Science.gov

Sample records for abnormal spindle formation

  1. Sleep Spindles as Facilitators of Memory Formation and Learning.

    PubMed

    Ulrich, Daniel

    2016-01-01

    Over the past decades important progress has been made in understanding the mechanisms of sleep spindle generation. At the same time a physiological role of sleep spindles is starting to be revealed. Behavioural studies in humans and animals have found significant correlations between the recall performance in different learning tasks and the amount of sleep spindles in the intervening sleep. Concomitant neurophysiological experiments showed a close relationship between sleep spindles and other sleep related EEG rhythms as well as a relationship between sleep spindles and synaptic plasticity. Together, there is growing evidence from several disciplines in neuroscience for a participation of sleep spindles in memory formation and learning.

  2. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived neurotrophin 3.

    PubMed

    Shneider, Neil A; Mentis, George Z; Schustak, Joshua; O'Donovan, Michael J

    2009-04-15

    The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin 1 receptor ErbB2 from muscle precursors. However, despite a modest ( approximately 30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by approximately 80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections but not their initial formation or their specificity.

  3. Functionally reduced sensorimotor connections form with normal specificity despite abnormal muscle spindle development: the role of spindle-derived NT3

    PubMed Central

    Shneider, Neil A.; Mentis, George Z.; Schustak, Joshua; O’Donovan, Michael J.

    2009-01-01

    Summary The mechanisms controlling the formation of synaptic connections between muscle spindle afferents and spinal motor neurons are believed to be regulated by factors originating from muscle spindles. Here, we find that the connections form with appropriate specificity in mice with abnormal spindle development caused by the conditional elimination of the neuregulin1 receptor ErbB2 from muscle precursors. However, despite a modest (~30%) decrease in the number of afferent terminals on motor neuron somata, the amplitude of afferent-evoked synaptic potentials recorded in motor neurons was reduced by ~80%, suggesting that many of the connections that form are functionally silent. The selective elimination of neurotrophin 3 (NT3) from muscle spindles had no effect on the amplitude of afferent-evoked ventral root potentials until the second postnatal week, revealing a late role for spindle-derived NT3 in the functional maintenance of the connections. These findings indicate that spindle-derived factors regulate the strength of the connections, but not their initial formation or their specificity. PMID:19369542

  4. Brownian dynamics simulation of fission yeast mitotic spindle formation

    NASA Astrophysics Data System (ADS)

    Edelmaier, Christopher

    2014-03-01

    The mitotic spindle segregates chromosomes during mitosis. The dynamics that establish bipolar spindle formation are not well understood. We have developed a computational model of fission-yeast mitotic spindle formation using Brownian dynamics and kinetic Monte Carlo methods. Our model includes rigid, dynamic microtubules, a spherical nuclear envelope, spindle pole bodies anchored in the nuclear envelope, and crosslinkers and crosslinking motor proteins. Crosslinkers and crosslinking motor proteins attach and detach in a grand canonical ensemble, and exert forces and torques on the attached microtubules. We have modeled increased affinity for crosslinking motor attachment to antiparallel microtubule pairs, and stabilization of microtubules in the interpolar bundle. We study parameters controlling the stability of the interpolar bundle and assembly of a bipolar spindle from initially adjacent spindle-pole bodies.

  5. Nucleosome functions in spindle assembly and nuclear envelope formation

    PubMed Central

    Zierhut, Christian; Funabiki, Hironori

    2016-01-01

    Summary Chromosomes are not only carriers of the genetic material, but also actively regulate the assembly of complex intracellular architectures. During mitosis, chromosome-induced microtubule polymerisation ensures spindle assembly in cells without centrosomes and plays a supportive role in centrosome-containing cells. Chromosomal signals also mediate post-mitotic nuclear envelope (NE) re-formation. Recent studies using novel approaches to manipulate histones in oocytes, where functions can be analysed in the absence of transcription, have established that nucleosomes, but not DNA alone, mediate the chromosomal regulation of spindle assembly and NE formation. Both processes require the generation of RanGTP by RCC1 recruited to nucleosomes but nucleosomes also acquire cell cycle stage specific regulators, Aurora B in mitosis and ELYS, the initiator of nuclear pore complex assembly, at mitotic exit. Here, we review the mechanisms by which nucleosomes control assembly and functions of the spindle and the NE, and discuss their implications for genome maintenance. PMID:26222742

  6. Pattern formation in stochastic systems: Magnetized billiards and mitotic spindles

    NASA Astrophysics Data System (ADS)

    Schaffner, Stuart C.

    vital for spindle formation.

  7. A muscle spindle abnormity in one laryngeal muscle would be sufficient to cause stuttering.

    PubMed

    Schuster, Steffen H; Schuster, Frank M

    2012-07-01

    Muscle spindles are increasingly recognized as playing a pivotal role in the cause of dystonia. This development and own laryngeal observations that support the idea of causally "well-intentioned" stuttering motivated us to present the following hypothesis: stuttering events compensate for a sensory problem that arises when the abductor/adductor ratio of afferent impulse rates from the posterior cricoarytenoid and lateral cricoarytenoid muscle spindles is abnormally reduced and processed for the occasional determination of the vocal fold position. This hypothesis implies that functional and structural brain abnormalities might be interpreted as secondary compensatory reactions. Verification of this hypothesis (using technologies such as microneurography, dissection and muscle afferent block) is important because its confirmation could relink dystonia and stuttering research, change the direction of stuttering therapy and destigmatize stuttering radically.

  8. Augmin promotes meiotic spindle formation and bipolarity in Xenopus egg extracts.

    PubMed

    Petry, Sabine; Pugieux, Céline; Nédélec, François J; Vale, Ronald D

    2011-08-30

    Female meiotic spindles in many organisms form in the absence of centrosomes, the organelle typically associated with microtubule (MT) nucleation. Previous studies have proposed that these meiotic spindles arise from RanGTP-mediated MT nucleation in the vicinity of chromatin; however, whether this process is sufficient for spindle formation is unknown. Here, we investigated whether a recently proposed spindle-based MT nucleation pathway that involves augmin, an 8-subunit protein complex, also contributes to spindle morphogenesis. We used an assay system in which hundreds of meiotic spindles can be observed forming around chromatin-coated beads after introduction of Xenopus egg extracts. Spindles forming in augmin-depleted extracts showed reduced rates of MT formation and were predominantly multipolar, revealing a function of augmin in stabilizing the bipolar shape of the acentrosomal meiotic spindle. Our studies also have uncovered an apparent augmin-independent MT nucleation process from acentrosomal poles, which becomes increasingly active over time and appears to partially rescue the spindle defects that arise from augmin depletion. Our studies reveal that spatially and temporally distinct MT generation pathways from chromatin, spindle MTs, and acentrosomal poles all contribute to robust bipolar spindle formation in meiotic extracts.

  9. Live-Cell Analysis of Mitotic Spindle Formation in Taxol-Treated Cells

    PubMed Central

    Hornick, Jessica E.; Bader, Jason R.; Tribble, Emily K.; Trimble, Kayleigh; Breunig, J. Scott; Halpin, Elizabeth S.; Vaughan, Kevin T.; Hinchcliffe, Edward H.

    2009-01-01

    Taxol functions to suppress the dynamic behavior of individual microtubules, and induces multipolar mitotic spindles. However, little is known about the mechanisms by which taxol disrupts normal bipolar spindle assembly in vivo. Using live imaging of GFP-α tubulin expressing cells, we examined spindle assembly after taxol treatment. We find that as taxol-treated cells enter mitosis, there is a dramatic redistribution of the microtubule network from the centrosomes to the cell cortex. As they align there, the cortical microtubules recruit NuMA to their embedded ends, followed by the kinesin motor HSET. These cortical microtubules then bud off to form cytasters, which fuse into multipolar spindles. Cytoplasmic dynein and dynactin do not re-localize to cortical microtubules, and disruption of dynein/dynactin interactions by over-expression of p50 “dynamitin” does not prevent cytaster formation. Taxol added well before spindle poles begin to form induces multipolarity, but taxol added after nascent spindle poles are visible—but before NEB is complete—results in bipolar spindles. Our results suggest that taxol prevents rapid transport of key components, such as NuMA, to the nascent spindle poles. The net result is loss of mitotic spindle pole cohesion, microtubule re-distribution, and cytaster formation. PMID:18481305

  10. v-Src-induced nuclear localization of YAP is involved in multipolar spindle formation in tetraploid cells.

    PubMed

    Kakae, Keiko; Ikeuchi, Masayoshi; Kuga, Takahisa; Saito, Youhei; Yamaguchi, Naoto; Nakayama, Yuji

    2017-01-01

    The protein-tyrosine kinase, c-Src, is involved in a variety of signaling events, including cell division. We have reported that v-Src, which is a mutant variant of the cellular proto-oncogene, c-Src, causes delocalization of Aurora B kinase, resulting in a furrow regression in cytokinesis and the generation of multinucleated cells. However, the effect of v-Src on mitotic spindle formation is unknown. Here we show that v-Src-expressing HCT116 and NIH3T3 cells undergo abnormal cell division, in which cells separate into more than two cells. Upon v-Src expression, the proportion of multinucleated cells is increased in a time-dependent manner. Flow cytometry analysis revealed that v-Src increases the number of cells having a ≥4N DNA content. Microscopic analysis showed that v-Src induces the formation of multipolar spindles with excess centrosomes. These results suggest that v-Src induces multipolar spindle formation by generating multinucleated cells. Tetraploidy activates the tetraploidy checkpoint, leading to a cell cycle arrest of tetraploid cells at the G1 phase, in which the nuclear exclusion of the transcription co-activator YAP plays a critical role. In multinucleated cells that are induced by cytochalasin B and the Plk1 inhibitor, YAP is excluded from the nucleus. However, v-Src prevents this nuclear exclusion of YAP through a decrease in the phosphorylation of YAP at Ser127 in multinucleated cells. Furthermore, v-Src decreases the expression level of p53, which also plays a critical role in the cell cycle arrest of tetraploid cells. These results suggest that v-Src promotes abnormal spindle formation in at least two ways: generation of multinucleated cells and a weakening of the tetraploidy checkpoint.

  11. Cdc42 activation couples spindle positioning to first polar body formation in oocyte maturation.

    PubMed

    Ma, Chunqi; Benink, Héléne A; Cheng, Daye; Montplaisir, Véronique; Wang, Ling; Xi, Yanwei; Zheng, Pei-Pei; Bement, William M; Liu, X Johné

    2006-01-24

    During vertebrate egg maturation, cytokinesis initiates after one pole of the bipolar metaphase I spindle attaches to the oocyte cortex, resulting in the formation of a polar body and the mature egg. It is not known what signal couples the spindle pole positioning to polar body formation. We approached this question by drawing an analogy to mitotic exit in budding yeast, as asymmetric spindle attachment to the appropriate cortical region is the common regulatory cue. In budding yeast, the small G protein Cdc42 plays an important role in mitotic exit following the spindle pole attachment . We show here that inhibition of Cdc42 activation blocks polar body formation. The oocytes initiate anaphase but fail to properly form and direct a contractile ring. Endogenous Cdc42 is activated at the spindle pole-cortical contact site immediately prior to polar body formation. The cortical Cdc42 activity zone, which directly overlays the spindle pole, is circumscribed by a cortical RhoA activity zone; the latter defines the cytokinetic contractile furrow . As the RhoA ring contracts during cytokinesis, the Cdc42 zone expands, maintaining its complementary relationship with the RhoA ring. Cdc42 signaling may thus be an evolutionarily conserved mechanism that couples spindle positioning to asymmetric cytokinesis.

  12. The nucleoporin ALADIN regulates Aurora A localization to ensure robust mitotic spindle formation

    PubMed Central

    Carvalhal, Sara; Ribeiro, Susana Abreu; Arocena, Miguel; Kasciukovic, Taciana; Temme, Achim; Koehler, Katrin; Huebner, Angela; Griffis, Eric R.

    2015-01-01

    The formation of the mitotic spindle is a complex process that requires massive cellular reorganization. Regulation by mitotic kinases controls this entire process. One of these mitotic controllers is Aurora A kinase, which is itself highly regulated. In this study, we show that the nuclear pore protein ALADIN is a novel spatial regulator of Aurora A. Without ALADIN, Aurora A spreads from centrosomes onto spindle microtubules, which affects the distribution of a subset of microtubule regulators and slows spindle assembly and chromosome alignment. ALADIN interacts with inactive Aurora A and is recruited to the spindle pole after Aurora A inhibition. Of interest, mutations in ALADIN cause triple A syndrome. We find that some of the mitotic phenotypes that we observe after ALADIN depletion also occur in cells from triple A syndrome patients, which raises the possibility that mitotic errors may underlie part of the etiology of this syndrome. PMID:26246606

  13. Telomeres and centromeres have interchangeable roles in promoting meiotic spindle formation

    PubMed Central

    Fennell, Alex; Fernández-Álvarez, Alfonso; Tomita, Kazunori

    2015-01-01

    Telomeres and centromeres have traditionally been considered to perform distinct roles. During meiotic prophase, in a conserved chromosomal configuration called the bouquet, telomeres gather to the nuclear membrane (NM), often near centrosomes. We found previously that upon disruption of the fission yeast bouquet, centrosomes failed to insert into the NM at meiosis I and nucleate bipolar spindles. Hence, the trans-NM association of telomeres with centrosomes during prophase is crucial for efficient spindle formation. Nonetheless, in approximately half of bouquet-deficient meiocytes, spindles form properly. Here, we show that bouquet-deficient cells can successfully undergo meiosis using centromere–centrosome contact instead of telomere–centrosome contact to generate spindle formation. Accordingly, forced association between centromeres and centrosomes fully rescued the spindle defects incurred by bouquet disruption. Telomeres and centromeres both stimulate focal accumulation of the SUN domain protein Sad1 beneath the centrosome, suggesting a molecular underpinning for their shared spindle-generating ability. Our observations demonstrate an unanticipated level of interchangeability between the two most prominent chromosomal landmarks. PMID:25688135

  14. The sequential activation of the mitotic microtubule assembly pathways favors bipolar spindle formation

    PubMed Central

    Cavazza, Tommaso; Malgaretti, Paolo; Vernos, Isabelle

    2016-01-01

    Centrosome maturation is the process by which the duplicated centrosomes recruit pericentriolar components and increase their microtubule nucleation activity before mitosis. The role of this process in cells entering mitosis has been mostly related to the separation of the duplicated centrosomes and thereby to the assembly of a bipolar spindle. However, spindles can form without centrosomes. In fact, all cells, whether they have centrosomes or not, rely on chromatin-driven microtubule assembly to form a spindle. To test whether the sequential activation of these microtubule assembly pathways, defined by centrosome maturation and nuclear envelope breakdown, plays any role in spindle assembly, we combined experiments in tissue culture cells and Xenopus laevis egg extracts with a mathematical model. We found that interfering with the sequential activation of the microtubule assembly pathways compromises bipolar spindle assembly in tissue culture cells but not in X. laevis egg extracts. Our data suggest a novel function for centrosome maturation that determines the contribution of the chromosomal microtubule assembly pathway and favors bipolar spindle formation in most animal cells in which tubulin is in limiting amounts. PMID:27489339

  15. The effect of magnesium on mitotic spindle formation in Schizosaccharomyces pombe.

    PubMed

    Uz, Gulsen; Sarikaya, Aysegul Topal

    2016-01-01

    Magnesium (Mg2+), an essential ion for cells and biological systems, is involved in a variety of cellular processes, including the formation and breakdown of microtubules. The results of a previous investigation suggested that as cells grow the intracellular Mg2+ concentration falls, thereby stimulating formation of the mitotic spindle. In the present work, we used a Mg2+-deficient Schizosaccharomyces pombe strain GA2, in which two essential membrane Mg2+ transporter genes (homologs of ALR1 and ALR2 in Saccharomyces cerevisae) were deleted, and its parental strain Sp292, to examine the extent to which low Mg2+ concentrations can affect mitotic spindle formation. The two S. pombe strains were transformed with a plasmid carrying a GFP-α2-tubulin construct to fluorescently label microtubules. Using the free Mg2+-specific fluorescent probe mag-fura-2, we confirmed that intracellular free Mg2+ levels were lower in GA2 than in the parental strain. Defects in interphase microtubule organization, a lower percentage of mitotic spindle formation and a reduced mitotic index were also observed in the GA2 strain. Although there was interphase microtubule polymerization, the lower level of mitotic spindle formation in the Mg2+-deficient strain suggested a greater requirement for Mg2+ in this phenomenon than previously thought.

  16. Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts.

    PubMed

    Ohshima, Susumu; Seyama, Atsushi

    2012-09-01

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4 days to induce polyploidy, and the change in DNA content was monitored. Localization of centrosomes and mitotic spindles in polyploid mitotic cells was examined by immunohistochemistry and laser scanning cytometry. TIG-1 cells treated with DC became almost completely tetraploid at 2 weeks after treatment and grew at the same rate as untreated diploid cells. Most mitotic cells with 8C DNA content had only two centrosomes with bipolar spindles in established tetraploid cells, although they had four or more centrosomes with multipolar spindles at 3 days after DC treatment. The frequency of aneuploid cells increased as established tetraploid cells were propagated. These results indicate that tetraploid cells that form bipolar spindles with two centrosomes in mitosis can proliferate as diploid cells. These cells may serve as a useful model for studying the chromosome instability of polyploid cells.

  17. cut11+: A Gene Required for Cell Cycle-dependent Spindle Pole Body Anchoring in the Nuclear Envelope and Bipolar Spindle Formation in Schizosaccharomyces pombe

    PubMed Central

    West, Robert R.; Vaisberg, Elena V.; Ding, Rubai; Nurse, Paul; McIntosh, J. Richard

    1998-01-01

    The “cut” mutants of Schizosaccharomyces pombe are defective in spindle formation and/or chromosome segregation, but they proceed through the cell cycle, resulting in lethality. Analysis of temperature-sensitive alleles of cut11+ suggests that this gene is required for the formation of a functional bipolar spindle. Defective spindle structure was revealed with fluorescent probes for tubulin and DNA. Three-dimensional reconstruction of mutant spindles by serial sectioning and electron microscopy showed that the spindle pole bodies (SPBs) either failed to complete normal duplication or were free floating in the nucleoplasm. Localization of Cut11p tagged with the green fluorescent protein showed punctate nuclear envelope staining throughout the cell cycle and SPBs staining from early prophase to mid anaphase. This SPB localization correlates with the time in the cell cycle when SPBs are inserted into the nuclear envelope. Immunoelectron microscopy confirmed the localization of Cut11p to mitotic SPBs and nuclear pore complexes. Cloning and sequencing showed that cut11+ encodes a novel protein with seven putative membrane-spanning domains and homology to the Saccharomyces cerevisiae gene NDC1. These data suggest that Cut11p associates with nuclear pore complexes and mitotic SPBs as an anchor in the nuclear envelope; this role is essential for mitosis. PMID:9763447

  18. Knockdown of UCHL5IP causes abnormalities in γ-tubulin localisation, spindle organisation and chromosome alignment in mouse oocyte meiotic maturation.

    PubMed

    Wang, Ya-Peng; Qi, Shu-Tao; Wei, Yanchang; Ge, Zhao-Jia; Chen, Lei; Hou, Yi; Ouyang, Ying-Chun; Schatten, Heide; Zhao, Jian-Guo; Sun, Qing-Yuan

    2013-01-01

    UCHL5IP is one of the subunits of the haus complex, which is important for microtubule generation, spindle bipolarity and accurate chromosome segregation in Drosophila and human mitotic cells. In this study, the expression and localisation of UCHL5IP were explored, as well as its functions in mouse oocyte meiotic maturation. The results showed that the UCHL5IP protein level was consistent during oocyte maturation and it was localised to the meiotic spindle in MI and MII stages. Knockdown of UCHL5IP led to spindle defects, chromosome misalignment and disruption of γ-tubulin localisation in the spindle poles. These results suggest that UCHL5IP plays critical roles in spindle formation during mouse oocyte meiotic maturation.

  19. Hmga1 null mouse embryonic fibroblasts display downregulation of spindle assembly checkpoint gene expression associated to nuclear and karyotypic abnormalities

    PubMed Central

    Pierantoni, Giovanna Maria; Conte, Andrea; Rinaldo, Cinzia; Tornincasa, Mara; Gerlini, Raffaele; Valente, Davide; Izzo, Antonella; Fusco, Alfredo

    2016-01-01

    ABSTRACT The High Mobility Group A1 proteins (HMGA1) are nonhistone chromatinic proteins with a critical role in development and cancer. We have recently reported that HMGA1 proteins are able to increase the expression of spindle assembly checkpoint (SAC) genes, thus impairing SAC function and causing chromosomal instability in cancer cells. Moreover, we found a significant correlation between HMGA1 and SAC genes expression in human colon carcinomas. Here, we report that mouse embryonic fibroblasts null for the Hmga1 gene show downregulation of Bub1, Bub1b, Mad2l1 and Ttk SAC genes, and present several features of chromosomal instability, such as nuclear abnormalities, binucleation, micronuclei and karyotypic alterations. Interestingky, also MEFs carrying only one impaired Hmga1 allele present karyotypic alterations. These results indicate that HMGA1 proteins regulate SAC genes expression and, thereby, genomic stability also in embryonic cells. PMID:26889953

  20. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  1. RhoA-mediated FMNL1 regulates GM130 for actin assembly and phosphorylates MAPK for spindle formation in mouse oocyte meiosis.

    PubMed

    Wang, Fei; Zhang, Liang; Duan, Xing; Zhang, Guang-Li; Wang, Zhen-Bo; Wang, Qiang; Xiong, Bo; Sun, Shao-Chen

    2015-01-01

    Formin-like 1 (FMNL1) is a member of Formin family proteins which are the actin nucleators. Although FMNL1 activities have been shown to be essential for cell adhesion, cytokinesis, cell polarization and migration in mitosis, the functional roles of mammalian FMNL1 during oocyte meiosis remain uncertain. In this study, we investigated the functions of FMNL1 in mouse oocytes using specific morpholino (MO) microinjection and live cell imaging. Immunofluorescent staining showed that in addition to its cytoplasmic distribution, FMNL1 was primarily localized at the spindle poles after germinal vesicle breakdown (GVBD). FMNL1 knockdown caused the low rate of polar body extrusion and resulted in large polar bodies. Time-lapse microscopic and immunofluorescence intensity analysis indicated that this might be due to the aberrant actin expression levels. Cortical polarity was disrupted as shown by a loss of actin cap and cortical granule free domain (CGFD) formation, which was confirmed by a failure of meiotic spindle positioning. And this might be the reason for the large polar body formation. Spindle formation was also disrupted, which might be due to the abnormal localization of p-MAPK. These results indicated that FMNL1 affected both actin dynamics and spindle formation for the oocyte polar body extrusion. Moreover, FMNL1 depletion resulted in aberrant localization and expression patterns of a cis-Golgi marker protein, GM130. Finally, we found that the small GTPase RhoA might be the upstream regulator of FMNL1. Taken together, our data indicate that FMNL1 is required for spindle organization and actin assembly through a RhoA-FMNL1-GM130 pathway during mouse oocyte meiosis.

  2. Inhibition of the Binding between RGS2 and β-Tubulin Interferes with Spindle Formation and Chromosome Segregation during Mouse Oocyte Maturation In Vitro

    PubMed Central

    Sun, Zhao-Gui; Zhang, Zhi; Zhu, Yan

    2016-01-01

    RGS2 is a negative regulator of G protein signaling that contains a GTPase-activating domain and a β-tubulin binding region. This study aimed to determine the localization and function of RGS2 during mouse oocyte maturation in vitro. Immunofluorescent staining revealed that RGS2 was widely expressed in the cytoplasm with a greater abundance on both meiotic spindles and first/second polar bodies from the fully-grown germinal vesicle (GV) stage to the MII stages. Co-expression of RGS2 and β-tubulin could also be detected in the spindle and polar body of mouse oocytes at the MI, AI, and MII stages. Inhibition of the binding site between RGS2 and β-tubulin was accomplished by injecting anti-RGS2 antibody into GV-stage oocytes, which could result in oocytes arrest at the MI or AI stage during in vitro maturation, but it did not affect germinal vesicle breakdown. Moreover, injecting anti-RGS2 antibody into oocytes resulted in a significant reduction in the rate of first polar body extrusion and abnormal spindle formation. Additionally, levels of phosphorylated MEK1/2 were significantly reduced in anti-RGS2 antibody injected oocytes compared with control oocytes. These findings suggest that RGS2 might play a critical role in mouse oocyte meiotic maturation by affecting β-tubulin polymerization and chromosome segregation. PMID:27463806

  3. Spindle assembly checkpoint inactivation fails to suppress neuroblast tumour formation in aurA mutant Drosophila

    PubMed Central

    Caous, Renaud; Pascal, Aude; Romé, Pierre; Richard-Parpaillon, Laurent; Karess, Roger; Giet, Régis

    2015-01-01

    Tissue homeostasis requires accurate control of cell proliferation, differentiation and chromosome segregation. Drosophila sas-4 and aurA mutants present brain tumours with extra neuroblasts (NBs), defective mitotic spindle assembly and delayed mitosis due to activation of the spindle assembly checkpoint (SAC). Here we inactivate the SAC in aurA and sas-4 mutants to determine whether the generation of aneuploidy compromises NB proliferation. Inactivation of the SAC in the sas-4 mutant impairs NB proliferation and disrupts euploidy. By contrast, disrupting the SAC in the aurA mutant does not prevent NB amplification, tumour formation or chromosome segregation. The monitoring of Mad2 and cyclin B dynamics in live aurA NBs reveals that SAC satisfaction is not coupled to cyclin B degradation. Thus, the NBs of aurA mutants present delayed mitosis, with accurate chromosome segregation occurring in a SAC-independent manner. We report here the existence of an Aurora A-dependent mechanism promoting efficient, timed cyclin B degradation. PMID:26568519

  4. The force-producing mechanism for centrosome separation during spindle formation in vertebrates is intrinsic to each aster

    PubMed Central

    1993-01-01

    A popular hypothesis for centrosome separation during spindle formation and anaphase is that pushing forces are generated between interacting microtubules (MTs) of opposite polarity, derived from opposing centrosomes. However, this mechanism is not consistent with the observation that centrosomes in vertebrate cells continue to separate during prometaphase when their MT arrays no longer overlap (i.e., during anaphase-like prometaphase). To evaluate whether centrosome separation during prophase/prometaphase, anaphase-like prometaphase and anaphase is mediated by a common mechanism we compared their behavior in vivo at a high spatial and temporal resolution. We found that the two centrosomes possess a considerable degree of independence throughout all stages of separation, i.e., the direction and migration rate of one centrosome does not impart a predictable behavior to the other, and both exhibit frequent and rapid (4-6 microns/min) displacements toward random points within the cell including the other centrosome. The kinetic behavior of individual centrosomes as they separate to form the spindle is the same whether or not their MT arrays overlap. The characteristics examined include, e.g., total displacement per minute, the vectorial rate of motion toward and away from the other centrosome, the frequency of toward and away motion as well as motion not contributing to separation, and the rate contributed by each centrosome to the separation process. By contrast, when compared with prometaphase, anaphase centrosomes separated at significantly faster rates even though the average vectorial rate of motion away from the other centrosome was the same as in prophase/prometaphase. The difference in separation rates arises because anaphase centrosomes spend less time moving toward one another than in prophase/prometaphase, and at a significantly slower rate. From our data we conclude that the force for centrosome separation during vertebrate spindle formation is not

  5. Identification and characterization of INMAP, a novel interphase nucleus and mitotic apparatus protein that is involved in spindle formation and cell cycle progression

    SciTech Connect

    Shen, Enzhi; Lei, Yan; Liu, Qian; Zheng, Yanbo; Song, Chunqing; Marc, Jan; Wang, Yongchao; Sun, Le; Liang, Qianjin

    2009-04-15

    A novel protein that associates with interphase nucleus and mitotic apparatus (INMAP) was identified by screening HeLa cDNA expression library with an autoimmune serum followed by tandem mass spectrometry. Its complete cDNA sequence of 1.818 kb encodes 343 amino acids with predicted molecular mass of 38.2 kDa and numerous phosphorylation sites. The sequence is identical with nucleotides 1-1800 bp of an unnamed gene (GenBank accession no. (7022388)) and highly homologous with the 3'-terminal sequence of POLR3B. A monoclonal antibody against INMAP reacted with similar proteins in S. cerevisiae, Mel and HeLa cells, suggesting that it is a conserved protein. Confocal microscopy using either GFP-INMAP fusion protein or labeling with the monoclonal antibody revealed that the protein localizes as distinct dots in the interphase nucleus, but during mitosis associates closely with the spindle. Double immunolabeling using specific antibodies showed that the INMAP co-localizes with {alpha}-tubulin, {gamma}-tubulin, and NuMA. INMAP also co-immunoprecipitated with these proteins in their native state. Stable overexpression of INMAP in HeLa cell lines leads to defects in the spindle, mitotic arrest, formation of polycentrosomal and multinuclear cells, inhibition of growth, and apoptosis. We propose that INMAP is a novel protein that plays essential role in spindle formation and cell-cycle progression.

  6. Influence of centriole number on mitotic spindle length and symmetry

    PubMed Central

    Keller, Lani C.; Wemmer, Kimberly A.; Marshall, Wallace F.

    2010-01-01

    The functional role of centrioles or basal bodies in mitotic spindle assembly and function is currently unclear. Although supernumerary centrioles have been associated with multipolar spindles in cancer cells, suggesting centriole number might dictate spindle polarity, bipolar spindles are able to assembly in the complete absence of centrioles, suggesting a level of centriole-independence in the spindle assembly pathway. In this report we perturb centriole number using mutations in Chlamydomonas reinhardtii, and measure the response of the mitotic spindle to these perturbations in centriole number. Although altered centriole number increased the frequency of monopolar and multipolar spindles, the majority of spindles remained bipolar regardless of the centriole number. But even when spindles were bipolar, abnormal centriole numbers led to asymmetries in tubulin distribution, half-spindle length and spindle pole focus. Half spindle length correlated directly with number of centrioles at a pole, such that an imbalance in centriole number between the two poles of a bipolar spindle correlated with increased asymmetry between half spindle lengths. These results are consistent with centrioles playing an active role in regulating mitotic spindle length. Mutants with centriole number alteration also show increased cytokinesis defects, but these do not correlate with centriole number in the dividing cell and may therefore reflect downstream consequences of defects in preceding cell divisions. PMID:20540087

  7. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1{sup I4895T/wt} mouse model of core myopathy

    SciTech Connect

    Zvaritch, Elena; MacLennan, David H.

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1{sup I4895T/wt} (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies. - Highlights: • Muscle spindles exhibit structural abnormalities in a mouse model of core myopathy. • Myofibrillar collapse and mitochondrial clumping is observed in intrafusal fibers. • Myofibrillar degeneration follows a pattern similar to core formation in extrafusal myofibers. • Muscle spindle abnormalities are a part of the pathological phenotype in the mouse model of core myopathy. • Direct involvement of muscle spindles in the pathology of human RYR1-related myopathies is proposed.

  8. α-Dystroglycan is essential for the induction of Egr3, a transcription factor important in muscle spindle formation.

    PubMed

    Williams, Stacey; Jacobson, Christian

    2010-06-01

    Muscle spindle fibers are specialized stretch receptors that allow the perception and coordination of limb movement. The differentiation of these specialized structures is initiated by signals derived from the in growing Ia sensory neurons during development. While the direct molecular signaling mechanisms between sensory neurons and developing muscle at nascent spindle fibers have been well documented in past studies the roles of muscle basal lamina components on this process have not previously been described. As such, our initial experiments addressed potential roles for agrin (AGRN) and laminin (LN) in the expression of the transcription factor Egr3. Levels of Egr3 were monitored using immunoblot analysis and both basal lamina molecules proved effective in inducing Erg3 expression. Previous work had established neuregulin (NRG) as a critical signaling component in spindle fiber development so blocking experiments with NRG and ErbB inhibitors were then used to determine if LN-induced Egr3 expression was occurring as a result of NRG-ErbB signaling and not via other, novel pathway. Inhibiting signaling through this pathway did indeed reduce the expression of Egr3. Finally, we looked at alpha-dystrogylcan, a shared receptor for AGRN and LN at neuromuscular junctions. Using a alpha-dystroglycan (alpha-DG) silenced muscle cell line and an anti-alpha-DG antibody we attempted to block basal lamina/alpha-DG interactions. Again, and in both instances, Egr3 expression was significantly decreased. Taken together, analysis of the results from these experiments revealed that indeed AGRN, LN, and alpha-DG influence Egr3 levels and therefore may play an important role in spindle fiber differentiation.

  9. Protein phosphatase 6 regulates mitotic spindle formation by controlling the T-loop phosphorylation state of Aurora A bound to its activator TPX2

    PubMed Central

    Zeng, Kang; Bastos, Ricardo Nunes

    2010-01-01

    Many protein kinases are activated by a conserved regulatory step involving T-loop phosphorylation. Although there is considerable focus on kinase activator proteins, the importance of specific T-loop phosphatases reversing kinase activation has been underappreciated. We find that the protein phosphatase 6 (PP6) holoenzyme is the major T-loop phosphatase for Aurora A, an essential mitotic kinase. Loss of PP6 function by depletion of catalytic or regulatory subunits interferes with spindle formation and chromosome alignment because of increased Aurora A activity. Aurora A T-loop phosphorylation and the stability of the Aurora A–TPX2 complex are increased in cells depleted of PP6 but not other phosphatases. Furthermore, purified PP6 acts as a T-loop phosphatase for Aurora A–TPX2 complexes in vitro, whereas catalytically inactive mutants cannot dephosphorylate Aurora A or rescue the PPP6C depletion phenotype. These results demonstrate a hitherto unappreciated role for PP6 as the T-loop phosphatase regulating Aurora A activity during spindle formation and suggest the general importance of this form of regulation. PMID:21187329

  10. Chromatin shapes the mitotic spindle.

    PubMed

    Dinarina, Ana; Pugieux, Céline; Corral, Maria Mora; Loose, Martin; Spatz, Joachim; Karsenti, Eric; Nédélec, François

    2009-08-07

    In animal and plant cells, mitotic chromatin locally generates microtubules that self-organize into a mitotic spindle, and its dimensions and bipolar symmetry are essential for accurate chromosome segregation. By immobilizing microscopic chromatin-coated beads on slide surfaces using a microprinting technique, we have examined the effect of chromatin on the dimensions and symmetry of spindles in Xenopus laevis cytoplasmic extracts. While circular spots with diameters around 14-18 microm trigger bipolar spindle formation, larger spots generate an incorrect number of poles. We also examined lines of chromatin with various dimensions. Their length determined the number of poles that formed, with a 6 x 18 microm rectangular patch generating normal spindle morphology. Around longer lines, multiple poles formed and the structures were disorganized. While lines thinner than 10 mum generated symmetric structures, thicker lines induced the formation of asymmetric structures where all microtubules are on the same side of the line. Our results show that chromatin defines spindle shape and orientation. For a video summary of this article, see the PaperFlick file available with the online Supplemental Data.

  11. KIF2A regulates the spindle assembly and the metaphase I-anaphase I transition in mouse oocyte

    PubMed Central

    Chen, Ming-Huang; Liu, Yu; Wang, Ya-Long; Liu, Rui; Xu, Bai-Hui; Zhang, Fei; Li, Fei-Ping; Xu, Lin; Lin, Yan-Hong; He, Shu-Wen; Liao, Bao-Qiong; Fu, Xian-Pei; Wang, Xiao-Xue; Yang, Xiang-Jun; Wang, Hai-Long

    2016-01-01

    KIF2A, a member of the kinesin-13 family, has been reported to play a role in spindle assembly in mitosis. However, its function in mammalian meiosis remains unknown. In this research, we examined the expression, localization and function of KIF2A during mouse oocyte meiosis. KIF2A was expressed in some key stages in mouse oocyte meiosis. Immunofluorescent staining showed that KIF2A distributed in the germinal vesicle at the germinal vesicle stage and as the spindle assembling after meiosis resumption, KIF2A gradually accumulated to the entire spindle. The treatment of oocytes with taxol and nocodazole demonstrated that KIF2A was co-localized with α-tubulin. Depletion of KIF2A by specific short interfering (si) RNA injection resulted in abnormal spindle assembly, failure of spindle migration, misaligned chromosomes and asymmetric cell division. Meanwhile, SKA1 expression level was decreased and the TACC3 localization was disrupted. Moreover, depletion of KIF2A disrupted the actin cap formation, arrested oocytes at metaphase I with spindle assembly checkpoint protein BubR1 activated and finally reduced the rate of the first polar body extrusion. Our data indicate that KIF2A regulates the spindle assembly, asymmetric cytokinesis and the metaphase I-anaphase I transition in mouse oocyte. PMID:27991556

  12. Nek9 regulates spindle organization and cell cycle progression during mouse oocyte meiosis and its location in early embryo mitosis

    PubMed Central

    Yang, Shang-Wu; Gao, Chen; Chen, Lei; Song, Ya-Li; Zhu, Jin-Liang; Qi, Shu-Tao; Jiang, Zong-Zhe; Wang, Zhong-Wei; Lin, Fei; Huang, Hao; Xing, Fu-Qi; Sun, Qing-Yuan

    2012-01-01

    Nek9 (also known as Nercc1), a member of the NIMA (never in mitosis A) family of protein kinases, regulates spindle formation, chromosome alignment and segregation in mitosis. Here, we showed that Nek9 protein was expressed from germinal vesicle (GV) to metaphase II (MII) stages in mouse oocytes with no detectable changes. Confocal microscopy identified that Nek9 was localized to the spindle poles at the metaphase stages and associated with the midbody at anaphase or telophase stage in both meiotic oocytes and the first mitotic embyros. Depletion of Nek9 by specific morpholino injection resulted in severely defective spindles and misaligned chromosomes with significant pro-MI/MI arrest and failure of first polar body (PB1) extrusion. Knockdown of Nek9 also impaired the spindle-pole localization of γ-tubulin and resulted in retention of the spindle assembly checkpoint protein Bub3 at the kinetochores even after 10 h of culture. Live-cell imaging analysis also confirmed that knockdown of Nek9 resulted in oocyte arrest at the pro-MI/MI stage with abnormal spindles, misaligned chromosomes and failed polar body emission. Taken together, our results suggest that Nek9 may act as a MTOC-associated protein regulating microtubule nucleation, spindle organization and, thus, cell cycle progression during mouse oocyte meiotic maturation, fertilization and early embryo cleavage. PMID:23159858

  13. Formation of abnormal structures and their effects on the ductility of eutectoid steel

    NASA Astrophysics Data System (ADS)

    An, Kang-Suk; Jeong, Shin Woong; Bea, Hyeong Jun; Nam, Won Jong

    2016-11-01

    The formation of abnormal structures and their effects on reduction of area (RA) were investigated in eutectoid steels transformed at different temperatures ranging from 560 °C-650 °C. The occurrence of abnormal structures, such as upper bainite, degenerate pearlite, free ferrite, and grain boundary cementite, was confirmed. The volume fraction of upper bainite and degenerate pearlite decreased on increasing the transformation temperature, while the amount of free ferrite increased. As the transformation temperature increased, RA increased, reached a maximum, and then decreased, while the tensile strength continuously decreased. The crack formations during the tensile test could be classified into three types: tearing, shear cracking, and void formation/ coalescence. The decrease of the ductility at low transformation temperatures was attributed to the increased amount of upper bainite and degenerate pearlite, since the formation of cracks occurred by tearing interfaces or by void formation at abnormal structures during the tensile test. Meanwhile, the decrease in RA at high transformation temperatures was attributed to the occurrence of shear cracking rather than the presence of abnormal structures.

  14. The spindle position checkpoint: how to deal with spindle misalignment during asymmetric cell division in budding yeast.

    PubMed

    Fraschini, Roberta; Venturetti, Marianna; Chiroli, Elena; Piatti, Simonetta

    2008-06-01

    During asymmetric cell division, spindle positioning is critical to ensure the unequal segregation of polarity factors and generate daughter cells with different sizes or fates. In budding yeast the boundary between mother and daughter cell resides at the bud neck, where cytokinesis takes place at the end of the cell cycle. Since budding and bud neck formation occur much earlier than bipolar spindle formation, spindle positioning is a finely regulated process. A surveillance device called the SPOC (spindle position checkpoint) oversees this process and delays mitotic exit and cytokinesis until the spindle is properly oriented along the division axis, thus ensuring genome stability.

  15. Effects of expected-value information and display format on recognition of aircraft subsystem abnormalities

    NASA Technical Reports Server (NTRS)

    Palmer, Michael T.; Abbott, Kathy H.

    1994-01-01

    This study identifies improved methods to present system parameter information for detecting abnormal conditions and to identify system status. Two workstation experiments were conducted. The first experiment determined if including expected-value-range information in traditional parameter display formats affected subject performance. The second experiment determined if using a nontraditional parameter display format, which presented relative deviation from expected value, was better than traditional formats with expected-value ranges included. The inclusion of expected-value-range information onto traditional parameter formats was found to have essentially no effect. However, subjective results indicated support for including this information. The nontraditional column deviation parameter display format resulted in significantly fewer errors compared with traditional formats with expected-value-ranges included. In addition, error rates for the column deviation parameter display format remained stable as the scenario complexity increased, whereas error rates for the traditional parameter display formats with expected-value ranges increased. Subjective results also indicated that the subjects preferred this new format and thought that their performance was better with it. The column deviation parameter display format is recommended for display applications that require rapid recognition of out-of-tolerance conditions, especially for a large number of parameters.

  16. Mechanical stability of bipolar spindle assembly

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Muhuri, Sudipto

    2016-07-01

    Assembly and stability of mitotic spindle are governed by the interplay of various intra-cellular forces, e.g. the forces generated by motor proteins by sliding overlapping anti-parallel microtubules (MTs) polymerized from the opposite centrosomes, the interaction of kinetochores with MTs, and the interaction of MTs with the chromosome arms. We study the mechanical behavior and stability of spindle assembly within the framework of a minimal model which includes all these effects. For this model, we derive a closed-form analytical expression for the force acting between the centrosomes as a function of their separation distance and we show that an effective potential can be associated with the interactions at play. We obtain the stability diagram of spindle formation in terms of parameters characterizing the strength of motor sliding, repulsive forces generated by polymerizing MTs, and the forces arising out of the interaction of MTs with kinetochores. The stability diagram helps in quantifying the relative effects of the different interactions and elucidates the role of motor proteins in formation and inhibition of spindle structures during mitotic cell division. We also predict a regime of bistability for a certain parameter range, wherein the spindle structure can be stable for two different finite separation distances between centrosomes. This occurrence of bistability also suggests the mechanical versatility of such self-assembled spindle structures.

  17. Myosin-10 independently influences mitotic spindle structure and mitotic progression.

    PubMed

    Sandquist, Joshua C; Larson, Matthew E; Hine, Ken J

    2016-06-01

    The iconic bipolar structure of the mitotic spindle is of extreme importance to proper spindle function. At best, spindle abnormalities result in a delayed mitosis, while worse outcomes include cell death or disease. Recent work has uncovered an important role for the actin-based motor protein myosin-10 in the regulation of spindle structure and function. Here we examine the contribution of the myosin tail homology 4 (MyTH4) domain of the myosin-10 tail to the protein's spindle functions. The MyTH4 domain is known to mediate binding to microtubules and we verify the suspicion that this domain contributes to myosin-10's close association with the spindle. More surprisingly, our data demonstrate that some but not all of myosin-10's spindle functions require microtubule binding. In particular, myosin-10's contribution to spindle pole integrity requires microtubule binding, whereas its contribution to normal mitotic progression does not. This is demonstrated by the observation that dominant negative expression of the wild-type MyTH4 domain produces multipolar spindles and an increased mitotic index, whereas overexpression of a version of the MyTH4 domain harboring point mutations that abrogate microtubule binding results in only the mitotic index phenotype. Our data suggest that myosin-10 helps to control the metaphase to anaphase transition in cells independent of microtubule binding. © 2016 Wiley Periodicals, Inc.

  18. Candida albicans Kinesin Kar3 Depends on a Cik1-Like Regulatory Partner Protein for Its Roles in Mating, Cell Morphogenesis, and Bipolar Spindle Formation

    PubMed Central

    Frazer, Corey; Joshi, Monika; Delorme, Caroline; Davis, Darlene; Bennett, Richard J.

    2015-01-01

    Candida albicans is a major fungal pathogen whose virulence is associated with its ability to transition from a budding yeast form to invasive hyphal filaments. The kinesin-14 family member CaKar3 is required for transition between these morphological states, as well as for mitotic progression and karyogamy. While kinesin-14 proteins are ubiquitous, CaKar3 homologs in hemiascomycete fungi are unique because they form heterodimers with noncatalytic kinesin-like proteins. Thus, CaKar3-based motors may represent a novel antifungal drug target. We have identified and examined the roles of a kinesin-like regulator of CaKar3. We show that orf19.306 (dubbed CaCIK1) encodes a protein that forms a heterodimer with CaKar3, localizes CaKar3 to spindle pole bodies, and can bind microtubules and influence CaKar3 mechanochemistry despite lacking an ATPase activity of its own. Similar to CaKar3 depletion, loss of CaCik1 results in cell cycle arrest, filamentation defects, and an inability to undergo karyogamy. Furthermore, an examination of the spindle structure in cells lacking either of these proteins shows that a large proportion have a monopolar spindle or two dissociated half-spindles, a phenotype unique to the C. albicans kinesin-14 homolog. These findings provide new insights into mitotic spindle structure and kinesin motor function in C. albicans and identify a potentially vulnerable target for antifungal drug development. PMID:26024903

  19. Arsenic promotes centrosome abnormalities and cell colony formation in p53 compromised human lung cells

    SciTech Connect

    Liao Weiting; Lin Pinpin; Cheng, T.-S.; Yu, H.-S.; Chang, Louis W.

    2007-12-01

    Epidemiological evidence indicated that residents, especially cigarette smokers, in arseniasis areas had significantly higher lung cancer risk than those living in non-arseniasis areas. Thus, an interaction between arsenic and cigarette smoking in lung carcinogenesis was suspected. p53 dysfunction or mutation in lung epithelial cells was frequently observed in cigarette smokers. Our present study was to explore the differential effects by arsenic on H1355 cells (human lung adenocarcinoma cell line with mutation in p53), BEAS-2B (immortalized lung epithelial cell with functional p53) and pifithrin-{alpha}-treated BEAS-2B cells (p53-inhibited cells). These cells were treated with different doses of sodium arsenite (0, 0.1, 1, 5 and 10 {mu}M) for 48 h. A greater reduction in cell viability was observed in the BEAS-2B cells vs. p53 compromised cells (H1355 or p53-inhibited BEAS-2B). Similar observation was also made on 7-day cell survival (growth) study. TUNEL analysis confirmed that there was indeed a significantly reduced arsenite-induced apoptosis found in p53-compromised cells. Centrosomal abnormality has been attributed to eventual chromosomal missegregation, aneuploidy and tumorigenesis. In our present study, reduced p21 and Gadd45a expressions and increased centrosomal abnormality (atopic and multiple centrosomes) were observed in both arsenite-treated H1355 and p53-inhibited BEAS-2B cells as compared with similarly treated BEAS-2B cells. Increased anchorage-independent growth (colony formation) of BEAS-2B cells co-treated with pifithrin-{alpha} and 5 {mu}M sodium arsenite was also observed in soft agar. Our present investigation demonstrated that arsenic would act specifically on p53 compromised cells (either with p53 dysfunction or inhibited) to induce centrosomal abnormality and colony formation. These findings provided strong evidence on the carcinogenic promotional role of arsenic, especially under the condition of p53 dysfunction.

  20. INT6 May Influence Breast Cancer Formation by Regulating the 26S Proteasome

    DTIC Science & Technology

    2006-04-01

    have shown that int6kd cells display mitotic abnormalities in that they become multinucleated and contain abnormal spindles (see also Figure 1A-D). In...Int6∆C, but not wild type Int6, will lead to formation of larger acini (Figure 3B), suggesting that mInt6, like Int6∆C, might cause abnormal cell...functions in Int6-reduced HeLa cells and found evidence of abnormal mitosis due to the presence of tri-polar spindles (as reported in 2004). 4. I

  1. A computational model predicts Xenopus meiotic spindle organization.

    PubMed

    Loughlin, Rose; Heald, Rebecca; Nédélec, François

    2010-12-27

    The metaphase spindle is a dynamic bipolar structure crucial for proper chromosome segregation, but how microtubules (MTs) are organized within the bipolar architecture remains controversial. To explore MT organization along the pole-to-pole axis, we simulated meiotic spindle assembly in two dimensions using dynamic MTs, a MT cross-linking force, and a kinesin-5-like motor. The bipolar structures that form consist of antiparallel fluxing MTs, but spindle pole formation requires the addition of a NuMA-like minus-end cross-linker and directed transport of MT depolymerization activity toward minus ends. Dynamic instability and minus-end depolymerization generate realistic MT lifetimes and a truncated exponential MT length distribution. Keeping the number of MTs in the simulation constant, we explored the influence of two different MT nucleation pathways on spindle organization. When nucleation occurs throughout the spindle, the simulation quantitatively reproduces features of meiotic spindles assembled in Xenopus egg extracts.

  2. Pericellular innervation of neurons expressing abnormally hyperphosphorylated tau in the hippocampal formation of Alzheimer's disease patients.

    PubMed

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; Defelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered.

  3. Pericellular Innervation of Neurons Expressing Abnormally Hyperphosphorylated Tau in the Hippocampal Formation of Alzheimer's Disease Patients

    PubMed Central

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; DeFelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered. PMID:20631843

  4. B-type nuclear lamin and the nuclear pore complex Nup107-160 influences maintenance of the spindle envelope required for cytokinesis in Drosophila male meiosis

    PubMed Central

    Hayashi, Daisuke; Tanabe, Karin; Katsube, Hiroka

    2016-01-01

    ABSTRACT In higher eukaryotes, nuclear envelope (NE) disassembly allows chromatin to condense and spindle microtubules to access kinetochores. The nuclear lamina, which strengthens the NE, is composed of a polymer meshwork made of A- and B-type lamins. We found that the B-type lamin (Lam) is not fully disassembled and continues to localize along the spindle envelope structure during Drosophila male meiosis I, while the A-type lamin (LamC) is completely dispersed throughout the cytoplasm. Among the nuclear pore complex proteins, Nup107 co-localized with Lam during this meiotic division. Surprisingly, Lam depletion resulted in a higher frequency of cytokinesis failure in male meiosis. We also observed the similar meiotic phenotype in Nup107-depleted cells. Abnormal localization of Lam was found in the Nup-depleted cells at premeiotic and meiotic stages. The central spindle microtubules became abnormal and recruitment of a contractile ring component to the cleavage sites was disrupted in Lam-depleted cells and Nup107-depleted cells. Therefore, we speculate that both proteins are required for a reinforcement of the spindle envelope, which supports the formation of central spindle microtubules essential for cytokinesis in Drosophila male meiosis. PMID:27402967

  5. Abnormal Ras signaling in Costello syndrome (CS) negatively regulates enamel formation

    PubMed Central

    Goodwin, Alice F.; Tidyman, William E.; Jheon, Andrew H.; Sharir, Amnon; Zheng, Xu; Charles, Cyril; Fagin, James A.; McMahon, Martin; Diekwisch, Thomas G.H.; Ganss, Bernhard; Rauen, Katherine A.; Klein, Ophir D.

    2014-01-01

    RASopathies are syndromes caused by gain-of-function mutations in the Ras signaling pathway. One of these conditions, Costello syndrome (CS), is typically caused by an activating de novo germline mutation in HRAS and is characterized by a wide range of cardiac, musculoskeletal, dermatological and developmental abnormalities. We report that a majority of individuals with CS have hypo-mineralization of enamel, the outer covering of teeth, and that similar defects are present in a CS mouse model. Comprehensive analysis of the mouse model revealed that ameloblasts, the cells that generate enamel, lacked polarity, and the ameloblast progenitor cells were hyperproliferative. Ras signals through two main effector cascades, the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3-kinase (PI3K) pathways. To determine through which pathway Ras affects enamel formation, inhibitors targeting either PI3K or MEK 1 and 2 (MEK 1/2), kinases in the MAPK pathway, were utilized. MEK1/2 inhibition rescued the hypo-mineralized enamel, normalized the ameloblast polarity defect and restored normal progenitor cell proliferation. In contrast, PI3K inhibition only corrected the progenitor cell proliferation phenotype. We demonstrate for the first time the central role of Ras signaling in enamel formation in CS individuals and present the mouse incisor as a model system to dissect the roles of the Ras effector pathways in vivo. PMID:24057668

  6. The mitotic spindle and actin tails.

    PubMed

    Karsenti, Eric; Nédélec, François

    2004-04-01

    To segregate their chromosomes, eukaryotic cells rely on a dynamic structure made of microtubules: the mitotic spindle. This structure can form in cells lacking centrosomes, because their chromosomes also nucleate microtubules. This second assembly pathway is observed even in some cells that naturally have centrosomes, for example when the centrosomes are ablated by laser surgery. Recent results have started to address the complementary question of whether centrosome-nucleated microtubules alone could sustain the formation of a functional mitotic spindle. We wonder in this respect whether lower eukaryotes such as yeasts are different from higher eukaryotes such as vertebrates.

  7. Abnormal tuning of saccade-related cells in pontine reticular formation of strabismic monkeys

    PubMed Central

    Mustari, Michael J.

    2015-01-01

    Strabismus is a common disorder, characterized by a chronic misalignment of the eyes and numerous visual and oculomotor abnormalities. For example, saccades are often highly disconjugate. For humans with pattern strabismus, the horizontal and vertical disconjugacies vary with eye position. In monkeys, manipulations that disturb binocular vision during the first several weeks of life result in a chronic strabismus with characteristics that closely match those in human patients. Early onset strabismus is associated with altered binocular sensitivity of neurons in visual cortex. Here we test the hypothesis that brain stem circuits specific to saccadic eye movements are abnormal. We targeted the pontine paramedian reticular formation, a structure that directly projects to the ipsilateral abducens nucleus. In normal animals, neurons in this structure are characterized by a high-frequency burst of spikes associated with ipsiversive saccades. We recorded single-unit activity from 84 neurons from four monkeys (two normal, one exotrope, and one esotrope), while they made saccades to a visual target on a tangent screen. All 24 neurons recorded from the normal animals had preferred directions within 30° of pure horizontal. For the strabismic animals, the distribution of preferred directions was normal on one side of the brain, but highly variable on the other. In fact, 12/60 neurons recorded from the strabismic animals preferred vertical saccades. Many also had unusually weak or strong bursts. These data suggest that the loss of corresponding binocular vision during infancy impairs the development of normal tuning characteristics for saccade-related neurons in brain stem. PMID:26063778

  8. Left heart assistance with the spindle pump.

    PubMed

    Hager, J; Brandstaetter, F; Koller, I; Unger, F

    1988-11-01

    The spindle pump--a new attempt at assisted circulation--was developed to prevent the main problems of nonpulsatile blood pumps, i.e. traumatic hemolysis, thrombus formation and sealing. It was essential to achieve adequate output with the lowest possible speed in order to minimize traumatic hemolysis. The result was a spindle pump with three windings in a U-shaped housing driven by an electric motor. Many tests were necessary to establish a prototype. The spindle was completely redesigned several times to reach an acceptable volume output and corresponding pressure output. In animal experiments this final prototype working as a LVAD, with a speed of 5400 RPM circulates 4 liters/min against BP of 110 mmHg. The hemolysis rate has been low in acute and survival experiments (27 hours up to now), and is between 25 and 30 mg/100 ml of free hemoglobin, thus within the normal range.

  9. Anthrax receptors position the spindle.

    PubMed

    Minc, Nicolas; Piel, Matthieu

    2013-01-01

    Spindle orientation plays a pivotal role in tissue morphogenesis. An asymmetric anthrax receptor cap is revealed to promote activation of a formin to orient the spindle along the planar cell polarity (PCP) axis in zebrafish dorsal epiblast cells.

  10. Microtubule-sliding activity of a kinesin-8 promotes spindle assembly and spindle-length control.

    PubMed

    Su, Xiaolei; Arellano-Santoyo, Hugo; Portran, Didier; Gaillard, Jeremie; Vantard, Marylin; Thery, Manuel; Pellman, David

    2013-08-01

    Molecular motors play critical roles in the formation of mitotic spindles, either through controlling the stability of individual microtubules, or by crosslinking and sliding microtubule arrays. Kinesin-8 motors are best known for their regulatory roles in controlling microtubule dynamics. They contain microtubule-destabilizing activities, and restrict spindle length in a wide variety of cell types and organisms. Here, we report an antiparallel microtubule-sliding activity of the budding yeast kinesin-8, Kip3. The in vivo importance of this sliding activity was established through the identification of complementary Kip3 mutants that separate the sliding activity and microtubule-destabilizing activity. In conjunction with Cin8, a kinesin-5 family member, the sliding activity of Kip3 promotes bipolar spindle assembly and the maintenance of genome stability. We propose a slide-disassemble model where the sliding and destabilizing activity of Kip3 balance during pre-anaphase. This facilitates normal spindle assembly. However, the destabilizing activity of Kip3 dominates in late anaphase, inhibiting spindle elongation and ultimately promoting spindle disassembly.

  11. Metaphase Spindle Assembly

    PubMed Central

    Kapoor, Tarun M.

    2017-01-01

    A microtubule-based bipolar spindle is required for error-free chromosome segregation during cell division. In this review I discuss the molecular mechanisms required for the assembly of this dynamic micrometer-scale structure in animal cells. PMID:28165376

  12. PTEN regulates EG5 to control spindle architecture and chromosome congression during mitosis

    PubMed Central

    He, Jinxue; Zhang, Zhong; Ouyang, Meng; Yang, Fan; Hao, Hongbo; Lamb, Kristy L.; Yang, Jingyi; Yin, Yuxin; Shen, Wen H.

    2016-01-01

    Architectural integrity of the mitotic spindle is required for efficient chromosome congression and accurate chromosome segregation to ensure mitotic fidelity. Tumour suppressor PTEN has multiple functions in maintaining genome stability. Here we report an essential role of PTEN in mitosis through regulation of the mitotic kinesin motor EG5 for proper spindle architecture and chromosome congression. PTEN depletion results in chromosome misalignment in metaphase, often leading to catastrophic mitotic failure. In addition, metaphase cells lacking PTEN exhibit defects of spindle geometry, manifested prominently by shorter spindles. PTEN is associated and co-localized with EG5 during mitosis. PTEN deficiency induces aberrant EG5 phosphorylation and abrogates EG5 recruitment to the mitotic spindle apparatus, leading to spindle disorganization. These data demonstrate the functional interplay between PTEN and EG5 in controlling mitotic spindle structure and chromosome behaviour during mitosis. We propose that PTEN functions to equilibrate mitotic phosphorylation for proper spindle formation and faithful genomic transmission. PMID:27492783

  13. Direct interaction between centralspindlin and PRC1 reinforces mechanical resilience of the central spindle

    PubMed Central

    Lee, Kian-Yong; Esmaeili, Behrooz; Zealley, Ben; Mishima, Masanori

    2015-01-01

    During animal cell division, the central spindle, an anti-parallel microtubule bundle structure formed between segregating chromosomes during anaphase, cooperates with astral microtubules to position the cleavage furrow. Because the central spindle is the only structure linking the two halves of the mitotic spindle, it is under mechanical tension from dynein-generated cortical pulling forces, which determine spindle positioning and drive chromosome segregation through spindle elongation. The central spindle should be flexible enough for efficient chromosome segregation while maintaining its structural integrity for reliable cytokinesis. How the cell balances these potentially conflicting requirements is poorly understood. Here, we demonstrate that the central spindle in C. elegans embryos has a resilient mechanism for recovery from perturbations by excess tension derived from cortical pulling forces. This mechanism involves the direct interaction of two different types of conserved microtubule bundlers that are crucial for central spindle formation, PRC1 and centralspindlin. PMID:26088160

  14. Direct interaction between centralspindlin and PRC1 reinforces mechanical resilience of the central spindle

    NASA Astrophysics Data System (ADS)

    Lee, Kian-Yong; Esmaeili, Behrooz; Zealley, Ben; Mishima, Masanori

    2015-06-01

    During animal cell division, the central spindle, an anti-parallel microtubule bundle structure formed between segregating chromosomes during anaphase, cooperates with astral microtubules to position the cleavage furrow. Because the central spindle is the only structure linking the two halves of the mitotic spindle, it is under mechanical tension from dynein-generated cortical pulling forces, which determine spindle positioning and drive chromosome segregation through spindle elongation. The central spindle should be flexible enough for efficient chromosome segregation while maintaining its structural integrity for reliable cytokinesis. How the cell balances these potentially conflicting requirements is poorly understood. Here, we demonstrate that the central spindle in C. elegans embryos has a resilient mechanism for recovery from perturbations by excess tension derived from cortical pulling forces. This mechanism involves the direct interaction of two different types of conserved microtubule bundlers that are crucial for central spindle formation, PRC1 and centralspindlin.

