold stimuli. Sex had an impact only on warm detection, with girls being more sensitive. There were no interactions between age and sex. In conclusion, developmental changes during the puberty appear to influence pain perception, whereas sex effects in childhood are negligible. At present, it is not clear what brings about the differences between adult men and women that are apparent in epidemiological studies. Our results contradict the hypothesis that differences in peripheral nerve-fiber functioning underlie sex effects.

  2. New Phenomenon of Abnormal Auditory Perception Associated with Emotional and Head Trauma: Pathological Confirmation by SPECT Scan

    ERIC Educational Resources Information Center

    Stephane, Massoud; Hill, Thomas; Matthew, Elizabeth; Folstein, Marshal

    2004-01-01

    We report the case of an immigrant who suffered from death threats and head trauma while a prisoner of war in Kuwait. Two months later, he began to hear conversations that had taken place previously. These perceptions occurred spontaneously or were induced by the patient's effortful concentration. The single photon emission computerized tomography…

  3. Sensory and Perceptual Deprivation

    DTIC Science & Technology

    1964-04-22

    stimulation even in inane forms, and -- were more effectively persuaded by lectures advocating the existence of ghosts, poltergeists and extrasensory ... perception pbenomena. These provocative experiments at McGill were completed just about 10 years ago. What has happened in the decade since? Research...shown a greater change among isolated Ss in interest and belief in extra sensory perception topics (29, 56). Recent experiments have tended to confirm

  4. Consumer perception and sensory effect of oxidation in savory-flavored yogurt enriched with n-3 lipids.

    PubMed

    Rognlien, M; Duncan, S E; O'Keefe, S F; Eigel, W N

    2012-04-01

    The objective of this study was to determine the effects of different oils (butter, fish, and oxidized fish) on sensory characteristics of a savory [chile-lime (CL)] low-fat yogurt using descriptive (unstructured line scales, 5 attributes) and affective (hedonic) sensory testing methods. Yogurts were each manufactured at low [1.1-1.2% total fat; 0.43% added oil (wt/wt)] or high [1.6% total fat; 1% added oil (wt/wt)] levels of fish oil, with high levels of fish oil targeted to deliver 145 mg of docosahexaenoic acid+eicosapentaenoic acid/170 g of yogurt. In a preliminary study, untrained panelists (n=31), using triangle tests, did not discriminate between low levels of fish and butter oils in unflavored yogurts but could discern yogurt with oxidized fish oil, even at the low level. Trained panelists (n=12) described lower lime and acid flavor characteristics in CL-flavored yogurts containing 1% oxidized fish oil compared with yogurts containing low levels of oxidized fish oil and low or high levels of butter and fish oils. Oxidized flavor was higher in CL-flavored yogurts with oxidized fish oil (low and high) and with the high level of fish oil. Consumer ratings (n=100; 9-point hedonic scale; 9="like extremely) of overall acceptability and flavor acceptability were bimodally distributed, with overall means between 4 and 5 ("neither like nor dislike") for CL-flavored yogurt with butter or fish oils (high level). The upper 50% of responses for yogurt with butter or fish oil were 6.51 and 6.31, respectively, for overall acceptability ("like slightly"), and 7.02 and 6.56, respectively, for flavor acceptability. A large segment of consumers may be interested in incorporating heart-healthy n-3 lipids in their diets through frequent consumption of a savory yogurt enriched with n-3 fatty acids.

  5. Percept

    SciTech Connect

    2014-11-26

    The Percept software package is a collection of libraries and executables that provide tools for verifying computer simulations of engineering components and systems. Percept is useful for simulations using the finite element or finite volume methods on unstructured meshes. Percept includes API's for adaptive mesh refinement, geometry representation, the method of manufactured solutions, analysis of convergence including the convergence of vibrational eigenmodes, and metrics for analyzing the difference between fields represented on two different overlapping unstructured grids.

  6. Salvinorin-A Induces Intense Dissociative Effects, Blocking External Sensory Perception and Modulating Interoception and Sense of Body Ownership in Humans

    PubMed Central

    Maqueda, Ana Elda; Valle, Marta; Addy, Peter H.; Antonijoan, Rosa Maria; Puntes, Montserrat; Coimbra, Jimena; Ballester, Maria Rosa; Garrido, Maite; González, Mireia; Claramunt, Judit; Barker, Steven; Johnson, Matthew W.; Griffiths, Roland R.

    2015-01-01

    Background: Salvinorin-A is a terpene with agonist properties at the kappa-opioid receptor, the binding site of endogenous dynorphins. Salvinorin-A is found in Salvia divinorum, a psychoactive plant traditionally used by the Mazatec people of Oaxaca, Mexico, for medicinal and spiritual purposes. Previous studies with the plant and salvinorin-A have reported psychedelic-like changes in perception, but also unusual changes in body awareness and detachment from external reality. Here we comprehensively studied the profiles of subjective effects of increasing doses of salvinorin-A in healthy volunteers, with a special emphasis on interoception. Methods: A placebo and three increasing doses of vaporized salvinorin-A (0.25, 0.50, and 1mg) were administered to eight healthy volunteers with previous experience in the use of psychedelics. Drug effects were assessed using a battery of questionnaires that included, among others, the Hallucinogen Rating Scale, the Altered States of Consciousness, and a new instrument that evaluates different aspects of body awareness: the Multidimensional Assessment for Interoceptive Awareness. Results: Salvinorin-A led to a disconnection from external reality, induced elaborate visions and auditory phenomena, and modified interoception. The lower doses increased somatic sensations, but the highest dose led to a sense of a complete loss of contact with the body. Conclusions: Salvinorin-A induced intense psychotropic effects characterized by a dose-dependent gating of external audio-visual information and an inverted-U dose-response effect on body awareness. These results suggest a prominent role for the kappa opioid receptor in the regulation of sensory perception, interoception, and the sense of body ownership in humans. PMID:26047623

  7. Sensory descriptors, hedonic perception and consumer’s attitudes to Sangiovese red wine deriving from organically and conventionally grown grapes

    PubMed Central

    Pagliarini, Ella; Laureati, Monica; Gaeta, Davide

    2013-01-01

    In recent years, produce obtained from organic farming methods (i.e., a system that minimizes pollution and avoids the use of synthetic fertilizers and pesticides) has rapidly increased in developed countries. This may be explained by the fact that organic food meets the standard requirements for quality and healthiness. Among organic products, wine has greatly attracted the interest of the consumers. In the present study, trained assessors and regular wine consumers were respectively required to identify the sensory properties (e.g., odor, taste, flavor, and mouthfeel sensations) and to evaluate the hedonic dimension of red wines deriving from organically and conventionally grown grapes. Results showed differences related mainly to taste (sour and bitter) and mouthfeel (astringent) sensations, with odor and flavor playing a minor role. However, these differences did not influence liking, as organic and conventional wines were hedonically comparable. Interestingly, 61% of respondents would be willing to pay more for organically produced wines, which suggests that environmentally sustainable practices related to wine quality have good market prospects. PMID:24348447

  8. Sensory descriptors, hedonic perception and consumer's attitudes to Sangiovese red wine deriving from organically and conventionally grown grapes.

    PubMed

    Pagliarini, Ella; Laureati, Monica; Gaeta, Davide

    2013-01-01

    In recent years, produce obtained from organic farming methods (i.e., a system that minimizes pollution and avoids the use of synthetic fertilizers and pesticides) has rapidly increased in developed countries. This may be explained by the fact that organic food meets the standard requirements for quality and healthiness. Among organic products, wine has greatly attracted the interest of the consumers. In the present study, trained assessors and regular wine consumers were respectively required to identify the sensory properties (e.g., odor, taste, flavor, and mouthfeel sensations) and to evaluate the hedonic dimension of red wines deriving from organically and conventionally grown grapes. Results showed differences related mainly to taste (sour and bitter) and mouthfeel (astringent) sensations, with odor and flavor playing a minor role. However, these differences did not influence liking, as organic and conventional wines were hedonically comparable. Interestingly, 61% of respondents would be willing to pay more for organically produced wines, which suggests that environmentally sustainable practices related to wine quality have good market prospects.

  9. Stroke prevention strategies in patients with atrial fibrillation and heart valve abnormalities: perceptions of 'valvular' atrial fibrillation: results of the European Heart Rhythm Association Survey.

    PubMed

    Potpara, Tatjana S; Lip, Gregory Y H; Larsen, Torben B; Madrid, Antonio; Dobreanu, Dan; Jędrzejczyk-Patej, Ewa; Dagres, Nikolaos

    2016-10-01

    The purpose of this European Heart Rhythm Association (EHRA) Survey was to assess the perceptions of 'valvular' atrial fibrillation (AF) and management of AF patients with various heart valve abnormalities in daily clinical practice in European electrophysiology (EP) centres. Questionnaire survey was sent via the Internet to the EHRA-EP Research Network Centres. Of the 52 responding centres, 42 (80.8%) were university hospitals. Choosing the most comprehensive definition of valvular AF, a total of 49 centres (94.2%) encountered a mechanical prosthetic heart valve and significant rheumatic mitral stenosis, 35 centres (67.3%) also considered bioprosthetic valves, and 25 centres (48.1%) included any significant valvular heart disease, requiring surgical repair in the definition of valvular AF. Only three centres (5.8%) would define valvular AF as the presence of any (even mild) valvular abnormality. None of the centres would use non-vitamin K antagonist oral anticoagulants (NOACs) in AF patients with mechanical prosthetic valves, only 5 centres (9.8%) would use NOACs in patients with significant mitral stenosis, 17 centres (32.7%) would consider the use of NOACs in patients with bioprosthetic valves, and 21 centres (41.2%) would use NOACs in patients with a non-recent transcatheter valve replacement/implantation, while 13 centres (25.5%) would never consider the use of NOACs in AF patients with even mild native heart valve abnormality. Our survey showed marked heterogeneity in the definition of valvular AF and thromboprophylactic treatments, with the use of variable NOACs in patients with valvular heart disease other than prosthetic heart valves or significant mitral stenosis, indicating that this term may be misleading and should not be used.

  10. Congenital Abnormalities

    MedlinePlus

    ... Listen Español Text Size Email Print Share Congenital Abnormalities Page Content Article Body About 3% to 4% ... of congenital abnormalities earlier. 5 Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic ...

  11. A Cognitive Neuroscience View of Schizophrenic Symptoms: Abnormal Activation of a System for Social Perception and Communication

    PubMed Central

    Wible, Cynthia G.; Preus, Alexander P.; Hashimoto, Ryuichiro

    2009-01-01

    We will review converging evidence that language related symptoms of the schizophrenic syndrome such as auditory verbal hallucinations arise at least in part from processing abnormalities in posterior language regions. These language regions are either adjacent to or overlapping with regions in the (posterior) temporal cortex and temporo-parietal occipital junction that are part of a system for processing social cognition, emotion, and self representation or agency. The inferior parietal and posterior superior temporal regions contain multi-modal representational systems that may also provide rapid feedback and feed-forward activation to unimodal regions such as auditory cortex. We propose that the over-activation of these regions could not only result in erroneous activation of semantic and speech (auditory word) representations, resulting in thought disorder and voice hallucinations, but could also result in many of the other symptoms of schizophrenia. These regions are also part of the so-called “default network”, a network of regions that are normally active; and their activity is also correlated with activity within the hippocampal system. PMID:19809534

  12. Cortical oscillations and sensory predictions.

    PubMed

    Arnal, Luc H; Giraud, Anne-Lise

    2012-07-01

    Many theories of perception are anchored in the central notion that the brain continuously updates an internal model of the world to infer the probable causes of sensory events. In this framework, the brain needs not only to predict the causes of sensory input, but also when they are most likely to happen. In this article, we review the neurophysiological bases of sensory predictions of "what' (predictive coding) and 'when' (predictive timing), with an emphasis on low-level oscillatory mechanisms. We argue that neural rhythms offer distinct and adapted computational solutions to predicting 'what' is going to happen in the sensory environment and 'when'.

  13. Subclinical sensory involvement in monomelic amyotrophy.

    PubMed

    Liao, Jenny P; Waclawik, Andrew J; Lotz, Barend P

    2005-12-01

    An 18-year-old woman presented with weakness and atrophy in her hand without associated sensory symptoms, preceding events, or structural abnormalities on neuroimaging. No sensory deficits were detected on neurologic examination. Electrophysiological studies showed not only the expected motor findings for monomelic amyotrophy (MA) in the affected limb, but also markedly reduced sensory nerve action potentials when compared with the unaffected side. These findings suggest that subclinical sensory involvement can exist in patients with otherwise classic presentations of MA.

  14. Sensory Sensitivities and Performance on Sensory Perceptual Tasks in High-Functioning Individuals with Autism

    ERIC Educational Resources Information Center

    Minshew, Nancy J.; Hobson, Jessica A.

    2008-01-01

    Most reports of sensory symptoms in autism are second hand or observational, and there is little evidence of a neurological basis. Sixty individuals with high-functioning autism and 61 matched typical participants were administered a sensory questionnaire and neuropsychological tests of elementary and higher cortical sensory perception. Thirty-two…

  15. Relational development in children with cleft lip and palate: influence of the waiting period prior to the first surgical intervention and parental psychological perceptions of the abnormality

    PubMed Central

    2012-01-01

    Background The birth of a child with a cleft lip, whether or not in association with a cleft palate, is a traumatic event for parents. This prospective, multidisciplinary and multi-centre study aims to explore the perceptions and feelings of parents in the year following the birth of their child, and to analyse parent–child relationships. Four inclusion centres have been selected, differing as to the date of the first surgical intervention, between birth and six months. The aim is to compare results, also distinguishing the subgroups of parents who were given the diagnosis in utero and those who were not. Methods/Design The main hypothesis is that the longer the time-lapse before the first surgical intervention, the more likely are the psychological perceptions of the parents to affect the harmonious development of their child. Parents and children are seen twice, when the child is 4 months (T0) and when the child is one year old (T1). At these two times, the psychological state of the child and his/her relational abilities are assessed by a specially trained professional, and self-administered questionnaires measuring factors liable to affect child–parent relationships are issued to the parents. The Alarme Détresse BéBé score for the child and the Parenting Stress Index score for the parents, measured when the child reaches one year, will be used as the main criteria to compare children with early surgery to children with late surgery, and those where the diagnosis was obtained prior to birth with those receiving it at birth. Discussion The mental and psychological dimensions relating to the abnormality and its correction will be analysed for the parents (the importance of prenatal diagnosis, relational development with the child, self-image, quality of life) and also, for the first time, for the child (distress, withdrawal). In an ethical perspective, the different time lapses until surgery in the different protocols and their effects will be analysed, so

  16. Sensory Constraints on Birdsong Syntax: Neural Responses to Swamp Sparrow Songs with Accelerated Trill Rates.

    PubMed

    Prather, Jf; Peters, S; Mooney, R; Nowicki, S

    2012-06-01

    Both sensory and motor mechanisms can constrain behavioral performance. Sensory mechanisms may be especially important for constraining behaviors that depend on experience, such as learned birdsongs. Swamp sparrows learn to sing by imitating the song of a tutor, but sparrows fail to accurately imitate artificial tutor songs with abnormally accelerated trills, instead singing brief and rapid trills interrupted by silent gaps. This "broken syntax" has been proposed to arise from vocal-motor limitations. Here we consider whether sensory limitations exist that could also contribute to broken syntax. We tested this idea by recording auditory-evoked activity of sensorimotor neurons in the swamp sparrow's brain that are known to be important for the learning, performance and perception of song. In freely behaving adult sparrows that sang songs with normal syntax, neurons were detected that exhibited precisely time-locked activity to each repetition of the syllable in a trill when presented at a natural rate. Those cells failed to faithfully follow syllables presented at an accelerated rate, however, and their failure to respond to consecutive syllables increased as a function of trill rate. This "flickering" auditory representation in animals performing normal syntax reveals a central constraint on the sensory processing of rapid trills. Furthermore, because these neurons are implicated in both song learning and perception, and because auditory flickering began to occur at accelerated trill rates previously associated with the emergence of broken song syntax, these sensory constraints may contribute to the emergence of broken syntax.

  17. Sensory Constraints on Birdsong Syntax: Neural Responses to Swamp Sparrow Songs with Accelerated Trill Rates

    PubMed Central

    Prather, JF; Peters, S; Mooney, R; Nowicki, S

    2013-01-01

    Both sensory and motor mechanisms can constrain behavioral performance. Sensory mechanisms may be especially important for constraining behaviors that depend on experience, such as learned birdsongs. Swamp sparrows learn to sing by imitating the song of a tutor, but sparrows fail to accurately imitate artificial tutor songs with abnormally accelerated trills, instead singing brief and rapid trills interrupted by silent gaps. This “broken syntax” has been proposed to arise from vocal-motor limitations. Here we consider whether sensory limitations exist that could also contribute to broken syntax. We tested this idea by recording auditory-evoked activity of sensorimotor neurons in the swamp sparrow’s brain that are known to be important for the learning, performance and perception of song. In freely behaving adult sparrows that sang songs with normal syntax, neurons were detected that exhibited precisely time-locked activity to each repetition of the syllable in a trill when presented at a natural rate. Those cells failed to faithfully follow syllables presented at an accelerated rate, however, and their failure to respond to consecutive syllables increased as a function of trill rate. This “flickering” auditory representation in animals performing normal syntax reveals a central constraint on the sensory processing of rapid trills. Furthermore, because these neurons are implicated in both song learning and perception, and because auditory flickering began to occur at accelerated trill rates previously associated with the emergence of broken song syntax, these sensory constraints may contribute to the emergence of broken syntax. PMID:23976787

  18. Sensory mononeuropathies.

    PubMed

    Massey, E W

    1998-01-01

    The clinical neurologist frequently encounters patients with a variety of focal sensory symptoms and signs. This article reviews the clinical features, etiologies, laboratory findings, and management of the common sensory mononeuropathies including meralgia paresthetica, cheiralgia paresthetica, notalgia paresthetica, gonyalgia paresthetica, digitalgia paresthetica, intercostal neuropathy, and mental neuropathy.

  19. Sensory change following motor learning.

    PubMed

    Mattar, Andrew A G; Nasir, Sazzad M; Darainy, Mohammad; Ostry, David J

    2011-01-01

    Here we describe two studies linking perceptual change with motor learning. In the first, we document persistent changes in somatosensory perception that occur following force field learning. Subjects learned to control a robotic device that applied forces to the hand during arm movements. This led to a change in the sensed position of the limb that lasted at least 24 h. Control experiments revealed that the sensory change depended on motor learning. In the second study, we describe changes in the perception of speech sounds that occur following speech motor learning. Subjects adapted control of speech movements to compensate for loads applied to the jaw by a robot. Perception of speech sounds was measured before and after motor learning. Adapted subjects showed a consistent shift in perception. In contrast, no consistent shift was seen in control subjects and subjects that did not adapt to the load. These studies suggest that motor learning changes both sensory and motor function.

  20. Impaired perception of surface tilt in progressive supranuclear palsy

    PubMed Central

    Dale, Marian L.; Horak, Fay B.; Wright, W. Geoffrey; Schoneburg, Bernadette M.; Nutt, John G.; Mancini, Martina

    2017-01-01

    Introduction Progressive supranuclear palsy (PSP) is characterized by early postural instability and backward falls. The mechanisms underlying backward postural instability in PSP are not understood. The aim of this study was to test the hypothesis that postural instability in PSP is a result of dysfunction in the perception of postural verticality. Methods We gathered posturography data on 12 subjects with PSP to compare with 12 subjects with idiopathic Parkinson’s Disease (PD) and 12 healthy subjects. Objective tests of postural impairment included: dynamic sensory perception tests of gravity and of surface oscillations, postural responses to surface perturbations, the sensory organization test of postural sway under altered sensory conditions and limits of stability in stance. Results Perception of toes up (but not toes down) surface tilt was reduced in subjects with PSP compared to both control subjects (p≤0.001 standing, p≤0.007 seated) and subjects with PD (p≤0.03 standing, p≤0.04 seated). Subjects with PSP, PD and normal controls accurately perceived the direction of gravity when standing on a tilting surface. Unlike PD and control subjects, subjects with PSP exerted less postural corrective torque in response to toes up surface tilts. Discussion Difficulty perceiving backward tilt of the surface or body may account for backward falls and postural impairments in patients with PSP. These observations suggest that abnormal central integration of sensory inputs for perception of body and surface orientation contributes to the pathophysiology of postural instability in PSP. PMID:28267762

  1. Alveolar abnormalities

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...

  2. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... 2012:chap 71. Zaiac MN, Walker A. Nail abnormalities associated with systemic pathologies. Clin Dermatol . 2013;31: ...

  3. M.I.T./Canadian vestibular experiments on the Spacelab-1 mission. I - Sensory adaptation to weightlessness and readaptation to one-g: An overview

    NASA Technical Reports Server (NTRS)

    Young, L. R.; Oman, C. M.; Lichtenberg, B. K.; Watt, D. G. D.; Money, K. E.

    1986-01-01

    Human sensory/motor adaptation to weightlessness and readaptation to earth's gravity are assessed. Preflight and postflight vestibular and visual responses for the crew on the Spacelab-1 mission are studied; the effect of the abnormal pattern of otolith afferent signals caused by weightlessness on the pitch and roll perception and postural adjustments of the subjects are examined. It is observed that body position and postural reactions change due to weightlessness in order to utilize the varied sensory inputs in a manner suited to microgravity conditions. The aspects of reinterpretation include: (1) tilt acceleration reinterpretation, (2) reduced postural response to z-axis linear acceleration, and (3) increased attention to visual cues.

  4. Sensory impacts of food-packaging interactions.

    PubMed

    Duncan, Susan E; Webster, Janet B

    2009-01-01

    Sensory changes in food products result from intentional or unintentional interactions with packaging materials and from failure of materials to protect product integrity or quality. Resolving sensory issues related to plastic food packaging involves knowledge provided by sensory scientists, materials scientists, packaging manufacturers, food processors, and consumers. Effective communication among scientists and engineers from different disciplines and industries can help scientists understand package-product interactions. Very limited published literature describes sensory perceptions associated with food-package interactions. This article discusses sensory impacts, with emphasis on oxidation reactions, associated with the interaction of food and materials, including taints, scalping, changes in food quality as a function of packaging, and examples of material innovations for smart packaging that can improve sensory quality of foods and beverages. Sensory evaluation is an important tool for improved package selection and development of new materials.

  5. Expressing fear enhances sensory acquisition.

    PubMed

    Susskind, Joshua M; Lee, Daniel H; Cusi, Andrée; Feiman, Roman; Grabski, Wojtek; Anderson, Adam K

    2008-07-01

    It has been proposed that facial expression production originates in sensory regulation. Here we demonstrate that facial expressions of fear are configured to enhance sensory acquisition. A statistical model of expression appearance revealed that fear and disgust expressions have opposite shape and surface reflectance features. We hypothesized that this reflects a fundamental antagonism serving to augment versus diminish sensory exposure. In keeping with this hypothesis, when subjects posed expressions of fear, they had a subjectively larger visual field, faster eye movements during target localization and an increase in nasal volume and air velocity during inspiration. The opposite pattern was found for disgust. Fear may therefore work to enhance perception, whereas disgust dampens it. These convergent results provide support for the Darwinian hypothesis that facial expressions are not arbitrary configurations for social communication, but rather, expressions may have originated in altering the sensory interface with the physical world.

  6. Instrumental intelligent test of food sensory quality as mimic of human panel test combining multiple cross-perception sensors and data fusion.

    PubMed

    Ouyang, Qin; Zhao, Jiewen; Chen, Quansheng

    2014-09-02

    Instrumental test of food quality using perception sensors instead of human panel test is attracting massive attention recently. A novel cross-perception multi-sensors data fusion imitating multiple mammal perception was proposed for the instrumental test in this work. First, three mimic sensors of electronic eye, electronic nose and electronic tongue were used in sequence for data acquisition of rice wine samples. Then all data from the three different sensors were preprocessed and merged. Next, three cross-perception variables i.e., color, aroma and taste, were constructed using principal components analysis (PCA) and multiple linear regression (MLR) which were used as the input of models. MLR, back-propagation artificial neural network (BPANN) and support vector machine (SVM) were comparatively used for modeling, and the instrumental test was achieved for the comprehensive quality of samples. Results showed the proposed cross-perception multi-sensors data fusion presented obvious superiority to the traditional data fusion methodologies, also achieved a high correlation coefficient (>90%) with the human panel test results. This work demonstrated that the instrumental test based on the cross-perception multi-sensors data fusion can actually mimic the human test behavior, therefore is of great significance to ensure the quality of products and decrease the loss of the manufacturers.

  7. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  8. Sensory Processing in Low-Functioning Adults with Autism Spectrum Disorder: Distinct Sensory Profiles and Their Relationships with Behavioral Dysfunction

    ERIC Educational Resources Information Center

    Gonthier, Corentin; Longuépée, Lucie; Bouvard, Martine

    2016-01-01

    Sensory processing abnormalities are relatively universal in individuals with autism spectrum disorder, and can be very disabling. Surprisingly, very few studies have investigated these abnormalities in low-functioning adults with autism. The goals of the present study were (a) to characterize distinct profiles of sensory dysfunction, and (b) to…

  9. Sensory symptoms in autism spectrum disorders.

    PubMed

    Hazen, Eric P; Stornelli, Jennifer L; O'Rourke, Julia A; Koesterer, Karmen; McDougle, Christopher J

    2014-01-01

    The aim of this review is to summarize the recent literature regarding abnormalities in sensory functioning in individuals with autism spectrum disorder (ASD), including evidence regarding the neurobiological basis of these symptoms, their clinical correlates, and their treatment. Abnormalities in responses to sensory stimuli are highly prevalent in individuals with ASD. The underlying neurobiology of these symptoms is unclear, but several theories have been proposed linking possible etiologies of sensory dysfunction with known abnormalities in brain structure and function that are associated with ASD. In addition to the distress that sensory symptoms can cause patients and caregivers, these phenomena have been correlated with several other problematic symptoms and behaviors associated with ASD, including restrictive and repetitive behavior, self-injurious behavior, anxiety, inattention, and gastrointestinal complaints. It is unclear whether these correlations are causative in nature or whether they are due to shared underlying pathophysiology. The best-known treatments for sensory symptoms in ASD involve a program of occupational therapy that is specifically tailored to the needs of the individual and that may include sensory integration therapy, a sensory diet, and environmental modifications. While some empirical evidence supports these treatments, more research is needed to evaluate their efficacy, and other means of alleviating these symptoms, including possible psychopharmacological interventions, need to be explored. Additional research into the sensory symptoms associated with ASD has the potential to shed more light on the nature and pathophysiology of these disorders and to open new avenues of effective treatments.

  10. Sensory perineuritis.

    PubMed Central

    Matthews, W B; Squier, M V

    1988-01-01

    A case of sensory perineuritis is described, affecting individual cutaneous nerves in the extremities and with a chronic inflammatory exudate confined to the perineurium in a sural nerve biopsy. No cause was found. The condition slowly resolved on steroid treatment. Images PMID:3379419

  11. Anatomy of the antennal dorsal organ in female of Neodryinus typhlocybae (Hymenoptera: Dryinidae): A peculiar sensory structure possibly involved in perception of host vibration.

    PubMed

    Riolo, Paola; Isidoro, Nunzio; Ruschioni, Sara; Minuz, Roxana L; Bin, Ferdinando; Romani, Roberto

    2016-01-01

    Neodryinus typhlocybae (Hymenoptera: Dryinidae) is a natural enemy of the planthopper Metcalfa pruinosa, which was introduced from North America into Europe and has become established in various regions as a pest species. Vibrational signals play a crucial role in the communication of M. pruinosa, which appears to be exploited by N. typhlocybae. Scanning and transmission electron microscopy have shown that the antennae of N. typhlocybae females have peculiar and complex sensory structures: deep longitudinal grooves that house long sensilla trichodea, termed here "Antennal Dorsal Organs." Such structures were not present on male antennae. These sensilla extend for the length of the grooves, without contact with the groove cuticle. Their hair shaft is empty and aporous, and inserted into a specialized socket, underneath which there is a cuticular ampulla-like chamber. Each sensillum is associated with two sensory neurons: one terminates at the proximal end of the dendritic sheath; the other continues into the sensillum sinus and is enclosed in the dendritic sheath. This second sensory neuron then enters the ampulla-like chamber through the circular opening, and then terminates with a conspicuous tubular body at the shaft base. The possible involvement of this peculiar structure in the context of host recognition mechanism is discussed.

  12. Primary processes in sensory cells: current advances.

    PubMed

    Frings, Stephan

    2009-01-01

    In the course of evolution, the strong and unremitting selective pressure on sensory performance has driven the acuity of sensory organs to its physical limits. As a consequence, the study of primary sensory processes illustrates impressively how far a physiological function can be improved if the survival of a species depends on it. Sensory cells that detect single-photons, single molecules, mechanical motions on a nanometer scale, or incredibly small fluctuations of electromagnetic fields have fascinated physiologists for a long time. It is a great challenge to understand the primary sensory processes on a molecular level. This review points out some important recent developments in the search for primary processes in sensory cells that mediate touch perception, hearing, vision, taste, olfaction, as well as the analysis of light polarization and the orientation in the Earth's magnetic field. The data are screened for common transduction strategies and common transduction molecules, an aspect that may be helpful for researchers in the field.

  13. Towards a functional neuroanatomy of conscious perception and its modulation by volition: implications of human auditory neuroimaging studies.

    PubMed Central

    Silbersweig, D A; Stern, E

    1998-01-01

    Conscious sensory perception and its modulation by volition are integral to human mental life. Functional neuroimaging techniques provide a direct means of identifying and characterizing in vivo the systems-level patterns of brain activity associated with such mental functions. In a series of positron emission tomography activation experiments, we and our colleagues have examined a range of normal and abnormal auditory states that, when contrasted, provide dissociations relevant to the question of the neural substrates of sensory awareness. These dissociations include sensory awareness in the presence and absence of external sensory stimuli, the transition from sensory unawareness to awareness (or vice versa) in the presence of sensory stimuli, and sensory awareness with and without volition. The auditory states studied include hallucinations, mental imagery, cortical deafness modulated by attention, and hearing modulated by sedation. The results of these studies highlight the distributed nature of the functional neuroanatomy that is sufficient, if not necessary, for sensory awareness. The probable roles of unimodal association (as compared with primary) cortices, heteromodal cortices, limbic/paralimbic regions and subcortical structures (such as the thalamus) are discussed. In addition, interactions between pre- and post-rolandic regions are examined in the context of top-down, volitional modulation of sensory awareness. PMID:9854260

  14. Using a classic paper by Bell as a platform for discussing the role of corollary discharge-like signals in sensory perception and movement control.

    PubMed

    Cecala, Aaron L

    2014-03-01

    Decades of behavioral observations have shown that invertebrate and vertebrate species have the ability to distinguish between self-generated afferent inputs versus those that are generated externally. In the present article, I describe activities focused around the discussion of a classic American Physiological Society paper by Curtis C. Bell that lays the foundation for students to investigate the neural substrate underlying this ability. Students will leave this activity being able to 1) describe the technical aspects and limitations of an electric fish preparation commonly used to acquire single unit (extracellular) neurophysiological data, 2) provide physiological evidence showing that the activity of principal cells in the posterior lateral line lobe of the electric fish brain reflects that of a reafference comparator that could be used in dissociating self-generated versus externally generated sensory signals, and 3) knowledgeably discuss hypotheses concerning the role of corollary discharge and cerebellar-like structures in vertebrate and invertebrate species. The skills and background knowledge gained in this activity lay the platform for advanced study of scientific investigations into sensory, motor, and cognitive processes in undergraduate, graduate, or medical school curricula.

  15. Leukocyte abnormalities.

    PubMed

    Gabig, T G

    1980-07-01

    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  16. Sensory perception of and salivary protein response to astringency as a function of the 6-n-propylthioural (PROP) bitter-taste phenotype.

    PubMed

    Melis, Melania; Yousaf, Neeta Y; Mattes, Mitchell Z; Cabras, Tiziana; Messana, Irene; Crnjar, Roberto; Tomassini Barbarossa, Iole; Tepper, Beverly J

    2017-01-24

    Individual differences in astringency perception are poorly understood. Astringency from tannins stimulates the release of specific classes of salivary proteins. These proteins form complexes with tannins, altering their perceived astringency and reducing their bioavailability. We studied the bitter compound, 6-n-propylthioural (PROP), as a phenotypic marker for variation in astringency perception and salivary protein responses. Seventy-nine subjects classified by PROP taster status rated cranberry juice cocktail (CJC; with added sugar) supplemented with 0, 1.5 or 2.0g/L tannic acid (TA). Saliva for protein analyses was collected at rest, or after stimulation with TA or cranberry juice (CJ; without added sugar). CJC with 1.5g/L tannic acid was found to be less astringent, and was liked more by PROP non-taster males than PROP taster males, consistent with the expectation that non-tasters are less sensitive to astringency. Levels of acidic Proline Rich Proteins (aPRPs) and basic Proline Rich Proteins (bPRPs) decreased after TA, while levels of aPRPs, bPRPs and Cystatins unexpectedly rose after CJ. Increases in bPRPs and Cystatins were only observed in PROP tasters. The PROP phenotype plays a gender-specific, but somewhat limited role in the perceived astringency of tannic-acid supplemented, cranberry juice cocktail. The PROP phenotype (regardless of gender) may also be involved in the release of salivary proteins previously implicated in oral health.

  17. Parenting behaviors of African American and Caucasian families: parent and child perceptions, associations with child weight, and ability to identify abnormal weight status.

    PubMed

    Polfuss, Michele; Frenn, Marilyn

    2012-06-01

    This study examined the agreement between parent and child perceptions of parenting behaviors, the relationship of the behaviors with the child's weight status, and the ability of the parent to correctly identify weight status in 176 parent-child dyads (89 Caucasian and 87 African American). Correlational and regression analyses were used. Findings included moderate to weak correlations in child and parent assessments of parenting behaviors. Caucasian dyads had higher correlations than African American dyads. Most parents correctly identified their own and their child's weight status. Parents of overweight children used increased controlling behaviors, but the number of controlling behaviors decreased when the parent expressed concern with their child's weight.

  18. Perception and the Mind-Body Problem.

    ERIC Educational Resources Information Center

    Heslep, Robert D.

    1984-01-01

    This article discusses sensory perception. The author reorganizes a previous conception of the interaction between sense organ and physical object and suggests how educational researchers study the perception of physical objects. (DF)

  19. Sensory-motor transformations for speech occur bilaterally.

    PubMed

    Cogan, Gregory B; Thesen, Thomas; Carlson, Chad; Doyle, Werner; Devinsky, Orrin; Pesaran, Bijan

    2014-03-06

    Historically, the study of speech processing has emphasized a strong link between auditory perceptual input and motor production output. A kind of 'parity' is essential, as both perception- and production-based representations must form a unified interface to facilitate access to higher-order language processes such as syntax and semantics, believed to be computed in the dominant, typically left hemisphere. Although various theories have been proposed to unite perception and production, the underlying neural mechanisms are unclear. Early models of speech and language processing proposed that perceptual processing occurred in the left posterior superior temporal gyrus (Wernicke's area) and motor production processes occurred in the left inferior frontal gyrus (Broca's area). Sensory activity was proposed to link to production activity through connecting fibre tracts, forming the left lateralized speech sensory-motor system. Although recent evidence indicates that speech perception occurs bilaterally, prevailing models maintain that the speech sensory-motor system is left lateralized and facilitates the transformation from sensory-based auditory representations to motor-based production representations. However, evidence for the lateralized computation of sensory-motor speech transformations is indirect and primarily comes from stroke patients that have speech repetition deficits (conduction aphasia) and studies using covert speech and haemodynamic functional imaging. Whether the speech sensory-motor system is lateralized, like higher-order language processes, or bilateral, like speech perception, is controversial. Here we use direct neural recordings in subjects performing sensory-motor tasks involving overt speech production to show that sensory-motor transformations occur bilaterally. We demonstrate that electrodes over bilateral inferior frontal, inferior parietal, superior temporal, premotor and somatosensory cortices exhibit robust sensory-motor neural

  20. Noradrenergic and cholinergic modulation of olfactory bulb sensory processing

    PubMed Central

    Devore, Sasha; Linster, Christiane

    2012-01-01

    Neuromodulation in sensory perception serves important functions such as regulation of signal to noise ratio, attention, and modulation of learning and memory. Neuromodulators in specific sensory areas often have highly similar cellular, but distinct behavioral effects. To address this issue, we here review the function and role of two neuromodulators, acetylcholine (Ach) and noradrenaline (NE) for olfactory sensory processing in the adult main olfactory bulb. We first describe specific bulbar sensory computations, review cellular effects of each modulator and then address their specific roles in bulbar sensory processing. We finally put these data in a behavioral and computational perspective. PMID:22905025

  1. National survey of sensory features in children with ASD: factor structure of the sensory experience questionnaire (3.0).