  15. Unique subcellular distribution of phosphorylated Plk1 (Ser137 and Thr210) in mouse oocytes during meiotic division and pPlk1Ser137 involvement in spindle formation and REC8 cleavage

    PubMed Central

    Du, Juan; Cao, Yan; Wang, Qian; Zhang, Nana; Liu, Xiaoyu; Chen, Dandan; Liu, Xiaoyun; Xu, Qunyuan; Ma, Wei

    2015-01-01

    Polo-like kinase 1 (Plk1) is pivotal for proper mitotic progression, its targeting activity is regulated by precise subcellular positioning and phosphorylation. Here we assessed the protein expression, subcellular localization and possible functions of phosphorylated Plk1 (pPlk1Ser137 and pPlk1Thr210) in mouse oocytes during meiotic division. Western blot analysis revealed a peptide of pPlk1Ser137 with high and stable expression from germinal vesicle (GV) until metaphase II (MII), while pPlk1Thr210 was detected as one large single band at GV stage and 2 small bands after germinal vesicle breakdown (GVBD), which maintained stable up to MII. Immunofluorescence analysis showed pPlk1Ser137 was colocalized with microtubule organizing center (MTOC) proteins, γ-tubulin and pericentrin, on spindle poles, concomitantly with persistent concentration at centromeres and dynamic aggregation between chromosome arms. Differently, pPlk1Thr210 was persistently distributed across the whole body of chromosomes after meiotic resumption. The specific Plk1 inhibitor, BI2536, repressed pPlk1Ser137 accumulation at MTOCs and between chromosome arms, consequently disturbed γ-tubulin and pericentrin recruiting to MTOCs, destroyed meiotic spindle formation, and delayed REC8 cleavage, therefore arresting oocytes at metaphase I (MI) with chromosome misalignment. BI2536 completely reversed the premature degradation of REC8 and precocious segregation of chromosomes induced with okadaic acid (OA), an inhibitor to protein phosphatase 2A. Additionally, the protein levels of pPlk1Ser137 and pPlk1Thr210, as well as the subcellular distribution of pPlk1Thr210, were not affected by BI2536. Taken together, our results demonstrate that Plk1 activity is required for meiotic spindle assembly and REC8 cleavage, with pPlk1Ser137 is the action executor, in mouse oocytes during meiotic division. PMID:26654596

  16. Mechanisms of Mitotic Spindle Assembly

    PubMed Central

    Petry, Sabine

    2016-01-01

    Life depends on cell proliferation and the accurate segregation of chromosomes, which are mediated by the microtubule (MT)-based mitotic spindle and ~200 essential MT-associated proteins. Yet, a mechanistic understanding of how the mitotic spindle is assembled and achieves chromosome segregation is still missing. This is mostly due to the density of MTs in the spindle, which presumably precludes their direct observation. Recent insight has been gained into the molecular building plan of the metaphase spindle using bulk and single-molecule measurements combined with computational modeling. MT nucleation was uncovered as a key principle of spindle assembly, and mechanistic details about MT nucleation pathways and their coordination are starting to be revealed. Lastly, advances in studying spindle assembly can be applied to address the molecular mechanisms of how the spindle segregates chromosomes. PMID:27145846

  17. [A case of spindle cell carcinoma of the stomach presenting with hematochezia and weight loss due to fistulous tract formation with colon].

    PubMed

    An, Ji Won; Cheung, Dae Young; Seo, Min Woo; Lee, Hyun Jung; Lee, In Kyu; Kim, Tae Jung; Kim, Jin Il; Kim, Jae Kwang

    2013-08-25

    Spindle cell carcinoma (SpCC) is a rare tumor consisting of spindle cells which express cytokeratin. Despite recent advances in immunohistochemical and genetic studies, precise histogenesis of SpCC is still controversial and this tumor had been referred to with a wide range of names (in the past): carcinosarcoma, pseudosarcoma, sarcomatoid carcinoma, pseudosarcomatous carcinoma, and collision tumor. Recently, the authors experienced an extremely rare case of SpCC arising from the stomach. A 64-year-old male presented with unintended weight loss and hematochezia. Endoscopic examination revealed a fistulous tract between the stomach and the transverse colon which was made by direct invasion of SpCC of the stomach to the colon. Histologically, the tumor was positive for both vimentin and cytokeratin but negative for CD117, CD34, actin, and desmin. Herein, we report a case of SpCC arising from the stomach that formed a fistulous tract with the colon which was diagnosed during evaluation of hematochezia and weight loss.

  18. Mitotic spindle assembly on chromatin patterns made with deep UV photochemistry.

    PubMed

    Tarnawska, Katarzyna; Pugieux, Céline; Nédélec, François

    2014-01-01

    We provide a detailed method to generate arrays of mitotic spindles in vitro. Spindles are formed in extract prepared from unfertilized Xenopus laevis eggs, which contain all the molecular ingredients of mitotic spindles. The method is based on using deep UV photochemistry to attach chromatin-coated beads on a glass surface according to a pattern of interest. The immobilized beads act as artificial chromosomes, and induce the formation of mitotic spindles in their immediate vicinity. To perform the experiment, a chamber is assembled over the chromatin pattern, Xenopus egg extract is flowed in and after incubation the spindles are imaged with a confocal microscope.

  19. Mechanical properties of spindle poles are symmetrically balanced

    PubMed Central

    Suzuki, Kazuya; Itabashi, Takeshi; Ishiwata, Shin’ichi

    2017-01-01

    The metaphase spindle is organized for accurate chromosome segregation. One of the fundamental features of the spindle across the species is its symmetrical shape; the spindle consists of two polar arrays of microtubules at both ends. Although it has been suggested that the formation of the bipolar shape requires force balance coordination by molecular motors, i.e., kinesins and dyneins, quantitative analysis for the pole mechanics has not been conducted. Here, we demonstrate that it is not only the shape but also the stiffness and microtubule density of the pairs of pole regions are symmetrically balanced in single spindles self-assembled in Xenopus egg extracts. We found that the inhibition of dynein functions dramatically reduced the stiffness and microtubule density in the pole region. By contrast, the inhibition of one of the kinesins, Eg5, which is the antagonistic motor protein of dynein, increased the value of these parameters. Moreover, the inhibition of both dynein and Eg5 recovered these parameter values to those of non-treated spindle poles. We also found that, when one pole structure was held widened with the use of two glass microneedles, the opposite pole structure spontaneously widened, resulting in the formation of the barrel-like shaped spindle. The values of stiffness and microtubule density in the manipulated pole region decreased, following the spontaneous decrement of those in the paired unmanipulated pole region. These results suggest that the spindle possesses a mechanism to dynamically maintain its symmetry in mechanical properties.

  20. Distinct roles for antiparallel microtubule pairing and overlap during early spindle assembly

    PubMed Central

    Nazarova, Elena; O'Toole, Eileen; Kaitna, Susi; Francois, Paul; Winey, Mark; Vogel, Jackie

    2013-01-01

    During spindle assembly, microtubules may attach to kinetochores or pair to form antiparallel pairs or interpolar microtubules, which span the two spindle poles and contribute to mitotic pole separation and chromosome segregation. Events in the specification of the interpolar microtubules are poorly understood. Using three-dimensional electron tomography and analysis of spindle dynamical behavior in living cells, we investigated the process of spindle assembly. Unexpectedly, we found that the phosphorylation state of an evolutionarily conserved Cdk1 site (S360) in γ-tubulin is correlated with the number and organization of interpolar microtubules. Mimicking S360 phosphorylation (S360D) results in bipolar spindles with a normal number of microtubules but lacking interpolar microtubules. Inhibiting S360 phosphorylation (S360A) results in spindles with interpolar microtubules and high-angle, antiparallel microtubule pairs. The latter are also detected in wild-type spindles <1 μm in length, suggesting that high-angle microtubule pairing represents an intermediate step in interpolar microtubule formation. Correlation of spindle architecture with dynamical behavior suggests that microtubule pairing is sufficient to separate the spindle poles, whereas interpolar microtubules maintain the velocity of pole displacement during early spindle assembly. Our findings suggest that the number of interpolar microtubules formed during spindle assembly is controlled in part through activities at the spindle poles. PMID:23966467

  1. Monitoring spindle orientation: Spindle position checkpoint in charge.

    PubMed

    Caydasi, Ayse K; Ibrahim, Bashar; Pereira, Gislene

    2010-12-11

    Every cell division in budding yeast is inherently asymmetric and counts on the correct positioning of the mitotic spindle along the mother-daughter polarity axis for faithful chromosome segregation. A surveillance mechanism named the spindle position checkpoint (SPOC), monitors the orientation of the mitotic spindle and prevents cells from exiting mitosis when the spindle fails to align along the mother-daughter axis. SPOC is essential for maintenance of ploidy in budding yeast and similar mechanisms might exist in higher eukaryotes to ensure faithful asymmetric cell division. Here, we review the current model of SPOC activation and highlight the importance of protein localization and phosphorylation for SPOC function.

  2. Dimethyl Sulfoxide Perturbs Cell Cycle Progression and Spindle Organization in Porcine Meiotic Oocytes

    PubMed Central

    Li, Xuan; Wang, Yan-Kui; Song, Zhi-Qiang; Du, Zhi-Qiang; Yang, Cai-Xia

    2016-01-01

    Meiotic maturation of mammalian oocytes is a precisely orchestrated and complex process. Dimethyl sulfoxide (DMSO), a widely used solvent, drug, and cryoprotectant, is capable of disturbing asymmetric cytokinesis of oocyte meiosis in mice. However, in pigs, DMSO’s effect on oocyte meiosis still remains unknown. We aimed to evaluate if DMSO treatment will affect porcine oocyte meiosis and the underlying molecular changes as well. Interestingly, we did not observe the formation of the large first polar body and symmetric division for porcine oocytes treated with DMSO, contrary to findings reported in mice. 3% DMSO treatment could inhibit cumulus expansion, increase nuclear abnormality, disturb spindle organization, decrease reactive oxygen species level, and elevate mitochondrial membrane potential of porcine oocytes. There was no effect on germinal vesicle breakdown rate regardless of DMSO concentration. 3% DMSO treatment did not affect expression of genes involved in spindle organization (Bub1 and Mad2) and apoptosis (NF-κB, Pten, Bcl2, Caspase3 and Caspase9), however, it significantly decreased expression levels of pluripotency genes (Oct4, Sox2 and Lin28) in mature oocytes. Therefore, we demonstrated that disturbed cumulus expansion, chromosome alignment, spindle organization and pluripotency gene expression could be responsible for DMSO-induced porcine oocyte meiotic arrest and the lower capacity of subsequent embryo development. Our results provide new insights on DMSO’s effect on porcine oocyte meiosis and raise safety concerns over DMSO’s usage on female reproduction in both farm animals and humans. PMID:27348312

  3. Behavior of spindles and spindle plaques in the cell cycle and conjugation of Saccharomyces cerevisiae.

    PubMed Central

    Byers, B; Goetsch, L

    1975-01-01

    The interdependence of spindle plaque with other aspects of cell division and conjugation in Saccharomyces cerevisiae has been investigated. Three forms of the spindle plaque appear sequentially before the formation of the complete, intranuclear spindle. The single plaque is present initially in the mitotic cycle; it becomes transformed into a satellite-bearing single plaque during the latter part of G1. Subsequently, plaque duplication yields the double plaque characteristic of the early phase of budding, which coincides with the period of chromosome replication (S). The eventual separation of these plaques to form a complete spindle, with a single plaque at each pole, is nearly coincident with the completion of S. The form of the plaque differs in two independent cases of G1 arrest: the single plaque is found in a cell in stationary arrest of growth, whereas a cell arrested by mating factors in preparation for conjugation contains a satellite-bearing single plaque. The latter form is retained during zygote formation, where it serves as the initial site of fusion of each prezygotic nuceus with the other. This fusion results in the formation of a single zygotic nucleus with a satellite-bearing single plaque, which is subsequently transformed into a double plaque as the zygote buds. The double plaque is situated adjacent to the site of bud emergence in both vegetative cells and zygotes. Images PMID:1100612

  4. Spindle function in Xenopus oocytes involves possible nanodomain calcium signaling

    PubMed Central

    Li, Ruizhen; Leblanc, Julie; He, Kevin; Liu, X. Johné

    2016-01-01

    Intracellular calcium transients are a universal phenomenon at fertilization and are required for egg activation, but the exact role of Ca2+ in second-polar-body emission remains unknown. On the other hand, similar calcium transients have not been demonstrated during oocyte maturation, and yet, manipulating intracellular calcium levels interferes with first-polar-body emission in mice and frogs. To determine the precise role of calcium signaling in polar body formation, we used live-cell imaging coupled with temporally precise intracellular calcium buffering. We found that BAPTA-based calcium chelators cause immediate depolymerization of spindle microtubules in meiosis I and meiosis II. Surprisingly, EGTA at similar or higher intracellular concentrations had no effect on spindle function or polar body emission. Using two calcium probes containing permutated GFP and the calcium sensor calmodulin (Lck-GCaMP3 and GCaMP3), we demonstrated enrichment of the probes at the spindle but failed to detect calcium increase during oocyte maturation at the spindle or elsewhere. Finally, endogenous calmodulin was found to colocalize with spindle microtubules throughout all stages of meiosis. Our results—most important, the different sensitivities of the spindle to BAPTA and EGTA—suggest that meiotic spindle function in frog oocytes requires highly localized, or nanodomain, calcium signaling. PMID:27582389

  5. Distinct Kinesin-14 mitotic mechanisms in spindle bipolarity.

    PubMed

    Simeonov, Dimitre R; Kenny, Katelyn; Seo, Lan; Moyer, Amanda; Allen, Jessica; Paluh, Janet L

    2009-11-01

    Kinesin-like proteins are integral to formation and function of a conserved mitotic spindle apparatus that directs chromosome segregation and precedes cell division. Ubiquitous to the mechanism of spindle assembly and stability are balanced Kinesin-5 promoting and Kinesin-14 opposing forces. Distinct Kinesin-14 roles in bipolarity in eukaryotes have not been shown, but are suggested by gamma-tubulin-based pole interactions that affect establishment and by microtubule cross-linking and sliding that maintain bipolarity and spindle length. Distinct roles also imply specialized functional domains. By cross-species analysis of compatible mechanisms in establishing mitotic bipolarity we demonstrate that Kinesin-14 human HSET (HsHSET) functionally replaces Schizosaccharomyces pombe Pkl1 and its action is similarly blocked by mutation in a Kinesin-14 binding site on gamma-tubulin. Drosophila DmNcd localizes preferentially to bundled interpolar microtubules in fission yeast and does not replace SpPkl1. Analysis of twenty-six Kinesin-14 derivatives, including Tail, Stalk or Neck-Motor chimeras, for spindle localization, spindle assembly and mitotic progression defined critical domains. The Tail of SpPkl1 contains functional elements enabling its role in spindle assembly that are distinct from but transferable to DmNcd, whereas HsHSET function utilizes both Tail and Stalk features. Our analysis is the first to demonstrate distinct mechanisms between SpPkl1 and DmNcd, and reveal that HsHSET shares functional overlap in spindle pole mechanisms.

  6. Physical determinants of bipolar mitotic spindle assembly and stability in fission yeast

    PubMed Central

    Blackwell, Robert; Edelmaier, Christopher; Sweezy-Schindler, Oliver; Lamson, Adam; Gergely, Zachary R.; O’Toole, Eileen; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Glaser, Matthew A.; Betterton, Meredith D.

    2017-01-01

    Mitotic spindles use an elegant bipolar architecture to segregate duplicated chromosomes with high fidelity. Bipolar spindles form from a monopolar initial condition; this is the most fundamental construction problem that the spindle must solve. Microtubules, motors, and cross-linkers are important for bipolarity, but the mechanisms necessary and sufficient for spindle assembly remain unknown. We describe a physical model that exhibits de novo bipolar spindle formation. We began with physical properties of fission-yeast spindle pole body size and microtubule number, kinesin-5 motors, kinesin-14 motors, and passive cross-linkers. Our model results agree quantitatively with our experiments in fission yeast, thereby establishing a minimal system with which to interrogate collective self-assembly. By varying the features of our model, we identify a set of functions essential for the generation and stability of spindle bipolarity. When kinesin-5 motors are present, their bidirectionality is essential, but spindles can form in the presence of passive cross-linkers alone. We also identify characteristic failed states of spindle assembly—the persistent monopole, X spindle, separated asters, and short spindle, which are avoided by the creation and maintenance of antiparallel microtubule overlaps. Our model can guide the identification of new, multifaceted strategies to induce mitotic catastrophes; these would constitute novel strategies for cancer chemotherapy. PMID:28116355

  7. Fission yeast cells undergo nuclear division in the absence of spindle microtubules.

    PubMed

    Castagnetti, Stefania; Oliferenko, Snezhana; Nurse, Paul

    2010-10-12

    Mitosis in eukaryotic cells employs spindle microtubules to drive accurate chromosome segregation at cell division. Cells lacking spindle microtubules arrest in mitosis due to a spindle checkpoint that delays mitotic progression until all chromosomes have achieved stable bipolar attachment to spindle microtubules. In fission yeast, mitosis occurs within an intact nuclear membrane with the mitotic spindle elongating between the spindle pole bodies. We show here that in fission yeast interference with mitotic spindle formation delays mitosis only briefly and cells proceed to an unusual nuclear division process we term nuclear fission, during which cells perform some chromosome segregation and efficiently enter S-phase of the next cell cycle. Nuclear fission is blocked if spindle pole body maturation or sister chromatid separation cannot take place or if actin polymerization is inhibited. We suggest that this process exhibits vestiges of a primitive nuclear division process independent of spindle microtubules, possibly reflecting an evolutionary intermediate state between bacterial and Archeal chromosome segregation where the nucleoid divides without a spindle and a microtubule spindle-based eukaryotic mitosis.

  8. Intercentrosomal angular separation during mitosis plays a crucial role for maintaining spindle stability

    NASA Astrophysics Data System (ADS)

    Sutradhar, S.; Basu, S.; Paul, R.

    2015-10-01

    Cell division through proper spindle formation is one of the key puzzles in cell biology. In most mammalian cells, chromosomes spontaneously arrange to achieve a stable bipolar spindle during metaphase which eventually ensures proper segregation of the DNA into the daughter cells. In this paper, we present a robust three-dimensional mechanistic model to investigate the formation and maintenance of a bipolar mitotic spindle in mammalian cells under different physiological constraints. Using realistic parameters, we test spindle viability by measuring the spindle length and studying the chromosomal configuration. The model strikingly predicts a feature of the spindle instability arising from the insufficient intercentrosomal angular separation and impaired sliding of the interpolar microtubules. In addition, our model successfully reproduces chromosomal patterns observed in mammalian cells, when activity of different motor proteins is perturbed.

  9. Mitotic spindle assembly around RCC1-coated beads in Xenopus egg extracts.

    PubMed

    Halpin, David; Kalab, Petr; Wang, Jay; Weis, Karsten; Heald, Rebecca

    2011-12-01

    During cell division the genetic material on chromosomes is distributed to daughter cells by a dynamic microtubule structure called the mitotic spindle. Here we establish a reconstitution system to assess the contribution of individual chromosome proteins to mitotic spindle formation around single 10 µm diameter porous glass beads in Xenopus egg extracts. We find that Regulator of Chromosome Condensation 1 (RCC1), the Guanine Nucleotide Exchange Factor (GEF) for the small GTPase Ran, can induce bipolar spindle formation. Remarkably, RCC1 beads oscillate within spindles from pole to pole, a behavior that could be converted to a more typical, stable association by the addition of a kinesin together with RCC1. These results identify two activities sufficient to mimic chromatin-mediated spindle assembly, and establish a foundation for future experiments to reconstitute spindle assembly entirely from purified components.

  10. Statistical analysis of sleep spindle occurrences.

    PubMed

    Panas, Dagmara; Malinowska, Urszula; Piotrowski, Tadeusz; Żygierewicz, Jarosław; Suffczyński, Piotr

    2013-01-01

    Spindles - a hallmark of stage II sleep - are a transient oscillatory phenomenon in the EEG believed to reflect thalamocortical activity contributing to unresponsiveness during sleep. Currently spindles are often classified into two classes: fast spindles, with a frequency of around 14 Hz, occurring in the centro-parietal region; and slow spindles, with a frequency of around 12 Hz, prevalent in the frontal region. Here we aim to establish whether the spindle generation process also exhibits spatial heterogeneity. Electroencephalographic recordings from 20 subjects were automatically scanned to detect spindles and the time occurrences of spindles were used for statistical analysis. Gamma distribution parameters were fit to each inter-spindle interval distribution, and a modified Wald-Wolfowitz lag-1 correlation test was applied. Results indicate that not all spindles are generated by the same statistical process, but this dissociation is not spindle-type specific. Although this dissociation is not topographically specific, a single generator for all spindle types appears unlikely.

  11. The role of Hklp2 in the stabilization and maintenance of spindle bipolarity.

    PubMed

    Vanneste, David; Takagi, Masatoshi; Imamoto, Naoko; Vernos, Isabelle

    2009-11-03

    Spindle bipolarity relies on a fine balance of forces exerted by various molecular motors [1-4]. In most animal cells, spindle bipolarity requires sustained outward forces to push the spindle poles apart, an activity that is provided by Eg5, a conserved homotetrameric plus-end-directed kinesin that crosslinks and slides antiparallel microtubules apart [5]. These pushing forces are balanced by inward minus-end-directed forces. Impairing both Eg5 and dynein restores the formation of functional bipolar spindles [4], although the mechanism at play is far from clear. The current model also fails to explain why in some systems Eg5 inhibition does not promote bipolar spindle collapse [6, 7] or why increasing Eg5 levels does not interfere with bipolar spindle assembly [8]. Moreover, the C. elegans Eg5 ortholog is not required for bipolar spindle formation [9]. We show here that the kinesin Hklp2 participates in the assembly and stabilization of the bipolar spindle. Hklp2 localizes to the mitotic microtubules in a TPX2-dependent manner and to the chromosomes through Ki67. Our data indicate that its mechanism of action is clearly distinct from and complementary to that of Eg5, providing an additional understanding of the mechanism driving the formation and maintenance of the bipolar spindle.

  12. Identification of Abnormal Phase and its Formation Mechanism in Synthesizing Chalcogenide Films

    NASA Astrophysics Data System (ADS)

    Liu, Kegao; Ji, Nianjing; Xu, Yong; Liu, Hong

    2016-09-01

    Chalcogenide films can be used in thin-film solar cells due to their high photoelectric conversion efficiencies. It was difficult to identify one abnormal phase with high X-ray diffraction (XRD) intensity and preferred orientation in the samples for preparing chalcogenide films by spin-coating and co-reduction on soda-lime glass (Na2OṡCaOṡ6SiO2) substrates. The raw materials and reductant are metal chlorides and hydrazine hydrate respectively. In order to identify this phase, a series of experiments were done under different conditions. The phases of obtained products were analyzed by XRD and the size and morphology were characterized by scanning electron microscope (SEM) and atomic force microscopy (AFM). From the experimental results, first it was proved that the abnormal phase was water-soluble by water immersion experiment, then it was identified as NaCl crystal through XRD, energy dispersive spectrometer (EDS) and SEM. The cubic NaCl crystals have high crystallinity with size lengths of about 0.5-2μm and show a <100> preferred orientation. The reaction mechanism of NaCl crystal was proposed as follows: The NaCl crystal was formed by reaction of Na2O and HCl in a certain experimental conditions.

  13. The Maize Divergent spindle-1 (dv1) Gene Encodes a Kinesin-14A Motor Protein Required for Meiotic Spindle Pole Organization

    PubMed Central

    Higgins, David M.; Nannas, Natalie J.; Dawe, R. Kelly

    2016-01-01

    The classic maize mutant divergent spindle-1 (dv1) causes failures in meiotic spindle assembly and a decrease in pollen viability. By analyzing two independent dv1 alleles we demonstrate that this phenotype is caused by mutations in a member of the kinesin-14A subfamily, a class of C-terminal, minus-end directed microtubule motors. Further analysis demonstrates that defects in early spindle assembly are rare, but that later stages of spindle organization promoting the formation of finely focused spindle poles are strongly dependent on Dv1. Anaphase is error-prone in dv1 lines but not severely so, and the majority of cells show normal chromosome segregation. Live-cell imaging of wild type and mutant plants carrying CFP-tagged β-tubulin confirm that meiosis in dv1 lines fails primarily at the pole-sharpening phase of spindle assembly. These data indicate that plant kinesin-14A proteins help to enforce bipolarity by focusing spindle poles and that this stage of spindle assembly is not required for transition through the spindle checkpoint but improves the accuracy of chromosome segregation. PMID:27610117

  14. Spindle Activity Orchestrates Plasticity during Development and Sleep

    PubMed Central

    Lindemann, Christoph; Ahlbeck, Joachim; Bitzenhofer, Sebastian H.; Hanganu-Opatz, Ileana L.

    2016-01-01

    Spindle oscillations have been described during early brain development and in the adult brain. Besides similarities in temporal patterns and involved brain areas, neonatal spindle bursts (NSBs) and adult sleep spindles (ASSs) show differences in their occurrence, spatial distribution, and underlying mechanisms. While NSBs have been proposed to coordinate the refinement of the maturating neuronal network, ASSs are associated with the implementation of acquired information within existing networks. Along with these functional differences, separate synaptic plasticity mechanisms seem to be recruited. Here, we review the generation of spindle oscillations in the developing and adult brain and discuss possible implications of their differences for synaptic plasticity. The first part of the review is dedicated to the generation and function of ASSs with a particular focus on their role in healthy and impaired neuronal networks. The second part overviews the present knowledge of spindle activity during development and the ability of NSBs to organize immature circuits. Studies linking abnormal maturation of brain wiring with neurological and neuropsychiatric disorders highlight the importance to better elucidate neonatal plasticity rules in future research. PMID:27293903

  15. The Plk1 target Kizuna stabilizes mitotic centrosomes to ensure spindle bipolarity.

    PubMed

    Oshimori, Naoki; Ohsugi, Miho; Yamamoto, Tadashi

    2006-10-01

    Formation of a bipolar spindle is essential for faithful chromosome segregation at mitosis. Because centrosomes define spindle poles, defects in centrosome number and structural organization can lead to a loss of bipolarity. In addition, microtubule-mediated pulling and pushing forces acting on centrosomes and chromosomes are also important for bipolar spindle formation. Polo-like kinase 1 (Plk1) is a highly conserved Ser/Thr kinase that has essential roles in the formation of a bipolar spindle with focused poles. However, the mechanism by which Plk1 regulates spindle-pole formation is poorly understood. Here, we identify a novel centrosomal substrate of Plk1, Kizuna (Kiz), depletion of which causes fragmentation and dissociation of the pericentriolar material from centrioles at prometaphase, resulting in multipolar spindles. We demonstrate that Kiz is critical for establishing a robust mitotic centrosome architecture that can endure the forces that converge on the centrosomes during spindle formation, and suggest that Plk1 maintains the integrity of the spindle poles by phosphorylating Kiz.

  16. Biophysical Aspects of Spindle Evolution

    NASA Astrophysics Data System (ADS)

    Farhadifar, Reza; Baer, Charlie; Needleman, Daniel

    2011-03-01

    The continual propagation of genetic material from one generation to the next is one of the most basic characteristics of all organisms. In eukaryotes, DNA is segregated into the two daughter cells by a highly dynamic, self-organizing structure called the mitotic spindle. Mitotic spindles can show remarkable variability between tissues and organisms, but there is currently little understanding of the biophysical and evolutionary basis of this diversity. We are studying how spontaneous mutations modify cell division during nematode development. By comparing the mutational variation - the raw material of evolution - with the variation present in nature, we are investigating how the mitotic spindle is shaped over the course of evolution. This combination of quantitative genetics and cellular biophysics gives insight into how the structure and dynamics of the spindle is formed through selection, drift, and biophysical constraints.

  17. Timely Endocytosis of Cytokinetic Enzymes Prevents Premature Spindle Breakage during Mitotic Exit

    PubMed Central

    Onishi, Masayuki; Yeong, Foong May

    2016-01-01

    Cytokinesis requires the spatio-temporal coordination of membrane deposition and primary septum (PS) formation at the division site to drive acto-myosin ring (AMR) constriction. It has been demonstrated that AMR constriction invariably occurs only after the mitotic spindle disassembly. It has also been established that Chitin Synthase II (Chs2p) neck localization precedes mitotic spindle disassembly during mitotic exit. As AMR constriction depends upon PS formation, the question arises as to how chitin deposition is regulated so as to prevent premature AMR constriction and mitotic spindle breakage. In this study, we propose that cells regulate the coordination between spindle disassembly and AMR constriction via timely endocytosis of cytokinetic enzymes, Chs2p, Chs3p, and Fks1p. Inhibition of endocytosis leads to over accumulation of cytokinetic enzymes during mitotic exit, which accelerates the constriction of the AMR, and causes spindle breakage that eventually could contribute to monopolar spindle formation in the subsequent round of cell division. Intriguingly, the mitotic spindle breakage observed in endocytosis mutants can be rescued either by deleting or inhibiting the activities of, CHS2, CHS3 and FKS1, which are involved in septum formation. The findings from our study highlight the importance of timely endocytosis of cytokinetic enzymes at the division site in safeguarding mitotic spindle integrity during mitotic exit. PMID:27447488

  18. Structural and functional abnormalities of the hippocampal formation in rats with environmentally induced reductions in prepulse inhibition of acoustic startle.

    PubMed

    Greene, J R; Kerkhoff, J E; Guiver, L; Totterdell, S

    2001-01-01

    The effects of social isolation on prepulse inhibition of acoustic startle (PPI), electrophysiology and morphology of subicular pyramidal neurons and the densities of interneuronal sub-types in the hippocampal formation were examined. Wistar rats (male weanlings) were housed socially (socials, n=8) or individually (isolates, n=7). When tested eight weeks later, PPI was lower in isolates. Rats then received terminal anaesthesia before slices of hippocampal formation were made in which the electrophysiological properties of a total of 108 subicular neurons were characterized. There were no differences in neuronal sub-types recorded in socials compared with isolates. Intrinsically burst-firing and regular spiking pyramidal neurons were examined in detail. There were no differences in resting membrane potential or input resistance in isolates compared with socials but action potential height was reduced and action potential threshold raised in isolates. A limited morphological examination of Neurobiotin-filled intrinsically burst-firing neurons did not reveal differences in cell-body area or in number of primary dendrites. Sections from the contralateral hemispheres of the same rats were stained with antibodies to calretinin, parvalbumin and the neuronal isoform of nitric oxide synthase (nNOS). In isolates, the density of calretinin positive neurons was increased in the dentate gyrus but unchanged in areas CA3, CA1 and subiculum. Parvalbumin and nNOS positive neuronal densities were unchanged. Hence in rats with environmentally induced reductions in PPI there are structural and functional abnormalities in the hippocampal formation. If the reduction in PPI stems from these abnormalities, and reduced PPI in rats is relevant to schizophrenia, then drugs that correct the reported electrophysiological changes might have antipsychotic effects.

  19. Abnormal proplatelet formation and emperipolesis in cultured human megakaryocytes from gray platelet syndrome patients

    PubMed Central

    Di Buduo, Christian A.; Alberelli, Maria Adele; Glembostky, Ana C.; Podda, Gianmarco; Lev, Paola R.; Cattaneo, Marco; Landolfi, Raffaele; Heller, Paula G.; Balduini, Alessandra; De Candia, Erica

    2016-01-01

    The Gray Platelet Syndrome (GPS) is a rare inherited bleeding disorder characterized by deficiency of platelet α-granules, macrothrombocytopenia and marrow fibrosis. The autosomal recessive form of GPS is linked to loss of function mutations in NBEAL2, which is predicted to regulate granule trafficking in megakaryocytes, the platelet progenitors. We report the first analysis of cultured megakaryocytes from GPS patients with NBEAL2 mutations. Megakaryocytes cultured from peripheral blood or bone marrow hematopoietic progenitor cells from four patients were used to investigate megakaryopoiesis, megakaryocyte morphology and platelet formation. In vitro differentiation of megakaryocytes was normal, whereas we observed deficiency of megakaryocyte α-granule proteins and emperipolesis. Importantly, we first demonstrated that platelet formation by GPS megakaryocytes was severely affected, a defect which might be the major cause of thrombocytopenia in patients. These results demonstrate that cultured megakaryocytes from GPS patients provide a valuable model to understand the pathogenesis of GPS in humans. PMID:26987485

  20. Development of a Revolutionary High Speed Spindle

    NASA Technical Reports Server (NTRS)

    Agba, Emmanuel I.

    1999-01-01

    This report presents the development of a hydraulic motor driven spindle system to be employed for high speed machining of composite materials and metals. The spindle system is conceived to be easily retrofitted into conventional milling machines. The need for the hydraulic spindle arises because of the limitations placed on conventional electric motor driven spindles by the low cutting power and the presence of vibrational phenomena associated with voltage frequency at high rotational speeds. Also, the electric motors are usually large and expensive when power requirements are moderately high. In contrast, hydraulic motor driven spindles promise a distinct increase in spindle life over the conventional electric motor driven spindles. In this report, existing technologies applicable to spindle holder for severe operating conditions were reviewed, conceptual designs of spindle holder system were developed and evaluated, and a detailed design of an acceptable concept was conducted. Finally, a rapid prototype of the design was produced for design evaluation.

  1. ZHOUPI controls embryonic cuticle formation via a signalling pathway involving the subtilisin protease ABNORMAL LEAF-SHAPE1 and the receptor kinases GASSHO1 and GASSHO2.

    PubMed

    Xing, Qian; Creff, Audrey; Waters, Andrew; Tanaka, Hirokazu; Goodrich, Justin; Ingram, Gwyneth C

    2013-02-01

    Seed production in angiosperms requires tight coordination of the development of the embryo and the endosperm. The endosperm-specific transcription factor ZHOUPI has previously been shown to play a key role in this process, by regulating both endosperm breakdown and the formation of the embryonic cuticle. To what extent these processes are functionally linked is, however, unclear. In order to address this issue we have concentrated on the subtilisin-like serine protease encoding gene ABNORMAL LEAF-SHAPE1. Expression of ABNORMAL LEAF-SHAPE1 is endosperm specific, and dramatically decreased in zhoupi mutants. We show that, although ABNORMAL LEAF-SHAPE1 is required for normal embryonic cuticle formation, it plays no role in regulating endosperm breakdown. Furthermore, we show that re-introducing ABNORMAL LEAF-SHAPE1 expression in the endosperm of zhoupi mutants partially rescues embryonic cuticle formation without rescuing their persistent endosperm phenotype. Thus, we conclude that ALE1 can normalize cuticle formation in the absence of endosperm breakdown, and that ZHOUPI thus controls two genetically separable developmental processes. Finally, our genetic study shows that ZHOUPI and ABNORMAL LEAF-SHAPE1 promotes formation of embryonic cuticle via a pathway involving embryonically expressed receptor kinases GASSHO1 and GASSHO2. We therefore provide a molecular framework of inter-tissue communication for embryo-specific cuticle formation during embryogenesis.

  2. Possibility of Abnormal Formation of Pearlite in Medium-Carbon Steel After Short-Term Heating to a Temperature Above Ac 1

    NASA Astrophysics Data System (ADS)

    Mirzaev, D. A.; Yakovleva, I. L.; Tereshchenko, N. A.; Urtsev, V. N.

    2017-03-01

    The kinetics of phase recrystallization and formation of structure in medium-carbon steels under short-term heating at a temperature exceeding Ac 1 and accelerated cooling is studied. The conditions of implementation of two mechanisms of abnormal formation of pearlite differing in the lengths of the diffusion paths of carbon are determined, and the morphology of the pearlite is described.

  3. Spindle assembly on immobilized chromatin micropatterns.

    PubMed

    Pugieux, Céline; Dmitrieff, Serge; Tarnawska, Katarzyna; Nédélec, François

    2014-01-01

    We describe a method to assemble meiotic spindles on immobilized micropatterns of chromatin built on a first layer of biotinylated BSA deposited by microcontact printing. Such chromatin patterns routinely produce bipolar spindles with a yield of 60%, and offer the possibility to follow spindle assembly dynamics, from the onset of nucleation to the establishment of a quasi steady state. Hundreds of spindles can be recorded in parallel for different experimental conditions. We also describe the semi-automated image analysis pipeline, which is used to analyze the assembly kinetics of spindle arrays, or the final morphological diversity of the spindles.

  4. Requirement for Nudel and dynein for assembly of the lamin B spindle matrix.

    PubMed

    Ma, Li; Tsai, Ming-Ying; Wang, Shusheng; Lu, Bingwen; Chen, Rong; Iii, John R Yates; Zhu, Xueliang; Zheng, Yixian

    2009-03-01

    The small guanosine triphosphatase Ran loaded with GTP (RanGTP) can stimulate assembly of the type V intermediate filament protein lamin B into a membranous lamin B spindle matrix, which is required for proper microtubule organization during spindle assembly. Microtubules in turn enhance assembly of the matrix. Here we report that the isolated matrix contains known spindle assembly factors such as dynein and Nudel. Using spindle assembly assays in Xenopus egg extracts, we show that Nudel regulates microtubule organization during spindle assembly independently of its function at kinetochores. Importantly, Nudel interacts directly with lamin B to facilitate the accumulation and assembly of lamin-B-containing matrix on microtubules in a dynein-dependent manner. Perturbing either Nudel or dynein inhibited the assembly of lamin B matrix. However, depleting lamin B still allowed the formation of matrices containing dynein and Nudel. Therefore, dynein and Nudel regulate assembly of the lamin B matrix. Interestingly, we found that whereas depleting lamin B resulted in disorganized spindle and spindle poles, disrupting the function of Nudel or dynein caused a complete lack of spindle pole focusing. We suggest that Nudel regulates microtubule organization in part by facilitating assembly of the lamin B spindle matrix in a dynein-dependent manner.

  5. Force and the spindle: Mechanical cues in mitotic spindle orientation

    PubMed Central

    Nestor-Bergmann, Alexander; Goddard, Georgina; Woolner, Sarah

    2014-01-01

    The mechanical environment of a cell has a profound effect on its behaviour, from dictating cell shape to driving the transcription of specific genes. Recent studies have demonstrated that mechanical forces play a key role in orienting the mitotic spindle, and therefore cell division, in both single cells and tissues. Whilst the molecular machinery that mediates the link between external force and the mitotic spindle remains largely unknown, it is becoming increasingly clear that this is a widely used mechanism which could prove vital for coordinating cell division orientation across tissues in a variety of contexts. PMID:25080021

  6. Spindle cell carcinoma in maxilla

    PubMed Central

    Samuel, Soumi; Sreelatha, S V; Hegde, Nidarsh; Nair, Preeti P

    2013-01-01

    Spindle cell carcinomas (sarcomatoid carcinomas) are rare tumours. It is a variant of squamous cell carcinoma which has spindled tumour cells, which simulate a true sarcoma, but are epithelial in origin. They are extremely uncommon in the head and neck region. Only five cases with maxillary origin have been discussed in the literature. As compared to squamous cell carcinoma of maxilla, this variant is associated with poor diagnosis and advanced disease at presentation, as is demonstrated in the case presented. There are no standard recommendations for management owing to the rarity of this histology. Surgery and radiotherapy form the mainstays of treatment. We report a rare case of spindle cell carcinoma involving the maxilla. PMID:23632620

  7. Acentrosomal spindle assembly and chromosome segregation during oocyte meiosis.

    PubMed

    Dumont, Julien; Desai, Arshad

    2012-05-01

    The ability to reproduce relies in most eukaryotes on specialized cells called gametes. Gametes are formed by the process of meiosis in which, after a single round of replication, two successive cell divisions reduce the ploidy of the genome. Fusion of gametes at fertilization reconstitutes diploidy. In most animal species, chromosome segregation during female meiosis occurs on spindles assembled in the absence of the major microtubule-organizing center, the centrosome. In mammals, oocyte meiosis is error prone and underlies most birth aneuploidies. Here, we review recent work on acentrosomal spindle formation and chromosome alignment/separation during oocyte meiosis in different animal models.

  8. Disruption of IFT complex A causes cystic kidneys without mitotic spindle misorientation.

    PubMed

    Jonassen, Julie A; SanAgustin, Jovenal; Baker, Stephen P; Pazour, Gregory J

    2012-04-01

    Intraflagellar transport (IFT) complexes A and B build and maintain primary cilia. In the mouse, kidney-specific or hypomorphic mutant alleles of IFT complex B genes cause polycystic kidneys, but the influence of IFT complex A proteins on renal development is not well understood. In the present study, we found that HoxB7-Cre-driven deletion of the complex A gene Ift140 from collecting ducts disrupted, but did not completely prevent, cilia assembly. Mutant kidneys developed collecting duct cysts by postnatal day 5, with rapid cystic expansion and renal dysfunction by day 15 and little remaining parenchymal tissue by day 20. In contrast to many models of polycystic kidney disease, precystic Ift140-deleted collecting ducts showed normal centrosomal positioning and no misorientation of the mitotic spindle axis, suggesting that disruption of oriented cell division is not a prerequisite to cyst formation in these kidneys. Precystic collecting ducts had an increased mitotic index, suggesting that cell proliferation may drive cyst expansion even with normal orientation of the mitotic spindle. In addition, we observed significant increases in expression of canonical Wnt pathway genes and mediators of Hedgehog and tissue fibrosis in highly cystic, but not precystic, kidneys. Taken together, these studies indicate that loss of Ift140 causes pronounced renal cystic disease and suggest that abnormalities in several different pathways may influence cyst progression.

  9. Quantifying chirp in sleep spindles.

    PubMed

    Schönwald, Suzana V; Carvalho, Diego Z; Dellagustin, Guilherme; de Santa-Helena, Emerson L; Gerhardt, Günther J L

    2011-04-15

    Sleep spindles are considered as a marker of integrity for thalamo-cortical circuits. Recently, attention has been given to internal frequency variation in sleep spindles. In this study, a procedure based on matching pursuit with a Gabor-chirplet dictionary was applied in order to measure chirp rate in atoms representing sleep spindles, also categorized into negative, positive or zero chirp types. The sample comprised 707 EEG segments containing visual sleep spindles, labeled TP, obtained from nine healthy male volunteers (aged 20-34, average 24.6 y). Control datasets were 333 non-REM (NREM) sleep background segments and 287 REM sleep intervals, each with 16s duration. Analyses were carried out on the C3-A2 EEG channel. In TP and NREM groups, the proportion of non-null chirp types was non-random and total chirp distribution was asymmetrical towards negative values, in contrast to REM. Median negative chirp rate in the TP and NREM groups was significantly lower than in REM (-0.4 Hz/s vs -0.3 Hz/s, P < 0.05). Negative chirp atoms outnumbered positives by 50% in TP, while in NREM and REM, they were, respectively, only 22% and 12% more prevalent. TP negative chirp atoms were significantly higher in amplitude compared to positive or zero types. Considering individual subjects, 88.9% had a TP negative/positive chirp ratio above 1 (mean ± sd=1.64 ± 0.65). We propose there is increasing evidence, corroborated by the present study, favoring systematic measurement of sleep spindle chirp rate or internal frequency variation. Preferential occurrence of negatively chirping spindles is consistent with the hypothesis of electrophysiological modulation of neocortical memory consolidation.

  10. Regulation of Aurora-A kinase on the mitotic spindle.

    PubMed

    Kufer, Thomas A; Nigg, Erich A; Silljé, Herman H W

    2003-12-01

    The error-free segregation of duplicated chromosomes during cell division is essential for the maintenance of an intact genome. This process is brought about by a highly dynamic bipolar array of microtubules, the mitotic spindle. The formation and function of the mitotic spindle during M-phase of the cell cycle is regulated by protein phosphorylation, involving multiple protein kinases and phosphatases. Prominent among the enzymes implicated in spindle assembly is the serine/threonine-specific protein kinase Aurora-A. In several common human tumors, Aurora-A is overexpressed, and deregulation of this kinase was shown to result in mitotic defects and aneuploidy. Moreover, recent genetic evidence directly links the human Aurora-A gene to cancer susceptibility. Several of the physiological substrates of Aurora-A presumably await identification, but recent studies are beginning to shed light on the regulation of this critical mitotic kinase. Here, we review these findings with particular emphasis on the role of TPX2, a prominent spindle component implicated in a Ran-GTP-mediated spindle assembly pathway.

  11. Centrophilin: a novel mitotic spindle protein involved in microtubule nucleation

    PubMed Central

    1991-01-01

    A novel protein has been identified which may serve a key function in nucleating spindle microtubule growth in mitosis. This protein, called centrophilin, is sequentially relocated from the centromeres to the centrosomes to the midbody in a manner dependent on the mitotic phase. Centrophilin was initially detected by immunofluorescence with a monoclonal, primate-specific antibody (2D3) raised against kinetochore- enriched chromosome extract from HeLa cells (Valdivia, M. M., and B. R. Brinkley. 1985. J. Cell Biol. 101:1124-1134). Centrophilin forms prominent crescents at the poles of the metaphase spindle, gradually diminishes during anaphase, and bands the equatorial ends of midbody microtubules in telophase. The formation and breakdown of the spindle and midbody correlates in time and space with the aggregation and disaggregation of centrophilin foci. Immunogold EM reveals that centrophilin is a major component of pericentriolar material in metaphase. During recovery from microtubule inhibition, centrophilin foci act as nucleation sites for the assembly of spindle tubules. The 2D3 probe recognizes two high molecular mass polypeptides, 180 and 210 kD, on immunoblots of whole HeLa cell extract. Taken together, these data and the available literature on microtubule dynamics point inevitably to a singular model for control of spindle tubule turnover. PMID:1991791

  12. Plk2 regulates mitotic spindle orientation and mammary gland development.

    PubMed

    Villegas, Elizabeth; Kabotyanski, Elena B; Shore, Amy N; Creighton, Chad J; Westbrook, Thomas F; Rosen, Jeffrey M

    2014-04-01

    Disruptions in polarity and mitotic spindle orientation contribute to the progression and evolution of tumorigenesis. However, little is known about the molecular mechanisms regulating these processes in vivo. Here, we demonstrate that Polo-like kinase 2 (Plk2) regulates mitotic spindle orientation in the mammary gland and that this might account for its suggested role as a tumor suppressor. Plk2 is highly expressed in the mammary gland and is required for proper mammary gland development. Loss of Plk2 leads to increased mammary epithelial cell proliferation and ductal hyperbranching. Additionally, a novel role for Plk2 in regulating the orientation of the mitotic spindle and maintaining proper cell polarity in the ductal epithelium was discovered. In support of a tumor suppressor function for Plk2, loss of Plk2 increased the formation of lesions in multiparous glands. Collectively, these results demonstrate a novel role for Plk2 in regulating mammary gland development.

  13. Autoassociative MLP in sleep spindle detection.

    PubMed

    Huupponen, E; Värri, A; Himanen, S L; Hasan, J; Lehtokangas, M; Saarinen, J

    2000-06-01

    Spindles are one of the most important short-lasting waveforms in sleep EEG. They are the hallmarks of the so-called Stage 2 sleep. Visual spindle scoring is a tedious workload, since there are often a thousand spindles in one all-night recording of some 8 hr. Automated methods for spindle detection typically use some form of fixed spindle amplitude threshold, which is poor with respect to inter-subject variability. In this work a spindle detection system allowing spindle detection without an amplitude threshold was developed. This system can be used for automatic decision making of whether or not a sleep spindle is present in the EEG at a certain point of time. An Autoassociative Multilayer Perceptron (A-MLP) network was employed for the decision making. A novel training procedure was developed to remove inconsistencies from the training data, which was found to improve the system performance significantly.

  14. Spindle-shaped Microstructures: Potential Models for Planktonic Life Forms on Other Worlds

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Walsh, Maud M.; Sugitani, Kenichiro; House, Christopher H.

    2014-01-01

    Spindle-shaped, organic microstructures ("spindles") are now known from Archean cherts in three localities (Figs. 1-4): The 3 Ga Farrel Quartzite from the Pilbara of Australia [1]; the older, 3.3-3.4 Ga Strelley Pool Formation, also from the Pilbara of Australia [2]; and the 3.4 Ga Kromberg Formation of the Barberton Mountain Land of South Africa [3]. Though the spindles were previously speculated to be pseudofossils or epigenetic organic contaminants, a growing body of data suggests that these structures are bona fide microfossils and further, that they are syngenetic with the Archean cherts in which they occur [1-2, 4-10]. As such, the spindles are among some of the oldest-known organically preserved microfossils on Earth. Moreover, recent delta C-13 study of individual spindles from the Farrel Quartzite (using Secondary Ion Mass Spectrometry [SIMS]) suggests that the spindles may have been planktonic (living in open water), as opposed to benthic (living as bottom dwellers in contact with muds or sediments) [9]. Since most Precambrian microbiotas have been described from benthic, matforming communities, a planktonic lifestyle for the spindles suggests that these structures could represent a segment of the Archean biosphere that is poorly known. Here we synthesize the recent work on the spindles, and we add new observations regarding their geographic distribution, robustness, planktonic habit, and long-lived success. We then discuss their potential evolutionary and astrobiological significance.

  15. The spindle pole bodies facilitate nuclear envelope division during closed mitosis in fission yeast.

    PubMed

    Zheng, Liling; Schwartz, Cindi; Magidson, Valentin; Khodjakov, Alexey; Oliferenko, Snezhana

    2007-07-01

    Many organisms divide chromosomes within the confines of the nuclear envelope (NE) in a process known as closed mitosis. Thus, they must ensure coordination between segregation of the genetic material and division of the NE itself. Although many years of work have led to a reasonably clear understanding of mitotic spindle function in chromosome segregation, the NE division mechanism remains obscure. Here, we show that fission yeast cells overexpressing the transforming acid coiled coil (TACC)-related protein, Mia1p/Alp7p, failed to separate the spindle pole bodies (SPBs) at the onset of mitosis, but could assemble acentrosomal bipolar and antiparallel spindle structures. Most of these cells arrested in anaphase with fully extended spindles and nonsegregated chromosomes. Spindle poles that lacked the SPBs did not lead the division of the NE during spindle elongation, but deformed it, trapping the chromosomes within. When the SPBs were severed by laser microsurgery in wild-type cells, we observed analogous deformations of the NE by elongating spindle remnants, resulting in NE division failure. Analysis of dis1Delta cells that elongate spindles despite unattached kinetochores indicated that the SPBs were required for maintaining nuclear shape at anaphase onset. Strikingly, when the NE was disassembled by utilizing a temperature-sensitive allele of the Ran GEF, Pim1p, the abnormal spindles induced by Mia1p overexpression were capable of segregating sister chromatids to daughter cells, suggesting that the failure to divide the NE prevents chromosome partitioning. Our results imply that the SPBs preclude deformation of the NE during spindle elongation and thus serve as specialized structures enabling nuclear division during closed mitosis in fission yeast.

  16. Polycystic kidney disease protein fibrocystin localizes to the mitotic spindle and regulates spindle bipolarity.

    PubMed

    Zhang, Jingjing; Wu, Maoqing; Wang, Shixuan; Shah, Jagesh V; Wilson, Patricia D; Zhou, Jing

    2010-09-01

    Autosomal recessive polycystic kidney disease (ARPKD) is a significant hereditary renal disease occurring in infancy and childhood, which presents with greatly enlarged echogenic kidneys, ultimately leading to renal insufficiency and end-stage renal disease. ARPKD is caused by mutations in a single gene PKHD1, which encodes fibrocystin/polyductin (FPC), a large single transmembrane protein generally known to be on the primary cilium, basal body and plasma membrane. Here, using our newly generated antibody raised against the entire C-terminal intracellular cytoplasmic domain (ICD) of FPC, as well as our previously well-characterized antibody against a peptide of ICD, we report for the first time that at least one isoform of FPC is localized to the centrosome and mitotic spindle of dividing cells in multiple cell lines, including MDCK, mIMCD3, LLC-PK1, HEK293, RCTEC and HFCT cells. Using short-hairpin-mediated RNA interference, we show that the inhibition of FPC function in MDCK and mIMCD3 cells leads to centrosome amplification, chromosome lagging and multipolar spindle formation. Consistent with our in vitro findings, we also observed centrosome amplification in the kidneys from human ARPKD patients. These findings demonstrate a novel function of FPC in centrosome duplication and mitotic spindle assembly during cell division. We propose that mitotic defects due to FPC dysfunction contribute to cystogenesis in ARPKD.

  17. Spindle diameter effects for cotton pickers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There is concern that changes to the operating speed and size of spindles on cotton picker harvesters over the years have resulted in a general decrease in cotton fiber quality, especially spindle twists, preparation, and neps. Previous research showed that spindle speeds of 3000 and 4000 rpm had m...

  18. Nap sleep spindle correlates of intelligence.

    PubMed

    Ujma, Péter P; Bódizs, Róbert; Gombos, Ferenc; Stintzing, Johannes; Konrad, Boris N; Genzel, Lisa; Steiger, Axel; Dresler, Martin

    2015-11-26

    Sleep spindles are thalamocortical oscillations in non-rapid eye movement (NREM) sleep, that play an important role in sleep-related neuroplasticity and offline information processing. Several studies with full-night sleep recordings have reported a positive association between sleep spindles and fluid intelligence scores, however more recently it has been shown that only few sleep spindle measures correlate with intelligence in females, and none in males. Sleep spindle regulation underlies a circadian rhythm, however the association between spindles and intelligence has not been investigated in daytime nap sleep so far. In a sample of 86 healthy male human subjects, we investigated the correlation between fluid intelligence and sleep spindle parameters in an afternoon nap of 100 minutes. Mean sleep spindle length, amplitude and density were computed for each subject and for each derivation for both slow and fast spindles. A positive association was found between intelligence and slow spindle duration, but not any other sleep spindle parameter. As a positive correlation between intelligence and slow sleep spindle duration in full-night polysomnography has only been reported in females but not males, our results suggest that the association between intelligence and sleep spindles is more complex than previously assumed.

  19. Theory of meiotic spindle assembly

    NASA Astrophysics Data System (ADS)

    Furthauer, Sebastian; Foster, Peter; Needleman, Daniel; Shelley, Michael

    2016-11-01

    The meiotic spindle is a biological structure that self assembles from the intracellular medium to separate chromosomes during meiosis. It consists of filamentous microtubule (MT) proteins that interact through the fluid in which they are suspended and via the associated molecules that orchestrate their behavior. We aim to understand how the interplay between fluid medium, MTs, and regulatory proteins allows this material to self-organize into the spindle's highly stereotyped shape. To this end we develop a continuum model that treats the spindle as an active liquid crystal with MT turnover. In this active material, molecular motors, such as dyneins which collect MT minus ends and kinesins which slide MTs past each other, generate active fluid and material stresses. Moreover nucleator proteins that are advected with and transported along MTs control the nucleation and depolymerization of MTs. This theory captures the growth process of meiotic spindles, their shapes, and the essential features of many perturbation experiments. It thus provides a framework to think about the physics of this complex biological suspension.

  20. Left supraclavicular spindle cell lipoma.

    PubMed

    Olaleye, Oladejo; Fu, Bertram; Moorthy, Ram; Lawson, Charles; Black, Myles; Mitchell, David

    2010-01-01

    Background. Spindle cell lipoma (SCL) is a benign lipomatous tumour, typically occurring in the posterior neck, shoulder or upper back of elderly males. They compose of fat, CD34 positive spindle cells, and ropey collagen on a myxoid matrix. This case highlights a rare presentation of SCL and the need for pre-operative diagnosis. Case Report. A 63-year-old gentleman presented with a pre-existing left supraclavicular mass that had recently increased in size. FNA and CT Scans were performed and results discussed in the mutidisciplinary team meeting. Excisional biopsy was recommended. Radiology. CT neck showed a left supraclavicular mass of fatty density with fine internal septations. A low-grade liposarcoma could not be excluded. Histopathology. FNA was indeterminate. Histology of specimen showed bland spindle cells with no evidence of malignancy. Immuno-histochemistry showed SCL with CD34 positivity and negative staining on CDK4 and p16. Management. Excision biopsy of the mass was performed which was technically difficult as the mass invaginated around the brachial plexus. The patient recovered well post-operatively with no neurological deficits. Conclusion. Spindle cell lipoma is a rare benign tumour and a pre-operative diagnosis based on the clinical context, imaging and immuno-histochemistry is crucial to management.

  1. Samurai sword sets spindle size.

    PubMed

    Reber, Simone; Hyman, Anthony A

    2011-12-09

    Although the parts list is nearly complete for many cellular structures, mechanisms that control their size remain poorly understood. Loughlin and colleagues now show that phosphorylation of a single residue of katanin, a microtubule-severing protein, largely accounts for the difference in spindle length between two closely related frogs.

  2. Mutations in AtPS1 (Arabidopsis thaliana Parallel Spindle 1) Lead to the Production of Diploid Pollen Grains

    PubMed Central

    d'Erfurth, Isabelle; Jolivet, Sylvie; Froger, Nicole; Catrice, Olivier; Novatchkova, Maria; Simon, Mathieu; Jenczewski, Eric; Mercier, Raphaël

    2008-01-01

    Polyploidy has had a considerable impact on the evolution of many eukaryotes, especially angiosperms. Indeed, most—if not all—angiosperms have experienced at least one round of polyploidy during the course of their evolution, and many important crop plants are current polyploids. The occurrence of 2n gametes (diplogametes) in diploid populations is widely recognised as the major source of polyploid formation. However, limited information is available on the genetic control of diplogamete production. Here, we describe the isolation and characterisation of the first gene, AtPS1 (Arabidopsis thaliana Parallel Spindle 1), implicated in the formation of a high frequency of diplogametes in plants. Atps1 mutants produce diploid male spores, diploid pollen grains, and spontaneous triploid plants in the next generation. Female meiosis is not affected in the mutant. We demonstrated that abnormal spindle orientation at male meiosis II leads to diplogamete formation. Most of the parent's heterozygosity is therefore conserved in the Atps1 diploid gametes, which is a key issue for plant breeding. The AtPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. The isolation of a gene involved in diplogamete production opens the way for new strategies in plant breeding programmes and progress in evolutionary studies. PMID:19043546

  3. Caenorhabditis elegans oocyte meiotic spindle pole assembly requires microtubule severing and the calponin homology domain protein ASPM-1

    PubMed Central

    Connolly, Amy A.; Osterberg, Valerie; Christensen, Sara; Price, Meredith; Lu, Chenggang; Chicas-Cruz, Kathy; Lockery, Shawn; Mains, Paul E.; Bowerman, Bruce

    2014-01-01

    In many animals, including vertebrates, oocyte meiotic spindles are bipolar but assemble in the absence of centrosomes. Although meiotic spindle positioning in oocytes has been investigated extensively, much less is known about their assembly. In Caenorhabditis elegans, three genes previously shown to contribute to oocyte meiotic spindle assembly are the calponin homology domain protein encoded by aspm-1, the katanin family member mei-1, and the kinesin-12 family member klp-18. We isolated temperature-sensitive alleles of all three and investigated their requirements using live-cell imaging to reveal previously undocumented requirements for aspm-1 and mei-1. Our results indicate that bipolar but abnormal oocyte meiotic spindles assemble in aspm-1(-) embryos, whereas klp-18(-) and mei-1(-) mutants assemble monopolar and apolar spindles, respectively. Furthermore, two MEI-1 functions—ASPM-1 recruitment to the spindle and microtubule severing—both contribute to monopolar spindle assembly in klp-18(-) mutants. We conclude that microtubule severing and ASPM-1 both promote meiotic spindle pole assembly in C. elegans oocytes, whereas the kinesin 12 family member KLP-18 promotes spindle bipolarity. PMID:24554763

  4. Environmentally Relevant Concentrations of Atrazine and Ametrine Induce Micronuclei Formation and Nuclear Abnormalities in Erythrocytes of Fish.