    PubMed

    Ausderau, Karla; Sideris, John; Furlong, Melissa; Little, Lauren M; Bulluck, John; Baranek, Grace T

    2014-04-01

    This national online survey study characterized sensory features in 1,307 children with autism spectrum disorder (ASD) ages 2-12 years using the Sensory Experiences Questionnaire Version 3.0 (SEQ-3.0). Using the SEQ-3.0, a confirmatory factor analytic model with four substantive factors of hypothesized sensory response patterns (i.e., hyporesponsiveness; hyperresponsiveness; sensory interests, repetitions and seeking behaviors; enhanced perception), five method factors of sensory modalities (i.e., auditory, visual, tactile, gustatory/olfactory, vestibular/proprioceptive), and one of social context were tested with good model fit. Child and family characteristics associated with the sensory response patterns were explored. The effect of sensory response patterns on autism severity was tested, controlling for key child and family characteristics. The SEQ-3.0 demonstrates an empirically valid factor structure specific to ASD that considers sensory response patterns, modalities, and social context.

  2. Sensory Development: Brief Visual Deprivation Alters Audiovisual Interactions.

    PubMed

    Lomber, Stephen G; Butler, Blake E

    2016-11-21

    Two recent studies have independently demonstrated that short periods of visual deprivation early in human development can have long-term functional consequences on sensory perception and on the balance between auditory and visual attention.

  3. Physiology of the sensory sphere under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Yuganov, Y. M.; Kopanev, V. I.

    1975-01-01

    Information regarding the influence on sensory perception of certain space flight factors, including weightlessness, acceleration, and vibration, is presented. Several illusions which occur under these conditions are described. The results of ground based experiments are also discussed.

  4. Sensory Cues, Visualization and Physics Learning

    ERIC Educational Resources Information Center

    Reiner, Miriam

    2009-01-01

    Bodily manipulations, such as juggling, suggest a well-synchronized physical interaction as if the person were a physics expert. The juggler uses "knowledge" that is rooted in bodily experience, to interact with the environment. Such enacted bodily knowledge is powerful, efficient, predictive, and relates to sensory perception of the dynamics of…

  5. Perception and Hierarchical Dynamics

    PubMed Central

    Kiebel, Stefan J.; Daunizeau, Jean; Friston, Karl J.

    2009-01-01

    In this paper, we suggest that perception could be modeled by assuming that sensory input is generated by a hierarchy of attractors in a dynamic system. We describe a mathematical model which exploits the temporal structure of rapid sensory dynamics to track the slower trajectories of their underlying causes. This model establishes a proof of concept that slowly changing neuronal states can encode the trajectories of faster sensory signals. We link this hierarchical account to recent developments in the perception of human action; in particular artificial speech recognition. We argue that these hierarchical models of dynamical systems are a plausible starting point to develop robust recognition schemes, because they capture critical temporal dependencies induced by deep hierarchical structure. We conclude by suggesting that a fruitful computational neuroscience approach may emerge from modeling perception as non-autonomous recognition dynamics enslaved by autonomous hierarchical dynamics in the sensorium. PMID:19649171

  6. Language-Universal Sensory Deficits in Developmental Dyslexia: English, Spanish, and Chinese

    ERIC Educational Resources Information Center

    Goswami, Usha; Wang, H.-L. Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina

    2011-01-01

    Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of "phonological processing", the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific…

  7. Susceptibility of Primary Sensory Cortex to Spreading Depolarizations

    PubMed Central

    Bogdanov, Volodymyr B.; Middleton, Natalie A.; Theriot, Jeremy J.; Parker, Patrick D.; Abdullah, Osama M.; Ju, Y. Sungtaek; Hartings, Jed A.

    2016-01-01

    Spreading depolarizations (SDs) are recognized as actors in neurological disorders as diverse as migraine and traumatic brain injury (TBI). Migraine aura involves sensory percepts, suggesting that sensory cortices might be intrinsically susceptible to SDs. We used optical imaging, MRI, and field potential and potassium electrode recordings in mice and electrocorticographic recordings in humans to determine the susceptibility of different brain regions to SDs. Optical imaging experiments in mice under isoflurane anesthesia showed that both cortical spreading depression and terminal anoxic depolarization arose preferentially in the whisker barrel region of parietal sensory cortex. MRI recordings under isoflurane, ketamine/xylazine, ketamine/isoflurane, and urethane anesthesia demonstrated that the depolarizations did not propagate from a subcortical source. Potassium concentrations showed larger increases in sensory cortex, suggesting a mechanism of susceptibility. Sensory stimulation biased the timing but not the location of depolarization onset. In humans with TBI, there was a trend toward increased incidence of SDs in parietal/temporal sensory cortex compared with other regions. In conclusion, SDs are inducible preferentially in primary sensory cortex in mice and most likely in humans. This tropism can explain the predominant sensory phenomenology of migraine aura. It also demonstrates that sensory cortices are vulnerable in brain injury. SIGNIFICANCE STATEMENT Spreading depolarizations (SDs) are involved in neurologic disorders as diverse as migraine and traumatic brain injury. In migraine, the nature of aura symptoms suggests that sensory cortex may be preferentially susceptible. In brain injury, SDs occur at a vulnerable time, during which the issue of sensory stimulation is much debated. We show, in mouse and human, that sensory cortex is more susceptible to SDs. We find that sensory stimulation biases the timing but not the location of the depolarizations

  8. Effect of Facial Sensory Re-training on Sensory Thresholds

    PubMed Central

    Essick, G.K.; Phillips, C.; Zuniga, J.

    2010-01-01

    Nearly 100% of patients experience trauma to the trigeminal nerve during orthognathic surgery, impairing sensation and sensory function on the face. In a recent randomized clinical trial, people who performed sensory re-training exercises reported less difficulty related to residual numbness and decreased lip sensitivity than those who performed standard opening exercises only. We hypothesized that re-training reduces the impaired performance on neurosensory tests of tactile function that is commonly observed post-surgically. We analyzed thresholds for contact detection, two-point discrimination, and two-point perception, obtained during the clinical trial before and at 1, 3, and 6 months after surgery, to assess tactile detection and discriminative sensitivities, and subjective interpretation of tactile stimulation, respectively. Post-surgery, the retrained persons exhibited less impairment, on average, than non-retrained persons only in two-point perception (P < 0.025), suggesting that retrained persons experienced or interpreted the tactile stimuli differently than did non-retrained persons. PMID:17525360

  9. "A little information excites us." Consumer sensory experience of Vermont artisan cheese as active practice.

    PubMed

    Lahne, Jacob; Trubek, Amy B

    2014-07-01

    This research is concerned with explaining consumer preference for Vermont artisan cheese and the relationship between that preference and sensory experience. Artisan cheesemaking is increasingly an important part of Vermont's dairy sector, and this tracks a growing trend of artisan agricultural practice in the United States. In popular discourse and academic research into products like artisan cheese, consumers explain their preferences in terms of intrinsic sensory and extrinsic - supposedly nonsensory - food qualities. In laboratory sensory studies, however, the relationship between preference, intrinsic, and extrinsic qualities changes or disappears. In contrast, this study explains this relationship by adopting a social theory of sensory perception as a practice in everyday life. This theory is applied to a series of focus group interviews with Vermont artisan cheese consumers about their everyday perceptions. Based on the data, a conceptual framework for the sensory perception of Vermont artisan cheese is suggested: consumers combine information about producer practice, social context, and the materiality of the product through an active, learned practice of sensory perception. Particular qualities that drive consumer sensory experience and preference are identified from the interview data. Many of these qualities are difficult to categorize as entirely intrinsic or extrinsic, highlighting the need for developing new approaches of sensory evaluation in order to fully capture everyday consumer sensory perception. Thus, this research demonstrates that social theory provides new and valuable insights into consumer sensory preference for Vermont artisan cheese.

  10. Autism: Tactile Perception and Emotion

    ERIC Educational Resources Information Center

    Pernon, E.; Pry, R.; Baghdadli, A.

    2007-01-01

    Background: For many years, and especially since Waynbaum and Wallon, psychology and psychopathology have dealt with cognitive perception, but have had little to do with the affective qualities of perception. Our aim was to study the influence of the sensory environment on people with autism. Method: Several experiments were carried out using…

  11. Phantom perception: voluntary and involuntary nonretinal vision.

    PubMed

    Pearson, Joel; Westbrook, Fred

    2015-05-01

    Hallucinations, mental imagery, synesthesia, perceptual filling-in, and many illusions are conscious visual experiences without a corresponding retinal stimulus: what we call 'phantom perception'. Such percepts show that our experience of the world is not solely determined by direct sensory input. Some phantom percepts are voluntary, whereas others are involuntarily, occurring automatically. Here, by way of review, we compare and contrast these two types of phantom perception and their neural representations. We propose a dichotomous framework for phantom vision, analogous to the subtypes of attention: endogenous and exogenous. This framework unifies findings from different fields and species, providing a guide to study the constructive nature of conscious sensory perception.

  12. Mechanisms of sensory transduction in the skin.

    PubMed

    Lumpkin, Ellen A; Caterina, Michael J

    2007-02-22

    Sensory neurons innervating the skin encode the familiar sensations of temperature, touch and pain. An explosion of progress has revealed unanticipated cellular and molecular complexity in these senses. It is now clear that perception of a single stimulus, such as heat, requires several transduction mechanisms. Conversely, a given protein may contribute to multiple senses, such as heat and touch. Recent studies have also led to the surprising insight that skin cells might transduce temperature and touch. To break the code underlying somatosensation, we must therefore understand how the skin's sensory functions are divided among signalling molecules and cell types.

  13. [Spotlight on sensory irritation and its treatment].

    PubMed

    Piérard-Franchimont, C; Piérard, G E

    2005-10-01

    Sensory irritation is directly bound to the concept of sensitive skin. A large proportion of the population, in particular young women, is affected. The reported symptoms are those of skin discomfort without any visible alteration of the skin. According to the subjects, the timing and the cutaneous sites, various perceptions occur, including pruritus, burning and stinging sensations. Sensory irritation is difficult to quantify because it remains subjective by essence. The condition is sometimes aggravated by some cosmetics, cleaning and cleansing products, wool contact and exposure to cold and dry climate. The responsible ingredients are often agents affecting functions of stratum corneum without being obvious chemical irritants.

  14. A model for communication of sensory quality in the seafood processing chain.

    PubMed

    Green-Petersen, Ditte; Nielsen, Jette; Hyldig, Grethe

    2012-01-01

    Sensory quality has a key influence of consumer perception of a product. It is therefore of great importance for the processing industry that the sensory quality fulfils the expectations of the consumer. Sensory evaluations are the ultimate tool to measure and communicate sensory quality, but it is generally not fully implemented in the chain from catch to consumer. The importance of communicating sensory demands and results from evaluations in the seafood processing chain is described and a Seafood Sensory Quality Model (SSQM) is suggested as a communication tool.

  15. Genetic influences on oral fat perception and preference: Presented at the symposium "The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond" held at the Institute of Food Technologists 2011 Annual Meeting, New Orleans, LA, June 12, 2011.

    PubMed

    Keller, Kathleen L

    2012-03-01

    Research suggests that dietary fat is perceived not only by texture, but also by taste. However, the receptors for chemosensory response to fat have not been identified. We report on 2 genes,TAS2R38 and CD36, that may play a role in fat perception and preference in humans. TAS2R38 is a taste receptor for bitter thiourea compounds, including 6-n-propylthiouracil (PROP) and phenylthiocarbamide (PTC). Nontasters of these compounds tend to be poor at discriminating fat in foods, even though they prefer higher fat versions of these foods. CD36, a fatty acid translocase expressed on multiple cell types including taste cells, plays a critical role in fat preferences in animals. In studies conducted in our laboratory with African-American adults, we identified a variant in the CD36 gene, rs1761667, that predicts oral responses to fat. Individuals who have the A/A genotype at this site tend to find Italian salad dressings creamier than those who have other genotypes at this site. In addition, A/A individuals report higher preferences for added fats, oils, and spreads (for example margarine). Assuming these data are confirmed in other populations, screening for CD36 genotype may provide helpful information to food companies for developing fat-modified products.

  16. Epilepsy and the Sensory Systems

    PubMed Central

    2016-01-01

    The relations of epilepsy and the sensory systems are bidirectional. Epilepsy may act on sensory systems by producing sensory seizure symptoms, by altering sensory performance, and by epilepsy treatment causing sensory side effects. Sensory system activity may have an important role in both generation and inhibition of seizures. PMID:27857611

  17. Associations between visual perception accuracy and confidence in a dopaminergic manipulation study

    PubMed Central

    Andreou, Christina; Bozikas, Vasilis P.; Luedtke, Thies; Moritz, Steffen

    2015-01-01

    Delusions are defined as fixed erroneous beliefs that are based on misinterpretation of events or perception, and cannot be corrected by argumentation to the opposite. Cognitive theories of delusions regard this symptom as resulting from specific distorted thinking styles that lead to biased integration and interpretation of perceived stimuli (i.e., reasoning biases). In previous studies, we were able to show that one of these reasoning biases, overconfidence in errors, can be modulated by drugs that act on the dopamine system, a major neurotransmitter system implicated in the pathogenesis of delusions and other psychotic symptoms. Another processing domain suggested to involve the dopamine system and to be abnormal in psychotic disorders is sensory perception. The present study aimed to investigate whether (lower-order) sensory perception and (higher-order) overconfidence in errors are similarly affected by dopaminergic modulation in healthy subjects. Thirty-four healthy individuals were assessed upon administration of l-dopa, placebo, or haloperidol within a randomized, double-blind, cross-over design. Variables of interest were hits and false alarms in an illusory perception paradigm requiring speeded detection of pictures over a noisy background, and subjective confidence ratings for correct and incorrect responses. There was a significant linear increase of false alarm rates from haloperidol to placebo to l-dopa, whereas hit rates were not affected by dopaminergic manipulation. As hypothesized, confidence in error responses was significantly higher with l-dopa compared to placebo. Moreover, confidence in erroneous responses significantly correlated with false alarm rates. These findings suggest that overconfidence in errors and aberrant sensory processing might be both interdependent and related to dopaminergic transmission abnormalities in patients with psychosis. PMID:25932015

  18. Brain structural correlates of sensory phenomena in patients with obsessive–compulsive disorder

    PubMed Central

    Subirà, Marta; Sato, João R.; Alonso, Pino; do Rosário, Maria C.; Segalàs, Cinto; Batistuzzo, Marcelo C.; Real, Eva; Lopes, Antonio C.; Cerrillo, Ester; Diniz, Juliana B.; Pujol, Jesús; Assis, Rachel O.; Menchón, José M.; Shavitt, Roseli G.; Busatto, Geraldo F.; Cardoner, Narcís; Miguel, Euripedes C.; Hoexter, Marcelo Q.; Soriano-Mas, Carles

    2015-01-01

    Background Sensory phenomena (SP) are uncomfortable feelings, including bodily sensations, sense of inner tension, “just-right” perceptions, feelings of incompleteness, or “urge-only” phenomena, which have been described to precede, trigger or accompany repetitive behaviours in individuals with obsessive–compulsive disorder (OCD). Sensory phenomena are also observed in individuals with tic disorders, and previous research suggests that sensorimotor cortex abnormalities underpin the presence of SP in such patients. However, to our knowledge, no studies have assessed the neural correlates of SP in patients with OCD. Methods We assessed the presence of SP using the University of São Paulo Sensory Phenomena Scale in patients with OCD and healthy controls from specialized units in São Paulo, Brazil, and Barcelona, Spain. All participants underwent a structural magnetic resonance examination, and brain images were examined using DARTEL voxel-based morphometry. We evaluated grey matter volume differences between patients with and without SP and healthy controls within the sensorimotor and premotor cortices. Results We included 106 patients with OCD and 87 controls in our study. Patients with SP (67% of the sample) showed grey matter volume increases in the left sensorimotor cortex in comparison to patients without SP and bilateral sensorimotor cortex grey matter volume increases in comparison to controls. No differences were observed between patients without SP and controls. Limitations Most patients were medicated. Participant recruitment and image acquisition were performed in 2 different centres. Conclusion We have identified a structural correlate of SP in patients with OCD involving grey matter volume increases within the sensorimotor cortex; this finding is in agreement with those of tic disorder studies showing that abnormal activity and volume increases within this region are associated with the urges preceding tic onset. PMID:25652753

  19. The Integrated Development of Sensory Organization

    PubMed Central

    Lickliter, Robert

    2011-01-01

    Synopsis The natural environment provides a flux of concurrent stimulation to all our senses, and the integration of information from different sensory systems is a fundamental feature of perception and cognition. How information from the different senses is integrated has long been of concern to several scientific disciplines, including psychology, cognitive science, and the neurosciences, each with different questions and methodologies. In recent years, a growing body of evidence drawn from these various disciplines suggests that the development of early sensory organization is much more plastic and experience-dependent than was previously realized. In this article, I briefly explore some of these recent advances in our understanding of the development of sensory integration and organization and discuss implications of these advances for the care and management of the preterm infant. PMID:22107892

  20. Sensory Conversion Devices

    NASA Astrophysics Data System (ADS)

    Medelius, Pedro

    The human body has five basic sensory functions: touch, vision, hearing, taste, and smell. The effectiveness of one or more of these human sensory functions can be impaired as a result of trauma, congenital defects, or the normal ageing process. Converting one type of function into another, or translating a function to a different part of the body, could result in a better quality of life for a person with diminished sensorial capabilities.

  1. Signaling by Sensory Receptors

    PubMed Central

    Julius, David; Nathans, Jeremy

    2012-01-01

    Sensory systems detect small molecules, mechanical perturbations, or radiation via the activation of receptor proteins and downstream signaling cascades in specialized sensory cells. In vertebrates, the two principal categories of sensory receptors are ion channels, which mediate mechanosensation, thermosensation, and acid and salt taste; and G-protein-coupled receptors (GPCRs), which mediate vision, olfaction, and sweet, bitter, and umami tastes. GPCR-based signaling in rods and cones illustrates the fundamental principles of rapid activation and inactivation, signal amplification, and gain control. Channel-based sensory systems illustrate the integration of diverse modulatory signals at the receptor, as seen in the thermosensory/pain system, and the rapid response kinetics that are possible with direct mechanical gating of a channel. Comparisons of sensory receptor gene sequences reveal numerous examples in which gene duplication and sequence divergence have created novel sensory specificities. This is the evolutionary basis for the observed diversity in temperature- and ligand-dependent gating among thermosensory channels, spectral tuning among visual pigments, and odorant binding among olfactory receptors. The coding of complex external stimuli by a limited number of sensory receptor types has led to the evolution of modality-specific and species-specific patterns of retention or loss of sensory information, a filtering operation that selectively emphasizes features in the stimulus that enhance survival in a particular ecological niche. The many specialized anatomic structures, such as the eye and ear, that house primary sensory neurons further enhance the detection of relevant stimuli. PMID:22110046

  2. Clinical neurophysiology and quantitative sensory testing in the investigation of orofacial pain and sensory function.

    PubMed

    Jääskeläinen, Satu K

    2004-01-01

    Chronic orofacial pain represents a diagnostic and treatment challenge for the clinician. Some conditions, such as atypical facial pain, still lack proper diagnostic criteria, and their etiology is not known. The recent development of neurophysiological methods and quantitative sensory testing for the examination of the trigeminal somatosensory system offers several tools for diagnostic and etiological investigation of orofacial pain. This review presents some of these techniques and the results of their application in studies on orofacial pain and sensory dysfunction. Clinical neurophysiological investigation has greater diagnostic accuracy and sensitivity than clinical examination in the detection of the neurogenic abnormalities of either peripheral or central origin that may underlie symptoms of orofacial pain and sensory dysfunction. Neurophysiological testing may also reveal trigeminal pathology when magnetic resonance imaging has failed to detect it, so these methods should be considered complementary to each other in the investigation of orofacial pain patients. The blink reflex, corneal reflex, jaw jerk, sensory neurography of the inferior alveolar nerve, and the recording of trigeminal somatosensory-evoked potentials with near-nerve stimulation have all proved to be sensitive and reliable in the detection of dysfunction of the myelinated sensory fibers of the trigeminal nerve or its central connections within the brainstem. With appropriately small thermodes, thermal quantitative sensory testing is useful for the detection of trigeminal small-fiber dysfunction (Adelta and C). In neuropathic conditions, it is most sensitive to lesions causing axonal injury. By combining different techniques for investigation of the trigeminal system, an accurate topographical diagnosis and profile of sensory fiber pathology can be determined. Neurophysiological and quantitative sensory tests have already highlighted some similarities among various orofacial pain conditions

  3. Cortical sensory plasticity in a model of migraine with aura.

    PubMed

    Theriot, Jeremy J; Toga, Arthur W; Prakash, Neal; Ju, Y Sungtaek; Brennan, K C

    2012-10-31

    The migraine attack is characterized by alterations in sensory perception, such as photophobia or allodynia, which have in common an uncomfortable amplification of the percept. It is not known how these changes arise. We evaluated the ability of cortical spreading depression (CSD), the proposed mechanism of the migraine aura, to shape the cortical activity that underlies sensory perception. We measured forepaw- and hindpaw-evoked sensory responses in rat, before and after CSD, using multielectrode array recordings and two-dimensional optical spectroscopy. CSD significantly altered cortical sensory processing on a timescale compatible with the duration of the migraine attack. Both electrophysiological and hemodynamic maps had a reduced surface area (were sharpened) after CSD. Electrophysiological responses were potentiated at the receptive field center but suppressed in surround regions. Finally, the normal adaptation of sensory-evoked responses was attenuated at the receptive field center. In summary, we show that CSD induces changes in the evoked cortical response that are consistent with known mechanisms of cortical plasticity. These mechanisms provide a novel neurobiological substrate to explain the sensory alterations of the migraine attack.

  4. Cortical sensory plasticity in a model of migraine with aura

    PubMed Central

    Theriot, Jeremy J.; Toga, Arthur W.; Prakash, Neal; Ju, Y. Sungtaek; Brennan, K.C.

    2012-01-01

    The migraine attack is characterized by alterations in sensory perception, such as photophobia or allodynia, which have in common an uncomfortable amplification of the percept. It is not known how these changes arise. We evaluated the ability of cortical spreading depression (CSD), the proposed mechanism of the migraine aura, to shape the cortical activity that underlies sensory perception. We measured forepaw- and hindpaw-evoked sensory responses in rat, before and after CSD, using multi-electrode array recordings and 2-dimensional optical spectroscopy. CSD significantly altered cortical sensory processing on a timescale compatible with the duration of the migraine attack. Both electrophysiological and hemodynamic maps had a reduced surface area (were sharpened) after CSD. Electrophysiological responses were potentiated at the receptive field center, but suppressed in surround regions. Finally, the normal adaptation of sensory evoked responses was attenuated at the receptive field center. In summary, we show that CSD induces changes in the evoked cortical response that are consistent with known mechanisms of cortical plasticity. These mechanisms provide a novel neurobiological substrate to explain the sensory alterations of the migraine attack. PMID:23115163

  5. Adaptive reliance on the most stable sensory predictions enhances perceptual feature extraction of moving stimuli.

    PubMed

    Kumar, Neeraj; Mutha, Pratik K

    2016-03-01

    The prediction of the sensory outcomes of action is thought to be useful for distinguishing self- vs. externally generated sensations, correcting movements when sensory feedback is delayed, and learning predictive models for motor behavior. Here, we show that aspects of another fundamental function-perception-are enhanced when they entail the contribution of predicted sensory outcomes and that this enhancement relies on the adaptive use of the most stable predictions available. We combined a motor-learning paradigm that imposes new sensory predictions with a dynamic visual search task to first show that perceptual feature extraction of a moving stimulus is poorer when it is based on sensory feedback that is misaligned with those predictions. This was possible because our novel experimental design allowed us to override the "natural" sensory predictions present when any action is performed and separately examine the influence of these two sources on perceptual feature extraction. We then show that if the new predictions induced via motor learning are unreliable, rather than just relying on sensory information for perceptual judgments, as is conventionally thought, then subjects adaptively transition to using other stable sensory predictions to maintain greater accuracy in their perceptual judgments. Finally, we show that when sensory predictions are not modified at all, these judgments are sharper when subjects combine their natural predictions with sensory feedback. Collectively, our results highlight the crucial contribution of sensory predictions to perception and also suggest that the brain intelligently integrates the most stable predictions available with sensory information to maintain high fidelity in perceptual decisions.

  6. NEUROPHYSIOLOGICAL EVALUATION OF SENSORY SYSTEMS'

    EPA Science Inventory

    Exposure to many neurotoxic compounds has been shown to produce a sensory system dysfunction. Neurophysiological assessment of sensory function in humans and animal models often uses techniques known as sensory evoked potentials. Because both humans and animals show analogous res...

  7. Rethinking the senses and their interactions: the case for sensory pluralism

    PubMed Central

    Fulkerson, Matthew

    2014-01-01

    I argue for sensory pluralism. This is the view that there are many forms of sensory interaction and unity, and no single category that classifies them all. In other words, sensory interactions do not form a single natural kind. This view suggests that how we classify sensory systems (and the experiences they generate) partly depends on our explanatory purposes. I begin with a detailed discussion of the issue as it arises for our understanding of thermal perception, followed by a general account and defense of sensory pluralism. PMID:25540630

  8. Elevated C-reactive protein is associated with sensory gating deficit in schizophrenia.

    PubMed

    Micoulaud-Franchi, Jean-Arthur; Faugere, Mélanie; Boyer, Laurent; Fond, Guillaume; Richieri, Raphaëlle; Faget, Catherine; Cermolacce, Michel; Philip, Pierre; Vion-Dury, Jean; Lancon, Christophe

    2015-06-01

    Sensory and cognitive impairments and inflammatory processes are contributing factors to the pathogenesis of schizophrenia. A previous study found that an elevated CRP level (≥5mg/L) was associated with higher cognitive impairments in schizophrenia. We aimed to investigate the association between an elevated CRP level and sensory impairments defined by a sensory gating deficit (abnormal P50 suppression) in 55 outpatients. Fifteen patients (27.3%) had an elevated CRP level that was associated with higher rate of sensory gating deficit (60% vs. 12.5%, p<0.001). This is the first study suggesting a relationship between sensory gating deficit and inflammatory processes in schizophrenia.

  9. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  10. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  11. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  12. Skeletal limb abnormalities

    MedlinePlus

    ... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...

  13. Set and setting: how behavioral state regulates sensory function and plasticity

    PubMed Central

    Aton, Sara J.

    2013-01-01

    Recently developed neuroimaging and electrophysiological techniques are allowing us to answer fundamental questions about how behavioral states regulate our perception of the external environment. Studies using these techniques have yielded surprising insights into how sensory processing is affected at the earliest stages by attention and motivation, and how new sensory information received during wakefulness (e.g., during learning) continues to affect sensory brain circuits (leading to plastic changes) during subsequent sleep. This review aims to describe how brain states affect sensory response properties among neurons in primary and secondary sensory cortices, and how this relates to psychophysical detection thresholds and performance on sensory discrimination tasks. This is not intended to serve as a comprehensive overview of all brain states, or all sensory systems, but instead as an illustrative description of how three specific state variables (attention, motivation, and vigilance [i.e., sleep vs. wakefulness]) affect sensory systems in which they have been best studied. PMID:23792020

  14. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... PROBLEMS Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... treat abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  15. Aggregation of sensory data using fuzzy logic for sensory quality evaluation of food.

    PubMed

    Debjani, Chakraborty; Das, Shrilekha; Das, H

    2013-12-01

    A method of sensory evaluation using fuzzy logic has been proposed in this paper. The method was applied for evaluation of sensory quality of tea liquor made out of dried CTC tea. Linguistic data (e.g., excellent, very good, good, satisfactory, fair, not-satisfactory, etc.) on individual tea liquor's quality attributes and the perception of the evaluators (e.g., extremely important, highly important, important, somewhat important, not-at-all important, etc.) for relative importance of these quality attributes were obtained. Sensory score between 0 and 100 for (i) Judges' preference for different quality attributes of tea liquor in general, (ii) Quality attributes ranking of tea liquor and the (ii) Overall quality of tea liquor were estimated. The last one can be utilized for the ranking of the different tea liquors.

  16. Abnormal Pressure Pain, Touch Sensitivity, Proprioception, and Manual Dexterity in Children with Autism Spectrum Disorders

    PubMed Central

    Riquelme, Inmaculada; Hatem, Samar M.

    2016-01-01

    Children with autism spectrum disorders (ASD) often display an abnormal reactivity to tactile stimuli, altered pain perception, and lower motor skills than healthy children. Nevertheless, these motor and sensory deficits have been mostly assessed by using clinical observation and self-report questionnaires. The present study aims to explore somatosensory and motor function in children with ASD by using standardized and objective testing procedures. Methods. Tactile and pressure pain thresholds in hands and lips, stereognosis, proprioception, and fine motor performance of the upper limbs were assessed in high-functioning children with ASD (n = 27) and compared with typically developing peers (n = 30).  Results. Children with ASD showed increased pain sensitivity, increased touch sensitivity in C-tactile afferents innervated areas, and diminished fine motor performance and proprioception compared to healthy children. No group differences were observed for stereognosis. Conclusion. Increased pain sensitivity and increased touch sensitivity in areas classically related to affective touch (C-tactile afferents innervated areas) may explain typical avoiding behaviors associated with hypersensitivity. Both sensory and motor impairments should be assessed and treated in children with ASD. PMID:26881091

  17. Quantitative thermal sensory testing and sympathetic skin response in primary Restless legs syndrome - A prospective study on 57 Indian patients.

    PubMed

    Shukla, Garima; Goyal, Vinay; Srivastava, Achal; Behari, Madhuri

    2012-10-01

    Patients with restless leg syndrome present with sensory symptoms similar to peripheral neuropathy. While there is evidence of abnormalities of dopaminergic pathways, the peripheral nervous system has been studied infrequently. We studied conventional nerve conduction studies, quantitative thermal sensory testing and sympathetic skin response in 57 patients with primary restless leg syndrome. Almost two third patients demonstrated abnormalities in the detailed testing of the peripheral nervous system. Sbtle abnormalities of the peripheral nervous system may be more common than previously believed.

  18. Brain mechanisms for simple perception and bistable perception.

    PubMed

    Wang, Megan; Arteaga, Daniel; He, Biyu J

    2013-08-27

    When faced with ambiguous sensory inputs, subjective perception alternates between the different interpretations in a stochastic manner. Such multistable perception phenomena have intrigued scientists and laymen alike for over a century. Despite rigorous investigations, the underlying mechanisms of multistable perception remain elusive. Recent studies using multivariate pattern analysis revealed that activity patterns in posterior visual areas correlate with fluctuating percepts. However, increasing evidence suggests that vision--and perception at large--is an active inferential process involving hierarchical brain systems. We applied searchlight multivariate pattern analysis to functional magnetic resonance imaging signals across the human brain to decode perceptual content during bistable perception and simple unambiguous perception. Although perceptually reflective activity patterns during simple perception localized predominantly to posterior visual regions, bistable perception involved additionally many higher-order frontoparietal and temporal regions. Moreover, compared with simple perception, both top-down and bottom-up influences were dramatically enhanced during bistable perception. We further studied the intermittent presentation of ambiguous images--a condition that is known to elicit perceptual memory. Compared with continuous presentation, intermittent presentation recruited even more higher-order regions and was accompanied by further strengthened top-down influences but relatively weakened bottom-up influences. Taken together, these results strongly support an active top-down inferential process in perception.

  19. Metacognition in Multisensory Perception.

    PubMed

    Deroy, Ophelia; Spence, Charles; Noppeney, Uta

    2016-10-01

    Metacognition - the ability to monitor one's own decisions and representations, their accuracy and uncertainty - is considered a hallmark of intelligent behavior. Little is known about metacognition in our natural multisensory environment. To form a coherent percept, the brain should integrate signals from a common cause but segregate those from independent causes. Multisensory perception thus relies on inferring the world's causal structure, raising new challenges for metacognition. We discuss the extent to which observers can monitor their uncertainties not only about their final integrated percept but also about the individual sensory signals and the world's causal structure. The latter causal metacognition highlights fundamental links between perception and other cognitive domains such as social and abstract reasoning.

  20. Stereoscopic Perception

    NASA Astrophysics Data System (ADS)

    Clapp, Robert E.

    1987-06-01

    There is only one real world, We "see" that world as extending into three dimensions because we look at it with two eyes. We are not presented with two "pictures" of the real world, but with two separate views. Views not pictures. The analog of the eye as a camera has done violence to the development of concepts of human vision. The eye is a dynamic sensing apparatus that supplies the brain with inputs from which the brain constructs the scene we "see", and so is responsible for our perceptual structuring of the real world. These visual perceptions are dependent upon our other sensory inputs as well. Indeed, our body senses control and direct, to some degree, where out eyes look and what we "see". This process of conceptualization is thoroughly egocentric. This paper addresses the processes by which our mind/eye/senses interact to form our perception (and concepts) of the world (real or illusionary) and the advantages (and problems) of our egocentric reduction of the data inputs.

  1. Impact of flavour solvent (propylene glycol or triacetin) on vanillin, 5-(hydroxymethyl)furfural, 2,4-decadienal, 2,4-heptadienal, structural parameters and sensory perception of shortcake biscuits over accelerated shelf life testing.

    PubMed

    Yang, Ni; Hort, Joanne; Linforth, Robert; Brown, Keith; Walsh, Stuart; Fisk, Ian D

    2013-11-15

    The influence of choice of flavour solvent, propylene glycol (PG) or triacetin (TA), was investigated during accelerated shelf life (ASL) testing of shortcake biscuits. Specifically, the differential effect on the stability of added vanillin, the natural baked marker compound 5-(hydroxymethyl)furfural (HMF), specific markers of oxidative rancidity (2,4-decadienal, 2,4-heptadienal), and the structural parameters of hardness and fracturability. Significantly more HMF was formed during baking of biscuits prepared with TA; these biscuits were also more stable to oxidative degradation and loss of vanillin during ageing than biscuits prepared with PG. Fresh TA biscuits were significantly more brittle than fresh PG biscuits. There was no impact of solvent choice on hardness. Sensory evaluation of hardness, vanilla flavour and oily off-note was tested during ASL testing. There was no significant impact of storage on sensory ratings for either the PG or TA biscuits.

  2. Suppressive mechanisms in visual motion processing: from perception to intelligence

    PubMed Central

    Tadin, Duje

    2015-01-01

    Perception operates on an immense amount of incoming information that greatly exceeds the brain's processing capacity. Because of this fundamental limitation, the ability to suppress irrelevant information is a key determinant of perceptual efficiency. Here, I will review a series of studies investigating suppressive mechanisms in visual motion processing, namely perceptual suppression of large, background-like motions. These spatial suppression mechanisms are adaptive, operating only when sensory inputs are sufficiently robust to guarantee visibility. Converging correlational and causal evidence links these behavioral results with inhibitory center-surround mechanisms, namely those in cortical area MT. Spatial suppression is abnormally weak in several special populations, including the elderly and those with schizophrenia—a deficit that is evidenced by better-than-normal direction discriminations of large moving stimuli. Theoretical work shows that this abnormal weakening of spatial suppression should result in motion segregation deficits, but direct behavioral support of this hypothesis is lacking. Finally, I will argue that the ability to suppress information is a fundamental neural process that applies not only to perception but also to cognition in general. Supporting this argument, I will discuss recent research that shows individual differences in spatial suppression of motion signals strongly predict individual variations in IQ scores. PMID:26299386

  3. Medial antebrachial cutaneous sensory studies in the evaluation of neurogenic thoracic outlet syndrome.

    PubMed

    Kothari, M J; Macintosh, K; Heistand, M; Logigian, E L

    1998-05-01

    Over 3 years, we studied 8 patients with neurogenic thoracic outlet syndrome (TOS) and tested the medial antebrachial sensory response (MASR) to determine its diagnostic value. The MASR and ulnar sensory response (USR) were abnormal in all 8 patients. Seven had a low median motor response (MMR) with a low USR. In 1, the MASR and USR were abnormal but the MMR was normal. We conclude that the MASR is of diagnostic value in patients with neurogenic TOS.

  4. Convergence of multimodal sensory pathways to the mushroom body calyx in Drosophila melanogaster

    PubMed Central

    Yagi, Ryosuke; Mabuchi, Yuta; Mizunami, Makoto; Tanaka, Nobuaki K.

    2016-01-01

    Detailed structural analyses of the mushroom body which plays critical roles in olfactory learning and memory revealed that it is directly connected with multiple primary sensory centers in Drosophila. Connectivity patterns between the mushroom body and primary sensory centers suggest that each mushroom body lobe processes information on different combinations of multiple sensory modalities. This finding provides a novel focus of research by Drosophila genetics for perception of the external world by integrating multisensory signals. PMID:27404960

  5. Activity Participation and Sensory Features among Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Little, Lauren M.; Ausderau, Karla; Sideris, John; Baranek, Grace T.

    2015-01-01

    Sensory features are highly prevalent among children with autism spectrum disorders (ASD) and have been shown to cluster into four patterns of response, including hyperresponsiveness, hyporesponsiveness, enhanced perception, and sensory interests, repetitions and seeking behaviors. Given the lack of large-scale research on the differential effects…

  6. Neurocontrol in sensory cortex

    NASA Astrophysics Data System (ADS)

    Ritt, Jason; Nandi, Anirban; Schroeder, Joseph; Ching, Shinung

    Technology to control neural ensembles is rapidly advancing, but many important challenges remain in applications, such as design of controls (e.g. stimulation patterns) with specificity comparable to natural sensory encoding. We use the rodent whisker tactile system as a model for active touch, in which sensory information is acquired in a closed loop between feedforward encoding of sensory information and feedback guidance of sensing motions. Motivated by this system, we present optimal control strategies that are tailored for underactuation (a large ratio of neurons or degrees of freedom to stimulation channels) and limited observability (absence of direct measurement of the system state), common in available stimulation technologies for freely behaving animals. Using a control framework, we have begun to elucidate the feedback effect of sensory cortex activity on sensing in behaving animals. For example, by optogenetically perturbing primary sensory cortex (SI) activity at varied timing relative to individual whisker motions, we find that SI modulates future sensing behavior within 15 msec, on a whisk by whisk basis, changing the flow of incoming sensory information based on past experience. J.T.R. and S.C. hold Career Awards at the Scientific Interface from the Burroughs Wellcome Fund.