    PubMed

    Botelho, R G; Monteiro, S H; Christofoletti, C A; Moura-Andrade, G C R; Tornisielo, V L

    2015-11-01

    A rapid and sensitive method using liquid chromatography coupled with mass spectrometry triple quadrupole direct aqueous injection for analysis of atrazine and ametrine herbicides in surface waters was developed. According to the validation method, water samples from six different locations in the Piracicaba River were collected monthly from February 2011 to January 2012 and injected into a liquid chromatographer/dual mass spectrometer without the need for sample extraction. The method was validated and shown to be precise and accurate; limits of detection and quantification were 0.07 and 0.10 µg L(-1) for atrazine and 0.09 and 0.14 µg L(-1) for ametrine. During the sampling period, concentrations of atrazine ranged from 0.11 to 1.92 µg L(-1) and ametrine from 0.25 to 1.44 µg L(-1). After analysis of the herbicides, Danio rerio were exposed a range of concentrations found in the river water to check the induction of micronuclei and nuclear abnormalities (NAs) in erythrocytes. Concentrations of atrazine and ametrine >1.0 and 1.5 µg L(-1), respectively, induced MN formation in D. rerio. Ametrine was shown to be more genotoxic to D. rerio because a greater incidence of NAs was observed compared with atrazine. Therefore, environmentally relevant concentrations of atrazine and ametrine found in the Piracicaba River are dangerous to the aquatic biota.

  5. Synchronization and Propagation of Global Sleep Spindles

    PubMed Central

    de Souza, Rafael Toledo Fernandes; Gerhardt, Günther Johannes Lewczuk; Schönwald, Suzana Veiga; Rybarczyk-Filho, José Luiz; Lemke, Ney

    2016-01-01

    Sleep spindles occur thousands of times during normal sleep and can be easily detected by visual inspection of EEG signals. These characteristics make spindles one of the most studied EEG structures in mammalian sleep. In this work we considered global spindles, which are spindles that are observed simultaneously in all EEG channels. We propose a methodology that investigates both the signal envelope and phase/frequency of each global spindle. By analysing the global spindle phase we showed that 90% of spindles synchronize with an average latency time of 0.1 s. We also measured the frequency modulation (chirp) of global spindles and found that global spindle chirp and synchronization are not correlated. By investigating the signal envelopes and implementing a homogeneous and isotropic propagation model, we could estimate both the signal origin and velocity in global spindles. Our results indicate that this simple and non-invasive approach could determine with reasonable precision the spindle origin, and allowed us to estimate a signal speed of 0.12 m/s. Finally, we consider whether synchronization might be useful as a non-invasive diagnostic tool. PMID:26963102

  6. Statistical Analysis of Sleep Spindle Occurrences

    PubMed Central

    Panas, Dagmara; Malinowska, Urszula; Piotrowski, Tadeusz; Żygierewicz, Jarosław; Suffczyński, Piotr

    2013-01-01

    Spindles - a hallmark of stage II sleep - are a transient oscillatory phenomenon in the EEG believed to reflect thalamocortical activity contributing to unresponsiveness during sleep. Currently spindles are often classified into two classes: fast spindles, with a frequency of around 14 Hz, occurring in the centro-parietal region; and slow spindles, with a frequency of around 12 Hz, prevalent in the frontal region. Here we aim to establish whether the spindle generation process also exhibits spatial heterogeneity. Electroencephalographic recordings from 20 subjects were automatically scanned to detect spindles and the time occurrences of spindles were used for statistical analysis. Gamma distribution parameters were fit to each inter-spindle interval distribution, and a modified Wald-Wolfowitz lag-1 correlation test was applied. Results indicate that not all spindles are generated by the same statistical process, but this dissociation is not spindle-type specific. Although this dissociation is not topographically specific, a single generator for all spindle types appears unlikely. PMID:23560045

  7. Congenital Abnormalities

    MedlinePlus

    ... Listen Español Text Size Email Print Share Congenital Abnormalities Page Content Article Body About 3% to 4% ... of congenital abnormalities earlier. 5 Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic ...

  8. Sympathetic innervation of human muscle spindles

    PubMed Central

    Radovanovic, Dina; Peikert, Kevin; Lindström, Mona; Domellöf, Fatima Pedrosa

    2015-01-01

    The aim of the present study was to investigate the presence of sympathetic innervation in human muscle spindles, using antibodies against neuropeptide Y (NPY), NPY receptors and tyrosine hydroxylase (TH). A total of 232 muscle spindles were immunohistochemically examined. NPY and NPY receptors were found on the intrafusal fibers, on the blood vessels supplying muscle spindles and on free nerve endings in the periaxial space. TH-immunoreactivity was present mainly in the spindle nerve and vessel. This is, to our knowledge, the first morphological study concerning the sympathetic innervation of the human muscle spindles. The results provide anatomical evidence for direct sympathetic innervation of the intrafusal fibers and show that sympathetic innervation is not restricted to the blood vessels supplying spindles. Knowledge about direct sympathetic innervation of the muscle spindle might expand our understanding of motor and proprioceptive dysfunction under stress conditions, for example, chronic muscle pain syndromes. PMID:25994126

  9. Sympathetic innervation of human muscle spindles.

    PubMed

    Radovanovic, Dina; Peikert, Kevin; Lindström, Mona; Domellöf, Fatima Pedrosa

    2015-06-01

    The aim of the present study was to investigate the presence of sympathetic innervation in human muscle spindles, using antibodies against neuropeptide Y (NPY), NPY receptors and tyrosine hydroxylase (TH). A total of 232 muscle spindles were immunohistochemically examined. NPY and NPY receptors were found on the intrafusal fibers, on the blood vessels supplying muscle spindles and on free nerve endings in the periaxial space. TH-immunoreactivity was present mainly in the spindle nerve and vessel. This is, to our knowledge, the first morphological study concerning the sympathetic innervation of the human muscle spindles. The results provide anatomical evidence for direct sympathetic innervation of the intrafusal fibers and show that sympathetic innervation is not restricted to the blood vessels supplying spindles. Knowledge about direct sympathetic innervation of the muscle spindle might expand our understanding of motor and proprioceptive dysfunction under stress conditions, for example, chronic muscle pain syndromes.

  10. Regulation of mitotic spindle orientation during epidermal stratification.

    PubMed

    Xie, Wei; Zhou, Jun

    2016-12-20

    The epidermis is a stratified epithelium that serves as a barrier to infection from environmental pathogens and prevents water loss. Epidermal stratification is tightly controlled during embryogenesis. Progenitor cells in the developing epidermis undergo both symmetric and asymmetric cell divisions to balance the growth of the skin surface area against the generation of differentiated cell layers. Therefore, understanding the relationship between oriented divisions of progenitor cells and the development and stratification of the epidermis is of paramount importance in the field of skin biology and pathology. We provide here an integrated view of recent studies implicating that improper orientation of the mitotic spindle contributes to disorders associated with abnormal epidermal stratification and suggesting that spindle orientation could serve as a potential therapeutic target in skin diseases.

  11. Effects of in-vitro or in-vivo matured ooplasm and spindle-chromosome complex on the development of spindle-transferred oocytes.

    PubMed

    Ding, Chenhui; Li, Tao; Zeng, Yanhong; Hong, Pingping; Xu, Yanwen; Zhou, Canquan

    2014-12-01

    To study the effects of in-vitro matured ooplasm and spindle-chromosome complex (SCC) on the development of spindle-transferred oocytes, reciprocal spindle transfer was conducted between in-vivo and in-vitro matured oocytes. The reconstructed oocytes were divided into four groups according to their different ooplasm sources and SCC, artificially activated and cultured to the blastocyst stage. Oocyte survival, activation and embryo development after spindle transfer manipulation were compared between groups. Survival, activation, and cleavage rates of reconstructed oocytes after spindle transfer manipulation did not differ significantly among the four groups. The eight-cell stage embryo formation rates on day 3 and the blastocyst formation rate on day 6 were not significantly different between the in-vitro and in-vivo matured SCC groups when they were transplanted into in-vivo matured ooplasm. The rate of eight-cell stage embryo formation with in-vitro matured ooplasm was significantly lower (P < 0.05) than that of embryos with in-vivo matured ooplasm, and none of the embryos developed to the blastocyst stage. Therefore, SCC matured in vitro effectively supported the in-vitro development of reconstructed oocytes. Ooplasm matured in vitro, however, could not support the development of reconstructed oocytes, and may not be an appropriate source of ooplasm donation for spindle transfer.

  12. Phase Transitions of Spindle-Associated Protein Regulate Spindle Apparatus Assembly

    PubMed Central

    Jiang, Hao; Wang, Shusheng; Huang, Yuejia; He, Xiaonan; Cui, Honggang; Zhu, Xueliang; Zheng, Yixian

    2015-01-01

    Spindle assembly required during mitosis depends on microtubule polymerization. We demonstrate that the evolutionarily conserved low-complexity protein, BuGZ, undergoes phase transition or coacervation to promote assembly of both spindles and their associated components. BuGZ forms temperature-dependent liquid droplets alone or on microtubules in physiological buffers. Coacervation in vitro or in spindle and spindle matrix depends on hydrophobic residues in BuGZ. BuGZ coacervation and its binding to microtubules and tubulin are required to promote assembly of spindle and spindle matrix in Xenopus egg extract and in mammalian cells. Since several previously identified spindle-associated components also contain low complexity regions, we propose that coacervating proteins may be a hallmark of proteins that comprise a spindle matrix that functions to promote assembly of spindles by concentrating its building blocks. PMID:26388440

  13. The Case of the Disappearing Spindle Burst

    PubMed Central

    Tiriac, Alexandre; Blumberg, Mark S.

    2016-01-01

    Sleep spindles are brief cortical oscillations at 10–15 Hz that occur predominantly during non-REM (quiet) sleep in adult mammals and are thought to contribute to learning and memory. Spindle bursts are phenomenologically similar to sleep spindles, but they occur predominantly in early infancy and are triggered by peripheral sensory activity (e.g., by retinal waves); accordingly, spindle bursts are thought to organize neural networks in the developing brain and establish functional links with the sensory periphery. Whereas the spontaneous retinal waves that trigger spindle bursts in visual cortex are a transient feature of early development, the myoclonic twitches that drive spindle bursts in sensorimotor cortex persist into adulthood. Moreover, twitches—and their associated spindle bursts—occur exclusively during REM (active) sleep. Curiously, despite the persistence of twitching into adulthood, twitch-related spindle bursts have not been reported in adult sensorimotor cortex. This raises the question of whether such spindle burst activity does not occur in adulthood or, alternatively, occurs but has yet to be discovered. If twitch-related spindle bursts do occur in adults, they could contribute to the calibration, maintenance, and repair of sensorimotor systems. PMID:27119028

  14. Next generation spindles for micromilling.

    SciTech Connect

    Pathak, Jay P.; Payne, Scott W. T.; Gill, David Dennis; Ziegert, John C.; Jokiel, Bernhard, Jr.

    2004-12-01

    There exists a wide variety of important applications for micro- and meso-scale mechanical systems in the commercial and defense sectors, which require high-strength materials and complex geometries that cannot be produced using current MEMS fabrication technologies. Micromilling has great potential to fill this void in MEMS technology by adding the capability of free form machining of complex 3D shapes from a wide variety and combination of traditional, well-understood engineering alloys, glasses and ceramics. Inefficiencies in micromilling result from the relationships between a cutting tool's breaking strength, the applied cutting force, and the metal removal rate. Because machining times in mesofeatures scale inversely to the part size, a feature 1/10th as large will take 10 times as long to machine. Also, required chip sizes of 1 m or less are cut with tools having edge radius of 2-3 m, the cutting edge effectively has a highly negative rake angle, cutting forces are increased significantly causing chip loads to be further reduced and the machining takes even longer than predicted above. However, cutting forces do not increase with cutting speed, so faster spindles with reduced tool runout are the path to achieve efficient mesoscale milling. This research explored the development of new ultra-high speed micromilling spindles. A novel air-bearing spindle design is discussed that will run at very high speeds (450,000 rpm) and provide very minimal runout allowing the best use of micromilling cutters and reducing overall machining time drastically. Two generations of this spindle design were completed; one with an air bearing supported tool shaft and one with a novel rolling element bearing supported tool shaft. Both designs utilized friction-drive systems that relied on diameter differences between the drive wheel (operating at speeds up to 90,000 rpm) and the tool shaft to achieve high rotational tool speeds. Runout, stiffness, and machining tests were conducted

  15. CKAP2 is necessary to ensure the faithful spindle bipolarity in a dividing diploid hepatocyte.

    PubMed

    Yoo, Bum Ho; Park, Chi-Hu; Kim, Hyun-Jun; Kang, Du-Seock; Bae, Chang-Dae

    2016-05-13

    Spindle bipolarity is crucial for segregating chromosome during somatic cell division. Previous studies have suggested that cytoskeleton associated protein 2 (CKAP2) is involved in spindle assembly and chromosome segregation. In this study, we show that CKAP2-depleted primary hepatocytes exhibit over-duplicated centrosomes with disjoined chromosomes from metaphase plate. These cells proceed to apoptosis or multipolar cell division and subsequent apoptotic cell death. In addition, a mouse liver regeneration experiment showed a marked decrease in efficiency of hepatic regeneration in CKAP2-depleted liver. These data suggest a physiological role of CKAP2 in the formation of spindle bipolarity, which is necessary for maintaining chromosomal stability.

  16. Mechanical design principles of a mitotic spindle.

    PubMed

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-12-18

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This 'pushing' mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length.

  17. Mechanical design principles of a mitotic spindle

    PubMed Central

    Ward, Jonathan J; Roque, Hélio; Antony, Claude; Nédélec, François

    2014-01-01

    An organised spindle is crucial to the fidelity of chromosome segregation, but the relationship between spindle structure and function is not well understood in any cell type. The anaphase B spindle in fission yeast has a slender morphology and must elongate against compressive forces. This ‘pushing’ mode of chromosome transport renders the spindle susceptible to breakage, as observed in cells with a variety of defects. Here we perform electron tomographic analyses of the spindle, which suggest that it organises a limited supply of structural components to increase its compressive strength. Structural integrity is maintained throughout the spindle's fourfold elongation by organising microtubules into a rigid transverse array, preserving correct microtubule number and dynamically rescaling microtubule length. DOI: http://dx.doi.org/10.7554/eLife.03398.001 PMID:25521247

  18. The Spindle Cell Neoplasms of the Oral Cavity

    PubMed Central

    Shamim, Thorakkal

    2015-01-01

    Spindle cell neoplasms are defined as neoplasms that consist of spindle-shaped cells in the histopathology. Spindle cell neoplasms can affect the oral cavity. In the oral cavity, the origin of the spindle cell neoplasms may be traced to epithelial, mesenchymal and odontogenic components. This article aims to review the spindle cell neoplasms of the oral cavity with emphasis on histopathology. PMID:26351482

  19. Reduced Sleep Spindle Activity in Early-Onset and Elevated Risk for Depression

    ERIC Educational Resources Information Center

    Lopez, Jorge; Hoffmann, Robert; Armitage, Roseanne

    2010-01-01

    Objective: Sleep disturbances are common in major depressive disorder (MDD), although polysomnographic (PSG) abnormalities are more prevalent in adults than in children and adolescents with MDD. Sleep spindle activity (SPA) is associated with neuroplasticity mechanisms during brain maturation and is more abundant in childhood and adolescence than…

  20. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells

    PubMed Central

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-01-01

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118

  1. Sleep Spindle Characteristics in Children with Neurodevelopmental Disorders and Their Relation to Cognition

    PubMed Central

    Wise, Merrill S.

    2016-01-01

    Empirical evidence indicates that sleep spindles facilitate neuroplasticity and “off-line” processing during sleep, which supports learning, memory consolidation, and intellectual performance. Children with neurodevelopmental disorders (NDDs) exhibit characteristics that may increase both the risk for and vulnerability to abnormal spindle generation. Despite the high prevalence of sleep problems and cognitive deficits in children with NDD, only a few studies have examined the putative association between spindle characteristics and cognitive function. This paper reviews the literature regarding sleep spindle characteristics in children with NDD and their relation to cognition in light of what is known in typically developing children and based on the available evidence regarding children with NDD. We integrate available data, identify gaps in understanding, and recommend future research directions. Collectively, studies are limited by small sample sizes, heterogeneous populations with multiple comorbidities, and nonstandardized methods for collecting and analyzing findings. These limitations notwithstanding, the evidence suggests that future studies should examine associations between sleep spindle characteristics and cognitive function in children with and without NDD, and preliminary findings raise the intriguing question of whether enhancement or manipulation of sleep spindles could improve sleep-dependent memory and other aspects of cognitive function in this population. PMID:27478646

  2. A mitotic kinase scaffold depleted in testicular seminomas impacts spindle orientation in germ line stem cells.

    PubMed

    Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D

    2015-09-25

    Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin(-/-) mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division.

  3. Spindle checkpoint protein Bub1 corrects mitotic aberrancy induced by human T-cell leukemia virus type I Tax.

    PubMed

    Sasaki, M; Sugimoto, K; Tamayose, K; Ando, M; Tanaka, Y; Oshimi, K

    2006-06-22

    Bub1 is a component of the mitotic spindle checkpoint apparatus. Abnormality of this apparatus is known to cause multinuclei formation, a hallmark of chromosomal instability (CIN). A549, aneuploid cell line, aberrantly passed through the mitotic phase and became multinuclei morphology in the presence of nocodazole. Time-lapse videomicroscopy showed unreported bizarre morphology, which we named 'mitotic lobulation' in A549 cells just before the exit from mitosis and multinuclei formation. External expression of wild-type Bub1-EGFP clearly suppressed the multinuclei formation by retaining A549 cells at the mitotic phase during 48 h of time-lapse observation. This suppressive effect on mitotic aberrancy should not be mere restoration of normal Bub1 function, because A549 cells express proper amount of Bub1, which distributed cytoplasm during interphase and concentrated at kinetochore in metaphase. Furthermore, external expression of wild-type Bub1-EGFP suppressed multinuclei formation induced by Tax both in A549 and HeLa cells. Tax is known to induce mitotic abnormality by binding and inactivating Mad1. These observations, therefore, suggest functional redundancy between Bub1 and other mitotic checkpoint protein(s) and a possibility of correction of mitotic aberrancy by external Bub1 expression.

  4. Control of Mitotic Spindle Position by the Saccharomyces cerevisiae Formin Bni1p

    PubMed Central

    Lee, Laifong; Klee, Saskia K.; Evangelista, Marie; Boone, Charles; Pellman, David

    1999-01-01

    Alignment of the mitotic spindle with the axis of cell division is an essential process in Saccharomyces cerevisiae that is mediated by interactions between cytoplasmic microtubules and the cell cortex. We found that a cortical protein, the yeast formin Bni1p, was required for spindle orientation. Two striking abnormalities were observed in bni1Δ cells. First, the initial movement of the spindle pole body (SPB) toward the emerging bud was defective. This phenotype is similar to that previously observed in cells lacking the kinesin Kip3p and, in fact, BNI1 and KIP3 were found to be in the same genetic pathway. Second, abnormal pulling interactions between microtubules and the cortex appeared to cause preanaphase spindles in bni1Δ cells to transit back and forth between the mother and the bud. We therefore propose that Bni1p may localize or alter the function of cortical microtubule-binding sites in the bud. Additionally, we present evidence that other bipolar bud site determinants together with cortical actin are also required for spindle orientation. PMID:10085293

  5. Aurora A phosphorylates MCAK to control ran-dependent spindle bipolarity.

    PubMed

    Zhang, Xin; Ems-McClung, Stephanie C; Walczak, Claire E

    2008-07-01

    During mitosis, mitotic centromere-associated kinesin (MCAK) localizes to chromatin/kinetochores, a cytoplasmic pool, and spindle poles. Its localization and activity in the chromatin region are regulated by Aurora B kinase; however, how the cytoplasmic- and pole-localized MCAK are regulated is currently not clear. In this study, we used Xenopus egg extracts to form spindles in the absence of chromatin and centrosomes and found that MCAK localization and activity are tightly regulated by Aurora A. This regulation is important to focus microtubules at aster centers and to facilitate the transition from asters to bipolar spindles. In particular, we found that MCAK colocalized with NuMA and XMAP215 at the center of Ran asters where its activity is regulated by Aurora A-dependent phosphorylation of S196, which contributes to proper pole focusing. In addition, we found that MCAK localization at spindle poles was regulated through another Aurora A phosphorylation site (S719), which positively enhances bipolar spindle formation. This is the first study that clearly defines a role for MCAK at the spindle poles as well as identifies another key Aurora A substrate that contributes to spindle bipolarity.

  6. NuMA Phosphorylation by Aurora-A Orchestrates Spindle Orientation.

    PubMed

    Gallini, Sara; Carminati, Manuel; De Mattia, Fabiola; Pirovano, Laura; Martini, Emanuele; Oldani, Amanda; Asteriti, Italia Anna; Guarguaglini, Giulia; Mapelli, Marina

    2016-02-22

    Spindle positioning is essential for tissue morphogenesis and homeostasis. The signaling network synchronizing spindle placement with mitotic progression relies on timely recruitment at the cell cortex of NuMA:LGN:Gαi complexes, in which NuMA acts as a receptor for the microtubule motor Dynein. To study the implication of Aurora-A in spindle orientation, we developed protocols for the partial inhibition of its activity. Under these conditions, in metaphase NuMA and Dynein accumulate abnormally at the spindle poles and do not reach the cortex, while the cortical distribution of LGN remains unperturbed. FRAP experiments revealed that Aurora-A governs the dynamic exchange between the cytoplasmic and the spindle pole-localized pools of NuMA. We show that Aurora-A phosphorylates directly the C terminus of NuMA on three Ser residues, of which Ser1969 determines the dynamic behavior and the spindle orientation functions of NuMA. Most interestingly, we identify a new microtubule-binding domain of NuMA, which does not overlap with the LGN-binding motif. Our study demonstrates that in metaphase the direct phosphorylation of NuMA by Aurora-A controls its cortical enrichment, and that this is the major event underlying the spindle orientation functions of Aurora-A in transformed and non-transformed cells in culture. Phosphorylation of NuMA by Aurora-A does not affect its affinity for microtubules or for LGN but rather determines the mobility of the protein at the spindle poles. The finding that NuMA can associate concomitantly with LGN and microtubules suggests that its microtubule-binding activity contributes to anchor Dynein-loaded microtubule +TIPs at cortical sites with LGN.

  7. Adaptive changes in the kinetochore architecture facilitate proper spindle assembly

    PubMed Central

    Magidson, Valentin; Paul, Raja; Yang, Nachen; Ault, Jeffrey G.; O’Connell, Christopher B.; Tikhonenko, Irina; McEwen, Bruce F.; Mogilner, Alex; Khodjakov, Alexey

    2015-01-01

    Mitotic spindle formation relies on the stochastic capture of microtubules at kinetochores. Kinetochore architecture affects the efficiency and fidelity of this process with large kinetochores expected to accelerate assembly at the expense of accuracy, and smaller kinetochores to suppress errors at the expense of efficiency. We demonstrate that upon mitotic entry, kinetochores in cultured human cells form large crescents that subsequently compact into discrete structures on opposite sides of the centromere. This compaction occurs only after the formation of end-on microtubule attachments. Live-cell microscopy reveals that centromere rotation mediated by lateral kinetochore-microtubule interactions precedes formation of end-on attachments and kinetochore compaction. Computational analyses of kinetochore expansion-compaction in the context of lateral interactions correctly predict experimentally-observed spindle assembly times with reasonable error rates. The computational model suggests that larger kinetochores reduce both errors and assembly times, which can explain the robustness of spindle assembly and the functional significance of enlarged kinetochores. PMID:26258631

  8. Dynamic Positioning of Mitotic Spindles in Yeast:

    PubMed Central

    Yeh, Elaine; Yang, Charlie; Chin, Elaine; Maddox, Paul; Salmon, E. D.; Lew, Daniel J.; Bloom, Kerry

    2000-01-01

    In the budding yeast Saccharomyces cerevisiae, movement of the mitotic spindle to a predetermined cleavage plane at the bud neck is essential for partitioning chromosomes into the mother and daughter cells. Astral microtubule dynamics are critical to the mechanism that ensures nuclear migration to the bud neck. The nucleus moves in the opposite direction of astral microtubule growth in the mother cell, apparently being “pushed” by microtubule contacts at the cortex. In contrast, microtubules growing toward the neck and within the bud promote nuclear movement in the same direction of microtubule growth, thus “pulling” the nucleus toward the bud neck. Failure of “pulling” is evident in cells lacking Bud6p, Bni1p, Kar9p, or the kinesin homolog, Kip3p. As a consequence, there is a loss of asymmetry in spindle pole body segregation into the bud. The cytoplasmic motor protein, dynein, is not required for nuclear movement to the neck; rather, it has been postulated to contribute to spindle elongation through the neck. In the absence of KAR9, dynein-dependent spindle oscillations are evident before anaphase onset, as are postanaphase dynein-dependent pulling forces that exceed the velocity of wild-type spindle elongation threefold. In addition, dynein-mediated forces on astral microtubules are sufficient to segregate a 2N chromosome set through the neck in the absence of spindle elongation, but cytoplasmic kinesins are not. These observations support a model in which spindle polarity determinants (BUD6, BNI1, KAR9) and cytoplasmic kinesin (KIP3) provide directional cues for spindle orientation to the bud while restraining the spindle to the neck. Cytoplasmic dynein is attenuated by these spindle polarity determinants and kinesin until anaphase onset, when dynein directs spindle elongation to distal points in the mother and bud. PMID:11071919

  9. Mandibular coronoid process in parathyroid hormone-related protein-deficient mice shows ectopic cartilage formation accompanied by abnormal bone modeling.

    PubMed

    Shibata, Shunichi; Suda, Naoto; Fukada, Kenji; Ohyama, Kimie; Yamashita, Yasuo; Hammond, Vicki E

    2003-07-01

    Parathyroid hormone-related protein (PTHrP) null mutant mice were analyzed to investigate an additional role for PTHrP in cell differentiation. We found ectopic cartilage formation in the mandibular coronoid process in newborn mice. While many previous studies involving PTHrP gene knockout mouse have shown that the cartilage in various regions becomes smaller, this is the first report showing an "increase" of cartilage volume. Investigations of mandibular growth using normal mice indicated that coronoid secondary cartilage never formed from E 15 to d 4, but small amount of cartilage temporally formed at d 7, and this also applies to PTHrP-wild type mice. Therefore, PTHrP deficiency consequently advanced the secondary cartilage formation, which is a novel role of PTHrP in chondrocyte differentiation. In situ hybridization of matrix proteins showed that this coronoid cartilage had characteristics of the lower hypertrophic cell zone usually present at the site of endochondral bone formation and/or "chondroid bone" occasionally found in distraction osteogenesis. In addition, the coronoid process in the PTHrP-deficient mouse also showed abnormal expansion of bone marrow and an increase in the number of multinucleated osteoclasts, an indication of abnormal bone modeling. These results indicate that PTHrP is involved in bone modeling as well as in chondrocyte differentiation. In situ hybridization of matrix protein mRNAs in the abnormal mandibular condylar cartilage revealed that this cartilage was proportionally smaller, supporting previous immunohistochemical results.

  10. Mechanotransduction in the muscle spindle.

    PubMed

    Bewick, Guy S; Banks, Robert W

    2015-01-01

    The focus of this review is on the principal sensory ending of the mammalian muscle spindle, known as the primary ending. The process of mechanosensory transduction in the primary ending is examined under five headings: (i) action potential responses to defined mechanical stimuli-representing the ending's input-output properties; (ii) the receptor potential-including the currents giving rise to it; (iii) sensory-terminal deformation-measurable changes in the shape of the primary-ending terminals correlated with intrafusal sarcomere length, and what may cause them; (iv) putative stretch-sensitive channels-pharmacological and immunocytochemical clues to their identity; and (v) synaptic-like vesicles-the physiology and pharmacology of an intrinsic glutamatergic system in the primary and other mechanosensory endings, with some thoughts on the possible role of the system. Thus, the review highlights spindle stretch-evoked output is the product of multi-ionic receptor currents plus complex and sophisticated regulatory gain controls, both positive and negative in nature, as befits its status as the most complex sensory organ after the special senses.

  11. Muscle-spindle distribution in relation to the fibre-type composition of masseter in mammals.

    PubMed Central

    Rowlerson, A; Mascarello, F; Barker, D; Saed, H

    1988-01-01

    The various parts of the masseter muscle complex (pars superficialis, pars profunda, zygomaticomandibularis, maxillomandibularis) in the rat, guinea-pig, rabbit, cat and macaque monkey were examined to discover whether they showed any relationship between the distribution of muscle spindles and extrafusal fibre types. Intrafusal (spindle) and extrafusal fibre types in masseter were compared with those in limb muscles and were identified by a combination of standard histochemical methods and indirect immunoperoxidase staining with antibodies specific for the various isoforms of myosin characteristic of fibre types in mammalian muscle. In general, the fibre-type properties of intrafusal fibres in masseter resembled those in limb muscle spindles, but the extrafusal fibre-type composition was unlike that in most limb muscles. In the rat masseter, most of the spindles were clustered together in a few very restricted areas. Extensive fusion of the external capsules of adjacent spindles, resulting in the formation of giant spindles, was seen in the cat and monkey masseter; this was sometimes accompanied by the enclosure of extrafusal fibres within the fused spindles. Common to all species, but strongest of all in the rat, was a close association between the distributions of muscle spindles and extrafusal Type I (slow twitch) fibres within the masseter complex. Muscle spindles and Type I fibres were either absent or rarest in the superficial part of masseter, but were most common in the deep layer (pars profunda) or zygomaticomandibularis. The functional significance of these observations is discussed. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 PMID:2978294

  12. Localization of the mei-1 gene product of Caenorhaditis elegans, a meiotic-specific spindle component

    PubMed Central

    1994-01-01

    Genetic evidence suggests that the product of the mei-1 gene of Caenorhabditis elegans is specifically required for meiosis in the female germline. Loss-of-function mei-1 mutations block meiotic spindle formation while a gain-of-function allele instead results in spindle defects during the early mitotic cleavages. In this report, we use immunocytochemistry to examine the localization of the mei-1 product in wild-type and mutant embryos. During metaphase of meiosis I in wild- type embryos, mei-1 protein was found throughout the spindle but was more concentrated toward the poles. At telophase I, mei-1 product colocalized with the chromatin at the spindle poles. The pattern was repeated during meiosis II but no mei-1 product was visible during the subsequent mitotic cleavages. The mei-1 gain-of-function allele resulted in ectopic mei-1 staining in the centers of the microtubule- organizing centers during interphase and in the spindles during the early cleavages. This aberrant localization is probably responsible for the poorly formed and misoriented cleavage spindles characteristic of the mutation. We also examined the localization of mei-1(+) product in the presence of mutations of genes that genetically interact with mei-1 alleles. mei-2 is apparently required to localize mei-1 product to the spindle during meiosis while mel-26 acts as a postmeiotic inhibitor. We conclude that mei-1 encodes a novel spindle component, one that is specialized for the acentriolar meiotic spindles unique to female meiosis. The genes mei-2 and mel-26 are part of a regulatory network that confines mei-1 activity to meiosis. PMID:8027178

  13. S-100 protein expressing spindle cells in spindle cell lipoma: a diagnostic pitfall.

    PubMed

    Mentzel, T; Rütten, A; Hantschke, M; Hornick, J L; Brenn, T

    2016-10-01

    Spindle cell lipoma represents a distinct clinicopathological entity and is related to cellular angiofibroma and mammary-type myofibroblastoma. Spindle cell lipomas are composed of mature lipogenic cells and a variable number of CD34-positive spindle cells that show loss of retinoblastoma protein expression. Spindle cell lipomas occasionally express S-100 protein. We studied one case of purely dermal spindle cell lipoma and four cases of classical subcutaneous spindle cell lipoma arising in one female and four male patients (age ranged from 55 to 69 years). The neoplasms arose on the nose, the chin, the neck, the forehead and retroauricular, and all lesions had been marginally or incompletely excised. The studied cases showed classical histological and immunohistochemical features of spindle cell lipoma and, in addition, strong expression of S-100 protein by spindle-shaped tumour cells. S-100-expression in spindle cell lipoma may cause problems in the differential diagnosis with neural and melanocytic neoplasms and emphasizes the plasticity of the spindle cells in spindle cell lipoma.

  14. Chromosome- and spindle-pole-derived signals generate an intrinsic code for spindle position and orientation.

    PubMed

    Kiyomitsu, Tomomi; Cheeseman, Iain M

    2012-02-12

    Mitotic spindle positioning by cortical pulling forces defines the cell division axis and location, which is critical for proper cell division and development. Although recent work has identified developmental and extrinsic cues that regulate spindle orientation, the contribution of intrinsic signals to spindle positioning and orientation remains unclear. Here, we demonstrate that cortical force generation in human cells is controlled by distinct spindle-pole- and chromosome-derived signals that regulate cytoplasmic dynein localization. First, dynein exhibits a dynamic asymmetric cortical localization that is negatively regulated by spindle-pole proximity, resulting in spindle oscillations to centre the spindle within the cell. We find that this signal comprises the spindle-pole-localized polo-like kinase (Plk1), which regulates dynein localization by controlling the interaction between dynein-dynactin and its upstream cortical targeting factors NuMA and LGN. Second, a chromosome-derived RanGTP gradient restricts the localization of NuMA-LGN to the lateral cell cortex to define and maintain the spindle orientation axis. RanGTP acts in part through the nuclear localization sequence of NuMA to locally alter the ability of NuMA-LGN to associate with the cell cortex in the vicinity of chromosomes. We propose that these chromosome- and spindle-pole-derived gradients generate an intrinsic code to control spindle position and orientation.

  15. Identification of MAC1: A Small Molecule That Rescues Spindle Bipolarity in Monastrol-Treated Cells.

    PubMed

    Al-Obaidi, Naowras; Mitchison, Timothy J; Crews, Craig M; Mayer, Thomas U

    2016-06-17

    The genetic integrity of each organism is intimately tied to the correct segregation of its genome during mitosis. Insights into the underlying mechanisms are fundamental for both basic research and the development of novel strategies to treat mitosis-relevant diseases such as cancer. Due to their fast mode of action, small molecules are invaluable tools to dissect mitosis. Yet, there is a great demand for novel antimitotic compounds. We performed a chemical genetic suppression screen to identify compounds that restore spindle bipolarity in cells treated with Monastrol, an inhibitor of the mitotic kinesin Eg5. We identified one compound-MAC1-that rescued spindle bipolarity in cells lacking Eg5 activity. Mechanistically, MAC1 induces the formation of additional microtubule nucleation centers, which allows kinesin Kif15-dependent bipolar spindle assembly in the absence of Eg5 activity. Thus, our chemical genetic suppression screen revealed novel unexpected insights into the mechanism of spindle assembly in mammalian cells.

  16. Melanin or a Melanin-Like Substance Interacts with the N-Terminal Portion of Prion Protein and Inhibits Abnormal Prion Protein Formation in Prion-Infected Cells.

    PubMed

    Hamanaka, Taichi; Nishizawa, Keiko; Sakasegawa, Yuji; Oguma, Ayumi; Teruya, Kenta; Kurahashi, Hiroshi; Hara, Hideyuki; Sakaguchi, Suehiro; Doh-Ura, Katsumi

    2017-03-15

    Prion diseases are progressive fatal neurodegenerative illnesses caused by the accumulation of transmissible abnormal prion protein (PrP). To find treatments for prion diseases, we searched for substances from natural resources that inhibit abnormal PrP formation in prion-infected cells. We found that high-molecular-weight components from insect cuticle extracts reduced abnormal PrP levels. The chemical nature of these components was consistent with that of melanin. In fact, synthetic melanin produced from tyrosine or 3-hydroxy-l-tyrosine inhibited abnormal PrP formation. Melanin did not modify cellular or cell surface PrP levels, nor did it modify lipid raft or cellular cholesterol levels. Neither did it enhance autophagy or lysosomal function. Melanin was capable of interacting with PrP at two N-terminal domains. Specifically, it strongly interacted with the PrP region of amino acids 23 to 50 including a positively charged amino acid cluster and weakly interacted with the PrP octarepeat peptide region of residues 51 to 90. However, the in vitro and in vivo data were inconsistent with those of prion-infected cells. Abnormal PrP formation in protein misfolding cyclic amplification was not inhibited by melanin. Survival after prion infection was not significantly altered in albino mice or exogenously melanin-injected mice compared with that of control mice. These data suggest that melanin, a main determinant of skin color, is not likely to modify prion disease pathogenesis, even though racial differences in the incidence of human prion diseases have been reported. Thus, the findings identify an interaction between melanin and the N terminus of PrP, but the pathophysiological roles of the PrP-melanin interaction remain unclear.IMPORTANCE The N-terminal region of PrP is reportedly important for neuroprotection, neurotoxicity, and abnormal PrP formation, as this region is bound by many factors, such as metal ions, lipids, nucleic acids, antiprion compounds, and several

  17. Simultaneous formation of inv dup(15) and dup(15q) in a girl with developmental delay: origin of the abnormal chromosomes.

    PubMed

    Abeliovich, D; Dagan, J; Werner, M; Lerer, I; Shapira, Y; Meiner, V

    1995-01-01

    Two de novo abnormal derivatives of chromosome 15, inv dup(15) and dup(15q) were found in a girl with developmental delay and mild dysmorphological signs. Fluorescence in situ hybridization, using DNA probes of the Prader-Willi/Angelman syndromes (PWS/AS) critical region and chromosome-15-specific alpha-satellite, combined with molecular analysis using dinucleotide repeat polymorphisms within the PWS/AS region and the parent-of-origin specific methylation sites at the locus D15S63, shed light on how the abnormal karyotype was formed. We suggest that a translocation between the two homologues of maternal chromosomes 15 resulted in the formation of dup(15q) and two reciprocal products: an acentric fragment of 15q that was lost and a centric fragment that underwent U-type reunion to form inv dup(15).

  18. Toucan protein is essential for the assembly of syncytial mitotic spindles in Drosophila melanogaster.

    PubMed

    Debec, A; Grammont, M; Berson, G; Dastugue, B; Sullivan, W; Couderc, J L

    2001-12-01

    The toc gene of Drosophila melanogaster encodes a 235-kD polypeptide with a coiled-coil domain, which is highly expressed during oogenesis (Grammont et al., 1997, 2000). We now report the localization of the Toucan protein during early embryonic development. The Toucan protein is present only during the syncytial stages and is associated with the nuclear envelope and the cytoskeletal structures of the syncytial embryo. In anaphase A, Toucan is concentrated at the spindle poles near the minus end of microtubules. This microtubule association is very dynamic during the nuclear cell cycle. Mutant embryos lacking the Toucan protein are blocked in a metaphase-like state. They display abnormal and nonfunctional spindles, characterized by broad poles, detachment of the centrosomes, and failure of migration of the chromosomes. These results strongly suggest that Toucan represents a factor essential for the assembly and the function of the syncytial mitotic spindles.

  19. Measuring mitotic spindle dynamics in budding yeast

    NASA Astrophysics Data System (ADS)

    Plumb, Kemp

    In order to carry out its life cycle and produce viable progeny through cell division, a cell must successfully coordinate and execute a number of complex processes with high fidelity, in an environment dominated by thermal noise. One important example of such a process is the assembly and positioning of the mitotic spindle prior to chromosome segregation. The mitotic spindle is a modular structure composed of two spindle pole bodies, separated in space and spanned by filamentous proteins called microtubules, along which the genetic material of the cell is held. The spindle is responsible for alignment and subsequent segregation of chromosomes into two equal parts; proper spindle positioning and timing ensure that genetic material is appropriately divided amongst mother and daughter cells. In this thesis, I describe fluorescence confocal microscopy and automated image analysis algorithms, which I have used to observe and analyze the real space dynamics of the mitotic spindle in budding yeast. The software can locate structures in three spatial dimensions and track their movement in time. By selecting fluorescent proteins which specifically label the spindle poles and cell periphery, mitotic spindle dynamics have been measured in a coordinate system relevant to the cell division. I describe how I have characterised the accuracy and precision of the algorithms by simulating fluorescence data for both spindle poles and the budding yeast cell surface. In this thesis I also describe the construction of a microfluidic apparatus that allows for the measurement of long time-scale dynamics of individual cells and the development of a cell population. The tools developed in this thesis work will facilitate in-depth quantitative analysis of the non-equilibrium processes in living cells.

  20. Alveolar abnormalities

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...

  1. Nail abnormalities

    MedlinePlus

    Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... 2012:chap 71. Zaiac MN, Walker A. Nail abnormalities associated with systemic pathologies. Clin Dermatol . 2013;31: ...

  2. Fast sleep spindle reduction in schizophrenia and healthy first-degree relatives: association with impaired cognitive function and potential intermediate phenotype.

    PubMed

    Schilling, Claudia; Schlipf, Manuel; Spietzack, Simone; Rausch, Franziska; Eisenacher, Sarah; Englisch, Susanne; Reinhard, Iris; Haller, Leila; Grimm, Oliver; Deuschle, Michael; Tost, Heike; Zink, Mathias; Meyer-Lindenberg, Andreas; Schredl, Michael

    2017-04-01

    Several studies in patients with schizophrenia reported a marked reduction in sleep spindle activity. To investigate whether the reduction may be linked to genetic risk of the illness, we analysed sleep spindle activity in healthy volunteers, patients with schizophrenia and first-degree relatives, who share an enriched set of schizophrenia susceptibility genes. We further investigated the correlation of spindle activity with cognitive function in first-degree relatives and whether spindle abnormalities affect both fast (12-15 Hz) and slow (9-12 Hz) sleep spindles. We investigated fast and slow sleep spindle activity during non-rapid eye movement sleep in a total of 47 subjects comprising 17 patients with schizophrenia, 13 healthy first-degree relatives and 17 healthy volunteers. Groups were balanced for age, gender, years of education and estimated verbal IQ. A subsample of relatives received additional testing for memory performance. Compared to healthy volunteers, fast spindle density was reduced in patients with schizophrenia and healthy first-degree relatives following a pattern consistent with an assumed genetic load for schizophrenia. The deficit in spindle density was specific to fast spindles and was associated with decreased memory performance. Our findings indicate familial occurrence of this phenotype and thus support the hypothesis that deficient spindle activity relates to genetic liability for schizophrenia. Furthermore, spindle reductions predict impaired cognitive function and are specific to fast spindles. This physiological marker should be further investigated as an intermediate phenotype of schizophrenia. It could also constitute a target for drug development, especially with regard to cognitive dysfunction.

  3. Intramedullary spindle cell hemangioma: case report.

    PubMed

    Nasser, Rani; Ashayeri, Kimberly; Legatt, Alan D; Houten, John K

    2016-09-01

    The authors describe the case of a 48-year-old man found to have the first reported intramedullary spinal cord spindle cell hemangioma. Previous research indicates that spindle cell hemangiomas are rarely found in the spine. Only 3 previous cases exist, all in the intradural, extramedullary space. In the present case, gross-total resection of the tumor was possible with no loss of function from baseline. This report presents the successful resection of the first reported intramedullary spindle cell hemangioma and reports 4-month follow-up, demonstrating the biological behavior of this rare tumor.

  4. A leukemia fusion protein attenuates the spindle checkpoint and promotes aneuploidy

    PubMed Central

    Boyapati, Anita; Yan, Ming; Peterson, Luke F.; Biggs, Joseph R.; Le Beau, Michelle M.

    2007-01-01

    The 8;21 chromosomal translocation occurs in 15% to 40% of patients with the FAB M2 subtype of acute myeloid leukemia (AML). This chromosomal abnormality fuses part of the AML1/RUNX1 gene to the ETO/MTG8 gene and generates the AML1-ETO protein. We previously identified a C-terminal truncated AML1-ETO protein (AEtr) in a mouse leukemia model. AEtr is almost identical to the AML1-ETO exon 9a isoform expressed in leukemia patients. Here, we describe a novel function of AEtr in the development of aneuploidy through spindle checkpoint attenuation. AEtr cells had a reduced mitotic index following nocodazole treatment, suggesting a failure in a subset of cells to arrest in mitosis with a functional spindle checkpoint. Additionally, primary leukemia cells and cell lines expressing AEtr were aneuploid. Moreover, AEtr cells had reduced levels of several spindle checkpoint proteins including BubR1 and securin following treatment with the spindle poison nocodazole. These results suggest that inactivation of the spindle checkpoint may contribute to the development of aneuploidy described in t(8;21) leukemia patients. PMID:17197431

  5. The nucleoporin Nup153 affects spindle checkpoint activity due to an association with Mad1

    PubMed Central

    Shimi, Takeshi

    2010-01-01

    The nucleoporin Nup153 is known to play pivotal roles in nuclear import and export in interphase cells and as the cell transitions into mitosis, Nup153 is involved in nuclear envelope breakdown. In this study, we demonstrate that the interaction of Nup153 with the spindle assembly checkpoint protein Mad1 is important in the regulation of the spindle checkpoint. Overexpression of human Nup153 in HeLa cells leads to the appearance of multinucleated cells and induces the formation of multipolar spindles. Importantly, it causes inactivation of the spindle checkpoint due to hypophosphorylation of Mad1. Depletion of Nup153 using RNA interference results in the decline of Mad1 at nuclear pores during interphase and more significantly causes a delayed dissociation of Mad1 from kinetochores in metaphase and an increase in the number of unresolved midbodies. In the absence of Nup153 the spindle checkpoint remains active. In vitro studies indicate direct binding of Mad1 to the N-terminal domain of Nup153. Importantly, Nup153 binding to Mad1 affects Mad1's phosphorylation status, but not its ability to interact with Mad2. Our data suggest that Nup153 levels regulate the localization of Mad1 during the metaphase/anaphase transition thereby affecting its phoshorylation status and in turn spindle checkpoint activity and mitotic exit. PMID:21327106

  6. Emerging molecular mechanisms that power and regulate the anastral mitotic spindle of flowering plants.

    PubMed

    Bannigan, Alex; Lizotte-Waniewski, Michelle; Riley, Margaret; Baskin, Tobias I

    2008-01-01

    Flowering plants, lacking centrosomes as well as dynein, assemble their mitotic spindle via a pathway that is distinct visually and molecularly from that of animals and yeast. The molecular components underlying mitotic spindle assembly and function in plants are beginning to be discovered. Here, we review recent evidence suggesting the preprophase band in plants functions analogously to the centrosome in animals in establishing spindle bipolarity, and we review recent progress characterizing the roles of specific motor proteins in plant mitosis. Loss of function of certain minus-end-directed KIN-14 motor proteins causes a broadening of the spindle pole; whereas, loss of function of a KIN-5 causes the formation of monopolar spindles, resembling those formed when the homologous motor protein (e.g., Eg5) is knocked out in animal cells. We present a phylogeny of the kinesin-5 motor domain, which shows deep divergence among plant sequences, highlighting possibilities for specialization. Finally, we review information concerning the roles of selected structural proteins at mitosis as well as recent findings concerning regulation of M-phase in plants. Insight into the mitotic spindle will be obtained through continued comparison of mitotic mechanisms in a diversity of cells.

  7. The Prp19 complex directly functions in mitotic spindle assembly.

    PubMed

    Hofmann, Jennifer C; Tegha-Dunghu, Justus; Dräger, Stefanie; Will, Cindy L; Lührmann, Reinhard; Gruss, Oliver J

    2013-01-01

    The conserved Prp19 (pre-RNA processing 19) complex is required for pre-mRNA splicing in eukaryotic nuclei. Recent RNAi screens indicated that knockdown of Prp19 complex subunits strongly delays cell proliferation. Here we show that knockdown of the smallest subunit, BCAS2/Spf27, destabilizes the entire complex and leads to specific mitotic defects in human cells. These could result from splicing failures in interphase or reflect a direct function of the complex in open mitosis. Using Xenopus extracts, in which cell cycle progression and spindle formation can be reconstituted in vitro, we tested Prp19 complex functions during a complete cell cycle and directly in open mitosis. Strikingly, immunodepletion of the complex either before or after interphase significantly reduces the number of intact spindles, and increases the percentage of spindles with lower microtubule density and impaired metaphase alignment of chromosomes. Our data identify the Prp19 complex as the first spliceosome subcomplex that directly contributes to mitosis in vertebrates independently of its function in interphase.

  8. Friction Stir Welding of Al Alloy 2219-T8: Part I-Evolution of Precipitates and Formation of Abnormal Al2Cu Agglomerates

    NASA Astrophysics Data System (ADS)

    Kang, Ju; Feng, Zhi-Cao; Frankel, G. S.; Huang, I. Wen; Wang, Guo-Qing; Wu, Ai-Ping

    2016-09-01

    Friction stir welding was performed on AA2219-T8 plates with 6.31 wt pct Cu. The thermal cycles were measured in different regions of the joint during welding. Differential scanning calorimetry and transmission electron microscopy were utilized to analyze the evolution of precipitates in the joint. The relationships between welding peak temperature, precipitate evolution, and microhardness distribution are discussed. The temperature in the heat-affected zone (HAZ) ranged from 453 K to 653 K (180 °C to 380 °C). The θ″ and some θ' phases redissolved into the HAZ matrix, while the rest of the θ' phases coarsened. In the thermomechanically affected zone (TMAZ), the temperature range was from 653 K to 673 K (380 °C to 400 °C), causing both θ″ phase and θ' phase to redissolve. In the weld nugget zone (WNZ), all the θ″, θ', and some of the θ phase (Al2Cu) redissolved. Abnormal θ particles were observed in the WNZ, including agglomerated θ with sizes around 100 to 1000 µm and a ring-shaped distribution of normal size θ particles. The formation of abnormal θ particles resulted from metal plastic flow during welding and the high content of Cu in AA2219. No abnormal θ particles were observed in joints of another AA2219 plate, which had a lower Cu content of 5.83 wt pct.

  9. [Diagnosticum of abnormalities of plant meiotic division].

    PubMed

    Shamina, N V

    2006-01-01

    Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.

  10. MLL5 maintains spindle bipolarity by preventing aberrant cytosolic aggregation of PLK1.

    PubMed

    Zhao, Wei; Liu, Jie; Zhang, Xiaoming; Deng, Lih-Wen

    2016-03-28

    Faithful chromosome segregation with bipolar spindle formation is critical for the maintenance of genomic stability. Perturbation of this process often leads to severe mitotic failure, contributing to tumorigenesis. MLL5 has been demonstrated to play vital roles in cell cycle progression and the maintenance of genomic stability. Here, we identify a novel interaction between MLL5 and PLK1 in the cytosol that is crucial for sustaining spindle bipolarity during mitosis. Knockdown of MLL5 caused aberrant PLK1 aggregation that led to acentrosomal microtubule-organizing center (aMTOC) formation and subsequent spindle multipolarity. Further molecular studies revealed that the polo-box domain (PBD) of PLK1 interacted with a binding motif on MLL5 (Thr887-Ser888-Thr889), and this interaction was essential for spindle bipolarity. Overexpression of wild-type MLL5 was able to rescue PLK1 mislocalization and aMTOC formation in MLL5-KD cells, whereas MLL5 mutants incapable of interacting with the PBD failed to do so. We thus propose that MLL5 preserves spindle bipolarity through maintaining cytosolic PLK1 in a nonaggregated form.

  11. Cytological characteristics and classification of spindle inhibitors according to their effects on segmentation mitoses.

    PubMed

    Sentein, P; Ates, Y

    1978-01-01

    The effects of spindle inhibitors and of protein synthesis inhibitors on segmentation mitoses allow us to classify them into six groups : 1. Colchicine type : destruction of the whole achromatic apparatus and centrospheres without storing of dense bodies; 2. Quinoline type : same effect on the achromatic apparatus, but blocked centrospheres with accumulation of dense bodies; 3. Chloralhydrate type : Incomplete destruction of achromatic apparatus, spindle residue which maintains the chromosomes in a star shape, inactive centrospheres sequestered by the reticulum, but without accumulation of dense bodies; 4. Phenylurethane type : Incomplete and reversible action, which leads to easy production of pluripolar mitoses; 5. Carboxylic acid type : dissociation of the spindle, sometimes with blocking of the centrosphere, together with profound chromosome changes without primitive breaks; the intensity and quality of their action is related to the number of carbon atoms in the acid considered; 6. Protein synthesis inhibitor type : (cycloheximide, pederin) characterized by a stop of the nuclear cycle at telo-prophase when the action is sufficient, chromosome abnormalities, sometimes, reduced to strings of beads, and freeing of asters; at weaker concentrations mitosis is possible, but the congression of chromosomes at the equator is abnormal because of functional disturbance of the kinetochores. The nature and grading of these effects, their association (or non - association) to chromosome damage, the soundness of the spindle when only the chromosomes are affected (nitrogen mustard) make this one of the tests which gives the most specific data about the action of antimitotic substances.

  12. Intrafusal muscle fibre types in frog spindles.

    PubMed

    Diwan, F H; Ito, F

    1989-04-01

    Muscle spindles from bullfrog semitendinosus, iliofibularis and sartorius muscles were examined with light and electron microscopy. Four types of intrafusal muscle fibre were identified according to their diameter, central nucleation and reticular zone arrangement: a large nuclear bag fibre, a medium nuclear bag fibre, and two types of small nuclear chain fibres with and without a reticular zone, respectively. It is suggested that they are comparable to the nuclear bag1, bag2 and chain fibres in mammalian muscle spindles.

  13. LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs.

    PubMed

    Po'uha, S T; Shum, M S Y; Goebel, A; Bernard, O; Kavallaris, M

    2010-01-28

    LIM-kinase 2 (LIMK2) belongs to the LIMK family of proteins, which comprises LIMK1 and LIMK2. Both proteins regulate actin polymerization through phosphorylation and inactivation of the actin depolymerizing factor cofilin. In this study, we show that the level of LIMK2 protein is increased in neuroblastoma, BE(2)-C cells, selected for resistance to microtubule-destabilizing agents, vincristine and colchicine. However, the level of phosphorylated LIMK1 and LIMK2 was similar in the resistant and parental BE(2)-C cells. In contrast, the level of phospho-cofilin was greatly increased in the drug-resistant cells. Downregulation of LIMK2 expression increases sensitivity of neuroblastoma SH-EP cells to vincristine and vinblastine but not to microtubule-stabilizing agents, while it's overexpression increased its resistance to vincristine. Its vincristine-induced mitotic arrest was moderately inhibited in the LIMK2 knockdown cells, suggesting that the increased drug sensitivity is through an alternative mechanism other then mitotic arrest and apoptosis. Moreover, downregulation of LIMK2 expression induces formation of abnormal mitotic spindles, an effect enhanced in the presence of microtubule-destabilizing agents. LIMK2 is important for normal mitotic spindle formation and altered LIMK2 expression mediates sensitivity to microtubule destabilizing agents. These findings suggest that inhibition of LIMK2 activity may be used for the treatment of tumors resistant to microtubule-destabilizing drugs.

  14. Mitotic spindle studied using picosecond laser scissors

    NASA Astrophysics Data System (ADS)

    Baker, N. M.; Botvinick, E. L.; Shi, Linda; Berns, M. B.; Wu, George

    2006-08-01

    In previous studies we have shown that the second harmonic 532 nm, from a picosecond frequency doubled Nd:YAG laser, can cleanly and selectively disrupt spindle fiber microtubules in live cells (Botvinick et al 2004, Biophys. J. 87:4303-4212). In the present study we have ablated different locations and amounts of the metaphase mitotic spindle, and followed the cells in order to observe the fate of the irradiated spindle and the ability of the cell to continue through mitosis. Cells of the rat kangaroo line (PTK2) were stably transfected by ECFP-tubulin and, using fluorescent microscopy and the automated RoboLase microscope, (Botvinick and Berns, 2005, Micros. Res. Tech. 68:65-74) brightly fluorescent individual cells in metaphase were irradiated with 0.2447 nJ/micropulse corresponding to an irradiance of 1.4496*10^7 J/(ps*cm^2) . Upon irradiation the exposed part of the mitotic spindle immediately lost fluorescence and the following events were observed in the cells over time: (1) immediate contraction of the spindle pole towards the cut, (2) recovery of connection between pole and cut microtubule, (3) completion of mitosis. This system should be very useful in studying internal cellular dynamics of the mitotic spindle.

  15. Muscle spindles exhibit core lesions and extensive degeneration of intrafusal fibers in the Ryr1(I4895T/wt) mouse model of core myopathy.

    PubMed

    Zvaritch, Elena; MacLennan, David H

    2015-04-24

    Muscle spindles from the hind limb muscles of adult Ryr1(I4895T/wt) (IT/+) mice exhibit severe structural abnormalities. Up to 85% of the spindles are separated from skeletal muscle fascicles by a thick layer of connective tissue. Many intrafusal fibers exhibit degeneration, with Z-line streaming, compaction and collapse of myofibrillar bundles, mitochondrial clumping, nuclear shrinkage and pyknosis. The lesions resemble cores observed in the extrafusal myofibers of this animal model and of core myopathy patients. Spindle abnormalities precede those in extrafusal fibers, indicating that they are a primary pathological feature in this murine Ryr1-related core myopathy. Muscle spindle involvement, if confirmed for human core myopathy patients, would provide an explanation for an array of devastating clinical features characteristic of these diseases and provide novel insights into the pathology of RYR1-related myopathies.

  16. Dynein light intermediate chains maintain spindle bipolarity by functioning in centriole cohesion.

    PubMed

    Jones, Laura A; Villemant, Cécile; Starborg, Toby; Salter, Anna; Goddard, Georgina; Ruane, Peter; Woodman, Philip G; Papalopulu, Nancy; Woolner, Sarah; Allan, Victoria J

    2014-11-24

    Cytoplasmic dynein 1 (dynein) is a minus end-directed microtubule motor protein with many cellular functions, including during cell division. The role of the light intermediate chains (LICs; DYNC1LI1 and 2) within the complex is poorly understood. In this paper, we have used small interfering RNAs or morpholino oligonucleotides to deplete the LICs in human cell lines and Xenopus laevis early embryos to dissect the LICs' role in cell division. We show that although dynein lacking LICs drives microtubule gliding at normal rates, the LICs are required for the formation and maintenance of a bipolar spindle. Multipolar spindles with poles that contain single centrioles were formed in cells lacking LICs, indicating that they are needed for maintaining centrosome integrity. The formation of multipolar spindles via centrosome splitting after LIC depletion could be rescued by inhibiting Eg5. This suggests a novel role for the dynein complex, counteracted by Eg5, in the maintenance of centriole cohesion during mitosis.

  17. Platelet-derived growth factor over-expression in retinal progenitors results in abnormal retinal vessel formation.

    PubMed

    Edqvist, Per-Henrik D; Niklasson, Mia; Vidal-Sanz, Manuel; Hallböök, Finn; Forsberg-Nilsson, Karin

    2012-01-01

    Platelet-derived growth factor (PDGF) plays an important role in development of the central nervous system, including the retina. Excessive PDGF signaling is associated with proliferative retinal disorders. We reported previously that transgenic mice in which PDGF-B was over-expressed under control of the nestin enhancer, nes/tk-PdgfB-lacZ, exhibited enhanced apoptosis in the developing corpus striatum. These animals display enlarged lateral ventricles after birth as well as behavioral aberrations as adults. Here, we report that in contrast to the relatively mild central nervous system phenotype, development of the retina is severely disturbed in nes/tk-PdgfB-lacZ mice. In transgenic retinas all nuclear layers were disorganized and photoreceptor segments failed to develop properly. Since astrocyte precursor cells did not populate the retina, retinal vascular progenitors could not form a network of vessels. With time, randomly distributed vessels resembling capillaries formed, but there were no large trunk vessels and the intraocular pressure was reduced. In addition, we observed a delayed regression of the hyaloid vasculature. The prolonged presence of this structure may contribute to the other abnormalities observed in the retina, including the defective lamination.

  18. Cdh1 is an antagonist of the spindle assembly checkpoint.

    PubMed

    Nagai, Masayoshi; Ushimaru, Takashi

    2014-10-01

    The spindle assembly checkpoint (SAC) monitors unsatisfied connections of microtubules to kinetochores and prevents anaphase onset by inhibition of the ubiquitin ligase E3 anaphase-promoting complex or cyclosome (APC/C) in association with the activator Cdc20. Another APC/C activator, Cdh1, exists permanently throughout the cell cycle but it becomes active from telophase to G1. Here, we show that Cdh1 is partially active and mediates securin degradation even in SAC-active metaphase cells. Additionally, Cdh1 mediates Cdc20 degradation in metaphase, promoting formation of the APC/C-Cdh1. These results indicate that Cdh1 opposes the SAC and promotes anaphase transition.

  19. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  20. A defect-driven diagnostic method for machine tool spindles.

    PubMed

    Vogl, Gregory W; Donmez, M Alkan

    2015-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition.

  1. A defect-driven diagnostic method for machine tool spindles

    PubMed Central

    Vogl, Gregory W.; Donmez, M. Alkan

    2016-01-01

    Simple vibration-based metrics are, in many cases, insufficient to diagnose machine tool spindle condition. These metrics couple defect-based motion with spindle dynamics; diagnostics should be defect-driven. A new method and spindle condition estimation device (SCED) were developed to acquire data and to separate system dynamics from defect geometry. Based on this method, a spindle condition metric relying only on defect geometry is proposed. Application of the SCED on various milling and turning spindles shows that the new approach is robust for diagnosing the machine tool spindle condition. PMID:28065985

  2. Corticothalamic Feedback Controls Sleep Spindle Duration In Vivo

    PubMed Central

    Bonjean, Maxime; Baker, Tanya; Lemieux, Maxime; Timofeev, Igor; Sejnowski, Terrence; Bazhenov, Maxim

    2011-01-01

    Spindle oscillations are commonly observed during stage two of non-REM sleep. During sleep spindles, the cerebral cortex and thalamus interact through feedback connections. Both initiation and termination of spindle oscillations are thought to originate in the thalamus, based on thalamic recordings and computational models, although some in vivo results suggest otherwise. Here, we have used computer modeling and in vivo multisite recordings from the cortex and the thalamus in cats to examine the involvement of the cortex in spindle oscillations. We found that although the propagation of spindles depended on synaptic interaction within the thalamus, the initiation and termination of spindle sequences critically involved corticothalamic influences. PMID:21697364

  3. Muscle spindle and fusimotor activity in locomotion.

    PubMed

    Ellaway, Peter H; Taylor, Anthony; Durbaba, Rade

    2015-08-01

    Mammals may exhibit different forms of locomotion even within a species. A particular form of locomotion (e.g. walk, run, bound) appears to be selected by supraspinal commands, but the precise pattern, i.e. phasing of limbs and muscles, is generated within the spinal cord by so-called central pattern generators. Peripheral sense organs, particularly the muscle spindle, play a crucial role in modulating the central pattern generator output. In turn, the feedback from muscle spindles is itself modulated by static and dynamic fusimotor (gamma) neurons. The activity of muscle spindle afferents and fusimotor neurons during locomotion in the cat is reviewed here. There is evidence for some alpha-gamma co-activation during locomotion involving static gamma motoneurons. However, both static and dynamic gamma motoneurons show patterns of modulation that are distinct from alpha motoneuron activity. It has been proposed that static gamma activity may drive muscle spindle secondary endings to signal the intended movement to the central nervous system. Dynamic gamma motoneuron drive appears to prime muscle spindle primary endings to signal transitions in phase of the locomotor cycle. These findings come largely from reduced animal preparations (decerebrate) and require confirmation in freely moving intact animals.

  4. The bipolar kinesin, KLP61F, cross-links microtubules within interpolar microtubule bundles of Drosophila embryonic mitotic spindles.

    PubMed

    Sharp, D J; McDonald, K L; Brown, H M; Matthies, H J; Walczak, C; Vale, R D; Mitchison, T J; Scholey, J M

    1999-01-11

    Previous genetic and biochemical studies have led to the hypothesis that the essential mitotic bipolar kinesin, KLP61F, cross-links and slides microtubules (MTs) during spindle assembly and function. Here, we have tested this hypothesis by immunofluorescence and immunoelectron microscopy (immunoEM). We show that Drosophila embryonic spindles at metaphase and anaphase contain abundant bundles of MTs running between the spindle poles. These interpolar MT bundles are parallel near the poles and antiparallel in the midzone. We have observed that KLP61F motors, phosphorylated at a cdk1/cyclin B consensus domain within the BimC box (BCB), localize along the length of these interpolar MT bundles, being concentrated in the midzone region. Nonphosphorylated KLP61F motors, in contrast, are excluded from the spindle and display a cytoplasmic localization. Immunoelectron microscopy further suggested that phospho-KLP61F motors form cross-links between MTs within interpolar MT bundles. These bipolar KLP61F MT-MT cross-links should be capable of organizing parallel MTs into bundles within half spindles and sliding antiparallel MTs apart in the spindle midzone. Thus we propose that bipolar kinesin motors and MTs interact by a "sliding filament mechanism" during the formation and function of the mitotic spindle.

  5. Use of abnormal and health psychology as topics in a classroom format to reduce alcohol and other drug abuse among college students at risk.

    PubMed

    Miley, W M

    2001-12-01

    This study was done to assess whether classes containing topics derived from two college courses, Abnormal Psychology and Health Psychology, could be used in a class room format to reduce alcohol and other drug abuse among at-risk college students. Topics covered included stress and stress management, alcohol and other drug use and abuse, chronic illnesses and psychological disorders that develop from an unhealthy lifestyle, and factors that play a role in good health and well-being. Students were enrolled in a semester-long course for college credit as an alternative to punitive sanctions for on-campus alcohol violations and other drug violations. The Midwest Institute on Drug Use Survey and the CORE Alcohol and Drug Survey were administered on the first and last days of class. Analysis indicated a significant self-reported reduction in drug use and associated negative symptoms and behavioral effects. Women were more likely to report reductions in drug use than men.

  6. Rare Case of Spindle Cell Haemangioma

    PubMed Central

    Chavva, Sunanda; Garlapati, Komali; Reddy, G. Siva Prasad; Gannepalli, Ashalata

    2015-01-01

    Spindle cell haemangioma (SCH) is a benign vascular lesion which usually occurs on distal extremities. It was previously regarded as haemangioendothelioma and was initially perceived to be low grade angiosarcoma.They are characterized by cavernous blood vessels and spindle cell proliferation. It is now considered as a reactive lesion and conservative surgical excision is preferred treatment. Intraoral occurrence is rare; hence we present a case of SCH in a 33-year-old male that presented as a swelling below the tongue. Histopathology showed well circumscribed proliferating spindle cells attached to vessel walls, dilated vascular spaces. The lesion was positive for CD31 and CD34 markers suggesting it to be of endothelial cell origin. PMID:26266229

  7. Cytoplasmic Volume Modulates Spindle Size During Embryogenesis

    PubMed Central

    Good, Matthew C.; Vahey, Michael D.; Skandarajah, Arunan; Fletcher, Daniel A.; Heald, Rebecca

    2014-01-01

    Rapid and reductive cell divisions during embryogenesis require that intracellular structures adapt to a wide range of cell sizes. The mitotic spindle presents a central example of this flexibility, scaling with the dimensions of the cell to mediate accurate chromosome segregation. To determine whether spindle size regulation is achieved through a developmental program or is intrinsically specified by cell size or shape, we developed a system to encapsulate cytoplasm from Xenopus eggs and embryos inside cell-like compartments of defined sizes. Spindle size was observed to shrink with decreasing compartment size, similar to what occurs during early embryogenesis, and this scaling trend depended on compartment volume rather than shape. Thus, the amount of cytoplasmic material provides a mechanism for regulating the size of intracellular structures. PMID:24233724

  8. Spindle pole mechanics studied in mitotic asters: dynamic distribution of spindle forces through compliant linkages.

    PubMed

    Charlebois, Blake D; Kollu, Swapna; Schek, Henry T; Compton, Duane A; Hunt, Alan J

    2011-04-06

    During cell division, chromosomes must faithfully segregate to maintain genome integrity, and this dynamic mechanical process is driven by the macromolecular machinery of the mitotic spindle. However, little is known about spindle mechanics. For example, spindle microtubules are organized by numerous cross-linking proteins yet the mechanical properties of those cross-links remain unexplored. To examine the mechanical properties of microtubule cross-links we applied optical trapping to mitotic asters that form in mammalian mitotic extracts. These asters are foci of microtubules, motors, and microtubule-associated proteins that reflect many of the functional properties of spindle poles and represent centrosome-independent spindle-pole analogs. We observed bidirectional motor-driven microtubule movements, showing that microtubule linkages within asters are remarkably compliant (mean stiffness 0.025 pN/nm) and mediated by only a handful of cross-links. Depleting the motor Eg5 reduced this stiffness, indicating that Eg5 contributes to the mechanical properties of microtubule asters in a manner consistent with its localization to spindle poles in cells. We propose that compliant linkages among microtubules provide a mechanical architecture capable of accommodating microtubule movements and distributing force among microtubules without loss of pole integrity-a mechanical paradigm that may be important throughout the spindle.

  9. Spindle Assembly and Chromosome Segregation Requires Central Spindle Proteins in Drosophila Oocytes

    PubMed Central

    Das, Arunika; Shah, Shital J.; Fan, Bensen; Paik, Daniel; DiSanto, Daniel J.; Hinman, Anna Maria; Cesario, Jeffry M.; Battaglia, Rachel A.; Demos, Nicole; McKim, Kim S.

    2016-01-01

    Oocytes segregate chromosomes in the absence of centrosomes. In this situation, the chromosomes direct spindle assembly. It is still unclear in this system which factors are required for homologous chromosome bi-orientation and spindle assembly. The Drosophila kinesin-6 protein Subito, although nonessential for mitotic spindle assembly, is required to organize a bipolar meiotic spindle and chromosome bi-orientation in oocytes. Along with the chromosomal passenger complex (CPC), Subito is an important part of the metaphase I central spindle. In this study we have conducted genetic screens to identify genes that interact with subito or the CPC component Incenp. In addition, the meiotic mutant phenotype for some of the genes identified in these screens were characterized. We show, in part through the use of a heat-shock-inducible system, that the Centralspindlin component RacGAP50C and downstream regulators of cytokinesis Rho1, Sticky, and RhoGEF2 are required for homologous chromosome bi-orientation in metaphase I oocytes. This suggests a novel function for proteins normally involved in mitotic cell division in the regulation of microtubule–chromosome interactions. We also show that the kinetochore protein, Polo kinase, is required for maintaining chromosome alignment and spindle organization in metaphase I oocytes. In combination our results support a model where the meiotic central spindle and associated proteins are essential for acentrosomal chromosome segregation. PMID:26564158

  10. The spindle protein CHICA mediates localization of the chromokinesin Kid to the mitotic spindle.

    PubMed

    Santamaria, Anna; Nagel, Susanna; Sillje, Herman H W; Nigg, Erich A

    2008-05-20

    Microtubule-based motor proteins provide essential forces for bipolar organization of spindle microtubules and chromosome movement, prerequisites of chromosome segregation during the cell cycle. Here, we describe the functional characterization of a novel spindle protein, termed "CHICA," that was originally identified in a proteomic survey of the human spindle apparatus [1]. We show that CHICA localizes to the mitotic spindle and is both upregulated and phosphorylated during mitosis. CHICA-depleted cells form shorter spindles and fail to organize a proper metaphase plate, highly reminiscent of the phenotype observed upon depletion of the chromokinesin Kid, a key mediator of polar ejection forces [2-6]. We further show that CHICA coimmunoprecipitates with Kid and is required for the spindle localization of Kid without affecting its chromosome association. Moreover, upon depletion of either CHICA or Kid (or both proteins simultaneously), chromosomes collapse onto the poles of monastrol-induced monopolar spindles. We conclude that CHICA represents a novel interaction partner of the chromokinesin Kid that is required for the generation of polar ejection forces and chromosome congression.

  11. The CENP-A NAC/CAD kinetochore complex controls chromosome congression and spindle bipolarity.

    PubMed

    McClelland, Sarah E; Borusu, Satyarebala; Amaro, Ana C; Winter, Jennifer R; Belwal, Mukta; McAinsh, Andrew D; Meraldi, Patrick

    2007-12-12

    Kinetochores are complex protein machines that link chromosomes to spindle microtubules and contain a structural core composed of two conserved protein-protein interaction networks: the well-characterized KMN (KNL1/MIND/NDC80) and the recently identified CENP-A NAC/CAD. Here we show that the CENP-A NAC/CAD subunits can be assigned to one of two different functional classes; depletion of Class I proteins (Mcm21R(CENP-O) and Fta1R(CENP-L)) causes a failure in bipolar spindle assembly. In contrast, depletion of Class II proteins (CENP-H, Chl4R(CENP-N), CENP-I and Sim4R(CENP-K)) prevents binding of Class I proteins and causes chromosome congression defects, but does not perturb spindle formation. Co-depletion of Class I and Class II proteins restores spindle bipolarity, suggesting that Class I proteins regulate or counteract the function of Class II proteins. We also demonstrate that CENP-A NAC/CAD and KMN regulate kinetochore-microtubule attachments independently, even though CENP-A NAC/CAD can modulate NDC80 levels at kinetochores. Based on our results, we propose that the cooperative action of CENP-A NAC/CAD subunits and the KMN network drives efficient chromosome segregation and bipolar spindle assembly during mitosis.

  12. EGFR controls IQGAP basolateral membrane localization and mitotic spindle orientation during epithelial morphogenesis

    PubMed Central

    Bañón-Rodríguez, Inmaculada; Gálvez-Santisteban, Manuel; Vergarajauregui, Silvia; Bosch, Minerva; Borreguero-Pascual, Arantxa; Martín-Belmonte, Fernando

    2014-01-01

    Establishing the correct orientation of the mitotic spindle is an essential step in epithelial cell division in order to ensure that epithelial tubules form correctly during organ development and regeneration. While recent findings have identified some of the molecular mechanisms that underlie spindle orientation, many aspects of this process remain poorly understood. Here, we have used the 3D-MDCK model system to demonstrate a key role for a newly identified protein complex formed by IQGAP1 and the epithelial growth factor receptor (EGFR) in controlling the orientation of the mitotic spindle. IQGAP1 is a scaffolding protein that regulates many cellular pathways, from cell-cell adhesion to microtubule organization, and its localization in the basolateral membrane ensures correct spindle orientation. Through its IQ motifs, IQGAP1 binds to EGFR, which is responsible for maintaining IQGAP1 in the basolateral membrane domain. Silencing IQGAP1, or disrupting the basolateral localization of either IQGAP1 or EGFR, results in a non-polarized distribution of NuMA, mitotic spindle misorientation and defects in single lumen formation. PMID:24421325

  13. The Rho GTP exchange factor Lfc promotes spindle assembly in early mitosis

    PubMed Central

    Bakal, Christopher J.; Finan, Dina; LaRose, José; Wells, Clark D.; Gish, Gerald; Kulkarni, Sarang; DeSepulveda, Paulo; Wilde, Andrew; Rottapel, Robert

    2005-01-01

    Rho GTPases regulate reorganization of actin and microtubule cytoskeletal structures during both interphase and mitosis. The timing and subcellular compartment in which Rho GTPases are activated is controlled by the large family of Rho GTP exchange factors (RhoGEFs). Here, we show that the microtubule-associated RhoGEF Lfc is required for the formation of the mitotic spindle during prophase/prometaphase. The inability of cells to assemble a functioning spindle after Lfc inhibition resulted in a delay in mitosis and an accumulation of prometaphase cells. Inhibition of Lfc's primary target Rho GTPase during prophase/prometaphase, or expression of a catalytically inactive mutant of Lfc, also prevented normal spindle assembly and resulted in delays in mitotic progression. Coinjection of constitutively active Rho GTPase rescued the spindle defects caused by Lfc inhibition, suggesting the requirement of RhoGTP in regulating spindle assembly. Lastly, we implicate mDia1 as an important effector of Lfc signaling. These findings demonstrate a role for Lfc, Rho, and mDia1 during mitosis. PMID:15976019

  14. Compartmentalized Toxoplasma EB1 bundles spindle microtubules to secure accurate chromosome segregation

    PubMed Central

    Chen, Chun-Ti; Kelly, Megan; de Leon, Jessica; Nwagbara, Belinda; Ebbert, Patrick; Ferguson, David J. P.; Lowery, Laura Anne; Morrissette, Naomi; Gubbels, Marc-Jan

    2015-01-01

    Toxoplasma gondii replicates asexually by a unique internal budding process characterized by interwoven closed mitosis and cytokinesis. Although it is known that the centrosome coordinates these processes, the spatiotemporal organization of mitosis remains poorly defined. Here we demonstrate that centrosome positioning around the nucleus may signal spindle assembly: spindle microtubules (MTs) are first assembled when the centrosome moves to the basal side and become extensively acetylated after the duplicated centrosomes reposition to the apical side. We also tracked the spindle MTs using the MT plus end–binding protein TgEB1. Endowed by a C-terminal NLS, TgEB1 resides in the nucleoplasm in interphase and associates with the spindle MTs during mitosis. TgEB1 also associates with the subpellicular MTs at the growing end of daughter buds toward the completion of karyokinesis. Depletion of TgEB1 results in escalated disintegration of kinetochore clustering. Furthermore, we show that TgEB1’s MT association in Toxoplasma and in a heterologous system (Xenopus) is based on the same principles. Finally, overexpression of a high-MT-affinity TgEB1 mutant promotes the formation of overstabilized MT bundles, resulting in avulsion of otherwise tightly clustered kinetochores. Overall we conclude that centrosome position controls spindle activity and that TgEB1 is critical for mitotic integrity. PMID:26466679

  15. Aurora B suppresses microtubule dynamics and limits central spindle size by locally activating KIF4A

    PubMed Central

    Nunes Bastos, Ricardo; Gandhi, Sapan R.; Baron, Ryan D.; Gruneberg, Ulrike; Nigg, Erich A.

    2013-01-01

    Anaphase central spindle formation is controlled by the microtubule-stabilizing factor PRC1 and the kinesin KIF4A. We show that an MKlp2-dependent pool of Aurora B at the central spindle, rather than global Aurora B activity, regulates KIF4A accumulation at the central spindle. KIF4A phosphorylation by Aurora B stimulates the maximal microtubule-dependent ATPase activity of KIF4A and promotes its interaction with PRC1. In the presence of phosphorylated KIF4A, microtubules grew more slowly and showed long pauses in growth, resulting in the generation of shorter PRC1-stabilized microtubule overlaps in vitro. Cells expressing only mutant forms of KIF4A lacking the Aurora B phosphorylation site overextended the anaphase central spindle, demonstrating that this regulation is crucial for microtubule length control in vivo. Aurora B therefore ensures that suppression of microtubule dynamic instability by KIF4A is restricted to a specific subset of microtubules and thereby contributes to central spindle size control in anaphase. PMID:23940115

  16. Nup98 regulates bipolar spindle assembly through association with microtubules and opposition of MCAK

    PubMed Central

    Cross, Marie K.; Powers, Maureen A.

    2011-01-01

    During mitosis, the nuclear pore complex is disassembled and, increasingly, nucleoporins are proving to have mitotic functions when released from the pore. We find a contribution of the nucleoporin Nup98 to mitotic spindle assembly through regulation of microtubule dynamics. When added to Xenopus extract spindle assembly assays, the C-terminal domain of Nup98 stimulates uncontrolled growth of microtubules. Conversely, inhibition or depletion of Nup98 leads to formation of stable monopolar spindles. Spindle bipolarity is restored by addition of purified, recombinant Nup98 C-terminus. The minimal required region of Nup98 corresponds to a portion of the C-terminal domain lacking a previously characterized function. We show association between this region of the C-terminus of Nup98 and both Taxol-stabilized microtubules and the microtubule-depolymerizing mitotic centromere–associated kinesin (MCAK). Importantly, we demonstrate that this domain of Nup98 inhibits MCAK depolymerization activity in vitro. These data support a model in which Nup98 interacts with microtubules and antagonizes MCAK activity, thus promoting bipolar spindle assembly. PMID:21209315

  17. Suppression of aflatoxin B1-induced lipid abnormalities and macromolecule-adduct formation by L-carnitine.

    PubMed

    Sachan, D S; Yatim, A M

    1992-01-01

    The fatty liver and hypolipidemia caused by aflatoxin B1 (AFB1) were studied in male Sprague-Dawley rats fed Purina Rat Chow with or without L-carnitine supplement for 6 weeks. In Experiment 1, the rats (n = 20) were divided into four groups, i.e., nonsupplemented control (NSC), nonsupplemented AFB1 (NSA), carnitine supplemented control (CSC), and carnitine supplemented AFB1 (CSA). The NSA and CSA groups were given an oral dose of [3H]AFB1 (1 mg/kg) 6 hr before kill. In Experiment 2 (n = 10) there were only NSA and CSA groups and they were killed 24 hr post-AFB1 administration. Hepatic and plasma concentrations of total lipid, triglycerides, AFB1-macromolecules adducts and urinary excretion of AFB1 were determined. Carnitine supplementation ameliorated AFB1-induced hepatic steatosis and hypolipidemia. Supplementary carnitine reduced covalent binding of AFB1 to hepatic DNA, RNA, and protein. The carnitine effect was more pronounced after 24 hr than after 6 hr of AFB1 treatment. We conclude that supplementary carnitine suppressed AFB1-induced fatty liver and AFB1-macromolecule adduct formation in the rat.

  18. Dynactin-dependent cortical dynein and spherical spindle shape correlate temporally with meiotic spindle rotation in Caenorhabditis elegans

    PubMed Central

    Crowder, Marina E.; Flynn, Jonathan R.; McNally, Karen P.; Cortes, Daniel B.; Price, Kari L.; Kuehnert, Paul A.; Panzica, Michelle T.; Andaya, Armann; Leary, Julie A.; McNally, Francis J.

    2015-01-01

    Oocyte meiotic spindles orient with one pole juxtaposed to the cortex to facilitate extrusion of chromosomes into polar bodies. In Caenorhabditis elegans, these acentriolar spindles initially orient parallel to the cortex and then rotate to the perpendicular orientation. To understand the mechanism of spindle rotation, we characterized events that correlated temporally with rotation, including shortening of the spindle in the pole-to pole axis, which resulted in a nearly spherical spindle at rotation. By analyzing large spindles of polyploid C. elegans and a related nematode species, we found that spindle rotation initiated at a defined spherical shape rather than at a defined spindle length. In addition, dynein accumulated on the cortex just before rotation, and microtubules grew from the spindle with plus ends outward during rotation. Dynactin depletion prevented accumulation of dynein on the cortex and prevented spindle rotation independently of effects on spindle shape. These results support a cortical pulling model in which spindle shape might facilitate rotation because a sphere can rotate without deforming the adjacent elastic cytoplasm. We also present evidence that activation of spindle rotation is promoted by dephosphorylation of the basic domain of p150 dynactin. PMID:26133383

  19. Sleep spindles in Parkinson's disease may predict the development of dementia.

    PubMed

    Latreille, Véronique; Carrier, Julie; Lafortune, Marjolaine; Postuma, Ronald B; Bertrand, Josie-Anne; Panisset, Michel; Chouinard, Sylvain; Gagnon, Jean-François

    2015-02-01

    Sleep disturbances and cognitive impairment are common non-motor manifestations of Parkinson's disease (PD). Recent studies suggest that sleep spindles and slow waves play a role in brain plasticity mechanisms and are associated with cognitive performance. However, it remains unknown whether these sleep parameters could serve as markers of cognitive decline in PD. Therefore, we examined whether alterations in sleep spindles and slow waves at baseline visit were associated with increased likelihood of developing dementia at follow-up in PD. Sixty-eight nondemented PD patients (64.9 ± 8.8 years old; 46 men) participated in the study, along with 47 healthy individuals (65.0 ± 10.6 years old; 30 men). All participants underwent baseline polysomnographic recording and a comprehensive neuropsychological assessment. Sleep spindles (12-15 Hz) and slow waves (>75 μV and <4 Hz) were automatically detected on all-night non-rapid eye movement sleep electroencephalography. At follow-up (mean: 4.5 years later), 18 PD patients developed dementia (70.2 ± 7.6 years old; 13 men) and 50 remained dementia-free (63.0 ± 8.5 years old; 33 men). Sleep spindle density and amplitude were lower in PD patients who converted to dementia compared with both patients who remained dementia-free and controls, mostly in posterior cortical regions (p < 0.05). Dementia-free PD patients were intermediate between dementia patients and controls, with lower baseline sleep spindle density in all cortical areas compared with controls (p < 0.01). In demented PD patients, lower sleep spindle amplitude in parietal and occipital areas was associated with poorer visuospatial abilities. Although slow wave amplitude was lower in PD patients compared with controls (p < 0.0001), no difference was observed between those who developed or did not develop dementia. Results demonstrate non-rapid eye movement sleep electroencephalographic abnormalities in PD patients. Sleep spindle activity was particularly impaired

  20. Zona pellucida birefringence and meiotic spindle visualisation of human oocytes are not influenced by IVM technology.

    PubMed

    Omidi, Marjan; Khalili, Mohammad Ali; Ashourzadeh, Sareh; Rahimipour, Marzieh

    2014-03-01

    The aim of the present study was to investigate the relationship between the presence of the meiotic spindle and zona pellucida (ZP) birefringence with morphology of in vivo- and in vitro-matured human oocytes. Germinal vesicles (n=47) and MI (n=38) oocytes obtained from stimulated ovaries of patients undergoing intracytoplasmic sperm injection (ICSI) underwent IVM. Using a PolScope (OCTAX PolarAID; Octax, Herbon, Germany), the presence of spindles and ZP birefringence was assessed in both in vivo-matured (n=56) and IVM (n=56) oocytes. In addition, the morphology of each matured oocyte was evaluated microscopically. There were insignificant differences for ZP birefringence and meiotic spindle between the in vivo-matured and IVM MII oocytes. Subanalysis revealed that the rates of morphologically abnormal oocytes did not differ significantly between the two groups, except in the case of irregular shape (P=0.001), refractile body (P=0.001) and fragmented polar body (P=0.03), which were higher in IVM oocytes. In the case of in vivo-matured oocytes, a significantly higher percentage of oocytes with intracytoplasmic and both intra- and extracytoplasmic abnormalities have a low birefringent ZP (P=0.007 and P=0.02, respectively). There was no relationship between morphological abnormalities and spindle detection. The findings suggest that clinical IVM is a safe technology that maintains the high maturation rate and integrity of oocytes. In addition, the use of the non-invasive PolScope is recommended for the detection of oocytes most suitable for ICSI.

  1. The Phosphatase PP4c Controls Spindle Orientation to Maintain Proliferative Symmetric Divisions in the Developing Neocortex

    PubMed Central

    Xie, Yunli; Jüschke, Christoph; Esk, Christopher; Hirotsune, Shinji; Knoblich, Juergen A.

    2013-01-01

    Summary In the developing neocortex, progenitor cells expand through symmetric division before they generate cortical neurons through multiple rounds of asymmetric cell division. Here, we show that the orientation of the mitotic spindle plays a crucial role in regulating the transition between those two division modes. We demonstrate that the protein phosphatase PP4c regulates spindle orientation in early cortical progenitor cells. Upon removing PP4c, mitotic spindles fail to orient in parallel to the neuroepithelial surface and progenitors divide with random orientation. As a result, their divisions become asymmetric and neurogenesis starts prematurely. Biochemical and genetic experiments show that PP4c acts by dephosphorylating the microtubule binding protein Ndel1, thereby enabling complex formation with Lis1 to form a functional spindle orientation complex. Our results identify a key regulator of cortical development and demonstrate that changes in the orientation of progenitor division are responsible for the transition between symmetric and asymmetric cell division. PMID:23830831

  2. Spindle position control by embedded electromagnetic poles

    NASA Astrophysics Data System (ADS)

    Tsai, N.-C.; Lee, R.-M.

    2010-10-01

    A novel embedded cylindrical-array magnetic actuator (ECAMA) is proposed and verified by experiments to provide sufficient magnetic force for spindle deviation regulation of high-speed milling process. Four I-shape silicon steel columns enclosing the spindle constitute the backbone of the ECAMA. The shape of modified concave-type yokes is designed to reduce the average air gap between magnetic poles and the spindle. In contrast to the conventional AMB (active magnetic bearing) design for which coils are usually wound on the yokes, the copper wire is wound on the I-shape silicon steel columns. As a result, the overall wound coil turns can be much increased. In other words, stronger magnetic force can be induced by ECAMA. On the other hand, to reduce the cost of ECAMA, two pairs of self-sensing modules are employed to replace the gap sensors for measurement of spindle position deviation. In order to verify the efficacy of the proposed ECAMA and the self-sensing module, high-speed milling tests are undertaken. By inspection on the precision and quality of the finish surface of workpiece, the superiority of ECAMA and the self-sensing module are assured.

  3. Spinning Wool with a Hand Spindle.

    ERIC Educational Resources Information Center

    Kren, Margo

    1982-01-01

    Describes an eight-week program in which 8- to 14-year-olds learned to spin raw wool into yarn. Students observed wool shearing at a sheep farm, learned to prepare wool for spinning, and spun their own yarn. Detail directions for carding and use of hand spindles are included. (AM)

  4. Abnormal early cleavage events predict early embryo demise: sperm oxidative stress and early abnormal cleavage.

    PubMed

    Burruel, Victoria; Klooster, Katie; Barker, Christopher M; Pera, Renee Reijo; Meyers, Stuart

    2014-10-13

    Human embryos resulting from abnormal early cleavage can result in aneuploidy and failure to develop normally to the blastocyst stage. The nature of paternal influence on early embryo development has not been directly demonstrated although many studies have suggested effects from spermatozoal chromatin packaging, DNA damage, centriolar and mitotic spindle integrity, and plasma membrane integrity. The goal of this study was to determine whether early developmental events were affected by oxidative damage to the fertilizing sperm. Survival analysis was used to compare patterns of blastocyst formation based on P2 duration. Kaplan-Meier survival curves demonstrate that relatively few embryos with short (<1 hr) P2 times reached blastocysts, and the two curves diverged beginning on day 4, with nearly all of the embryos with longer P2 times reaching blastocysts by day 6 (p < .01). We determined that duration of the 2nd to 3rd mitoses were sensitive periods in the presence of spermatozoal oxidative stress. Embryos that displayed either too long or too short cytokineses demonstrated an increased failure to reach blastocyst stage and therefore survive for further development. Although paternal-derived gene expression occurs later in development, this study suggests a specific role in early mitosis that is highly influenced by paternal factors.

  5. UV microbeam irradiations of the mitotic spindle. II. Spindle fiber dynamics and force production

    SciTech Connect

    Spurck, T.P.; Stonington, O.G.; Snyder, J.A.; Pickett-Heaps, J.D.; Bajer, A.; Mole-Bajer, J. )

    1990-10-01

    Metaphase and anaphase spindles in cultured newt and PtK1 cells were irradiated with a UV microbeam (285 nM), creating areas of reduced birefringence (ARBs) in 3 s that selectively either severed a few fibers or cut across the half spindle. In either case, the birefringence at the polewards edge of the ARB rapidly faded polewards, while it remained fairly constant at the other, kinetochore edge. Shorter astral fibers, however, remained present in the enlarged ARB; presumably these had not been cut by the irradiation. After this enlargement of the ARB, metaphase spindles recovered rapidly as the detached pole moved back towards the chromosomes, reestablishing spindle fibers as the ARB closed; this happened when the ARB cut a few fibers or across the entire half spindle. We never detected elongation of the cut kinetochore fibers. Rather, astral fibers growing from the pole appeared to bridge and then close the ARB, just before the movement of the pole toward the chromosomes. When a second irradiation was directed into the closing ARB, the polewards movement again stopped before it restarted. In all metaphase cells, once the pole had reestablished connection with the chromosomes, the unirradiated half spindle then also shortened to create a smaller symmetrical spindle capable of normal anaphase later. Anaphase cells did not recover this way; the severed pole remained detached but the chromosomes continued a modified form of movement, clumping into a telophase-like group. The results are discussed in terms of controls operating on spindle microtubule stability and mechanisms of mitotic force generation.

  6. Physiological evidence for involvement of a kinesin-related protein during anaphase spindle elongation in diatom central spindles

    PubMed Central

    1992-01-01

    We have developed a new model system for studying spindle elongation in vitro using the pennate, marine diatom Cylindrotheca fusiformis. C. fusiformis can be grown in bulk to high densities while in log phase growth and synchronized by a simple light/dark regime. Isolated spindles can be attained in quantities sufficient for biochemical analysis and spindle tubulin is approximately 5% of the total protein present. The spindle isolation procedure results in a 10-fold enrichment of diatom tubulin and a calculated 40-fold increase in spindle protein. Isolated spindles or spindles in permeabilized cells can elongate in vitro by the same mechanism and with the same pharmacological sensitivities as described for other anaphase B models (Cande and McDonald, 1986; Masuda et al., 1990). Using this model, in vitro spindle elongation rate profiles were developed for a battery of nucleotide triphosphates and ATP analogs. The relative rates of spindle elongation produced by various nucleotide triphosphates parallel relative rates seen for kinesin-based motility in microtubule gliding assays. Likewise ATP analogs that allow discrimination between myosin-, dynein-, and kinesin-mediated motility produce relative spindle elongation rates characteristic of kinesin motility. Also, isolated spindle fractions are enriched for a kinesin related protein as identified by a peptide antibody against a conserved region of the kinesin superfamily. These data suggest that kinesin-like motility contributes to spindle elongation during anaphase B of mitosis. PMID:1447302

  7. A Functional Mitotic Spindle Prepared from Mammalian Cells in Culture

    PubMed Central

    Cande, W. Zacheus; Snyder, Judith; Smith, Diana; Summers, Keith; McIntosh, J. R.

    1974-01-01

    Mitotic cells lysed into solutions of polymerizable microtubule protein contain a spindle which is similar to the living spindle in two respects: it will lose and gain birefringence when cooled and warmed, and it will move anaphase chromosomes to the opposite ends of the cell. Early anaphase cells lysed into buffers containing high molecular weight polyethylene glycol and nucleotide triphosphates will continue chromosome motion and spindle elongation in the absence of exogenous spindle subunits. These results suggest that while spindle growth requires microtubule polymerization, anaphase motions do not. Images PMID:4524659

  8. Kinesin spindle protein SiRNA slows tumor progression.

    PubMed

    Marra, Emanuele; Palombo, Fabio; Ciliberto, Gennaro; Aurisicchio, Luigi

    2013-01-01

    The kinesin spindle protein (KSP), a member of the kinesin superfamily of microtubule-based motors, plays a critical role in mitosis as it mediates centrosome separation and bipolar spindle assembly and maintenance. Inhibition of KSP function leads to cell cycle arrest at mitosis with the formation of monoastral microtubule arrays, and ultimately, to cell death. Several KSP inhibitors are currently being studied in clinical trials and provide new opportunities for the development of novel anticancer therapeutics. RNA interference (RNAi) may represent a powerful strategy to interfere with key molecular pathways involved in cancer. In this study, we have established an efficient method for intratumoral delivery of siRNA. We evaluated short interfering RNA (siRNA) duplexes targeting luciferase as surrogate marker or KSP sequence. To examine the potential feasibility of RNAi therapy, the siRNA was transfected into pre-established lesions by means of intratumor electro-transfer of RNA therapeutics (IERT). This technology allowed cell permeation of the nucleic acids and to efficiently knock down gene expression, albeit transiently. The KSP-specific siRNA drastically reduced outgrowth of subcutaneous melanoma and ovarian cancer lesions. Our results show that intratumoral electro-transfer of siRNA is feasible and KSP-specific siRNA may provide a novel strategy for therapeutic intervention.

  9. Leukocyte abnormalities.

    PubMed

    Gabig, T G

    1980-07-01

    Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.

  10. Pten regulates spindle pole movement through Dlg1-mediated recruitment of Eg5 to centrosomes

    PubMed Central

    van Ree, Janine H.; Nam, Hyun-Ja; Jeganathan, Karthik B.; Kanakkanthara, Arun; van Deursen, Jan M.

    2016-01-01

    Phosphatase and tensin homologue (Pten) suppresses neoplastic growth by negatively regulating PI(3)K signalling through its phosphatase activity1. To gain insight into the actions of non-catalytic Pten domains in normal physiological processes and tumorigenesis2,3, we engineered mice lacking the PDZ-binding domain (PDZ-BD). Here, we show that the PDZ-BD regulates centrosome movement and that its heterozygous or homozygous deletion promotes aneuploidy and tumour formation. We found that Pten is recruited to pre-mitotic centrosomes in a Plk1-dependent fashion to create a docking site for protein complexes containing the PDZ-domain-containing protein Dlg1 (also known as Sap97) and Eg5 (also known as Kif11), a kinesin essential for centrosome movement and bipolar spindle formation4. Docking of Dlg1–Eg5 complexes to Pten depended on Eg5 phosphorylation by the Nek9–Nek6 mitotic kinase cascade and Cdk1. PDZ-BD deletion or Dlg1 ablation impaired loading of Eg5 onto centrosomes and spindle pole motility, yielding asymmetrical spindles that are prone to chromosome missegregation. Collectively, these data demonstrate that Pten, through the Dlg1-binding ability of its PDZ-BD, accumulates phosphorylated Eg5 at duplicated centrosomes to establish symmetrical bipolar spindles that properly segregate chromosomes, and suggest that this function contributes to tumour suppression. PMID:27240320

  11. The human Ino80 binds to microtubule via the E-hook of tubulin: Implications for the role in spindle assembly

    SciTech Connect

    Park, Eun-Jung; Hur, Shin-Kyoung; Lee, Han-Sae; Lee, Shin-Ai; Kwon, Jongbum

    2011-12-16

    Highlights: Black-Right-Pointing-Pointer The N-terminal domain of hIno80 is important for binding to the spindle. Black-Right-Pointing-Pointer The hIno80 N-terminal domain binds to tubulin and microtubule in vitro. Black-Right-Pointing-Pointer The E-hook of tubulin is critical for hIno80 binding to tubulin and microtubule. Black-Right-Pointing-Pointer Tip49a does not bind to microtubule and dispensable for spindle formation. -- Abstract: The human INO80 chromatin remodeling complex, comprising the Ino80 ATPase (hIno80) and the associated proteins such as Tip49a, has been implicated in a variety of nuclear processes other than transcription. We previously have found that hIno80 interacts with tubulin and co-localizes with the mitotic spindle and is required for spindle formation. To better understand the role of hIno80 in spindle formation, we further investigated the interaction between hIno80 and microtubule. Here, we show that the N-terminal domain, dispensable for the nucleosome remodeling activity, is important for hIno80 to interact with tubulin and co-localize with the spindle. The hIno80 N-terminal domain binds to monomeric tubulin and polymerized microtubule in vitro, and the E-hook of tubulin, involved in the polymerization of microtubule, is critical for this binding. Tip49a, which has been reported to associate with the spindle, does not bind to microtubule in vitro and dispensable for spindle formation in vivo. These results suggest that hIno80 can play a direct role in the spindle assembly independent of its chromatin remodeling activity.

  12. Mitotic Spindle Positioning in Breast Cancer

    DTIC Science & Technology

    2009-10-01

    5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Tirnauer, Jennifer S. M.D. 5d. PROJECT NUMBER Email: tirnauer@uchc.edu 5e. TASK...SUPPLEMENTARY NOTES 14. ABSTRACT The purpose of this project was to determine whether mitotic spindle position differs in benign versus malignant...postdoc working on the project has left, I want to re-visit the experiments with MCF-10A cells using serum free media. 15. SUBJECT TERMS breast

  13. Spindle alignment regulates the dynamic association of checkpoint proteins with yeast spindle pole bodies.

    PubMed

    Caydasi, Ayse Koca; Pereira, Gislene

    2009-01-01

    In many polarized cells, the accuracy of chromosome segregation depends on the correct positioning of the mitotic spindle. In budding yeast, the spindle positioning checkpoint (SPOC) delays mitotic exit when the anaphase spindle fails to extend toward the mother-daughter axis. However it remains to be established how spindle orientation is translated to SPOC components at the yeast spindle pole bodies (SPB). Here, we used photobleaching techniques to show that the dynamics with which Bub2-Bfa1 turned over at SPBs significantly increased upon SPOC activation. A version of Bfa1 that was stably associated with SPBs rendered the cells SPOC deficient without affecting other Bub2-Bfa1 functions, demonstrating the functional importance of regulating the dynamics of Bfa1 SPB association. In addition, we established that the SPOC kinase Kin4 is the major regulator of Bfa1 residence time at SPBs. We suggest that upon SPOC activation Bfa1-Bub2 spreads throughout the cytoplasm, thereby inhibiting mitotic exit.

  14. A Balance between Nuclear and Cytoplasmic Volumes Controls Spindle Length

    PubMed Central

    Novakova, Lucia; Kovacovicova, Kristina; Dang-Nguyen, Thanh Quang; Sodek, Martin; Skultety, Michal; Anger, Martin

    2016-01-01

    Proper assembly of the spindle apparatus is crucially important for faithful chromosome segregation during anaphase. Thanks to the effort over the last decades, we have very detailed information about many events leading to spindle assembly and chromosome segregation, however we still do not understand certain aspects, including, for example, spindle length control. When tight regulation of spindle size is lost, chromosome segregation errors emerge. Currently, there are several hypotheses trying to explain the molecular mechanism of spindle length control. The number of kinetochores, activity of molecular rulers, intracellular gradients, cell size, limiting spindle components, and the balance of the spindle forces seem to contribute to spindle size regulation, however some of these mechanisms are likely specific to a particular cell type. In search for a general regulatory mechanism, in our study we focused on the role of cell size and nuclear to cytoplasmic ratio in this process. To this end, we used relatively large cells isolated from 2-cell mouse embryos. Our results showed that the spindle size upper limit is not reached in these cells and suggest that accurate control of spindle length requires balanced ratio between nuclear and cytoplasmic volumes. PMID:26886125

  15. Physical Description of Mitotic Spindle Orientation During Cell Division

    NASA Astrophysics Data System (ADS)

    Jiménez-Dalmaroni, Andrea; Théry, Manuel; Racine, Victor; Bornens, Michel; Jülicher, Frank

    2009-03-01

    During cell division, the duplicated chromosomes are physically separated by the action of the mitotic spindle. The spindle is a dynamic structure of the cytoskeleton, which consists of two microtubule asters. Its orientation defines the axis along which the cell divides. Recent experiments show that the spindle orientation depends on the spatial distribution of cell adhesion sites. Here we show that the experimentally observed spindle orientation can be understood as the result of the action of cortical force generators acting on the spindle. We assume that the local activity of force generators is controlled by the spatial distribution of cell adhesion sites determined by the particular geometry of the adhesive substrate. We develop a simple physical description of the spindle mechanics, which allows us to calculate the torque acting on the spindle, as well as the energy profile and the angular distribution of spindle orientation. Our model accounts for the preferred spindle orientation, as well as the full shape of the angular distributions of spindle orientation observed in a large variety of pattern geometries. M. Th'ery, A. Jim'enez-Dalmaroni, et al., Nature 447, 493 (2007).

  16. Sleep spindles and intelligence: evidence for a sexual dimorphism.

    PubMed

    Ujma, Péter P; Konrad, Boris Nikolai; Genzel, Lisa; Bleifuss, Annabell; Simor, Péter; Pótári, Adrián; Körmendi, János; Gombos, Ferenc; Steiger, Axel; Bódizs, Róbert; Dresler, Martin

    2014-12-03

    Sleep spindles are thalamocortical oscillations in nonrapid eye movement sleep, which play an important role in sleep-related neuroplasticity and offline information processing. Sleep spindle features are stable within and vary between individuals, with, for example, females having a higher number of spindles and higher spindle density than males. Sleep spindles have been associated with learning potential and intelligence; however, the details of this relationship have not been fully clarified yet. In a sample of 160 adult human subjects with a broad IQ range, we investigated the relationship between sleep spindle parameters and intelligence. In females, we found a positive age-corrected association between intelligence and fast sleep spindle amplitude in central and frontal derivations and a positive association between intelligence and slow sleep spindle duration in all except one derivation. In males, a negative association between intelligence and fast spindle density in posterior regions was found. Effects were continuous over the entire IQ range. Our results demonstrate that, although there is an association between sleep spindle parameters and intellectual performance, these effects are more modest than previously reported and mainly present in females. This supports the view that intelligence does not rely on a single neural framework, and stronger neural connectivity manifesting in increased thalamocortical oscillations in sleep is one particular mechanism typical for females but not males.

  17. Equilibrium stellar systems with spindle singularities

    NASA Technical Reports Server (NTRS)

    Shapiro, Stuart L.; Teukolsky, Saul A.

    1992-01-01

    Equilibrium sequences of axisymmetric Newtonian clusters that tend toward singular states are constructed. The distribution functions are chosen to be of the form f = f(E, Jz). The numerical method then determines the density and gravitational potential self-consistently to satisfy Poisson's equation. For the prolate models, spindle singularities arise from the depletion of angular momentum near the symmetry axis. While the resulting density enhancement is confined to the region near the axis, the influence of the spindle extends much further out through its tidal gravitational field. Centrally condensed prolate clusters may contain strong-field regions even though the spindle mass is small and the mean cluster eccentricity is not extreme. While the calculations performed here are entirely Newtonian, the issue of singularities is an important topic in general relativity. Equilibrium solutions for relativistic star clusters can provide a testing ground for exploring this issue. The methods used in this paper for building nonspherical clusters can be extended to relativistic systems.

  18. Adaptive Spindle Balancing Using Magnetically Levitated Bearings

    SciTech Connect

    BARNEY,PATRICK S.; LAUFFER,JAMES P.; PETTEYS,REBECCA; REDMOND,JAMES M.; SULLIVAN,WILLIAM N.

    1999-09-20

    A technological break through for supporting rotating shafts is the active magnetic bearing (AMB). Active magnetic bearings offer some important advantages over conventional ball, roller or journal bearings such as reduced frictional drag, no physical contact in the bearing, no need for lubricants, compatibility with high vacuum and ultra-clean environments, and ability to control shaft position within the bearing. The disadvantages of the AMB system are the increased cost and complexity, reduced bearing stiffness and the need for a controller. Still, there are certain applications, such as high speed machining, biomedical devices, and gyroscopes, where the additional cost of an AMB system can be justified. The inherent actuator capabilities of the AMB offer the potential for active balancing of spindles and micro-shaping capabilities for machine tools, The work presented in this paper concentrates on an AMB test program that utilizes the actuator capability to dynamically balance a spindle. In this study, an unbalanced AMB spindle system was enhanced with an LMS (Least Mean Squares) algorithm combined with an existing PID (proportional, integral, differential) control. This enhanced controller significantly improved the concentricity of an intentionally unbalanced shaft. The study included dynamic system analysis, test validation, control design and simulation, as well as experimental implementation using a digital LMS controller.

  19. Simplified Dynamic Analysis of Grinders Spindle Node

    NASA Astrophysics Data System (ADS)

    Demec, Peter

    2014-12-01

    The contribution deals with the simplified dynamic analysis of surface grinding machine spindle node. Dynamic analysis is based on the use of the transfer matrix method, which is essentially a matrix form of method of initial parameters. The advantage of the described method, despite the seemingly complex mathematical apparatus, is primarily, that it does not require for solve the problem of costly commercial software using finite element method. All calculations can be made for example in MS Excel, which is advantageous especially in the initial stages of constructing of spindle node for the rapid assessment of the suitability its design. After detailing the entire structure of spindle node is then also necessary to perform the refined dynamic analysis in the environment of FEM, which it requires the necessary skills and experience and it is therefore economically difficult. This work was developed within grant project KEGA No. 023TUKE-4/2012 Creation of a comprehensive educational - teaching material for the article Production technique using a combination of traditional and modern information technology and e-learning.

  20. Biotin-deficient diet induces chromosome misalignment and spindle defects in mouse oocytes.

    PubMed

    Tsuji, Ai; Nakamura, Toshinobu; Shibata, Katsumi

    2015-01-01

    Increased abnormal oocytes due to meiotic chromosome misalignment and spindle defects lead to elevated rates of infertility, miscarriage, and trisomic conceptions. Here, we investigated the effect of biotin deficiency on oocyte quality. Three-week-old female ICR mice were fed a biotin-deficient or control diet (0, 0.004 g biotin/kg diet) for 21 days. On day 22, these mouse oocytes were analyzed by immunofluorescence. Due to biotin, undernutrition increased the frequency of abnormal oocytes (the biotin deficient vs. control: 40 vs. 16%). Next, the remaining mice in the biotin-deficient group were fed a control or biotin-deficient diet from day 22 to 42. Although biotin nutritional status in the recovery group was restored, the frequency of abnormal oocytes in the recovery group was still higher than that in the control group (48 vs. 18%). Our results indicate that steady, sufficient biotin intake is required for the production of high-quality oocytes in mice.

  1. Identified Cellular Correlates of Neocortical Ripple and High-Gamma Oscillations during Spindles of Natural Sleep.

    PubMed

    Averkin, Robert G; Szemenyei, Viktor; Bordé, Sándor; Tamás, Gábor

    2016-11-23

    Ultra-high-frequency network events in the hippocampus are instrumental in a dialogue with the neocortex during memory formation, but the existence of transient ∼200 Hz network events in the neocortex is not clear. Our recordings from neocortical layer II/III of freely behaving rats revealed field potential events at ripple and high-gamma frequencies repeatedly occurring at troughs of spindle oscillations during sleep. Juxtacellular recordings identified subpopulations of fast-spiking, parvalbumin-containing basket cells with epochs of firing at ripple (∼200 Hz) and high-gamma (∼120 Hz) frequencies detected during spindles and centered with millisecond precision at the trough of spindle waves in phase with field potential events but phase shifted relative to pyramidal cell firing. The results suggest that basket cell subpopulations are involved in spindle-nested, high-frequency network events that hypothetically provide repeatedly occurring neocortical temporal reference states potentially involved in mnemonic processes.

  2. ABNORMAL POLLEN VACUOLATION1 (APV1) is required for male fertility by contributing to anther cuticle and pollen exine formation in maize.

    PubMed

    Somaratne, Yamuna; Tian, Youhui; Zhang, Hua; Wang, Mingming; Huo, Yanqing; Cao, Fengge; Zhao, Li; Chen, Huabang

    2017-01-12

    Anther cuticle and pollen exine are the major protective barriers against various stresses. The proper functioning of genes expressed in the tapetum is vital for the development of pollen exine and anther cuticle. In this study, we report a tapetum-specific gene, Abnormal Pollen Vacuolation1 (APV1), in maize that affects anther cuticle and pollen exine formation. The apv1 mutant was completely male sterile. Its microspores were swollen, less vacuolated, with a flat and empty anther locule. In the mutant, the anther epidermal surface was smooth, shiny, and plate-shaped compared with the three-dimensional crowded ridges and randomly formed wax crystals on the epidermal surface of the wild-type. The wild-type mature pollen had elaborate exine patterning, whereas the apv1 pollen surface was smooth. Only a few unevenly distributed Ubisch bodies were formed on the apv1 mutant, leading to a more apparent inner surface. A significant reduction in the cutin monomers was observed in the mutant. APV1 encodes a member of the P450 subfamily, CYP703A2-Zm, which contains 530 amino acids. APV1 appeared to be widely expressed in the tapetum at the vacuolation stage, and its protein signal co-localized with the endoplasmic reticulum (ER) signal. RNA-Seq data revealed that most of the genes in the fatty acid metabolism pathway were differentially expressed in the apv1 mutant. Altogether, we suggest that APV1 functions in the fatty acid hydroxylation pathway which is involved in forming sporopollenin precursors and cutin monomers that are essential for the development of pollen exine and anther cuticle in maize.

  3. Mitotic Spindle Assembly in Land Plants: Molecules and Mechanisms

    PubMed Central

    Yamada, Moé; Goshima, Gohta

    2017-01-01

    In textbooks, the mitotic spindles of plants are often described separately from those of animals. How do they differ at the molecular and mechanistic levels? In this chapter, we first outline the process of mitotic spindle assembly in animals and land plants. We next discuss the conservation of spindle assembly factors based on database searches. Searches of >100 animal spindle assembly factors showed that the genes involved in this process are well conserved in plants, with the exception of two major missing elements: centrosomal components and subunits/regulators of the cytoplasmic dynein complex. We then describe the spindle and phragmoplast assembly mechanisms based on the data obtained from robust gene loss-of-function analyses using RNA interference (RNAi) or mutant plants. Finally, we discuss future research prospects of plant spindles. PMID:28125061

  4. The muscle spindle as a feedback element in muscle control

    NASA Technical Reports Server (NTRS)

    Andrews, L. T.; Iannone, A. M.; Ewing, D. J.

    1973-01-01

    The muscle spindle, the feedback element in the myotatic (stretch) reflex, is a major contributor to muscular control. Therefore, an accurate description of behavior of the muscle spindle during active contraction of the muscle, as well as during passive stretch, is essential to the understanding of muscle control. Animal experiments were performed in order to obtain the data necessary to model the muscle spindle. Spectral density functions were used to identify a linear approximation of the two types of nerve endings from the spindle. A model reference adaptive control system was used on a hybrid computer to optimize the anatomically defined lumped parameter estimate of the spindle. The derived nonlinear model accurately predicts the behavior of the muscle spindle both during active discharge and during its silent period. This model is used to determine the mechanism employed to control muscle movement.

  5. The spindle checkpoint and chromosome segregation in meiosis.

    PubMed

    Gorbsky, Gary J

    2015-07-01

    The spindle checkpoint is a key regulator of chromosome segregation in mitosis and meiosis. Its function is to prevent precocious anaphase onset before chromosomes have achieved bipolar attachment to the spindle. The spindle checkpoint comprises a complex set of signaling pathways that integrate microtubule dynamics, biomechanical forces at the kinetochores, and intricate regulation of protein interactions and post-translational modifications. Historically, many key observations that gave rise to the initial concepts of the spindle checkpoint were made in meiotic systems. In contrast with mitosis, the two distinct chromosome segregation events of meiosis present a special challenge for the regulation of checkpoint signaling. Preservation of fidelity in chromosome segregation in meiosis, controlled by the spindle checkpoint, also has a significant impact in human health. This review highlights the contributions from meiotic systems in understanding the spindle checkpoint as well as the role of checkpoint signaling in controlling the complex divisions of meiosis.

  6. Forces positioning the mitotic spindle: Theories, and now experiments.

    PubMed

    Wu, Hai-Yin; Nazockdast, Ehssan; Shelley, Michael J; Needleman, Daniel J

    2017-02-01

    The position of the spindle determines the position of the cleavage plane, and is thus crucial for cell division. Although spindle positioning has been extensively studied, the underlying forces ultimately responsible for moving the spindle remain poorly understood. A recent pioneering study by Garzon-Coral et al. uses magnetic tweezers to perform the first direct measurements of the forces involved in positioning the mitotic spindle. Combining this with molecular perturbations and geometrical effects, they use their data to argue that the forces that keep the spindle in its proper position for cell division arise from astral microtubules growing and pushing against the cell's cortex. Here, we review these ground-breaking experiments, the various biomechanical models for spindle positioning that they seek to differentiate, and discuss new questions raised by these measurements.

  7. Morphogenesis of the mitotic and meiotic spindle: Conclusions obtained from one system are not necessarily applicable to the other

    SciTech Connect

    Rieder, C.L.; Ault, J.G.; Eichenlaub-Ritter, U.; Sluder, G.

    1993-12-31

    Chromosome distribution during both mitosis and meiosis is effected by the {open_quotes}spindle{close_quotes}, a complex ensemble formed from an interaction between chromosomes and microtubules (MTs). One of the most important characteristics of the spindle is its bipolar structure, established as it forms during prometaphase, which ensures that the replicated chromosomes are segregated equivalently to two daughter cells. A major goal of cell division research is to understand the mechanism of spindle morphogenesis and how bipolarity is established. Because they are relatively flat and easily obtained year-round, spermatocytes, especially those from insects, have been a favored material for the study of animal cell division since the process was first described by Flemming in the late 1800`s. Like living cultured cells, spindle formation in spermatocytes can be detailed by all forms of light microscopy (LM), and cells followed in vivo can be fixed and processed for a subsequent analysis with the electron microscope (EM). Unfortunately, with the exception of a few marine organisms, the large size and opaque nature of most oocytes impedes a detailed analysis of their meiosis in vivo. As a result, information regarding spindle formation and function during meiosis in oocytes is typically derived from EM or immunofluorescent (IMF) studies of fixed cells or cell-free oocyte extracts.

  8. Rapid measurement of mitotic spindle orientation in cultured mammalian cells

    PubMed Central

    Decarreau, Justin; Driver, Jonathan; Asbury, Charles; Wordeman, Linda

    2014-01-01

    Summary Factors that influence the orientation of the mitotic spindle are important for the maintenance of stem cell populations and in cancer development. However, screening for these factors requires rapid quantification of alterations of the angle of the mitotic spindle in cultured cell lines. Here we describe a method to image mitotic cells and rapidly score the angle of the mitotic spindle using a simple MATLAB application to analyze a stack of Z-images. PMID:24633791

  9. Form and Function of Sleep Spindles across the Lifespan

    PubMed Central

    Clawson, Brittany C.; Durkin, Jaclyn; Aton, Sara J.

    2016-01-01

    Since the advent of EEG recordings, sleep spindles have been identified as hallmarks of non-REM sleep. Despite a broad general understanding of mechanisms of spindle generation gleaned from animal studies, the mechanisms underlying certain features of spindles in the human brain, such as “global” versus “local” spindles, are largely unknown. Neither the topography nor the morphology of sleep spindles remains constant throughout the lifespan. It is likely that changes in spindle phenomenology during development and aging are the result of dramatic changes in brain structure and function. Across various developmental windows, spindle activity is correlated with general cognitive aptitude, learning, and memory; however, these correlations vary in strength, and even direction, depending on age and metrics used. Understanding these differences across the lifespan should further clarify how these oscillations are generated and their function under a variety of circumstances. We discuss these issues, and their translational implications for human cognitive function. Because sleep spindles are similarly affected in disorders of neurodevelopment (such as schizophrenia) and during aging (such as neurodegenerative conditions), both types of disorders may benefit from therapies based on a better understanding of spindle function. PMID:27190654

  10. Combination spindle-drive system for high precision machining

    DOEpatents

    Gerth, Howard L.

    1977-07-26

    A combination spindle-drive is provided for fabrication of optical quality surface finishes. Both the spindle-and-drive utilize the spindle bearings for support, thereby removing the conventional drive-means bearings as a source of vibration. An airbearing spindle is modified to carry at the drive end a highly conductive cup-shaped rotor which is aligned with a stationary stator to produce torque in the cup-shaped rotor through the reaction of eddy currents induced in the rotor. This arrangement eliminates magnetic attraction forces and all force is in the form of torque on the cup-shaped rotor.