  7. Brief Report: Exploring the Relationship between Sensory Processing and Repetitive Behaviours in Williams Syndrome

    ERIC Educational Resources Information Center

    Riby, Deborah M.; Janes, Emily; Rodgers, Jacqui

    2013-01-01

    This study explored the relationship between sensory processing abnormalities and repetitive behaviours in children with Williams Syndrome (WS; n = 21). This is a novel investigation bringing together two clinical phenomena for the first time in this neuro-developmental disorder. Parents completed the Sensory Profile (Short Form; Dunn in The…

  8. No Proprioceptive Deficits in Autism despite Movement-Related Sensory and Execution Impairments

    ERIC Educational Resources Information Center

    Fuentes, Christina T.; Mostofsky, Stewart H.; Bastian, Amy J.

    2011-01-01

    Autism spectrum disorder (ASD) often involves sensory and motor problems, yet the proprioceptive sense of limb position has not been directly assessed. We used three tasks to assess proprioception in adolescents with ASD who had motor and sensory perceptual abnormalities, and compared them to age- and IQ-matched controls. Results showed no group…

  9. Sensory Substitution for Wounded Servicemembers

    DTIC Science & Technology

    2009-10-28

    traumatic brain injury (TBI) and two civilians, all with partial visual impairment , evaluated the vision sensory substitution systems. The servicemember...Mobility Augmentation; Wounded Service Members; Human-Centered Computing; Vision Augmentation, Vision , Balance and Hearing; Sensory Substitution-enabled...mitigation of vision sensory and mobility losses. 2) Improved the usefulness of available sensory substitution technologies for injured military

  10. Sex differences in chemosensation: sensory or emotional?

    PubMed Central

    Ohla, Kathrin; Lundström, Johan N.

    2013-01-01

    Although the first sex-dependent differences in chemosensory processing were reported in the scientific literature over 60 years ago, the underlying mechanisms are still unknown. Generally, more pronounced sex-dependent differences are noted with increased task difficulty or with increased levels of intranasal irritation produced by the stimulus. Whether differences between the sexes arise from differences in chemosensory sensitivity of the two intranasal sensory systems involved or from differences in cognitive processing associated with emotional evaluation of the stimulants is still not known. We used simultaneous and complementary measures of electrophysiological (EEG), psychophysiological, and psychological responses to stimuli varying in intranasal irritation and odorousness to investigate whether sex differences in the processing of intranasal irritation are mediated by varying sensitivity of the involved sensory systems or by differences in cognitive and/or emotional evaluation of the irritants. Women perceived all stimulants more irritating and they exhibited larger amplitudes of the late positive deflection of the event-related potential than men. No significant differences in sensory sensitivity, anxiety, and arousal responses could be detected. Our findings suggest that men and women process intranasal irritation differently. Importantly, the differences cannot be explained by variation in sensory sensitivity to irritants, differences in anxiety, or differences in physiological arousal. We propose that women allocate more attention to potentially noxious stimuli than men do, which eventually causes differences in cognitive appraisal and subjective perception. PMID:24133429

  11. The sensory ecology of nonconsumptive predator effects.

    PubMed

    Weissburg, Marc; Smee, Delbert L; Ferner, Matthew C

    2014-08-01

    Nonconsumptive effects (NCEs) have been shown to occur in numerous systems and are regarded as important mechanisms by which predation structures natural communities. Sensory ecology-that is, the processes governing the production, propagation, and masking of cues by ambient noise-provides insights into the strength of NCEs as functions of the environment and modes of information transfer. We discuss how properties of predators are used by prey to encode threat, how the environment affects cue propagation, and the role of single sensory processes versus multimodal sensory processes. We discuss why the present body of literature documents the potential for strong NCEs but does not allow us to easily determine how this potential is expressed in nature or what factors or environments produce strong versus weak NCEs. Many of these difficulties stem from a body of literature in which certain sensory environments and modalities may be disproportionately represented and in which experimental methodologies are designed to show the existence of NCEs. We present a general framework for examining NCEs to identify the factors controlling the number of prey that respond to predator cues and discuss how the properties of predators, prey, and the environment may determine prey perceptive range and the duration and frequency of cue production. We suggest how understanding these relationships provides a schema for determining where, when, why, and how NCEs are important in producing direct and cascading effects in natural communities.

  12. Perception in the Invisible World of Physics.

    ERIC Educational Resources Information Center

    Novemsky, Lisa; Gautreau, Ronald

    Physics learning involves a change in the habitual perception of the everyday world. In order to describe the real world scientifically, an individual must develop perception and cognition capable of reconstructing the world from raw sensory data and incorporating acquired knowledge of the scientific community. The introductory physics student…

  13. TUTORIAL: Beyond sensory substitution—learning the sixth sense

    NASA Astrophysics Data System (ADS)

    Nagel, Saskia K.; Carl, Christine; Kringe, Tobias; Märtin, Robert; König, Peter

    2005-12-01

    Rapid advances in neuroscience have sparked numerous efforts to study the neural correlate of consciousness. Prominent subjects include higher sensory area, distributed assemblies bound by synchronization of neuronal activity and neurons in specific cortical laminae. In contrast, it has been suggested that the quality of sensory awareness is determined by systematic change of afferent signals resulting from behaviour and knowledge thereof. Support for such skill-based theories of perception is provided by experiments on sensory substitution. Here, we pursue this line of thought and create new sensorimotor contingencies and, hence, a new quality of perception. Adult subjects received orientation information, obtained by a magnetic compass, via vibrotactile stimulation around the waist. After six weeks of training we evaluated integration of the new input by a battery of tests. The results indicate that the sensory information provided by the belt (1) is processed and boosts performance, (2) if inconsistent with other sensory signals leads to variable performance, (3) does interact with the vestibular nystagmus and (4) in half of the experimental subjects leads to qualitative changes of sensory experience. These data support the hypothesis that new sensorimotor contingencies can be learned and integrated into behaviour and affect perceptual experience.

  14. ON THE PERCEPTION OF PROBABLE THINGS

    PubMed Central

    Albright, Thomas D.

    2012-01-01

    SUMMARY Perception is influenced both by the immediate pattern of sensory inputs and by memories acquired through prior experiences with the world. Throughout much of its illustrious history, however, study of the cellular basis of perception has focused on neuronal structures and events that underlie the detection and discrimination of sensory stimuli. Relatively little attention has been paid to the means by which memories interact with incoming sensory signals. Building upon recent neurophysiological/behavioral studies of the cortical substrates of visual associative memory, I propose a specific functional process by which stored information about the world supplements sensory inputs to yield neuronal signals that can account for visual perceptual experience. This perspective represents a significant shift in the way we think about the cellular bases of perception. PMID:22542178

  15. N1 enhancement in synesthesia during visual and audio–visual perception in semantic cross-modal conflict situations: an ERP study

    PubMed Central

    Sinke, Christopher; Neufeld, Janina; Wiswede, Daniel; Emrich, Hinderk M.; Bleich, Stefan; Münte, Thomas F.; Szycik, Gregor R.

    2014-01-01

    Synesthesia entails a special kind of sensory perception, where stimulation in one sensory modality leads to an internally generated perceptual experience of another, not stimulated sensory modality. This phenomenon can be viewed as an abnormal multisensory integration process as here the synesthetic percept is aberrantly fused with the stimulated modality. Indeed, recent synesthesia research has focused on multimodal processing even outside of the specific synesthesia-inducing context and has revealed changed multimodal integration, thus suggesting perceptual alterations at a global level. Here, we focused on audio–visual processing in synesthesia using a semantic classification task in combination with visually or auditory–visually presented animated and in animated objects in an audio–visual congruent and incongruent manner. Fourteen subjects with auditory-visual and/or grapheme-color synesthesia and 14 control subjects participated in the experiment. During presentation of the stimuli, event-related potentials were recorded from 32 electrodes. The analysis of reaction times and error rates revealed no group differences with best performance for audio-visually congruent stimulation indicating the well-known multimodal facilitation effect. We found enhanced amplitude of the N1 component over occipital electrode sites for synesthetes compared to controls. The differences occurred irrespective of the experimental condition and therefore suggest a global influence on early sensory processing in synesthetes. PMID:24523689

  16. N1 enhancement in synesthesia during visual and audio-visual perception in semantic cross-modal conflict situations: an ERP study.

    PubMed

    Sinke, Christopher; Neufeld, Janina; Wiswede, Daniel; Emrich, Hinderk M; Bleich, Stefan; Münte, Thomas F; Szycik, Gregor R

    2014-01-01

    Synesthesia entails a special kind of sensory perception, where stimulation in one sensory modality leads to an internally generated perceptual experience of another, not stimulated sensory modality. This phenomenon can be viewed as an abnormal multisensory integration process as here the synesthetic percept is aberrantly fused with the stimulated modality. Indeed, recent synesthesia research has focused on multimodal processing even outside of the specific synesthesia-inducing context and has revealed changed multimodal integration, thus suggesting perceptual alterations at a global level. Here, we focused on audio-visual processing in synesthesia using a semantic classification task in combination with visually or auditory-visually presented animated and in animated objects in an audio-visual congruent and incongruent manner. Fourteen subjects with auditory-visual and/or grapheme-color synesthesia and 14 control subjects participated in the experiment. During presentation of the stimuli, event-related potentials were recorded from 32 electrodes. The analysis of reaction times and error rates revealed no group differences with best performance for audio-visually congruent stimulation indicating the well-known multimodal facilitation effect. We found enhanced amplitude of the N1 component over occipital electrode sites for synesthetes compared to controls. The differences occurred irrespective of the experimental condition and therefore suggest a global influence on early sensory processing in synesthetes.

  17. Perception of trigeminal mixtures.

    PubMed

    Filiou, Renée-Pier; Lepore, Franco; Bryant, Bruce; Lundström, Johan N; Frasnelli, Johannes

    2015-01-01

    The trigeminal system is a chemical sense allowing for the perception of chemosensory information in our environment. However, contrary to smell and taste, we lack a thorough understanding of the trigeminal processing of mixtures. We, therefore, investigated trigeminal perception using mixtures of 3 relatively receptor-specific agonists together with one control odor in different proportions to determine basic perceptual dimensions of trigeminal perception. We found that 4 main dimensions were linked to trigeminal perception: sensations of intensity, warmth, coldness, and pain. We subsequently investigated perception of binary mixtures of trigeminal stimuli by means of these 4 perceptual dimensions using different concentrations of a cooling stimulus (eucalyptol) mixed with a stimulus that evokes warmth perception (cinnamaldehyde). To determine if sensory interactions are mainly of central or peripheral origin, we presented stimuli in a physical "mixture" or as a "combination" presented separately to individual nostrils. Results showed that mixtures generally yielded higher ratings than combinations on the trigeminal dimensions "intensity," "warm," and "painful," whereas combinations yielded higher ratings than mixtures on the trigeminal dimension "cold." These results suggest dimension-specific interactions in the perception of trigeminal mixtures, which may be explained by particular interactions that may take place on peripheral or central levels.

  18. The impact of systemic cortical alterations on perception

    NASA Astrophysics Data System (ADS)

    Zhang, Zheng

    2011-12-01

    Perception is the process of transmitting and interpreting sensory information, and the primary somatosensory (SI) area in the human cortex is the main sensory receptive area for the sensation of touch. The elaborate neuroanatomical connectivity that subserves the neuronal communication between adjacent and near-adjacent regions within sensory cortex has been widely recognized to be essential to normal sensory function. As a result, systemic cortical alterations that impact the cortical regional interaction, as associated with many neurological disorders, are expected to have significant impact on sensory perception. Recently, our research group has developed a novel sensory diagnostic system that employs quantitative sensory testing methods and is able to non-invasively assess central nervous system healthy status. The intent of this study is to utilize quantitative sensory testing methods that were designed to generate discriminable perception to objectively and quantitatively assess the impacts of different conditions on human sensory information processing capacity. The correlation between human perceptions with observations from animal research enables a better understanding of the underlying neurophysiology of human perception. Additional findings on different subject populations provide valuable insight of the underlying mechanisms for the development and maintenance of different neurological diseases. During the course of the study, several protocols were designed and utilized. And this set of sensory-based perceptual metrics was employed to study the effects of different conditions (non-noxious thermal stimulation, chronic pain stage, and normal aging) on sensory perception. It was found that these conditions result in significant deviations of the subjects' tactile information processing capacities from normal values. Although the observed shift of sensory detection sensitivity could be a result of enhanced peripheral activity, the changes in the effects

  19. Improving training for sensory augmentation using the science of expertise.

    PubMed

    Bertram, Craig; Stafford, Tom

    2016-09-01

    Sensory substitution and augmentation devices (SSADs) allow users to perceive information about their environment that is usually beyond their sensory capabilities. Despite an extensive history, SSADs are arguably not used to their fullest, both as assistive technology for people with sensory impairment or as research tools in the psychology and neuroscience of sensory perception. Studies of the non-use of other assistive technologies suggest one factor is the balance of benefits gained against the costs incurred. We argue that improving the learning experience would improve this balance, suggest three ways in which it can be improved by leveraging existing cognitive science findings on expertise and skill development, and acknowledge limitations and relevant concerns. We encourage the systematic evaluation of learning programs, and suggest that a more effective learning process for SSADs could reduce the barrier to uptake and allow users to reach higher levels of overall capacity.

  20. Consumer acceptance and sensory profiling of reengineered kitoza products.

    PubMed

    Pintado, Ana I E; Monteiro, Maria J P; Talon, Régine; Leroy, Sabine; Scislowski, Valérie; Fliedel, Geneviève; Rakoto, Danielle; Maraval, Isabelle; Costa, Ana I A; Silva, Ana P; Pallet, Dominique; Tomlins, Keith; Pintado, Manuela M E

    2016-05-01

    Kitoza refers to a traditional way of preparing beef and pork in Madagascar. However, in order to improve some drawbacks previous identified, the product was submitted to a reengineering process. The acceptance and sensory profiling of improved Kitoza products among Portuguese consumers was investigated. A local smoked loin sausage was selected as basis for comparison. Firstly, a Focus Group study was performed to identify sensory descriptors for Kitoza products and explore product perception. Subsequently, a Flash Profile and a consumer sensory acceptance study were conducted. Flash Profile's results showed that beef- and pork-based Kitoza products investigated differed considerably in all sensory dimensions. The Portuguese sausage was characterized as having a more intense and lasting after taste, as well as displaying a higher degree of (meat) doneness. The acceptance study yielded higher overall liking ratings for pork- than for beef-based Kitoza, although the Portuguese sausage remained the most appreciated product.

  1. Sensory experience induced by nitrous oxide analgesia.

    PubMed Central

    Kaufman, E.; Galili, D.; Furer, R.; Steiner, J.

    1990-01-01

    Preliminary findings on a group of 15 dental patients, treated with nitrous oxide indicated frequent occurrence of several, well-defined sensory experiences related to various modalities. A subsequent controlled experiment carried out on 44 volunteers, inhaling a 35% N2O + 65% O2 sedative gas-mixture as well as O2 alone in two different sessions confirmed a large variety of sensations not related to external stimuli. Taste and/or odor and thermal sensations were often reported as well as changes in auditory or visual perception of the environment in addition to reports of general heaviness, relaxation or tingling. PMID:2097907

  2. [Pathophysiology of sensory ataxic neuropathy].

    PubMed

    Sobue, G

    1996-12-01

    The main lesions of sensory ataxic neuropathy such as chronic idiopathic sensory ataxic neuropathy, (ISAN), carcinomatous neuropathy, Sjögren syndrome-associated neuropathy and acute autonomic and sensory neuropathy (AASN) are the large-diameter sensory neurons and dosal column of the spinal cord and the large myelinated fibers in the peripheral nerve trunks. In addition, afferent fibers to the Clarke's nuclei are also severely involved, suggesting Ia fibers being involved in these neuropathies. In NT-3 knockout mouse, an animal model of sensory ataxia, large-sized la neurons as well as muscle spindle and Golgi tendon organs are depleted, and are causative for sensory ataxia. Thus, the proprioceptive Ia neurons would play a role in pathogenesis of sensory ataxia in human sensory ataxic neuropathies, but the significance of dorsal column involvement in human sensory ataxia is still needed to evaluate.

  3. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  4. The pattern and diagnostic criteria of sensory neuronopathy: a case–control study

    PubMed Central

    Camdessanché, Jean-Philippe; Jousserand, Guillemette; Ferraud, Karine; Vial, Christophe; Petiot, Philippe; Honnorat, Jérôme

    2009-01-01

    Acquired sensory neuronopathies encompass a group of paraneoplastic, dysimmune, toxic or idiopathic disorders characterized by degeneration of peripheral sensory neurons in dorsal root ganglia. As dorsal root ganglia cannot easily be explored, the clinical diagnosis of these disorders may be difficult. The question as to whether there exists a common clinical pattern of sensory neuronopathies, allowing the establishment of validated and easy-to-use diagnostic criteria, has not yet been addressed. In this study, logistic regression was used to construct diagnostic criteria on a retrospective study population of 78 patients with sensory neuronopathies and 56 with other sensory neuropathies. For this, sensory neuronopathy was provisionally considered as unambiguous in 44 patients with paraneoplastic disorder or cisplatin treatment and likely in 34 with a dysimmune or idiopathic setting who may theoretically have another form of neuropathy. To test the homogeneity of the sensory neuronopathy population, likely candidates were compared with unambiguous cases and then the whole population was compared with the other sensory neuropathies population. Criteria accuracy was checked on 37 prospective patients referred for diagnosis of sensory neuropathy. In the study population, sensory neuronopathy showed a common clinical and electrophysiological pattern that was independent of the underlying cause, including unusual forms with only patchy sensory loss, mild electrical motor nerve abnormalities and predominant small fibre or isolated lower limb involvement. Logistic regression allowed the construction of a set of criteria that gave fair results with the following combination: ataxia in the lower or upper limbs + asymmetrical distribution + sensory loss not restricted to the lower limbs + at least one sensory action potential absent or three sensory action potentials <30% of the lower limit of normal in the upper limbs + less than two nerves with abnormal motor nerve

  5. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  6. Physiological and Perceptual Sensory Attenuation Have Different Underlying Neurophysiological Correlates.

    PubMed

    Palmer, Clare E; Davare, Marco; Kilner, James M

    2016-10-19

    Sensory attenuation, the top-down filtering or gating of afferent information, has been extensively studied in two fields: physiological and perceptual. Physiological sensory attenuation is represented as a decrease in the amplitude of the primary and secondary components of the somatosensory evoked potential (SEP) before and during movement. Perceptual sensory attenuation, described using the analogy of a persons' inability to tickle oneself, is a reduction in the perception of the afferent input of a self-produced tactile sensation due to the central cancellation of the reafferent signal by the efference copy of the motor command to produce the action. The fields investigating these two areas have remained isolated, so the relationship between them is unclear. The current study delivered median nerve stimulation to produce SEPs during a force-matching paradigm (used to quantify perceptual sensory attenuation) in healthy human subjects to determine whether SEP gating correlated with the behavior. Our results revealed that these two forms of attenuation have dissociable neurophysiological correlates and are likely functionally distinct, which has important implications for understanding neurological disorders in which one form of sensory attenuation but not the other is impaired. Time-frequency analyses revealed a negative correlation over sensorimotor cortex between gamma-oscillatory activity and the magnitude of perceptual sensory attenuation. This finding is consistent with the hypothesis that gamma-band power is related to prediction error and that this might underlie perceptual sensory attenuation.

  7. Sensory aspects in myasthenia gravis: A translational approach.

    PubMed

    Leon-Sarmiento, Fidias E; Leon-Ariza, Juan S; Prada, Diddier; Leon-Ariza, Daniel S; Rizzo-Sierra, Carlos V

    2016-09-15

    Myasthenia gravis is a paradigmatic muscle disorder characterized by abnormal fatigue and muscle weakness that worsens with activities and improves with rest. Clinical and research studies done on nicotinic acetylcholine receptors have advanced our knowledge of the muscle involvement in myasthenia. Current views still state that sensory deficits are not "features of myasthenia gravis". This article discusses the gap that exists on sensory neural transmission in myasthenia that has remained after >300years of research in this neurological disorder. We outline the neurobiological characteristics of sensory and motor synapses, reinterpret the nanocholinergic commonalities that exist in both sensory and motor pathways, discuss the clinical findings on altered sensory pathways in myasthenia, and propose a novel way to score anomalies resulting from multineuronal inability associated sensory troubles due to eugenic nanocholinergic instability and autoimmunity. This medicine-based evidence could serve as a template to further identify novel targets for studying new medications that may offer a better therapeutic benefit in both sensory and motor dysfunction for patients. Importantly, this review may help to re-orient current practices in myasthenia.

  8. Restricted and repetitive behaviours, sensory processing and cognitive style in children with autism spectrum disorders.

    PubMed

    Chen, Yu-Han; Rodgers, Jacqui; McConachie, Helen

    2009-04-01

    Many individuals with autism tend to focus on details. It has been suggested that this cognitive style may underlie the presence of stereotyped routines, repetitive interests and behaviours, and both relate in some way to sensory abnormalities. Twenty-nine children with diagnosis of high functioning autism or Asperger syndrome completed the Embedded Figures Test (EFT), and their parents the Short Sensory Profile and Childhood Routines Inventory. Significant correlations were found between degree of sensory abnormalities and amount of restricted and repetitive behaviours reported. Repetitive behaviours, age and IQ significantly predicted completion time on the EFT. The results suggest a cognitive link between an individual's detail-focused cognitive style and their repetitiveness. No such relationship was found with sensory processing abnormalities, which may arise at a more peripheral level of functioning.

  9. The sensory system: More than just a window to the external world.

    PubMed

    Gendron, Christi M; Chung, Brian Y; Pletcher, Scott D

    2015-01-01

    While the traditional importance of the sensory system lies in its ability to perceive external information about the world, emerging discoveries suggest that sensory perception has a greater impact on health and longevity than was previously appreciated. These effects are conserved across species. In this mini-review, we discuss the specific sensory cues that have been identified to significantly impact organismal physiology and lifespan. Ongoing work in the aging field has begun to identify the downstream molecules that mediate the broad effects of sensory signals. Candidates include FOXO, neuropeptide F (NPF), adipokinetic hormone (AKH), dopamine, serotonin, and octopamine. We then discuss the many implications that arise from our current understanding of the effects of sensory perception on health and longevity.

  10. Application of "magnetic tongue" to the sensory evaluation of extra virgin olive oil.

    PubMed

    Lauri, Ilaria; Pagano, Bruno; Malmendal, Anders; Sacchi, Raffaele; Novellino, Ettore; Randazzo, Antonio

    2013-10-15

    The perception of odour and flavour of foods is a complicated physiological and psychological process that cannot be explained by simple models. Unfortunately, taste is not objective, but partially subjective and it depends also on the mood of the taster. Generally, sensory analysis is used to describe sensory features. The availability of a number of instrumental techniques has opened up the possibility to calibrate the sensory perception. Here we have tested the potentiality of nuclear magnetic resonance spectroscopy as "magnetic tongue" to measure sensory descriptors in extra-virgin olive oil. We were able to correlate the NMR metabolomic fingerprints of extra-virgin olive oil to the sensory descriptors: tomato, bitter, pungent, rosemary, artichoke, sweet, grassy and leaf.

  11. Sensory matched filters.

    PubMed

    Warrant, Eric J

    2016-10-24

    As animals move through their environments they are subjected to an endless barrage of sensory signals. Of these, some will be of utmost importance, such as the tell-tale aroma of a potential mate, the distinctive appearance of a vital food source or the unmistakable sound of an approaching predator. Others will be less important. Indeed some will not be important at all. There are, for instance, wide realms of the sensory world that remain entirely undetected, simply because an animal lacks the physiological capacity to detect and analyse the signals that characterise this realm. Take ourselves for example: we are completely insensitive to the Earth's magnetic field, a sensory cue of vital importance as a compass for steering the long distance migration of animals as varied as birds, lobsters and sea turtles. We are also totally oblivious to the rich palette of ultraviolet colours that exist all around us, colours seen by insects, crustaceans, birds, fish and lizards (in fact perhaps by most animals). Nor can we hear the ultrasonic sonar pulses emitted by bats in hot pursuit of flying insect prey. The simple reason for these apparent deficiencies is that we either lack the sensory capacity entirely (as in the case of magnetoreception) or that our existing senses are incapable of detecting specific ranges of the stimulus (such as the ultraviolet wavelength range of light).

  12. Our Sensory World.

    ERIC Educational Resources Information Center

    Liesman, C.; Barringer, M. D.

    The booklet explores the role of sensory experiences in the severely developmentally disabled child. Developmental theory is addressed, followed by specific activity suggestions (broken down into developmental levels) for developing tactile sense, auditory sense, gustatory (taste) sense, olfactory sense, visual sense, and kinesthetic sense.…

  13. Recording Sensory Words

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2007-01-01

    From children's viewpoints, what they experience in the world is what the world is like--for everyone. "What do others experience with their senses when they are in the same situation?" is a question that young children can explore by collecting data as they use a "feely box," or take a "sensory walk." There are many ways to focus the children's…

  14. [Sensory Systems of Infants.

    ERIC Educational Resources Information Center

    Zero To Three, 1993

    1993-01-01

    This newsletter contains six articles: (1) "Early Flavor Experiences: When Do They Start?" Julie A. Mennella and Gary K. Beauchamp); (2) "Infant Massage" (Tiffany Field); (3) "The Infant's Sixth Sense: Awareness and Regulation of Bodily Processes" (Stephen W. Porges); (4) "Sensory Contributions to Action: A…

  15. Environmental Awareness (Sensory Awareness).

    ERIC Educational Resources Information Center

    Carpenter, Marian

    Capitalizing on the resources available within a city block, this resource guide for the emotionally handicapped (K-6) describes methods and procedures for developing sensory awareness in the urban out-of-doors. Conceptual focus is on interdependency ("living things are interdependent"). Involvement in the environment (observing, thinking, doing)…

  16. Structured Sensory Trauma Interventions

    ERIC Educational Resources Information Center

    Steele, William; Kuban, Caelan

    2010-01-01

    This article features the National Institute of Trauma and Loss in Children (TLC), a program that has demonstrated via field testing, exploratory research, time series studies, and evidence-based research studies that its Structured Sensory Intervention for Traumatized Children, Adolescents, and Parents (SITCAP[R]) produces statistically…

  17. Sensory Phenomena in Tourette Syndrome: Their Role in Symptom Formation and Treatment

    PubMed Central

    Houghton, David C.; Capriotti, Matthew R.; Conelea, Christine A.; Woods, Douglas W.

    2015-01-01

    The primary symptoms of Tourette Syndrome (TS) are motor and vocal tics, but increasingly, researchers have examined the role of sensory phenomena in biobehavioral models of the disorder. These sensory phenomena involve tic-related premonitory urge sensations as well as potential abnormalities in the perceptual and behavioral experiences associated with external sensory input. As such, dysfunctional sensorimotor integration might represent a key facet of TS pathology. The current paper reviews the literature on sensory phenomena in tic disorders and highlights possible connections to TS symptoms and directions for future research. PMID:25844305

  18. Sensory intensity assessment of olive oils using an electronic tongue.

    PubMed

    Veloso, Ana C A; Dias, Luís G; Rodrigues, Nuno; Pereira, José A; Peres, António M

    2016-01-01

    Olive oils may be commercialized as intense, medium or light, according to the intensity perception of fruitiness, bitterness and pungency attributes, assessed by a sensory panel. In this work, the capability of an electronic tongue to correctly classify olive oils according to the sensory intensity perception levels was evaluated. Cross-sensitivity and non-specific lipid polymeric membranes were used as sensors. The sensor device was firstly tested using quinine monohydrochloride standard solutions. Mean sensitivities of 14±2 to 25±6 mV/decade, depending on the type of plasticizer used in the lipid membranes, were obtained showing the device capability for evaluating bitterness. Then, linear discriminant models based on sub-sets of sensors, selected by a meta-heuristic simulated annealing algorithm, were established enabling to correctly classify 91% of olive oils according to their intensity sensory grade (leave-one-out cross-validation procedure). This capability was further evaluated using a repeated K-fold cross-validation procedure, showing that the electronic tongue allowed an average correct classification of 80% of the olive oils used for internal-validation. So, the electronic tongue can be seen as a taste sensor, allowing differentiating olive oils with different sensory intensities, and could be used as a preliminary, complementary and practical tool for panelists during olive oil sensory analysis.

  19. Obsessive-compulsive disorder: a "sensory-motor" problem?

    PubMed

    Russo, M; Naro, A; Mastroeni, C; Morgante, F; Terranova, C; Muscatello, M R; Zoccali, R; Calabrò, R S; Quartarone, A

    2014-05-01

    Obsessive-compulsive disorder (OCD) is a clinically heterogeneous condition. Although its pathophysiology is not completely understood, neurophysiologic and neuroimaging data have disclosed functional abnormalities in the networks linking frontal cortex, supplementary motor and premotor areas, striatum, globus pallidus, and thalamus (CSPT circuits). By means of transcranial magnetic stimulation (TMS) it is possible to test inhibitory and excitatory circuits within motor cortex. Previous studies on OCD patients under medication have demonstrated altered cortical inhibitory circuits as tested by TMS. On the other hand there is growing evidence suggesting an alteration of sensory-motor integration. Therefore, the aim of the present study was to evaluate sensory-motor integration (SAI and LAI), intracortical inhibition, and facilitation in drug-naïve OCD patients, using TMS. In our sample, we have demonstrated a significant SAI reduction in OCD patients when compared to a cohort of healthy individuals. SAI abnormalities may be related to a dysfunction of CSPT circuits which are involved in sensory-motor integration processes. Thus, it can be speculated that hypofunctioning of such system might impair the ability of OCD patients to suppress internally triggered intrusive and repetitive movements and thoughts. In conclusion, our data suggest that OCD may be considered as a sensory motor disorder where a dysfunction of sensory-motor integration may play an important role in the release of motor compulsions.

  20. Understanding Sensory Integration. ERIC Digest.

    ERIC Educational Resources Information Center

    DiMatties, Marie E.; Sammons, Jennifer H.

    This brief paper summarizes what is known about sensory integration and sensory integration dysfunction (DSI). It outlines evaluation of DSI, treatment approaches, and implications for parents and teachers, including compensatory strategies for minimizing the impact of DSI on a child's life. Review of origins of sensory integration theory in the…

  1. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  2. Facial onset sensory and motor neuronopathy.

    PubMed

    Zheng, Qian; Chu, Lan; Tan, Liming; Zhang, Hainan

    2016-12-01

    Facial onset sensory and motor neuronopathy (FOSMN) is a recently defined slowly progressive motor neuron disorder. It is characterized by facial onset sensory abnormalities which may spread to the scalp, neck, upper trunk and extremities, followed by lower motor neuron deficits. Bulbar symptoms, such as dysarthria and dysphagia, muscle weakness, cramps and fasciculations, can present later in the course of the disease. We search the PubMed database for articles published in English from 2006 to 2016 using the term of "Facial onset sensory and motor neuronopathy". Reference lists of the identified articles were selected and reviewed. Only 38 cases of FOSMN have been reported in the Pubmed database since it was first reported in 2006. Typically, FOSMN present with slowly evolving numbness of the face followed by neck and arm weakness. Reduced or absent of corneal reflexes and blink reflex is the main pathognomonic features of FOSMN. In this review, we summarize the epidemiology, clinical presentation, auxiliary examination, and treatment of all the reported cases of FOSMN. Moreover, we discuss the pathogenesis of this rare disorder. In addition, we propose diagnostic criteria for FOSMN.

  3. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans

    PubMed Central

    Peckol, Erin L.; Troemel, Emily R.; Bargmann, Cornelia I.

    2001-01-01

    Changes in the environment cause both short-term and long-term changes in an animal's behavior. Here we show that specific sensory experiences cause changes in chemosensory receptor gene expression that may alter sensory perception in the nematode Caenorhabditis elegans. Three predicted chemosensory receptor genes expressed in the ASI chemosensory neurons, srd-1, str-2, and str-3, are repressed by exposure to the dauer pheromone, a signal of crowding. Repression occurs at pheromone concentrations below those that induce formation of the alternative dauer larva stage, suggesting that exposure to pheromones can alter the chemosensory behaviors of non-dauer animals. In addition, ASI expression of srd-1, but not str-2 and str-3, is induced by sensory activity of the ASI neurons. Expression of two receptor genes is regulated by developmental entry into the dauer larva stage. srd-1 expression in ASI neurons is repressed in dauer larvae. str-2 expression in dauer animals is induced in the ASI neurons, but repressed in the AWC neurons. The ASI and AWC neurons remodel in the dauer stage, and these results suggest that their sensory specificity changes as well. We suggest that experience-dependent changes in chemosensory receptor gene expression may modify olfactory behaviors. PMID:11572964

  4. Mapping the tip of the tongue--deprivation, sensory sensitisation, and oral haptics.

    PubMed

    Topolinski, Sascha; Türk Pereira, Philippe

    2012-01-01

    We investigated the impact of food deprivation on oral and manual haptic size perception of food and non-food objects. From relevant theories (need-proportional perception, motivated perception, frustrative nonreward, perceptual defence, and sensory sensitisation) at least four completely different competing predictions can be derived. Testing these predictions, we found across four experiments that participants estimated the length of both non-food and food objects to be larger when hungry than when satiated, which was true only for oral haptic perception, while manual haptic perception was not influenced by hunger state. Subjectively reported hunger correlated positively with estimated object size in oral, but not in manual, haptic perception. The impact of food deprivation on oral perception vanished after oral stimulations even for hungry individuals. These results favour a sensory sensitisation account maintaining that hunger itself does not alter oral perception but the accompanying lack of sensory stimulation of the oral mucosa. Both oral and manual haptic perception tended to underestimate actual object size. Finally, an enhancing effect of domain-target matching was found, ie food objects were perceived larger by oral than by manual haptics, while non-food objects were perceived larger by manual than by oral haptics.

  5. Sensory loss in multifocal motor neuropathy: a clinical and electrophysiological study.

    PubMed

    Lambrecq, Virginie; Krim, Elsa; Rouanet-Larrivière, Marie; Lagueny, Alain

    2009-02-01

    Some patients fulfilling the criteria for the diagnosis of multifocal motor neuropathy with conduction block (MMN-CB) at the onset of disease may subsequently develop a sensory loss associated with electrophysiological sensory abnormalities. The latter could represent an overlap between MMN-CB and multifocal acquired demyelinating sensory and motor (MADSAM) neuropathy. The objective was to specify the features of MMN-CB with sensory loss (MMN-CB-Se). Five patients in a series of 11 consecutive patients who fulfilled the criteria of the American Association of Neuromuscular and Electrodiagnostic Medicine for MMN-CB at the first examination and were treated periodically with intravenous immunoglobulin (IVIg) developed sensory loss in the course of the disease. In these five patients we compared the clinical, laboratory, and electrophysiological features found after the development of sensory loss with those at the first examination. The mean time to appearance of objective sensory signs was 7.2 years. In three of the five patients the sensory loss was preceded by intermittent paresthesias in the same nerve territories as the motor involvement. The most frequent electrophysiological abnormality was amplitude reduction of sensory nerve action potentials. There were no bilateral or symmetrical clinical and electrophysiological sensory abnormalities. Anti-GM1 IgM antibodies were positive in four patients. MMN-CB-Se could be an overlap between MMN-CB and MADSAM. It shares the distribution of the sensory disorders encountered in MADSAM, but it is closer to MMN-CB on clinical and therapeutic levels. Study of more patients would be useful to classify this subgroup more accurately.

  6. Sensory-motor problems in Autism.

    PubMed

    Whyatt, Caroline; Craig, Cathy

    2013-01-01

    Despite being largely characterized as a social and cognitive disorder, strong evidence indicates the presence of significant sensory-motor problems in Autism Spectrum Disorder (ASD). This paper outlines our progression from initial, broad assessment using the Movement Assessment Battery for Children (M-ABC2) to subsequent targeted kinematic assessment. In particular, pronounced ASD impairment seen in the broad categories of manual dexterity and ball skills was found to be routed in specific difficulties on isolated tasks, which were translated into focused experimental assessment. Kinematic results from both subsequent studies highlight impaired use of perception-action coupling to guide, adapt and tailor movement to task demands, resulting in inflexible and rigid motor profiles. In particular difficulties with the use of temporal adaption are shown, with "hyperdexterity" witnessed in ballistic movement profiles, often at the cost of spatial accuracy and task performance. By linearly progressing from the use of a standardized assessment tool to targeted kinematic assessment, clear and defined links are drawn between measureable difficulties and underlying sensory-motor assessment. Results are specifically viewed in-light of perception-action coupling and its role in early infant development suggesting that rather than being "secondary" level impairment, sensory-motor problems may be fundamental in the progression of ASD. This logical and systematic process thus allows a further understanding into the potential root of observable motor problems in ASD; a vital step if underlying motor problems are to be considered a fundamental aspect of autism and allow a route of non-invasive preliminary diagnosis.

  7. Activation of Six1 Expression in Vertebrate Sensory Neurons

    PubMed Central

    Sato, Shigeru; Yajima, Hiroshi; Furuta, Yasuhide; Ikeda, Keiko; Kawakami, Kiyoshi

    2015-01-01

    SIX1 homeodomain protein is one of the essential key regulators of sensory organ development. Six1-deficient mice lack the olfactory epithelium, vomeronasal organs, cochlea, vestibule and vestibuloacoustic ganglion, and also show poor neural differentiation in the distal part of the cranial ganglia. Simultaneous loss of both Six1 and Six4 leads to additional abnormalities such as small trigeminal ganglion and abnormal dorsal root ganglia (DRG). The aim of this study was to understand the molecular mechanism that controls Six1 expression in sensory organs, particularly in the trigeminal ganglion and DRG. To this end, we focused on the sensory ganglia-specific Six1 enhancer (Six1-8) conserved between chick and mouse. In vivo reporter assays using both animals identified an important core region comprising binding consensus sequences for several transcription factors including nuclear hormone receptors, TCF/LEF, SMAD, POU homeodomain and basic-helix-loop-helix proteins. The results provided information on upstream factors and signals potentially relevant to Six1 regulation in sensory neurons. We also report the establishment of a new transgenic mouse line (mSix1-8-NLSCre) that expresses Cre recombinase under the control of mouse Six1-8. Cre-mediated recombination was detected specifically in ISL1/2-positive sensory neurons of Six1-positive cranial sensory ganglia and DRG. The unique features of the mSix1-8-NLSCre line are the absence of Cre-mediated recombination in SOX10-positive glial cells and central nervous system and ability to induce recombination in a subset of neurons derived from the olfactory placode/epithelium. This mouse model can be potentially used to advance research on sensory development. PMID:26313368

  8. Instabilities in sensory processes

    NASA Astrophysics Data System (ADS)

    Balakrishnan, J.

    2014-07-01

    In any organism there are different kinds of sensory receptors for detecting the various, distinct stimuli through which its external environment may impinge upon it. These receptors convey these stimuli in different ways to an organism's information processing region enabling it to distinctly perceive the varied sensations and to respond to them. The behavior of cells and their response to stimuli may be captured through simple mathematical models employing regulatory feedback mechanisms. We argue that the sensory processes such as olfaction function optimally by operating in the close proximity of dynamical instabilities. In the case of coupled neurons, we point out that random disturbances and fluctuations can move their operating point close to certain dynamical instabilities triggering synchronous activity.

  9. Significance of hair-dye base-induced sensory irritation.

    PubMed

    Fujita, F; Azuma, T; Tajiri, M; Okamoto, H; Sano, M; Tominaga, M

    2010-06-01

    Oxidation hair-dyes, which are the principal hair-dyes, sometimes induce painful sensory irritation of the scalp caused by the combination of highly reactive substances, such as hydrogen peroxide and alkali agents. Although many cases of severe facial and scalp dermatitis have been reported following the use of hair-dyes, sensory irritation caused by contact of the hair-dye with the skin has not been reported clearly. In this study, we used a self-assessment questionnaire to measure the sensory irritation in various regions of the body caused by two model hair-dye bases that contained different amounts of alkali agents without dyes. Moreover, the occipital region was found as an alternative region of the scalp to test for sensory irritation of the hair-dye bases. We used this region to evaluate the relationship of sensitivity with skin properties, such as trans-epidermal water loss (TEWL), stratum corneum water content, sebum amount, surface temperature, current perception threshold (CPT), catalase activities in tape-stripped skin and sensory irritation score with the model hair-dye bases. The hair-dye sensitive group showed higher TEWL, a lower sebum amount, a lower surface temperature and higher catalase activity than the insensitive group, and was similar to that of damaged skin. These results suggest that sensory irritation caused by hair-dye could occur easily on the damaged dry scalp, as that caused by skin cosmetics reported previously.

  10. Sensory neuropathy attributable to loss of Bcl-w.

    PubMed

    Courchesne, Stephanie L; Karch, Christoph; Pazyra-Murphy, Maria F; Segal, Rosalind A

    2011-02-02

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small-diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w(-/-) mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w(-/-) sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w(-/-) mice as an animal model of small fiber sensory neuropathy and provide new insight regarding the role of Bcl-w and of mitochondria in preventing axonal degeneration.

  11. Sensory Neuropathy Due to Loss of Bcl-w

    PubMed Central

    Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.

    2010-01-01

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171

  12. Sensory Adapted Dental Environments to Enhance Oral Care for Children with Autism Spectrum Disorders: A Randomized Controlled Pilot Study

    ERIC Educational Resources Information Center

    Cermak, Sharon A.; Stein Duker, Leah I.; Williams, Marian E.; Dawson, Michael E.; Lane, Christianne J.; Polido, José C.

    2015-01-01

    This pilot and feasibility study examined the impact of a sensory adapted dental environment (SADE) to reduce distress, sensory discomfort, and perception of pain during oral prophylaxis for children with autism spectrum disorder (ASD). Participants were 44 children ages 6-12 (n = 22 typical, n = 22 ASD). In an experimental crossover design, each…

  13. Tactile stimulation can suppress visual perception

    PubMed Central

    Ide, Masakazu; Hidaka, Souta

    2013-01-01

    An input (e.g., airplane takeoff sound) to a sensory modality can suppress the percept of another input (e.g., talking voices of neighbors) of the same modality. This perceptual suppression effect is evidence that neural responses to different inputs closely interact with each other in the brain. While recent studies suggest that close interactions also occur across sensory modalities, crossmodal perceptual suppression effect has not yet been reported. Here, we demonstrate that tactile stimulation can suppress the percept of visual stimuli: Visual orientation discrimination performance was degraded when a tactile vibration was applied to the observer's index finger of hands. We also demonstrated that this tactile suppression effect on visual perception occurred primarily when the tactile and visual information were spatially and temporally consistent. The current findings would indicate that neural signals could closely and directly interact with each other, sufficient to induce the perceptual suppression effect, even across sensory modalities. PMID:24336391

  14. Tactile stimulation can suppress visual perception.

    PubMed

    Ide, Masakazu; Hidaka, Souta

    2013-12-13

    An input (e.g., airplane takeoff sound) to a sensory modality can suppress the percept of another input (e.g., talking voices of neighbors) of the same modality. This perceptual suppression effect is evidence that neural responses to different inputs closely interact with each other in the brain. While recent studies suggest that close interactions also occur across sensory modalities, crossmodal perceptual suppression effect has not yet been reported. Here, we demonstrate that tactile stimulation can suppress the percept of visual stimuli: Visual orientation discrimination performance was degraded when a tactile vibration was applied to the observer's index finger of hands. We also demonstrated that this tactile suppression effect on visual perception occurred primarily when the tactile and visual information were spatially and temporally consistent. The current findings would indicate that neural signals could closely and directly interact with each other, sufficient to induce the perceptual suppression effect, even across sensory modalities.

  15. Physiological and Perceptual Sensory Attenuation Have Different Underlying Neurophysiological Correlates

    PubMed Central

    Davare, Marco; Kilner, James M.

    2016-01-01

    Sensory attenuation, the top-down filtering or gating of afferent information, has been extensively studied in two fields: physiological and perceptual. Physiological sensory attenuation is represented as a decrease in the amplitude of the primary and secondary components of the somatosensory evoked potential (SEP) before and during movement. Perceptual sensory attenuation, described using the analogy of a persons' inability to tickle oneself, is a reduction in the perception of the afferent input of a self-produced tactile sensation due to the central cancellation of the reafferent signal by the efference copy of the motor command to produce the action. The fields investigating these two areas have remained isolated, so the relationship between them is unclear. The current study delivered median nerve stimulation to produce SEPs during a force-matching paradigm (used to quantify perceptual sensory attenuation) in healthy human subjects to determine whether SEP gating correlated with the behavior. Our results revealed that these two forms of attenuation have dissociable neurophysiological correlates and are likely functionally distinct, which has important implications for understanding neurological disorders in which one form of sensory attenuation but not the other is impaired. Time–frequency analyses revealed a negative correlation over sensorimotor cortex between gamma-oscillatory activity and the magnitude of perceptual sensory attenuation. This finding is consistent with the hypothesis that gamma-band power is related to prediction error and that this might underlie perceptual sensory attenuation. SIGNIFICANCE STATEMENT We demonstrate that there are two functionally and mechanistically distinct forms of sensory gating. The literature regarding somatosensory evoked potential (SEP) gating is commonly cited as a potential mechanism underlying perceptual sensory attenuation; however, the formal relationship between physiological and perceptual sensory

  16. Neurological abnormalities in young adults born preterm

    PubMed Central

    Allin, M; Rooney, M; Griffiths, T; Cuddy, M; Wyatt, J; Rifkin, L; Murray, R

    2006-01-01

    Objective Individuals born before 33 weeks' gestation (very preterm, VPT) have an increased likelihood of neurological abnormality, impaired cognitive function, and reduced academic performance in childhood. It is currently not known whether neurological signs detected in VPT children persist into adulthood or become attenuated by maturation of the CNS. Method We assessed 153 VPT individuals and 71 term‐born controls at 17–18 years old, using a comprehensive neurological examination. This examination divides neurological signs into primary and integrative domains, the former representing the localising signs of classical neurology, and the latter representing signs requiring integration between different neural networks or systems. Integrative signs are sub‐divided into three groups: sensory integration, motor confusion, and sequencing. The VPT individuals have been followed up since birth, and neonatal information is available on them, along with the results of neurological assessment at 4 and 8 years of age and neuropsychological assessment at 18 years of age. Results The total neurology score and primary and integrative scores were significantly increased in VPT young adults compared to term‐born controls. Within the integrative domain, sensory integration and motor confusion scores were significantly increased in the VPT group, but sequencing was not significantly different between the VPT and term groups. Integrative neurological abnormalities at 18 were strongly associated with reduced IQ but primary abnormalities were not. Conclusions Neurological signs are increased in VPT adults compared to term‐born controls, and are strongly associated with reduced neuropsychological function. PMID:16543529

  17. Predictive motor control of sensory dynamics in auditory active sensing.

    PubMed

    Morillon, Benjamin; Hackett, Troy A; Kajikawa, Yoshinao; Schroeder, Charles E

    2015-04-01

    Neuronal oscillations present potential physiological substrates for brain operations that require temporal prediction. We review this idea in the context of auditory perception. Using speech as an exemplar, we illustrate how hierarchically organized oscillations can be used to parse and encode complex input streams. We then consider the motor system as a major source of rhythms (temporal priors) in auditory processing, that act in concert with attention to sharpen sensory representations and link them across areas. We discuss the circuits that could mediate this audio-motor interaction, notably the potential role of the somatosensory system. Finally, we reposition temporal predictions in the context of internal models, discussing how they interact with feature-based or spatial predictions. We argue that complementary predictions interact synergistically according to the organizational principles of each sensory system, forming multidimensional filters crucial to perception.

  18. Designing sensory-substitution devices: Principles, pitfalls and potential1

    PubMed Central

    Kristjánsson, Árni; Moldoveanu, Alin; Jóhannesson, Ómar I.; Balan, Oana; Spagnol, Simone; Valgeirsdóttir, Vigdís Vala; Unnthorsson, Rúnar

    2016-01-01

    An exciting possibility for compensating for loss of sensory function is to augment deficient senses by conveying missing information through an intact sense. Here we present an overview of techniques that have been developed for sensory substitution (SS) for the blind, through both touch and audition, with special emphasis on the importance of training for the use of such devices, while highlighting potential pitfalls in their design. One example of a pitfall is how conveying extra information about the environment risks sensory overload. Related to this, the limits of attentional capacity make it important to focus on key information and avoid redundancies. Also, differences in processing characteristics and bandwidth between sensory systems severely constrain the information that can be conveyed. Furthermore, perception is a continuous process and does not involve a snapshot of the environment. Design of sensory substitution devices therefore requires assessment of the nature of spatiotemporal continuity for the different senses. Basic psychophysical and neuroscientific research into representations of the environment and the most effective ways of conveying information should lead to better design of sensory substitution systems. Sensory substitution devices should emphasize usability, and should not interfere with other inter- or intramodal perceptual function. Devices should be task-focused since in many cases it may be impractical to convey too many aspects of the environment. Evidence for multisensory integration in the representation of the environment suggests that researchers should not limit themselves to a single modality in their design. Finally, we recommend active training on devices, especially since it allows for externalization, where proximal sensory stimulation is attributed to a distinct exterior object. PMID:27567755

  19. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy

    PubMed Central

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi

    2017-01-01

    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1–8) and G2+3 (TNSr 9–24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches. PMID:28182728

  20. Uncovering sensory axonal dysfunction in asymptomatic type 2 diabetic neuropathy.

    PubMed

    Sung, Jia-Ying; Tani, Jowy; Chang, Tsui-San; Lin, Cindy Shin-Yi

    2017-01-01

    This study investigated sensory and motor nerve excitability properties to elucidate the development of diabetic neuropathy. A total of 109 type 2 diabetes patients were recruited, and 106 were analyzed. According to neuropathy severity, patients were categorized into G0, G1, and G2+3 groups using the total neuropathy score-reduced (TNSr). Patients in the G0 group were asymptomatic and had a TNSr score of 0. Sensory and motor nerve excitability data from diabetic patients were compared with data from 33 healthy controls. Clinical assessment, nerve conduction studies, and sensory and motor nerve excitability testing data were analyzed to determine axonal dysfunction in diabetic neuropathy. In the G0 group, sensory excitability testing revealed increased stimulus for the 50% sensory nerve action potential (P<0.05), shortened strength-duration time constant (P<0.01), increased superexcitability (P<0.01), decreased subexcitability (P<0.05), decreased accommodation to depolarizing current (P<0.01), and a trend of decreased accommodation to hyperpolarizing current in threshold electrotonus. All the changes progressed into G1 (TNSr 1-8) and G2+3 (TNSr 9-24) groups. In contrast, motor excitability only had significantly increased stimulus for the 50% compound motor nerve action potential (P<0.01) in the G0 group. This study revealed that the development of axonal dysfunction in sensory axons occurred prior to and in a different fashion from motor axons. Additionally, sensory nerve excitability tests can detect axonal dysfunction even in asymptomatic patients. These insights further our understanding of diabetic neuropathy and enable the early detection of sensory axonal abnormalities, which may provide a basis for neuroprotective therapeutic approaches.

  1. Sensory tricks in primary cervical dystonia depend on visuotactile temporal discrimination.

    PubMed

    Kägi, Georg; Katschnig, Petra; Fiorio, Mirta; Tinazzi, Michele; Ruge, Diane; Rothwell, John; Bhatia, Kailash P

    2013-03-01

    A characteristic feature of primary cervical dystonia is the presence of "sensory tricks" as well as the impairment of temporal and spatial sensory discrimination on formal testing. The aim of the present study was to test whether the amount of improvement of abnormal head deviation due to a sensory trick is associated with different performance of temporal sensory discrimination in patients with cervical dystonia. We recruited 32 patients with cervical dystonia. Dystonia severity was assessed using the Toronto Western Spasmodic Torticollis Rating Scale. Patients were rated according to clinical improvement to a sensory trick and assigned to 1 of the following groups: (1) no improvement (n = 6), (2) partial improvement (n = 17), (3) complete improvement (n = 9). Temporal discrimination thresholds were assessed for visual, tactile, and visuotactile modalities. Disease duration was shorter (P = .026) and dystonia severity lower (P = .033) in the group with complete improvement to sensory tricks compared with the group with partial improvement to sensory tricks. A significant effect for group and modality and a significant interaction between group × modality were found, with lower visuotactile discrimination thresholds in the group with complete improvement to sensory tricks compared with the other groups. In primary cervical dystonia, a complete resolution of dystonia during a sensory trick is associated with better visuotactile discrimination and shorter disease duration compared with patients with less effective sensory tricks, which may reflect progressive loss of adaptive mechanisms to basal ganglia dysfunction.

  2. Sustained Perceptual Deficits from Transient Sensory Deprivation

    PubMed Central

    Sanes, Dan H.

    2015-01-01

    Sensory pathways display heightened plasticity during development, yet the perceptual consequences of early experience are generally assessed in adulthood. This approach does not allow one to identify transient perceptual changes that may be linked to the central plasticity observed in juvenile animals. Here, we determined whether a brief period of bilateral auditory deprivation affects sound perception in developing and adult gerbils. Animals were reared with bilateral earplugs, either from postnatal day 11 (P11) to postnatal day 23 (P23) (a manipulation previously found to disrupt gerbil cortical properties), or from P23-P35. Fifteen days after earplug removal and restoration of normal thresholds, animals were tested on their ability to detect the presence of amplitude modulation (AM), a temporal cue that supports vocal communication. Animals reared with earplugs from P11-P23 displayed elevated AM detection thresholds, compared with age-matched controls. In contrast, an identical period of earplug rearing at a later age (P23-P35) did not impair auditory perception. Although the AM thresholds of earplug-reared juveniles improved during a week of repeated testing, a subset of juveniles continued to display a perceptual deficit. Furthermore, although the perceptual deficits induced by transient earplug rearing had resolved for most animals by adulthood, a subset of adults displayed impaired performance. Control experiments indicated that earplugging did not disrupt the integrity of the auditory periphery. Together, our results suggest that P11-P23 encompasses a critical period during which sensory deprivation disrupts central mechanisms that support auditory perceptual skills. SIGNIFICANCE STATEMENT Sensory systems are particularly malleable during development. This heightened degree of plasticity is beneficial because it enables the acquisition of complex skills, such as music or language. However, this plasticity comes with a cost: nervous system development

  3. Neurosensory sequelae assessed by thermal and vibrotactile perception thresholds after local cold injury

    PubMed Central

    Carlsson, Daniel; Burström, Lage; Lilliesköld, Victoria Heldestad; Nilsson, Tohr; Nordh, Erik; Wahlström, Jens

    2014-01-01

    Background Local freezing cold injuries are common in the north and sequelae to cold injury can persist many years. Quantitative sensory testing (QST) can be used to assess neurosensory symptoms but has previously not been used on cold injury patients. Objective To evaluate neurosensory sequelae after local freezing cold injury by thermal and vibrotactile perception thresholds and by symptom descriptions. Design Fifteen patients with a local freezing cold injury in the hands or feet, acquired during military training, were studied with QST by assessment of vibrotactile (VPT), warmth (WPT) and cold (CPT) perception thresholds 4 months post-injury. In addition, a follow-up questionnaire, focusing on neurovascular symptoms, was completed 4 months and 4 years post-injury. Results QST demonstrated abnormal findings in one or both affected hands for VPT in 6 patients, for WPT in 4 patients and for CPT in 1 patient. In the feet, QST was abnormal for VPT in one or both affected feet in 8 patients, for WPT in 6 patients and for CPT in 4 patients. Freezing cold injury related symptoms, e.g. pain/discomfort when exposed to cold, cold sensation and white fingers were common at 4 months and persisted 4 years after the initial injury. Conclusions Neurosensory sequelae after local freezing cold injury, in terms of abnormal thermal and/or vibration perception thresholds, may last at least 4 months after the initial injury. Symptoms such as pain/discomfort at cold exposure, cold sensations and white fingers may persist at least 4 years after the initial injury. PMID:24624368

  4. Autism and sensory processing disorders: shared white matter disruption in sensory pathways but divergent connectivity in social-emotional pathways.

    PubMed

    Chang, Yi-Shin; Owen, Julia P; Desai, Shivani S; Hill, Susanna S; Arnett, Anne B; Harris, Julia; Marco, Elysa J; Mukherjee, Pratik

    2014-01-01

    Over 90% of children with Autism Spectrum Disorders (ASD) demonstrate atypical sensory behaviors. In fact, hyper- or hyporeactivity to sensory input or unusual interest in sensory aspects of the environment is now included in the DSM-5 diagnostic criteria. However, there are children with sensory processing differences who do not meet an ASD diagnosis but do show atypical sensory behaviors to the same or greater degree as ASD children. We previously demonstrated that children with Sensory Processing Disorders (SPD) have impaired white matter microstructure, and that this white matter microstructural pathology correlates with atypical sensory behavior. In this study, we use diffusion tensor imaging (DTI) fiber tractography to evaluate the structural connectivity of specific white matter tracts in boys with ASD (n = 15) and boys with SPD (n = 16), relative to typically developing children (n = 23). We define white matter tracts using probabilistic streamline tractography and assess the strength of tract connectivity using mean fractional anisotropy. Both the SPD and ASD cohorts demonstrate decreased connectivity relative to controls in parieto-occipital tracts involved in sensory perception and multisensory integration. However, the ASD group alone shows impaired connectivity, relative to controls, in temporal tracts thought to subserve social-emotional processing. In addition to these group difference analyses, we take a dimensional approach to assessing the relationship between white matter connectivity and participant function. These correlational analyses reveal significant associations of white matter connectivity with auditory processing, working memory, social skills, and inattention across our three study groups. These findings help elucidate the roles of specific neural circuits in neurodevelopmental disorders, and begin to explore the dimensional relationship between critical cognitive functions and structural connectivity across affected and

  5. [The relativity of abnormity].

    PubMed

    Nilson, Annika

    2006-01-01

    In the late 19th century and in the beginning of the 20th century, mental diseases and abnormal behavior was considered to be a great danger to culture and society. "Degeneration" was the buzzword of the time, used and misused by artists and scientists alike. At the same time, some scientists saw abnormity as the key to unlock the mysteries of the ordinary mind. Naturalistic curiosity left Pandoras box open when religion declined in Darwins wake. Two swedish scientists, the physician Bror Gadelius (1862-1938) and his friend the philosopher Axel Herrlin (1870-1937), inspired by the French psychologist Theodule Ribots (1839-1916) "psychology without a soul", denied all fixed demarcation lines between abnormity and normality. All humans are natures creatures ruled by physiological laws, not ruled by God or convention. Even ordinary morality was considered to be an utterly backward explanation and guideline for complex human behavior. Different forms of therapy, not various kinds of penalties for wicked and disturbing behavior, are the now the solution for lots of people, "normal" as well as "abnormal". Psychiatry is expanding.

  6. Abnormalities of gonadal differentiation.

    PubMed

    Berkovitz, G D; Seeherunvong, T

    1998-04-01

    Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.

  7. Subliminal stimuli modulate somatosensory perception rhythmically and provide evidence for discrete perception

    PubMed Central

    Baumgarten, Thomas J.; Königs, Sara; Schnitzler, Alfons; Lange, Joachim

    2017-01-01

    Despite being experienced as continuous, there is an ongoing debate if perception is an intrinsically discrete process, with incoming sensory information treated as a succession of single perceptual cycles. Here, we provide causal evidence that somatosensory perception is composed of discrete perceptual cycles. We used in humans an electrotactile temporal discrimination task preceded by a subliminal (i.e., below perceptual threshold) stimulus. Although not consciously perceived, subliminal stimuli are known to elicit neuronal activity in early sensory areas and modulate the phase of ongoing neuronal oscillations. We hypothesized that the subliminal stimulus indirectly, but systematically modulates the ongoing oscillatory phase in S1, thereby rhythmically shaping perception. The present results confirm that, without being consciously perceived, the subliminal stimulus critically influenced perception in the discrimination task. Importantly, perception was modulated rhythmically, in cycles corresponding to the beta-band (13–18 Hz). This can be compellingly explained by a model of discrete perceptual cycles. PMID:28276493

  8. Tactile sensory system: encoding from the periphery to the cortex.

    PubMed

    Jones, Lynette A; Smith, Allan M

    2014-01-01

    Specialized mechanoreceptors in the skin respond to mechanical deformation and provide the primary input to the tactile sensory system. Although the morphology of these receptors has been documented, there is still considerable uncertainty as to the relation between cutaneous receptor morphology and the associated physiological responses to stimulation. Labelled-line models of somatosensory processes in which specific mechanoreceptors are associated with particular sensory qualities fail to account for the evidence showing that all types of tactile afferent units respond to a varying extent to most types of natural stimuli. Neurophysiological and psychophysical experiments have provided the framework for determining the relation between peripheral afferent or cortical activity and tactile perception. Neural codes derived from these afferent signals are evaluated in terms of their capacity to predict human perceptual performance. One particular challenge in developing models of the tactile sensory system is the dual use of sensory signals from the skin. In addition to their perceptual function they serve as inputs to the sensorimotor control system involved in manipulation. Perceptions generated through active touch differ from those resulting from passive stimulation of the skin because they are the product of self-generated exploratory processes. Recent research in this area has highlighted the importance of shear forces in these exploratory movements and has shown that fingertip skin is particularly sensitive to shear generated during both object manipulation and tactile exploration.

  9. Binocular combination in abnormal binocular vision.

    PubMed

    Ding, Jian; Klein, Stanley A; Levi, Dennis M

    2013-02-08

    We investigated suprathreshold binocular combination in humans with abnormal binocular visual experience early in life. In the first experiment we presented the two eyes with equal but opposite phase shifted sine waves and measured the perceived phase of the cyclopean sine wave. Normal observers have balanced vision between the two eyes when the two eyes' images have equal contrast (i.e., both eyes contribute equally to the perceived image and perceived phase = 0°). However, in observers with strabismus and/or amblyopia, balanced vision requires a higher contrast image in the nondominant eye (NDE) than the dominant eye (DE). This asymmetry between the two eyes is larger than predicted from the contrast sensitivities or monocular perceived contrast of the two eyes and is dependent on contrast and spatial frequency: more asymmetric with higher contrast and/or spatial frequency. Our results also revealed a surprising NDE-to-DE enhancement in some of our abnormal observers. This enhancement is not evident in normal vision because it is normally masked by interocular suppression. However, in these abnormal observers the NDE-to-DE suppression was weak or absent. In the second experiment, we used the identical stimuli to measure the perceived contrast of a cyclopean grating by matching the binocular combined contrast to a standard contrast presented to the DE. These measures provide strong constraints for model fitting. We found asymmetric interocular interactions in binocular contrast perception, which was dependent on both contrast and spatial frequency in the same way as in phase perception. By introducing asymmetric parameters to the modified Ding-Sperling model including interocular contrast gain enhancement, we succeeded in accounting for both binocular combined phase and contrast simultaneously. Adding binocular contrast gain control to the modified Ding-Sperling model enabled us to predict the results of dichoptic and binocular contrast discrimination experiments

  10. Motion perception correlates with volitional but not reflexive eye movements.

    PubMed

    Price, N S C; Blum, J

    2014-09-26

    Visually-driven actions and perception are traditionally ascribed to the dorsal and ventral visual streams of the cortical processing hierarchy. However, motion perception and the control of tracking eye movements both depend on sensory motion analysis by neurons in the dorsal stream, suggesting that the same sensory circuits may underlie both action and perception. Previous studies have suggested that multiple sensory modules may be responsible for the perception of low- and high-level motion, or the detection versus identification of motion direction. However, it remains unclear whether the sensory processing systems that contribute to direction perception and the control of eye movements have the same neuronal constraints. To address this, we examined inter-individual variability across 36 observers, using two tasks that simultaneously assessed the precision of eye movements and direction perception: in the smooth pursuit task, observers volitionally tracked a small moving target and reported its direction; in the ocular following task, observers reflexively tracked a large moving stimulus and reported its direction. We determined perceptual-oculomotor correlations across observers, defined as the correlation between each observer's mean perceptual precision and mean oculomotor precision. Across observers, we found that: (i) mean perceptual precision was correlated between the two tasks; (ii) mean oculomotor precision was correlated between the tasks, and (iii) oculomotor and perceptual precision were correlated for volitional smooth pursuit, but not reflexive ocular following. Collectively, these results demonstrate that sensory circuits with common neuronal constraints subserve motion perception and volitional, but not reflexive eye movements.

  11. Sensory dynamics of visual hallucinations in the normal population

    PubMed Central

    Pearson, Joel; Chiou, Rocco; Rogers, Sebastian; Wicken, Marcus; Heitmann, Stewart; Ermentrout, Bard

    2016-01-01

    Hallucinations occur in both normal and clinical populations. Due to their unpredictability and complexity, the mechanisms underlying hallucinations remain largely untested. Here we show that visual hallucinations can be induced in the normal population by visual flicker, limited to an annulus that constricts content complexity to simple moving grey blobs, allowing objective mechanistic investigation. Hallucination strength peaked at ~11 Hz flicker and was dependent on cortical processing. Hallucinated motion speed increased with flicker rate, when mapped onto visual cortex it was independent of eccentricity, underwent local sensory adaptation and showed the same bistable and mnemonic dynamics as sensory perception. A neural field model with motion selectivity provides a mechanism for both hallucinations and perception. Our results demonstrate that hallucinations can be studied objectively, and they share multiple mechanisms with sensory perception. We anticipate that this assay will be critical to test theories of human consciousness and clinical models of hallucination. DOI: http://dx.doi.org/10.7554/eLife.17072.001 PMID:27726845

  12. Effect of galactooligosaccharide addition on the physical, optical, and sensory acceptance of vanilla ice cream.

    PubMed

    Balthazar, C F; Silva, H L A; Celeguini, R M S; Santos, R; Pastore, G M; Junior, C A Conte; Freitas, M Q; Nogueira, L C; Silva, M C; Cruz, A G

    2015-07-01

    The effect of the addition of galactooligosaccharide (GOS) on the physicochemical, optical, and sensory characteristics of ice cream was investigated. Vanilla ice cream was supplemented with 0, 1.5, and 3.0% (wt/wt) GOS and characterized for pH, firmness, color, melting, overrun, as well as subjected to a discriminative sensory test (triangle test). For comparison purposes, ice creams containing fructooligosaccharide were also manufactured. The GOS ice creams were characterized by increased firmness and lower melting rates. Different perceptions were reported in the sensory evaluation for the 3.0% GOS ice cream when compared with the control, which was not observed for the fructooligosaccharide ice cream. Overall, the findings suggest it is possible to produce GOS ice cream with improved stability in relation to the physicochemical parameters and sensory perception.

  13. Alterations of sensori-motor functions of the digestive tract in the pathophysiology of irritable bowel syndrome.

    PubMed

    Delvaux, Michel

    2004-08-01

    Pathophysiology of irritable bowel syndrome (IBS) is based upon multiple factors that have been organised in a comprehensive model centred around the brain-gut axis. The brain-gut axis encompasses nerve pathways linking the enteric and the central nervous systems and contains a large proportion of afferent fibres. Functionally and anatomically, visceral nerves are divided in to two categories: the parasympathetic pathways distributing to the upper gut through the vagi and to the hindgut, through the pelvic and pudendal nerves, and the sympathetic pathways, arising form the spinal cord and distributing to the midgut via the paravertebral ganglia. Several abnormalities of gut sensori-motor function have been described in patients with IBS. Abnormal motility patterns have been described at the intestinal and colonic levels. Changes in colonic motility are mainly related to bowel disturbances linked to IBS but do not correlate with pain. More recently, visceral hypersensitivity has been recognised as a main characteristic of patients with IBS. It is defined by an exaggerated perception of luminal distension of various segments of the gut and related to peripheral changes in the processing of visceral sensations as well as modulation of perception by centrally acting factors including mood and stress. Viscero-visceral reflexes link the two edges of the brain-gut axis and may account for the origin of symptoms in some pathological conditions. Recent advances in the understanding of the role of myenteric plexus allowed recognition of several neurotransmitters involved at the level of both the afferent and efferent pathways. Targeting the receptors of these neurotransmitters is a promising way for development of new treatments for IBS.

  14. Sensory receptors in monotremes.

    PubMed

    Proske, U; Gregory, J E; Iggo, A

    1998-07-29

    This is a summary of the current knowledge of sensory receptors in skin of the bill of the platypus, Ornithorhynchus anatinus, and the snout of the echidna, Tachyglossus aculeatus. Brief mention is also made of the third living member of the monotremes, the long-nosed echidna, Zaglossus bruijnii. The monotremes are the only group of mammals known to have evolved electroreception. The structures in the skin responsible for the electric sense have been identified as sensory mucous glands with an expanded epidermal portion that is innervated by large-diameter nerve fibres. Afferent recordings have shown that in both platypuses and echidnas the receptors excited by cathodal (negative) pulses and inhibited by anodal (positive) pulses. Estimates give a total of 40,000 mucous sensory glands in the upper and lower bill of the platypus, whereas there are only about 100 in the tip of the echidna snout. Recording of electroreceptor-evoked activity from the brain of the platypus have shown that the largest area dedicated to somatosensory input from the bill, S1, shows alternating rows of mechanosensory and bimodal neurons. The bimodal neurons respond to both electrosensory and mechanical inputs. In skin of the platypus bill and echidna snout, apart from the electroreceptors, there are structures called push rods, which consist of a column of compacted cells that is able to move relatively independently of adjacent regions of skin. At the base of the column are Merkel cell complexes, known to be type I slowly adapting mechanoreceptors, and lamellated corpuscles, probably vibration receptors. It has been speculated that the platypus uses its electric sense to detect the electromyographic activity from moving prey in the water and for obstacle avoidance. Mechanoreceptors signal contact with the prey. For the echidna, a role for the electrosensory system has not yet been established during normal foraging behaviour, although it has been shown that it is able to detect the presence

  15. Sensory receptors in monotremes.

    PubMed Central

    Proske, U; Gregory, J E; Iggo, A

    1998-01-01

    This is a summary of the current knowledge of sensory receptors in skin of the bill of the platypus, Ornithorhynchus anatinus, and the snout of the echidna, Tachyglossus aculeatus. Brief mention is also made of the third living member of the monotremes, the long-nosed echidna, Zaglossus bruijnii. The monotremes are the only group of mammals known to have evolved electroreception. The structures in the skin responsible for the electric sense have been identified as sensory mucous glands with an expanded epidermal portion that is innervated by large-diameter nerve fibres. Afferent recordings have shown that in both platypuses and echidnas the receptors excited by cathodal (negative) pulses and inhibited by anodal (positive) pulses. Estimates give a total of 40,000 mucous sensory glands in the upper and lower bill of the platypus, whereas there are only about 100 in the tip of the echidna snout. Recording of electroreceptor-evoked activity from the brain of the platypus have shown that the largest area dedicated to somatosensory input from the bill, S1, shows alternating rows of mechanosensory and bimodal neurons. The bimodal neurons respond to both electrosensory and mechanical inputs. In skin of the platypus bill and echidna snout, apart from the electroreceptors, there are structures called push rods, which consist of a column of compacted cells that is able to move relatively independently of adjacent regions of skin. At the base of the column are Merkel cell complexes, known to be type I slowly adapting mechanoreceptors, and lamellated corpuscles, probably vibration receptors. It has been speculated that the platypus uses its electric sense to detect the electromyographic activity from moving prey in the water and for obstacle avoidance. Mechanoreceptors signal contact with the prey. For the echidna, a role for the electrosensory system has not yet been established during normal foraging behaviour, although it has been shown that it is able to detect the presence

  16. Perception of Long-Period Complex Sounds

    DTIC Science & Technology

    1989-11-27

    the First International Congress on Music Perception and Cognition, Koto, Japan, Octxoer 1989, pp. 343-348. 7. Warren, R.M. "Sensory magnitudes and...elodic and Nmslodic pitch patterns: Effects of duration on perception," Invited paper presented at the First International cnference on Music ...percq*pion. H r edis of the First International Qzxress on Music Pexrceptin and Cognition, Kyoto, Japan, October 1989, pp. 343-348. G. Warren, R.M

  17. Heritable bovine fetal abnormalities.

    PubMed

    Whitlock, B K; Kaiser, L; Maxwell, H S

    2008-08-01

    The etiologies for congenital bovine fetal anomalies can be divided into heritable, toxic, nutritional, and infectious categories. Although uncommon in most herds, inherited congenital anomalies are probably present in all breeds of cattle and propagated as a result of specific trait selection that inadvertently results in propagation of the defect. In some herds, the occurrence of inherited anomalies has become frequent, and economically important. Anomalous traits can affect animals in a range of ways, some being lethal or requiring euthanasia on humane grounds, others altering structure, function, or performance of affected animals. Veterinary practitioners should be aware of the potential for inherited defects, and be prepared to investigate and report animals exhibiting abnormal characteristics. This review will discuss the morphologic characteristics, mode of inheritance, breeding lines affected, and the availability of genetic testing for selected heritable bovine fetal abnormalities.

  18. Liver abnormalities in pregnancy.

    PubMed

    Than, Nwe Ni; Neuberger, James

    2013-08-01

    Abnormalities of liver function (notably rise in alkaline phosphatase and fall in serum albumin) are common in normal pregnancy, whereas rise in serum bilirubin and aminotransferase suggest either exacerbation of underlying pre-existing liver disease, liver disease related to pregnancy or liver disease unrelated to pregnancy. Pregnant women appear to have a worse outcome when infected with Hepatitis E virus. Liver diseases associated with pregnancy include abnormalities associated hyperemesis gravidarum, acute fatty liver disease, pre-eclampsia, cholestasis of pregnancy and HELLP syndrome. Prompt investigation and diagnosis is important in ensuring a successful maternal and foetal outcome. In general, prompt delivery is the treatment of choice for acute fatty liver, pre-eclampsia and HELLP syndrome and ursodeoxycholic acid is used for cholestasis of pregnancy although it is not licenced for this indication.