  11. Hice1, a Novel Microtubule-Associated Protein Required for Maintenance of Spindle Integrity and Chromosomal Stability in Human Cells▿ †

    PubMed Central

    Wu, Guikai; Lin, Yi-Tzu; Wei, Randy; Chen, Yumay; Shan, Zhiyin; Lee, Wen-Hwa

    2008-01-01

    Spindle integrity is critical for efficient mitotic progression and accurate chromosome segregation. Deregulation of spindles often leads to structural and functional aberrations, ultimately promoting segregation errors and aneuploidy, a hallmark of most human cancers. Here we report the characterization of a previously identified human sarcoma antigen (gene located at 19p13.11), Hice1, an evolutionarily nonconserved 46-kDa coiled-coil protein. Hice1 shows distinct cytoplasmic localization and associates with interphase centrosomes and mitotic spindles, preferentially at the spindle pole vicinity. Depletion of Hice1 by RNA interference resulted in abnormal and unstable spindle configurations, mitotic delay at prometaphase and metaphase, and elevated aneuploidy. Conversely, loss of Hice1 had minimal effects on interphase centrosome duplication. We also found that both full-length Hice1 and Hice1-N1, which is composed of 149 amino acids of the N-terminal region, but not the mutant lacking the N-terminal region, exhibited activities of microtubule bundling and stabilization at a near-physiological concentration. Consistently, overexpression of Hice1 rendered microtubule bundles in cells resistant to nocodazole- or cold-treatment-induced depolymerization. These results demonstrate that Hice1 is a novel microtubule-associated protein important for maintaining spindle integrity and chromosomal stability, in part by virtue of its ability to bind, bundle, and stabilize microtubules. PMID:18362163

  12. Triphenyltin chloride induces spindle microtubule depolymerisation and inhibits meiotic maturation in mouse oocytes.

    PubMed

    Shen, Yu-Ting; Song, Yue-Qiang; He, Xiao-Qin; Zhang, Fei; Huang, Xin; Liu, Yu; Ding, Lu; Xu, Lin; Zhu, Mao-Bi; Hu, Wen-Feng; Qi, Zhong-Quan; Wang, Hai-Long; Yang, Xiang-Jun

    2014-10-01

    Meiosis produces haploid gametes for sexual reproduction. Triphenyltin chloride (TPTCL) is a highly bioaccumulated and toxic environmental oestrogen; however, its effect on oocyte meiosis remains unknown. We examined the effect of TPTCL on mouse oocyte meiotic maturation in vitro and in vivo. In vitro, TPTCL inhibited germinal vesicle breakdown (GVBD) and first polar body extrusion (PBE) in a dose-dependent manner. The spindle microtubules completely disassembled and the chromosomes condensed after oocytes were exposed to 5 or 10μgmL(-1) TPTCL. γ-Tubulin protein was abnormally localised near chromosomes rather than on the spindle poles. In vivo, mice received TPTCL by oral gavage for 10 days. The general condition of the mice deteriorated and the ovary coefficient was reduced (P<0.05). The number of secondary and mature ovarian follicles was significantly reduced by 10mgkg(-1) TPTCL (P<0.05). GVBD decreased in a non-significant, dose-dependent manner (P>0.05). PBE was inhibited with 10mgkg(-1) TPTCL (P<0.05). The spindles of in vitro and in vivo metaphase II oocytes were disassembled with 10mgkg(-1) TPTCL. These results suggest that TPTCL seriously affects meiotic maturation by disturbing cell-cycle progression, disturbing the microtubule cytoskeleton and inhibiting follicle development in mouse oocytes.

  13. Cytoskeletal abnormalities in relation with meiotic competence and ageing in porcine and bovine oocytes during in vitro maturation.

    PubMed

    Somfai, T; Kikuchi, K; Kaneda, M; Akagi, S; Watanabe, S; Mizutani, E; Haraguchi, S; Dang-Nguyen, T Q; Inaba, Y; Geshi, M; Nagai, T

    2011-10-01

    We investigated the frequencies of cytoskeletal anomalies in metaphase-II (M-II) and incompetent [arrested at an immature metaphase (IM) stage] porcine and bovine oocytes during in vitro maturation (IVM) in relation with ageing by immunostaining and confocal microscopy. In porcine oocytes, meiotic arrest at the IM stage was associated with abnormalities of cortical actin but not with abnormal spindles. Prolongation of IVM culture to 52 h did not affect microfilament and spindle abnormalities, but reduced the microfilament-rich area overlaying the spindle. Meiotic arrest of bovine oocytes at the IM stage was associated with degenerations of microfilaments, and the frequencies of abnormal spindles were also higher than those of M-II oocytes. Ageing of bovine oocytes (IVM for 30 h) did not affect cortical microfilaments but increased the frequency of spindle alterations in both M-II and IM bovine oocytes. These results suggest that, in both species, altered ability of oocytes to polymerize F-actin might be a possible reason for the failure of polar body extrusion during IVM. Also, there seem to be differences between the two species in the sensitivity of oocytes to suffer ageing-related spindle damages.

  14. Downregulation of protein 4.1R, a mature centriole protein, disrupts centrosomes, alters cell cycle progression, and perturbs mitotic spindles and anaphase.

    PubMed

    Krauss, Sharon Wald; Spence, Jeffrey R; Bahmanyar, Shirin; Barth, Angela I M; Go, Minjoung M; Czerwinski, Debra; Meyer, Adam J

    2008-04-01

    Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events.

  15. XCTK2: A Kinesin-related Protein That Promotes Mitotic Spindle Assembly in Xenopus laevis Egg Extracts

    PubMed Central

    Walczak, Claire E.; Verma, Suzie; Mitchison, Timothy J.

    1997-01-01

    We used a peptide antibody to a conserved sequence in the motor domain of kinesins to screen a Xenopus ovary cDNA expression library. Among the clones isolated were two that encoded a protein we named XCTK2 for Xenopus COOH-terminal kinesin 2. XCTK2 contains an NH2-terminal globular domain, a central α-helical stalk, and a COOH-terminal motor domain. XCTK2 is similar to CTKs in other organisms and is most homologous to CHO2. Antibodies raised against XCTK2 recognize a 75-kD protein in Xenopus egg extracts that cosediments with microtubules. In Xenopus tissue culture cells, the anti-XCTK2 antibodies stain mitotic spindles as well as a subset of interphase nuclei. To probe the function of XCTK2, we have used an in vitro assay for spindle assembly in Xenopus egg extracts. Addition of antibodies to cytostatic factor- arrested extracts causes a 70% reduction in the percentage of bipolar spindles formed. XCTK2 is not required for maintenance of bipolar spindles, as antibody addition to preformed spindles has no effect. To further evaluate the function of XCTK2, we expressed XCTK2 in insect Sf-9 cells using the baculovirus expression system. When purified (recombinant XCTK2 is added to Xenopus egg extracts at a fivefold excess over endogenous levels) there is a stimulation in both the rate and extent of bipolar spindle formation. XCTK2 exists in a large complex in extracts and can be coimmunoprecipitated with two other proteins from extracts. XCTK2 likely plays an important role in the establishment and structural integrity of mitotic spindles. PMID:9049251

  16. Sleep Spindle Density Predicts the Effect of Prior Knowledge on Memory Consolidation

    PubMed Central

    Lambon Ralph, Matthew A.; Kempkes, Marleen; Cousins, James N.; Lewis, Penelope A.

    2016-01-01

    Information that relates to a prior knowledge schema is remembered better and consolidates more rapidly than information that does not. Another factor that influences memory consolidation is sleep and growing evidence suggests that sleep-related processing is important for integration with existing knowledge. Here, we perform an examination of how sleep-related mechanisms interact with schema-dependent memory advantage. Participants first established a schema over 2 weeks. Next, they encoded new facts, which were either related to the schema or completely unrelated. After a 24 h retention interval, including a night of sleep, which we monitored with polysomnography, participants encoded a second set of facts. Finally, memory for all facts was tested in a functional magnetic resonance imaging scanner. Behaviorally, sleep spindle density predicted an increase of the schema benefit to memory across the retention interval. Higher spindle densities were associated with reduced decay of schema-related memories. Functionally, spindle density predicted increased disengagement of the hippocampus across 24 h for schema-related memories only. Together, these results suggest that sleep spindle activity is associated with the effect of prior knowledge on memory consolidation. SIGNIFICANCE STATEMENT Episodic memories are gradually assimilated into long-term memory and this process is strongly influenced by sleep. The consolidation of new information is also influenced by its relationship to existing knowledge structures, or schemas, but the role of sleep in such schema-related consolidation is unknown. We show that sleep spindle density predicts the extent to which schemas influence the consolidation of related facts. This is the first evidence that sleep is associated with the interaction between prior knowledge and long-term memory formation. PMID:27030764

  17. Reduced O-GlcNAcase expression promotes mitotic errors and spindle defects.

    PubMed

    Lanza, Chris; Tan, Ee Phie; Zhang, Zhen; Machacek, Miranda; Brinker, Amanda E; Azuma, Mizuki; Slawson, Chad

    2016-05-18

    Alterations in O-GlcNAc cycling, the addition and removal of O-GlcNAc, lead to mitotic defects and increased aneuploidy. Herein, we generated stable O-GlcNAcase (OGA, the enzyme that removes O-GlcNAc) knockdown HeLa cell lines and characterized the effect of the reduction in OGA activity on cell cycle progression. After release from G1/S, the OGA knockdown cells progressed normally through S phase but demonstrated mitotic exit defects. Cyclin A was increased in the knockdown cells while Cyclin B and D expression was reduced. Retinoblastoma protein (RB) phosphorylation was also increased in the knockdown compared to control. At M phase, the knockdown cells showed more compact spindle chromatids than control cells and had a greater percentage of cells with multipolar spindles. Furthermore, the timing of the inhibitory tyrosine phosphorylation of Cyclin Dependent Kinase 1 (CDK1) was altered in the OGA knockdown cells. Although expression and localization of the chromosomal passenger protein complex (CPC) was unchanged, histone H3 threonine 3 phosphorylation was decreased in one of the OGA knockdown cell lines. The Ewing Sarcoma Breakpoint Region 1 Protein (EWS) participates in organizing the CPC at the spindle and is a known substrate for O-GlcNAc transferase (OGT, the enzyme that adds O-GlcNAc). EWS O-GlcNAcylation was significantly increased in the OGA knockdown cells promoting uneven localization of the mitotic midzone. Our data suggests that O-GlcNAc cycling is an essential mechanism for proper mitotic signaling and spindle formation, and alterations in the rate of O-GlcNAc cycling produces aberrant spindles and promotes aneuploidy.

  18. Functional autonomy of monopolar spindle and evidence for oscillatory movement in mitosis

    PubMed Central

    1982-01-01

    The oscillations of chromosomes associated with a single spindle pole in monocentric and bipolar spindles were analysed by time-lapse cinematography in mitosis of primary cultures of lung epithelium from the newt Taricha granulosa. Chromosomes oscillate toward and away from the pole in all stages of mitosis including anaphase. The duration, velocity, and amplitude of such oscillations are the same in all stages of mitosis. The movement away from the pole in monocentric spindle is rapid enough to suggest the existence of a previously unrecognized active component in chromosome movement, presumably resulting from a pushing action of the kinetochore fiber. During prometaphase oscillations, chromosomes may approach the pole even more closely than at the end of anaphase. Together, these observations demonstrate that a monopolar spindle is sufficient to generate the forces for chromosome transport, both toward and away from the pole. The coordination of the aster/centrosome migration in prophase with the development of the kinetochore fibers determines the course of mitosis. After the breaking of the nuclear envelope in normal mitosis, aster/centrosome separation is normally followed by the rapid formation of bipolar chromosomal fibers. There are two aberrant extremes that may result from a failure in coordination between these processes: (a) A monocentric spindle will arise when aster separation does not occur, and (b) an anaphaselike prometaphase will result if the aster/centrosomal complexes are already well-separated and bipolar chromosomal fibers do not form. In the latter case, the two monopolar prometaphase half-spindles migrate apart, each containing a random number of two chromatid (metaphase) monopolar-oriented chromosomes. This random segregation of prometaphase chromosome displays many features of a standard anaphase and may be followed by a false cleavage. The process of polar separation during prometaphase occurs without any visible interzonal structures

  19. Egr3-dependent muscle spindle stretch receptor intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.

    PubMed

    Oliveira Fernandes, Michelle; Tourtellotte, Warren G

    2015-04-08

    Muscle stretch proprioceptors (muscle spindles) are required for stretch reflexes and locomotor control. Proprioception abnormalities are observed in many human neuropathies, but the mechanisms involved in establishing and maintaining muscle spindle innervation and function are still poorly understood. During skeletal muscle development, sensory (Ia-afferent) innervation induces contacted myotubes to transform into intrafusal muscle fibers that form the stretch receptor core. The transcriptional regulator Egr3 is induced in Ia-afferent contacted myotubes by Neuregulin1 (Nrg1)/ErbB receptor signaling and it has an essential role in spindle morphogenesis and function. Because Egr3 is widely expressed during development and has a pleiotropic function, whether Egr3 functions primarily in skeletal muscle, Ia-afferent neurons, or in Schwann cells that myelinate Ia-afferent axons remains unresolved. In the present studies, cell-specific ablation of Egr3 in mice showed that it has a skeletal muscle autonomous function in stretch receptor development. Moreover, using genetic tracing, we found that Ia-afferent contacted Egr3-deficient myotubes were induced in normal numbers, but their development was blocked to generate one to two shortened fibers that failed to express some characteristic myosin heavy chain (MyHC) proteins. These "spindle remnants" persisted into adulthood, remained innervated by Ia-afferents, and expressed neurotrophin3 (NT3), which is required for Ia-afferent neuron survival. However, they were not innervated by fusimotor axons and they did not express glial derived neurotrophic factor (GDNF), which is essential for fusimotor neuron survival. These results demonstrate that Egr3 has an essential role in regulating gene expression that promotes normal intrafusal muscle fiber differentiation and fusimotor innervation homeostasis.

  20. Abnormalities of gonadal differentiation.

    PubMed

    Berkovitz, G D; Seeherunvong, T

    1998-04-01

    Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.

  1. The Erk MAP kinase pathway is activated at muscle spindles and is required for induction of the muscle spindle-specific gene Egr3 by neuregulin1.

    PubMed

    Herndon, Carter A; Ankenbruck, Nick; Fromm, Larry

    2014-02-01

    Muscle spindles are sensory receptors composed of specialized muscle fibers, known as intrafusal muscle fibers, along with the endings of sensory neuron axons that innervate these muscle fibers. Formation of muscle spindles requires neuregulin1 (NRG1), which is released by sensory axons, activating ErbB receptors in muscle cells that are contacted. The transcription factor Egr3 is transcriptionally induced by NRG1, which in turn activates various target genes involved in forming intrafusal fibers. We have previously shown that, in cultured muscle cells, NRG1 signaling activates the Egr3 gene through SRF and CREB, which bind to a composite regulatory element, and that NRG1 signaling targets SRF by stimulating nuclear translocation of SRF coactivators myocardin-related transcription factor (MRTF)-A and MRTF-B and targets CREB by phosphorylation. The current studies examined signaling relays that might function in the NRG1 pathway upstream of SRF and CREB. We found that transcriptional induction of Egr3 in response to NRG1 requires the MAP kinase Erk1/2, which acts upstream of CREB to induce its phosphorylation. MRTFs are targeted by the Rho-actin pathway, yet in the absence of Rho-actin signaling, even though MRTFs fail to be translocated to the nucleus, NRG1 induces Egr3 transcription. In mouse muscle in vivo, activation of Erk1/2 is enhanced selectively where muscle spindles are located. These results suggest that Erk1/2 acts in intrafusal fibers of muscle spindles to induce transcription of Egr3 and that Egr3 induction occurs independently of MRTFs and involves Erk1/2 acting on other transcriptional regulatory targets that interact with the SRF-CREB regulatory element.

  2. Ultrasound assisted synthesis of monoclinic structured spindle BiVO4 particles with hollow structure and its photocatalytic property.

    PubMed

    Liu, Wei; Cao, Lixin; Su, Ge; Liu, Haisong; Wang, Xiangfei; Zhang, Lan

    2010-04-01

    Bismuth vanadate (BiVO(4)) spindle particles with monoclinic scheelite structure have been successfully synthesized via a facile sonochemical method. The as-prepared BiVO(4) photocatalyst exhibited a hollow interior structure constructed from the self-assembly of cone shape primary nanocrystals. A possible oriented attachment growth mechanism has been proposed based on the results of time-dependent experiments, which indicates the formation of spindle particles is mainly attributed to the phase transformation procedure induced by ultrasound irradiation. A series of morphology evolutions of BiVO(4) from compact microspheres, to hollow microspheres, and then to spindle particles have been arrested in the process of sonochemical treatment. Optical absorption experiments revealed the BiVO(4) spindle had strong absorption in the visible light region. A much higher photocatalytic activity of these spindle particles was found in comparison with the SSR-BiVO(4) material for degradation of rhodamine-B under visible light irradiation, which may be ascribed to its special single-crystalline nanostructure.

  3. Correlations between adolescent processing speed and specific spindle frequencies

    PubMed Central

    Nader, Rebecca S.; Smith, Carlyle T.

    2015-01-01

    Sleep spindles are waxing and waning thalamocortical oscillations with accepted frequencies of between 11 and 16 Hz and a minimum duration of 0.5 s. Our research has suggested that there is spindle activity in all of the sleep stages, and thus for the present analysis we examined the link between spindle activity (Stage 2, rapid eye movement (REM) and slow wave sleep (SWS)) and waking cognitive abilities in 32 healthy adolescents. After software was used to filter frequencies outside the desired range, slow spindles (11.00–13.50 Hz), fast spindles (13.51–16.00 Hz) and spindle-like activity (16.01–18.50 Hz) were observed in Stage 2, SWS and REM sleep. Our analysis suggests that these specific EEG frequencies were significantly related to processing speed, which is one of the subscales of the intelligence score, in adolescents. The relationship was prominent in SWS and REM sleep. Further, the spindle-like activity (16.01–18.50 Hz) that occurred during SWS was strongly related to processing speed. Results suggest that the ability of adolescents to respond to tasks in an accurate, efficient and timely manner is related to their sleep quality. These findings support earlier research reporting relationships between learning, learning potential and sleep spindle activity in adults and adolescents. PMID:25709575

  4. Monitoring Method of Cutting Force by Using Additional Spindle Sensors

    NASA Astrophysics Data System (ADS)

    Sarhan, Ahmed Aly Diaa; Matsubara, Atsushi; Sugihara, Motoyuki; Saraie, Hidenori; Ibaraki, Soichi; Kakino, Yoshiaki

    This paper describes a monitoring method of cutting forces for end milling process by using displacement sensors. Four eddy-current displacement sensors are installed on the spindle housing of a machining center so that they can detect the radial motion of the rotating spindle. Thermocouples are also attached to the spindle structure in order to examine the thermal effect in the displacement sensing. The change in the spindle stiffness due to the spindle temperature and the speed is investigated as well. Finally, the estimation performance of cutting forces using the spindle displacement sensors is experimentally investigated by machining tests on carbon steel in end milling operations under different cutting conditions. It is found that the monitoring errors are attributable to the thermal displacement of the spindle, the time lag of the sensing system, and the modeling error of the spindle stiffness. It is also shown that the root mean square errors between estimated and measured amplitudes of cutting forces are reduced to be less than 20N with proper selection of the linear stiffness.

  5. HURP permits MTOC sorting for robust meiotic spindle bipolarity, similar to extra centrosome clustering in cancer cells.

    PubMed

    Breuer, Manuel; Kolano, Agnieszka; Kwon, Mijung; Li, Chao-Chin; Tsai, Ting-Fen; Pellman, David; Brunet, Stéphane; Verlhac, Marie-Hélène

    2010-12-27

    In contrast to somatic cells, formation of acentriolar meiotic spindles relies on the organization of microtubules (MTs) and MT-organizing centers (MTOCs) into a stable bipolar structure. The underlying mechanisms are still unknown. We show that this process is impaired in hepatoma up-regulated protein (Hurp) knockout mice, which are viable but female sterile, showing defective oocyte divisions. HURP accumulates on interpolar MTs in the vicinity of chromosomes via Kinesin-5 activity. By promoting MT stability in the spindle central domain, HURP allows efficient MTOC sorting into distinct poles, providing bipolarity establishment and maintenance. Our results support a new model for meiotic spindle assembly in which HURP ensures assembly of a central MT array, which serves as a scaffold for the genesis of a robust bipolar structure supporting efficient chromosome congression. Furthermore, HURP is also required for the clustering of extra centrosomes before division, arguing for a shared molecular requirement of MTOC sorting in mammalian meiosis and cancer cell division.

  6. Infiltrating intramuscular spindle cell lipoma of the face.

    PubMed

    Mandal, Rajni V; Duncan, Lyn M; Austen, William G; Nielsen, G Petur

    2009-10-01

    Spindle cell lipoma is a benign lipomatous tumor, which usually arises on the back of the neck, shoulder or upper back of males in the third to seventh decade of life. We report herein an unusual infiltrating intramuscular spindle cell lipoma arising in the nose of a 53-year-old man. The patient presented with a 0.5-cm 'cyst' of the nose, just above the right alar crease, which was removed. Four years later, the lesion recurred and was re-excised. Histologically, a proliferation of mature adipocytes, ropey collagen fibers and spindle cells within a myxoid stroma was present in the subcutaneous tissue and infiltrated between skeletal muscle fibers. Nine cases of intramuscular spindle cell lipoma with histological examination have previously been reported and have involved the oral cavity and muscles of the extremities. To our knowledge, this is the first report of an infiltrating intramuscular spindle cell lipoma arising on the face.

  7. A new design for a high speed spindle

    SciTech Connect

    Weck, M.; Fischer, S.; Holster, P.; Carlisle, K.; Chen, Y.

    1996-12-31

    Precision grinding and micromachining both impose high demands on the machine behavior, since the achievable workpiece accuracy is determined not only by the technological parameters but also by the characteristics of the applicated machine components. Ultraprecision surface quality and the mechanical fabrication of structures in the micron range can only be achieved by using machine tools which have appropriate spindles. Structures cannot be manufactured using spindle types of which the radial error motion is greater than the level of contour accuracy or surface roughness required. In addition, the spindle speed is an important value. Not only a certain cutting speed is needed from the technological point of view, but also the machining time required for microstructuring surfaces is reduced by deploying a high frequency spindle, thereby increasing the economic efficiency of the technique. Hence, the main purpose of the project was to develop a high speed spindle with properties concerning accuracy, speed and stiffness beyond commercially available ones.

  8. Atypical spindle cell lipoma: a clinicopathologic, immunohistochemical, and molecular study emphasizing its relationship to classical spindle cell lipoma.

    PubMed

    Creytens, David; van Gorp, Joost; Savola, Suvi; Ferdinande, Liesbeth; Mentzel, Thomas; Libbrecht, Louis

    2014-07-01

    We studied a series of spindle cell lipomas arising in atypical sites and showing unusual morphologic features (which we called atypical spindle cell lipoma) to assess if these lesions have the same chromosomal alterations as classical spindle cell lipoma but different from those found in atypical lipomatous tumor/well-differentiated liposarcoma. We investigated alterations of different genes in the 13q14 region and the amplification status of the MDM2 and CDK4 genes at 12q14-15 by multiplex ligation-dependent probe amplification (MLPA) and fluorescence in situ hybridization (FISH) analysis. In the atypical spindle cell lipomas, MLPA revealed deletions in the two nearest flanking genes of RB1 (ITM2B and RCBTB2) and in multiple important exons of RB1. In contrast, in classical spindle cell lipomas, a less complex loss of RB1 exons was found but no deletion of ITM2B and RCBTB2. Moreover, MLPA identified a deletion of the DLEU1 gene, a finding which has not been reported earlier. We propose an immunohistochemical panel for lipomatous tumors which comprises of MDM2, CDK4, p16, Rb, which we have found useful in discriminating between atypical or classical spindle cell lipomas and other adipocytic neoplasms, especially atypical lipomatous tumor/well-differentiated liposarcoma. Our findings strengthen the link between atypical spindle cell lipoma and classical spindle cell lipoma, and differentiate them from atypical lipomatous tumor/well-differentiated liposarcoma.

  9. Dynein light intermediate chains maintain spindle bipolarity by functioning in centriole cohesion

    PubMed Central

    Jones, Laura A.; Villemant, Cécile; Starborg, Toby; Salter, Anna; Goddard, Georgina; Ruane, Peter; Woodman, Philip G.; Papalopulu, Nancy

    2014-01-01

    Cytoplasmic dynein 1 (dynein) is a minus end–directed microtubule motor protein with many cellular functions, including during cell division. The role of the light intermediate chains (LICs; DYNC1LI1 and 2) within the complex is poorly understood. In this paper, we have used small interfering RNAs or morpholino oligonucleotides to deplete the LICs in human cell lines and Xenopus laevis early embryos to dissect the LICs’ role in cell division. We show that although dynein lacking LICs drives microtubule gliding at normal rates, the LICs are required for the formation and maintenance of a bipolar spindle. Multipolar spindles with poles that contain single centrioles were formed in cells lacking LICs, indicating that they are needed for maintaining centrosome integrity. The formation of multipolar spindles via centrosome splitting after LIC depletion could be rescued by inhibiting Eg5. This suggests a novel role for the dynein complex, counteracted by Eg5, in the maintenance of centriole cohesion during mitosis. PMID:25422374

  10. The isolation of a mutation causing abnormal cytokinesis in male and split chromocenter in female meiosis in Drosophila melanogaster.

    PubMed

    Fedorova, S; Nokkala, S; Chubykin, V; Omelyanchuk, L

    2001-01-01

    The genetic screen for the meiotic mutations showing chromosome non-disjunction in mosaic clones of female germ line generated by FLP-FRT mediated mitotic recombination was performed. The sterile meiotic mutation ff16 (69D1-70A2) was found among the mutants obtained. In the male germ line the mutation showed lack of meiosis 1 cytokinesis and other meiotic abnormalities. The sterility of the mutant is due to the lack of the sperm motility. In female germ line the morphological defects-decreased number of ovarioles and nurse cells in the egg chambers is visible. At the cell level the mutation showed karyosome fragmentation constituting to the gene participation in chromocenter formation/maintance. The cases of the spindle fragmentation revealed the processes acting in female meiotic metaphase. Premeiotic and mitotic defects of the mutation have also been detected.

  11. Moderate intensity static magnetic fields affect mitotic spindles and increase the antitumor efficacy of 5-FU and Taxol.

    PubMed

    Luo, Yan; Ji, Xinmiao; Liu, Juanjuan; Li, Zhiyuan; Wang, Wenchao; Chen, Wei; Wang, Junfeng; Liu, Qingsong; Zhang, Xin

    2016-06-01

    Microtubules are the fundamental components in mitotic spindle, which plays essential roles in cell division. It was well known that purified microtubules could be affected by static magnetic fields (SMFs) in vitro because of the diamagnetic anisotropy of tubulin. However, whether these effects lead to cell division defects was unknown. Here we find that 1T SMFs induce abnormal mitotic spindles and increase mitotic index. Synchronization experiments show that SMFs delay cell exit from mitosis and cause mitotic arrest. These mimic the cellular effects of a microtubule-targeting drug Paclitaxel (Taxol), which is frequently used in combination with 5-Fluorouracil (5-FU) and Cisplatin in cancer treatment. Using four different human cancer cell lines, HeLa, HCT116, CNE-2Z and MCF7, we find that SMFs increase the antitumor efficacy of 5-FU or 5-FU/Taxol, but not Cisplatin, which indicates that the SMF-induced combinational effects with chemodrugs are drug-specific. Our study not only reveals the effect of SMFs on microtubules to cause abnormal mitotic spindles and delay cells exit from mitosis, but also implies the potential applications of SMFs in combination with chemotherapy drugs 5-FU or 5-FU/Taxol, but not with Cisplatin in cancer treatment.

  12. [Electrophysiological characteristics of the isolated muscle spindle in rats].

    PubMed

    Zhao, Xue-Hong; Fan, Xiao-Li; Song, Xin-Ai; Shi, Lei

    2011-06-25

    The aim of this study was to observe the electrophysiological characteristics of the isolated rat muscle spindle. The muscle spindle was isolated from rat soleus and the afferent discharge of the isolated muscle spindle was recorded by air-gap technique. In the basic physiological salt solution, the spontaneous impulses of muscle spindle were at a lower level with irregular intervals. The mean frequency of afferents was (51.78 ± 25.63) impulses/1 000 s (n = 13). The muscle spindle afferents were significantly increased and maintained over time by the addition of certain amino acids during the observation. The number of the action potential recorded per 1 000 s was 200-1 000 [mean: (687.62 ± 312.56) impulses/1 000 s, n = 17]. In addition to the typical propagated action potential, a large number of abortive spikes were observed. The results indicate that the activities of isolated muscle spindles in rats can be well maintained by the addition of certain amino acids. The results initially establish and provide the possibility for further research conducted in isolated rat muscle spindles.

  13. Optical sensor for precision in-situ spindle health monitoring

    NASA Astrophysics Data System (ADS)

    Zhao, Rui

    An optical sensor which can record in-situ measurements of the dynamic runout of a precision miniature spindle system in a simple and low-cost manner is proposed in this dissertation. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the miniature spindle with non-contact sensors, typically capacitive sensors which are calibrated with a flat target surface not a curved target surface. Due to the different behavior of an electric field between a flat plate and a curved surface and an electric field between two flat plates, capacitive sensors is not suitable for measuring target surfaces smaller than its effective sensing area. The proposed sensor utilizes curved-edge diffraction (CED), which uses the effect of cylindrical surface curvature on the diffraction phenomenon in the transition regions adjacent to shadow, transmission, and reflection boundaries. The laser diodes light incident on the cylindrical surface of precision spindle and photodetectors collect the total field produced by the diffraction around the target surface. Laser diode in the different two direction are incident to the spindle shaft edges along the X and Y axes, four photodetectors collect the total fields produced by interference of multiple waves due to CED around the spindle shaft edges. The X and Y displacement can be obtained from the total fields using two differential amplifier configurations, respectively. Precision miniature spindle (shaft φ5.0mm) runout was measured, and the proposed sensor can perform curve at the different speed of rotation from 1500rpm to 8000rpm in the X and Y axes, respectively. On the other hand, CED also show changes for different running time and temperature of spindle. These results indicate that the proposed sensor promises to be effective for in-situ monitoring of the miniature spindle's health with high resolution, wide bandwidth, and low-cost.

  14. X-43A Rudder Spindle Fatigue Life Estimate and Testing

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Dawicke, David S.; Johnston, William M.; James, Mark A.; Simonsen, Micah; Mason, Brian H.

    2005-01-01

    Fatigue life analyses were performed using a standard strain-life approach and a linear cumulative damage parameter to assess the effect of a single accidental overload on the fatigue life of the Haynes 230 nickel-base superalloy X-43A rudder spindle. Because of a limited amount of information available about the Haynes 230 material, a series of tests were conducted to replicate the overload and in-service conditions for the spindle and corroborate the analysis. Both the analytical and experimental results suggest that the spindle will survive the anticipated flight loads.

  15. Kinetochore flexibility: creating a dynamic chromosome-spindle interface

    PubMed Central

    O’Connell, Christopher B.; Khodjakov, Alexey; McEwen, Bruce F.

    2012-01-01

    Kinetochores are complex macromolecular assemblies that link chromosomes to the mitotic spindle, mediate forces for chromosome motion, and generate the checkpoint signal delaying anaphase onset until all chromosomes are incorporated into the spindle. Proper execution of these functions depends on precise interactions between kinetochores and microtubules. While the molecular composition of the kinetochore is well described, structural organization of this organelle at the molecular and atomic levels is just beginning to emerge. Recent structural studies across scales suggest that kinetochores should not be viewed as rigid static scaffolds. Instead, these organelles exhibit a surprising degree of flexibility that enables rapid adaptations to various types of interactions with the mitotic spindle. PMID:22221609

  16. Spindle cell lipoma in a 14-month-old girl.

    PubMed

    Diau, G Y; Chu, C C; Chou, G S; Tsao, T Y

    1995-11-01

    This case report concerns a girl with spindle cell lipoma of the neck. Spindle cell lipoma is a variant of lipomas and was first described by Enzinger and Harvey in 1975. It occurs chiefly in males between 40 and 70 years of age. It is a benign lesion that can be cured by excision, and local recurrence is rare. Spindle cell lipoma is composed of adipocytes and non-fat-storing immature mesenchymal cells. The condition is uncommon in adults and had not been reported to occur in children.

  17. Mitotic Spindle Disruption by Alternating Electric Fields Leads to Improper Chromosome Segregation and Mitotic Catastrophe in Cancer Cells

    PubMed Central

    Giladi, Moshe; Schneiderman, Rosa S; Voloshin, Tali; Porat, Yaara; Munster, Mijal; Blat, Roni; Sherbo, Shay; Bomzon, Zeev; Urman, Noa; Itzhaki, Aviran; Cahal, Shay; Shteingauz, Anna; Chaudhry, Aafia; Kirson, Eilon D; Weinberg, Uri; Palti, Yoram

    2015-01-01

    Tumor Treating Fields (TTFields) are low intensity, intermediate frequency, alternating electric fields. TTFields are a unique anti-mitotic treatment modality delivered in a continuous, noninvasive manner to the region of a tumor. It was previously postulated that by exerting directional forces on highly polar intracellular elements during mitosis, TTFields could disrupt the normal assembly of spindle microtubules. However there is limited evidence directly linking TTFields to an effect on microtubules. Here we report that TTFields decrease the ratio between polymerized and total tubulin, and prevent proper mitotic spindle assembly. The aberrant mitotic events induced by TTFields lead to abnormal chromosome segregation, cellular multinucleation, and caspase dependent apoptosis of daughter cells. The effect of TTFields on cell viability and clonogenic survival substantially depends upon the cell division rate. We show that by extending the duration of exposure to TTFields, slowly dividing cells can be affected to a similar extent as rapidly dividing cells. PMID:26658786

  18. Strongylocentrotus purpuratus spindle tubulin. II. Characteristics of its sensitivity to Ca++ and the effects of calmodulin isolated from bovine brain and S. purpuratus eggs

    PubMed Central

    1982-01-01

    Tubulin was extracted from spindles isolated from embryos of the sea urchin Strongylocentrotus purpuratus and purified through cycles of temperature-dependent assembly and disassembly. At 37 degrees C, the majority of the cycle-purified spindle tubulin polymer is insensitive to free Ca++ at concentrations below 0.4 mM, requiring free Ca++ concentrations greater than 1 mM for complete depolymerization. However, free Ca++ at concentrations above 1 microM inhibits initiation of polymer formation without significantly inhibiting the rate of elongation onto existing polymer. At 15 degrees C and 18 degrees C, temperatures that are physiological for S. purpuratus embryos, spindle tubulin polymer is sensitive to free Ca++ at micromolar concentrations such that 3-20 microM free Ca++ causes complete depolymerization. Calmodulin purified from either bovine brain or S. purpuratus eggs does not affect the Ca++ sensitivity of the spindle tubulin at 37 degrees C, although both increase the Ca++ sensitivity of cycle-purified bovine brain tubulin. These results indicate that cycle-purified spindle tubulin and cycle-purified bovine brain tubulin differ significantly in their responses to calmodulin and in their Ca++ sensitivities at their physiological temperatures. They also suggest that, in vivo, spindle tubulin may be regulated by physiological levels of intracellular Ca++ in the absence of Ca++-sensitizing factors. PMID:7119003

  19. Structures of actin-like ParM filaments show architecture of plasmid-segregating spindles.

    PubMed

    Bharat, Tanmay A M; Murshudov, Garib N; Sachse, Carsten; Löwe, Jan

    2015-07-02

    Active segregation of Escherichia coli low-copy-number plasmid R1 involves formation of a bipolar spindle made of left-handed double-helical actin-like ParM filaments. ParR links the filaments with centromeric parC plasmid DNA, while facilitating the addition of subunits to ParM filaments. Growing ParMRC spindles push sister plasmids to the cell poles. Here, using modern electron cryomicroscopy methods, we investigate the structures and arrangements of ParM filaments in vitro and in cells, revealing at near-atomic resolution how subunits and filaments come together to produce the simplest known mitotic machinery. To understand the mechanism of dynamic instability, we determine structures of ParM filaments in different nucleotide states. The structure of filaments bound to the ATP analogue AMPPNP is determined at 4.3 Å resolution and refined. The ParM filament structure shows strong longitudinal interfaces and weaker lateral interactions. Also using electron cryomicroscopy, we reconstruct ParM doublets forming antiparallel spindles. Finally, with whole-cell electron cryotomography, we show that doublets are abundant in bacterial cells containing low-copy-number plasmids with the ParMRC locus, leading to an asynchronous model of R1 plasmid segregation.

  20. Vesicles and actin are targeted to the cleavage furrow via furrow microtubules and the central spindle

    PubMed Central

    Albertson, Roger; Cao, Jian; Hsieh, Tao-shih; Sullivan, William

    2008-01-01

    During cytokinesis, cleavage furrow invagination requires an actomyosin-based contractile ring and addition of new membrane. Little is known about how this actin and membrane traffic to the cleavage furrow. We address this through live analysis of fluorescently tagged vesicles in postcellularized Drosophila melanogaster embryos. We find that during cytokinesis, F-actin and membrane are targeted as a unit to invaginating furrows through formation of F-actin–associated vesicles. F-actin puncta strongly colocalize with endosomal, but not Golgi-derived, vesicles. These vesicles are recruited to the cleavage furrow along the central spindle and a distinct population of microtubules (MTs) in contact with the leading furrow edge (furrow MTs). We find that Rho-specific guanine nucleotide exchange factor mutants, pebble (pbl), severely disrupt this F-actin–associated vesicle transport. These transport defects are a consequence of the pbl mutants' inability to properly form furrow MTs and the central spindle. Transport of F-actin–associated vesicles on furrow MTs and the central spindle is thus an important mechanism by which actin and membrane are delivered to the cleavage furrow. PMID:18504302

  1. Facile synthesis and luminescent properties of TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles from titanate nanotubes precursors

    SciTech Connect

    Li, Hongbo; Sheng, Ye; Zhao, Huan; Song, Yanhua; Gao, Fei; Huo, Qisheng; Zou, Haifeng

    2012-12-15

    Graphical abstract: This picture illustration for the formation process of TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles. Display Omitted Highlights: ► TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles were prepared. ► The nanotubes could transform to nanorods and spindle-shaped nanoparticles. ► The luminescence properties are dependent on the increases of the bandgap. -- Abstract: TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles have been successfully prepared through simple calcination and hydrothermal process respectively using titanate as the precursors. On the basis of X-ray diffraction results, the as-obtained precursors are titanate (H{sub 2}Ti{sub 2}O{sub 5}·H{sub 2}O), while nanorods and spindle-shaped nanoparticles are pure anatase phase of TiO{sub 2}. TEM and SEM images show that the as-formed precursor could be transformed from nanotubes into nanorods and spindle-shaped nanoparticles by the calcination and hydrothermal process respectively. Under UV light excitation, both the TiO{sub 2}:Eu{sup 3+} nanorods and spindle-shaped nanoparticles exhibit the strong red emission. In addition, the luminescence intensity of TiO{sub 2}:Eu{sup 3+} nanorods is higher than that of TiO{sub 2}:Eu{sup 3+} spindle-shaped nanoparticles due to the increases of the bandgap of the TiO{sub 2} nanorods.

  2. Nicotine-induced Disturbances of Meiotic Maturation in Cultured Mouse Oocytes: Alterations of Spindle Integrity and Chromosome Alignment.

    PubMed

    Zenzes, Maria Teresa; Bielecki, Ryszard

    2004-09-15

    We investigated whether nicotine exposure in vitro of mouse oocytes affects spindle and chromosome function during meiotic maturation (M-I and M-II). Oocytes in germinal vesicle (GV) stage were cultured in nicotine for 8 h or for 16 h, to assess effects in M-I and in metaphase II (M-II). The latter culture setting used the three protocols: 8 h nicotine then 8 h medium (8N + 8M); 16 h nicotine (16N); 8 h medium then 8 h nicotine (8M + 8N). Non-toxic concentrations of nicotine at 1.0, 2.5, 5.0 and 10.0 mmol/L were used. Spindle-chromosome configurations were analyzed with wide-field optical sectioning microscopy. In 8 h cultures, nicotine exposure resulted in dose-related increased proportions of M-I oocytes with defective spindle-chromosome configurations. A dose-related delayed entry into anaphase I was also detected. In 16 h cultures, nicotine exposure for the first 8 h (8N + 8M), or for 16 h (16N), resulted in dose- and time-related increased proportions of oocytes arrested in M-I (10 mmol/L; 8 h: 53.2%, controls 9.6%; 16 h: 87.6%, controls 8.5%). Defects in M-I spindles and chromosomes caused M-I arrest leading to dose-related decreased proportions of oocytes that reached metaphase-II (10 mmol/L 8 h: 46.8%, controls 90.4%;16 h: 12.4%, controls 91.5%). A delayed anaphase-I affected the normal timing of M-II, leading to abnormal oocytes with dispersed chromosomes, or with double spindles and no polar body. Nicotine exposure during the second 8 h (8M + 8N) resulted in dose-related, increased proportions of M-II oocytes with defective spindles and chromosomes (10 mmol/L: 42.9%, controls 2.0%). Nicotine has no adverse effects on GV break down, but induces spindle and chromosome defects compromising oocyte meiotic maturation and development.

  3. A nonsynonymous SNP in the ITGB3 gene disrupts the conserved membrane-proximal cytoplasmic salt bridge in the alphaIIbbeta3 integrin and cosegregates dominantly with abnormal proplatelet formation and macrothrombocytopenia.

    PubMed

    Ghevaert, Cedric; Salsmann, Alexandre; Watkins, Nicholas A; Schaffner-Reckinger, Elisabeth; Rankin, Angela; Garner, Stephen F; Stephens, Jonathan; Smith, Graham A; Debili, Najet; Vainchenker, William; de Groot, Philip G; Huntington, James A; Laffan, Mike; Kieffer, Nelly; Ouwehand, Willem H

    2008-04-01

    We report a 3-generation pedigree with 5 individuals affected with a dominantly inherited macrothrombocytopenia. All 5 carry 2 nonsynonymous mutations resulting in a D723H mutation in the beta3 integrin and a P53L mutation in glycoprotein (GP) Ibalpha. We show that GPIbalpha-L53 is phenotypically silent, being also present in 3 unaffected pedigree members and in 7 of 1639 healthy controls. The beta3-H723 causes constitutive, albeit partial, activation of the alphaIIbbeta3 complex by disruption of the highly conserved cytoplasmic salt bridge with arginine 995 in the alphaIIb integrin as evidenced by increased PAC-1 but not fibrinogen binding to the patients' resting platelets. This was confirmed in CHO alphaIIbbeta3-H723 transfectants, which also exhibited increased PAC-1 binding, increased adhesion to von Willebrand factor (VWF) in static conditions and to fibrinogen under shear stress. Crucially, we show that in the presence of fibrinogen, alphaIIbbeta3-H723, but not wild-type alphaIIbbeta3, generates a signal that leads to the formation of proplatelet-like protrusions in transfected CHO cells. Abnormal proplatelet formation was confirmed in the propositus's CD34+ stem cell-derived megakaryocytes. We conclude that the constitutive activation of the alphaIIbbeta3-H723 receptor causes abnormal proplatelet formation, leading to incorrect sizing of platelets and the thrombocytopenia observed in the pedigree.

  4. Carbofuran alters centrosome and spindle organization, and delays cell division in oocytes and mitotic cells.

    PubMed

    Cinar, Ozgur; Semiz, Olcay; Can, Alp

    2015-04-01

    Although many countries banned of its usage, carbofuran (CF) is still one of the most commonly used carbamate derivative insecticides against insects and nematodes in agriculture and household, threatening the human and animal health by contaminating air, water, and food. Our goal was to evaluate the potential toxic effects of CF on mammalian oocytes besides mitotic cells. Caspase-dependent apoptotic pathway was assessed by immunofluorescence and western blot techniques. Alterations in the meiotic spindle formation after CF exposure throughout the in vitro maturation of mice oocyte-cumulus complexes (COCs) were analyzed by using a 3D confocal laser microscope. Maturation efficiency and kinetics were assessed by direct observation of the COCs. Results indicated that the number of TUNEL-positive cells increased in CF-exposed groups, particularly higher doses (>250 µM) in a dose-dependent fashion. The ratio of anticleaved caspase-3 labeled cells in those groups positively correlated with TUNEL-positivity. Western blot analysis confirmed a significant increase in active caspase-3 activity. CF caused a dose-dependent accumulation of oocytes at prometaphase-I (PM-I) of meiosis. Partial loss of spindle microtubules (MTs) was noted, which consequently gave rise to a diamond shape spindle. Aberrant pericentrin foci were noted particularly in PM-I and metaphase-I (M-I) stages. Conclusively, CF (1) induces programmed cell death in a dose-dependent manner, and (2) alters spindle morphology most likely through a mechanism that interacts with MT assembly and/or disorientation of pericentriolar proteins. Overall, data suggest that CF could give rise to aneuploidy or cell death in higher doses, therefore reduce fertilization and implantation rates.

  5. Centrin: Another target of monastrol, an inhibitor of mitotic spindle

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Wang, Tong-Qing; Bian, Wei; Liu, Wen; Sun, Yue; Yang, Bin-Sheng

    2015-02-01

    Monastrol, a cell-permeable inhibitor, considered to specifically inhibit kinesin Eg5, can cause mitotic arrest and monopolar spindle formation, thus exhibiting antitumor properties. Centrin, a ubiquitous protein associated with centrosome, plays a critical role in centrosome duplication. Moreover, a correlation between centrosome amplification and cancer has been reported. In this study, it is proposed for the first time that centrin may be another target of the anticancer drug monastrol since monastrol can effectively inhibit not only the growth of the transformed Escherichia coli cells in vivo, but also the Lu3+-dependent self-assembly of EoCen in vitro. The two closely related compounds (Compounds 1 and 2) could not take the same effect. Fluorescence titration experiments suggest that four monastrols per protein is the optimum binding pattern, and the binding constants at different temperatures were obtained. Detailed thermodynamic analysis indicates that hydrophobic force is the main acting force between monastrol and centrin, and the extent of monastrol inhibition of centrin self-assembly is highly dependent upon the hydrophobic region of the protein, which is largely exposed by the binding of metal ions.

  6. Reduced sleep spindle activity in early-onset and elevated risk for depression Running head: Sleep Spindles and Adolescent MDD

    PubMed Central

    Lopez, Jorge; Hoffmann, Robert; Armitage, Roseanne

    2010-01-01

    Objective Sleep disturbances are common in major depressive disorder (MDD), although polysomnographic (PSG) abnormalities are more prevalent in adults than in children and adolescents with MDD. Sleep spindle activity (SPA) is associated with neuroplasticity mechanisms during brain maturation and is more abundant in childhood and adolescence than in adulthood, and as such, may be a more sensitive measure of sleep alteration than PSG in early-onset depression. This study investigated SPA changes related to early-onset MDD, comparing those already ill and those at high-risk for MDD to healthy non-depressed controls. Method The study included 63 participants (8-15 year-olds): 21 currently depressed, 21 at high-risk for MDD based on positive family history of MDD, and 21 healthy controls with no personal or family history of psychiatric illness. All participants maintained a regular sleep/wake schedule for 5 days, followed by 2 nights in the lab. SPA was analyzed in Stage 2 of non-Rapid Eye Movement (NREM) sleep. Results SPA differed significantly between groups, particularly in the late part of the night (F2,62=7.3 p=0.001). Although, the difference was greatest between MDD and healthy controls, both the MDD (p=0.0004) and at high-risk groups (p=0.02) had significantly lower SPA compared to healthy controls. SPA deficit was more prominent in females than males (F5,62=5.19 p=0.005). Conclusions Low SPA characterizes youths with MDD and those at high-risk, particularly among girls, suggesting that early-onset depression and risk for the illness are associated with decreased neuroplasticity. PMID:20732629

  7. Detail of post, brackets, railing, and spindle work frieze; camera ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of post, brackets, railing, and spindle work frieze; camera facing northeast. - Mare Island Naval Shipyard, Bandstand, Eighth Street, south side between Railroad Avenue & Walnut Avenue, Vallejo, Solano County, CA

  8. Spindle extraction method for ISAR image based on Radon transform

    NASA Astrophysics Data System (ADS)

    Wei, Xia; Zheng, Sheng; Zeng, Xiangyun; Zhu, Daoyuan; Xu, Gaogui

    2015-12-01

    In this paper, a method of spindle extraction of target in inverse synthetic aperture radar (ISAR) image is proposed which depends on Radon Transform. Firstly, utilizing Radon Transform to detect all straight lines which are collinear with these line segments in image. Then, using Sobel operator to detect image contour. Finally, finding all intersections of each straight line and image contour, the two intersections which have maximum distance between them is the two ends of this line segment and the longest line segment of all line segments is spindle of target. According to the proposed spindle extraction method, one hundred simulated ISAR images which are respectively rotated 0 degrees, 10 degrees, 20 degrees, 30 degrees and 40 degrees in counterclockwise are used to do experiment and the proposed method and the detection results are more close to the real spindle of target than the method based on Hough Transform .

  9. Assembly of Caenorhabditis elegans acentrosomal spindles occurs without evident microtubule-organizing centers and requires microtubule sorting by KLP-18/kinesin-12 and MESP-1

    PubMed Central

    Wolff, Ian D.; Tran, Michael V.; Mullen, Timothy J.; Villeneuve, Anne M.; Wignall, Sarah M.

    2016-01-01

    Although centrosomes contribute to spindle formation in most cell types, oocytes of many species are acentrosomal and must organize spindles in their absence. Here we investigate this process in Caenorhabditis elegans, detailing how acentrosomal spindles form and revealing mechanisms required to establish bipolarity. Using high-resolution imaging, we find that in meiosis I, microtubules initially form a “cage-like” structure inside the disassembling nuclear envelope. This structure reorganizes so that minus ends are sorted to the periphery of the array, forming multiple nascent poles that then coalesce until bipolarity is achieved. In meiosis II, microtubules nucleate in the vicinity of chromosomes but then undergo similar sorting and pole formation events. We further show that KLP-18/kinesin-12 and MESP-1, previously shown to be required for spindle bipolarity, likely contribute to bipolarity by sorting microtubules. After their depletion, minus ends are not sorted outward at the early stages of spindle assembly and instead converge. These proteins colocalize on microtubules, are interdependent for localization, and can interact, suggesting that they work together. We propose that KLP-18/kinesin-12 and MESP-1 form a complex that functions to sort microtubules of mixed polarity into a configuration in which minus ends are away from the chromosomes, enabling formation of nascent poles. PMID:27559133

  10. Aurora B regulates spindle bipolarity in meiosis in vertebrate oocytes.

    PubMed

    Shao, Hua; Ma, Chunqi; Zhang, Xuan; Li, Ruizhen; Miller, Ann L; Bement, William M; Liu, X Johné

    2012-07-15

    Aurora B (Aur-B) plays multiple roles in mitosis, of which the best known are to ensure bi-orientation of sister chromatids by destabilizing incorrectly attached kinetochore microtubules and to participate in cytokinesis. Studies in Xenopus egg extracts, however, have indicated that Aur-B and the chromosome passenger complex play an important role in stabilizing chromosome-associated spindle microtubules. Aur-B stabilizes spindle microtubules in the egg extracts by inhibiting the catastrophe kinesin MCAK. Whether or not Aur-B plays a similar role in intact oocytes remains unknown. Here we have employed a dominant-negative Aur-B mutant (Aur-B122R, in which the ATP-binding lysine(122) is replaced with arginine) to investigate the function of Aur-B in spindle assembly in Xenopus oocytes undergoing meiosis. Overexpression of Aur-B122R results in short bipolar spindles or monopolar spindles, with higher concentrations of Aur-B122R producing mostly the latter. Simultaneous inhibition of MCAK translation in oocytes overexpressing Aur-B122R results in suppression of monopolar phenotype, suggesting that Aur-B regulates spindle bipolarity by inhibiting MCAK. Furthermore, recombinant MCAK-4A protein, which lacks all four Aur-B phosphoryaltion sites and is therefore insensitive to Aur-B inhibition but not wild-type MCAK, recapitulated the monopolar phenotype in the oocytes. These results suggest that in vertebrate oocytes that lack centrosomes, one major function of Aur-B is to stabilize chromosome-associated spindle microtubules to ensure spindle bipolarity.

  11. The influence of pain on masseter spindle afferent discharge.

    PubMed

    Capra, Norman F; Hisley, Calvin K; Masri, Radi M

    2007-04-01

    Muscle spindles provide proprioceptive feedback supporting normal patterns of motor activity and kinesthetic sensibility. During mastication, jaw muscle spindles play an important role in monitoring and regulating the chewing cycle and the bite forces generated during mastication. Both acute and chronic orofacial pain disorders are associated with changes in proprioceptive feedback and motor function. Experimental jaw muscle pain also alters the normal response of masseter spindle afferents to ramp and hold jaw movements. It has been proposed that altered motor function and proprioceptive input results from group III muscle afferent modulation of the fusimotor system which alters spindle afferent sensitivity in limb muscles. The response to nociceptive stimuli may enhance or reduce the response of spindle afferents to proprioceptive stimuli. Several experimental observations suggesting the possibility that a similar mechanism also functions in jaw muscles are presented in this report. First, evidence is provided to show that nociceptive stimulation of the masseter muscle primarily influences the amplitude sensitivity of spindle afferents with relatively little effect on the dynamic sensitivity. Second, reversible inactivation of the caudal trigeminal nuclei attenuates the nociceptive modulation of spindle afferents. Finally, functionally identified gamma-motoneurons in the trigeminal motor nucleus are modulated by intramuscular injection with algesic substances. Taken together, these results suggest that pain-induced modulation of spindle afferent responses are mediated by small diameter muscle afferents and that this modulation is dependent, in part, on the relay of muscle nociceptive information from trigeminal subnucleus caudalis onto trigeminal gamma-motoneurons. The implication of these results will be considered in light of current theories on the relationship between jaw muscle pain and oral motor function.

  12. Measurement of Spindle Rigidity by using a Magnet Loader

    NASA Astrophysics Data System (ADS)

    Yamazaki, Taku; Matsubara, Atsushi; Fujita, Tomoya; Muraki, Toshiyuki; Asano, Kohei; Kawashima, Kazuyuki

    The static rigidity of a rotating spindle in the radial direction is investigated in this research. A magnetic loading device (magnet loader) has been developed for the measurement. The magnet loader, which has coils and iron cores, generates the electromagnetic force and attracts a dummy tool attached to the spindle. However, the eddy current is generated in the dummy tool with the spindle rotation and reduces the attractive force at high spindle speed. In order to understand the magnetic flux and eddy current in the dummy tool, the electromagnetic field analysis by FEM was carried out. Grooves on the attraction surface of the dummy tool were designed to cut the eddy current flow. The dimension of the groove were decided based on the FEM analysis, and the designed tool were manufactured and tested. The test result shows that the designed tool successfully reduces the eddy current and recovers the attractive force. By using the magnet loader and the grooved tool, the spindle rigidity can be measured when the spindle rotates with a speed up to 10,000 min-1.

  13. Selective detection of Escherichia coli DNA using fluorescent carbon spindles.

    PubMed

    Roy, Anurag; Chatterjee, Sabyasachi; Pramanik, Srikrishna; Devi, Parukuttyamma Sujatha; Suresh Kumar, Gopinatha

    2016-04-28

    We investigate the interaction of hydrophilic blue emitting carbon spindles with various deoxyribonucleic acids (DNA) having different base pair compositions, such as Herring testes (HT), calf thymus (CT), Escherichia coli (EC) and Micrococcus lysodeikticus (ML) DNA, to understand the mode of interaction. Interestingly, the fluorescent carbon spindles selectively interacted with E. coli DNA resulting in enhanced fluorescence of the former. Interaction of the same carbon with other DNAs exhibited insignificant changes in fluorescence. In addition, in the presence of EC DNA, the D band in the Raman spectrum attributed to the defect state completely disappeared, resulting in enhanced crystallinity. Microscopy images confirmed the wrapping of DNA on the carbon spindles leading to the assembly of spindles in the form of flowers. Dissociation of double-stranded DNA occurred upon interaction with carbon spindles, resulting in selective E. coli DNA interaction. The carbon spindles also exhibited a similar fluorescence enhancement upon treating with E. coli bacteria. These results confirm the possibility of E. coli detection in water and other liquid foods using such fluorescent carbon.

  14. Spatial signals link exit from mitosis to spindle position

    PubMed Central

    Falk, Jill Elaine; Tsuchiya, Dai; Verdaasdonk, Jolien; Lacefield, Soni; Bloom, Kerry; Amon, Angelika

    2016-01-01

    In budding yeast, if the spindle becomes mispositioned, cells prevent exit from mitosis by inhibiting the mitotic exit network (MEN). The MEN is a signaling cascade that localizes to spindle pole bodies (SPBs) and activates the phosphatase Cdc14. There are two competing models that explain MEN regulation by spindle position. In the 'zone model', exit from mitosis occurs when a MEN-bearing SPB enters the bud. The 'cMT-bud neck model' posits that cytoplasmic microtubule (cMT)-bud neck interactions prevent MEN activity. Here we find that 1) eliminating cMT– bud neck interactions does not trigger exit from mitosis and 2) loss of these interactions does not precede Cdc14 activation. Furthermore, using binucleate cells, we show that exit from mitosis occurs when one SPB enters the bud despite the presence of a mispositioned spindle. We conclude that exit from mitosis is triggered by a correctly positioned spindle rather than inhibited by improper spindle position. DOI: http://dx.doi.org/10.7554/eLife.14036.001 PMID:27166637

  15. Microcephaly protein Asp focuses the minus ends of spindle microtubules at the pole and within the spindle.

    PubMed

    Ito, Ami; Goshima, Gohta

    2015-12-07

    Depletion of Drosophila melanogaster Asp, an orthologue of microcephaly protein ASPM, causes spindle pole unfocusing during mitosis. However, it remains unclear how Asp contributes to pole focusing, a process that also requires the kinesin-14 motor Ncd. We show that Asp localizes to the minus ends of spindle microtubule (MT) bundles and focuses them to make the pole independent of Ncd. We identified a critical domain in Asp exhibiting MT cross-linking activity in vitro. Asp was also localized to, and focuses the minus ends of, intraspindle MTs that were nucleated in an augmin-dependent manner and translocated toward the poles by spindle MT flux. Ncd, in contrast, functioned as a global spindle coalescence factor not limited to MT ends. We propose a revised molecular model for spindle pole focusing in which Asp at the minus ends cross-links MTs at the pole and within the spindle. Additionally, this study provides new insight into the dynamics of intraspindle MTs by using Asp as a minus end marker.

  16. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis.

    PubMed

    Tuncay, Hüseyin; Brinkmann, Benjamin F; Steinbacher, Tim; Schürmann, Annika; Gerke, Volker; Iden, Sandra; Ebnet, Klaus

    2015-08-26

    Planar spindle orientation in polarized epithelial cells depends on the precise localization of the dynein-dynactin motor protein complex at the lateral cortex. The contribution of cell adhesion molecules to the cortical localization of the dynein-dynactin complex is poorly understood. Here we find that junctional adhesion molecule-A (JAM-A) regulates the planar orientation of the mitotic spindle during epithelial morphogenesis. During mitosis, JAM-A triggers a transient activation of Cdc42 and PI(3)K, generates a gradient of PtdIns(3,4,5)P3 at the cortex and regulates the formation of the cortical actin cytoskeleton. In the absence of functional JAM-A, dynactin localization at the cortex is reduced, the mitotic spindle apparatus is misaligned and epithelial morphogenesis in three-dimensional culture is compromised. Our findings indicate that a PI(3)K- and cortical F-actin-dependent pathway of planar spindle orientation operates in polarized epithelial cells to regulate epithelial morphogenesis, and we identify JAM-A as a junctional regulator of this pathway.