  19. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  20. Anatomical Abnormalities in Autism?

    PubMed

    Haar, Shlomi; Berman, Sigal; Behrmann, Marlene; Dinstein, Ilan

    2016-04-01

    Substantial controversy exists regarding the presence and significance of anatomical abnormalities in autism spectrum disorders (ASD). The release of the Autism Brain Imaging Data Exchange (∼1000 participants, age 6-65 years) offers an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across groups and to resolve many of the outstanding questions. Comprehensive univariate analyses using volumetric, thickness, and surface area measures of over 180 anatomically defined brain areas, revealed significantly larger ventricular volumes, smaller corpus callosum volume (central segment only), and several cortical areas with increased thickness in the ASD group. Previously reported anatomical abnormalities in ASD including larger intracranial volumes, smaller cerebellar volumes, and larger amygdala volumes were not substantiated by the current study. In addition, multivariate classification analyses yielded modest decoding accuracies of individuals' group identity (<60%), suggesting that the examined anatomical measures are of limited diagnostic utility for ASD. While anatomical abnormalities may be present in distinct subgroups of ASD individuals, the current findings show that many previously reported anatomical measures are likely to be of low clinical and scientific significance for understanding ASD neuropathology as a whole in individuals 6-35 years old.

  1. Mapping the Developmental Trajectory and Correlates of Enhanced Pitch Perception on Speech Processing in Adults with ASD.

    PubMed

    Mayer, Jennifer L; Hannent, Ian; Heaton, Pamela F

    2016-05-01

    Whilst enhanced perception has been widely reported in individuals with Autism Spectrum Disorders (ASDs), relatively little is known about the developmental trajectory and impact of atypical auditory processing on speech perception in intellectually high-functioning adults with ASD. This paper presents data on perception of complex tones and speech pitch in adult participants with high-functioning ASD and typical development, and compares these with pre-existing data using the same paradigm with groups of children and adolescents with and without ASD. As perceptual processing abnormalities are likely to influence behavioural performance, regression analyses were carried out on the adult data set. The findings revealed markedly different pitch discrimination trajectories and language correlates across diagnostic groups. While pitch discrimination increased with age and correlated with receptive vocabulary in groups without ASD, it was enhanced in childhood and stable across development in ASD. Pitch discrimination scores did not correlate with receptive vocabulary scores in the ASD group and for adults with ASD superior pitch perception was associated with sensory atypicalities and diagnostic measures of symptom severity. We conclude that the development of pitch discrimination, and its associated mechanisms markedly distinguish those with and without ASD.

  2. Agreeable Smellers and Sensitive Neurotics – Correlations among Personality Traits and Sensory Thresholds

    PubMed Central

    Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N. B.; Hummel, Thomas

    2011-01-01

    Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality. PMID:21556139

  3. Agreeable smellers and sensitive neurotics--correlations among personality traits and sensory thresholds.

    PubMed

    Croy, Ilona; Springborn, Maria; Lötsch, Jörn; Johnston, Amy N B; Hummel, Thomas

    2011-04-27

    Correlations between personality traits and a wide range of sensory thresholds were examined. Participants (N = 124) completed a personality inventory (NEO-FFI) and underwent assessment of olfactory, trigeminal, tactile and gustatory detection thresholds, as well as examination of trigeminal and tactile pain thresholds. Significantly enhanced odor sensitivity in socially agreeable people, significantly enhanced trigeminal sensitivity in neurotic subjects, and a tendency for enhanced pain tolerance in highly conscientious participants was revealed. It is postulated that varied sensory processing may influence an individual's perception of the environment; particularly their perception of socially relevant or potentially dangerous stimuli and thus, varied with personality.

  4. Pigeons integrate past knowledge across sensory modalities

    PubMed Central

    Stephan, Claudia; Bugnyar, Thomas

    2013-01-01

    Advanced inferring abilities that are used for predator recognition and avoidance have been documented in a variety of animal species that produce alarm calls. In contrast, evidence for cognitive abilities that underpin predation avoidance in nonalarm-calling species is restricted to associative learning of heterospecific alarm calls and predator presence. We investigated cognitive capacities that underlie the perception and computation of external information beyond associative learning by addressing contextual information processing in pigeons, Columba livia, a bird species without specific alarm calls. We used a habituation/dishabituation paradigm across sensory modes to test pigeons' context-dependent inferring abilities. The birds reliably took previous knowledge about predator presence into account and responded with predator-specific scanning behaviour only if predator presence was not indicated before or if the perceived level of urgency increased. Hence, pigeons' antipredator behaviour was not based on the physical properties of displayed stimuli or their referential content alone but on contextual information, indicated by the kind and order of stimulus presentation and different sensory modes. PMID:23487497

  5. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  6. Sensory Processing Disorders are Associated with Duration of Current Episode and Severity of Side Effects

    PubMed Central

    Engel-Yeger, Batya; Vazquez, Gustavo H.; Pompili, Maurizio; Amore, Mario

    2017-01-01

    Objective Longer duration of untreated illness, longer duration of current episode, and the severity of medication side effects may negatively impact on the perceived disability and psychosocial impairment of patients with major affective and anxiety disorders. Studies also suggested the involvement of sensory perception in emotional and psychopathological processes. The present study aimed to examine the relationship between Sensory Processing Disorders (SPD), duration of untreated illness and current illness episode, and the severity of side effects related to psychoactive medications. Methods The sample included 178 participants with an age ranging from 17 to 85 years (mean=53.84±15.55). Participants were diagnosed with unipolar Major Depressive Disorder (MDD) (50%), Bipolar Disorder (BD) (33.7%), and Anxiety disorders (16.3%). They completed a socio-demographic questionnaire, the Udvalg for Kliniske Undersøgelser (UKU), and Adolescent/Adult Sensory Profile (AASP) questionnaire. Results Longer duration of current episode correlated with greater registration of sensory input and lower avoidance from sensory input among unipolar patients; with lower registration of sensory input, and higher tendency for sensory sensitivity/avoidance among bipolar participants; with lower sensory sensitivity/avoidance among anxiety participants, respectively. Also, mean UKU total scores correlated with lower sensory sensitivity among bipolar individuals. Conclusion SPD expressed in either hypo/hyper sensitivity may serve to clinically characterize subjects with major affective and anxiety disorders. PMID:28096875

  7. Sensory analysis of pet foods.

    PubMed

    Koppel, Kadri

    2014-08-01

    Pet food palatability depends first and foremost on the pet and is related to the pet food sensory properties such as aroma, texture and flavor. Sensory analysis of pet foods may be conducted by humans via descriptive or hedonic analysis, pets via acceptance or preference tests, and through a number of instrumental analysis methods. Sensory analysis of pet foods provides additional information on reasons behind palatable and unpalatable foods as pets lack linguistic capabilities. Furthermore, sensory analysis may be combined with other types of information such as personality and environment factors to increase understanding of acceptable pet foods. Most pet food flavor research is proprietary and, thus, there are a limited number of publications available. Funding opportunities for pet food studies would increase research and publications and this would help raise public awareness of pet food related issues. This mini-review addresses current pet food sensory analysis literature and discusses future challenges and possibilities.

  8. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE)

    PubMed Central

    Perruchoud, David; Murray, Micah M.; Lefebvre, Jeremie; Ionta, Silvio

    2014-01-01

    Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic–functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration. PMID:24999327

  9. [Molecular abnormalities in lymphomas].

    PubMed

    Delsol, G

    2010-11-01

    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  10. A review of human sensory dynamics for application to models of driver steering and speed control.

    PubMed

    Nash, Christopher J; Cole, David J; Bigler, Robert S

    2016-06-01

    In comparison with the high level of knowledge about vehicle dynamics which exists nowadays, the role of the driver in the driver-vehicle system is still relatively poorly understood. A large variety of driver models exist for various applications; however, few of them take account of the driver's sensory dynamics, and those that do are limited in their scope and accuracy. A review of the literature has been carried out to consolidate information from previous studies which may be useful when incorporating human sensory systems into the design of a driver model. This includes information on sensory dynamics, delays, thresholds and integration of multiple sensory stimuli. This review should provide a basis for further study into sensory perception during driving.

  11. Communication between neuronal somata and satellite glial cells in sensory ganglia.

    PubMed

    Huang, Li-Yen M; Gu, Yanping; Chen, Yong

    2013-10-01

    Studies of the structural organization and functions of the cell body of a neuron (soma) and its surrounding satellite glial cells (SGCs) in sensory ganglia have led to the realization that SGCs actively participate in the information processing of sensory signals from afferent terminals to the spinal cord. SGCs use a variety ways to communicate with each other and with their enwrapped soma. Changes in this communication under injurious conditions often lead to abnormal pain conditions. "What are the mechanisms underlying the neuronal soma and SGC communication in sensory ganglia?" and "how do tissue or nerve injuries affect the communication?" are the main questions addressed in this review.

  12. Factors Involved in Tactile Texture Perception through Probes

    PubMed Central

    Yoshioka, Takashi; Zhou, Julia

    2008-01-01

    An understanding of texture perception by robotic systems can be developed by examining human texture perception through a probe. Like texture perception through direct touch with the finger, texture perception by indirect means of a probe is multi-dimensional, comprising rough, hard, and sticky texture continua. In this study, we describe the individual subject variability in probe-mediated texture perception, and compare similarities and differences of texture perception between direct touch and indirect touch. The results show variability among subjects, as individual subjects may choose to rely on different degrees of three texture dimensions and do so at different scanning velocities. Despite this variability between scanning conditions within each subject, the subjects make consistently reliable discriminations of textures and subjective magnitude estimates along texture continua when indirectly exploring texture surfaces with a probe. These data contribute information that is valuable to the design of robotic sensory systems, and to the understanding of sensory feedback, which is essential in teleoperations. PMID:19617927

  13. Phantom percepts: Tinnitus and pain as persisting aversive memory networks

    PubMed Central

    De Ridder, Dirk; Elgoyhen, Ana Belen; Romo, Ranulfo; Langguth, Berthold

    2011-01-01

    Phantom perception refers to the conscious awareness of a percept in the absence of an external stimulus. On the basis of basic neuroscience on perception and clinical research in phantom pain and phantom sound, we propose a working model for their origin. Sensory deafferentation results in high-frequency, gamma band, synchronized neuronal activity in the sensory cortex. This activity becomes a conscious percept only if it is connected to larger coactivated “(self-)awareness” and “salience” brain networks. Through the involvement of learning mechanisms, the phantom percept becomes associated to distress, which in turn is reflected by a simultaneously coactivated nonspecific distress network consisting of the anterior cingulate cortex, anterior insula, and amygdala. Memory mechanisms play a role in the persistence of the awareness of the phantom percept, as well as in the reinforcement of the associated distress. Thus, different dynamic overlapping brain networks should be considered as targets for the treatment of this disorder. PMID:21502503

  14. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  15. The effects of selective and divided attention on sensory precision and integration.

    PubMed

    Odegaard, Brian; Wozny, David R; Shams, Ladan

    2016-02-12

    In our daily lives, our capacity to selectively attend to stimuli within or across sensory modalities enables enhanced perception of the surrounding world. While previous research on selective attention has studied this phenomenon extensively, two important questions still remain unanswered: (1) how selective attention to a single modality impacts sensory integration processes, and (2) the mechanism by which selective attention improves perception. We explored how selective attention impacts performance in both a spatial task and a temporal numerosity judgment task, and employed a Bayesian Causal Inference model to investigate the computational mechanism(s) impacted by selective attention. We report three findings: (1) in the spatial domain, selective attention improves precision of the visual sensory representations (which were relatively precise), but not the auditory sensory representations (which were fairly noisy); (2) in the temporal domain, selective attention improves the sensory precision in both modalities (both of which were fairly reliable to begin with); (3) in both tasks, selective attention did not exert a significant influence over the tendency to integrate sensory stimuli. Therefore, it may be postulated that a sensory modality must possess a certain inherent degree of encoding precision in order to benefit from selective attention. It also appears that in certain basic perceptual tasks, the tendency to integrate crossmodal signals does not depend significantly on selective attention. We conclude with a discussion of how these results relate to recent theoretical considerations of selective attention.

  16. Electrodermal and behavioral responses of children with autism spectrum disorders to sensory and repetitive stimuli.

    PubMed

    McCormick, Carolyn; Hessl, David; Macari, Suzanne L; Ozonoff, Sally; Green, Cherie; Rogers, Sally J

    2014-08-01

    Parents frequently report that their children with autism spectrum disorders (ASD) respond atypically to sensory stimuli. Repetitive behaviors are also part of the ASD behavioral profile. Abnormal physiological arousal may underlie both of these symptoms. Electrodermal activity (EDA) is an index of sympathetic nervous system arousal. The goals of this study were twofold: (1) to pilot methods for collecting EDA data in young children and (2) to examine hypothesized relationships among EDA, and sensory symptoms and repetitive behaviors in children with ASD as compared with children with typical development. EDA was recorded on 54 young children with ASD and on 33 children with typical development (TD) during a protocol that included baseline, exposure to sensory and repetitive stimuli, and play. Parents completed standardized questionnaires regarding their child's sensory symptoms and repetitive behaviors. Frequency and type of repetitive behavior during play was coded offline. Comparisons between EDA data for ASD and TD groups indicated no significant between-group differences in any measures. Parents of children with ASD reported more abnormal responses to sensory stimuli and more repetitive behaviors, but scores on these measures were not significantly correlated with EDA or with frequency of observed repetitive behaviors. Parent report of frequency and severity of sensory symptoms was significantly correlated with reports of repetitive behaviors in both groups. Although parents of children with ASD report high levels of sensory symptoms and repetitive behaviors, these differences are not related to measured EDA arousal or reactivity.

  17. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  18. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  19. Adaptive reliance on the most stable sensory predictions enhances perceptual feature extraction of moving stimuli

    PubMed Central

    Kumar, Neeraj

    2016-01-01

    The prediction of the sensory outcomes of action is thought to be useful for distinguishing self- vs. externally generated sensations, correcting movements when sensory feedback is delayed, and learning predictive models for motor behavior. Here, we show that aspects of another fundamental function—perception—are enhanced when they entail the contribution of predicted sensory outcomes and that this enhancement relies on the adaptive use of the most stable predictions available. We combined a motor-learning paradigm that imposes new sensory predictions with a dynamic visual search task to first show that perceptual feature extraction of a moving stimulus is poorer when it is based on sensory feedback that is misaligned with those predictions. This was possible because our novel experimental design allowed us to override the “natural” sensory predictions present when any action is performed and separately examine the influence of these two sources on perceptual feature extraction. We then show that if the new predictions induced via motor learning are unreliable, rather than just relying on sensory information for perceptual judgments, as is conventionally thought, then subjects adaptively transition to using other stable sensory predictions to maintain greater accuracy in their perceptual judgments. Finally, we show that when sensory predictions are not modified at all, these judgments are sharper when subjects combine their natural predictions with sensory feedback. Collectively, our results highlight the crucial contribution of sensory predictions to perception and also suggest that the brain intelligently integrates the most stable predictions available with sensory information to maintain high fidelity in perceptual decisions. PMID:26823516

  20. Reduced modulation of thalamocortical connectivity during exposure to sensory stimuli in ASD.

    PubMed

    Green, Shulamite A; Hernandez, Leanna; Bookheimer, Susan Y; Dapretto, Mirella

    2016-11-29

    Recent evidence for abnormal thalamic connectivity in autism spectrum disorders (ASD) and sensory processing disorders suggests the thalamus may play a role in sensory over-responsivity (SOR), an extreme negative response to sensory stimuli, which is common in ASD. However, there is yet little understanding of changes in thalamic connectivity during exposure to aversive sensory inputs in individuals with ASD. In particular, the pulvinar nucleus of the thalamus is implicated in atypical sensory processing given its role in selective attention, regulation, and sensory integration. This study aimed to examine the role of pulvinar connectivity in ASD during mildly aversive sensory input. Functional magnetic resonance imaging was used to examine connectivity with the pulvinar during exposure to mildly aversive auditory and tactile stimuli in 38 youth (age 9-17; 19 ASD, 19 IQ-matched typically developing (TD)). Parents rated children's SOR severity on two standard scales. Compared to TD, ASD participants displayed aberrant modulation of connectivity between pulvinar and cortex (including sensory-motor and prefrontal regions) during sensory stimulation. In ASD participants, pulvinar-amygdala connectivity was correlated with severity of SOR symptoms. Deficits in modulation of thalamocortical connectivity in youth with ASD may reflect reduced thalamo-cortical inhibition in response to sensory stimulation, which could lead to difficulty filtering out and/or integrating sensory information. An increase in amygdala connectivity with the pulvinar might be partially responsible for deficits in selective attention as the amygdala signals the brain to attend to distracting sensory stimuli. Autism Res 2016. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.

  1. Somatosensory Profiles but Not Numbers of Somatosensory Abnormalities of Neuropathic Pain Patients Correspond with Neuropathic Pain Grading

    PubMed Central

    Konopka, Karl-Heinz; Harbers, Marten; Houghton, Andrea; Kortekaas, Rudie; van Vliet, Andre; Timmerman, Wia; den Boer, Johan A.; Struys, Michel M. R. F.; van Wijhe, Marten

    2012-01-01

    Due to the lack of a specific diagnostic tool for neuropathic pain, a grading system to categorize pain as ‘definite’, ‘probable’, ‘possible’ and ‘unlikely’ neuropathic was proposed. Somatosensory abnormalities are common in neuropathic pain and it has been suggested that a greater number of abnormalities would be present in patients with ‘probable’ and ‘definite’ grades. To test this hypothesis, we investigated the presence of somatosensory abnormalities by means of Quantitative Sensory Testing (QST) in patients with a clinical diagnosis of neuropathic pain and correlated the number of sensory abnormalities and sensory profiles to the different grades. Of patients who were clinically diagnosed with neuropathic pain, only 60% were graded as ‘definite’ or ‘probable’, while 40% were graded as ‘possible’ or ‘unlikely’ neuropathic pain. Apparently, there is a mismatch between a clinical neuropathic pain diagnosis and neuropathic pain grading. Contrary to the expectation, patients with ‘probable’ and ‘definite’ grades did not have a greater number of abnormalities. Instead, similar numbers of somatosensory abnormalities were identified for each grade. The profiles of sensory signs in ‘definite’ and ‘probable’ neuropathic pain were not significantly different, but different from the ‘unlikely’ grade. This latter difference could be attributed to differences in the prevalence of patients with a mixture of sensory gain and loss and with sensory loss only. The grading system allows a separation of neuropathic and non-neuropathic pain based on profiles but not on the total number of sensory abnormalities. Our findings indicate that patient selection based on grading of neuropathic pain may provide advantages in selecting homogenous groups for clinical research. PMID:22927981

  2. Neurological abnormalities in chronic benzene poisoning. A study of six patients with aplastic anemia and two with preleukemia

    SciTech Connect

    Baslo, A.; Aksoy, M.

    1982-04-01

    Neurological, electromyographical and motor conduction velocity examinations were applied to 6 patients with aplastic anemia and two cases of preleukemia due to chronic exposure to benzene. In addition, sensory conduction velocities were measured in three patients. Neurological abnormalities were found in four out of six pancytopenic individuals. There was a certain relationship between the presence of neurological abnormalities and the period of cessation of the exposure. In the two patients with preleukemia similar neurologic abnormalities were found.

  3. Improving Academic Scores Through Sensory Integration

    ERIC Educational Resources Information Center

    Ayres, A. Jean

    1972-01-01

    Investigated were the effects of a remedial program stressing sensory integration on the academic performance of learning disabled children with certain identifiable types of sensory integrative dysfunction. (KW)

  4. A heuristic model of sensory adaptation.

    PubMed

    McBurney, Donald H; Balaban, Carey D

    2009-11-01

    Adaptation is a universal process in organisms as diverse as bacteria and humans, and across the various senses. This article proposes a simple, heuristic, mathematical model containing tonic and phasic processes. The model demonstrates properties not commonly associated with adaptation, such as increased sensitivity to changes, range shifting, and phase lead. Changes in only four parameters permit the model to predict empirical psychophysical data from different senses. The relatively prolonged time courses of responses to oral and topical capsaicin are used to illustrate and validate this mathematical modeling approach for different stimulus profiles. Other examples of phenomena elucidated by this modeling approach include the time courses of taste sensation, brightness perception, loudness perception, cross-adaptation to oral irritants, and cutaneous mechanoreception. It also predicts such apparently unrelated phenomena as perceived alcohol intoxication, habituation, and drug tolerance. Because the integration of phasic and tonic components is a conservative, highly efficacious solution to a ubiquitous biological challenge, sensory adaptation is seen as an evolutionary adaptation, and as a prominent feature of Mother Nature's small bag of tricks.

  5. Abnormal binaural spectral integration in cochlear implant users.

    PubMed

    Reiss, Lina A J; Ito, Rindy A; Eggleston, Jessica L; Wozny, David R

    2014-04-01

    Bimodal stimulation, or stimulation of a cochlear implant (CI) together with a contralateral hearing aid (HA), can improve speech perception in noise However, this benefit is variable, and some individuals even experience interference with bimodal stimulation. One contributing factor to this variability may be differences in binaural spectral integration (BSI) due to abnormal auditory experience. CI programming introduces interaural pitch mismatches, in which the frequencies allocated to the electrodes (and contralateral HA) differ from the electrically stimulated cochlear frequencies. Previous studies have shown that some, but not all, CI users adapt pitch perception to reduce this mismatch. The purpose of this study was to determine whether broadened BSI may also reduce the perception of mismatch. Interaural pitch mismatches and dichotic pitch fusion ranges were measured in 21 bimodal CI users. Seventeen subjects with wide fusion ranges also conducted a task to pitch match various fused electrode-tone pairs. All subjects showed abnormally wide dichotic fusion frequency ranges of 1-4 octaves. The fusion range size was weakly correlated with the interaural pitch mismatch, suggesting a link between broad binaural pitch fusion and large interaural pitch mismatch. Dichotic pitch averaging was also observed, in which a new binaural pitch resulted from the fusion of the original monaural pitches, even when the pitches differed by as much as 3-4 octaves. These findings suggest that abnormal BSI, indicated by broadened fusion ranges and spectral averaging between ears, may account for speech perception interference and nonoptimal integration observed with bimodal compared with monaural hearing device use.

  6. Epilepsy and chromosomal abnormalities

    PubMed Central

    2010-01-01

    Background Many chromosomal abnormalities are associated with Central Nervous System (CNS) malformations and other neurological alterations, among which seizures and epilepsy. Some of these show a peculiar epileptic and EEG pattern. We describe some epileptic syndromes frequently reported in chromosomal disorders. Methods Detailed clinical assessment, electrophysiological studies, survey of the literature. Results In some of these congenital syndromes the clinical presentation and EEG anomalies seems to be quite typical, in others the manifestations appear aspecific and no strictly linked with the chromosomal imbalance. The onset of seizures is often during the neonatal period of the infancy. Conclusions A better characterization of the electro clinical patterns associated with specific chromosomal aberrations could give us a valuable key in the identification of epilepsy susceptibility of some chromosomal loci, using the new advances in molecular cytogenetics techniques - such as fluorescent in situ hybridization (FISH), subtelomeric analysis and CGH (comparative genomic hybridization) microarray. However further studies are needed to understand the mechanism of epilepsy associated with chromosomal abnormalities. PMID:20438626

  7. Sensory suppression during feeding

    PubMed Central

    Foo, H.; Mason, Peggy

    2005-01-01

    Feeding is essential for survival, whereas withdrawal and escape reactions are fundamentally protective. These critical behaviors can compete for an animal's resources when an acutely painful stimulus affects the animal during feeding. One solution to the feeding-withdrawal conflict is to optimize feeding by suppressing pain. We examined whether rats continue to feed when challenged with a painful stimulus. During feeding, motor withdrawal responses to noxious paw heat either did not occur or were greatly delayed. To investigate the neural basis of sensory suppression accompanying feeding, we recorded from brainstem pain-modulatory neurons involved in the descending control of pain transmission. During feeding, pain-facilitatory ON cells were inhibited and pain-inhibitory OFF cells were excited. When a nonpainful somatosensory stimulus preactivated ON cells and preinhibited OFF cells, rats interrupted eating to react to painful stimuli. Inactivation of the brainstem region containing ON and OFF cells also blocked pain suppression during eating, demonstrating that brainstem pain-modulatory neurons suppress motor reactions to external stimulation during homeostatic behaviors. PMID:16275919

  8. Biological motion distorts size perception

    NASA Astrophysics Data System (ADS)

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.

    2017-02-01

    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions – stimuli whose size is consistently misperceived – do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size.

  9. Biological motion distorts size perception

    PubMed Central

    Veto, Peter; Einhäuser, Wolfgang; Troje, Nikolaus F.

    2017-01-01

    Visual illusions explore the limits of sensory processing and provide an ideal testbed to study perception. Size illusions – stimuli whose size is consistently misperceived – do not only result from sensory cues, but can also be induced by cognitive factors, such as social status. Here we investigate, whether the ecological relevance of biological motion can also distort perceived size. We asked observers to judge the size of point-light walkers (PLWs), configurations of dots whose movements induce the perception of human movement, and visually matched control stimuli (inverted PLWs). We find that upright PLWs are consistently judged as larger than inverted PLWs, while static point-light figures do not elicit the same effect. We also show the phenomenon using an indirect paradigm: observers judged the relative size of a disc that followed an inverted PLW larger than a disc following an upright PLW. We interpret this as a contrast effect: The upright PLW is perceived larger and thus the subsequent disc is judged smaller. Together, these results demonstrate that ecologically relevant biological-motion stimuli are perceived larger than visually matched control stimuli. Our findings present a novel case of illusory size perception, where ecological importance leads to a distorted perception of size. PMID:28205639

  10. Action-based effects on music perception.

    PubMed

    Maes, Pieter-Jan; Leman, Marc; Palmer, Caroline; Wanderley, Marcelo M

    2014-01-03

    The classical, disembodied approach to music cognition conceptualizes action and perception as separate, peripheral processes. In contrast, embodied accounts of music cognition emphasize the central role of the close coupling of action and perception. It is a commonly established fact that perception spurs action tendencies. We present a theoretical framework that captures the ways in which the human motor system and its actions can reciprocally influence the perception of music. The cornerstone of this framework is the common coding theory, postulating a representational overlap in the brain between the planning, the execution, and the perception of movement. The integration of action and perception in so-called internal models is explained as a result of associative learning processes. Characteristic of internal models is that they allow intended or perceived sensory states to be transferred into corresponding motor commands (inverse modeling), and vice versa, to predict the sensory outcomes of planned actions (forward modeling). Embodied accounts typically refer to inverse modeling to explain action effects on music perception (Leman, 2007). We extend this account by pinpointing forward modeling as an alternative mechanism by which action can modulate perception. We provide an extensive overview of recent empirical evidence in support of this idea. Additionally, we demonstrate that motor dysfunctions can cause perceptual disabilities, supporting the main idea of the paper that the human motor system plays a functional role in auditory perception. The finding that music perception is shaped by the human motor system and its actions suggests that the musical mind is highly embodied. However, we advocate for a more radical approach to embodied (music) cognition in the sense that it needs to be considered as a dynamical process, in which aspects of action, perception, introspection, and social interaction are of crucial importance.

  11. Action-based effects on music perception

    PubMed Central

    Maes, Pieter-Jan; Leman, Marc; Palmer, Caroline; Wanderley, Marcelo M.

    2013-01-01

    The classical, disembodied approach to music cognition conceptualizes action and perception as separate, peripheral processes. In contrast, embodied accounts of music cognition emphasize the central role of the close coupling of action and perception. It is a commonly established fact that perception spurs action tendencies. We present a theoretical framework that captures the ways in which the human motor system and its actions can reciprocally influence the perception of music. The cornerstone of this framework is the common coding theory, postulating a representational overlap in the brain between the planning, the execution, and the perception of movement. The integration of action and perception in so-called internal models is explained as a result of associative learning processes. Characteristic of internal models is that they allow intended or perceived sensory states to be transferred into corresponding motor commands (inverse modeling), and vice versa, to predict the sensory outcomes of planned actions (forward modeling). Embodied accounts typically refer to inverse modeling to explain action effects on music perception (Leman, 2007). We extend this account by pinpointing forward modeling as an alternative mechanism by which action can modulate perception. We provide an extensive overview of recent empirical evidence in support of this idea. Additionally, we demonstrate that motor dysfunctions can cause perceptual disabilities, supporting the main idea of the paper that the human motor system plays a functional role in auditory perception. The finding that music perception is shaped by the human motor system and its actions suggests that the musical mind is highly embodied. However, we advocate for a more radical approach to embodied (music) cognition in the sense that it needs to be considered as a dynamical process, in which aspects of action, perception, introspection, and social interaction are of crucial importance. PMID:24454299

  12. Auditory abnormalities in autism: toward functional distinctions among findings.

    PubMed

    Kellerman, Gabriella R; Fan, Jin; Gorman, Jack M

    2005-09-01

    Recently, findings on a wide range of auditory abnormalities among individuals with autism have been reported. To date, functional distinctions among these varied findings are poorly established. Such distinctions should be of interest to clinicians and researchers alike given their potential therapeutic and experimental applications. This review suggests three general trends among these findings as a starting point for future analyses. First, studies of auditory perception of linguistic and social auditory stimuli among individuals with autism generally have found impaired perception versus normal controls. Such findings may correlate with impaired language and communication skills and social isolation observed among individuals with autism. Second, studies of auditory perception of pitch and music among individuals with autism generally have found enhanced perception versus normal controls. These findings may correlate with the restrictive and highly focused behaviors observed among individuals with autism. Third, findings on the auditory perception of non-linguistic, non-musical stimuli among autism patients resist any generalized conclusions. Ultimately, as some researchers have already suggested, the distinction between impaired global processing and enhanced local processing may prove useful in making sense of apparently discordant findings on auditory abnormalities among individuals with autism.

  13. Pain Perception in Buddhism Perspective.

    PubMed

    Waikakul, Waraporn; Waikakul, Saranatra

    2016-08-01

    Dhamma, which Lord Buddha has presented to people after his enlightenment, analyzes every phenomenon and objects into their ultimate elements. The explanation of sensory system is also found in a part of Dhamma named Abhidhammapitaka, the Book of the Higher Doctrine in Buddhism. To find out the relationship between explanation of pain in the present neuroscience and the explanation of pain in Abhidhamma, the study was carried out by the use of a comprehensive review. The comparisons were in terms of peripheral stimulation, signal transmission, modulation, perception, suffering, determination and decision making for the responding to pain. We found that details of the explanation on pain mechanism and perception in Abhidhamma could associate well with our present scientific knowledge. Furthermore, more refinement information about the process and its function in particular aspects of pain perception were provided in Abhidhammapitaka.

  14. Skeletal abnormalities in homocystinuria.

    PubMed Central

    Brenton, D. P.

    1977-01-01

    The skeletal changes of thirty-four patients with the biochemical and clinical features of cystathionine synthase deficiency are described. It is emphasized that there is clinical evidence of excessive bone growth and the formation for bone which is structurally weaker than normal. The similarities and differences between this condition and Marfan's syndrome are stressed and the possible nature of the connective tissue defect leading to the skeletal changes discussed. The most characteristic skeletal changes in homocystinuria are the skeletal disproportion (pubis-heel length greater than crown-pubis length), the abnormal vertebrae, sternal deformities, genu valgum and large metaphyses and epiphyses. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 PMID:917963

  15. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem.

  16. Sensory Cortical Plasticity Participates in the Epigenetic Regulation of Robust Memory Formation

    PubMed Central

    Phan, Mimi L.; Bieszczad, Kasia M.

    2016-01-01

    Neuroplasticity remodels sensory cortex across the lifespan. A function of adult sensory cortical plasticity may be capturing available information during perception for memory formation. The degree of experience-dependent remodeling in sensory cortex appears to determine memory strength and specificity for important sensory signals. A key open question is how plasticity is engaged to induce different degrees of sensory cortical remodeling. Neural plasticity for long-term memory requires the expression of genes underlying stable changes in neuronal function, structure, connectivity, and, ultimately, behavior. Lasting changes in transcriptional activity may depend on epigenetic mechanisms; some of the best studied in behavioral neuroscience are DNA methylation and histone acetylation and deacetylation, which, respectively, promote and repress gene expression. One purpose of this review is to propose epigenetic regulation of sensory cortical remodeling as a mechanism enabling the transformation of significant information from experiences into content-rich memories of those experiences. Recent evidence suggests how epigenetic mechanisms regulate highly specific reorganization of sensory cortical representations that establish a widespread network for memory. Thus, epigenetic mechanisms could initiate events to establish exceptionally persistent and robust memories at a systems-wide level by engaging sensory cortical plasticity for gating what and how much information becomes encoded. PMID:26881129

  17. Wetness perception across body sites.

    PubMed

    Ackerley, Rochelle; Olausson, Håkan; Wessberg, Johan; McGlone, Francis

    2012-07-26

    Human skin is innervated with a variety of receptors serving somatosensation and includes the sensory sub-modalities of touch, temperature, pain and itch. The density and type of receptors differ across the body surface, and there are various body-map representations in the brain. The perceptions of skin sensations outside of the specified sub-modalities, e.g. wetness or greasiness, are described as 'touch blends' and are learned. The perception of wetness is generated from the coincident activation of tactile and thermal receptors. The present study aims to quantify threshold levels of wetness perception and find out if this differs across body sites. A rotary tactile stimulator was used to apply a moving, wetted stimulus over selected body sites at a precise force and velocity. Four wetness levels were tested over eight body sites. After each stimulus, the participant rated how wet the stimulus was perceived to be using a visual analogue scale. The results indicated that participants discriminated between levels of wetness as distinct percepts. Significant differences were found between all levels of wetness, apart from the lowest levels of comparison (20 μl and 40 μl). The perception of wetness did not, however, differ significantly across body sites and there were no significant interactions between wetness level and body site. The present study emphasizes the importance of understanding how bottom-up and top-down processes interact to generate complex perceptions.

  18. Peripheral sensory coding through oscillatory synchrony in weakly electric fish

    PubMed Central

    Baker, Christa A; Huck, Kevin R; Carlson, Bruce A

    2015-01-01

    Adaptations to an organism's environment often involve sensory system modifications. In this study, we address how evolutionary divergence in sensory perception relates to the physiological coding of stimuli. Mormyrid fishes that can detect subtle variations in electric communication signals encode signal waveform into spike-timing differences between sensory receptors. In contrast, the receptors of species insensitive to waveform variation produce spontaneously oscillating potentials. We found that oscillating receptors respond to electric pulses by resetting their phase, resulting in transient synchrony among receptors that encodes signal timing and location, but not waveform. These receptors were most sensitive to frequencies found only in the collective signals of groups of conspecifics, and this was correlated with increased behavioral responses to these frequencies. Thus, different perceptual capabilities correspond to different receptor physiologies. We hypothesize that these divergent mechanisms represent adaptations for different social environments. Our findings provide the first evidence for sensory coding through oscillatory synchrony. DOI: http://dx.doi.org/10.7554/eLife.08163.001 PMID:26238277

  19. Hyperactivation balances sensory processing deficits during mood induction in schizophrenia.

    PubMed

    Dyck, Miriam; Loughead, James; Gur, Ruben C; Schneider, Frank; Mathiak, Klaus

    2014-02-01

    While impairments in emotion recognition are consistently reported in schizophrenia, there is some debate on the experience of emotion. Only few studies investigated neural correlates of emotional experience in schizophrenia. The present functional magnetic resonance imaging study compared a standard visual mood induction paradigm with an audiovisual method aimed at eliciting emotions more automatically. To investigate the interplay of sensory, cognitive and emotional mechanisms during emotion experience, we examined connectivity patterns between brain areas. Sixteen schizophrenia patients and sixteen healthy subjects participated in two different mood inductions (visual and audiovisual) that were administered for different emotions (happiness, sadness and neutral). Confirming the dissociation of behavioral and neural correlates of emotion experience, patients rated their mood similarly to healthy subjects but showed differences in neural activations. Sensory brain areas were activated less, increased activity emerged in higher cortical areas, particularly during audiovisual stimulation. Connectivity was increased between primary and secondary sensory processing areas in schizophrenia. These findings support the hypothesis of a deficit in filtering and processing sensory information alongside increased higher-order cognitive effort compensating for perception deficits in the affective domain. This may suffice to recover emotion experience in ratings of clinically stable patients but may fail during acute psychosis.

  20. Unexpected arousal modulates the influence of sensory noise on confidence

    PubMed Central

    Allen, Micah; Frank, Darya; Schwarzkopf, D Samuel; Fardo, Francesca; Winston, Joel S; Hauser, Tobias U; Rees, Geraint

    2016-01-01

    Human perception is invariably accompanied by a graded feeling of confidence that guides metacognitive awareness and decision-making. It is often assumed that this arises solely from the feed-forward encoding of the strength or precision of sensory inputs. In contrast, interoceptive inference models suggest that confidence reflects a weighted integration of sensory precision and expectations about internal states, such as arousal. Here we test this hypothesis using a novel psychophysical paradigm, in which unseen disgust-cues induced unexpected, unconscious arousal just before participants discriminated motion signals of variable precision. Across measures of perceptual bias, uncertainty, and physiological arousal we found that arousing disgust cues modulated the encoding of sensory noise. Furthermore, the degree to which trial-by-trial pupil fluctuations encoded this nonlinear interaction correlated with trial level confidence. Our results suggest that unexpected arousal regulates perceptual precision, such that subjective confidence reflects the integration of both external sensory and internal, embodied states. DOI: http://dx.doi.org/10.7554/eLife.18103.001 PMID:27776633

  1. Only Self-Generated Actions Create Sensori-Motor Systems in the Developing Brain

    ERIC Educational Resources Information Center

    James, Karin Harman; Swain, Shelley N.

    2011-01-01

    Previous research shows that sensory and motor systems interact during perception, but how these connections among systems are created during development is unknown. The current work exposes young children to novel "verbs" and objects through either (a) actively exploring the objects or (b) by seeing an experimenter interact with the objects.…

  2. Restricted and Repetitive Behaviours, Sensory Processing and Cognitive Style in Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Chen, Yu-Han; Rodgers, Jacqui; McConachie, Helen

    2009-01-01

    Many individuals with autism tend to focus on details. It has been suggested that this cognitive style may underlie the presence of stereotyped routines, repetitive interests and behaviours, and both relate in some way to sensory abnormalities. Twenty-nine children with diagnosis of high functioning autism or Asperger syndrome completed the…

  3. Language-universal sensory deficits in developmental dyslexia: English, Spanish, and Chinese.

    PubMed

    Goswami, Usha; Wang, H-L Sharon; Cruz, Alicia; Fosker, Tim; Mead, Natasha; Huss, Martina

    2011-02-01

    Studies in sensory neuroscience reveal the critical importance of accurate sensory perception for cognitive development. There is considerable debate concerning the possible sensory correlates of phonological processing, the primary cognitive risk factor for developmental dyslexia. Across languages, children with dyslexia have a specific difficulty with the neural representation of the phonological structure of speech. The identification of a robust sensory marker of phonological difficulties would enable early identification of risk for developmental dyslexia and early targeted intervention. Here, we explore whether phonological processing difficulties are associated with difficulties in processing acoustic cues to speech rhythm. Speech rhythm is used across languages by infants to segment the speech stream into words and syllables. Early difficulties in perceiving auditory sensory cues to speech rhythm and prosody could lead developmentally to impairments in phonology. We compared matched samples of children with and without dyslexia, learning three very different spoken and written languages, English, Spanish, and Chinese. The key sensory cue measured was rate of onset of the amplitude envelope (rise time), known to be critical for the rhythmic timing of speech. Despite phonological and orthographic differences, for each language, rise time sensitivity was a significant predictor of phonological awareness, and rise time was the only consistent predictor of reading acquisition. The data support a language-universal theory of the neural basis of developmental dyslexia on the basis of rhythmic perception and syllable segmentation. They also suggest that novel remediation strategies on the basis of rhythm and music may offer benefits for phonological and linguistic development.

  4. Sensory Processing Dysfunction in the Personal Experience and Neuronal Machinery of Schizophrenia

    PubMed Central

    Javitt, Daniel C.; Freedman, Robert

    2015-01-01

    Sensory processing deficits, first investigated by Kraeplin and Bleuler as possible pathophysiological mechanisms in schizophrenia, are now being re-characterized in the context of modern understanding of the involved molecular and neurobiological brain mechanisms. The National Institute of Mental Health Research Domain Criteria position these deficits as intermediaries between molecular and cellular mechanisms and clinical symptoms of schizophrenia such as hallucinations. The pre-pulse inhibition of startle responses by a weaker preceding tone, the inhibitory gating of response to paired sensory stimuli characterized using the auditory P50 evoked response, and the detection of slightly different stimuli that elicits the cortical Mismatch Negativity potential demonstrate deficits in early sensory processing mechanisms, whose molecular and neurobiological bases are increasingly well understood. Deficits in sensory processing underlie more complex cognitive dysfunction and, vice versa, are affected by higher-level cognitive difficulties. These deficits are now being used to identify genes involved in familial transmission of the illness and to monitor potentially therapeutic drug effects for both treatment and prevention. This research also provides a clinical reminder that patients’ sensory perception of the surrounding world, even during treatment sessions, may differ considerable from others’ perceptions. A person’s ability to understand and interact effectively with surrounding world ultimately depends upon an underlying sensory experience of it. PMID:25553496

  5. Neurobiological basis of sensory perception: welfare implications of beak trimming.

    PubMed

    Kuenzel, W J

    2007-06-01

    The practice of beak trimming in the poultry industry occurs to prevent excessive body pecking, cannibalism, and to avoid feed wastage. To assess the welfare implications of the procedure, an emphasis of this paper has been placed on the anatomical structures that comprise the beak and mouth parts and a representation of the structures removed following beak trimming. Five animal welfare concerns regarding the procedure have been addressed, including the following: loss of normal beak function, short-term pain and temporary debilitation, tongue and nostril damage, neuromas and scar tissue, and long-term and phantom limb pain. Because all of the concerns involve the nervous system, the current knowledge of the avian somatosensory system was summarized. The critical components include touch, pain, and thermal receptors in the buccal cavity and bill, the trigeminal system, and neural projections mapped to the pallium (cortical-like tissue in the avian forebrain). At the present time, a need remains to continue the practice of beak trimming in the poultry industry to prevent head, feather, and vent pecking in some lines of birds. The procedure, however, should involve conservative trimming and be limited to young birds. Importantly, data show that removing 50% or less of the beak of chicks can prevent the formation of neuromas and allow regeneration of keratinized tissue to prevent deformed beaks and therefore positively affect the quality of life of birds during their lifetime.

  6. Protein tyrosine phosphatase receptor type O regulates development and function of the sensory nervous system.

    PubMed

    Gonzalez-Brito, Manuel R; Bixby, John L

    2009-12-01

    The roles of protein tyrosine phosphatases (PTPs) in differentiation and axon targeting by dorsal root ganglion (DRG) neurons are essentially unknown. The type III transmembrane PTP, PTPRO, is expressed in DRG neurons, and is implicated in the guidance of motor and retinal axons. We examined the role of PTPRO in DRG development and function using PTPRO(-/-) mice. The number of peptidergic nociceptive neurons in the DRG of PTPRO(-/-) mice was significantly decreased, while the total number of sensory neurons appeared unchanged. In addition, spinal pathfinding by both peptidergic and proprioceptive neurons was abnormal in PTPRO(-/-) mice. Lastly, PTPRO(-/-) mice performed abnormally on tests of thermal pain and sensorimotor coordination, suggesting that both nociception and proprioception were perturbed. Our data indicate that PTPRO is required for peptidergic differentiation and process outgrowth of sensory neurons, as well as mature sensory function, and provide the first evidence that RPTPs regulate DRG development.

  7. The experience of new sensorimotor contingencies by sensory augmentation

    PubMed Central

    Kaspar, Kai; König, Sabine; Schwandt, Jessika; König, Peter

    2014-01-01

    Embedded in the paradigm of embodied cognition, the theory of sensorimotor contingencies (SMCs) proposes that motor actions and associated sensory stimulations are tied together by lawful relations termed SMCs. We aimed to investigate whether SMCs can be learned by means of sensory augmentation. Therefore we focused on related perceptual changes. Subjects trained for 7 weeks with the feelSpace belt mapping information of the magnetic north to vibrotactile stimulation around the waist. They experienced substantial changes in their space perception. The belt facilitated navigation and stimulated the usage of new navigation strategies. The belt’s vibrating signal changed to a kind of spatial information over time while the belt’s appeal and perceived usability increased. The belt also induced certain emotional states. Overall, the results show that learning new SMCs with this relatively small and usable device leads to profound perceptual and emotional changes, which are fully compatible with embodied theories of cognition. PMID:25038534

  8. An unusual death involving a sensory deprivation tank.

    PubMed

    Lann, Meredith A; Martin, Amy

    2010-11-01

    Deaths involving sensory deprivation tanks are very rare. We describe a unique case in which a previously healthy 50-year-old woman apparently died while floating in a sensory deprivation tank at her residence. Autopsy failed to reveal definitive anatomical abnormalities pointing to the cause of death. A thorough scene investigation, full medicolegal autopsy to include toxicological analyses, and a complete investigation into the equipment at the scene, were conducted. Blood toxicologic studies were significant for the presence of ethanol (0.27%) and a mixture of over-the-counter sedating medications and prescription drugs. The cause of death was ruled as acute mixed drug and ethanol toxicity combined with probable environmental hyperthermia; manner was accident. This case report will help the forensic community understand the intended use of flotation tanks, as well as possible risks associated with improper use.

  9. Sensory and motor secondary symptoms as indicators of brain vulnerability

    PubMed Central

    2013-01-01

    In addition to the primary symptoms that distinguish one disorder from the next, clinicians have identified, yet largely overlooked, another set of symptoms that appear across many disorders, termed secondary symptoms. In the emerging era of systems neuroscience, which highlights that many disorders share common deficits in global network features, the nonspecific nature of secondary symptoms should attract attention. Herein we provide a scholarly review of the literature on a subset of secondary symptoms––sensory and motor. We demonstrate that their pattern of appearance––across a wide range of psychopathologies, much before the full-blown disorder appears, and in healthy individuals who display a variety of negative symptoms––resembles the pattern of appearance of network abnormalities. We propose that sensory and motor secondary symptoms can be important indicators of underlying network aberrations and thus of vulnerable brain states putting individuals at risk for psychopathology following extreme circumstances. PMID:24063566

  10. Genetic disorders with both hearing loss and cardiovascular abnormalities.

    PubMed

    Belmont, John W; Craigen, William; Martinez, Hugo; Jefferies, John Lynn

    2011-01-01

    There has been a growing appreciation for conditions that affect hearing and which are accompanied by significant cardiovascular disorders. In this chapter we consider several broad classes of conditions including deafness due to abnormal structural development of the inner ear, those with physiological abnormalities in the inner ear sensory apparatus, and conditions with progressive loss of function of sensory cells or middle ear functions. Because of shared developmental controls, inner ear malformations are often associated with congenital heart defects and can be part of complex syndromes that affect other organs and neurodevelopmental outcome. Physiological disorders of the hair cells can lead to hearing loss and can be associated with cardiac arrhythmias, especially long QT syndrome. In addition, cellular energy defects such as mitochondrial disorders can affect maintenance of hair cells and are often associated with cardiomyopathy. Lysosomal storage diseases and other disorders affecting connective tissue can lead to chronic middle ear disease, with conductive hearing loss and also cause cardiac valve disease and/or cardiomyopathy. The genetic basis for these conditions is heterogeneous and includes chromosomal/genomic disorders, de novo dominant mutations, and familial dominant, autosomal-recessive, and mitochondrial (matrilineal) inheritance. Taken together, there are more than 100 individual genes implicated in genetic hearing impairment that are also associated with congenital and/or progressive cardiac abnormalities. These genes encode transcription factors, chromatin remodeling factors, components of signal transduction pathways, ion channels, mitochondrial proteins and assembly factors, extracellular matrix proteins, and enzymes involved in lysosomal functions.

  11. Motor learning and its sensory effects: time course of perceptual change and its presence with gradual introduction of load.

    PubMed

    Mattar, Andrew A G; Darainy, Mohammad; Ostry, David J

    2013-02-01

    A complex interplay has been demonstrated between motor and sensory systems. We showed recently that motor learning leads to changes in the sensed position of the limb (Ostry DJ, Darainy M, Mattar AA, Wong J, Gribble PL. J Neurosci 30: 5384-5393, 2010). Here, we document further the links between motor learning and changes in somatosensory perception. To study motor learning, we used a force field paradigm in which subjects learn to compensate for forces applied to the hand by a robotic device. We used a task in which subjects judge lateral displacements of the hand to study somatosensory perception. In a first experiment, we divided the motor learning task into incremental phases and tracked sensory perception throughout. We found that changes in perception occurred at a slower rate than changes in motor performance. A second experiment tested whether awareness of the motor learning process is necessary for perceptual change. In this experiment, subjects were exposed to a force field that grew gradually in strength. We found that the shift in sensory perception occurred even when awareness of motor learning was reduced. These experiments argue for a link between motor learning and changes in somatosensory perception, and they are consistent with the idea that motor learning drives sensory change.

  12. An Auditory Processing Abnormality Specific to Liability for Schizophrenia

    PubMed Central

    Force, Rachel B.; Venables, Noah C.; Sponheim, Scott R.

    2013-01-01

    Abnormal brain activity during the processing of simple sounds is evident in individuals with increased genetic liability for schizophrenia; however, the diagnostic specificity of these abnormalities has yet to be fully examined. Because recent evidence suggests that schizophrenia and bipolar disorder may share aspects of genetic etiology the present study was conducted to determine whether individuals with heightened genetic liability for each disorder manifested distinct neural abnormalities during auditory processing. Utilizing a dichotic listening paradigm, we assessed target tone discrimination and electrophysiological responses in schizophrenia patients, first-degree biological relatives of schizophrenia patients, bipolar disorder patients, first-degree biological relatives of bipolar patients and nonpsychiatric control participants. Schizophrenia patients and relatives of schizophrenia patients demonstrated reductions in an early neural response (i.e. N1) suggestive of deficient sensory registration of auditory stimuli. Bipolar patients and relatives of bipolar patients demonstrated no such abnormality. Both schizophrenia and bipolar patients failed to significantly augment N1 amplitude with attention. Schizophrenia patients also failed to show sensitivity of longer-latency neural processes (N2) to stimulus frequency suggesting a disorder specific deficit in stimulus classification. Only schizophrenia patients exhibited reduced target tone discrimination accuracy. Reduced N1 responses reflective of early auditory processing abnormalities are suggestive of a marker of genetic liability for schizophrenia and may serve as an endophenotype for the disorder. PMID:18571375

  13. Sensory Transduction in Caenorhabditis elegans

    NASA Astrophysics Data System (ADS)

    Brown, Austin L.; Ramot, Daniel; Goodman, Miriam B.

    The roundworm Caenorhabditis elegans has a well-defined and comparatively simple repertoire of sensory-guided behaviors, all of which rely on its ability to detect chemical, mechanical or thermal stimuli. In this chapter, we review what is known about the ion channels that mediate sensation in this remarkable model organism. Genetic screens for mutants defective in sensory-guided behaviors have identified genes encoding channel proteins, which are likely transducers of chemical, thermal, and mechanical stimuli. Such classical genetic approaches are now being coupled with molecular genetics and in vivo cellular physiology to elucidate how these channels are activated in specific sensory neurons. The ion channel superfamilies implicated in sensory transduction in C. elegans - CNG, TRP, and DEG/ENaC - are conserved across phyla and also appear to contribute to sensory transduction in other organisms, including vertebrates. What we learn about the role of these ion channels in C. elegans sensation is likely to illuminate analogous processes in other animals, including humans.

  14. How our body influences our perception of the world

    PubMed Central

    Harris, Laurence R.; Carnevale, Michael J.; D’Amour, Sarah; Fraser, Lindsey E.; Harrar, Vanessa; Hoover, Adria E. N.; Mander, Charles; Pritchett, Lisa M.

    2015-01-01

    Incorporating the fact that the senses are embodied is necessary for an organism to interpret sensory information. Before a unified perception of the world can be formed, sensory signals must be processed with reference to body representation. The various attributes of the body such as shape, proportion, posture, and movement can be both derived from the various sensory systems and can affect perception of the world (including the body itself). In this review we examine the relationships between sensory and motor information, body representations, and perceptions of the world and the body. We provide several examples of how the body affects perception (including but not limited to body perception). First we show that body orientation effects visual distance perception and object orientation. Also, visual-auditory crossmodal-correspondences depend on the orientation of the body: audio “high” frequencies correspond to a visual “up” defined by both gravity and body coordinates. Next, we show that perceived locations of touch is affected by the orientation of the head and eyes on the body, suggesting a visual component to coding body locations. Additionally, the reference-frame used for coding touch locations seems to depend on whether gaze is static or moved relative to the body during the tactile task. The perceived attributes of the body such as body size, affect tactile perception even at the level of detection thresholds and two-point discrimination. Next, long-range tactile masking provides clues to the posture of the body in a canonical body schema. Finally, ownership of seen body parts depends on the orientation and perspective of the body part in view. Together, all of these findings demonstrate how sensory and motor information, body representations, and perceptions (of the body and the world) are interdependent. PMID:26124739

  15. How our body influences our perception of the world.

    PubMed

    Harris, Laurence R; Carnevale, Michael J; D'Amour, Sarah; Fraser, Lindsey E; Harrar, Vanessa; Hoover, Adria E N; Mander, Charles; Pritchett, Lisa M

    2015-01-01

    Incorporating the fact that the senses are embodied is necessary for an organism to interpret sensory information. Before a unified perception of the world can be formed, sensory signals must be processed with reference to body representation. The various attributes of the body such as shape, proportion, posture, and movement can be both derived from the various sensory systems and can affect perception of the world (including the body itself). In this review we examine the relationships between sensory and motor information, body representations, and perceptions of the world and the body. We provide several examples of how the body affects perception (including but not limited to body perception). First we show that body orientation effects visual distance perception and object orientation. Also, visual-auditory crossmodal-correspondences depend on the orientation of the body: audio "high" frequencies correspond to a visual "up" defined by both gravity and body coordinates. Next, we show that perceived locations of touch is affected by the orientation of the head and eyes on the body, suggesting a visual component to coding body locations. Additionally, the reference-frame used for coding touch locations seems to depend on whether gaze is static or moved relative to the body during the tactile task. The perceived attributes of the body such as body size, affect tactile perception even at the level of detection thresholds and two-point discrimination. Next, long-range tactile masking provides clues to the posture of the body in a canonical body schema. Finally, ownership of seen body parts depends on the orientation and perspective of the body part in view. Together, all of these findings demonstrate how sensory and motor information, body representations, and perceptions (of the body and the world) are interdependent.

  16. Using Sensory Properties of Food to Trigger Swallowing: A Review

    PubMed Central

    Loret, C.

    2015-01-01

    The effect of food consistency on swallowing function has been widely studied, and it is well recognized that by delaying the flow of the food bolus, thickened liquids can help in the management of swallowing dysfunction. However, fewer studies have been carried out on the impact of food sensory properties and related liking on swallowing function. This paper reviews the role of taste, olfaction, and trigeminal perceptions on swallowing function and highlights the need for a deeper investigation of this aspect of patient diet modification. PMID:24915399

  17. Autosomal recessive peripheral sensory neuropathy in 3 non-Ashkenazi Jewish families.

    PubMed Central

    Tamari, I; Goodman, R M; Sarova, I; Hertz, M; Adar, R; Zvibach, T

    1980-01-01

    Three unrelated Oriental Jewish families with a total of eight subjects with progressive hereditary sensory neuropathy are reported. The parents were all unaffected and because of parental consanguinity in each of the three families it is postulated that this rare neurological disorder is transmitted in an autosomal recessive manner. In one family both parents showed an abnormal response to pain stimulation with normal motor and sensory nerve conduction velocity. This response may be an expression of the carrier state for this hereditary disease. Only five other families (non-Jewish) have been reported as having this form of peripheral hereditary sensory neuropathy. These observations suggest that one type, the progressive form, of peripheral hereditary sensory neuropathy may be more common in Oriental Jews. Images PMID:6937618

  18. The impact of sesquiterpene lactones and phenolics on sensory attributes: An investigation of a curly endive and escarole germplasm collection.

    PubMed

    Filippo D'Antuono, L; Ferioli, Federico; Manco, Manuela Agata

    2016-05-15

    In the present study, curly endive (Cichorium endivia L. var. crispum) and escarole (Cichorium endivia L. var. latifolium) accessions were investigated for their sensory characters (bitterness, astringency and herbaceous flavour) and acceptance in relation to sesquiterpene lactone and phenolic content. Different facets of the perception of these sensory traits in relation to lactones and phenolics were brought out. Lactucopicrin and kaempferol malonyl glucoside were consistently related to bitterness, astringency and herbaceous flavour perceptions. Overall acceptance was significantly and inversely related mainly to bitterness. The generic statement that sesquiterpene lactones and phenolic compounds are determinants of bitterness and other related sensory characters does not seem to be fully consistent with our data, that indicated how the balance of different compounds affects these traits individually, in a rather complex manner, with a prevailing negative impact of phenolics. Bitter, astringent, and herbaceous perceptions were significantly affected by variety, with curly endive showing on average higher scores in comparison to escarole, with particular respect to bitterness.

  19. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  20. Systemic abnormalities in liver disease

    PubMed Central

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648

  1. Development of sensorial experiments and their implementation into undergraduate laboratories

    NASA Astrophysics Data System (ADS)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  2. Changing Perceptions

    ERIC Educational Resources Information Center

    Mallett, Susanne; Wren, Steve; Dawes, Mark; Blinco, Amy; Haines, Brett; Everton, Jenny; Morgan, Ellen; Barton, Craig; Breen, Debbie; Ellison, Geraldine; Burgess, Danny; Stavrou, Jim; Carre, Catherine; Watson, Fran; Cherry, David; Hawkins, Chris; Stapenhill-Hunt, Maria; Gilderdale, Charlie; Kiddle, Alison; Piggott, Jennifer

    2009-01-01

    A group of teachers involved in embedding NRICH tasks (http://nrich.maths.org) into their everyday practice were keen to challenge common perceptions of mathematics, and of the teaching and learning of mathematics. In this article, the teachers share what they are doing to change these perceptions in their schools.

  3. Machine perception

    SciTech Connect

    Not Available

    1982-01-01

    The book is aimed at the level of a graduate student or the practising professional and discusses visual perception by computers. Topics covered include: pattern classification methods; polyhedra scenes; shape analysis and recognition; perception of brightness and colour; edge and curve detection; region segmentation; texture analysis; depth measurement analysis; knowledge-based systems and applications. A subject index is included.

  4. Weak universality in sensory tradeoffs

    NASA Astrophysics Data System (ADS)

    Marzen, Sarah; DeDeo, Simon

    2016-12-01

    For many organisms, the number of sensory neurons is largely determined during development, before strong environmental cues are present. This is despite the fact that environments can fluctuate drastically both from generation to generation and within an organism's lifetime. How can organisms get by by hard coding the number of sensory neurons? We approach this question using rate-distortion theory. A combination of simulation and theory suggests that when environments are large, the rate-distortion function—a proxy for material costs, timing delays, and energy requirements—depends only on coarse-grained environmental statistics that are expected to change on evolutionary, rather than ontogenetic, time scales.

  5. Deqi sensations without cutaneous sensory input: results of an RCT

    PubMed Central

    2010-01-01

    Background Deqi is defined in relation to acupuncture needling as a sensory perception of varying character. In a recently published sham laser validation study, we found that subjects in the verum and the sham laser group experienced deqi sensations. Therefore, we aim to further analyze whether the perceptions reported in the two study arms were distinguishable and whether expectancy effects exhibited considerable impact on our results. Methods A detailed re-analysis focusing on deqi sensations was performed from data collected in a previously published placebo-controlled, double-blind, clinical cross-over trial for a sham laser evaluation. Thirty-four healthy volunteers (28 ± 10.7 years; 16 women, 18 men) received two laser acupuncture treatments at three acupuncture points LI4 (hégu), LU7 (liéque), and LR3 (táichong); once by verum laser and once using a sham device containing an inactive laser in randomized order. Outcome measures were frequency, intensity (evaluated by visual analogue scale; VAS), and quality of the subjects' sensations perceived during treatments (assessed with the "acupuncture sensation scale"). Results Both, verum and the sham laser acupuncture result in similar deqi sensations with regard to frequency (p-value = 0.67), intensity (p-value = 0.71) and quality (p-values between 0.15 - 0.98). In both groups the most frequently used adjectives to describe these perceptions were "spreading", "radiating", "tingling", "tugging", "pulsing", "warm", "dull", and "electric". Sensations reported were consistent with the perception of deqi as previously defined in literature. Subjects' conviction regarding the effectiveness of laser acupuncture or the history of having received acupuncture treatments before did not correlate with the frequency or intensity of sensations reported. Conclusions Since deqi sensations, described as sensory perceptions, were elicited without any cutaneous sensory input, we assume that they are a product of non

  6. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees

    NASA Astrophysics Data System (ADS)

    Tan, Daniel W.; Schiefer, Matthew A.; Keith, Michael W.; Anderson, J. Robert; Tyler, Dustin J.

    2015-04-01

    Objective. Stability and selectivity are important when restoring long-term, functional sensory feedback in individuals with limb-loss. Our objective is to demonstrate a chronic, clinical neural stimulation system for providing selective sensory response in two upper-limb amputees. Approach. Multi-contact cuff electrodes were implanted in the median, ulnar, and radial nerves of the upper-limb. Main results. Nerve stimulation produced a selective sensory response on 19 of 20 contacts and 16 of 16 contacts in subjects 1 and 2, respectively. Stimulation elicited multiple, distinct percept areas on the phantom and residual limb. Consistent threshold, impedance, and percept areas have demonstrated that the neural interface is stable for the duration of this on-going, chronic study. Significance. We have achieved selective nerve response from multi-contact cuff electrodes by demonstrating characteristic percept areas and thresholds for each contact. Selective sensory response remains consistent in two upper-limb amputees for 1 and 2 years, the longest multi-contact sensory feedback system to date. Our approach demonstrates selectivity and stability can be achieved through an extraneural interface, which can provide sensory feedback to amputees.

  7. Sensory Hierarchical Organization and Reading.

    ERIC Educational Resources Information Center

    Skapof, Jerome

    The purpose of this study was to judge the viability of an operational approach aimed at assessing response styles in reading using the hypothesis of sensory hierarchical organization. A sample of 103 middle-class children from a New York City public school, between the ages of five and seven, took part in a three phase experiment. Phase one…

  8. [Sensory Awareness through Outdoor Education].

    ERIC Educational Resources Information Center

    Farquhar, Carin; And Others

    Designed for instruction of emotionally handicapped children and youth, these seven articles present concepts and activities relative to sensory awareness and outdoor education. The first article presents definitions, concepts, detailed methodology, and over 50 activities designed to create awareness of man's five senses. Utilizing the art of…

  9. Making Sense of Sensory Systems

    ERIC Educational Resources Information Center

    Hendrix, Marie

    2010-01-01

    The role of caregivers requires that they continuously assess the needs and performance of children and provide the support necessary for them to achieve their potential. A thorough understanding of child development, including the role and impact of sensory development, is critical for caregivers to properly evaluate and assist these children.…

  10. Chromosomal abnormalities and mental illness.

    PubMed

    MacIntyre, D J; Blackwood, D H R; Porteous, D J; Pickard, B S; Muir, W J

    2003-03-01

    Linkage studies of mental illness have provided suggestive evidence of susceptibility loci over many broad chromosomal regions. Pinpointing causative gene mutations by conventional linkage strategies alone is problematic. The breakpoints of chromosomal abnormalities occurring in patients with mental illness may be more direct pointers to the relevant gene locus. Publications that describe patients where chromosomal abnormalities co-exist with mental illness are reviewed along with supporting evidence that this may amount to an association. Chromosomal abnormalities are considered to be of possible significance if (a) the abnormality is rare and there are independent reports of its coexistence with psychiatric illness, or (b) there is colocalisation of the abnormality with a region of suggestive linkage findings, or (c) there is an apparent cosegregation of the abnormality with psychiatric illness within the individual's family. Breakpoints have been described within many of the loci suggested by linkage studies and these findings support the hypothesis that shared susceptibility factors for schizophrenia and bipolar disorder may exist. If these abnormalities directly disrupt coding regions, then combining molecular genetic breakpoint cloning with bioinformatic sequence analysis may be a method of rapidly identifying candidate genes. Full karyotyping of individuals with psychotic illness especially where this coexists with mild learning disability, dysmorphism or a strong family history of mental disorder is encouraged.

  11. Chromosomal abnormalities in human sperm

    SciTech Connect

    Martin, R.H.

    1985-01-01

    The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.

  12. Analysis of seven salad rocket (Eruca sativa) accessions: The relationships between sensory attributes and volatile and non-volatile compounds.

    PubMed

    Bell, Luke; Methven, Lisa; Signore, Angelo; Oruna-Concha, Maria Jose; Wagstaff, Carol

    2017-03-01

    Sensory and chemical analyses were performed on accessions of rocket (Eruca sativa) to determine phytochemical influences on sensory attributes. A trained panel was used to evaluate leaves, and chemical data were obtained for polyatomic ions, amino acids, sugars and organic acids. These chemical data (and data of glucosinolates, flavonols and headspace volatiles previously reported) were used in Principal Component Analysis (PCA) to determine variables statistically important to sensory traits. Significant differences were observed between samples for polyatomic ion and amino acid concentrations. PCA revealed strong, positive correlations between glucosinolates, isothiocyanates and sulfur compounds with bitterness, mustard, peppery, warming and initial heat mouthfeel traits. The ratio between glucosinolates and sugars inferred reduced perception of bitter aftereffects. We highlight the diversity of E. sativa accessions from a sensory and phytochemical standpoint, and the potential for breeders to create varieties that are nutritionally and sensorially superior to existing ones.

  13. Haematological abnormalities in mitochondrial disorders

    PubMed Central

    Finsterer, Josef; Frank, Marlies

    2015-01-01

    INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978

  14. Sensory exploitation and sexual conflict

    PubMed Central

    Arnqvist, Göran

    2006-01-01

    Much of the literature on male–female coevolution concerns the processes by which male traits and female preferences for these can coevolve and be maintained by selection. There has been less explicit focus on the origin of male traits and female preferences. Here, I argue that it is important to distinguish origin from subsequent coevolution and that insights into the origin can help us appreciate the relative roles of various coevolutionary processes for the evolution of diversity in sexual dimorphism. I delineate four distinct scenarios for the origin of male traits and female preferences that build on past contributions, two of which are based on pre-existing variation in quality indicators among males and two on exploitation of pre-existing sensory biases among females. Recent empirical research, and theoretical models, suggest that origin by sensory exploitation has been widespread. I argue that this points to a key, but perhaps transient, role for sexually antagonistic coevolution (SAC) in the subsequent evolutionary elaboration of sexual traits, because (i) sensory exploitation is often likely to be initially costly for individuals of the exploited sex and (ii) the subsequent evolution of resistance to sensory exploitation should often be associated with costs due to selective constraints. A review of a few case studies is used to illustrate these points. Empirical data directly relevant to the costs of being sensory exploited and the costs of evolving resistance is largely lacking, and I stress that such data would help determining the general importance of sexual conflict and SAC for the evolution of sexual dimorphism. PMID:16612895

  15. Functional organization of motor cortex of adult macaque monkeys is altered by sensory loss in infancy.

    PubMed

    Qi, Hui-Xin; Jain, Neeraj; Collins, Christine E; Lyon, David C; Kaas, Jon H

    2010-02-16

    When somatosensory cortex (S1) is deprived of some of its inputs after section of ascending afferents in the dorsal columns of the spinal cord, it reorganizes to overrepresent the surviving inputs. As somatosensory cortex provides guiding sensory information to motor cortex, such sensory loss and representational reorganization could affect the development of the motor map in primary motor cortex (M1), especially if the sensory loss occurs early in development. To address this possibility, the dorsal columns of the spinal cord were sectioned between cervical levels (C3-5) 3-12 days after birth in five macaque monkeys. After 3-5 years of maturation (young adults), we determined how movements were represented in M1 contralateral to the lesion by using microelectrodes to electrically stimulate sites in M1 to evoke movements. Although the details of the motor maps in these five monkeys varied, the forelimb motor maps were abnormal. The representations of digit movements were reduced and abnormally arranged. Current levels for evoking movements from the forelimb region of M1 were in the normal range, but the lowest mean stimulation thresholds were for wrist or elbow instead of digit movements. Incomplete lesions and bilateral lesions produced fewer abnormalities. The results suggest that the development of normal motor cortex maps in M1 depends on sensory feedback from somatosensory maps.

  16. A temporal basis for Weber's law in value perception

    PubMed Central

    Namboodiri, Vijay Mohan K.; Mihalas, Stefan; Hussain Shuler, Marshall G.

    2014-01-01

    Weber's law—the observation that the ability to perceive changes in magnitudes of stimuli is proportional to the magnitude—is a widely observed psychophysical phenomenon. It is also believed to underlie the perception of reward magnitudes and the passage of time. Since many ecological theories state that animals attempt to maximize reward rates, errors in the perception of reward magnitudes and delays must affect decision-making. Using an ecological theory of decision-making (TIMERR), we analyze the effect of multiple sources of noise (sensory noise, time estimation noise, and integration noise) on reward magnitude and subjective value perception. We show that the precision of reward magnitude perception is correlated with the precision of time perception and that Weber's law in time estimation can lead to Weber's law in value perception. The strength of this correlation is predicted to depend on the reward history of the animal. Subsequently, we show that sensory integration noise (either alone or in combination with time estimation noise) also leads to Weber's law in reward magnitude perception in an accumulator model, if it has balanced Poisson feedback. We then demonstrate that the noise in subjective value of a delayed reward, due to the combined effect of noise in both the perception of reward magnitude and delay, also abides by Weber's law. Thus, in our theory we prove analytically that the perception of reward magnitude, time, and subjective value change all approximately obey Weber's law. PMID:25352791

  17. A review on intelligent sensory modelling

    NASA Astrophysics Data System (ADS)

    Tham, H. J.; Tang, S. Y.; Teo, K. T. K.; Loh, S. P.

    2016-06-01

    Sensory evaluation plays an important role in the quality control of food productions. Sensory data obtained through sensory evaluation are generally subjective, vague and uncertain. Classically, factorial multivariate methods such as Principle Component Analysis (PCA), Partial Least Square (PLS) method, Multiple Regression (MLR) method and Response Surface Method (RSM) are the common tools used to analyse sensory data. These methods can model some of the sensory data but may not be robust enough to analyse nonlinear data. In these situations, intelligent modelling techniques such as Fuzzy Logic and Artificial neural network (ANNs) emerged to solve the vagueness and uncertainty of sensory data. This paper outlines literature of intelligent sensory modelling on sensory data analysis.

  18. Brunswikian resources for event-perception research.

    PubMed

    Kirlik, Alex

    2009-01-01

    Recent psychological research aimed at determining whether dynamic event perception is direct or mediated by cue-based inference convincingly demonstrates evidence of both modes of perception or apprehension. This work also shows that noise is involved in attaining any perceptual variable, whether it perfectly (invariantly) specifies or imperfectly (fallibly) indicates the value of a target or criterion variable. As such, event-perception researchers encounter both internal (sensory or inferential) and external ecological sources of noise or uncertainty, owing to the organism's possible use of imperfect or 'nonspecifying' variables (or cues) and cue-based inference. Because both sources play central roles in Egon Brunswik's theory of probabilistic functionalism and methodology of representative design, event-perception research will benefit by explicitly leveraging original Brunswikian and, more recent, neo-Brunswikian scientific resources. Doing so will result in a more coherent and powerful approach to perceptual and cognitive psychology than is currently displayed in the scientific literature.

  19. Parent Reports of Sensory Experiences of Preschool Children With and Without Autism: A Qualitative Study

    PubMed Central

    Dickie, Virginia A.; Baranek, Grace T.; Schultz, Beth; Watson, Linda R.; McComish, Cara S.

    2008-01-01

    This study describes children’s “sensory experiences”, generates parents’ perceptions and explanations of these experiences, and compares these experiences across children with and without autism. Parents of 66 preschoolers (29 typically-developing; 37 with autism) were interviewed using a Critical Incident Technique. Parents described a situation where their child had a “good” sensory experience, a situation where their child had a “bad” sensory experience, and their own perception of how these situations felt to the child. The most common unpleasant experiences for both groups related to sound; the most common pleasant experiences involved touch and movement. Children with autism were reported to have more extreme and/or unusual experiences, and negative food-related experiences than typically-developing peers. Parental explanations for children’s responses focused on qualities of the child, stimulus, and/or context. Many parents had difficulty understanding the concept of sensory experiences. Parents of children with autism were more likely to recognize elements in their children’s experiences as being sensory, and likely to attribute these responses to aspects of autism. Parents’ positive response to the interview itself was an unexpected result with clinical relevance. PMID:19432055

  20. Sensory nerve conduction in the upper limbs at various stages of diabetic neuropathy 1

    PubMed Central

    Noël, P.