  17. JAM-A regulates cortical dynein localization through Cdc42 to control planar spindle orientation during mitosis

    PubMed Central

    Tuncay, Hüseyin; Brinkmann, Benjamin F.; Steinbacher, Tim; Schürmann, Annika; Gerke, Volker; Iden, Sandra; Ebnet, Klaus

    2015-01-01

    Planar spindle orientation in polarized epithelial cells depends on the precise localization of the dynein–dynactin motor protein complex at the lateral cortex. The contribution of cell adhesion molecules to the cortical localization of the dynein–dynactin complex is poorly understood. Here we find that junctional adhesion molecule-A (JAM-A) regulates the planar orientation of the mitotic spindle during epithelial morphogenesis. During mitosis, JAM-A triggers a transient activation of Cdc42 and PI(3)K, generates a gradient of PtdIns(3,4,5)P3 at the cortex and regulates the formation of the cortical actin cytoskeleton. In the absence of functional JAM-A, dynactin localization at the cortex is reduced, the mitotic spindle apparatus is misaligned and epithelial morphogenesis in three-dimensional culture is compromised. Our findings indicate that a PI(3)K- and cortical F-actin-dependent pathway of planar spindle orientation operates in polarized epithelial cells to regulate epithelial morphogenesis, and we identify JAM-A as a junctional regulator of this pathway. PMID:26306570

  18. Systematic analysis in Caenorhabditis elegans reveals that the spindle checkpoint is composed of two largely independent branches.

    PubMed

    Essex, Anthony; Dammermann, Alexander; Lewellyn, Lindsay; Oegema, Karen; Desai, Arshad

    2009-02-01

    Kinetochores use the spindle checkpoint to delay anaphase onset until all chromosomes have formed bipolar attachments to spindle microtubules. Here, we use controlled monopolar spindle formation to systematically define the requirements for spindle checkpoint signaling in the Caenorhabditis elegans embryo. The results, when interpreted in light of kinetochore assembly epistasis analysis, indicate that checkpoint activation is coordinately directed by the NDC-80 complex, the Rod/Zwilch/Zw10 complex, and BUB-1-three components independently targeted to the outer kinetochore by the scaffold protein KNL-1. These components orchestrate the integration of a core Mad1(MDF-1)/Mad2(MDF-2)-based signal, with a largely independent Mad3(SAN-1)/BUB-3 pathway. Evidence for independence comes from the fact that subtly elevating Mad2(MDF-2) levels bypasses the requirement for BUB-3 and Mad3(SAN-1) in kinetochore-dependent checkpoint activation. Mad3(SAN-1) does not accumulate at unattached kinetochores and BUB-3 kinetochore localization is independent of Mad2(MDF-2). We discuss the rationale for a bipartite checkpoint mechanism in which a core Mad1(MDF-1)/Mad2(MDF-2) signal generated at kinetochores is integrated with a separate cytoplasmic Mad3(SAN-1)/BUB-3-based pathway.

  19. How does a protein with dual mitotic spindle and extracellular matrix receptor functions affect tumor susceptibility and progression?

    PubMed Central

    Tolg, Cornelia; McCarthy, James B

    2011-01-01

    The mechanisms responsible for the oncogenic effects of the hyaluronan (HA) receptor and mitotic spindle binding protein, RHAMM, are poorly understood. On one hand, extracellular RHAMM interacts with HA and cellsurface receptors such as CD44 to coordinately activate the MAPK/ERK1,2 pathway, thus contributing to the spread and proliferation of tumor cells. On the other hand, intracellular RHAMM decorates mitotic spindles and is necessary for spindle formation and progression through G2/M and overexpression or loss of RHAMM can result in multipole spindles and chromosome missegregation. The deregulation of these intracellular functions could lead to genomic instability and fuel tumor progression. This suggests that both extracellular and intracellular RHAMM can promote tumor progression. Intracellular RHAMM can bind directly to ERK1 to form complexes with ERK2, MEK1 and ERK1,2 substrates, and we present a model whereby RHAMM's function is as a scaffold protein, controlling activation and targeting of ERK1,2 to specific substrates. PMID:21655434

  20. Trim32 facilitates degradation of MYCN on spindle poles and induces asymmetric cell division in human neuroblastoma cells.

    PubMed

    Izumi, Hideki; Kaneko, Yasuhiko

    2014-10-01

    Asymmetric cell division (ACD) is a physiologic process during development and tissue homeostasis. ACD produces two unequal daughter cells: one has stem/progenitor cell activity and the other has potential for differentiation. Recent studies showed that misregulation of the balance between self-renewal and differentiation by ACD may lead to tumorigenesis in Drosophila neuroblasts. However, it is still largely unknown whether human cancer stem-like cells exhibit ACD or not. Here, using human neuroblastoma cells as an ACD model, we found that MYCN accumulates at spindle poles by GSK-3β phosphorylation during mitosis. In parallel, the ACD-related ubiquitin ligase Trim32 was recruited to spindle poles by CDK1/cyclin B-mediated phosphorylation. Trim32 interacted with MYCN at spindle poles during mitosis, facilitating proteasomal degradation of MYCN at spindle poles and inducing ACD. Trim32 also suppressed sphere formation of neuroblastoma-initiating cells, suggesting that the mechanisms of ACD produce differentiated neuroblastoma cells that will eventually die. Thus, Trim32 is a positive regulator of ACD that acts against MYCN and should be considered as a tumor-suppressor candidate. Our findings offer novel insights into the mechanisms of ACD and clarify its contributions to human tumorigenesis.

  1. Phosphorylation of CPAP by Aurora-A Maintains Spindle Pole Integrity during Mitosis.

    PubMed

    Chou, En-Ju; Hung, Liang-Yi; Tang, Chieh-Ju C; Hsu, Wen-Bin; Wu, Hsin-Yi; Liao, Pao-Chi; Tang, Tang K

    2016-03-29

    CPAP is required for centriole elongation during S/G2 phase, but the role of CPAP in mitosis is incompletely understood. Here, we show that CPAP maintains spindle pole integrity through its phosphorylation by Aurora-A during mitosis. Depletion of CPAP induced a prolonged delay in mitosis, pericentriolar material (PCM) dispersion, and multiple mitotic abnormalities. Further studies demonstrated that CPAP directly interacts with and is phosphorylated by Aurora-A at serine 467 during mitosis. Interestingly, the dispersal of the PCM was effectively rescued by ectopic expression of wild-type CPAP or a phospho-mimic CPAP-S467D mutant, but not a non-phosphorylated CPAP-S467A mutant. Finally, we found that CPAP-S467D has a low affinity for microtubule binding but a high affinity for PCM proteins. Together, our results support a model wherein CPAP is required for proper mitotic progression, and phosphorylation of CPAP by Aurora-A is essential for maintaining spindle pole integrity.

  2. Skeletal abnormalities in homocystinuria.

    PubMed Central

    Brenton, D. P.

    1977-01-01

    The skeletal changes of thirty-four patients with the biochemical and clinical features of cystathionine synthase deficiency are described. It is emphasized that there is clinical evidence of excessive bone growth and the formation for bone which is structurally weaker than normal. The similarities and differences between this condition and Marfan's syndrome are stressed and the possible nature of the connective tissue defect leading to the skeletal changes discussed. The most characteristic skeletal changes in homocystinuria are the skeletal disproportion (pubis-heel length greater than crown-pubis length), the abnormal vertebrae, sternal deformities, genu valgum and large metaphyses and epiphyses. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 PMID:917963

  3. Abnormal bone formation induced by implantation of osteosarcoma-derived bone-inducing substance in the X-linked hypophosphatemic mouse

    SciTech Connect

    Yoshikawa, H.; Masuhara, K.; Takaoka, K.; Ono, K.; Tanaka, H.; Seino, Y.

    1985-01-01

    The X-linked hypophosphatemic mouse (Hyp) has been proposed as a model for the human familial hypophosphatemia (the most common form of vitamin D-resistant rickets). An osteosarcoma-derived bone-inducing substance was subcutaneously implanted into the Hyp mouse. The implant was consistently replaced by cartilage tissue at 2 weeks after implantation. The cartilage matrix seemed to be normal, according to the histological examination, and 35sulphur (TVS) uptake was also normal. Up to 4 weeks after implantation the cartilage matrix was completely replaced by unmineralized bone matrix and hematopoietic bone marrow. Osteoid tissue arising from the implantation of bone inducing substance in the Hyp mouse showed no radiologic or histologic sign of calcification. These findings suggest that the abnormalities of endochondral ossification in the Hyp mouse might be characterized by the failure of mineralization in cartilage and bone matrix. Analysis of the effects of bone-inducing substance on the Hyp mouse may help to give greater insight into the mechanism and treatment of human familial hypophosphatemia.

  4. γ-Tubulin Ring Complexes and EB1 play antagonistic roles in microtubule dynamics and spindle positioning

    PubMed Central

    Bouissou, Anaїs; Vérollet, Christel; de Forges, Hélène; Haren, Laurence; Bellaїche, Yohanns; Perez, Franck; Merdes, Andreas; Raynaud-Messina, Brigitte

    2014-01-01

    γ-Tubulin is critical for microtubule (MT) assembly and organization. In metazoa, this protein acts in multiprotein complexes called γ-Tubulin Ring Complexes (γ-TuRCs). While the subunits that constitute γ-Tubulin Small Complexes (γ-TuSCs), the core of the MT nucleation machinery, are essential, mutation of γ-TuRC-specific proteins in Drosophila causes sterility and morphological abnormalities via hitherto unidentified mechanisms. Here, we demonstrate a role of γ-TuRCs in controlling spindle orientation independent of MT nucleation activity, both in cultured cells and in vivo, and examine a potential function for γ-TuRCs on astral MTs. γ-TuRCs locate along the length of astral MTs, and depletion of γ-TuRC-specific proteins increases MT dynamics and causes the plus-end tracking protein EB1 to redistribute along MTs. Moreover, suppression of MT dynamics through drug treatment or EB1 down-regulation rescues spindle orientation defects induced by γ-TuRC depletion. Therefore, we propose a role for γ-TuRCs in regulating spindle positioning by controlling the stability of astral MTs. PMID:24421324

  5. A CEP215–HSET complex links centrosomes with spindle poles and drives centrosome clustering in cancer

    PubMed Central

    Chavali, Pavithra L.; Chandrasekaran, Gayathri; Barr, Alexis R.; Tátrai, Péter; Taylor, Chris; Papachristou, Evaggelia K.; Woods, C. Geoffrey; Chavali, Sreenivas; Gergely, Fanni

    2016-01-01

    Numerical centrosome aberrations underlie certain developmental abnormalities and may promote cancer. A cell maintains normal centrosome numbers by coupling centrosome duplication with segregation, which is achieved through sustained association of each centrosome with a mitotic spindle pole. Although the microcephaly- and primordial dwarfism-linked centrosomal protein CEP215 has been implicated in this process, the molecular mechanism responsible remains unclear. Here, using proteomic profiling, we identify the minus end-directed microtubule motor protein HSET as a direct binding partner of CEP215. Targeted deletion of the HSET-binding domain of CEP215 in vertebrate cells causes centrosome detachment and results in HSET depletion at centrosomes, a phenotype also observed in CEP215-deficient patient-derived cells. Moreover, in cancer cells with centrosome amplification, the CEP215–HSET complex promotes the clustering of extra centrosomes into pseudo-bipolar spindles, thereby ensuring viable cell division. Therefore, stabilization of the centrosome–spindle pole interface by the CEP215–HSET complex could promote survival of cancer cells containing supernumerary centrosomes. PMID:26987684

  6. Detection and quantification of microtubule detachment from centrosomes and spindle poles.

    PubMed

    Ganguly, Anutosh; Yang, Hailing; Cabral, Fernando

    2013-01-01

    Microtubule detachment from microtubule organizing centers is an important cellular process required for normal cell proliferation. When cells enter mitosis, microtubule turnover increases along with a concurrent increase in microtubule detachment. MCAK, a kinesin-related protein whose abundance is highest during the early stages of mitosis, has been shown to regulate microtubule detachment. Abnormal increases or decreases in the frequency of detachment interfere with spindle function and inhibit cell division. It has been shown that drugs able to promote microtubule assembly (e.g., paclitaxel, epothilones) prevent cell division by suppressing microtubule detachment from centrosomes. Conversely, cytotoxic concentrations of microtubule destabilizing drugs (e.g., vinblastine, nocodazole), tubulin mutations that cause paclitaxel resistance, and specific β-tubulin isotypes increase the frequency of microtubule detachment. In this chapter, we describe a method to calculate the frequency of microtubule detachment by transfecting cells with EGFP-MAP4 and directly observing detachment by live cell imaging.

  7. An Overview of the Spindle Assembly Checkpoint Status in Oral Cancer

    PubMed Central

    Teixeira, José Henrique; Silva, Patrícia Manuela; Reis, Rita Margarida; Moura, Inês Moranguinho; Marques, Sandra; Fonseca, Joana; Monteiro, Luís Silva; Bousbaa, Hassan

    2014-01-01

    Abnormal chromosome number, or aneuploidy, is a common feature of human solid tumors, including oral cancer. Deregulated spindle assembly checkpoint (SAC) is thought as one of the mechanisms that drive aneuploidy. In normal cells, SAC prevents anaphase onset until all chromosomes are correctly aligned at the metaphase plate thereby ensuring genomic stability. Significantly, the activity of this checkpoint is compromised in many cancers. While mutations are rather rare, many tumors show altered expression levels of SAC components. Genomic alterations such as aneuploidy indicate a high risk of oral cancer and cancer-related mortality, and the molecular basis of these alterations is largely unknown. Yet, our knowledge on the status of SAC components in oral cancer remains sparse. In this review, we address the state of our knowledge regarding the SAC defects and the underlying molecular mechanisms in oral cancer, and discuss their therapeutic relevance, focusing our analysis on the core components of SAC and its target Cdc20. PMID:24995269

  8. Growth-associated protein-43 immunohistochemical and ultrastructural changes in jaw muscle spindles of the rat following loss of occlusion.

    PubMed

    Santiwong, Peerapong; Muramoto, Takeshi; Soma, Kunimichi; Takano, Yoshiro

    2002-03-01

    The effects of complete loss of occlusion on the structural and functional status of these muscle spindles were investigated by immunohistochemistry either for protein gene product 9.5 (PGP 9.5) or growth-associated protein-43 (GAP-43) by light and electron microscopy. All the upper molars of 4-week-old Wistar rats were extracted and the erupted portions of the upper and lower incisors of the same animals were cut-off at the level of the interdental papilla every other day. In a control group, immunoreactivity for GAP-43 was positive in the developing annulospiral endings of 2-week-old rats, but was not detected in any of the muscle spindles after 3 weeks of age. At 4 weeks of age, the PGP 9.5 immunostained spindles had well-differentiated annulospiral endings. Ultrastructurally, these afferent endings showed lenticular or circular profiles in cross-sections, and were differentially indented into the intrafusal-fibres. The inner surfaces of the terminals formed rather smooth myoneural junctions, while the outer surfaces were covered only by basal lamina continuous with that of the underlying intrafusal muscle fibres. After the experimental elimination of occlusal contact, GAP-43 immunoreactivity reappeared in some nerve endings of muscle spindles by 3 days, and persisted for at least 28 days. During this period, the afferent-terminals exhibited various fine structural abnormalities such as irregular outlines and invaginated neuromuscular interfaces. Some sensory-terminal (ST) profiles were completely engulfed by intrafusal-fibres. However, GAP-43 expression and ultrastructural alterations became undetectable within a week of the end of incisal cutting and the recovery of incisal-contact. These data indicate that remodelling of nerve terminals in muscle spindles, as assessed by GAP-43 expression and ultrastructural changes, occurs soon after a loss of occlusion, and ceases if incisal-contact is restored. It is concluded that possible changes in jaw muscle function

  9. Poleward microtubule flux mitotic spindles assembled in vitro

    PubMed Central

    1991-01-01

    In the preceding paper we described pathways of mitotic spindle assembly in cell-free extracts prepared from eggs of Xenopus laevis. Here we demonstrate the poleward flux of microtubules in spindles assembled in vitro, using a photoactivatable fluorescein covalently coupled to tubulin and multi-channel fluorescence videomicroscopy. After local photoactivation of fluorescence by UV microbeam, we observed poleward movement of fluorescein-marked microtubules at a rate of 3 microns/min, similar to rates of chromosome movement and spindle elongation during prometaphase and anaphase. This movement could be blocked by the addition of millimolar AMP-PNP but was not affected by concentrations of vanadate up to 150 microM, suggesting that poleward flux may be driven by a microtubule motor similar to kinesin. In contrast to previous results obtained in vivo (Mitchison, T. J. 1989. J. Cell Biol. 109:637-652), poleward flux in vitro appears to occur independently of kinetochores or kinetochore microtubules, and therefore may be a general property of relatively stable microtubules within the spindle. We find that microtubules moving towards poles are dynamic structures, and we have estimated the average half-life of fluxing microtubules in vitro to be between approximately 75 and 100 s. We discuss these results with regard to the function of poleward flux in spindle movements in anaphase and prometaphase. PMID:1999464

  10. Testing a Low-Influence Spindle Drive Motor

    SciTech Connect

    Hale, L; Wulff, T; Sedgewick, J

    2003-11-05

    Precision spindles used for diamond turning and other applications requiring low error motion generally require a drive system that ideally applies a pure torque to the rotating spindle. Frequently a frameless motor, that is, one without its own bearings, is directly coupled to the spindle to make a compact and simple system having high resonant frequencies. Although in addition to delivering drive torque, asymmetries in the motor cause it to generate disturbance loads (forces and moments) which influence the spindle error motion of the directly coupled system. This paper describes the tests and results for a particular frameless, brushless DC motor that was originally developed for military and space applications requiring very low torque ripple. Because the construction of the motor should also lead to very low disturbance loads, it was selected for use on a new diamond turning and grinding machine under developed at Lawrence Livermore National Laboratory. The level of influence for this motor-spindle combination is expected to be of order one nanometer for radial and axial error motion.

  11. Spindle neurons of the human anterior cingulate cortex

    NASA Technical Reports Server (NTRS)

    Nimchinsky, E. A.; Vogt, B. A.; Morrison, J. H.; Hof, P. R.; Bloom, F. E. (Principal Investigator)

    1995-01-01

    The human anterior cingulate cortex is distinguished by the presence of an unusual cell type, a large spindle neuron in layer Vb. This cell has been noted numerous times in the historical literature but has not been studied with modern neuroanatomic techniques. For instance, details regarding the neuronal class to which these cells belong and regarding their precise distribution along both ventrodorsal and anteroposterior axes of the cingulate gyrus are still lacking. In the present study, morphological features and the anatomic distribution of this cell type were studied using computer-assisted mapping and immunocytochemical techniques. Spindle neurons are restricted to the subfields of the anterior cingulate cortex (Brodmann's area 24), exhibiting a greater density in anterior portions of this area than in posterior portions, and tapering off in the transition zone between anterior and posterior cingulate cortex. Furthermore, a majority of the spindle cells at any level is located in subarea 24b on the gyral surface. Immunocytochemical analysis revealed that the neurofilament protein triple was present in a large percentage of these neurons and that they did not contain calcium-binding proteins. Injections of the carbocyanine dye DiI into the cingulum bundle revealed that these cells are projection neurons. Finally, spindle cells were consistently affected in Alzheimer's disease cases, with an overall loss of about 60%. Taken together, these observations indicate that the spindle cells of the human cingulate cortex represent a morphological subpopulation of pyramidal neurons whose restricted distribution may be associated with functionally distinct areas.

  12. Xenopus oocyte meiosis lacks spindle assembly checkpoint control

    PubMed Central

    Shao, Hua; Ma, Chunqi; Chen, Eric

    2013-01-01

    The spindle assembly checkpoint (SAC) functions as a surveillance mechanism to detect chromosome misalignment and to delay anaphase until the errors are corrected. The SAC is thought to control mitosis and meiosis, including meiosis in mammalian eggs. However, it remains unknown if meiosis in the eggs of nonmammalian vertebrate species is also regulated by SAC. Using a novel karyotyping technique, we demonstrate that complete disruption of spindle microtubules in Xenopus laevis oocytes did not affect the bivalent-to-dyad transition at the time oocytes are undergoing anaphase I. These oocytes also acquired the ability to respond to parthenogenetic activation, which indicates proper metaphase II arrest. Similarly, oocytes exhibiting monopolar spindles, via inhibition of aurora B or Eg5 kinesin, underwent monopolar anaphase on time and without additional intervention. Therefore, the metaphase-to-anaphase transition in frog oocytes is not regulated by SAC. PMID:23569212

  13. Urine - abnormal color

    MedlinePlus

    ... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...

  14. Tooth - abnormal colors

    MedlinePlus

    ... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...

  15. Abnormal Head Position

    MedlinePlus

    ... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...

  16. Skeletal limb abnormalities

    MedlinePlus

    ... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...

  17. An inhibitor of the kinesin spindle protein activates the intrinsic apoptotic pathway independently of p53 and de novo protein synthesis.

    PubMed

    Tao, Weikang; South, Victoria J; Diehl, Ronald E; Davide, Joseph P; Sepp-Lorenzino, Laura; Fraley, Mark E; Arrington, Kenneth L; Lobell, Robert B

    2007-01-01

    The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors.

  18. An Inhibitor of the Kinesin Spindle Protein Activates the Intrinsic Apoptotic Pathway Independently of p53 and De Novo Protein Synthesis▿ †

    PubMed Central

    Tao, Weikang; South, Victoria J.; Diehl, Ronald E.; Davide, Joseph P.; Sepp-Lorenzino, Laura; Fraley, Mark E.; Arrington, Kenneth L.; Lobell, Robert B.

    2007-01-01

    The kinesin spindle protein (KSP), a microtubule motor protein, is essential for the formation of bipolar spindles during mitosis. Inhibition of KSP activates the spindle checkpoint and causes apoptosis. It was shown that prolonged inhibition of KSP activates Bax and caspase-3, which requires a competent spindle checkpoint and couples with mitotic slippage. Here we investigated how Bax is activated by KSP inhibition and the roles of Bax and p53 in KSP inhibitor-induced apoptosis. We demonstrate that small interfering RNA-mediated knockdown of Bax greatly attenuates KSP inhibitor-induced apoptosis and that Bax activation is upstream of caspase activation. This indicates that Bax mediates the lethality of KSP inhibitors and that KSP inhibition provokes apoptosis via the intrinsic apoptotic pathway where Bax activation is prior to caspase activation. Although the BH3-only protein Puma is induced after mitotic slippage, suppression of de novo protein synthesis that abrogates Puma induction does not block activation of Bax or caspase-3, indicating that Bax activation is triggered by a posttranslational event. Comparison of KSP inhibitor-induced apoptosis between matched cell lines containing either functional or deficient p53 reveals that inhibition of KSP induces apoptosis independently of p53 and that p53 is dispensable for spindle checkpoint function. Thus, KSP inhibitors should be active in p53-deficient tumors. PMID:17101792

  19. Fallacious Carcinoma- Spindle Cell Variant of Squamous Cell Carcinoma

    PubMed Central

    Bavle, Radhika M; Govinda, Girish; Muniswamappa, Sudhakara; Venugopal, Reshma

    2016-01-01

    Spindle cell carcinoma is a unique, rare and peculiar biphasic tumour of head and neck which is not frequently observed in the oral cavity. This variant of squamous cell carcinoma although of monophasic epithelial origin, simulates a sarcoma and is an aggressive carcinoma with high frequency of recurrence and metastasis. A correct and timely diagnosis is of paramount importance. Most of the tumours require an Immunohistochemistry (IHC) panel for confirmation or diagnosis. We report a case of spindle cell carcinoma with varied histopathological morphology and clinical presentation in a middle aged female with a brief review of literature. PMID:27630965

  20. The innervation of the muscle spindle: a personal history.

    PubMed

    Banks, Robert W

    2015-08-01

    I present a brief review of current understanding of the innervation of the mammalian muscle spindle, from a personal historical perspective. The review begins with comparative studies on the numbers of spindle afferents and considers how their relative abundance may best be assessed. This is followed by an examination of the distribution and some functional properties of the motor innervation. The primary ending is the subject of the final section, in particular, I look at what can be learned from serial sectioning and volumetric reconstruction, and present new results on a model and simulations concerning sensory terminal deformation during stretch.

  1. Reflex changes in muscle spindle discharge during a voluntary contraction.

    PubMed

    Aniss, A M; Gandevia, S C; Burke, D

    1988-03-01

    1. This study was undertaken to determine whether low-threshold cutaneous and muscle afferents from mechanoreceptors in the foot reflexly affect fusimotor neurons innervating the plantar and dorsiflexors of the ankle during voluntary contractions. 2. Recordings were made from 29 identified muscle spindle afferents innervating triceps surae and the pretibial flexors. Trains of electrical stimuli (5 stimuli, 300 impulses per second) were delivered to the sural nerve at the ankle (intensity: 2-4 times sensory threshold) and to the posterior tibial nerve at the ankle (intensity: 1.5-3 times motor threshold for the small muscles of the foot). The stimuli were delivered while the subject maintained an isometric voluntary contraction of the receptor-bearing muscle, sufficient to accelerate the discharge of each spindle ending. This ensured that the fusimotor neurons directed to the ending were active and influencing the spindle discharge. The effects of these stimuli on muscle spindle discharge were assessed using raster displays, frequencygrams, poststimulus time histograms (PSTHs) and cumulative sums ("CUSUMs") of the PSTHs. Reflex effects onto alpha-motoneurons were determined from poststimulus changes in the averaged rectified electromyogram (EMG). Reflex effects of these stimuli onto single-motor units were assessed in separate experiments using PSTHs and CUSUMs. 3. Electrical stimulation of the sural or posterior tibial nerves at nonnoxious levels had no significant effect on the discharge of the 14 spindle endings in the pretibial flexor muscles. The electrical stimuli also produced no significant change in discharge of 11 of 15 spindle endings in triceps surae. With the remaining four endings in triceps surae, the overall change in discharge appeared to be an increase for two endings (at latencies of 60 and 68 ms) and a decrease for two endings (at latencies of 110 and 150 ms). The difference in the incidence of the responses of spindle endings in tibialis

  2. CDK1 Inactivation Regulates Anaphase Spindle Dynamics and Cytokinesis In Vivo

    PubMed Central

    Wheatley, Sally P.; Hinchcliffe, Edward H.; Glotzer, Michael; Hyman, Anthony A.; Sluder, Greenfield; Wang, Yu-li

    1997-01-01

    Through association with CDK1, cyclin B accumulation and destruction govern the G2/M/G1 transitions in eukaryotic cells. To identify CDK1 inactivation-dependent events during late mitosis, we expressed a nondestructible form of cyclin B (cyclin BΔ90) by microinjecting its mRNA into prometaphase normal rat kidney cells. The injection inhibited chromosome decondensation and nuclear envelope formation. Chromosome disjunction occurred normally, but anaphase-like movement persisted until the chromosomes reached the cell periphery, whereupon they often somersaulted and returned to the cell center. Injection of rhodamine-tubulin showed that this movement occurred in the absence of a central anaphase spindle. In 82% of cells cytokinesis was inhibited; the remainder split themselves into two parts in a process reminiscent of Dictyostelium cytofission. In all cells injected, F-actin and myosin II were diffusely localized with no detectable organization at the equator. Our results suggest that a primary effect of CDK1 inactivation is on spindle dynamics that regulate chromosome movement and cytokinesis. Prolonged CDK1 activity may prevent cytokinesis through inhibiting midzone microtubule formation, the behavior of proteins such as TD60, or through the phosphorylation of myosin II regulatory light chain. PMID:9230080

  3. Abnormal Uterine Bleeding FAQ

    MedlinePlus

    ... PROBLEMS Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... treat abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...

  4. Synthesis and luminescent properties of spindle-like YVO4:Ln3+ (Ln=Eu, Dy) self-assembled of nanoparticles

    NASA Astrophysics Data System (ADS)

    Zhang, Lihui; You, Hongpeng; Yang, Mei

    2012-02-01

    Large-scale spindle-like YVO4 particles with an euatorial diameter of 100-150 nm and a length of 300-350 nm were synthesized by utilizing the Y(OH)CO3 colloid spheres as the precursor and NH4VO3 as the vanadium source through a simple solution-based hydrothermal process, for the first time. In the first stage of the reaction, hierarchical flower-like YVO4 spheres were formed. Then, petals of spindle-like YVO4 particles were obtained via a following self-abscission process from these flower spheres. The possible formation mechanism has been discussed in detail. Moreover, the photoluminescent properties of spindle-like YVO4:Ln3+ (Ln=Eu, Dy) nanoparticles were investigated. They might have potential application in advanced flat panel display, minioptoelectronic devices, and biological labeling.

  5. An automatic sleep spindle detector based on wavelets and the teager energy operator.

    PubMed

    Ahmed, Beena; Redissi, Amira; Tafreshi, Reza

    2009-01-01

    Sleep spindles are one of the most important short-lasting rhythmic events occurring in the EEG during Non-Rapid Eye Movement sleep. Their accurate identification in a polysomnographic signal is essential for sleep professionals to help them mark Stage 2 sleep. Visual spindle scoring however is a tedious workload, as there are often a thousand spindles in an all-night recording. In this paper a novel approach for the automatic detection of sleep spindles based upon the Teager Energy Operator and wavelet packets has been presented. The Teager operator was found to accurately enhance periodic activity in epochs of the EEG containing spindles. The wavelet packet transform proved effective in accurately locating spindles in the time-frequency domain. The autocorrelation function of the resultant Teager signal and the wavelet packet energy ratio were used to identify epochs with spindles. These two features were integrated into a spindle detection algorithm which achieved an accuracy of 93.7%.

  6. Neuregulin1 signaling targets SRF and CREB and activates the muscle spindle-specific gene Egr3 through a composite SRF-CREB-binding site.

    PubMed

    Herndon, Carter A; Ankenbruck, Nick; Lester, Bridget; Bailey, Julie; Fromm, Larry

    2013-03-10

    Muscle spindles are sensory receptors embedded within muscle that detect changes in muscle length. Each spindle is composed of specialized muscle fibers, known as intrafusal muscle fibers, along with the endings of axons from sensory neurons that innervate these muscle fibers. Formation of muscle spindles requires neuregulin1 (NRG1), which is released by sensory axons, activating ErbB receptors in muscle cells that are contacted. In muscle cells, the transcription factor Egr3 is transcriptionally induced by NRG1, which in turn activates various target genes involved in forming the intrafusal fibers of muscle spindles. The signaling relay within the NRG1-ErbB pathway that acts to induce Egr3 is presumably critical for muscle spindle formation but for the most part has not been determined. In the current studies, we examined, using cultured muscle cells, transcriptional regulatory mechanisms by which Egr3 responds to NRG1. We identified a composite regulatory element for the Egr3 gene, consisting adjacent sites that bind cAMP response element binding protein (CREB) and serum response factor (SRF), with a role in NRG1 responsiveness. The SRF element also influences Egr3 basal expression in unstimulated myotubes, and in the absence of the SRF element, the CREB element influences basal expression. We show that NRG1 signaling, to target SRF, acts on the SRF coactivators myocardian-related transcription factor (MRTF)-A and MRTF-B, which are known to activate SRF-mediated transcription, by stimulating their translocation from the cytoplasm to the nucleus. CREB is phosphorylated, which is known to contribute to its activation, in response to NRG1. These results suggest that NRG1 induces expression of the muscle spindle-specific gene Egr3 by stimulating the transcriptional activity of CREB and SRF.

  7. Activity of the Kinesin Spindle Protein Inhibitor Ispinesib (SB-715992) in Models of Breast Cancer

    PubMed Central

    Purcell, James W.; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S.; Gray, Joe W.; Wood, Kenneth W.; Cases, Sylvaine

    2010-01-01

    Purpose Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein, a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have shown a 9% response rate in patients with locally advanced or metastatic breast cancer and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities, or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer, we explored the activity of ispinesib alone and in combination with several therapies approved for the treatment of breast cancer. Experimental Design We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo and tested the ability of ispinesib to enhance the antitumor activity of approved therapies. Results In vitro, ispinesib displayed broad antiproliferative activity against a panel of 53 breast cell lines. In vivo, ispinesib produced regressions in each of five breast cancer models and tumor-free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the antitumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine and exhibited activity comparable with paclitaxel and ixabepilone. Conclusions These findings support further clinical exploration of kinesin spindle protein inhibitors for the treatment of breast cancer. PMID:20068098

  8. Chromosome passenger complexes control anaphase duration and spindle elongation via a kinesin-5 brake

    PubMed Central

    Rozelle, Daniel K.; Hansen, Scott D.

    2011-01-01

    During mitosis, chromosome passenger complexes (CPCs) exhibit a well-conserved association with the anaphase spindle and have been implicated in spindle stability. However, their precise effect on the spindle is not clear. In this paper, we show, in budding yeast, that a CPC consisting of CBF3, Bir1, and Sli15, but not Ipl1, is required for normal spindle elongation. CPC mutants slow spindle elongation through the action of the bipolar kinesins Cin8 and Kip1. The same CPC mutants that slow spindle elongation also result in the enrichment of Cin8 and Kip1 at the spindle midzone. Together, these findings argue that CPCs function to organize the spindle midzone and potentially switch motors between force generators and molecular brakes. We also find that slowing spindle elongation delays the mitotic exit network (MEN)–dependent release of Cdc14, thus delaying spindle breakdown until a minimal spindle size is reached. We propose that these CPC- and MEN-dependent mechanisms are important for coordinating chromosome segregation with spindle breakdown and mitotic exit. PMID:21482719

  9. Sleep Spindles and Intelligence in Early Childhood--Developmental and Trait-Dependent Aspects

    ERIC Educational Resources Information Center

    Ujma, Péter P.; Sándor, Piroska; Szakadát, Sára; Gombos, Ferenc; Bódizs, Róbert

    2016-01-01

    Sleep spindles act as a powerful marker of individual differences in cognitive ability. Sleep spindle parameters correlate with both age-related changes in cognitive abilities and with the age-independent concept of IQ. While some studies have specifically demonstrated the relationship between sleep spindles and intelligence in young children, our…

  10. Parietal Fast Sleep Spindle Density Decrease in Alzheimer's Disease and Amnesic Mild Cognitive Impairment

    PubMed Central

    Gorgoni, Maurizio; Lauri, Giulia; Truglia, Ilaria; Cordone, Susanna; Sarasso, Simone; Scarpelli, Serena; Mangiaruga, Anastasia; D'Atri, Aurora; Tempesta, Daniela; Ferrara, Michele; Marra, Camillo; Rossini, Paolo Maria; De Gennaro, Luigi

    2016-01-01

    Several studies have identified two types of sleep spindles: fast (13–15 Hz) centroparietal and slow (11–13 Hz) frontal spindles. Alterations in spindle activity have been observed in Alzheimer's disease (AD) and Mild Cognitive Impairment (MCI). Only few studies have separately assessed fast and slow spindles in these patients showing a reduction of fast spindle count, but the possible local specificity of this phenomenon and its relation to cognitive decline severity are not clear. Moreover, fast and slow spindle density have never been assessed in AD/MCI. We have assessed fast and slow spindles in 15 AD patients, 15 amnesic MCI patients, and 15 healthy elderly controls (HC). Participants underwent baseline polysomnographic recording (19 cortical derivations). Spindles during nonrapid eye movements sleep were automatically detected, and spindle densities of the three groups were compared in the derivations where fast and slow spindles exhibited their maximum expression (parietal and frontal, resp.). AD and MCI patients showed a significant parietal fast spindle density decrease, positively correlated with Minimental State Examination scores. Our results suggest that AD-related changes in spindle density are specific for frequency and location, are related to cognitive decline severity, and may have an early onset in the pathology development. PMID:27066274

  11. Involvement of Spindles in Memory Consolidation Is Slow Wave Sleep-Specific

    ERIC Educational Resources Information Center

    Cox, Roy; Hofman, Winni F.; Talamini, Lucia M.

    2012-01-01

    Both sleep spindles and slow oscillations have been implicated in sleep-dependent memory consolidation. Whereas spindles occur during both light and deep sleep, slow oscillations are restricted to deep sleep, raising the possibility of greater consolidation-related spindle involvement during deep sleep. We assessed declarative memory retention…

  12. Three-dimensional ultrastructural analysis of the Saccharomyces cerevisiae mitotic spindle

    PubMed Central

    1995-01-01

    The three dimensional organization of microtubules in mitotic spindles of the yeast Saccharomyces cerevisiae has been determined by computer- aided reconstruction from electron micrographs of serially cross- sectioned spindles. Fifteen spindles ranging in length from 0.6-9.4 microns have been analyzed. Ordered microtubule packing is absent in spindles up to 0.8 micron, but the total number of microtubules is sufficient to allow one microtubule per kinetochore with a few additional microtubules that may form an interpolar spindle. An obvious bundle of about eight interpolar microtubules was found in spindles 1.3- 1.6 microns long, and we suggest that the approximately 32 remaining microtubules act as kinetochore fibers. The relative lengths of the microtubules in these spindles suggest that they may be in an early stage of anaphase, even though these spindles are all situated in the mother cell, not in the isthmus between mother and bud. None of the reconstructed spindles exhibited the uniform populations of kinetochore microtubules characteristic of metaphase. Long spindles (2.7-9.4 microns), presumably in anaphase B, contained short remnants of a few presumed kinetochore microtubules clustered near the poles and a few long microtubules extending from each pole toward the spindle midplane, where they interdigitated with their counterparts from the other pole. Interpretation of these reconstructed spindles offers some insights into the mechanisms of mitosis in this yeast. PMID:7790357

  13. Cell shape impacts on the positioning of the mitotic spindle with respect to the substratum

    PubMed Central

    Lázaro-Diéguez, Francisco; Ispolatov, Iaroslav; Müsch, Anne

    2015-01-01

    All known mechanisms of mitotic spindle orientation rely on astral microtubules. We report that even in the absence of astral microtubules, metaphase spindles in MDCK and HeLa cells are not randomly positioned along their x-z dimension, but preferentially adopt shallow β angles between spindle pole axis and substratum. The nonrandom spindle positioning is due to constraints imposed by the cell cortex in flat cells that drive spindles that are longer and/or wider than the cell's height into a tilted, quasidiagonal x-z position. In rounder cells, which are taller, fewer cortical constraints make the x-z spindle position more random. Reestablishment of astral microtubule–mediated forces align the spindle poles with cortical cues parallel to the substratum in all cells. However, in flat cells, they frequently cause spindle deformations. Similar deformations are apparent when confined spindles rotate from tilted to parallel positions while MDCK cells progress from prometaphase to metaphase. The spindle disruptions cause the engagement of the spindle assembly checkpoint. We propose that cell rounding serves to maintain spindle integrity during its positioning. PMID:25657320

  14. Development of a Spindle Thermal Error Characterization and Compensation Sensor System for Machining Center Accuracy Enhancement

    DTIC Science & Technology

    1993-12-01

    vertical spindle CNC machining center, "* a Sundstrand series 20 Omnimill horizontal spindle CNC machining center, * a Producto A-1738 vertical spindle CNC...hardware and software developed during this program have been successfully commercialized by API. Currently API is marketing this system under the trade name

  15. Age-dependent seizures of absence epilepsy and sleep spindles dynamics in WAG/Rij rats

    NASA Astrophysics Data System (ADS)

    Grubov, Vadim V.; Sitnikova, Evgenia Y.; Pavlov, Alexey N.; Khramova, Marina V.; Koronovskii, Alexey A.; Hramov, Alexander E.

    2015-03-01

    In the given paper, a relation between time-frequency characteristics of sleep spindles and the age-dependent epileptic activity in WAG/Rij rats is discussed. Analysis of sleep spindles based on the continuous wavelet transform is performed for rats of different ages. It is shown that the epileptic activity affects the time-frequency intrinsic dynamics of sleep spindles.

  16. Developmental Changes in Sleep Spindle Characteristics and Sigma Power across Early Childhood

    PubMed Central

    McClain, Ian J.; Lustenberger, Caroline; Achermann, Peter; Lassonde, Jonathan M.; Kurth, Salome; LeBourgeois, Monique K.

    2016-01-01

    Sleep spindles, a prominent feature of the non-rapid eye movement (NREM) sleep electroencephalogram (EEG), are linked to cognitive abilities. Early childhood is a time of rapid cognitive and neurophysiological maturation; however, little is known about developmental changes in sleep spindles. In this study, we longitudinally examined trajectories of multiple sleep spindle characteristics (i.e., spindle duration, frequency, integrated spindle amplitude, and density) and power in the sigma frequency range (10–16 Hz) across ages 2, 3, and 5 years (n = 8; 3 males). At each time point, nocturnal sleep EEG was recorded in-home after 13-h of prior wakefulness. Spindle duration, integrated spindle amplitude, and sigma power increased with age across all EEG derivations (C3A2, C4A1, O2A1, and O1A2; all ps < 0.05). We also found a developmental decrease in mean spindle frequency (p < 0.05) but no change in spindle density with increasing age. Thus, sleep spindles increased in duration and amplitude but decreased in frequency across early childhood. Our data characterize early developmental changes in sleep spindles, which may advance understanding of thalamocortical brain connectivity and associated lifelong disease processes. These findings also provide unique insights into spindle ontogenesis in early childhood and may help identify electrophysiological features related to healthy and aberrant brain maturation. PMID:27110405

  17. Prevention of maternal aging-associated oocyte aneuploidy and meiotic spindle defects in mice by dietary and genetic strategies.

    PubMed

    Selesniemi, Kaisa; Lee, Ho-Joon; Muhlhauser, Ailene; Tilly, Jonathan L

    2011-07-26

    Increased meiotic spindle abnormalities and aneuploidy in oocytes of women of advanced maternal ages lead to elevated rates of infertility, miscarriage, and trisomic conceptions. Despite the significance of the problem, strategies to sustain oocyte quality with age have remained elusive. Here we report that adult female mice maintained under 40% caloric restriction (CR) did not exhibit aging-related increases in oocyte aneuploidy, chromosomal misalignment on the metaphase plate, meiotic spindle abnormalities, or mitochondrial dysfunction (aggregation, impaired ATP production), all of which occurred in oocytes of age-matched ad libitum-fed controls. The effects of CR on oocyte quality in aging females were reproduced by deletion of the metabolic regulator, peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α). Thus, CR during adulthood or loss of PGC-1α function maintains female germline chromosomal stability and its proper segregation during meiosis, such that ovulated oocytes of aged female mice previously maintained on CR or lacking PGC-1α are comparable to those of young females during prime reproductive life.

  18. A quantitative systems view of the spindle assembly checkpoint

    PubMed Central

    Ciliberto, Andrea; Shah, Jagesh V

    2009-01-01

    The idle assembly checkpoint acts to delay chromosome segregation until all duplicated sister chromatids are captured by the mitotic spindle. This pathway ensures that each daughter cell receives a complete copy of the genome. The high fidelity and robustness of this process have made it a subject of intense study in both the experimental and computational realms. A significant number of checkpoint proteins have been identified but how they orchestrate the communication between local spindle attachment and global cytoplasmic signalling to delay segregation is not yet understood. Here, we propose a systems view of the spindle assembly checkpoint to focus attention on the key regulators of the dynamics of this pathway. These regulators in turn have been the subject of detailed cellular measurements and computational modelling to connect molecular function to the dynamics of spindle assembly checkpoint signalling. A review of these efforts reveals the insights provided by such approaches and underscores the need for further interdisciplinary studies to reveal in full the quantitative underpinnings of this cellular control pathway. PMID:19629044

  19. Teaching Reading--Vision vs. the Muscle Spindles (The Proprioceptors).

    ERIC Educational Resources Information Center

    Caukins, Sivan Eugene, Jr.

    Literature is reviewed which discusses the role of proprioceptors in basic perceptual and motoric functions. The author cites research on the functions of the muscle spindles in controlling muscles which in turn provide energy, stimulation, and activation of the central nervous system. Research on the relation of motor functions to language…

  20. Modelling muscle spindle dynamics for a proprioceptive prosthesis.

    PubMed

    Williams, Ian; Constandinou, Timothy G

    2013-01-01

    Muscle spindles are found throughout our skeletal muscle tissue and continuously provide us with a sense of our limbs' position and motion (proprioception). This paper advances a model for generating artificial muscle spindle signals for a prosthetic limb, with the aim of one day providing amputees with a sense of feeling in their artificial limb. By utilising the Opensim biomechanical modelling package the relationship between a joint's angle and the length of surrounding muscles is estimated for a prosthetic limb. This is then applied to the established Mileusnic model to determine the associated muscle spindle firing pattern. This complete system model is then reduced to allow for a computationally efficient hardware implementation. This reduction is achieved with minimal impact on accuracy by selecting key mono-articular muscles and fitting equations to relate joint angle to muscle length. Parameter values fitting the Mileusnic model to human spindles are then proposed and validated against previously published human neural recordings. Finally, a model for fusimotor signals is also proposed based on data previously recorded from reduced animal experiments.

  1. Spindle Oscillations in Sleep Disorders: A Systematic Review

    PubMed Central

    Weiner, Oren M.

    2016-01-01

    Measurement of sleep microarchitecture and neural oscillations is an increasingly popular technique for quantifying EEG sleep activity. Many studies have examined sleep spindle oscillations in sleep-disordered adults; however reviews of this literature are scarce. As such, our overarching aim was to critically review experimental studies examining sleep spindle activity between adults with and without different sleep disorders. Articles were obtained using a systematic methodology with a priori criteria. Thirty-seven studies meeting final inclusion criteria were reviewed, with studies grouped across three categories: insomnia, hypersomnias, and sleep-related movement disorders (including parasomnias). Studies of patients with insomnia and sleep-disordered breathing were more abundant relative to other diagnoses. All studies were cross-sectional. Studies were largely inconsistent regarding spindle activity differences between clinical and nonclinical groups, with some reporting greater or less activity, while many others reported no group differences. Stark inconsistencies in sample characteristics (e.g., age range and diagnostic criteria) and methods of analysis (e.g., spindle bandwidth selection, visual detection versus digital filtering, absolute versus relative spectral power, and NREM2 versus NREM3) suggest a need for greater use of event-based detection methods and increased research standardization. Hypotheses regarding the clinical and empirical implications of these findings, and suggestions for potential future studies, are also discussed. PMID:27034850

  2. Kinetochore localization of spindle checkpoint proteins: who controls whom?

    PubMed

    Vigneron, Suzanne; Prieto, Susana; Bernis, Cyril; Labbé, Jean-Claude; Castro, Anna; Lorca, Thierry

    2004-10-01

    The spindle checkpoint prevents anaphase onset until all the chromosomes have successfully attached to the spindle microtubules. The mechanisms by which unattached kinetochores trigger and transmit a primary signal are poorly understood, although it seems to be dependent at least in part, on the kinetochore localization of the different checkpoint components. By using protein immunodepletion and mRNA translation in Xenopus egg extracts, we have studied the hierarchic sequence and the interdependent network that governs protein recruitment at the kinetochore in the spindle checkpoint pathway. Our results show that the first regulatory step of this cascade is defined by Aurora B/INCENP complex. Aurora B/INCENP controls the activation of a second regulatory level by inducing at the kinetochore the localization of Mps1, Bub1, Bub3, and CENP-E. This localization, in turn, promotes the recruitment to the kinetochore of Mad1/Mad2, Cdc20, and the anaphase promoting complex (APC). Unlike Aurora B/INCENP, Mps1, Bub1, and CENP-E, the downstream checkpoint protein Mad1 does not regulate the kinetochore localization of either Cdc20 or APC. Similarly, Cdc20 and APC do not require each other to be localized at these chromosome structures. Thus, at the last step of the spindle checkpoint cascade, Mad1/Mad2, Cdc20, and APC are recruited at the kinetochores independently from each other.

  3. Potato spindle tuber viroid: the simplicity paradox resolved?

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Taxonomy: Potato spindle tuber viroid (PSTVd) is the type species of the genus Posipiviroid, family Pospiviroidae. An absence of hammerhead ribozymes and the presence of a 'central conserved region' distinguish PSTVd and related viroids from members of a second viroid family, the Avsunviroidae. ...

  4. Screening tomato germplasm for resistance to potato spindle tuber viroid

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In recent years, several outbreaks of a potentially devastating viroid disease on tomato in North America have caused serious concerns to tomato growers and vegetable seed industry. Several closely related viroids in the genus Pospiviroid have been identified on tomato. Among them, Potato spindle t...

  5. Spindle Oscillations in Sleep Disorders: A Systematic Review.

    PubMed

    Weiner, Oren M; Dang-Vu, Thien Thanh

    2016-01-01

    Measurement of sleep microarchitecture and neural oscillations is an increasingly popular technique for quantifying EEG sleep activity. Many studies have examined sleep spindle oscillations in sleep-disordered adults; however reviews of this literature are scarce. As such, our overarching aim was to critically review experimental studies examining sleep spindle activity between adults with and without different sleep disorders. Articles were obtained using a systematic methodology with a priori criteria. Thirty-seven studies meeting final inclusion criteria were reviewed, with studies grouped across three categories: insomnia, hypersomnias, and sleep-related movement disorders (including parasomnias). Studies of patients with insomnia and sleep-disordered breathing were more abundant relative to other diagnoses. All studies were cross-sectional. Studies were largely inconsistent regarding spindle activity differences between clinical and nonclinical groups, with some reporting greater or less activity, while many others reported no group differences. Stark inconsistencies in sample characteristics (e.g., age range and diagnostic criteria) and methods of analysis (e.g., spindle bandwidth selection, visual detection versus digital filtering, absolute versus relative spectral power, and NREM2 versus NREM3) suggest a need for greater use of event-based detection methods and increased research standardization. Hypotheses regarding the clinical and empirical implications of these findings, and suggestions for potential future studies, are also discussed.

  6. A dynamical model of the spindle position checkpoint.

    PubMed

    Caydasi, Ayse Koca; Lohel, Maiko; Grünert, Gerd; Dittrich, Peter; Pereira, Gislene; Ibrahim, Bashar

    2012-05-08

    The orientation of the mitotic spindle with respect to the polarity axis is crucial for the accuracy of asymmetric cell division. In budding yeast, a surveillance mechanism called the spindle position checkpoint (SPOC) prevents exit from mitosis when the mitotic spindle fails to align along the mother-to-daughter polarity axis. SPOC arrest relies upon inhibition of the GTPase Tem1 by the GTPase-activating protein (GAP) complex Bfa1-Bub2. Importantly, reactions signaling mitotic exit take place at yeast centrosomes (named spindle pole bodies, SPBs) and the GAP complex also promotes SPB localization of Tem1. Yet, whether the regulation of Tem1 by Bfa1-Bub2 takes place only at the SPBs remains elusive. Here, we present a quantitative analysis of Bfa1-Bub2 and Tem1 localization at the SPBs. Based on the measured SPB-bound protein levels, we introduce a dynamical model of the SPOC that describes the regulation of Bfa1 and Tem1. Our model suggests that Bfa1 interacts with Tem1 in the cytoplasm as well as at the SPBs to provide efficient Tem1 inhibition.

  7. Physical limits on kinesin-5–mediated chromosome congression in the smallest mitotic spindles

    PubMed Central

    McCoy, Kelsey M.; Tubman, Emily S.; Claas, Allison; Tank, Damien; Clancy, Shelly Applen; O’Toole, Eileen T.; Berman, Judith; Odde, David J.

    2015-01-01

    A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro­tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to

  8. Membrane Bistability in Thalamic Reticular Neurons During Spindle Oscillations

    PubMed Central

    Fuentealba, Pablo; Timofeev, Igor; Bazhenov, Maxim; Sejnowski, Terrence J.; Steriade, Mircea

    2010-01-01

    The thalamic reticular (RE) nucleus is a major source of inhibition in the thalamus. It plays a crucial role in regulating the excitability of thalamocortical networks and in generating some sleep rhythms. Current-clamp intracellular recordings of RE neurons in cats under barbiturate anesthesia revealed the presence of membrane bistability in ~20% of neurons. Bistability consisted of two alternate membrane potentials, separated by ~17–20 mV. While non-bistable (common) RE neurons fired rhythmic spike-bursts during spindles, bistable RE neurons fired tonically, with burst modulation, throughout spindle sequences. Bistability was strongly voltage dependent and only expressed under resting conditions (i.e. no current injection). The transition from the silent to the active state was a regenerative event that could be activated by brief depolarization, whereas brief hyperpolarizations could switch the membrane potential from the active to the silent state. These effects outlasted the current pulses. Corticothalamic stimulation could also switch the membrane potential from silent to active states. Addition of QX-314 in the recording micropipette either abolished or disrupted membrane bistability, suggesting INa(p) to be responsible for its generation. Thalamocortical cells presented various patterns of spindling that reflected the membrane bistability in RE neurons. Finally, experimental data and computer simulations predicted a role for RE neurons’ membrane bistability in inducing various patterns of spindling in target thalamocortical cells. We conclude that membrane bistability of RE neurons is an intrinsic property, likely generated by INa(p) and modulated by cortical influences, as well as a factor that determines different patterns of spindle rhythms in thalamocortical neurons. PMID:15331618

  9. Genetic abnormality of the visual pathways in a "white" tiger.

    PubMed

    Guillery, R W; Kaas, J H

    1973-06-22

    "White"tigers show an inherited reduction of pigment, produced by an autosomal recessive gene. The brain of one of these tigers shows an abnormality of the visual pathways similar to abnormalities that are associated with albinism in many other mammals. There is a close relationship between the reduced pigment formation, the pathway abnormality, and strabismus.

  10. Drosophila Polo regulates the spindle assembly checkpoint through Mps1-dependent BubR1 phosphorylation.

    PubMed

    Conde, Carlos; Osswald, Mariana; Barbosa, João; Moutinho-Santos, Tatiana; Pinheiro, Diana; Guimarães, Sofia; Matos, Irina; Maiato, Helder; Sunkel, Claudio E

    2013-06-12

    Maintenance of genomic stability during eukaryotic cell division relies on the spindle assembly checkpoint (SAC) that prevents mitotic exit until all chromosomes are properly attached to the spindle. Polo is a mitotic kinase proposed to be involved in SAC function, but its role has remained elusive. We demonstrate that Polo and Aurora B functional interdependency comprises a positive feedback loop that promotes Mps1 kinetochore localization and activity. Expression of constitutively active Polo restores normal Mps1 kinetochore levels even after Aurora B inhibition, highlighting a role for Polo in Mps1 recruitment to unattached kinetochores downstream of Aurora B. We also show that Mps1 kinetochore localization is required for BubR1 hyperphosphorylation and formation of the 3F3/2 phosphoepitope. This is essential to allow recruitment of Cdc20 to unattached kinetochores and the assembly of anaphase-promoting complex/cyclosome-inhibitory complexes to levels that ensure long-term SAC activity. We propose a model in which Polo controls Mps1-dependent BubR1 phosphorylation to promote Cdc20 kinetochore recruitment and sustained SAC function.

  11. Transportin Regulates Major Mitotic Assembly Events: From Spindle to Nuclear Pore Assembly

    PubMed Central

    Lau, Corine K.; Delmar, Valerie A.; Chan, Rene C.; Phung, Quang; Bernis, Cyril; Fichtman, Boris; Rasala, Beth A.

    2009-01-01

    Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportin—and importin beta—initiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events. PMID:19641022

  12. Transportin regulates major mitotic assembly events: from spindle to nuclear pore assembly.

    PubMed

    Lau, Corine K; Delmar, Valerie A; Chan, Rene C; Phung, Quang; Bernis, Cyril; Fichtman, Boris; Rasala, Beth A; Forbes, Douglass J

    2009-09-01

    Mitosis in higher eukaryotes is marked by the sequential assembly of two massive structures: the mitotic spindle and the nucleus. Nuclear assembly itself requires the precise formation of both nuclear membranes and nuclear pore complexes. Previously, importin alpha/beta and RanGTP were shown to act as dueling regulators to ensure that these assembly processes occur only in the vicinity of the mitotic chromosomes. We now find that the distantly related karyopherin, transportin, negatively regulates nuclear envelope fusion and nuclear pore assembly in Xenopus egg extracts. We show that transportin-and importin beta-initiate their regulation as early as the first known step of nuclear pore assembly: recruitment of the critical pore-targeting nucleoporin ELYS/MEL-28 to chromatin. Indeed, each karyopherin can interact directly with ELYS. We further define the nucleoporin subunit targets for transportin and importin beta and find them to be largely the same: ELYS, the Nup107/160 complex, Nup53, and the FG nucleoporins. Equally importantly, we find that transportin negatively regulates mitotic spindle assembly. These negative regulatory events are counteracted by RanGTP. We conclude that the interplay of the two negative regulators, transportin and importin beta, along with the positive regulator RanGTP, allows precise choreography of multiple cell cycle assembly events.

  13. Activity of the kinesin spindle protein inhibitor ispinesib (SB-715992) in models of breast cancer

    SciTech Connect

    Purcell, James W; Davis, Jefferson; Reddy, Mamatha; Martin, Shamra; Samayoa, Kimberly; Vo, Hung; Thomsen, Karen; Bean, Peter; Kuo, Wen Lin; Ziyad, Safiyyah; Billig, Jessica; Feiler, Heidi S; Gray, Joe W; Wood, Kenneth W; Cases, Sylvaine

    2009-06-10

    Ispinesib (SB-715992) is a potent inhibitor of kinesin spindle protein (KSP), a kinesin motor protein essential for the formation of a bipolar mitotic spindle and cell cycle progression through mitosis. Clinical studies of ispinesib have demonstrated a 9% response rate in patients with locally advanced or metastatic breast cancer, and a favorable safety profile without significant neurotoxicities, gastrointestinal toxicities or hair loss. To better understand the potential of ispinesib in the treatment of breast cancer we explored the activity of ispinesib alone and in combination several therapies approved for the treatment of breast cancer. We measured the ispinesib sensitivity and pharmacodynamic response of breast cancer cell lines representative of various subtypes in vitro and as xenografts in vivo, and tested the ability of ispinesib to enhance the anti-tumor activity of approved therapies. In vitro, ispinesib displayed broad anti-proliferative activity against a panel of 53 breast cell-lines. In vivo, ispinesib produced regressions in each of five breast cancer models, and tumor free survivors in three of these models. The effects of ispinesib treatment on pharmacodynamic markers of mitosis and apoptosis were examined in vitro and in vivo, revealing a greater increase in both mitotic and apoptotic markers in the MDA-MB-468 model than in the less sensitive BT-474 model. In vivo, ispinesib enhanced the anti-tumor activity of trastuzumab, lapatinib, doxorubicin, and capecitabine, and exhibited activity comparable to paclitaxel and ixabepilone. These findings support further clinical exploration of KSP inhibitors for the treatment of breast cancer.

  14. The kinesin-8 Kip3 scales anaphase spindle length by suppression of midzone microtubule polymerization.

    PubMed

    Rizk, Rania S; Discipio, Katherine A; Proudfoot, Kathleen G; Gupta, Mohan L

    2014-03-17

    Mitotic spindle function is critical for cell division and genomic stability. During anaphase, the elongating spindle physically segregates the sister chromatids. However, the molecular mechanisms that determine the extent of anaphase spindle elongation remain largely unclear. In a screen of yeast mutants with altered spindle length, we identified the kinesin-8 Kip3 as essential to scale spindle length with cell size. Kip3 is a multifunctional motor protein with microtubule depolymerase, plus-end motility, and antiparallel sliding activities. Here we demonstrate that the depolymerase activity is indispensable to control spindle length, whereas the motility and sliding activities are not sufficient. Furthermore, the microtubule-destabilizing activity is required to counteract Stu2/XMAP215-mediated microtubule polymerization so that spindle elongation terminates once spindles reach the appropriate final length. Our data support a model where Kip3 directly suppresses spindle microtubule polymerization, limiting midzone length. As a result, sliding forces within the midzone cannot buckle spindle microtubules, which allows the cell boundary to define the extent of spindle elongation.

  15. CPAP Treatment Partly Normalizes Sleep Spindle Features in Obstructive Sleep Apnea

    PubMed Central

    Saunamäki, Tiia; Huupponen, Eero; Loponen, Juho

    2017-01-01

    Objective. Obstructive sleep apnea (OSA) decreases sleep spindle density and frequency. We evaluated the effects of continuous positive airway pressure (CPAP) treatment on different features of sleep spindles. Methods. Twenty OSA patients underwent two night polysomnographies in a diagnostic phase and one night polysomnography after 6 months of CPAP treatment. The control group comprised 20 healthy controls. Sleep spindles were analyzed by a previously developed automated method. Unilateral and bilateral spindles were identified in central and frontopolar brain locations. Spindle density and frequency were determined for the first and last half of the NREM time. Results. The density of bilateral central spindles, which did not change in the untreated OSA patients, increased towards the morning hours during CPAP treatment and in the controls. Central spindles did not become faster with sleep in OSA patients and the central spindles remained slow in the left hemisphere even with CPAP. Conclusion. CPAP treatment normalized spindle features only partially. The changes may be associated with deficits in thalamocortical spindle generating loops. Significance. This study shows that some sleep spindle changes persist after CPAP treatment in OSA patients. The association of these changes to daytime symptoms in OSA patients needs to be further evaluated. PMID:28261503

  16. The dynamics of spindles and EEG slow-wave activity in NREM sleep in mice.

    PubMed

    Vyazovskiy, V V; Achermann, P; Borbély, A A; Tobler, I

    2004-07-01

    A quantitative analysis of spindles and spindle-related EEG activity was performed in C57BL/6 mice. The hypothesis that spindles are involved in sleep regulatory mechanisms was tested by investigating their occurrence during 24 h and after 6 h sleep deprivation (SD; n = 7). In the frontal derivation distinct spindle events were characterized as EEG oscillations with a dominant frequency approximately at 11 Hz. Spindles were most prominent during NREM sleep and increased before NREM-REM sleep transitions. Whereas spindles increased concomitantly with slow wave activity (SWA, EEG power between 0.5 and 4.0 Hz) at the beginning of the NREM sleep episode, these measures showed an opposite evolution prior to the transition to REM sleep. The 24-h time course of spindles showed a maximum at the end of the 12-h light period, and was a mirror image of SWA in NREM sleep. After 6 h SD the spindles in NREM sleep were initially suppressed, and showed a delayed rebound. In contrast, spindles occurring immediately before the transition to REM sleep were enhanced during the first 2 h of recovery. The data suggest that spindles in NREM sleep may be involved in sleep maintenance, while spindles heralding the transition to REM sleep may be related to mechanisms of REM sleep initiation.

  17. Nucleocytoplasmic transport in the midzone membrane domain controls yeast mitotic spindle disassembly

    PubMed Central

    Lucena, Rafael; Dephoure, Noah; Gygi, Steve P.; Kellogg, Douglas R.; Tallada, Victor A.

    2015-01-01

    During each cell cycle, the mitotic spindle is efficiently assembled to achieve chromosome segregation and then rapidly disassembled as cells enter cytokinesis. Although much has been learned about assembly, how spindles disassemble at the end of mitosis remains unclear. Here we demonstrate that nucleocytoplasmic transport at the membrane domain surrounding the mitotic spindle midzone, here named the midzone membrane domain (MMD), is essential for spindle disassembly in Schizosaccharomyces pombe cells. We show that, during anaphase B, Imp1-mediated transport of the AAA-ATPase Cdc48 protein at the MMD allows this disassembly factor to localize at the spindle midzone, thereby promoting spindle midzone dissolution. Our findings illustrate how a separate membrane compartment supports spindle disassembly in the closed mitosis of fission yeast. PMID:25963819

  18. Spindle cell variant of ameloblastic carcinoma: a case report and literature review.

    PubMed

    Matsushita, Yuki; Fujita, Shuichi; Yanamoto, Souichi; Yamada, Shin-ichi; Rokutanda, Satoshi; Yamashita, Kentaro; Ikeda, Tohru; Umeda, Masahiro

    2016-03-01

    Spindle cell variant of ameloblastic carcinoma is an extremely rare tumor. Severe dedifferentiated spindle cell variants are diagnostically challenging, particularly in small biopsy specimens. Here, we report a case of spindle cell variant of ameloblastic carcinoma in the mandible of a 69-year-old male patient and review the available literature. The tumor was surgically resected under general anesthesia. Histopathologic diagnosis of spindle cell carcinoma was made on incisional biopsy, and the final diagnosis was confirmed as spindle cell variant of ameloblastic carcinoma. Immunohistochemistry using cytokeratin and CK19 is helpful in determining the origin of spindle cell variant of ameloblastic carcinoma, particularly CK19 indicated that sarcomatoid spindle cells are derived from odontogenic epithelium. A review demonstrated higher mean age of patients compared with that of other types of ameloblastic carcinoma. The rates of mortality and local recurrence were concurrently 30%. No recurrence or metastasis was seen in the 23-month follow-up period in the present case.

  19. Kinesin-5 Contributes to Spindle-length Scaling in the Evolution of Cancer toward Metastasis

    PubMed Central

    Yang, Ching-Feng; Tsai, Wan-Yu; Chen, Wei-An; Liang, Kai-Wen; Pan, Cheng-Ju; Lai, Pei-Lun; Yang, Pan-Chyr; Huang, Hsiao-Chun

    2016-01-01

    During natural evolution, the spindles often scale with cell sizes to orchestrate accurate chromosome segregation. Whether in cancer evolution, when the constraints on genome integrity are relaxed, cancer cells may evolve the spindle to confer other advantages has not been investigated. Using invasion as a selective pressure in vitro, we found that a highly metastatic cancer clone displays a lengthened metaphase spindle, with faster spindle elongation that correlates with transiently elevated speed of cell migration. We found that kinesin-5 is upregulated in this malignant clone, and weak inhibition of kinesin-5 activity could revert the spindle to a smaller aspect ratio, decrease the speed of spindle pole separation, and suppress post-mitotic cell migration. A correlation was found between high aspect ratio and strong metastatic potential in cancers that evolved and were selected in vivo, implicating that the spindle aspect ratio could serve as a promising cellular biomarker for metastatic cancer clones. PMID:27767194

  20. Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle.

    PubMed

    Nannas, Natalie J; O'Toole, Eileen T; Winey, Mark; Murray, Andrew W

    2014-12-15

    The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro-tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore-microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number.

  1. Sleep Spindles as an Electrographic Element: Description and Automatic Detection Methods

    PubMed Central

    Maquet, Pierre

    2016-01-01

    Sleep spindle is a peculiar oscillatory brain pattern which has been associated with a number of sleep (isolation from exteroceptive stimuli, memory consolidation) and individual characteristics (intellectual quotient). Oddly enough, the definition of a spindle is both incomplete and restrictive. In consequence, there is no consensus about how to detect spindles. Visual scoring is cumbersome and user dependent. To analyze spindle activity in a more robust way, automatic sleep spindle detection methods are essential. Various algorithms were developed, depending on individual research interest, which hampers direct comparisons and meta-analyses. In this review, sleep spindle is first defined physically and topographically. From this general description, we tentatively extract the main characteristics to be detected and analyzed. A nonexhaustive list of automatic spindle detection methods is provided along with a description of their main processing principles. Finally, we propose a technique to assess the detection methods in a robust and comparable way. PMID:27478649

  2. Chromosomal attachments set length and microtubule number in the Saccharomyces cerevisiae mitotic spindle

    PubMed Central

    Nannas, Natalie J.; O’Toole, Eileen T.; Winey, Mark; Murray, Andrew W.

    2014-01-01

    The length of the mitotic spindle varies among different cell types. A simple model for spindle length regulation requires balancing two forces: pulling, due to micro­tubules that attach to the chromosomes at their kinetochores, and pushing, due to interactions between microtubules that emanate from opposite spindle poles. In the budding yeast Saccharomyces cerevisiae, we show that spindle length scales with kinetochore number, increasing when kinetochores are inactivated and shortening on addition of synthetic or natural kinetochores, showing that kinetochore–microtubule interactions generate an inward force to balance forces that elongate the spindle. Electron microscopy shows that manipulating kinetochore number alters the number of spindle microtubules: adding extra kinetochores increases the number of spindle microtubules, suggesting kinetochore-based regulation of microtubule number. PMID:25318669

  3. Studies on the in vivo sensitivity of spindle microtubules to calcium ions and evidence for a vesicular calcium-sequestering system

    PubMed Central

    1981-01-01

    I microinjected calcium ions into echinoderm eggs during mitosis to determine the calcium sensitivity of microtubules (Mts) in vivo. Spindle birefringence (BR), a measure of the number of aligned Mts in the spindle, is locally, rapidly, and reversibly abolished by small volumes of microinjected CaCl2 (1 mM). Rapid return of BR is followed by anaphase, and subsequent divisions are normal. Similar doses of MgCl2, BaCl2, KCl, NaCl, pH buffers, distilled water, or vegetable oil have no effect on spindle BR, whereas large doses of such agents sometimes cause slow, uniform loss in BR over the course of a minute or more. Of the ions tested, only Sr++ causes effects comparable to Ca++. Ca-EGTA buffers, containing greater than micromolar free Ca++, abolishes BR in a manner similar to millimolar concentrations of injected CaCl2. Caffeine, a potent uncoupler of the Ca++-pump/ATPase of sarcoplasmic reticulum, causes a local, transient depression in spindle BR in the injected region. Finally, injection of potassium oxalate results in the formation of small, highly BR crystals, presumably CA- oxalate, in Triton-sensitive compartments in the cytoplasm. Taken together, these findings demonstrate that spindle Mts are sensitive to levels of free Ca++ in the physiological range, provide evidence for the existence of a strong cytoplasmic Ca++-sequestering system, and support the notion that Mt assembly and disassembly in local regions of the spindle may be orchestrated by local changes in the cytoplasmic free Ca++ concentration during mitosis. An appendix offers the design of a new chamber for immobilizing echinoderm eggs for injection, a new method for determining the volume of the injected solution, and a description of the microinjection technique, which was designed, but never fully described, by Hiramoto (Y. Hiramoto, Exp. Cell. Res., 1962, 27:416-426.). PMID:7194345

  4. Saccharomyces cerevisiae Cells with Defective Spindle Pole Body Outer Plaques Accomplish Nuclear Migration via Half-Bridge–organized Microtubules

    PubMed Central

    Brachat, Arndt; Kilmartin, John V.; Wach, Achim; Philippsen, Peter

    1998-01-01

    Cnm67p, a novel yeast protein, localizes to the microtubule organizing center, the spindle pole body (SPB). Deletion of CNM67 (YNL225c) frequently results in spindle misorientation and impaired nuclear migration, leading to the generation of bi- and multinucleated cells (40%). Electron microscopy indicated that CNM67 is required for proper formation of the SPB outer plaque, a structure that nucleates cytoplasmic (astral) microtubules. Interestingly, cytoplasmic microtubules that are essential for spindle orientation and nuclear migration are still present in cnm67Δ1 cells that lack a detectable outer plaque. These microtubules are attached to the SPB half- bridge throughout the cell cycle. This interaction presumably allows for low-efficiency nuclear migration and thus provides a rescue mechanism in the absence of a functional outer plaque. Although CNM67 is not strictly required for mitosis, it is essential for sporulation. Time-lapse microscopy of cnm67Δ1 cells with green fluorescent protein (GFP)-labeled nuclei indicated that CNM67 is dispensable for nuclear migration (congression) and nuclear fusion during conjugation. This is in agreement with previous data, indicating that cytoplasmic microtubules are organized by the half-bridge during mating. PMID:9571234

  5. Ady3p links spindle pole body function to spore wall synthesis in Saccharomyces cerevisiae.

    PubMed Central

    Nickas, Mark E; Neiman, Aaron M

    2002-01-01

    Spore formation in Saccharomyces cerevisiae requires the de novo synthesis of prospore membranes and spore walls. Ady3p has been identified as an interaction partner for Mpc70p/Spo21p, a meiosis-specific component of the outer plaque of the spindle pole body (SPB) that is required for prospore membrane formation, and for Don1p, which forms a ring-like structure at the leading edge of the prospore membrane during meiosis II. ADY3 expression has been shown to be induced in midsporulation. We report here that Ady3p interacts with additional components of the outer and central plaques of the SPB in the two-hybrid assay. Cells that lack ADY3 display a decrease in sporulation efficiency, and most ady3Delta/ady3Delta asci that do form contain fewer than four spores. The sporulation defect in ady3Delta/ady3Delta cells is due to a failure to synthesize spore wall polymers. Ady3p forms ring-like structures around meiosis II spindles that colocalize with those formed by Don1p, and Don1p rings are absent during meiosis II in ady3Delta/ady3Delta cells. In mpc70Delta/mpc70Delta cells, Ady3p remains associated with SPBs during meiosis II. Our results suggest that Ady3p mediates assembly of the Don1p-containing structure at the leading edge of the prospore membrane via interaction with components of the SPB and that this structure is involved in spore wall formation. PMID:11973299

  6. Structurally abnormal human autosomes

    SciTech Connect

    1993-12-31

    Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.

  7. Morphological abnormalities among lampreys

    USGS Publications Warehouse

    Manion, Patrick J.

    1967-01-01

    The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.

  8. Cortical microtubule contacts position the spindle in C. elegans embryos.

    PubMed

    Kozlowski, Cleopatra; Srayko, Martin; Nedelec, Francois

    2007-05-04

    Interactions between microtubules and the cell cortex play a critical role in positioning organelles in a variety of biological contexts. Here we used Caenorhabditis elegans as a model system to study how cortex-microtubule interactions position the mitotic spindle in response to polarity cues. Imaging EBP-2::GFP and YFP::alpha-tubulin revealed that microtubules shrink soon after cortical contact, from which we propose that cortical adaptors mediate microtubule depolymerization energy into pulling forces. We also observe association of dynamic microtubules to form astral fibers that persist, despite the catastrophe events of individual microtubules. Computer simulations show that these effects, which are crucially determined by microtubule dynamics, can explain anaphase spindle oscillations and posterior displacement in 3D.

  9. Human muscle spindle sensitivity reflects the balance of activity between antagonistic muscles.

    PubMed

    Dimitriou, Michael

    2014-10-08

    Muscle spindles are commonly considered as stretch receptors encoding movement, but the functional consequence of their efferent control has remained unclear. The "α-γ coactivation" hypothesis states that activity in a muscle is positively related to the output of its spindle afferents. However, in addition to the above, possible reciprocal inhibition of spindle controllers entails a negative relationship between contractile activity in one muscle and spindle afferent output from its antagonist. By recording spindle afferent responses from alert humans using microneurography, I show that spindle output does reflect antagonistic muscle balance. Specifically, regardless of identical kinematic profiles across active finger movements, stretch of the loaded antagonist muscle (i.e., extensor) was accompanied by increased afferent firing rates from this muscle compared with the baseline case of no constant external load. In contrast, spindle firing rates from the stretching antagonist were lowest when the agonist muscle powering movement (i.e., flexor) acted against an additional resistive load. Stepwise regressions confirmed that instantaneous velocity, extensor, and flexor muscle activity had a significant effect on spindle afferent responses, with flexor activity having a negative effect. Therefore, the results indicate that, as consequence of their efferent control, spindle sensitivity (gain) to muscle stretch reflects the balance of activity between antagonistic muscles rather than only the activity of the spindle-bearing muscle.

  10. Coordinated Spindle Assembly and Orientation Requires Clb5p-Dependent Kinase in Budding Yeast

    PubMed Central

    Segal, Marisa; Clarke, Duncan J.; Maddox, Paul; Salmon, E.D.; Bloom, Kerry; Reed, Steven I.

    2000-01-01

    The orientation of the mitotic spindle along a polarity axis is critical in asymmetric cell divisions. In the budding yeast, Saccharomyces cerevisiae, loss of the S-phase B-type cyclin Clb5p under conditions of limited cyclin-dependent kinase activity (cdc28-4 clb5Δ cells) causes a spindle positioning defect that results in an undivided nucleus entering the bud. Based on time-lapse digital imaging microscopy of microtubules labeled with green fluorescent protein fusions to either tubulin or dynein, we observed that the asymmetric behavior of the spindle pole bodies during spindle assembly was lost in the cdc28-4 clb5Δ cells. As soon as a spindle formed, both poles were equally likely to interact with the bud cell cortex. Persistent dynamic interactions with the bud ultimately led to spindle translocation across the bud neck. Thus, the mutant failed to assign one spindle pole body the task of organizing astral microtubules towards the mother cell. Our data suggest that Clb5p-associated kinase is required to confer mother-bound behavior to one pole in order to establish correct spindle polarity. In contrast, B-type cyclins, Clb3p and Clb4p, though partially redundant with Clb5p for an early role in spindle morphogenesis, preferentially promote spindle assembly. PMID:10662771

  11. Spindle assembly checkpoint and its regulators in meiosis.

    PubMed

    Sun, Shao-Chen; Kim, Nam-Hyung

    2012-01-01

    BACKGROUND Meiosis is a unique form of cell division in which cells divide twice but DNA is duplicated only once. Errors in chromosome segregation during meiosis will result in aneuploidy, followed by loss of the conceptus during pregnancy or birth defects. During mitosis, cells utilize a mechanism called the spindle assembly checkpoint (SAC) to ensure faithful chromosome segregation. A similar mechanism has been uncovered for meiosis in the last decade, especially in the past several years. METHODS For this review, we included data and relevant information obtained through a PubMed database search for all articles published in English from 1991 through 2011 which included the term 'meiosis', 'spindle assembly checkpoint', or 'SAC'. RESULTS There are 91 studies included. Evidence for the existence of SAC functions in meiosis is provided by studies on the SAC proteins mitotic-arrest deficient-1 (Mad1), Mad2, budding uninhibited by benzimidazole-1 (Bub1), Bub3, BubR1 and Mps1; microtubule-kinetochore attachment regulators Ndc80 complex, chromosomal passenger complex, mitotic centromere-associated kinesin (MCAK), kinetochore null 1 (KNL1) and Mis12 complex and spindle stability regulators. CONCLUSIONS SAC and its regulators exist and function in meiosis, and their malfunctions may cause germ cell aneuploidy. However, species and sexual differences exist. Moreover, interaction of SAC components with other regulators is still poorly understood, which needs further study.

  12. Spatiotemporal Organization and Cross-Frequency Coupling of Sleep Spindles in Primate Cerebral Cortex

    PubMed Central

    Takeuchi, Saori; Murai, Rie; Shimazu, Hideki; Isomura, Yoshikazu; Mima, Tatsuya; Tsujimoto, Toru

    2016-01-01

    Study Objectives: The sleep spindle has been implicated in thalamic sensory gating, cortical development, and memory consolidation. These multiple functions may depend on specific spatiotemporal emergence and interactions with other spindles and other forms of brain activity. Therefore, we measured sleep spindle cortical distribution, regional heterogeneity, synchronization, and phase relationships with other electroencephalographic components in freely moving primates. Methods: Transcortical field potentials were recorded from Japanese monkeys via telemetry and were analyzed using the Hilbert-Huang transform. Results: Spindle (12–20 Hz) current sources were identified over a wide region of the frontoparietal cortex. Most spindles occurred independently in their own frequency, but some appeared concordant between cortical areas with frequency interdependence, particularly in nearby regions and bilaterally symmetrical regions. Spindles in the dorsolateral prefrontal cortex appeared around the surface-positive and depth-negative phase of transcortically recorded slow oscillations (< 1 Hz), whereas centroparietal spindles emerged around the opposite phase. The slow-oscillation phase reversed between the prefrontal and central regions. Gamma activities increased before spindle onset. Several regional heterogeneities in properties of human spindles were replicated in the monkeys, including frequency, density, and inter-cortical time lags, although their topographic patterns were different from those of humans. The phase-amplitude coupling between spindle and gamma activity was also replicated. Conclusions: Spindles in widespread cortical regions are possibly driven by independent rhythm generators, but are temporally associated to spindles in other regions and to slow and gamma oscillations by corticocortical and thalamocortical pathways. Citation: Takeuchi S, Murai R, Shimazu H, Isomura Y, Mima T, Tsujimoto T. Spatiotemporal organization and cross-frequency coupling

  13. Asymmetry of the budding yeast Tem1 GTPase at spindle poles is required for spindle positioning but not for mitotic exit.

    PubMed

    Scarfone, Ilaria; Venturetti, Marianna; Hotz, Manuel; Lengefeld, Jette; Barral, Yves; Piatti, Simonetta

    2015-02-01

    The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is

  14. Asymmetry of the Budding Yeast Tem1 GTPase at Spindle Poles Is Required for Spindle Positioning But Not for Mitotic Exit

    PubMed Central

    Scarfone, Ilaria; Venturetti, Marianna; Hotz, Manuel; Lengefeld, Jette; Barral, Yves; Piatti, Simonetta

    2015-01-01

    The asymmetrically dividing yeast S. cerevisiae assembles a bipolar spindle well after establishing the future site of cell division (i.e., the bud neck) and the division axis (i.e., the mother-bud axis). A surveillance mechanism called spindle position checkpoint (SPOC) delays mitotic exit and cytokinesis until the spindle is properly positioned relative to the mother-bud axis, thereby ensuring the correct ploidy of the progeny. SPOC relies on the heterodimeric GTPase-activating protein Bub2/Bfa1 that inhibits the small GTPase Tem1, in turn essential for activating the mitotic exit network (MEN) kinase cascade and cytokinesis. The Bub2/Bfa1 GAP and the Tem1 GTPase form a complex at spindle poles that undergoes a remarkable asymmetry during mitosis when the spindle is properly positioned, with the complex accumulating on the bud-directed old spindle pole. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. The mechanism driving asymmetry of Bub2/Bfa1/Tem1 in mitosis is unclear. Furthermore, whether asymmetry is involved in timely mitotic exit is controversial. We investigated the mechanism by which the GAP Bub2/Bfa1 controls GTP hydrolysis on Tem1 and generated a series of mutants leading to constitutive Tem1 activation. These mutants are SPOC-defective and invariably lead to symmetrical localization of Bub2/Bfa1/Tem1 at spindle poles, indicating that GTP hydrolysis is essential for asymmetry. Constitutive tethering of Bub2 or Bfa1 to both spindle poles impairs SPOC response but does not impair mitotic exit. Rather, it facilitates mitotic exit of MEN mutants, likely by increasing the residence time of Tem1 at spindle poles where it gets active. Surprisingly, all mutant or chimeric proteins leading to symmetrical localization of Bub2/Bfa1/Tem1 lead to increased symmetry at spindle poles of the Kar9 protein that mediates spindle positioning and cause spindle misalignment. Thus, asymmetry of the Bub2/Bfa1/Tem1 complex is

  15. Mancozeb adversely affects meiotic spindle organization and fertilization in mouse oocytes.

    PubMed

    Rossi, Gianna; Palmerini, Maria Grazia; Macchiarelli, Guido; Buccione, Roberto; Cecconi, Sandra

    2006-07-01

    In this study the effects of mancozeb, a widely used ethylenebisdithiocarbamate fungicide, on mouse oocyte meiotic maturation and fertilization were analyzed. Oocyte cumulus cell-complexes were matured in vitro with or without increasing concentrations of the fungicide (from 0.001 to 1 microg/ml) that, due to its different stability in organic solvents and in water, was resuspended either in dimethyl sulfoxide or in culture medium. Although, about 95% of oocytes reached the metaphase II stage; mancozeb-exposed oocytes showed a dose-dependent increase of alterations in spindle morphology, and this negative effect was more evident when the fungicide was resuspended in culture medium. Under the latter culture condition, oocytes matured in the presence of 0.1 and 1 microg/ml mancozeb showed a significant reduction also in the formation of male and female pronuclei. These results indicate that mancozeb can adversely affect mammalian reproductive performance, likely by perturbing microtubular organization during meiotic maturation.

  16. Reeling in chromosomes to spindle poles: The roles of microtubule-destabilizing enzymes in mitotic spindle dynamics

    NASA Astrophysics Data System (ADS)

    Sharp, David

    2004-03-01

    The central purpose of mitosis is achieved during anaphase when sister chromatids disjoin and translocate towards opposite poles of a microtubule-based machine termed mitotic spindle. We have identified two functionally distinct microtubule-destabilizing Kin I kinesin enzymes that are responsible for normal chromatid-to-pole motion during anaphase in Drosophila. One of them, KLP59C, is required to depolymerize MTs specifically at their kinetochore-associated "plus-ends" such that chromosomes 'chew' their way poleward. The second, KLP10A, is required to depolymerize MTs specifically at their pole-associated "minus-ends" thereby 'reeling' chromosomes into spindle poles. These findings provide the first description of the protein machinery that drives anaphase chromatid segregation by actively depolymerizing kinetochore MTs at both ends.

  17. Lanthanide co-doped paramagnetic spindle-like mesocrystals for imaging and autophagy induction

    NASA Astrophysics Data System (ADS)

    Xu, Yun-Jun; Lin, Jun; Lu, Yang; Zhong, Sheng-Liang; Wang, Lei; Dong, Liang; Wu, Ya-Dong; Peng, Jun; Zhang, Li; Pan, Xiao-Feng; Zhou, Wei; Zhao, Yang; Wen, Long-Ping; Yu, Shu-Hong

    2016-07-01

    We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy.We synthesized two novel lanthanide doped spindle-like mesocrystals, YF3:Ce,Eu,Gd and YF3:Ce,Tb,Gd (abbreviated as YEG and YTG mesospindles, respectively). Both of them possess paramagnetic and fluorescent properties, and their excellent cyto-compatibility and low haemolysis are further confirmed. Therefore, they could act as dual mode contrast agents for magnetic resonance imaging (MRI) and fluorescence imaging. Furthermore, YEG and YTG mesospindles induce dose and time dependent autophagy by activating the PI3K signaling pathway. The autophagy induced by YEG and YTG mesocrystals is confirmed by enhanced autophagosome formation, normal cargo degradation, and no disruption of lysosomal function. This work is important to illustrate how rare-earth mesocrystals affect the autophagic pathway, indicating the potential of the YEG and YTG mesospindles in diagnosis and therapy. Electronic supplementary information (ESI) available: Size distribution, HRTEM image and additional cellular data. See DOI: 10.1039/c6nr03171d

  18. Tem1 localization to the spindle pole bodies is essential for mitotic exit and impairs spindle checkpoint function

    PubMed Central

    Valerio-Santiago, Mauricio

    2011-01-01

    The mitotic exit network (MEN) is a signaling cascade that triggers inactivation of the mitotic cyclin-dependent kinases and exit from mitosis. The GTPase Tem1 localizes on the spindle pole bodies (SPBs) and initiates MEN signaling. Tem1 activity is inhibited until anaphase by Bfa1-Bub2. These proteins are also part of the spindle position checkpoint (SPOC), a surveillance mechanism that restrains mitotic exit until the spindle is correctly positioned. Here, we show that regulation of Tem1 localization is essential for the proper function of the MEN and the SPOC. We demonstrate that the dynamics of Tem1 loading onto SPBs determine the recruitment of other MEN components to this structure, and reevaluate the interdependence in the localization of Tem1, Bfa1, and Bub2. We also find that removal of Tem1 from the SPBs is critical for the SPOC to impede cell cycle progression. Finally, we demonstrate for the first time that localization of Tem1 to the SPBs is a requirement for mitotic exit. PMID:21321099

  19. Tem1 localization to the spindle pole bodies is essential for mitotic exit and impairs spindle checkpoint function.

    PubMed

    Valerio-Santiago, Mauricio; Monje-Casas, Fernando

    2011-02-21

    The mitotic exit network (MEN) is a signaling cascade that triggers inactivation of the mitotic cyclin-dependent kinases and exit from mitosis. The GTPase Tem1 localizes on the spindle pole bodies (SPBs) and initiates MEN signaling. Tem1 activity is inhibited until anaphase by Bfa1-Bub2. These proteins are also part of the spindle position checkpoint (SPOC), a surveillance mechanism that restrains mitotic exit until the spindle is correctly positioned. Here, we show that regulation of Tem1 localization is essential for the proper function of the MEN and the SPOC. We demonstrate that the dynamics of Tem1 loading onto SPBs determine the recruitment of other MEN components to this structure, and reevaluate the interdependence in the localization of Tem1, Bfa1, and Bub2. We also find that removal of Tem1 from the SPBs is critical for the SPOC to impede cell cycle progression. Finally, we demonstrate for the first time that localization of Tem1 to the SPBs is a requirement for mitotic exit.

  20. "Jeopardy" in Abnormal Psychology.

    ERIC Educational Resources Information Center

    Keutzer, Carolin S.

    1993-01-01

    Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)

  1. Effects of cryopreservation on meiotic spindles of oocytes and its dynamics after thawing: clinical implications in oocyte freezing--a review article.

    PubMed

    Chen, S U; Lien, Y R; Chao, K H; Ho, H N; Yang, Y S; Lee, T Y

    2003-04-28

    Embryo freezing has been a successful practice, but oocyte cryopreservation formerly achieved poorer results. This was mainly due to low rates of survival, fertilization, and development. The major dissimilarities for oocytes to embryos are the character of the plasma membrane, the presence of cortical granules, at the metaphase of meiosis II with the spindle system. In addition, the oocytes must be fertilized by sperm at the appropriate time. To improve the survival rate, a refined slow freezing method with increased sucrose concentration would dehydrate oocytes more sufficiently. Vitrification is another approach to prevent ice crystal formation. Intracytoplasmic sperm injection is used to overcome possible zona hardening from the release of cortical granules. The microtubules of meiotic spindles are vulnerable to the thermal changes and would depolymerize. Cryopreserved oocytes exhibited serious disturbances of the microtubules immediately after thawing. Fertilization of oocytes with disorganized spindles could lead to chromosomal aneuploidy, digyny, and arrest of cleavage. After incubation, the microtubules would repolymerize in a time-dependent way. Normal fertilization and development of cryopreserved oocytes improved after appropriate incubation and timing of insemination, compatible with recovery of the spindles. With the improvement of survival, fertilization, and cleavage, oocyte cryopreservation would gain an imperative role.

  2. Localization and role of RAP55/LSM14 in HeLa cells: a new finding on the mitotic spindle assembly.

    PubMed

    Mili, Donia; Georgesse, Dane; Kenani, Abderraouf

    2015-01-01

    The MAP family includes large proteins like MAP-1A, MAP-1B, MAP-1C, MAP-2, and MAP-4 and smaller components like tau and MAP-2C. This article focuses on the relevant aspects of RAP55/LSM14 position with emphasis on its role in mitotic spindle formation and stability. In this context, the localization of RNA associated Protein 55kDa (RAP55/LSM14) during mitosis was identified as a Mitotic Spindle Protein (MSP). We found a new location obtained by expressing GFP-tagged proteins in HeLa Cells during mitosis that has never been previously reported. We demonstrated also, for the first time, that the depletion of RAP55/LSM14 destabilizes spindle assembly, stops cells in mitosis and induces many other cell cytoskeletal disorders. Finally, by using an "in vitro" assay investigation, we found that RAP55/LSM14 binds directly the tubulin and that is implicated in the process of the mitotic spindle stabilization, which is a novel discovery in this field of research.

  3. miR-125b promotes cell death by targeting spindle assembly checkpoint gene MAD1 and modulating mitotic progression

    PubMed Central

    Bhattacharjya, S; Nath, S; Ghose, J; Maiti, G P; Biswas, N; Bandyopadhyay, S; Panda, C K; Bhattacharyya, N P; Roychoudhury, S

    2013-01-01

    The spindle assembly checkpoint (SAC) is a ‘wait-anaphase' mechanism that has evolved in eukaryotic cells in response to the stochastic nature of chromosome–spindle attachments. In the recent past, different aspects of the SAC regulation have been described. However, the role of microRNAs in the SAC is vaguely understood. We report here that Mad1, a core SAC protein, is repressed by human miR-125b. Mad1 serves as an adaptor protein for Mad2 – which functions to inhibit anaphase entry till the chromosomal defects in metaphase are corrected. We show that exogenous expression of miR-125b, through downregulation of Mad1, delays cells at metaphase. As a result of this delay, cells proceed towards apoptotic death, which follows from elevated chromosomal abnormalities upon ectopic expression of miR-125b. Moreover, expressions of Mad1 and miR-125b are inversely correlated in a variety of cancer cell lines, as well as in primary head and neck tumour tissues. We conclude that increased expression of miR-125b inhibits cell proliferation by suppressing Mad1 and activating the SAC transiently. We hypothesize an optimum Mad1 level and thus, a properly scheduled SAC is maintained partly by miR-125b. PMID:23099851

  4. Dual detection of chromosomes and microtubules by the chromosomal passenger complex drives spindle assembly.

    PubMed

    Tseng, Boo Shan; Tan, Lei; Kapoor, Tarun M; Funabiki, Hironori

    2010-06-15

    Chromosome-dependent spindle assembly requires the chromosomal recruitment and activation of Aurora B, the kinase subunit of the chromosomal passenger complex (CPC). It remains unclear how the chromosome-activated kinase spatially transmits signals to organize the micron-scale spindle. Here we reveal that the CPC must detect two structures, chromosomes and microtubules, to support spindle assembly in Xenopus egg extracts. While Aurora B is enriched on chromosomes in metaphase, we establish that a fraction of Aurora B is targeted to the metaphase spindle and phosphorylates microtubule-bound substrates. We demonstrate that chromosomally activated Aurora B must be targeted to microtubules to drive spindle assembly. Moreover, although the CPC-microtubule interaction can activate Aurora B, which further promotes microtubule assembly, this positive feedback is not initiated without chromosomes. We propose that the dual detection of chromosomes and microtubules by the CPC is a critical step in assembling spindles around and only around chromosomes.

  5. Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo.

    PubMed

    Minlebaev, Marat; Ben-Ari, Yehezkel; Khazipov, Rustem

    2007-01-01

    Early in development, cortical networks generate particular patterns of activity that participate in cortical development. The dominant pattern of electrical activity in the neonatal rat neocortex in vivo is a spatially confined spindle-burst. Here, we studied network mechanisms of generation of spindle-bursts in the barrel cortex of neonatal rats using a superfused cortex preparation in vivo. Both spontaneous and sensory-evoked spindle-bursts were present in the superfused barrel cortex. Pharmacological analysis revealed that spindle-bursts are driven by glutamatergic synapses with a major contribution of AMPA/kainate receptors, but slight participation of NMDA receptors and gap junctions. Although GABAergic synapses contributed minimally to the pacing the rhythm of spindle-burst oscillations, surround GABAergic inhibition appeared to be crucial for their compartmentalization. We propose that local spindle-burst oscillations, driven by glutamatergic synapses and spatially confined by GABAergic synapses, contribute to the development of barrel cortex during the critical period of developmental plasticity.

  6. Elm1 kinase activates the spindle position checkpoint kinase Kin4

    PubMed Central

    Caydasi, Ayse Koca; Kurtulmus, Bahtiyar; Orrico, Maria I.L.; Hofmann, Astrid; Ibrahim, Bashar

    2010-01-01

    Budding yeast asymmetric cell division relies upon the precise coordination of spindle orientation and cell cycle progression. The spindle position checkpoint (SPOC) is a surveillance mechanism that prevents cells with misoriented spindles from exiting mitosis. The cortical kinase Kin4 acts near the top of this network. How Kin4 kinase activity is regulated and maintained in respect to spindle positional cues remains to be established. Here, we show that the bud neck–associated kinase Elm1 participates in Kin4 activation and SPOC signaling by phosphorylating a conserved residue within the activation loop of Kin4. Blocking Elm1 function abolishes Kin4 kinase activity in vivo and eliminates the SPOC response to spindle misalignment. These findings establish a novel function for Elm1 in the coordination of spindle positioning with cell cycle progression via its control of Kin4. PMID:20855503

  7. Microtubule organization within mitotic spindles revealed by serial block face scanning EM and image analysis.

    PubMed

    Nixon, Faye M; Honnor, Thomas R; Clarke, Nicholas I; Starling, Georgina P; Beckett, Alison J; Johansen, Adam M; Brettschneider, Julia A; Prior, Ian A; Royle, Stephen J

    2017-04-07

    Serial block face scanning electron microscopy (SBF-SEM) is a powerful method to analyze cells in 3D. Here, working at the resolution limit of the method, we describe a correlative light-SBF-SEM workflow to resolve microtubules of the mitotic spindle in human cells. We present four examples of uses for this workflow which are not practical by light microscopy and/or transmission electron microscopy. First, distinguishing closely associated microtubules within K-fibers; second, resolving bridging fibers in the mitotic spindle; third, visualizing membranes in mitotic cells, relative to the spindle apparatus; fourth, volumetric analysis of kinetochores. Our workflow also includes new computational tools for exploring the spatial arrangement of MTs within the mitotic spindle. We use these tools to show that microtubule order in mitotic spindles is sensitive to the level of TACC3 on the spindle.

  8. Elm1 kinase activates the spindle position checkpoint kinase Kin4.

    PubMed

    Caydasi, Ayse Koca; Kurtulmus, Bahtiyar; Orrico, Maria I L; Hofmann, Astrid; Ibrahim, Bashar; Pereira, Gislene

    2010-09-20

    Budding yeast asymmetric cell division relies upon the precise coordination of spindle orientation and cell cycle progression. The spindle position checkpoint (SPOC) is a surveillance mechanism that prevents cells with misoriented spindles from exiting mitosis. The cortical kinase Kin4 acts near the top of this network. How Kin4 kinase activity is regulated and maintained in respect to spindle positional cues remains to be established. Here, we show that the bud neck-associated kinase Elm1 participates in Kin4 activation and SPOC signaling by phosphorylating a conserved residue within the activation loop of Kin4. Blocking Elm1 function abolishes Kin4 kinase activity in vivo and eliminates the SPOC response to spindle misalignment. These findings establish a novel function for Elm1 in the coordination of spindle positioning with cell cycle progression via its control of Kin4.

  9. Live imaging of spindle pole disorganization in docetaxel-treated multicolor cells

    SciTech Connect

    Sakaushi, Shinji . E-mail: ssaka@biochem.osakafu-u.ac.jp; Nishida, Kumi; Minamikawa, Harumi; Fukada, Takashi; Oka, Shigenori; Sugimoto, Kenji

    2007-06-08

    Treatment of cells with docetaxel at low concentrations induces aberrant bipolar spindles of which two centrosomes stay at only one pole, and also induces multipolar spindles. To gain insight into the relations between centrosome impairment and structural defects of the spindle, live-cell imaging was performed on a human MDA Auro/imp/H3 cell line in which centrosomes/mitotic spindles, nuclear membrane and chromatin were simultaneously visualized by fluorescent proteins. In the presence of docetaxel at IC{sub 50} concentration, the centrosomes did not segregate, and multiple aster-like structures ectopically arose around the disappearing nuclear membrane. Those ectopic structures formed an acentrosomal pole opposing to the two-centrosomes-containing pole. In late metaphase, one pole often fragmented into multiple spindle poles, leading multipolar division. These results suggest that spindle pole fragility may be induced by centrosome impairment, and collapse of the pole may contribute to induction of aneuploid daughter cells.

  10. Large Tailed Spindle Viruses of Archaea: a New Way of Doing Viral Business.

    PubMed

    Hochstein, Rebecca; Bollschweiler, Daniel; Engelhardt, Harald; Lawrence, C Martin; Young, Mark

    2015-09-01

    Viruses of Archaea continue to surprise us. Archaeal viruses have revealed new morphologies, protein folds, and gene content. This is especially true for large spindle viruses, which infect only Archaea. We present a comparison of particle morphologies, major coat protein structures, and gene content among the five characterized large spindle viruses to elucidate defining characteristics. Structural similarities and a core set of genes support the grouping of the large spindle viruses into a new superfamily.

  11. Muscle spindle composition and distribution in human young masseter and biceps brachii muscles reveal early growth and maturation.

    PubMed

    Osterlund, Catharina; Liu, Jing-Xia; Thornell, Lars-Eric; Eriksson, Per-Olof

    2011-04-01

    Significant changes in extrafusal fiber type composition take place in the human masseter muscle from young age, 3-7 years, to adulthood, in parallel with jaw-face skeleton growth, changes of dentitions and improvement of jaw functions. As motor and sensory control systems of muscles are interlinked, also the intrafusal fiber population, that is, muscle spindles, should undergo age-related changes in fiber type appearance. To test this hypothesis, we examined muscle spindles in the young masseter muscle and compared the result with previous data on adult masseter spindles. Also muscle spindles in the young biceps brachii muscle were examined. The result showed that muscle spindle composition and distribution were alike in young and adult masseter. As for the adult masseter, young masseter contained exceptionally large muscle spindles, and with the highest spindle density and most complex spindles found in the deep masseter portion. Hence, contrary to our hypothesis, masseter spindles do not undergo major morphological changes between young age and adulthood. Also in the biceps, young spindles were alike adult spindles. Taken together, the results showed that human masseter and biceps muscle spindles are morphologically mature already at young age. We conclude that muscle spindles in the human young masseter and biceps precede the extrafusal fiber population in growth and maturation. This in turn suggests early reflex control and proprioceptive demands in learning and maturation of jaw motor skills. Similarly, well-developed muscle spindles in young biceps reflect early need of reflex control in learning and performing arm motor behavior.

  12. A microtubule-destabilizing kinesin motor regulates spindle length and anchoring in oocytes.

    PubMed

    Zou, Jianwei; Hallen, Mark A; Yankel, Christine D; Endow, Sharyn A

    2008-02-11

    The kinesin-13 motor, KLP10A, destabilizes microtubules at their minus ends in mitosis and binds to polymerizing plus ends in interphase, regulating spindle and microtubule dynamics. Little is known about kinesin-13 motors in meiosis. In this study, we report that KLP10A localizes to the unusual pole bodies of anastral Drosophila melanogaster oocyte meiosis I spindles as well as spindle fibers, centromeres, and cortical microtubules. We frequently observe the pole bodies attached to cortical microtubules, indicating that KLP10A could mediate spindle anchoring to the cortex via cortical microtubules. Oocytes treated with drugs that suppress microtubule dynamics exhibit spindles that are reoriented more vertically to the cortex than untreated controls. A dominant-negative klp10A mutant shows both reoriented and shorter oocyte spindles, implying that, unexpectedly, KLP10A may stabilize rather than destabilize microtubules, regulating spindle length and positioning the oocyte spindle. By altering microtubule dynamics, KLP10A could promote spindle reorientation upon oocyte activation.

  13. Influence of 14-day hind limb unloading on isolated muscle spindle activity in rats.

    PubMed

    Zhao, Xue Hong; Fan, Xiao Li; Song, Xin Ai; Wu, Su Di; Ren, Jun Chan; Chen, Ming Xia

    2010-09-01

    During hind limb unloading (HU), the soleus is often in a shortened position and the natural physiological stimulus of muscle spindles is altered, such that muscle spindle activity also changes. Using isolated spindle conditions, the present study investigates the electrophysiological activity and ultrastructure of muscle spindles following HU. Results show that muscle spindle discharges fall into either of two main patterns, single spikes or spike clusters in shortened positions, with a steady frequency of 18-38 spikes/s (mean 29.08 +/- 2.45) in an extended position. Following 14-day HU, afferent discharge activity was significantly altered in soleus muscle spindles. Duration of individual spikes was significantly prolonged, from 0.54 +/- 0.05 ms for control rats to 1.53 +/- 0.25 ms for rats in the HU group. In a shortened position, regular rhythm afferent discharges were obviously depressed, and the majority of muscle spindles became silent, while in an extended position, the discharges remained continuous but with decreased frequency. Results also show that the ultrastructure of muscle spindles experience degenerative changes during HU. Altered muscle spindle afference could possibly modify the activity of motor neurons and further affect the activity of extrafusal fibers.

  14. Noninvasive three-dimensional live imaging methodology for the spindles at meiosis and mitosis

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-gao; Huo, Tiancheng; Tian, Ning; Chen, Tianyuan; Wang, Chengming; Zhang, Ning; Zhao, Fengying; Lu, Danyu; Chen, Dieyan; Ma, Wanyun; Sun, Jia-lin; Xue, Ping

    2013-05-01

    The spindle plays a crucial role in normal chromosome alignment and segregation during meiosis and mitosis. Studying spindles in living cells noninvasively is of great value in assisted reproduction technology (ART). Here, we present a novel spindle imaging methodology, full-field optical coherence tomography (FF-OCT). Without any dye labeling and fixation, we demonstrate the first successful application of FF-OCT to noninvasive three-dimensional (3-D) live imaging of the meiotic spindles within the mouse living oocytes at metaphase II as well as the mitotic spindles in the living zygotes at metaphase and telophase. By post-processing of the 3-D dataset obtained with FF-OCT, the important morphological and spatial parameters of the spindles, such as short and long axes, spatial localization, and the angle of meiotic spindle deviation from the first polar body in the oocyte were precisely measured with the spatial resolution of 0.7 μm. Our results reveal the potential of FF-OCT as an imaging tool capable of noninvasive 3-D live morphological analysis for spindles, which might be useful to ART related procedures and many other spindle related studies.

  15. REM sleep behaviour disorder is associated with lower fast and higher slow sleep spindle densities.

    PubMed

    O'Reilly, Christian; Godin, Isabelle; Montplaisir, Jacques; Nielsen, Tore

    2015-12-01

    To investigate differences in sleep spindle properties and scalp topography between patients with rapid eye movement sleep behaviour disorder (RBD) and healthy controls, whole-night polysomnograms of 35 patients diagnosed with RBD and 35 healthy control subjects matched for age and sex were compared. Recordings included a 19-lead 10-20 electroencephalogram montage and standard electromyogram, electrooculogram, electrocardiogram and respiratory leads. Sleep spindles were automatically detected using a standard algorithm, and their characteristics (amplitude, duration, density, frequency and frequency slope) compared between groups. Topological analyses of group-discriminative features were conducted. Sleep spindles occurred at a significantly (e.g. t34 = -4.49; P = 0.00008 for C3) lower density (spindles ∙ min(-1) ) for RBD (mean ± SD: 1.61 ± 0.56 for C3) than for control (2.19 ± 0.61 for C3) participants. However, when distinguishing slow and fast spindles using thresholds individually adapted to the electroencephalogram spectrum of each participant, densities smaller (31-96%) for fast but larger (20-120%) for slow spindles were observed in RBD in all derivations. Maximal differences were in more posterior regions for slow spindles, but over the entire scalp for fast spindles. Results suggest that the density of sleep spindles is altered in patients with RBD and should therefore be investigated as a potential marker of future neurodegeneration in these patients.

  16. Aurora A phosphorylation of WD40-repeat protein 62 in mitotic spindle regulation

    PubMed Central

    Lim, Nicholas R.; Yeap, Yvonne Y. C.; Ang, Ching-Seng; Williamson, Nicholas A.; Bogoyevitch, Marie A.; Quinn, Leonie M.; Ng, Dominic C. H.

    2016-01-01

    ABSTRACT Mitotic spindle organization is regulated by centrosomal kinases that potentiate recruitment of spindle-associated proteins required for normal mitotic progress including the microcephaly protein WD40-repeat protein 62 (WDR62). WDR62 functions underlie normal brain development as autosomal recessive mutations and wdr62 loss cause microcephaly. Here we investigate the signaling interactions between WDR62 and the mitotic kinase Aurora A (AURKA) that has been recently shown to cooperate to control brain size in mice. The spindle recruitment of WDR62 is closely correlated with increased levels of AURKA following mitotic entry. We showed that depletion of TPX2 attenuated WDR62 localization at spindle poles indicating that TPX2 co-activation of AURKA is required to recruit WDR62 to the spindle. We demonstrated that AURKA activity contributed to the mitotic phosphorylation of WDR62 residues Ser49 and Thr50 and phosphorylation of WDR62 N-terminal residues was required for spindle organization and metaphase chromosome alignment. Our analysis of several MCPH-associated WDR62 mutants (V65M, R438H and V1314RfsX18) that are mislocalized in mitosis revealed that their interactions and phosphorylation by AURKA was substantially reduced consistent with the notion that AURKA is a key determinant of WDR62 spindle recruitment. Thus, our study highlights the role of AURKA signaling in the spatiotemporal control of WDR62 at spindle poles where it maintains spindle organization. PMID:26713495

  17. Ongoing network state controls the length of sleep spindles via inhibitory activity.

    PubMed

    Barthó, Péter; Slézia, Andrea; Mátyás, Ferenc; Faradzs-Zade, Lejla; Ulbert, István; Harris, Kenneth D; Acsády, László

    2014-06-18

    Sleep spindles are major transient oscillations of the mammalian brain. Spindles are generated in the thalamus; however, what determines their duration is presently unclear. Here, we measured somatic activity of excitatory thalamocortical (TC) cells together with axonal activity of reciprocally coupled inhibitory reticular thalamic cells (nRTs) and quantified cycle-by-cycle alterations in their firing in vivo. We found that spindles with different durations were paralleled by distinct nRT activity, and nRT firing sharply dropped before the termination of all spindles. Both initial nRT and TC activity was correlated with spindle length, but nRT correlation was more robust. Analysis of spindles evoked by optogenetic activation of nRT showed that spindle probability, but not spindle length, was determined by the strength of the light stimulus. Our data indicate that during natural sleep a dynamically fluctuating thalamocortical network controls the duration of sleep spindles via the major inhibitory element of the circuits, the nRT.

  18. EZH2 is required for mouse oocyte meiotic maturation by interacting with and stabilizing spindle assembly checkpoint protein BubRI

    PubMed Central

    Qu, Yi; Lu, Danyu; Jiang, Hao; Chi, Xiaochun; Zhang, Hongquan

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) trimethylates histone H3 Lys 27 and plays key roles in a variety of biological processes. Stability of spindle assembly checkpoint protein BubR1 is essential for mitosis in somatic cells and for meiosis in oocytes. However, the role of EZH2 in oocyte meiotic maturation was unknown. Here, we presented a mechanism underlying EZH2 control of BubR1 stability in the meiosis of mouse oocytes. We identified a methyltransferase activity-independent function of EZH2 by demonstrating that EZH2 regulates spindle assembly and the polar body I extrusion. EZH2 was increased with the oocyte progression from GVBD to MII, while EZH2 was concentrated on the chromosomes. Interestingly, inhibition of EZH2 methyltranferase activity by DZNep or GSK343 did not affect oocyte meiotic maturation. However, depletion of EZH2 by morpholino led to chromosome misalignment and abnormal spindle assembly. Furthermore, ectopic expression of EZH2 led to oocyte meiotic maturation arrested at the MI stage followed by chromosome misalignment and aneuploidy. Mechanistically, EZH2 directly interacted with and stabilized BubR1, an effect driving EZH2 into the concert of meiosis regulation. Collectively, we provided a paradigm that EZH2 is required for mouse oocyte meiotic maturation. PMID:27226494

  19. Nonrandom segregation of the mouse univalent X chromosome: evidence of spindle-mediated meiotic drive.

    PubMed Central

    LeMaire-Adkins, R; Hunt, P A

    2000-01-01

    A fundamental principle of Mendelian inheritance is random segregation of alleles to progeny; however, examples of distorted transmission either of specific alleles or of whole chromosomes have been described in a variety of species. In humans and mice, a distortion in chromosome transmission is often associated with a chromosome abnormality. One such example is the fertile XO female mouse. A transmission distortion effect that results in an excess of XX over XO daughters among the progeny of XO females has been recognized for nearly four decades. Utilizing contemporary methodology that combines immunofluorescence, FISH, and three-dimensional confocal microscopy, we have readdressed the meiotic segregation behavior of the single X chromosome in oocytes from XO females produced on two different inbred backgrounds. Our studies demonstrate that segregation of the univalent X chromosome at the first meiotic division is nonrandom, with preferential retention of the X chromosome in the oocyte in approximately 60% of cells. We propose that this deviation from Mendelian expectations is facilitated by a spindle-mediated mechanism. This mechanism, which appears to be a general feature of the female meiotic process, has implications for the frequency of nondisjunction in our species. PMID:11014823

  20. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations

    PubMed Central

    Cid, Elena; Gomez-Dominguez, Daniel; Martin-Lopez, David; Gal, Beatriz; Laurent, François; Ibarz, Jose M.; Francis, Fiona; Menendez de la Prida, Liset

    2014-01-01

    Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders. PMID:24782720

  1. Dampened hippocampal oscillations and enhanced spindle activity in an asymptomatic model of developmental cortical malformations.

    PubMed

    Cid, Elena; Gomez-Dominguez, Daniel; Martin-Lopez, David; Gal, Beatriz; Laurent, François; Ibarz, Jose M; Francis, Fiona; Menendez de la Prida, Liset

    2014-01-01

    Developmental cortical malformations comprise a large spectrum of histopathological brain abnormalities and syndromes. Their genetic, developmental and clinical complexity suggests they should be better understood in terms of the complementary action of independently timed perturbations (i.e., the multiple-hit hypothesis). However, understanding the underlying biological processes remains puzzling. Here we induced developmental cortical malformations in offspring, after intraventricular injection of methylazoxymethanol (MAM) in utero in mice. We combined extensive histological and electrophysiological studies to characterize the model. We found that MAM injections at E14 and E15 induced a range of cortical and hippocampal malformations resembling histological alterations of specific genetic mutations and transplacental mitotoxic agent injections. However, in contrast to most of these models, intraventricularly MAM-injected mice remained asymptomatic and showed no clear epilepsy-related phenotype as tested in long-term chronic recordings and with pharmacological manipulations. Instead, they exhibited a non-specific reduction of hippocampal-related brain oscillations (mostly in CA1); including theta, gamma and HFOs; and enhanced thalamocortical spindle activity during non-REM sleep. These data suggest that developmental cortical malformations do not necessarily correlate with epileptiform activity. We propose that the intraventricular in utero MAM approach exhibiting a range of rhythmopathies is a suitable model for multiple-hit studies of associated neurological disorders.

  2. Malignant adenohypophysis spindle cell oncocytoma with repeating recurrences and a high Ki-67 index

    PubMed Central

    Kong, Xiangyi; Li, Dongmei; Kong, Yanguo; Zhong, Dingrong

    2017-01-01

    Abstract Adenohypophysis spindle cell oncocytoma (ASCO) is a rare tumor recently reported by Roncaroli et al in 2002. This tumor is considered a grade I tumor by the World Health Organization. We report a rare case of malignant ASCO with repeating recurrences and a high Ki-67 index—a challenging diagnosis guided by clinical presentations, radiological signs, and postoperative pathological tests. We represent a 30-year-old man who had suffered from headaches, diplopia, and impaired visual field and acuity. His magnetic resonance imaging revealed an abnormal sellar mass and was originally misdiagnosed as a pituitary macroadenoma. We present detailed analysis of the patient's disease course and review relevant literature. When surgically treated, the specimen revealed a typical histopathology pattern of ASCO. The tumor recurred for several times and the patient underwent 3 surgeries and 1 γ-knife treatment, which was accompanied by a continuously increasing Ki-67 index. This is the first reported case of malignant ASCO (WHO III–IV grade). Despite its rarity, ASCO should be considered in the differential diagnosis of sellar lesions that mimic pituitary adenomas. PMID:28121922

  3. AIBp regulates mitotic entry and mitotic spindle assembly by controlling activation of both Aurora-A and Plk1.

    PubMed

    Chou, Chia-Hua; Loh, Joon-Khim; Yang, Ming-Chang; Lin, Ching-Chih; Hong, Ming-Chang; Cho, Chung-Lung; Chou, An-Kuo; Wang, Chi-Huei; Lieu, Ann-Shung; Howng, Shen-Long; Hsu, Ching-Mei; Hong, Yi-Ren

    2015-01-01

    We previously reported that Aurora-A and the hNinein binding protein AIBp facilitate centrosomal structure maintenance and contribute to spindle formation. Here, we report that AIBp also interacts with Plk1, raising the possibility of functional similarity to Bora, which subsequently promotes Aurora-A-mediated Plk1 activation at Thr210 as well as Aurora-A activation at Thr288. In kinase assays, AIBp acts not only as a substrate but also as a positive regulator of both Aurora-A and Plk1. However, AIBp functions as a negative regulator to block phosphorylation of hNinein mediated by Aurora-A and Plk1. These findings suggest a novel AIBp-dependent regulatory machinery that controls mitotic entry. Additionally, knockdown of hNinein caused failure of AIBp to target the centrosome, whereas depletion of AIBp did not affect the localization of hNinein and microtubule nucleation. Notably, knockdown of AIBp in HeLa cells impaired both Aurora-A and Plk1 kinase, resulting in phenotypes with multiple spindle pole formation and chromosome misalignment. Our data show that depletion of AIBp results in the mis-localization of TACC3 and ch-TOG, but not CEP192 and CEP215, suggesting that loss of AIBp dominantly affects the Aurora-A substrate to cause mitotic aberrations. Collectively, our data demonstrate that AIBp contributes to mitotic entry and bipolar spindle assembly and may partially control localization, phosphorylation, and activation of both Aurora-A and Plk1 via hNinein during mitotic progression.

  4. A Study of the Expression of Small Conductance Calcium-Activated Potassium Channels (SK1-3) in Sensory Endings of Muscle Spindles and Lanceolate Endings of Hair Follicles in the Rat

    PubMed Central

    Shenton, Fiona; Bewick, Guy S.; Banks, Robert W.

    2014-01-01

    Processes underlying mechanotransduction and its regulation are poorly understood. Inhibitors of Ca2+-activated K+ channels cause a dramatic increase in afferent output from stretched muscle spindles. We used immunocytochemistry to test for the presence and location of small conductance Ca2+-activated K+ channels (SK1-3) in primary endings of muscle spindles and lanceolate endings of hair follicles in the rat. Tissue sections were double immunolabelled with antibodies to one of the SK channel isoforms and to either synaptophysin (SYN, as a marker of synaptic like vesicles (SLV), present in many mechanosensitive endings) or S100 (a Ca2+-binding protein present in glial cells). SK channel immunoreactivity was also compared to immunolabelling for the Na+ ion channel ASIC2, previously reported in both spindle primary and lanceolate endings. SK1 was not detected in sensory terminals of either muscle spindles or lanceolate endings. SK2 was found in the terminals of both muscle spindles and lanceolate endings, where it colocalised with the SLV marker SYN (spindles and lanceolates) and the satellite glial cell (SGC) marker S100 (lanceolates). SK3 was not detected in muscle spindles; by contrast it was present in hair follicle endings, expressed predominantly in SGCs but perhaps also in the SGC: terminal interface, as judged by colocalisation statistical analysis of SYN and S100 immunoreactivity. The possibility that all three isoforms might be expressed in pre-terminal axons, especially at heminodes, cannot be ruled out. Differential distribution of SK channels is likely to be important in their function of responding to changes in intracellular [Ca2+] thereby modulating mechanosensory transduction by regulating the excitability of the sensory terminals. In particular, the presence of SK2 throughout the sensory terminals of both kinds of mechanoreceptor indicates an important role for an outward Ca2+-activated K+ current in the formation of the receptor potential in both

  5. [Receptor adaptation of muscle spindles treated in different ways].

    PubMed

    Zalkind, V I; Rokotova, N A

    1978-11-01

    Comparison of the grades of 60 sensitive muscle spindle terminals on two actions: gradual stretch of the muscle and short intensive tetanization of the muscle nerve, showed that, irrespective of the mode of action, the character of adaptation remains the smae in majority of units. The speed of receptors adaptation depends not on the specific of testing precedures, but, apparently, on the means of connection of the sensitive terminals with different types of intrafusal muscle fibers with different elasticviscous properties. The possible reason for speedy adaptation of muscle receptors of elementary dynamic type, is discussed.