    1973-01-01

    In 59 diabetic patients, sensory nerve potentials were recorded at various sites along the course of the median nerve. Pathological responses were characterized by reduced amplitude, desynchronization and decreased conduction velocity (CV). Four groups of patients with increasingly severe nerve dysfunction were distinguished. The presence and severity of clinical neuropathy in the upper limbs could be related to decreased maximal sensory nerve CV in the proximal segment of the limbs. When maximal sensory nerve CV was normal above the wrist, neuropathy usually remained latent. In severe cases where no sensory nerve potentials could be recorded, the cerebral evoked potentials nonetheless permitted a precise evaluation of the somatosensory conduction. In these cases, maximal sensory nerve CV was very low. In five patients with a so-called diabetic mononeuropathy, abnormal nerve potentials were recorded in the median nerve, although no clinical signs could be seen in the corresponding territory. It is proposed that the diabetic nature of a mononeuropathy can be assessed by the finding of latent abnormalities in seemingly normal nerve. PMID:4753874

  1. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure

    PubMed Central

    Lu, Jian

    2014-01-01

    Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF. PMID:24913185

  2. Perception as a closed-loop convergence process

    PubMed Central

    Ahissar, Ehud; Assa, Eldad

    2016-01-01

    Perception of external objects involves sensory acquisition via the relevant sensory organs. A widely-accepted assumption is that the sensory organ is the first station in a serial chain of processing circuits leading to an internal circuit in which a percept emerges. This open-loop scheme, in which the interaction between the sensory organ and the environment is not affected by its concurrent downstream neuronal processing, is strongly challenged by behavioral and anatomical data. We present here a hypothesis in which the perception of external objects is a closed-loop dynamical process encompassing loops that integrate the organism and its environment and converging towards organism-environment steady-states. We discuss the consistency of closed-loop perception (CLP) with empirical data and show that it can be synthesized in a robotic setup. Testable predictions are proposed for empirical distinction between open and closed loop schemes of perception. DOI: http://dx.doi.org/10.7554/eLife.12830.001 PMID:27159238

  3. Abnormal Neuroimaging in a Case of Infant Botulism.

    PubMed

    Good, Ryan J; Messacar, Kevin; Stence, Nicholas V; Press, Craig A; Carpenter, Todd C

    2015-01-01

    We present the first case of abnormal neuroimaging in a case of infant botulism. The clinical findings of the patient with constipation, bulbar weakness, and descending, symmetric motor weakness are consistent with the classic findings of infant botulism. Magnetic resonance imaging (MRI), however, revealed restricted diffusion in the brain and enhancement of the cervical nerve roots. Traditionally, normal neuroimaging was used to help differentiate infant botulism from other causes of weakness in infants. Abnormal neuroimaging is seen in other causes of weakness in an infant including metabolic disorders and hypoxic-ischemic injury, but these diagnoses did not fit the clinical findings in this case. The explanation for the MRI abnormalities in the brain and cervical nerve roots is unclear as botulinum toxin acts at presynaptic nerve terminals and does not cross the blood-brain barrier. Possible explanations for the findings include inflammation from the botulinum toxin at the synapse, alterations in sensory signaling and retrograde transport of the botulinum toxin. The patient was treated with human botulism immune globulin and had rapid recovery in weakness. A stool sample from the patient was positive for Type A Clostridium botulinum toxin eventually confirming the diagnosis of infant botulism. The findings in this case support use of human botulism immune globulin when the clinical findings are consistent with infant botulism despite the presence of MRI abnormalities in the brain and cervical nerve roots.

  4. Consumer perception of bread quality.

    PubMed

    Gellynck, Xavier; Kühne, Bianka; Van Bockstaele, Filip; Van de Walle, Davy; Dewettinck, Koen

    2009-08-01

    Bread contains a wide range of important nutritional components which provide a positive effect on human health. However, the consumption of bread is declining during the last decades. This is due to factors such as changing eating patterns and an increasing choice of substitutes like breakfast cereals and fast foods. The aim of this study is to investigate consumer's quality perception of bread towards sensory, health and nutrition attributes. Four consumer segments are identified based on these attributes. The different consumer segments comprise consumers being positive to all three quality aspects of bread ("enthusiastic") as wells as consumers perceiving bread strongly as "tasteless", "non-nutritious" or "unhealthy". Moreover, factors are identified which influence the consumers' quality perception of bread. The results of our study may help health professionals and policy makers to systematically inform consumers about the positive effects of bread based on its components. Furthermore, firms can use the results to build up tailor-made marketing strategies.

  5. Oscillatory phase shapes syllable perception

    PubMed Central

    ten Oever, Sanne; Sack, Alexander T.

    2015-01-01

    The role of oscillatory phase for perceptual and cognitive processes is being increasingly acknowledged. To date, little is known about the direct role of phase in categorical perception. Here we show in two separate experiments that the identification of ambiguous syllables that can either be perceived as /da/ or /ga/ is biased by the underlying oscillatory phase as measured with EEG and sensory entrainment to rhythmic stimuli. The measured phase difference in which perception is biased toward /da/ or /ga/ exactly matched the different temporal onset delays in natural audiovisual speech between mouth movements and speech sounds, which last 80 ms longer for /ga/ than for /da/. These results indicate the functional relationship between prestimulus phase and syllable identification, and signify that the origin of this phase relationship could lie in exposure and subsequent learning of unique audiovisual temporal onset differences. PMID:26668393

  6. Multi-Sensory Intervention Observational Research

    ERIC Educational Resources Information Center

    Thompson, Carla J.

    2011-01-01

    An observational research study based on sensory integration theory was conducted to examine the observed impact of student selected multi-sensory experiences within a multi-sensory intervention center relative to the sustained focus levels of students with special needs. A stratified random sample of 50 students with severe developmental…

  7. Predictions penetrate perception: Converging insights from brain, behaviour and disorder.

    PubMed

    O'Callaghan, Claire; Kveraga, Kestutis; Shine, James M; Adams, Reginald B; Bar, Moshe

    2017-01-01

    It is argued that during ongoing visual perception, the brain is generating top-down predictions to facilitate, guide and constrain the processing of incoming sensory input. Here we demonstrate that these predictions are drawn from a diverse range of cognitive processes, in order to generate the richest and most informative prediction signals. This is consistent with a central role for cognitive penetrability in visual perception. We review behavioural and mechanistic evidence that indicate a wide spectrum of domains-including object recognition, contextual associations, cognitive biases and affective state-that can directly influence visual perception. We combine these insights from the healthy brain with novel observations from neuropsychiatric disorders involving visual hallucinations, which highlight the consequences of imbalance between top-down signals and incoming sensory information. Together, these lines of evidence converge to indicate that predictive penetration, be it cognitive, social or emotional, should be considered a fundamental framework that supports visual perception.

  8. Antennal sensory structures in Scaphoideus titanus Ball (Hemiptera: Cicadellidae).

    PubMed

    Stacconi, Marco Valerio Rossi; Romani, Roberto

    2012-04-01

    Scaphoideus titanus Ball (Hemiptera: Cicadomorpha) is a leafhopper vector of a phytoplasma disease, the Flavescence dorée (FD), belonging to the vine yellows group. A scanning and transmission electron microscope study has been carried out to investigate the antennal sensory structures. The first two segments, the scape and the pedicel, are short, covered by cuticular scales and devoid of sensilla, with exception of some scattered hairs on the pedicel. The flagellum consists of a unique, elongated segment in which numerous subunits can be recognized, being separated by a sort of cuticular crown. The proximal five subunits bear most of the sensilla. We discovered the presence of single- and double-walled coeloconic sensilla, campaniform sensilla, basiconic sensilla, and trichoid sensilla. A scolopidium is located within the proximal region of the flagellum. Ultrastructural investigations suggest that the antennal sensilla could be involved in the perception of air-borne vibrations, temperature, and humidity variations. The most relevant feature is the extreme reduction of the olfactory sensilla, both in terms of number of sensory structures and sensory neurons per sensillum. The strong reduction in antennal olfactory sensilla to which this specie has undergone is discussed as possible consequence of the specificity toward the host plant.

  9. Activation of sensory-motor areas in sentence comprehension.

    PubMed

    Desai, Rutvik H; Binder, Jeffrey R; Conant, Lisa L; Seidenberg, Mark S

    2010-02-01

    The sensory-motor account of conceptual processing suggests that modality-specific attributes play a central role in the organization of object and action knowledge in the brain. An opposing view emphasizes the abstract, amodal, and symbolic character of concepts, which are thought to be represented outside the brain's sensory-motor systems. We conducted a functional magnetic resonance imaging study in which the participants listened to sentences describing hand/arm action events, visual events, or abstract behaviors. In comparison to visual and abstract sentences, areas associated with planning and control of hand movements, motion perception, and vision were activated when understanding sentences describing actions. Sensory-motor areas were activated to a greater extent also for sentences with actions that relied mostly on hands, as opposed to arms. Visual sentences activated a small area in the secondary visual cortex, whereas abstract sentences activated superior temporal and inferior frontal regions. The results support the view that linguistic understanding of actions partly involves imagery or simulation of actions, and relies on some of the same neural substrate used for planning, performing, and perceiving actions.

  10. Congenital abnormalities and selective abortion.

    PubMed

    Seller, M J

    1976-09-01

    The technique of amniocentesis, by which an abnormal fetus can be detected in utero, has brought a technological advance in medical science but attendant medical and moral problems. Dr Seller describes those congenital disabilities which can be detected in the fetus before birth, for which the "remedy" is selective abortion. She then discusses the arguments for and against selective abortion, for the issue is not simple, even in the strictly genetic sense of attempting to ensure a population free of congenital abnormality.

  11. The basal ganglia select the expected sensory input used for predictive coding.

    PubMed

    Colder, Brian

    2015-01-01

    While considerable evidence supports the notion that lower-level interpretation of incoming sensory information is guided by top-down sensory expectations, less is known about the source of the sensory expectations or the mechanisms by which they are spread. Predictive coding theory proposes that sensory expectations flow down from higher-level association areas to lower-level sensory cortex. A separate theory of the role of prediction in cognition describes "emulations" as linked representations of potential actions and their associated expected sensation that are hypothesized to play an important role in many aspects of cognition. The expected sensations in active emulations are proposed to be the top-down expectation used in predictive coding. Representations of the potential action and expected sensation in emulations are claimed to be instantiated in distributed cortical networks. Combining predictive coding with emulations thus provides a theoretical link between the top-down expectations that guide sensory expectations and the cortical networks representing potential actions. Now moving to theories of action selection, the basal ganglia has long been proposed to select between potential actions by reducing inhibition to the cortical network instantiating the desired action plan. Integration of these isolated theories leads to the novel hypothesis that reduction in inhibition from the basal ganglia selects not just action plans, but entire emulations, including the sensory input expected to result from the action. Basal ganglia disinhibition is hypothesized to both initiate an action and also allow propagation of the action's associated sensory expectation down towards primary sensory cortex. This is a novel proposal for the role of the basal ganglia in biasing perception by selecting the expected sensation, and initiating the top-down transmission of those expectations in predictive coding.

  12. Pitch perception.

    PubMed

    Yost, William A

    2009-11-01

    This article is a review of the psychophysical study of pitch perception. The history of the study of pitch has seen a continual competition between spectral and temporal theories of pitch perception. The pitch of complex stimuli is likely based on the temporal regularities in a sound's waveform, with the strongest pitches occurring for stimuli with low-frequency components. Thus, temporal models, especially those based on autocorrelation-like processes, appear to account for the majority of the data.

  13. Rate-distortion theory and human perception.

    PubMed

    Sims, Chris R

    2016-07-01

    The fundamental goal of perception is to aid in the achievement of behavioral objectives. This requires extracting and communicating useful information from noisy and uncertain sensory signals. At the same time, given the complexity of sensory information and the limitations of biological information processing, it is necessary that some information must be lost or discarded in the act of perception. Under these circumstances, what constitutes an 'optimal' perceptual system? This paper describes the mathematical framework of rate-distortion theory as the optimal solution to the problem of minimizing the costs of perceptual error subject to strong constraints on the ability to communicate or transmit information. Rate-distortion theory offers a general and principled theoretical framework for developing computational-level models of human perception (Marr, 1982). Models developed in this framework are capable of producing quantitatively precise explanations for human perceptual performance, while yielding new insights regarding the nature and goals of perception. This paper demonstrates the application of rate-distortion theory to two benchmark domains where capacity limits are especially salient in human perception: discrete categorization of stimuli (also known as absolute identification) and visual working memory. A software package written for the R statistical programming language is described that aids in the development of models based on rate-distortion theory.

  14. Non-motor symptoms in patients with adult-onset focal dystonia: Sensory and psychiatric disturbances.

    PubMed

    Conte, Antonella; Berardelli, Isabella; Ferrazzano, Gina; Pasquini, Massimo; Berardelli, Alfredo; Fabbrini, Giovanni

    2016-01-01

    Dystonia is characterized by the presence of involuntary muscle contractions that cause abnormal movements and posture. Adult onset focal dystonia include cervical dystonia, blepharospasm, arm dystonia and laryngeal dystonia. Besides motor manifestations, patients with focal dystonia frequently also display non-motor signs and symptoms. In this paper, we review the evidence of sensory and psychiatric disturbances in adult patients with focal dystonia. Clinical studies and neurophysiological investigations consistently show that the sensory system is involved in dystonia. Several studies have also demonstrated that neuropsychiatric disorders, particularly depression and anxiety, are more frequent in patients with focal dystonia, whereas data on obsessive compulsive disorders are more contrasting.

  15. Multiple channels of visual time perception

    PubMed Central

    Bruno, Aurelio; Cicchini, Guido Marco

    2016-01-01

    The proposal that the processing of visual time might rely on a network of distributed mechanisms that are vision-specific and timescale-specific stands in contrast to the classical view of time perception as the product of a single supramodal clock. Evidence showing that some of these mechanisms have a sensory component that can be locally adapted is at odds with another traditional assumption, namely that time is completely divorced from space. Recent evidence suggests that multiple timing mechanisms exist across and within sensory modalities and that they operate in various neural regions. The current review summarizes this evidence and frames it into the broader scope of models for time perception in the visual domain. PMID:28018946

  16. Abnormal Fear Memory as a Model for Posttraumatic Stress Disorder.

    PubMed

    Desmedt, Aline; Marighetto, Aline; Piazza, Pier-Vincenzo

    2015-09-01

    For over a century, clinicians have consistently described the paradoxical co-existence in posttraumatic stress disorder (PTSD) of sensory intrusive hypermnesia and declarative amnesia for the same traumatic event. Although this amnesia is considered as a critical etiological factor of the development and/or persistence of PTSD, most current animal models in basic neuroscience have focused exclusively on the hypermnesia, i.e., the persistence of a strong fear memory, neglecting the qualitative alteration of fear memory. The latest is characterized by an underrepresentation of the trauma in the context-based declarative memory system in favor of its overrepresentation in a cue-based sensory/emotional memory system. Combining psychological and neurobiological data as well as theoretical hypotheses, this review supports the idea that contextual amnesia is at the core of PTSD and its persistence and that altered hippocampal-amygdalar interaction may contribute to such pathologic memory. In a first attempt to unveil the neurobiological alterations underlying PTSD-related hypermnesia/amnesia, we describe a recent animal model mimicking in mice some critical aspects of such abnormal fear memory. Finally, this line of argument emphasizes the pressing need for a systematic comparison between normal/adaptive versus abnormal/maladaptive fear memory to identify biomarkers of PTSD while distinguishing them from general stress-related, potentially adaptive, neurobiological alterations.

  17. Abnormalities in the awareness and control of action.

    PubMed Central

    Frith, C D; Blakemore, S J; Wolpert, D M

    2000-01-01

    Much of the functioning of the motor system occurs without awareness. Nevertheless, we are aware of some aspects of the current state of the system and we can prepare and make movements in the imagination. These mental representations of the actual and possible states of the system are based on two sources: sensory signals from skin and muscles, and the stream of motor commands that have been issued to the system. Damage to the neural substrates of the motor system can lead to abnormalities in the awareness of action as well as defects in the control of action. We provide a framework for understanding how these various abnormalities of awareness can arise. Patients with phantom limbs or with anosognosia experience the illusion that they can move their limbs. We suggest that these representations of movement are based on streams of motor commands rather than sensory signals. Patients with utilization behaviour or with delusions of control can no longer properly link their intentions to their actions. In these cases the impairment lies in the representation of intended movements. The location of the neural damage associated with these disorders suggests that representations of the current and predicted state of the motor system are in parietal cortex, while representations of intended actions are found in prefrontal and premotor cortex. PMID:11205340

  18. Sensory Coordination of Insect Flight

    DTIC Science & Technology

    2009-12-29

    flies ( Hermetia Illucens ) to elicit controlled take-off and landing in free flight (Pilot experiments completed. Follow- up experiments in progress...neerii. 2) Location of odor sources in the fruit fly, Drosophila melanogaster. 3) Wing-haltere coordination in the soldier fly, Hermetia illucens ...coordination in the soldier fly, Hermetia illucens (Tanvi Deora): One of the key sensory inputs for flight stability in Diptera comes from the haltere

  19. [Diagnosticum of abnormalities of plant meiotic division].

    PubMed

    Shamina, N V

    2006-01-01

    Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.

  20. Development of Metallic Sensory Alloys

    NASA Technical Reports Server (NTRS)

    Wallace Terryl A.; Newman, John A.; Horne, Michael R.; Messick, Peter L.

    2010-01-01

    Existing nondestructive evaluation (NDE) technologies are inherently limited by the physical response of the structural material being inspected and are therefore not generally effective at the identification of small discontinuities, making the detection of incipient damage extremely difficult. One innovative solution to this problem is to enhance or complement the NDE signature of structural materials to dramatically improve the ability of existing NDE tools to detect damage. To address this need, a multifunctional metallic material has been developed that can be used in structural applications. The material is processed to contain second phase sensory particles that significantly improve the NDE response, enhancing the ability of conventional NDE techniques to detect incipient damage both during and after flight. Ferromagnetic shape-memory alloys (FSMAs) are an ideal material for these sensory particles as they undergo a uniform and repeatable change in both magnetic properties and crystallographic structure (martensitic transformation) when subjected to strain and/or temperature changes which can be detected using conventional NDE techniques. In this study, the use of a ferromagnetic shape memory alloy (FSMA) as the sensory particles was investigated.

  1. Methodology of oral sensory tests.

    PubMed

    Jacobs, R; Wu, C-H; Van Loven, K; Desnyder, M; Kolenaar, B; Van Steenberghed, D

    2002-08-01

    Different methods of oral sensory tests including light touch sensation, two-point discrimination, vibrotactile function and thermal sensation were compared. Healthy subjects were tested to assess the results obtained from two psychophysical approaches, namely the staircase and the ascending & descending method of limits for light touch sensation and two-point discrimination. Both methods appeared to be reliable for examining oral sensory function. The effect of topical anaesthesia was also evaluated but no conclusion could be drawn as too few subjects were involved. Newly developed simple testing tools for two-point discrimination and thermal sensation in a clinical situation were developed prior to this study and tested for their reproducibility. Thermal sensation could be reliably detected in repeated trials. Although the hand-held instruments have some drawbacks, the outcome of these instruments in a clinical environment is suitable for assessing oral sensory function. Three different frequencies (32, 128 and 256 Hz) were used to estimate the vibrotactile function. Different threshold levels were found at different frequencies.

  2. Understanding human perception by human-made illusions

    PubMed Central

    Carbon, Claus-Christian

    2014-01-01

    It may be fun to perceive illusions, but the understanding of how they work is even more stimulating and sustainable: They can tell us where the limits and capacity of our perceptual apparatus are found—they can specify how the constraints of perception are set. Furthermore, they let us analyze the cognitive sub-processes underlying our perception. Illusions in a scientific context are not mainly created to reveal the failures of our perception or the dysfunctions of our apparatus, but instead point to the specific power of human perception. The main task of human perception is to amplify and strengthen sensory inputs to be able to perceive, orientate and act very quickly, specifically and efficiently. The present paper strengthens this line of argument, strongly put forth by perceptual pioneer Richard L. Gregory (e.g., Gregory, 2009), by discussing specific visual illusions and how they can help us to understand the magic of perception. PMID:25132816

  3. Bioinspired Sensory Systems for Shear Flow Detection

    NASA Astrophysics Data System (ADS)

    Colvert, Brendan; Chen, Kevin K.; Kanso, Eva

    2017-03-01

    Aquatic organisms such as copepods exhibit remarkable responses to changes in ambient flows, especially shear gradients, when foraging, mating and escaping. To accomplish these tasks, the sensory system of the organism must decode the local sensory measurements to detect the flow properties. Evidence suggests that organisms sense differences in the hydrodynamic signal rather than absolute values of the ambient flow. In this paper, we develop a mathematical framework for shear flow detection using a bioinspired sensory system that measures only differences in velocity. We show that the sensory system is capable of reconstructing the properties of the ambient shear flow under certain conditions on the flow sensors. We discuss these conditions and provide explicit expressions for processing the sensory measurements and extracting the flow properties. These findings suggest that by combining suitable velocity sensors and physics-based methods for decoding sensory measurements, we obtain a powerful approach for understanding and developing underwater sensory systems.

  4. Organic compounds in office environments - sensory irritation, odor, measurements and the role of reactive chemistry.

    PubMed

    Wolkoff, P; Wilkins, C K; Clausen, P A; Nielsen, G D

    2006-02-01

    Abstract Sensory irritation and odor effects of organic compounds in indoor environments are reviewed. It is proposed to subdivide volatile organic compounds (VOCs) into four categories: (i) chemically non-reactive, (ii) chemically 'reactive', (iii) biologically reactive (i.e. form chemical bonds to receptor sites in mucous membranes) and (iv) toxic compounds. Chemically non-reactive VOCs are considered non-irritants at typical indoor air levels. However, compounds with low odor thresholds contribute to the overall perception of the indoor air quality. Reported sensory irritation may be the result of odor annoyance. It appears that odor thresholds for many VOCs probably are considerably lower than previously reported. This explains why many building materials persistently are perceived as odorous, although the concentrations of the detected organic compounds are close to or below their reported odor thresholds. Ozone reacts with certain alkenes to form a gas and aerosol phase of oxidation products, some of which are sensory irritants. However, all of the sensory irritating species have not yet been identified and whether the secondary aerosols (ultrafine and fine particles) contribute to sensory irritation requires investigation. Low relative humidity may exacerbate the sensory irritation impact. Practical Implications Certain odors, in addition to odor annoyance, may result in psychological effects and distraction from work. Some building materials continually cause perceivable odors, because the odor thresholds of the emitted compounds are low. Some oxidation products of alkenes (e.g. terpenes) may contribute to eye and airway symptoms under certain conditions and low relative humidity.

  5. Multisensory Integration and Calibration in Children and Adults with and without Sensory and Motor Disabilities.

    PubMed

    Gori, Monica

    2015-01-01

    During the first years of life, sensory modalities communicate with each other. This process is fundamental for the development of unisensory and multisensory skills. The absence of one sensory input impacts on the development of other modalities. Since 2008 we have studied these aspects and developed our cross-sensory calibration theory. This theory emerged from the observation that children start to integrate multisensory information (such as vision and touch) only after 8-10 years of age. Before this age the more accurate sense teaches (calibrates) the others; when one calibrating modality is missing, the other modalities result impaired. Children with visual disability have problems in understanding the haptic or auditory perception of space and children with motor disabilities have problems in understanding the visual dimension of objects. This review presents our recent studies on multisensory integration and cross-sensory calibration in children and adults with and without sensory and motor disabilities. The goal of this review is to show the importance of interaction between sensory systems during the early period of life in order to correct perceptual development to occur.

  6. An exploration of sensory and movement differences from the perspective of individuals with autism

    PubMed Central

    Robledo, Jodi; Donnellan, Anne M.; Strandt-Conroy, Karen

    2012-01-01

    Parents, teachers, and people who themselves experience sensory and movement differences have consistently reported disturbances of sensation and movement associated with autism. Our review of the literature has revealed both historical and recent references to and research about sensory and movement difference characteristics and symptoms for individuals with autism. What is notably infrequent in this literature, however, is research that highlights the perspective of the individual with autism. If we wish to truly understand the experience of sensory and movement differences for individuals with autism, we must explore their experiences and perspectives. This study presents a qualitative analysis of more than 40 h in-depth inquiry into the lives of five individuals with the autism label. Data were sorted into six categories: perception, action, posture, emotion, communication, and cognition. The insights into sensory and movement differences and autism offered by these individuals was illuminating. We found that the data strongly supported the presence of disruption of organization and regulation of sensory and movement differences in the lived experience of these participants with autism. The present data suggests that in autism this disruption of organization and regulation is amplified in terms of quantity, quality, intensity, and may affect everyday life. These data contribute to a more expansive view of autism that incorporates the possibility that autism is a disorder that affects motor planning, behavior, communication, the sensory motor system, and the dynamic interaction of all of these. PMID:23162446

  7. Sensory properties and drivers of liking for Greek yogurts.

    PubMed

    Desai, N T; Shepard, L; Drake, M A

    2013-01-01

    Greek yogurt is currently the largest growing sector in the dairy industry. Because no standard of identity exists for Greek yogurts in the United States, and they can be made by a variety of methods, variability in sensory properties is expected. Knowledge of consumer perception and specific drivers of liking will be useful information for product developers. The objective of this study was to document the sensory properties of commercial Greek yogurts and to determine drivers of liking through descriptive profiling and consumer testing. Flavor and texture attributes of commercial Greek yogurts (n = 24) were evaluated in triplicate by a trained descriptive sensory panel. An online survey (n = 520) was used to collect consumer usage and attitude information for Greek yogurts before consumer acceptance testing. Consumer acceptance testing (n = 155) was then conducted on commercial Greek yogurts (n = 10). Univariate and multivariate statistical analyses were used for data analysis. Sensory properties of yogurt differed with fat content and manufacture (Greek vs. fortified Greek). Full-fat yogurts were characterized by firmness and denseness, whereas low- and non-fat yogurts lacked firmness, denseness, cohesiveness, and, after stirring, viscosity. Fortified Greek yogurts generally had more surface shine and jiggle and lower denseness compared with traditional Greek yogurts. Fewer flavor differences were observed among yogurts compared with texture differences. Fortified Greek yogurts displayed a burnt/beefy flavor not documented in traditional Greek yogurts, but this flavor was not evident in all fortified Greek yogurts. Consumer preferred Greek yogurts with firm, dense texture, moderate sweet aromatic, milkfat and dairy sour flavors, and moderate sour taste. Consumers were aware of the increased protein content of Greek yogurts but generally unaware of differences between strained and fortified Greek yogurts; both strained Greek and fortified Greek yogurts received

  8. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: a role for CWC22

    PubMed Central

    Kobayashi, Masaki; Chandrasekhar, Ambika; Cheng, Chu; Martinez, Jose A.; Ng, Hilarie; de la Hoz, Cristiane

    2017-01-01

    ABSTRACT Unique deficits in the function of adult sensory neurons as part of their early neurodegeneration might account for progressive polyneuropathy during chronic diabetes mellitus. Here, we provide structural and functional evidence for aberrant pre-mRNA splicing in a chronic type 1 model of experimental diabetic polyneuropathy (DPN). Cajal bodies (CBs), unique nuclear substructures involved in RNA splicing, increased in number in diabetic sensory neurons, but their expected colocalization with survival motor neuron (SMN) proteins was reduced – a mislocalization described in motor neurons of spinal muscular atrophy. Small nuclear ribonucleoprotein particles (snRNPs), also participants in the spliceosome, had abnormal multiple nuclear foci unassociated with CBs, and their associated snRNAs were reduced. CWC22, a key spliceosome protein, was aberrantly upregulated in diabetic dorsal root ganglia (DRG), and impaired neuronal function. CWC22 attenuated sensory neuron plasticity, with knockdown in vitro enhancing their neurite outgrowth. Further, axonal delivery of CWC22 siRNA unilaterally to locally knock down the aberrant protein in diabetic nerves improved aspects of sensory function in diabetic mice. Collectively, our findings identify subtle but significant alterations in spliceosome structure and function, including dysregulated CBs and CWC22 overexpression, in diabetic sensory neurons that offer new ideas regarding diabetic sensory neurodegeneration in polyneuropathy. PMID:28250049

  9. Intercellular communication in sensory ganglia by purinergic receptors and gap junctions: implications for chronic pain.

    PubMed

    Hanani, Menachem

    2012-12-03

    Peripheral injury can cause abnormal activity in sensory neurons, which is a major factor in chronic pain. Recent work has shown that injury induces major changes not only in sensory neurons but also in the main type of glial cells in sensory ganglia-satellite glial cells (SGCs), and that interactions between sensory neurons and SGCs contribute to neuronal activity in pain models. The main functional changes observed in SGCs after injury are an increased gap junction-mediated coupling among these cells, and augmented sensitivity to ATP. There is evidence that the augmented gap junctions contribute to neuronal hyperexcitability in pain models, but the mechanism underlying this effect is not known. The changes in SGCs described above have been found following a wide range of injuries (both axotomy and inflammation) in somatic, orofacial and visceral regions, and therefore appear to be a general feature in chronic pain. We have found that in cultures of sensory ganglia calcium signals can spread from an SGC to neighboring cells by calcium waves, which are mediated by gap junctions and ATP acting on purinergic P2 receptors. A model is proposed to explain how augmented gap junctions and greater sensitivity to ATP can combine to produce enhanced calcium waves, which can lead to neuronal excitation. Thus this simple scheme can account for several major changes in sensory ganglia that are common to a great variety of pain models.

  10. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: a role for CWC22.

    PubMed

    Kobayashi, Masaki; Chandrasekhar, Ambika; Cheng, Chu; Martinez, Jose A; Ng, Hilarie; de la Hoz, Cristiane; Zochodne, Douglas W

    2017-03-01

    Unique deficits in the function of adult sensory neurons as part of their early neurodegeneration might account for progressive polyneuropathy during chronic diabetes mellitus. Here, we provide structural and functional evidence for aberrant pre-mRNA splicing in a chronic type 1 model of experimental diabetic polyneuropathy (DPN). Cajal bodies (CBs), unique nuclear substructures involved in RNA splicing, increased in number in diabetic sensory neurons, but their expected colocalization with survival motor neuron (SMN) proteins was reduced - a mislocalization described in motor neurons of spinal muscular atrophy. Small nuclear ribonucleoprotein particles (snRNPs), also participants in the spliceosome, had abnormal multiple nuclear foci unassociated with CBs, and their associated snRNAs were reduced. CWC22, a key spliceosome protein, was aberrantly upregulated in diabetic dorsal root ganglia (DRG), and impaired neuronal function. CWC22 attenuated sensory neuron plasticity, with knockdown in vitro enhancing their neurite outgrowth. Further, axonal delivery of CWC22 siRNA unilaterally to locally knock down the aberrant protein in diabetic nerves improved aspects of sensory function in diabetic mice. Collectively, our findings identify subtle but significant alterations in spliceosome structure and function, including dysregulated CBs and CWC22 overexpression, in diabetic sensory neurons that offer new ideas regarding diabetic sensory neurodegeneration in polyneuropathy.

  11. Motor commands in children interfere with their haptic perception of objects.

    PubMed

    Gori, Monica; Squeri, Valentina; Sciutti, Alessandra; Masia, Lorenzo; Sandini, Giulio; Konczak, Jürgen

    2012-11-01

    Neural processes of sensory-motor- and motor-sensory integration link perception and action, forming the basis for human interaction with the environment. Haptic perception, the ability to extract object features through action, is based on these processes. To study the development of motor-sensory integration, children judged the curvature of virtual objects after exploring them actively or while guided passively by a robot. Haptic acuity reached adult levels only at early adolescence. Unlike in adults, haptic precision in children was consistently lower during active exploration when compared to passive motion. Thus, the exploratory movements themselves constitute a form of noise for the developing haptic system that younger brains cannot compensate until mid-adolescence. Computationally, this is consistent with a noisy efference copy mechanism producing imprecise predicted sensory feedback, which compromises haptic precision in children, while the mature mechanism aids the adult brain to account for the effect of self-generated motion on perception.

  12. Functional Imaging of the Hemodynamic Sensory Gating Response in Schizophrenia

    PubMed Central

    Mayer, Andrew R.; Ruhl, David; Merideth, Flannery; Ling, Josef; Hanlon, Faith; Bustillo, Juan; Cañive, Jose

    2013-01-01

    The cortical (auditory and prefrontal) and/or subcortical (thalamic and hippocampal) generators of abnormal electrophysiological responses during sensory gating remain actively debated in the schizophrenia literature. Functional magnetic resonance imaging (fMRI) has the spatial resolution for disambiguating deep or simultaneous sources but has been relatively under-utilized to investigate generators of the gating response. Thirty patients with chronic schizophrenia (SP) and 30 matched controls participated in the current experiment. Hemodynamic response functions (HRF) for single (S1) and pairs (S1 + S2) of identical (IT; “gating-out” redundant information) or non-identical (NT; “gating-in” novel information) tones were generated through deconvolution. Increased or prolonged activation for patients in conjunction with deactivation for controls was observed within auditory cortex, prefrontal cortex and thalamus in response to single tones during the late hemodynamic response, and these group differences were not associated with clinical or cognitive symptomatology. Although patient hyper-activation to paired-tones conditions was present in several ROI, the effects were not statistically significant for either the gating-out or gating-in conditions. Finally, abnormalities in the post-undershoot of the auditory HRF were also observed for both single and paired tones conditions in patients. In conclusion, the amalgamation of the entire electrophysiological response to both S1 and S2 stimuli may limit hemodynamic sensitivity to paired tones during sensory gating, which may be more readily overcome by paradigms that utilize multiple stimuli rather than pairs. Patient hyperactivation following single tones is suggestive of deficits in basic inhibition, neurovascular abnormalities or a combination of both factors. PMID:22461278

  13. Is Social Phobia a "Mis-Communication" Disorder? Brain Functional Connectivity during Face Perception Differs between Patients with Social Phobia and Healthy Control Subjects.

    PubMed

    Danti, Sabrina; Ricciardi, Emiliano; Gentili, Claudio; Gobbini, Maria Ida; Pietrini, Pietro; Guazzelli, Mario

    2010-01-01

    Recently, a differential recruitment of brain areas throughout the distributed neural system for face perception has been found in social phobic patients as compared to healthy control subjects. These functional abnormalities in social phobic patients extend beyond emotion-related brain areas, such as the amygdala, to include cortical networks that modulate attention and process other facial features, and they are also associated with an alteration of the task-related activation/deactivation trade-off. Functional connectivity is becoming a powerful tool to examine how components of large-scale distributed neural systems are coupled together while performing a specific function. This study was designed to determine whether functional connectivity networks among brain regions within the distributed system for face perception also would differ between social phobic patients and healthy controls. Data were obtained from eight social phobic patients and seven healthy controls by using functional magnetic resonance imaging. Our findings indicated that social phobic patients and healthy controls have different patterns of functional connectivity across brain regions within both the core and the extended systems for face perception and the default mode network. To our knowledge, this is the first study that shows that functional connectivity during brain response to socially relevant stimuli differs between social phobic patients and healthy controls. These results expand our previous findings and indicate that brain functional changes in social phobic patients are not restricted to a single specific brain structure, but rather involve a mis-communication among different sensory and emotional processing brain areas.

  14. A self-organized artificial neural network architecture for sensory integration with applications to letter-phoneme integration.

    PubMed

    Jantvik, Tamas; Gustafsson, Lennart; Papliński, Andrew P

    2011-08-01

    The multimodal self-organizing network (MMSON), an artificial neural network architecture carrying out sensory integration, is presented here. The architecture is designed using neurophysiological findings and imaging studies that pertain to sensory integration and consists of interconnected lattices of artificial neurons. In this artificial neural architecture, the degree of recognition of stimuli, that is, the perceived reliability of stimuli in the various subnetworks, is included in the computation. The MMSON's behavior is compared to aspects of brain function that deal with sensory integration. According to human behavioral studies, integration of signals from sensory receptors of different modalities enhances perception of objects and events and also reduces time to detection. In neocortex, integration takes place in bimodal and multimodal association areas and result, not only in feedback-mediated enhanced unimodal perception and shortened reaction time, but also in robust bimodal or multimodal percepts. Simulation data from the presented artificial neural network architecture show that it replicates these important psychological and neuroscientific characteristics of sensory integration.

  15. Touch perception throughout working life: effects of age and expertise.

    PubMed

    Reuter, Eva-Maria; Voelcker-Rehage, Claudia; Vieluf, Solveig; Godde, Ben

    2012-01-01

    Fine motor skills including precise tactile and haptic perception are essential to the manipulation of objects. With increasing age, one's perception decreases; however, little is known about the state of touch perception in middle-aged adults. This study investigated the extent to which the decline in touch perception affects adults throughout their working life. In addition, the influence of work-related expertise on tactile and haptic perception was examined in an attempt to determine whether expertise, in the form of the frequent use of the fingers, affects perception and counters age-related losses. The study was conducted with subjects from three age groups (18-25, 34-46, and 54-65 years) with two levels of expertise. Expertise was classified by the subjects' occupations. Five sensory tasks of touch perception were conducted. The results confirmed age-related changes in tactile perception over the span of one's working life. Older workers were proven to have lower tactile performance than younger adults. However, middle-aged workers were hardly affected by the perception losses and did not differ significantly from younger adults. Work-related expertise was not proven to either affect tactile and haptic perception or counteract age-related declines. We conclude that the age-related decline gets steeper in the late working life and that specific work-related expertise does not lead to generally improved touch perception that would result in lower thresholds and improved performance in non-expertise specific tasks.

  16. Sensory integration, sensory processing, and sensory modulation disorders: putative functional neuroanatomic underpinnings.

    PubMed

    Koziol, Leonard F; Budding, Deborah Ely; Chidekel, Dana

    2011-12-01

    This paper examines conditions that have variously been called sensory integration disorder, sensory processing disorder, and sensory modulation disorder (SID/SPD/SMD). As these conditions lack readily and consistently agreed-upon operational definitions, there has been confusion as to how these disorders are conceptualized. Rather than addressing various diagnostic controversies, we will instead focus upon explaining the symptoms that are believed to characterize these disorders. First, to clarify the overall context within which to view symptoms, we summarize a paradigm of adaptation characterized by continuous sensorimotor interaction with the environment. Next, we review a dual-tiered, integrated model of brain function in order to establish neuroanatomic underpinnings with which to conceptualize the symptom presentations. Generally accepted functions of the neocortex, basal ganglia, and cerebellum are described to illustrate how interactions between these brain regions generate both adaptive and pathological symptoms and behaviors. We then examine the symptoms of SID/SPD/SMD within this interactive model and in relation to their impact upon the development of inhibitory control, working memory, academic skill development, and behavioral automation. We present likely etiologies for these symptoms, not only as they drive neurodevelopmental pathologies but also as they can be understood as variations in the development of neural networks.

  17. Abnormal insulin levels and vertigo.

    PubMed

    Proctor, C A

    1981-10-01

    Fifty patients with unexplained vertigo (36) or lightheadedness (14) are evaluated, all of whom had abnormal ENGs and normal audiograms. Five hour insulin glucose tolerance tests were performance on all patients, with insulin levels being obtained fasting and at one-half, one, two, and three hours. The results of this investigation were remarkable. Borderline or abnormal insulin levels were discovered in 82% of patients; 90% were found to have either an abnormal glucose tolerance test or at least borderline insulin levels. The response to treatment in these dizzy patients was also startling, with appropriate low carbohydrate diets improving the patient's symptoms in 90% of cases. It is, therefore, apparent that the earliest identification of carbohydrate imbalance with an insulin glucose tolerance test is extremely important in the work-up of the dizzy patients.

  18. Complex patterns of abnormal heartbeats

    NASA Technical Reports Server (NTRS)

    Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon

    2002-01-01

    Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.

  19. Correlating consumer perception and consumer acceptability of traditional Doenjang in Korea.

    PubMed

    Kim, Mina K; Lee, Kwang-Geun

    2014-11-01

    Doenjang is a traditional Korean food and is widely used for many Korean foods. Consumer perception and consumer acceptability on the typical sensory characteristics of traditional Doenjang remain unknown. The objective of the current study was to determine the consumer perception on traditional Doenjang characteristics and how preexisting consumer perception influenced the consumer liking for traditionally and commercially manufactured Doenjang. A consumer survey was conducted by presenting 26 sensory descriptions to consumers (n = 82) for check-all-that-apply measurement. Then, a consumer acceptance test was conducted over 2 d on 2 Doenjang samples representing commercially produced Doenjang and traditionally produced Doenjang: Day 1 consumers evaluated without any information (n = 182), and day 2 consumers evaluated samples informed that both samples were made by the "traditional" method (n = 109). Two-way ANOVA and multivariate analyses were conducted. Consumers' preexisting perceptions on the typical sensory characteristics of traditionally made Doenjang were similar in that they associate "gu-soo flavor," "dark color," "flavorful," and "well-fermented flavor" regardless of consumer demographics and Doenjang user status. However, these consumer perceptions on sensory attributes of traditional Doenjang did not agree with desirable sensory attributes for consumer liking, in that consumers preferred the commercially made Doenjang regardless of the evaluation condition and consumer user status. Findings from the current study therefore suggested a discrepancy between the preexisting current consumer perception and actual consumer acceptability of traditional Doenjang products.

  20. Prediction Errors but Not Sharpened Signals Simulate Multivoxel fMRI Patterns during Speech Perception

    PubMed Central

    Davis, Matthew H.

    2016-01-01

    Successful perception depends on combining sensory input with prior knowledge. However, the underlying mechanism by which these two sources of information are combined is unknown. In speech perception, as in other domains, two functionally distinct coding schemes have been proposed for how expectations influence representation of sensory evidence. Traditional models suggest that expected features of the speech input are enhanced or sharpened via interactive activation (Sharpened Signals). Conversely, Predictive Coding suggests that expected features are suppressed so that unexpected features of the speech input (Prediction Errors) are processed further. The present work is aimed at distinguishing between these two accounts of how prior knowledge influences speech perception. By combining behavioural, univariate, and multivariate fMRI measures of how sensory detail and prior expectations influence speech perception with computational modelling, we provide evidence in favour of Prediction Error computations. Increased sensory detail and informative expectations have additive behavioural and univariate neural effects because they both improve the accuracy of word report and reduce the BOLD signal in lateral temporal lobe regions. However, sensory detail and informative expectations have interacting effects on speech representations shown by multivariate fMRI in the posterior superior temporal sulcus. When prior knowledge was absent, increased sensory detail enhanced the amount of speech information measured in superior temporal multivoxel patterns, but with informative expectations, increased sensory detail reduced the amount of measured information. Computational simulations of Sharpened Signals and Prediction Errors during speech perception could both explain these behavioural and univariate fMRI observations. However, the multivariate fMRI observations were uniquely simulated by a Prediction Error and not a Sharpened Signal model. The interaction between prior

  1. Ectodermal dysplasia and abnormal thumbs.

    PubMed

    Lucky, A W; Esterly, N B; Tunnessen, W W

    1980-05-01

    Two unrelated children, a girl and a boy, with alopecia, anomalous cutaneous pigmentation, abnormal thumbs, and endocrine disorders, including short stature and delayed bone age in one patient and juvenile onset diabetes mellitus in the other, are described. In one instance, the mother and the maternal grandmother had similar abnormalities, although of a less severe nature. Both children had normal nails and no unusual susceptibility to infections. We believe these two patients represent a previously undescribed syndrome of ectodermal dysplasia that may be inherited as an autosomal-dominant trait.

  2. Characterizing the range of simulated prostate abnormalities palpable by digital rectal examination

    PubMed Central

    Baumgart, Leigh A.; Gerling, Gregory J.; Bass, Ellen J.

    2010-01-01

    Background Although the digital rectal exam (DRE) is a common method of screening for prostate cancer and other abnormalities, the limits of ability to perform this hands-on exam are unknown. Perceptible limits are a function of the size, depth, and hardness of abnormalities within a given prostate stiffness. Methods To better understand the perceptible limits of the DRE, we conducted a psychophysical study with 18 participants using a custom-built apparatus to simulate prostate tissue and abnormalities of varying size, depth, and hardness. Utilizing a modified version of the psychophysical method of constant stimuli, we uncovered thresholds of absolute detection and variance in ability between examiners. Results Within silicone-elastomers that mimic normal prostate tissue (21 kPa), abnormalities of 4 mm diameter (20 mm3 volume) and greater were consistently detectable (above 75% of the time) but only at a depth of 5 mm. Abnormalities located in simulated tissue of greater stiffness (82 kPa) had to be twice that volume (5 mm diameter,40 mm3 volume) to be detectable at the same rate. Conclusions This study finds that the size and depth of abnormalities most influence detectability, while the relative stiffness between abnormalities and substrate also affects detectability for some size/depth combinations. While limits identified here are obtained for idealized substrates, this work is useful for informing the development of training and allowing clinicians to set expectations on performance. PMID:20061202

  3. Sensory Intolerance: Latent Structure and Psychopathologic Correlates

    PubMed Central

    Taylor, Steven; Conelea, Christine A.; McKay, Dean; Crowe, Katherine B.; Abramowitz, Jonathan S.

    2014-01-01

    Background Sensory intolerance refers to high levels of distress evoked by everyday sounds (e.g., sounds of people chewing) or commonplace tactile sensations (e.g., sticky or greasy substances). Sensory intolerance may be associated with obsessive-compulsive (OC) symptoms, OC-related phenomena, and other forms of psychopathology. Sensory intolerance is not included as a syndrome in current diagnostic systems, although preliminary research suggests that it might be a distinct syndrome. Objectives First, to investigate the latent structure of sensory intolerance in adults; that is, to investigate whether it is syndrome-like in nature, in which auditory and tactile sensory intolerance co-occur and are associated with impaired functioning. Second, to investigate the psychopathologic correlates of sensory intolerance. In particular, to investigate whether sensory intolerance is associated with OC-related phenomena, as suggested by previous research. Method A sample of 534 community-based participants were recruited via Amazon.com’s Mechanical Turk program. Participants completed measures of sensory intolerance, OC-related phenomena, and general psychopathology. Results Latent class analysis revealed two classes of individuals: Those who were intolerant of both auditory and tactile stimuli (n = 150), and those who were relatively undisturbed by auditory or tactile stimuli (n = 384). Sensory intolerant individuals, compared to those who were comparatively sensory tolerant, had greater scores on indices of general psychopathology, more severe OC symptoms, a higher likelihood of meeting caseness criteria for OC disorder, elevated scores on measures of OC-related dysfunctional beliefs, a greater tendency to report OC-related phenomena (e.g., a greater frequency of tics), and more impairment on indices of social and occupational functioning. Sensory intolerant individuals had significantly higher scores on OC symptoms even after controlling for general psychopathology

  4. Aristotle's illusion in Parkinson's disease: evidence for normal interdigit tactile perception.

    PubMed

    Fiorio, Mirta; Marotta, Angela; Ottaviani, Sarah; Pozzer, Lara; Tinazzi, Michele

    2014-01-01

    Sensory alterations, a common feature of such movement disorders as Parkinson's disease (PD) and dystonia, could emerge as epiphenomena of basal ganglia dysfunction. Recently, we found a selective reduction of tactile perception (Aristotle's illusion, the illusory doubling sensation of one object when touched with crossed fingers) in the affected hand of patients with focal hand dystonia. This suggests that reduced tactile illusion might be a specific feature of this type of dystonia and could be due to abnormal somatosensory cortical activation. The aim of the current study was to investigate whether Aristotle's illusion is reduced in the affected hand of patients with PD. We tested 15 PD patients, in whom motor symptoms were mainly localised to one side of the body, and 15 healthy controls. Three pairs of fingers were tested in crossed (evoking the illusion) or parallel position (not evoking the illusion). A sphere was placed in the contact point between the two fingers and the blindfolded participants had to say whether they felt one or two stimuli. Stimuli were applied on the affected and less or unaffected side of the PD patients. We found no difference in illusory perception between the PD patients and the controls, nor between the more affected and less/unaffected side, suggesting that Aristotle's illusion is preserved in PD. The retained tactile illusion in PD and its reduction in focal hand dystonia suggest that the basal ganglia, which are dysfunctional in both PD and dystonia, may not be causally involved in this function. Instead, the level of activation between digits in the somatosensory cortex may be more directly involved. Finally, the similar percentage of illusion in the more affected and less or unaffected body sides indicates that the illusory perception is not influenced by the presence or amount of motor symptoms.

  5. Aristotle’s Illusion in Parkinson’s Disease: Evidence for Normal Interdigit Tactile Perception

    PubMed Central

    Fiorio, Mirta; Marotta, Angela; Ottaviani, Sarah; Pozzer, Lara; Tinazzi, Michele

    2014-01-01

    Sensory alterations, a common feature of such movement disorders as Parkinson’s disease (PD) and dystonia, could emerge as epiphenomena of basal ganglia dysfunction. Recently, we found a selective reduction of tactile perception (Aristotle’s illusion, the illusory doubling sensation of one object when touched with crossed fingers) in the affected hand of patients with focal hand dystonia. This suggests that reduced tactile illusion might be a specific feature of this type of dystonia and could be due to abnormal somatosensory cortical activation. The aim of the current study was to investigate whether Aristotle’s illusion is reduced in the affected hand of patients with PD. We tested 15 PD patients, in whom motor symptoms were mainly localised to one side of the body, and 15 healthy controls. Three pairs of fingers were tested in crossed (evoking the illusion) or parallel position (not evoking the illusion). A sphere was placed in the contact point between the two fingers and the blindfolded participants had to say whether they felt one or two stimuli. Stimuli were applied on the affected and less or unaffected side of the PD patients. We found no difference in illusory perception between the PD patients and the controls, nor between the more affected and less/unaffected side, suggesting that Aristotle’s illusion is preserved in PD. The retained tactile illusion in PD and its reduction in focal hand dystonia suggest that the basal ganglia, which are dysfunctional in both PD and dystonia, may not be causally involved in this function. Instead, the level of activation between digits in the somatosensory cortex may be more directly involved. Finally, the similar percentage of illusion in the more affected and less or unaffected body sides indicates that the illusory perception is not influenced by the presence or amount of motor symptoms. PMID:24523929

  6. Sensory evaluation of sodium chloride-containing water-in-oil emulsions.

    PubMed

    Rietberg, Matthew R; Rousseau, Dérick; Duizer, Lisa

    2012-04-25

    The sensory perception of water-in-oil emulsions containing a saline-dispersed aqueous phase was investigated. Manipulating saltiness perception was achieved by varying the mass fraction aqueous phase (MFAP), initial salt load, and surfactant concentration [(polyglycerol polyricinoleate (PgPr)] of the emulsions, with formulations based on a central composite design. Saltiness and emulsion thickness were evaluated using a trained sensory panel, and collected data were analyzed using response surface analysis. Emulsion MFAP was the most important factor correlated with increased salt taste intensity. Emulsifier concentration and interactions between NaCl and PgPr had only minor effects. Emulsions more prone to destabilization were perceived as saltier irrespective of their initial salt load. The knowledge gained from this study provides a powerful tool for the development of novel sodium-reduced liquid-processed foods.

  7. Flavor release from salad dressings: sensory and physicochemical approaches in relation with the structure.

    PubMed

    Charles, M; Rosselin, V; Beck, L; Sauvageot, F; Guichard, E

    2000-05-01

    The effect of process and formulation on sensory perception and flavor release was investigated on salad dressing models. Oil/vinegar emulsions (phi = 0.5, droplet size > 10 microm) with thickeners and a whey protein concentrate were prepared with different fat droplet sizes and different distributions of fat droplet size. The effect of the amount of emulsifier was also tested. Sensory profile analysis was performed by a trained panel and flavor release quantified by dynamic headspace analysis. When the droplet size is increased, the lemon smell and citrus aroma significantly increase, whereas the egg note, mustard, and butter aroma significantly decrease. The concentrations of alcohols and acids significantly increase when droplet size increases, whereas those of other compounds such as limonene or benzaldehyde significantly decrease. The dispersion of the droplet size has a small effect on flavor perception, and the effect of the increase of the amount of emulsifier is noticed only by instrumental analysis.

  8. Cortico–Cortical Connections of Primary Sensory Areas and Associated Symptoms in Migraine

    PubMed Central

    Veggeberg, Rosanna; Wilcox, Sophie L.; Scrivani, Steven J.; Borsook, David

    2016-01-01

    Abstract Migraine is a recurring, episodic neurological disorder characterized by headache, nausea, vomiting, and sensory disturbances. These events are thought to arise from the activation and sensitization of neurons along the trigemino–vascular pathway. From animal studies, it is known that thalamocortical projections play an important role in the transmission of nociceptive signals from the meninges to the cortex. However, little is currently known about the potential involvement of cortico–cortical feedback projections from higher-order multisensory areas and/or feedforward projections from principle primary sensory areas or subcortical structures. In a large cohort of human migraine patients (N = 40) and matched healthy control subjects (N = 40), we used resting-state intrinsic functional connectivity to examine the cortical networks associated with the three main sensory perceptual modalities of vision, audition, and somatosensation. Specifically, we sought to explore the complexity of the sensory networks as they converge and become functionally coupled in multimodal systems. We also compared self-reported retrospective migraine symptoms in the same patients, examining the prevalence of sensory symptoms across the different phases of the migraine cycle. Our results show widespread and persistent disturbances in the perceptions of multiple sensory modalities. Consistent with this observation, we discovered that primary sensory areas maintain local functional connectivity but express impaired long-range connections to higher-order association areas (including regions of the default mode and salience network). We speculate that cortico–cortical interactions are necessary for the integration of information within and across the sensory modalities and, thus, could play an important role in the initiation of migraine and/or the development of its associated symptoms. PMID:28101529

  9. Individual differences in distance perception.

    PubMed

    Jackson, Russell E

    2009-05-07

    Distance perception is among the most pervasive mental phenomena and the oldest research topics in behavioural science. However, we do not understand well the most pervasive finding of distance perception research, that of large individual differences. There are large individual differences in acrophobia (fear of heights), which we commonly assume consists of an abnormal fear of stimuli perceived normally. Evolved navigation theory (ENT) instead suggests that acrophobia consists of a more normal fear of stimuli perceived abnormally. ENT suggests that distance perception individual differences produce major components of acrophobia. Acrophobia tested over a broad range in the present study predicted large individual differences in distance estimation of surfaces that could produce falls. This fear of heights correlated positively with distance estimates of a vertical surface-even among non-acrophobic individuals at no risk of falling and without knowledge of being tested for acrophobia. Acrophobia score predicted magnitude of the descent illusion, which is thought to reflect the risk of falling. These data hold important implications in environmental navigation, clinical aetiology and the evolution of visual systems.

  10. Interactive Activation and Mutual Constraint Satisfaction in Perception and Cognition

    ERIC Educational Resources Information Center

    McClelland, James L.; Mirman, Daniel; Bolger, Donald J.; Khaitan, Pranav

    2014-01-01

    In a seminal 1977 article, Rumelhart argued that perception required the simultaneous use of multiple sources of information, allowing perceivers to optimally interpret sensory information at many levels of representation in real time as information arrives. Building on Rumelhart's arguments, we present the Interactive Activation…

  11. Synesthesia: A New Approach to Understanding the Development of Perception

    ERIC Educational Resources Information Center

    Spector, Ferrinne; Maurer, Daphne

    2009-01-01

    In this article, the authors introduce a new theoretical framework for understanding intersensory development. Their approach is based upon insights gained from adults who experience synesthesia, in whom sensory stimuli induce extra cross-modal or intramodal percepts. Synesthesia appears to represent one way that typical developmental mechanisms…

  12. Dynamic Visual Perception and Reading Development in Chinese School Children

    ERIC Educational Resources Information Center

    Meng, Xiangzhi; Cheng-Lai, Alice; Zeng, Biao; Stein, John F.; Zhou, Xiaolin

    2011-01-01

    The development of reading skills may depend to a certain extent on the development of basic visual perception. The magnocellular theory of developmental dyslexia assumes that deficits in the magnocellular pathway, indicated by less sensitivity in perceiving dynamic sensory stimuli, are responsible for a proportion of reading difficulties…

  13. Auditory and visual cortex of primates: a comparison of two sensory systems

    PubMed Central

    Rauschecker, Josef P.

    2014-01-01

    A comparative view of the brain, comparing related functions across species and sensory systems, offers a number of advantages. In particular, it allows separating the formal purpose of a model structure from its implementation in specific brains. Models of auditory cortical processing can be conceived by analogy to the visual cortex, incorporating neural mechanisms that are found in both the visual and auditory systems. Examples of such canonical features on the columnar level are direction selectivity, size/bandwidth selectivity, as well as receptive fields with segregated versus overlapping on- and off-sub-regions. On a larger scale, parallel processing pathways have been envisioned that represent the two main facets of sensory perception: 1) identification of objects and 2) processing of space. Expanding this model in terms of sensorimotor integration and control offers an overarching view of cortical function independent of sensory modality. PMID:25728177

  14. The current practice in the application of chemometrics for correlation of sensory and gas chromatographic data.

    PubMed

    Seisonen, Sirli; Vene, Kristel; Koppel, Kadri

    2016-11-01

    A lot of research has been conducted in correlating the sensory properties of food with different analytical measurements in recent years. Various statistical methods have been used in order to get the most reliable results and to create prediction models with high statistical performance. The current review summarises the latest practices in the field of correlating attributes from sensory analysis with volatile data obtained by gas chromatographic analysis. The review includes the origin of the data, different pre-processing and variable selection methods and finally statistical methods of analysis and validation. Partial least squares regression analysis appears as the most commonly used statistical method in the area. The main shortcomings were identified in the steps of pre-processing, variable selection and also validation of models that have not gained enough attention. As the association between volatiles and sensory perception is often nonlinear, future studies should test the application of different nonlinear techniques.

  15. Relationships between anthocyanins and other compounds and sensory acceptability of Hibiscus drinks.

    PubMed

    Bechoff, Aurélie; Cissé, Mady; Fliedel, Geneviève; Declemy, Anne-Laure; Ayessou, Nicolas; Akissoe, Noel; Touré, Cheikh; Bennett, Ben; Pintado, Manuela; Pallet, Dominique; Tomlins, Keith I

    2014-04-01

    Chemical composition of Hibiscus drinks (Koor and Vimto varieties, commercial and traditional, infusions and syrups) (n=8) was related to sensory evaluation and acceptance. Significant correlations between chemical composition and sensory perception of drinks were found (i.e. anthocyanin content and Hibiscus taste) (p<0.05). Consumers (n=160) evaluated drink acceptability on a 9-point verbal hedonic scale. Three classes of behaviour were identified: (a) those who preferred syrup (43% of consumers); (b) those who preferred infusion (36%); and (c) those who preferred all of the samples (21%). Acceptability of 'syrup likers' was positively correlated to sweet taste, reducing sugar content and inversely correlated to acidic taste and titratable acidity (p<0.10). Acceptability of 'infusion likers' was positively correlated to the taste of Hibiscus drink and anthocyanin content. The study showed that the distinctions between the acceptability groups are very clear with respect to the chemical composition and rating of sensory attributes.

  16. Multisensory architectures for action-oriented perception

    NASA Astrophysics Data System (ADS)

    Alba, L.; Arena, P.; De Fiore, S.; Listán, J.; Patané, L.; Salem, A.; Scordino, G.; Webb, B.

    2007-05-01

    In order to solve the navigation problem of a mobile robot in an unstructured environment a versatile sensory system and efficient locomotion control algorithms are necessary. In this paper an innovative sensory system for action-oriented perception applied to a legged robot is presented. An important problem we address is how to utilize a large variety and number of sensors, while having systems that can operate in real time. Our solution is to use sensory systems that incorporate analog and parallel processing, inspired by biological systems, to reduce the required data exchange with the motor control layer. In particular, as concerns the visual system, we use the Eye-RIS v1.1 board made by Anafocus, which is based on a fully parallel mixed-signal array sensor-processor chip. The hearing sensor is inspired by the cricket hearing system and allows efficient localization of a specific sound source with a very simple analog circuit. Our robot utilizes additional sensors for touch, posture, load, distance, and heading, and thus requires customized and parallel processing for concurrent acquisition. Therefore a Field Programmable Gate Array (FPGA) based hardware was used to manage the multi-sensory acquisition and processing. This choice was made because FPGAs permit the implementation of customized digital logic blocks that can operate in parallel allowing the sensors to be driven simultaneously. With this approach the multi-sensory architecture proposed can achieve real time capabilities.

  17. Genetic mechanisms control the linear scaling between related cortical primary and higher order sensory areas

    PubMed Central

    Zembrzycki, Andreas; Stocker, Adam M; Leingärtner, Axel; Sahara, Setsuko; Chou, Shen-Ju; Kalatsky, Valery; May, Scott R; Stryker, Michael P; O'Leary, Dennis DM

    2015-01-01

    In mammals, the neocortical layout consists of few modality-specific primary sensory areas and a multitude of higher order ones. Abnormal layout of cortical areas may disrupt sensory function and behavior. Developmental genetic mechanisms specify primary areas, but mechanisms influencing higher order area properties are unknown. By exploiting gain-of and loss-of function mouse models of the transcription factor Emx2, we have generated bi-directional changes in primary visual cortex size in vivo and have used it as a model to show a novel and prominent function for genetic mechanisms regulating primary visual area size and also proportionally dictating the sizes of surrounding higher order visual areas. This finding redefines the role for intrinsic genetic mechanisms to concomitantly specify and scale primary and related higher order sensory areas in a linear fashion. DOI: http://dx.doi.org/10.7554/eLife.11416.001 PMID:26705332

  18. Sensory and sensorimotor gating in children with multiple complex developmental disorders (MCDD) and autism.

    PubMed

    Oranje, Bob; Lahuis, Bertine; van Engeland, Herman; Jan van der Gaag, Rutger; Kemner, Chantal

    2013-04-30

    Multiple Complex Developmental Disorder (MCDD) is a well-defined and validated behavioral subtype of autism with a proposed elevated risk of developing a schizophrenic spectrum disorder. The current study investigated whether children with MCDD show the same deficits in sensory gating that are commonly reported in schizophrenia, or whether they are indistinguishable from children with autism in this respect. P50 suppression and prepulse inhibition (PPI) of the startle reflex were assessed in children with MCDD (n=14) or autism (n=13), and healthy controls (n=12), matched on age and IQ. All subjects showed high levels of PPI and P50 suppression. However, no group differences were found. No abnormalities in sensory filtering could be detected in children with autism or MCDD. Since sensory gating deficits are commonly regarded as possible endophenotypic markers for schizophrenia, the current results do not support a high level of similarity between schizophrenia and MCDD.

  19. Sensory Motor Coordination in Robonaut

    NASA Technical Reports Server (NTRS)

    Peters, Richard Alan, II

    2003-01-01

    As a participant of the year 2000 NASA Summer Faculty Fellowship Program, I worked with the engineers of the Dexterous Robotics Laboratory at NASA Johnson Space Center on the Robonaut project. The Robonaut is an articulated torso with two dexterous arms, left and right five-fingered hands, and a head with cameras mounted on an articulated neck. This advanced space robot, now driven only teleoperatively using VR gloves, sensors and helmets, is to be upgraded to a thinking system that can find, interact with and assist humans autonomously, allowing the Crew to work with Robonaut as a (junior) member of their team. Thus, the work performed this summer was toward the goal of enabling Robonaut to operate autonomously as an intelligent assistant to astronauts. Our underlying hypothesis is that a robot can develop intelligence if it learns a set of basic behaviors (i.e., reflexes - actions tightly coupled to sensing) and through experience learns how to sequence these to solve problems or to accomplish higher-level tasks. We describe our approach to the automatic acquisition of basic behaviors as learning sensory-motor coordination (SMC). Although research in the ontogenesis of animals development from the time of conception) supports the approach of learning SMC as the foundation for intelligent, autonomous behavior, we do not know whether it will prove viable for the development of autonomy in robots. The first step in testing the hypothesis is to determine if SMC can be learned by the robot. To do this, we have taken advantage of Robonaut's teleoperated control system. When a person teleoperates Robonaut, the person's own SMC causes the robot to act purposefully. If the sensory signals that the robot detects during teleoperation are recorded over several repetitions of the same task, it should be possible through signal analysis to identify the sensory-motor couplings that accompany purposeful motion. In this report, reasons for suspecting SMC as the basis for

  20. Hereditary sensory neuropathy type I.

    PubMed

    Auer-Grumbach, Michaela

    2008-03-18

    Hereditary sensory neuropathy type I (HSN I) is a slowly progressive neurological disorder characterised by prominent predominantly distal sensory loss, autonomic disturbances, autosomal dominant inheritance, and juvenile or adulthood disease onset. The exact prevalence is unknown, but is estimated as very low. Disease onset varies between the 2nd and 5th decade of life. The main clinical feature of HSN I is the reduction of sensation sense mainly distributed to the distal parts of the upper and lower limbs. Variable distal muscle weakness and wasting, and chronic skin ulcers are characteristic. Autonomic features (usually sweating disturbances) are invariably observed. Serious and common complications are spontaneous fractures, osteomyelitis and necrosis, as well as neuropathic arthropathy which may even necessitate amputations. Some patients suffer from severe pain attacks. Hypacusis or deafness, or cough and gastrooesophageal reflux have been observed in rare cases. HSN I is a genetically heterogenous condition with three loci and mutations in two genes (SPTLC1 and RAB7) identified so far. Diagnosis is based on the clinical observation and is supported by a family history. Nerve conduction studies confirm a sensory and motor neuropathy predominantly affecting the lower limbs. Radiological studies, including magnetic resonance imaging, are useful when bone infections or necrosis are suspected. Definitive diagnosis is based on the detection of mutations by direct sequencing of the SPTLC1 and RAB7 genes. Correct clinical assessment and genetic confirmation of the diagnosis are important for appropriate genetic counselling and prognosis. Differential diagnosis includes the other hereditary sensory and autonomic neuropathies (HSAN), especially HSAN II, as well as diabetic foot syndrome, alcoholic neuropathy, neuropathies caused by other neurotoxins/drugs, immune mediated neuropathy, amyloidosis, spinal cord diseases, tabes dorsalis, lepra neuropathy, or decaying skin

  1. Occupational exposure to chemicals and sensory organs: a neglected research field.

    PubMed

    Gobba, Fabriziomaria

    2003-08-01

    The effect of industrial chemicals on the sensory perception of exposed workers has received scant attention from the medical community to date, and the scientific literature is mainly limited to some case-reports or isolated studies. Possible explanations for this include the complexity of sensory perception, and the lack of agreement among researchers on methods for testing large groups of subjects. Nevertheless, some published studies showed that vision, hearing and olfactory function can be affected by various industrial metals and solvents, and some data exist also for touch and taste. This review discusses the main industrial chemicals involved. The pathogenesis of the toxicity of chemicals to sensory perception may be related to an action on receptors, nerve fibers, and/or the brain; probably, different pathogenetic mechanisms are involved. One of the main problems in this research field is that most of the studies to date evaluated the effect of a single industrial chemical on a single sense: as an example, we know that styrene exposure can impair smell and also hearing and vision but we have little idea whether different senses are impaired in the same worker, or whether each impairment is independent. In addition, workers are frequently exposed to different chemicals: co-exposure may have no effect, or result in both an increase or a decrease of the effect, as was observed for hearing loss, but studies on this aspect are largely insufficient. Research shows that both occupational and environmental exposure to industrial chemicals can affect sense organs, and suggests that the decline of perception with age may be, at least partly, related to this exposure. Nevertheless, available evidence is incomplete, and is largely inadequate for an estimation of a "safe" threshold of exposure. Good quality further research in this field is needed. This is certainly complex and demands adequate resources, but is justified by the ultimate result: the possibility to

  2. Abnormal contextual modulation of visual contour detection in patients with schizophrenia.

    PubMed

    Schallmo, Michael-Paul; Sponheim, Scott R; Olman, Cheryl A

    2013-01-01

    Schizophrenia patients demonstrate perceptual deficits consistent with broad dysfunction in visual context processing. These include poor integration of segments forming visual contours, and reduced visual contrast effects (e.g. weaker orientation-dependent surround suppression, ODSS). Background image context can influence contour perception, as stimuli near the contour affect detection accuracy. Because of ODSS, this contextual modulation depends on the relative orientation between the contour and flanking elements, with parallel flankers impairing contour perception. However in schizophrenia, the impact of abnormal ODSS during contour perception is not clear. It is also unknown whether deficient contour perception marks genetic liability for schizophrenia, or is strictly associated with clinical expression of this disorder. We examined contour detection in 25 adults with schizophrenia, 13 unaffected first-degree biological relatives of schizophrenia patients, and 28 healthy controls. Subjects performed a psychophysics experiment designed to quantify the effect of flanker orientation during contour detection. Overall, patients with schizophrenia showed poorer contour detection performance than relatives or controls. Parallel flankers suppressed and orthogonal flankers enhanced contour detection performance for all groups, but parallel suppression was relatively weaker for schizophrenia patients than healthy controls. Relatives of patients showed equivalent performance with controls. Computational modeling suggested that abnormal contextual modulation in schizophrenia may be explained by suppression that is more broadly tuned for orientation. Abnormal flanker suppression in schizophrenia is consistent with weaker ODSS and/or broader orientation tuning. This work provides the first evidence that such perceptual abnormalities may not be associated with a genetic liability for schizophrenia.

  3. Vestibular abnormalities in congenital disorders.

    PubMed

    Sando, I; Orita, Y; Miura, M; Balaban, C D

    2001-10-01

    This paper reviews the histopathologic features of vestibular abnormalities in congenital disorders affecting the inner ear, based upon a comprehensive literature survey and a review of cases in our temporal bone collection. The review proceeds in three systematic steps. First, we surveyed associated diseases with the major phenotypic features of congenital abnormalities of the inner ear (including the internal auditory canal and otic capsule). Second, the vestibular anomalies are examined specifically. Finally, the anomalies are discussed from a developmental perspective. Among vestibular anomalies, a hypoplastic endolymphatic duct and sac are observed most frequently. Anomalies of the semicircular canals are also often observed. From embryological and clinical viewpoints, many of these resemble the structural features from fetal stages and appear to be associated with vestibular dysfunction. It is expected that progress in genetic analysis and accumulation of temporal bone specimens with vestibular abnormalities in congenital diseases will provide crucial information not only for pathology of those diseases, but also for genetic factors that are responsible for the specific vestibular abnormalities.

  4. Medullary infarcts may cause ipsilateral masseter reflex abnormalities.

    PubMed

    Thömke, Frank; Marx, Jürgen J; Cruccu, Giorgio; Stoeter, Peter; Hopf, Hanns C

    2007-10-01

    There is a suprasegmental influence on the masseter reflex (MassR) in animals, which is mediated via the fifth nerve spinal nucleus (5SpN). Corresponding data in humans are lacking. Out of 268 prospectively recruited patients with clinical signs of acute brainstem infarctions, we identified 38 with magnetic resonance imaging (MRI)-documented unilateral infarcts caudal to the levels of the fifth nerve motor and main sensory nuclei. All had biplanar T2- and echo planar diffusion-weighted MRI and MassR testing. Five patients (13%) had ipsilateral MassR abnormalities. In all, the infarcts involved the region of the 5SpN. Patients with medullary infarcts involving the region of the 5SpN may thus have ipsilateral MassR abnormalities. This possibly represents an interruption of an excitatory projection mediated via the 5SpN to masseter motoneurons in the fifth nerve motor nucleus. MassR abnormalities with medullary lesions restrict the topodiagnostic value of the MassR.

  5. Developmental broadening of inhibitory sensory maps.

    PubMed

    Quast, Kathleen B; Ung, Kevin; Froudarakis, Emmanouil; Huang, Longwen; Herman, Isabella; Addison, Angela P; Ortiz-Guzman, Joshua; Cordiner, Keith; Saggau, Peter; Tolias, Andreas S; Arenkiel, Benjamin R

    2017-02-01

    Sensory maps are created by networks of neuronal responses that vary with their anatomical position, such that representations of the external world are systematically and topographically organized in the brain. Current understanding from studying excitatory maps is that maps are sculpted and refined throughout development and/or through sensory experience. Investigating the mouse olfactory bulb, where ongoing neurogenesis continually supplies new inhibitory granule cells into existing circuitry, we isolated the development of sensory maps formed by inhibitory networks. Using in vivo calcium imaging of odor responses, we compared functional responses of both maturing and established granule cells. We found that, in contrast to the refinement observed for excitatory maps, inhibitory sensory maps became broader with maturation. However, like excitatory maps, inhibitory sensory maps are sensitive to experience. These data describe the development of an inhibitory sensory map as a network, highlighting the differences from previously described excitatory maps.

  6. Cognitive mechanisms associated with auditory sensory gating.

    PubMed

    Jones, L A; Hills, P J; Dick, K M; Jones, S P; Bright, P

    2016-02-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification.

  7. Cognitive mechanisms associated with auditory sensory gating

    PubMed Central

    Jones, L.A.; Hills, P.J.; Dick, K.M.; Jones, S.P.; Bright, P.

    2016-01-01

    Sensory gating is a neurophysiological measure of inhibition that is characterised by a reduction in the P50 event-related potential to a repeated identical stimulus. The objective of this work was to determine the cognitive mechanisms that relate to the neurological phenomenon of auditory sensory gating. Sixty participants underwent a battery of 10 cognitive tasks, including qualitatively different measures of attentional inhibition, working memory, and fluid intelligence. Participants additionally completed a paired-stimulus paradigm as a measure of auditory sensory gating. A correlational analysis revealed that several tasks correlated significantly with sensory gating. However once fluid intelligence and working memory were accounted for, only a measure of latent inhibition and accuracy scores on the continuous performance task showed significant sensitivity to sensory gating. We conclude that sensory gating reflects the identification of goal-irrelevant information at the encoding (input) stage and the subsequent ability to selectively attend to goal-relevant information based on that previous identification. PMID:26716891

  8. Crossmodal interactions of haptic and visual texture information in early sensory cortex.

    PubMed

    Eck, Judith; Kaas, Amanda L; Goebel, Rainer

    2013-07-15

    Both visual and haptic information add to the perception of surface texture. While prior studies have reported crossmodal interactions of both sensory modalities at the behavioral level, neuroimaging studies primarily investigated texture perception in separate visual and haptic paradigms. These experimental designs, however, only allowed to identify overlap in both sensory processing streams but no interaction of visual and haptic texture processing. By varying texture characteristics in a bimodal task, the current study investigated how these crossmodal interactions are reflected at the cortical level. We used fMRI to compare cortical activation in response to matching versus non-matching visual-haptic texture information. We expected that passive simultaneous presentation of matching visual-haptic input would be sufficient to induce BOLD responses graded with varying texture characteristics. Since no cognitive evaluation of the stimuli was required, we expected to find changes primarily at a rather early processing stage. Our results confirmed our assumptions by showing crossmodal interactions of visual-haptic texture information in early somatosensory and visual cortex. However, the nature of the crossmodal effects was slightly different in both sensory cortices. In early visual cortex, matching visual-haptic information increased the average activation level and induced parametric BOLD signal variations with varying texture characteristics. In early somatosensory cortex only the latter was true. These results challenge the notion that visual and haptic texture information is processed independently and indicate a crossmodal interaction of sensory information already at an early cortical processing stage.