  6. Novel benzimidazole inhibitors bind to a unique site in the kinesin spindle protein motor domain.

    PubMed

    Sheth, Payal R; Shipps, Gerald W; Seghezzi, Wolfgang; Smith, Catherine K; Chuang, Cheng-Chi; Sanden, David; Basso, Andrea D; Vilenchik, Lev; Gray, Kimberly; Annis, D Allen; Nickbarg, Elliott; Ma, Yao; Lahue, Brian; Herbst, Ronald; Le, Hung V

    2010-09-28

    Affinity selection-mass spectrometry (AS-MS) screening of kinesin spindle protein (KSP) followed by enzyme inhibition studies and temperature-dependent circular dichroism (TdCD) characterization was utilized to identify a series of benzimidazole compounds. This series also binds in the presence of Ispinesib, a known anticancer KSP inhibitor in phase I/II clinical trials for breast cancer. TdCD and AS-MS analyses support simultaneous binding implying existence of a novel non-Ispinesib binding pocket within KSP. Additional TdCD analyses demonstrate direct binding of these compounds to Ispinesib-resistant mutants (D130V, A133D, and A133D + D130V double mutant), further strengthening the hypothesis that the compounds bind to a distinct binding pocket. Also importantly, binding to this pocket causes uncompetitive inhibition of KSP ATPase activity. The uncompetitive inhibition with respect to ATP is also confirmed by the requirement of nucleotide for binding of the compounds. After preliminary affinity optimization, the benzimidazole series exhibited distinctive antimitotic activity as evidenced by blockade of bipolar spindle formation and appearance of monoasters. Cancer cell growth inhibition was also demonstrated either as a single agent or in combination with Ispinesib. The combination was additive as predicted by the binding studies using TdCD and AS-MS analyses. The available data support the existence of a KSP inhibitory site hitherto unknown in the literature. The data also suggest that targeting this novel site could be a productive strategy for eluding Ispinesib-resistant tumors. Finally, AS-MS and TdCD techniques are general in scope and may enable screening other targets in the presence of known drugs, clinical candidates, or tool compounds that bind to the protein of interest in an effort to identify potency-enhancing small molecules that increase efficacy and impede resistance in combination therapy.

  7. Structure, distribution and innervation of muscle spindles in avian fast and slow skeletal muscle.

    PubMed

    Ovalle, W K; Dow, P R; Nahirney, P C

    1999-04-01

    Muscle spindles in 2 synergistic avian skeletal muscles, the anterior (ALD) and posterior (PLD) latissimus dorsi, were studied by light and electron microscopy to determine whether morphological or quantitative differences existed between these sensory receptors. Differences were found in the density, distribution and location of muscle spindles in the 2 muscles. They also differed with respect to the morphology of their capsules and intracapsular components. The slow ALD possessed muscle spindles which were evenly distributed throughout the muscle, whereas in the fast PLD they were mainly concentrated around the single nerve entry point into the muscle. The muscle spindle index (number of spindles per gram wet muscle weight) in the ALD was more than double that of its fast-twitch PLD counterpart (130.5+/-2.0 vs 55.4+/-2.0 respectively, n = 6). The number of intrafusal fibres per spindle ranged from 1 to 8 in the ALD and 2 to 9 in the PLD, and their diameters varied from 5.0 to 16.0 microm and 4.5 to 18.5 microm, respectively. Large diameter intrafusal fibres were more frequently encountered in spindles of the PLD. Unique to the ALD was the presence of monofibre muscle spindles (12.7% of total spindles observed in ALD) which contained a solitary intrafusal fibre. In muscle spindles of both the ALD and PLD, sensory nerve endings terminated in a spiral fashion on the intrafusal fibres in their equatorial regions. Motor innervation was restricted to either juxtaequatorial or polar regions of the intrafusal fibres. Outer capsule components were extensive in polar and juxtaequatorial regions of ALD spindles, whereas inner capsule cells of PLD spindles were more numerous in juxtaequatorial and equatorial regions. Overall, muscle spindles of the PLD exhibited greater complexity with respect to the number of intrafusal fibres per spindle, range of intrafusal fibre diameters and development of their inner capsules. It is postulated that the differences in muscle spindle

  8. Muscle spindles in human tibialis anterior encode muscle fascicle length changes.

    PubMed

    Day, James; Bent, Leah R; Birznieks, Ingvars; Macefield, Vaughan G; Cresswell, Andrew G

    2017-04-01

    Muscle spindles provide exquisitely sensitive proprioceptive information regarding joint position and movement. Through passively driven length changes in the muscle-tendon unit (MTU), muscle spindles detect joint rotations because of their in-parallel mechanical linkage to muscle fascicles. In human microneurography studies, muscle fascicles are assumed to follow the MTU and, as such, fascicle length is not measured in such studies. However, under certain mechanical conditions, compliant structures can act to decouple the fascicles, and, therefore, the spindles, from the MTU. Such decoupling may reduce the fidelity by which muscle spindles encode joint position and movement. The aim of the present study was to measure, for the first time, both the changes in firing of single muscle spindle afferents and changes in muscle fascicle length in vivo from the tibialis anterior muscle (TA) during passive rotations about the ankle. Unitary recordings were made from 15 muscle spindle afferents supplying TA via a microelectrode inserted into the common peroneal nerve. Ultrasonography was used to measure the length of an individual fascicle of TA. We saw a strong correlation between fascicle length and firing rate during passive ankle rotations of varying rates (0.1-0.5 Hz) and amplitudes (1-9°). In particular, we saw responses observed at relatively small changes in muscle length that highlight the sensitivity of the TA muscle to small length changes. This study is the first to measure spindle firing and fascicle dynamics in vivo and provides an experimental basis for further understanding the link between fascicle length, MTU length, and spindle firing patterns.NEW & NOTEWORTHY Muscle spindles are exquisitely sensitive to changes in muscle length, but recordings from human muscle spindle afferents are usually correlated with joint angle rather than muscle fascicle length. In this study, we monitored both muscle fascicle length and spindle firing from the human tibialis

  9. [The relativity of abnormity].

    PubMed

    Nilson, Annika

    2006-01-01

    In the late 19th century and in the beginning of the 20th century, mental diseases and abnormal behavior was considered to be a great danger to culture and society. "Degeneration" was the buzzword of the time, used and misused by artists and scientists alike. At the same time, some scientists saw abnormity as the key to unlock the mysteries of the ordinary mind. Naturalistic curiosity left Pandoras box open when religion declined in Darwins wake. Two swedish scientists, the physician Bror Gadelius (1862-1938) and his friend the philosopher Axel Herrlin (1870-1937), inspired by the French psychologist Theodule Ribots (1839-1916) "psychology without a soul", denied all fixed demarcation lines between abnormity and normality. All humans are natures creatures ruled by physiological laws, not ruled by God or convention. Even ordinary morality was considered to be an utterly backward explanation and guideline for complex human behavior. Different forms of therapy, not various kinds of penalties for wicked and disturbing behavior, are the now the solution for lots of people, "normal" as well as "abnormal". Psychiatry is expanding.

  10. Anaphase A: Disassembling Microtubules Move Chromosomes toward Spindle Poles

    PubMed Central

    Asbury, Charles L.

    2017-01-01

    The separation of sister chromatids during anaphase is the culmination of mitosis and one of the most strikingly beautiful examples of cellular movement. It consists of two distinct processes: Anaphase A, the movement of chromosomes toward spindle poles via shortening of the connecting fibers, and anaphase B, separation of the two poles from one another via spindle elongation. I focus here on anaphase A chromosome-to-pole movement. The chapter begins by summarizing classical observations of chromosome movements, which support the current understanding of anaphase mechanisms. Live cell fluorescence microscopy studies showed that poleward chromosome movement is associated with disassembly of the kinetochore-attached microtubule fibers that link chromosomes to poles. Microtubule-marking techniques established that kinetochore-fiber disassembly often occurs through loss of tubulin subunits from the kinetochore-attached plus ends. In addition, kinetochore-fiber disassembly in many cells occurs partly through ‘flux’, where the microtubules flow continuously toward the poles and tubulin subunits are lost from minus ends. Molecular mechanistic models for how load-bearing attachments are maintained to disassembling microtubule ends, and how the forces are generated to drive these disassembly-coupled movements, are discussed. PMID:28218660

  11. Expression of basement membrane antigens in spindle cell melanoma.

    PubMed

    Prieto, V G; Woodruff, J M

    1998-07-01

    Spindle cell melanoma (SCM) is an uncommon form of melanoma that may be confused histologically with other tumors, including malignant peripheral nerve sheath tumors (MPNST). Tumors with neural differentiation and melanocytic nevi may both show basement membrane immunohistochemically and at the ultrastructural level. However, most ultrastructural studies of melanoma have failed to demonstrate well formed basement membrane around tumor cells. The presence of basement membrane has been used by some authors as evidence favoring MPNST, as opposed to SCM. To evaluate this distinction immunohistochemically, 22 primary and metastatic cutaneous melanomas having a spindle cell component (SCM) were studied using monoclonal antibodies against laminin and Type IV collagen. S100 protein and HMB45 antigen expression were also studied. All but one of the SCM were reactive for S100 protein in at least 25% of the cells. Thirteen of 20 tumors (65%) were focally reactive with HMB45. Laminin was expressed in 42% of the tumors (only membranous pattern in 3; cytoplasmic and membranous in 5). Seventeen tumors (77%) expressed type IV collagen (only membranous pattern in 7; cytoplasmic and membranous pattern in 10). Laminin and type IV collagen, known components of basement membrane, are often found in SCM. Therefore, their detection cannot be used to distinguish SCM from MPNST.

  12. Topological defects in confined populations of spindle-shaped cells

    NASA Astrophysics Data System (ADS)

    Duclos, Guillaume; Erlenkämper, Christoph; Joanny, Jean-François; Silberzan, Pascal

    2017-01-01

    Most spindle-shaped cells (including smooth muscles and sarcomas) organize in vivo into well-aligned `nematic’ domains, creating intrinsic topological defects that may be used to probe the behaviour of these active nematic systems. Active non-cellular nematics have been shown to be dominated by activity, yielding complex chaotic flows. However, the regime in which live spindle-shaped cells operate, and the importance of cell-substrate friction in particular, remains largely unexplored. Using in vitro experiments, we show that these active cellular nematics operate in a regime in which activity is effectively damped by friction, and that the interaction between defects is controlled by the system’s elastic nematic energy. Due to the activity of the cells, these defects behave as self-propelled particles and pairwise annihilate until all displacements freeze as cell crowding increases. When confined in mesoscopic circular domains, the system evolves towards two identical +1/2 disclinations facing each other. The most likely reduced positions of these defects are independent of the size of the disk, the cells’ activity or even the cell type, but are well described by equilibrium liquid crystal theory. These cell-based systems thus operate in a regime more stable than other active nematics, which may be necessary for their biological function.

  13. Sustaining sleep spindles through enhanced SK2-channel activity consolidates sleep and elevates arousal threshold.

    PubMed

    Wimmer, Ralf D; Astori, Simone; Bond, Chris T; Rovó, Zita; Chatton, Jean-Yves; Adelman, John P; Franken, Paul; Lüthi, Anita

    2012-10-03

    Sleep spindles are synchronized 11-15 Hz electroencephalographic (EEG) oscillations predominant during nonrapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Ca(v)3.3-type Ca(2+) channels and Ca(2+)-dependent small-conductance-type 2 (SK2) K(+) channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-overexpressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared with wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow waves (<4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles.

  14. Sustaining sleep spindles through enhanced SK2 channel activity consolidates sleep and elevates arousal threshold

    PubMed Central

    Wimmer, Ralf D.; Astori, Simone; Bond, Chris T.; Rovó, Zita; Chatton, Jean-Yves; Adelman, John P.; Franken, Paul; Lüthi, Anita

    2013-01-01

    Sleep spindles are synchronized 11–15 Hz electroencephalographic (EEG) oscillations predominant during non-rapid-eye-movement sleep (NREMS). Rhythmic bursting in the reticular thalamic nucleus (nRt), arising from interplay between Cav3.3-type Ca2+ channels and Ca2+-dependent small-conductance-type 2 (SK2) K+ channels, underlies spindle generation. Correlative evidence indicates that spindles contribute to memory consolidation and protection against environmental noise in human NREMS. Here, we describe a molecular mechanism through which spindle power is selectively extended and we probed the actions of intensified spindling in the naturally sleeping mouse. Using electrophysiological recordings in acute brain slices from SK2 channel-over-expressing (SK2-OE) mice, we found that nRt bursting was potentiated and thalamic circuit oscillations were prolonged. Moreover, nRt cells showed greater resilience to transit from burst to tonic discharge in response to gradual depolarization, mimicking transitions out of NREMS. Compared to wild-type littermates, chronic EEG recordings of SK2-OE mice contained less fragmented NREMS, while the NREMS EEG power spectrum was conserved. Furthermore, EEG spindle activity was prolonged at NREMS exit. Finally, when exposed to white noise, SK2-OE mice needed stronger stimuli to arouse. Increased nRt bursting thus strengthens spindles and improves sleep quality through mechanisms independent of EEG slow-waves (< 4 Hz), suggesting SK2 signaling as a new potential therapeutic target for sleep disorders and for neuropsychiatric diseases accompanied by weakened sleep spindles. PMID:23035101

  15. An organelle-exclusion envelope assists mitosis and underlies distinct molecular crowding in the spindle region.

    PubMed

    Schweizer, Nina; Pawar, Nisha; Weiss, Matthias; Maiato, Helder

    2015-08-31

    The mitotic spindle is a microtubular assembly required for chromosome segregation during mitosis. Additionally, a spindle matrix has long been proposed to assist this process, but its nature has remained elusive. By combining live-cell imaging with laser microsurgery, fluorescence recovery after photobleaching, and fluorescence correlation spectroscopy in Drosophila melanogaster S2 cells, we uncovered a microtubule-independent mechanism that underlies the accumulation of molecules in the spindle region. This mechanism relies on a membranous system surrounding the mitotic spindle that defines an organelle-exclusion zone that is conserved in human cells. Supported by mathematical modeling, we demonstrate that organelle exclusion by a membrane system causes spatio-temporal differences in molecular crowding states that are sufficient to drive accumulation of mitotic regulators, such as Mad2 and Megator/Tpr, as well as soluble tubulin, in the spindle region. This membranous "spindle envelope" confined spindle assembly, and its mechanical disruption compromised faithful chromosome segregation. Thus, cytoplasmic compartmentalization persists during early mitosis to promote spindle assembly and function.

  16. An allometric analysis of the number of muscle spindles in mammalian skeletal muscles.

    PubMed

    Banks, R W

    2006-06-01

    An allometric analysis of the number of muscle spindles in relation to muscle mass in mammalian (mouse, rat, guinea-pig, cat, human) skeletal muscles is presented. It is shown that the trend to increasing number as muscle mass increases follows an isometric (length) relationship between species, whereas within a species, at least for the only essentially complete sample (human), the number of spindles scales, on average, with the square root rather than the cube root of muscle mass. An attempt is made to reconcile these apparently discrepant relationships. Use of the widely accepted spindle density (number of spindles g(-1) of muscle) as a measure of relative abundance of spindles in different muscles is shown to be grossly misleading. It is replaced with the residuals of the linear regression of ln spindle number against ln muscle mass. Significant differences in relative spindle abundance as measured by residuals were found between regional groups of muscles: the greatest abundance is in axial muscles, including those concerned with head position, whereas the least is in muscles of the shoulder girdle. No differences were found between large and small muscles operating in parallel, or between antigravity and non-antigravity muscles. For proximal vs. distal muscles, spindles were significantly less abundant in the hand than the arm, but there was no difference between the foot and the leg.

  17. Sleep Spindles Characteristics in Insomnia Sufferers and Their Relationship with Sleep Misperception

    PubMed Central

    2016-01-01

    Cortical hyperarousal is higher in insomnia sufferers (INS) than in good sleepers (GS) and could be related to an alteration in sleep protection mechanisms, like reduced density or altered characteristics in sleep spindles. The deficient sleep protection mechanisms might in turn enhance underestimation of sleep. This study's objective was to document sleep spindles characteristics in INS compared with GS and to investigate their potential role in sleep consolidation and misperception. Seventeen individuals with paradoxical insomnia (PARA-I), 24 individuals with psychophysiological insomnia (PSY-I), and 29 GS completed four consecutive polysomnographic nights in laboratory. Sleep spindles were detected automatically during stage 2 and SWS (3-4) on night 3. Number, density, duration, frequency, and amplitude of sleep spindles were calculated. A misperception index was used to determine the degree of discrepancy between subjective and objective total sleep times. Kruskal-Wallis H tests and post hoc tests revealed that PARA-I had significantly shorter sleep spindles than GS but that PSY-I and GS did not differ on spindles length. A standard multiple regression model revealed that neither sleep spindles characteristics nor objective sleep measures were predictive of sleep misperception. A longer duration of spindles could reflect a higher gating process but this hypothesis still needs to be confirmed in replication studies. PMID:27478648

  18. Spindle error motion measurement using concentric circle grating and sinusoidal frequency-modulated semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Higuchi, Masato; Vu, Thanh-Tung; Aketagawa, Masato

    2016-11-01

    The conventional method of measuring the radial, axial and angular spindle motion is complicated and needs large spaces. Smaller instrument is better in terms of accurate and practical measurement. A method of measuring spindle error motion using a sinusoidal phase modulation and a concentric circle grating was described in the past. In the method, the concentric circle grating with fine pitch is attached to the spindle. Three optical sensors are fixed under grating and observe appropriate position of grating. The each optical sensor consists of a sinusoidal frequency modulated semiconductor laser as the light source, and two interferometers. One interferometer measures an axial spindle motion by detecting the interference fringe between reflected beam from fixed mirror and 0th-order diffracted beam. Another interferometer measures a radial spindle motion by detecting the interference fringe between ±2nd-order diffracted beams. With these optical sensor, 3 axial and 3 radial displacement of grating can be measured. From these measured displacements, axial, radial and angular spindle motion is calculated concurrently. In the previous experiment, concurrent measurement of the one axial and one radial spindle displacement at 4rpm was described. In this paper, the sinusoidal frequency modulation realized by modulating injection current is used instead of the sinusoidal phase modulation, which contributes simplicity of the instrument. Furthermore, concurrent measurement of the 5 axis (1 axial, 2 radial and 2 angular displacements) spindle motion at 4000rpm may be described.

  19. A comparison of the spindles in two different muscles of the frog.

    PubMed

    Brown, M C

    1971-08-01

    1. The responses of spindles in the iliofibularis muscle of frogs to stretch during either small motor nerve fibre stimulation or the application of suxamethonium were compared.2. All spindles which were excited by small motor nerve fibre stimulation were also excited by suxamethonium, and their responses to these two methods of excitation were very similar. The drug dose was usually 5-10 mug/ml. but smaller and larger doses were effective. Large doses (> 100 mug/ml.) could sometimes lead to a reversible partial block of the spindle response to stretch.3. Suxamethonium also caused a prolonged contraction in extrafusal slow muscle fibres. This contraction was not responsible for the effect on the spindle, because the time course of its action on the muscle tension and on the spindle afferent was different.4. It was concluded that suxamethonium stimulated prolonged contraction in the small intrafusal muscle fibres, which are known to be innervated by the small motor nerve fibres.5. Only about half of the spindles in the iliofibularis muscle were excited by suxamethonium.6. In the sartorius muscle which has no slow extrafusal muscle fibres, no spindles were found to be excited by suxamethonium in the way characteristic of that due to small intrafusal muscle fibre contraction.7. It is concluded that, in frog muscles which have no slow extrafusal fibres, the muscle spindles do not have small intrafusal muscle fibres of the kind found in the iliofibularis muscle.

  20. The 5α-reductase inhibitor finasteride is not associated with alterations in sleep spindles in men referred for polysomnography

    PubMed Central

    Goldstein, Michael R.; Cook, Jesse D.; Plante, David T.

    2015-01-01

    Objective Endogenous neurosteroids that potentiate the GABAA receptor are thought to enhance the generation of sleep spindles. This study tested the hypothesis that the 5α-reductase inhibitor finasteride, an agent associated with reductions in neurosteroids, would be associated with reduced sleep spindles in men referred for polysomnography. Methods Spectral analysis and spindle waveform detection were performed on electroencephalographic (EEG) sleep data in the 11–16Hz sigma band, as well as several subranges, from 27 men taking finasteride and 27 matched comparison patients (ages 18 to 81 years). Results No significant differences between groups were observed for spectral power or sleep spindle morphology measures, including spindle density, amplitude, duration, and integrated spindle activity. Conclusions Contrary to our hypothesis, these findings demonstrate that finasteride is not associated with alterations in sleep spindle range activity or spindle morphology parameters. PMID:26494125

  1. Evaluation of the Dynamicity of Mitotic Exit Network and Spindle Position Checkpoint Components on Spindle Pole Bodies by Fluorescence Recovery After Photobleaching (FRAP).

    PubMed

    Caydasi, Ayse Koca; Pereira, Gislene

    2017-01-01

    Fluorescence recovery after photobleaching (FRAP) is a powerful technique to study in vivo binding and diffusion dynamics of fluorescently labeled proteins. In this chapter, we describe how to determine spindle pole body (SPB) binding dynamics of mitotic exit network (MEN) and spindle position checkpoint (SPOC) proteins using FRAP microscopy. Procedures presented here include the growth of the yeast cultures, sample preparation, image acquisition and analysis.

  2. Mitotic Spindle Assembly: Building the Bridge between Sister K-Fibers.

    PubMed

    Simunić, Juraj; Tolić, Iva M

    2016-10-01

    The mitotic spindle performs the task of physically dividing the genetic material between the newly formed daughter cells. To achieve this, bundles of microtubules and associated proteins orchestrate forces that spatially organize and then separate the chromosomes. In the classic view of the spindle, the kinetochore microtubules (k-fibers) are tensed and, thus, straight, whereas interpolar bundles are curved and do not interact with k-fibers close to the spindle equator. The updated view of the spindle depicts k-fibers as curved and interacting with newly identified interpolar bundles, called bridging fibers, along their length. In this Opinion, we propose and discuss scenarios for the origin of this structure in the context of known spindle assembly mechanisms.

  3. Intranodal leiomyoma in a young child: report of a rare spindle cell lesion.

    PubMed

    Girhotra, Manish; Virk, Shehbaaz Singh; Verma, Sarika; Bansal, Kalpana; Gupta, Ruchika

    2014-01-01

    ABSTRACT Primary spindle cell lesions of lymph nodes, with the exception of Kaposi's sarcoma, are rare. Intranodal palisaded myofibroblastoma has been described as a spindle cell tumor with prominent amianthoid fibers, intralesional hemorrhage, and intracellular or extracellular inclusions. Another spindle cell lesion, intranodal leiomyoma, has been reported only occasionally. We report the case of a 6-year-old boy with a mass in the neck without other systemic complaints. Excision biopsy of the lymph node revealed a spindle cell tumor with lymph nodal tissue at the periphery. The tumor showed features of smooth muscle differentiation with focally high mitotic index. The classical features of myofibroblastoma were not present. A final pathologic diagnosis of intranodal leiomyoma was rendered. The child has been free of recurrence in the follow-up period. Intranodal leiomyoma is a rare primary spindle cell lesion of the lymph nodes and should be considered in the differential diagnosis of the same.

  4. Drosophila parthenogenesis: A tool to decipher centrosomal vs acentrosomal spindle assembly pathways

    SciTech Connect

    Riparbelli, Maria Giovanna; Callaini, Giuliano

    2008-04-15

    Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first female meiosis, suggesting that similar pathways may be operative. In the cytoplasm of eggs in which centrosomes do form, monastral and biastral spindles are found. Analysis by laser scanning confocal microscopy suggests that these spindles are derived from the stochastic interaction of astral microtubules directly with kinetochore regions or indirectly with kinetochore microtubules. Our findings are consistent with the idea that mitotic spindle assembly requires both acentrosomal and centrosomal pathways, strengthening the hypothesis that astral microtubules can dictate the organization of the spindle by capturing kinetochore microtubules.

  5. Mounting arrangement for the drive system of an air-bearing spindle on a machine tool

    DOEpatents

    Lunsford, J.S.; Crisp, D.W.; Petrowski, P.L.

    1987-12-07

    The present invention is directed to a mounting arrangement for the drive system of an air-bearing spindle utilized on a machine tool such as a lathe. The mounting arrangement of the present invention comprises a housing which is secured to the casing of the air bearing in such a manner that the housing position can be selectively adjusted to provide alignment of the air-bearing drive shaft supported by the housing and the air-bearing spindle. Once this alignment is achieved the air between spindle and the drive arrangement is maintained in permanent alignment so as to overcome misalignment problems encountered in the operation of the machine tool between the air-bearing spindle and the shaft utilized for driving the air-bearing spindle.

  6. A force-generating machinery maintains the spindle at the cell center during mitosis.

    PubMed

    Garzon-Coral, Carlos; Fantana, Horatiu A; Howard, Jonathon

    2016-05-27

    The position and orientation of the mitotic spindle is precisely regulated to ensure the accurate partition of the cytoplasm between daughter cells and the correct localization of the daughters within growing tissue. Using magnetic tweezers to perturb the position of the spindle in intact cells, we discovered a force-generating machinery that maintains the spindle at the cell center during metaphase and anaphase in one- and two-cell Caenorhabditis elegans embryos. The forces increase with the number of microtubules and are larger in smaller cells. The machinery is rigid enough to suppress thermal fluctuations to ensure precise localization of the mitotic spindle, yet compliant enough to allow molecular force generators to fine-tune the position of the mitotic spindle to facilitate asymmetric division.

  7. A LCMT1-PME-1 methylation equilibrium controls mitotic spindle size.

    PubMed

    Xia, Xiaoyu; Gholkar, Ankur; Senese, Silvia; Torres, Jorge Z

    2015-01-01

    Leucine carboxyl methyltransferase-1 (LCMT1) and protein phosphatase methylesterase-1 (PME-1) are essential enzymes that regulate the methylation of the protein phosphatase 2A catalytic subunit (PP2AC). LCMT1 and PME-1 have been linked to the regulation of cell growth and proliferation, but the underlying mechanisms have remained elusive. We show here an important role for an LCMT1-PME-1 methylation equilibrium in controlling mitotic spindle size. Depletion of LCMT1 or overexpression of PME-1 led to long spindles. In contrast, depletion of PME-1, pharmacological inhibition of PME-1 or overexpression of LCMT1 led to short spindles. Furthermore, perturbation of the LCMT1-PME-1 methylation equilibrium led to mitotic arrest, spindle assembly checkpoint activation, defective cell divisions, induction of apoptosis and reduced cell viability. Thus, we propose that the LCMT1-PME-1 methylation equilibrium is critical for regulating mitotic spindle size and thereby proper cell division.

  8. Chromosome and mitotic spindle dynamics in fission yeast kinesin-8 mutants

    NASA Astrophysics Data System (ADS)

    Crapo, Ammon M.; Gergley, Zachary R.; McIntosh, J. Richard; Betterton, M. D.

    2014-03-01

    Fission yeast proteins Klp5p and Klp6p are plus-end directed motors of the kinesin-8 family which promote microtubule (MT) depolymerization and also affect chromosome segregation, but the mechanism of these activities is not well understood. Using live-cell time-lapse fluorescence microscopy of fission yeast wild-type (WT) and klp5/6 mutant strains, we quantify and compare the dynamics of kinetochore motion and mitotic spindle length in 3D. In WT cells, the spindle, once formed, remains a consistent size and chromosomes are correctly organized and segregated. In kinesin-8 mutants, spindles undergo large length fluctuations of several microns. Kinetochore motions are also highly fluctuating, with kinetochores frequently moving away from the spindle rather than toward it. We observe transient pushing of chromosomes away from the spindle by as much as 10 microns in distance.

  9. Specific polar subpopulations of astral microtubules control spindle orientation and symmetric neural stem cell division.

    PubMed

    Mora-Bermúdez, Felipe; Matsuzaki, Fumio; Huttner, Wieland B

    2014-07-04

    Mitotic spindle orientation is crucial for symmetric vs asymmetric cell division and depends on astral microtubules. Here, we show that distinct subpopulations of astral microtubules exist, which have differential functions in regulating spindle orientation and division symmetry. Specifically, in polarized stem cells of developing mouse neocortex, astral microtubules reaching the apical and basal cell cortex, but not those reaching the central cell cortex, are more abundant in symmetrically than asymmetrically dividing cells and reduce spindle orientation variability. This promotes symmetric divisions by maintaining an apico-basal cleavage plane. The greater abundance of apical/basal astrals depends on a higher concentration, at the basal cell cortex, of LGN, a known spindle-cell cortex linker. Furthermore, newly developed specific microtubule perturbations that selectively decrease apical/basal astrals recapitulate the symmetric-to-asymmetric division switch and suffice to increase neurogenesis in vivo. Thus, our study identifies a novel link between cell polarity, astral microtubules, and spindle orientation in morphogenesis.

  10. Expert and crowd-sourced validation of an individualized sleep spindle detection method employing complex demodulation and individualized normalization

    PubMed Central

    Ray, Laura B.; Sockeel, Stéphane; Soon, Melissa; Bore, Arnaud; Myhr, Ayako; Stojanoski, Bobby; Cusack, Rhodri; Owen, Adrian M.; Doyon, Julien; Fogel, Stuart M.

    2015-01-01

    A spindle detection method was developed that: (1) extracts the signal of interest (i.e., spindle-related phasic changes in sigma) relative to ongoing “background” sigma activity using complex demodulation, (2) accounts for variations of spindle characteristics across the night, scalp derivations and between individuals, and (3) employs a minimum number of sometimes arbitrary, user-defined parameters. Complex demodulation was used to extract instantaneous power in the spindle band. To account for intra- and inter-individual differences, the signal was z-score transformed using a 60 s sliding window, per channel, over the course of the recording. Spindle events were detected with a z-score threshold corresponding to a low probability (e.g., 99th percentile). Spindle characteristics, such as amplitude, duration and oscillatory frequency, were derived for each individual spindle following detection, which permits spindles to be subsequently and flexibly categorized as slow or fast spindles from a single detection pass. Spindles were automatically detected in 15 young healthy subjects. Two experts manually identified spindles from C3 during Stage 2 sleep, from each recording; one employing conventional guidelines, and the other, identifying spindles with the aid of a sigma (11–16 Hz) filtered channel. These spindles were then compared between raters and to the automated detection to identify the presence of true positives, true negatives, false positives and false negatives. This method of automated spindle detection resolves or avoids many of the limitations that complicate automated spindle detection, and performs well compared to a group of non-experts, and importantly, has good external validity with respect to the extant literature in terms of the characteristics of automatically detected spindles. PMID:26441604

  11. Classification of muscle spindle afferents innervating the masseter muscle in rats.

    PubMed

    Masri, Radi; Ro, Jin Y; Dessem, Dean; Capra, Norman

    2006-09-01

    Taylor et al. [Taylor, A., Durbaba, R., Rodgers, J.F., 1992a. The classification of afferents from muscle spindles of the jaw-closing muscles of the cat. J Physiol 456, 609-628] developed a method to classify muscle spindle afferents using succinylcholine (Sch) and ramp and hold stretches. They demonstrated that cat jaw muscle spindle afferents show high proportion of intermediate responses to ramp and hold jaw stretch. Together with observations on the responses to Sch their data suggests that the majority of jaw muscle spindle afferents are influenced by a combination of nuclear bag(2) and nuclear chain fibres. Relatively few are influenced solely by nuclear bag(1) fibres. The purpose of this study was to categorize jaw muscle spindle afferent in rodents in response to ramp and hold stretches. Several measures were used to classify spindle afferents including (1) conduction velocity, (2) coefficient of variation (C.V.) of the interspike interval during jaw opening, and (3) the dynamic sensitivity and the initial discharge of spindle afferents before and after succinylcholine infusion (Sch, 100mg/kg, i.v.). Consistent with observations in the cat jaw muscles, the distribution of the conduction velocity and the C.V. of Vmes masseter afferents were unimodal. Therefore, these parameters were of little value in functional classification of spindle innervation. Succinylcholine injection either markedly increased the dynamic sensitivity or produced no change in Vmes afferents. Unlike cat jaw muscle spindle afferents, the effect of Sch on the initial discharge was not clearly separable from those responding or not responding to Sch. These results suggest that rat jaw muscle spindle afferents, have physiological properties that are primarily intermediate in nature and are likely to reflect a predominance of influence from nuclear bag(2) and chain fibres. However, the distinction between bag(2) and chain fibres influences is not as clearly defined in the rat compared to

  12. Kinetochores are transported poleward along a single astral microtubule during chromosome attachment to the spindle in newt lung cells

    PubMed Central

    1990-01-01

    During mitosis in cultured newt pneumocytes, one or more chromosomes may become positioned well removed (greater than 50 microns) from the polar regions during early prometaphase. As a result, these chromosomes are delayed for up to 5 h in forming an attachment to the spindle. The spatial separation of these chromosomes from the polar microtubule- nucleating centers provides a unique opportunity to study the initial stages of kinetochore fiber formation in living cells. Time-lapse Nomarski-differential interference contrast videomicroscopic observations reveal that late-attaching chromosomes always move, upon attachment, into a single polar region (usually the one closest to the chromosome). During this attachment, the kinetochore region of the chromosome undergoes a variable number of transient poleward tugs that are followed, shortly thereafter, by rapid movement of the chromosome towards the pole. Anti-tubulin immunofluorescence and serial section EM reveal that the kinetochores and kinetochore regions of nonattached chromosomes lack associated microtubules. By contrast, these methods reveal that the attachment and subsequent poleward movement of a chromosome correlates with the association of a single long microtubule with one of the kinetochores of the chromosome. This microtubule traverses the entire distance between the spindle pole and the kinetochore and often extends well past the kinetochore. From these results, we conclude that the initial attachment of a chromosome to the newt pneumocyte spindle results from an interaction between a single polar-nucleated microtubule and one of the kinetochores on the chromosome. Once this association is established, the kinetochore is rapidly transported poleward along the surface of the microtubule by a mechanism that is not dependent on microtubule depolymerization. Our results further demonstrate that the motors for prometaphase chromosome movement must be either on the surface of the kinetochore (i.e., within the

  13. Visualizing how cancer chromosome abnormalities form in living cells

    Cancer.gov

    For the first time, scientists have directly observed events that lead to the formation of a chromosome abnormality that is often found in cancer cells. The abnormality, called a translocation, occurs when part of a chromosome breaks off and becomes attac

  14. Reduced levels of Dusp3/Vhr phosphatase impair normal spindle bipolarity in an Erk1/2 activity-dependent manner.

    PubMed

    Tambe, Mahesh Balasaheb; Narvi, Elli; Kallio, Marko

    2016-08-01

    Dual specificity phosphatase-3 (Dusp3/Vhr) regulates cell cycle progression by counteracting the effects of mitogen-activated protein kinases (Mapk) Erk1/2 and Jnk. Despite the known upregulation of Dusp3 at M phase in mammalian cells, its mitotic functions are poorly characterized. Here, we report that loss of Dusp3 by RNAi leads to the formation of multipolar spindles in human mitotic cancer cells in an Erk1/2-dependent manner. In the phosphatase-silenced cells, the normal bipolar spindle structure was restored by chemical inhibition of Erk1/2 and ectopic overexpression of Dusp3. We propose that at M phase Dusp3 keeps Erk1/2 activity in check to facilitate normal mitosis.

  15. Heritable bovine fetal abnormalities.

    PubMed

    Whitlock, B K; Kaiser, L; Maxwell, H S

    2008-08-01

    The etiologies for congenital bovine fetal anomalies can be divided into heritable, toxic, nutritional, and infectious categories. Although uncommon in most herds, inherited congenital anomalies are probably present in all breeds of cattle and propagated as a result of specific trait selection that inadvertently results in propagation of the defect. In some herds, the occurrence of inherited anomalies has become frequent, and economically important. Anomalous traits can affect animals in a range of ways, some being lethal or requiring euthanasia on humane grounds, others altering structure, function, or performance of affected animals. Veterinary practitioners should be aware of the potential for inherited defects, and be prepared to investigate and report animals exhibiting abnormal characteristics. This review will discuss the morphologic characteristics, mode of inheritance, breeding lines affected, and the availability of genetic testing for selected heritable bovine fetal abnormalities.

  16. Liver abnormalities in pregnancy.

    PubMed

    Than, Nwe Ni; Neuberger, James

    2013-08-01

    Abnormalities of liver function (notably rise in alkaline phosphatase and fall in serum albumin) are common in normal pregnancy, whereas rise in serum bilirubin and aminotransferase suggest either exacerbation of underlying pre-existing liver disease, liver disease related to pregnancy or liver disease unrelated to pregnancy. Pregnant women appear to have a worse outcome when infected with Hepatitis E virus. Liver diseases associated with pregnancy include abnormalities associated hyperemesis gravidarum, acute fatty liver disease, pre-eclampsia, cholestasis of pregnancy and HELLP syndrome. Prompt investigation and diagnosis is important in ensuring a successful maternal and foetal outcome. In general, prompt delivery is the treatment of choice for acute fatty liver, pre-eclampsia and HELLP syndrome and ursodeoxycholic acid is used for cholestasis of pregnancy although it is not licenced for this indication.

  17. Morphological abnormalities in elasmobranchs.

    PubMed

    Moore, A B M

    2015-08-01

    A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.

  18. Anatomical Abnormalities in Autism?

    PubMed

    Haar, Shlomi; Berman, Sigal; Behrmann, Marlene; Dinstein, Ilan

    2016-04-01

    Substantial controversy exists regarding the presence and significance of anatomical abnormalities in autism spectrum disorders (ASD). The release of the Autism Brain Imaging Data Exchange (∼1000 participants, age 6-65 years) offers an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across groups and to resolve many of the outstanding questions. Comprehensive univariate analyses using volumetric, thickness, and surface area measures of over 180 anatomically defined brain areas, revealed significantly larger ventricular volumes, smaller corpus callosum volume (central segment only), and several cortical areas with increased thickness in the ASD group. Previously reported anatomical abnormalities in ASD including larger intracranial volumes, smaller cerebellar volumes, and larger amygdala volumes were not substantiated by the current study. In addition, multivariate classification analyses yielded modest decoding accuracies of individuals' group identity (<60%), suggesting that the examined anatomical measures are of limited diagnostic utility for ASD. While anatomical abnormalities may be present in distinct subgroups of ASD individuals, the current findings show that many previously reported anatomical measures are likely to be of low clinical and scientific significance for understanding ASD neuropathology as a whole in individuals 6-35 years old.

  19. Modal identification of spindle-tool unit in high-speed machining

    NASA Astrophysics Data System (ADS)

    Gagnol, Vincent; Le, Thien-Phu; Ray, Pascal

    2011-10-01

    The accurate knowledge of high-speed motorised spindle dynamic behaviour during machining is important in order to ensure the reliability of machine tools in service and the quality of machined parts. More specifically, the prediction of stable cutting regions, which is a critical requirement for high-speed milling operations, requires the accurate estimation of tool/holder/spindle set dynamic modal parameters. These estimations are generally obtained through Frequency Response Function (FRF) measurements of the non-rotating spindle. However, significant changes in modal parameters are expected to occur during operation, due to high-speed spindle rotation. The spindle's modal variations are highlighted through an integrated finite element model of the dynamic high-speed spindle-bearing system, taking into account rotor dynamics effects. The dependency of dynamic behaviour on speed range is then investigated and determined with accuracy. The objective of the proposed paper is to validate these numerical results through an experiment-based approach. Hence, an experimental setup is elaborated to measure rotating tool vibration during the machining operation in order to determine the spindle's modal frequency variation with respect to spindle speed in an industrial environment. The identification of natural frequencies of the spindle under rotating conditions is challenging, due to the low number of sensors and the presence of many harmonics in the measured signals. In order to overcome these issues and to extract the characteristics of the system, the spindle modes are determined through a 3-step procedure. First, spindle modes are highlighted using the Frequency Domain Decomposition (FDD) technique, with a new formulation at the considered rotating speed. These extracted modes are then analysed through the value of their respective damping ratios in order to separate the harmonics component from structural spindle natural frequencies. Finally, the stochastic

  20. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  1. [Molecular abnormalities in lymphomas].

    PubMed

    Delsol, G

    2010-11-01

    Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities

  2. Targeting the spindle assembly checkpoint for breast cancer treatment.

    PubMed

    Marques, Sandra; Fonseca, Joana; Silva, Patrícia M A; Bousbaa, Hassan

    2015-01-01

    Breast cancer is the most common malignancy in women worldwide and the second leading cause of cancer deaths after lung cancer. As in other malignancies, aneuploidy is a common feature of breast cancer and influences its behavior. Aneuploidy has been linked to inappropriate activity of the spindle assembly checkpoint (SAC), a surveillance mechanism that, in normal cells, prevents anaphase onset until correct alignment of all chromosomes at the metaphase is achieved. Interestingly, the widely used anti-microtubule drugs, vinca alkaloids and taxanes, kill cancer cells through chronic arrest in mitosis as a consequence of chronic SAC activation. Deregulated SAC has been reported in breast cancer in many reports and presents an attractive therapeutic strategy. We present here a review of the current knowledge on the SAC defects and the underlying molecular mechanisms in breast cancer, and discuss the potential of SAC components as targets for breast cancer therapies.

  3. Axon and muscle spindle hyperplasia in the myostatin null mouse.

    PubMed

    Elashry, Mohamed I; Otto, Anthony; Matsakas, Antonios; El-Morsy, Salah E; Jones, Lisa; Anderson, Bethan; Patel, Ketan

    2011-02-01

    Germline deletion of the myostatin gene results in hyperplasia and hypertrophy of the tension-generating (extrafusal) fibres in skeletal muscle. As this gene is expressed predominantly in myogenic tissues it offers an excellent model with which to investigate the quantitative relationship between muscle and axonal development. Here we show that skeletal muscle hyperplasia in myostatin null mouse is accompanied by an increase in nerve fibres in major nerves of both the fore- and hindlimbs. We show that axons within these nerves undergo hypertrophy. Furthermore, we provide evidence that the age-related neural atrophic process is delayed in the absence of myostatin. Finally, we show that skeletal muscle hyperplasia in the myostatin null mouse is accompanied by an increase in the number of muscle spindles (also called stretch receptors or proprioceptors). However, our work demonstrates that the mechanisms regulating intrafusal fibre hyperplasia and hypertrophy differ from those that control the aetiology of extrafusal fibres.

  4. Spindle activity and monosynaptic reflex excitability during foreperiod.

    PubMed

    Gerilovsky, L; Struppler, A; Altmann, H; Velho, F

    1983-11-01

    Healthy volunteers were instructed to perform an isometric plantar foot flexion as quickly as possible after a foreperiod (FP) of 1000 msec defined by two clicks (warning signal (WS) and response signal (RS). In 6 volunteers the H reflex was evoked in triceps surae muscle and recorded by surface electrodes (stimulus intensity 30% of maximum). The H reflex was elicited at WS and RS as well as during FP at intervals of 100 msec. H reflex amplitudes were taken as a sign of monosynaptic reflex excitability (MSRE). Amplitudes during FP were compared with the average control values at rest. Relaxation of lower limb muscles before and during FP was controlled by EMG. MSRE was increased in the first part of FP with a maximum at 300 msec after WS and decreased in the second part, with a minimum at 800 msec after WS. In a second series of experiments, in 10 volunteers, single fiber activity from primary muscle spindle afferents was recorded with tungsten electrodes from deep peroneal nerve (6 records) and from tibial nerve (3 records). The activity of primary spindle afferents before and during the FP was calculated by instantaneous discharge frequency and histograms of spike distribution. The EMG was taken from sural triceps and anterior tibial muscles with needle electrodes; a mechanogram of tendon deflection was taken by an appropriate strain gauge. In 5 primary afferents without spontaneous activity at rest and during FP, discharge started with a delay of 10-15 msec after the onset of EMG activity during the motor reaction.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  6. Acidianus Tailed Spindle Virus: a New Archaeal Large Tailed Spindle Virus Discovered by Culture-Independent Methods

    PubMed Central

    Hochstein, Rebecca A.; Amenabar, Maximiliano J.; Munson-McGee, Jacob H.; Boyd, Eric S.

    2016-01-01

    ABSTRACT The field of viral metagenomics has expanded our understanding of viral diversity from all three domains of life (Archaea, Bacteria, and Eukarya). Traditionally, viral metagenomic studies provide information about viral gene content but rarely provide knowledge about virion morphology and/or cellular host identity. Here we describe a new virus, Acidianus tailed spindle virus (ATSV), initially identified by bioinformatic analysis of viral metagenomic data sets from a high-temperature (80°C) acidic (pH 2) hot spring located in Yellowstone National Park, followed by more detailed characterization using only environmental samples without dependency on culturing. Characterization included the identification of the large tailed spindle virion morphology, determination of the complete 70.8-kb circular double-stranded DNA (dsDNA) viral genome content, and identification of its cellular host. Annotation of the ATSV genome revealed a potential three-domain gene product containing an N-terminal leucine-rich repeat domain, followed by a likely posttranslation regulatory region consisting of high serine and threonine content, and a C-terminal ESCRT-III domain, suggesting interplay with the host ESCRT system. The host of ATSV, which is most closely related to Acidianus hospitalis, was determined by a combination of analysis of cellular clustered regularly interspaced short palindromic repeat (CRISPR)/Cas loci and dual viral and cellular fluorescence in situ hybridization (viral FISH) analysis of environmental samples and confirmed by culture-based infection studies. This work provides an expanded pathway for the discovery, isolation, and characterization of new viruses using culture-independent approaches and provides a platform for predicting and confirming virus hosts. IMPORTANCE Virus discovery and characterization have been traditionally accomplished by using culture-based methods. While a valuable approach, it is limited by the availability of culturable hosts. In

  7. A new method to measure circular runout of end-milling spindle based on cutting mark

    NASA Astrophysics Data System (ADS)

    Zhou, Jianlai; Liu, Shuchun

    2008-12-01

    A practical method is introduced to measure the circular runout of a end-milling spindle system at high speed rotations without the need of a reference sphere. A workpiece is held on a linear slide which moves along the axial direction of the spindle. The spindle is then programmed to run at a specific speed. A very sharp edge cutter must be used and the depth of cut will be very shallow in order to keep the cutting force very small. The workpiece is then fed into the end mill in order to make a cutting mark of teens μm in depth. The cutting marks are circular, and their diameters are related to the circular runout of the spindle system. The cutting mark that is generated at a specific speed is expected to contain information about the spindle circular runout at this speed. In practice the cutting marks are not perfectly circular. Therefore, a best-fit circle of a cutting mark is needed to determine its diameter. A high-resolution edge detector machine is used for this purpose. Quantitative precision analysis was carried out to confirm the accuracy and repeatability of this new measurement technique. It is demonstrated that this technique for the measurement of spindle circular runout is an effective tool in verifying the actual running accuracy of spindles at their actual operating speeds and can be accomplished without the need for a reference sphere.

  8. ASK1 controls spindle orientation and positioning by phosphorylating EB1 and stabilizing astral microtubules

    PubMed Central

    Luo, Youguang; Ran, Jie; Xie, Songbo; Yang, Yunfan; Chen, Jie; Li, Shanshan; Shui, Wenqing; Li, Dengwen; Liu, Min; Zhou, Jun

    2016-01-01

    Orientation and positioning of the mitotic spindle are involved in dictating cell division axis and cleavage site, and play important roles in cell fate determination and tissue morphogenesis. However, how spindle movement is controlled to achieve a defined alignment within the dividing cell is not fully understood. Here, we describe an unexpected role for apoptosis signal-regulating kinase 1 (ASK1) in regulating spindle behavior. We find that ASK1 is required for proper mitotic progression and daughter cell adhesion to the substratum. ASK1 interacts with end-binding protein 1 (EB1) and phosphorylates EB1 at serine 40, threonine 154 and threonine 206, enhancing its binding to the plus ends of astral microtubules. Consequently, astral microtubules are stabilized and therefore capable of mediating spindle interaction with the cell cortex, a requirement for spindle movement. These findings reveal a previously undiscovered function of ASK1 in cell division by regulating spindle orientation and positioning, and point to the importance of protein phosphorylation in the regulation of spindle behavior. PMID:27721984

  9. Four-dimensional visualization and quantitative analysis of meiotic spindle movements in live mouse oocytes.

    PubMed

    Tian, N; Zhang, L; Liu, B; Wang, P; Li, Y; Ma, W

    2012-09-01

    This paper made a different attempt of real-time observation of the meiotic spindle movements in living mouse oocyte using a convenient method. This method was based on an experimental phenomenon discovered in our work. In living mouse oocytes, a high concentration of calcium ions (Ca(2+)) was observed throughout the region occupied by the initial meiotic spindle. After Ca(2+) labelling with Fura-2, a weakly fluorescent area (WFA) appeared on each side of the chromosomes. The activities of the WFAs changed during spindle development. By real-time tracking of WFAs, we were able to indirectly observe the meiotic spindle movements. Occasionally, it was observed that the first meiotic spindle rotated from an orientation parallel to the cortex to become perpendicular, instead of migrating from the oocyte centre to the cortex along its axis. Moreover, we analysed this uncommon rotation of the first meiotic spindle and found that the whole rotation process can be divided into two phases: the early slow-speed rotation and the subsequent rapid-speed rotation. We further characterized this rotation with respect to rotational speed and acceleration at all the stages of development. By using a two-photon laser-scanning microscope in combination with Fura-2 dye that is nondamaging to oocytes, we provide a convenient method for indirect visualization and quantitative analysis of spindle movements by real-time tracking of WFAs. This method is easy to operate and master, and economical with time and effort.

  10. Kin4 kinase delays mitotic exit in response to spindle alignment defects.

    PubMed

    Pereira, Gislene; Schiebel, Elmar

    2005-07-22

    For many polarized cells, it is critical that the mitotic spindle becomes positioned relative to the polarity axis. This is especially important in yeast, where the site of cytokinesis is predetermined. The spindle position checkpoint (SPOC) therefore delays mitotic exit of cells with a mispositioned spindle. One component of the SPOC is the Bub2-Bfa1 complex, an inhibitor of the mitotic exit network (MEN). Here, we show that the Kin4 kinase is a component of the SPOC and as such is essential to delay cell cycle progression of cells with a misaligned spindle. When spindles are correctly oriented, Kin4 and Bub2-Bfa1 are asymmetrically localized to opposite spindle pole bodies (SPBs). Bub2-Bfa1 then becomes inhibited by Cdc5 polo kinase with anaphase onset, a prerequisite for mitotic exit. In response to spindle misalignment, Kin4 and Bub2-Bfa1 are brought together at both SPBs. Kin4 now maintains Bub2-Bfa1 activity by counteracting Cdc5, thereby inhibiting mitotic exit.

  11. The chromokinesin Kid is required for maintenance of proper metaphase spindle size.

    PubMed

    Tokai-Nishizumi, Noriko; Ohsugi, Miho; Suzuki, Emiko; Yamamoto, Tadashi

    2005-11-01

    The human chromokinesin Kid/kinesin-10, a plus end-directed microtubule (MT)-based motor with both microtubule- and DNA-binding domains, is required for proper chromosome alignment at the metaphase plate. Here, we performed RNA interference experiments to deplete endogenous Kid from HeLa cells and confirmed defects in metaphase chromosome arm alignment in Kid-depleted cells. In addition, we noted a shortening of the spindle length, resulting in a pole-to-pole distance only 80% of wild type. The spindle microtubule-bundles with which Kid normally colocalize became less robust. Rescue of the two Kid deficiency phenotypes-imprecise chromosome alignment at metaphase and shortened spindles- exhibited distinct requirements. Mutants lacking either the DNA-binding domain or the MT motor ATPase failed to rescue the former defect, whereas rescue of the shortened spindle phenotype required neither activity. Kid also exhibits microtubule bundling activity in vitro, and rescue of the shortened spindle phenotype and the bundling activity displayed similar domain requirements, except that rescue required a coiled-coil domain not needed for bundling. These results suggest that distinct from its role in chromosome movement, Kid contributes to spindle morphogenesis by mediating spindle microtubules stabilization.

  12. Automatic sleep spindle detection: benchmarking with fine temporal resolution using open science tools

    PubMed Central

    O'Reilly, Christian; Nielsen, Tore

    2015-01-01

    Sleep spindle properties index cognitive faculties such as memory consolidation and diseases such as major depression. For this reason, scoring sleep spindle properties in polysomnographic recordings has become an important activity in both research and clinical settings. The tediousness of this manual task has motivated efforts for its automation. Although some progress has been made, increasing the temporal accuracy of spindle scoring and improving the performance assessment methodology are two aspects needing more attention. In this paper, four open-access automated spindle detectors with fine temporal resolution are proposed and tested against expert scoring of two proprietary and two open-access databases. Results highlight several findings: (1) that expert scoring and polysomnographic databases are important confounders when comparing the performance of spindle detectors tested using different databases or scorings; (2) because spindles are sparse events, specificity estimates are potentially misleading for assessing automated detector performance; (3) reporting the performance of spindle detectors exclusively with sensitivity and specificity estimates, as is often seen in the literature, is insufficient; including sensitivity, precision and a more comprehensive statistic such as Matthew's correlation coefficient, F1-score, or Cohen's κ is necessary for adequate evaluation; (4) reporting statistics for some reasonable range of decision thresholds provides a much more complete and useful benchmarking; (5) performance differences between tested automated detectors were found to be similar to those between available expert scorings; (6) much more development is needed to effectively compare the performance of spindle detectors developed by different research teams. Finally, this work clarifies a long-standing but only seldomly posed question regarding whether expert scoring truly is a reliable gold standard for sleep spindle assessment. PMID:26157375

  13. Resting discharge of human muscle spindles is not modulated by increases in sympathetic drive

    PubMed Central

    Macefield, Vaughan G; Sverrisdottir, Yrsa B; Wallin, B Gunnar

    2003-01-01

    There is evidence in experimental animals that, in addition to receiving fusimotor drive, muscle spindles are subject to modulation by the sympathetic nervous system. We examined the validity of this idea in human subjects by recording from muscle spindles in the relaxed ankle and toe extensor muscles during a strong and sustained physiological activation of muscle sympathetic outflow. Unitary recordings were made from 20 primary and 17 secondary muscle spindle afferents via a tungsten microelectrode inserted percutaneously into the peroneal nerve in 10 awake, healthy subjects seated with the legs supported in the extended position. ECG, blood pressure, respiration and calf circumference were also recorded. The majority of the muscle spindles were spontaneously active at rest; a background discharge was induced in four silent spindles by vibrating the tendon. A sustained increase in muscle vasoconstrictor activity, an increase in calf volume and a fall in pulse pressure were produced by subjects performing a 30–40 s maximal inspiratory breath-hold. Despite this strong increase in muscle sympathetic outflow no significant changes occurred in the discharge of either primary or secondary muscle spindle afferents, measured as a change in mean frequency and variability over sequential 5 s epochs and compared with the preceding period of rest. Strong chemoreceptor-driven sympathetic bursts during sustained expiratory breath-holds also failed to modulate the firing of 14 spindle endings. We conclude that a sustained, physiological increase in muscle sympathetic activity causes no detectable change in muscle spindle firing, lending no support to the concept that the sympathetic nervous system can influence the sensitivity of human muscle spindles directly. PMID:12923218

  14. p21-activated kinase 4 regulates mitotic spindle positioning and orientation.

    PubMed

    Bompard, Guillaume; Morin, Nathalie

    2012-01-01

    During mitosis, microtubules (MTs) are massively rearranged into three sets of highly dynamic MTs that are nucleated from the centrosomes to form the mitotic spindle. Tight regulation of spindle positioning in the dividing cell and chromosome alignment at the center of the metaphase spindle are required to ensure perfect chromosome segregation and to position the cytokinetic furrow that will specify the two daughter cells. Spindle positioning requires regulation of MT dynamics, involving depolymerase activities together with cortical and kinetochore-mediated pushing and pulling forces acting on astral MTs and kinetochore fibres. These forces rely on MT motor activities. Cortical pulling forces exerted on astral MTs depend upon dynein/dynactin complexes and are essential in both symmetric and asymmetric cell division. A well-established spindle positioning pathway regulating the cortical targeting of dynein/dynactin involves the conserved LGN (Leu-Gly-Asn repeat-enriched-protein) and NuMA (microtubule binding nuclear mitotic apparatus protein) complex. Spindle orientation is also regulated by integrin-mediated cell adhesion and actin retraction fibres that respond to mechanical stress and are influenced by the microenvironment of the dividing cell. Altering the capture of astral MTs or modulating pulling forces affects spindle position, which can impair cell division, differentiation and embryogenesis. In this general scheme, the activity of mitotic kinases such as Auroras and Plk1 (Polo-like kinase 1) is crucial. Recently, the p21-activated kinases (PAKs) emerged as novel important players in mitotic progression. In our recent article, we demonstrated that PAK4 regulates spindle positioning in symmetric cell division. In this commentary, and in light of recent published studies, we discuss how PAK4 could participate in the regulation of mechanisms involved in spindle positioning and orientation.

  15. An Assessment of Six Muscle Spindle Models for Predicting Sensory Information during Human Wrist Movements

    PubMed Central

    Malik, Puja; Jabakhanji, Nuha; Jones, Kelvin E.

    2016-01-01

    Background: The muscle spindle is an important sensory organ for proprioceptive information, yet there have been few attempts to use Shannon information theory to quantify the capacity of human muscle spindles to encode sensory input. Methods: Computer simulations linked kinematics, to biomechanics, to six muscle spindle models that generated predictions of firing rate. The predicted firing rates were compared to firing rates of human muscle spindles recorded during a step-tracking (center-out) task to validate their use. The models were then used to predict firing rates during random movements with statistical properties matched to the ergonomics of human wrist movements. The data were analyzed for entropy and mutual information. Results: Three of the six models produced predictions that approximated the firing rate of human spindles during the step-tracking task. For simulated random movements these models predicted mean rates of 16.0 ± 4.1 imp/s (mean ± SD), peak firing rates <50 imp/s and zero firing rate during an average of 25% of the movement. The average entropy of the neural response was 4.1 ± 0.3 bits and is an estimate of the maximum information that could be carried by muscles spindles during ecologically valid movements. The information about tendon displacement preserved in the neural response was 0.10 ± 0.05 bits per symbol; whereas 1.25 ± 0.30 bits per symbol of velocity input were preserved in the neural response of the spindle models. Conclusions: Muscle spindle models, originally based on cat experiments, have predictive value for modeling responses of human muscle spindles with minimal parameter optimization. These models predict more than 10-fold more velocity over length information encoding during ecologically valid movements. These results establish theoretical parameters for developing neuroprostheses for proprioceptive function. PMID:26834618

  16. Rediscovery of the nucleolinus, a dynamic RNA-rich organelle associated with the nucleolus, spindle, and centrosomes

    PubMed Central

    Alliegro, Mary Anne; Henry, Jonathan J.; Alliegro, Mark C.

    2010-01-01

    The nucleolinus is an RNA-rich compartment, closely apposed to or embedded within the nucleolus. Discovered over 150 y ago, fewer than two dozen articles have been published on the nucleolinus, probably because complex histochemical stains are required for its visualization in the great majority of cells. The nucleolinus has been reported in invertebrate oocytes, mammalian and amphibian epithelial cells, neurons, and several transformed cell lines. A prominent nucleolinus, clearly visible with transmitted light microscopes at 10× magnification, is present in each oocyte of the surf clam, Spisula solidissima. We observed a consistent relationship between the nucleolinus and the developing meiotic apparatus following Spisula oocyte activation. Through sonication and sucrose gradient fractionation of purified oocyte nuclei, we isolated nucleolini, extracted their RNA, and prepared an in situ riboprobe (NLi-1), which is associated specifically with the nucleolinus, confirming its unique composition. Other in situ observations revealed a NLi-1 and nucleolinar association with the developing spindle and centrosomes. Laser microsurgery that targeted the nucleolinus resulted in failed meiotic cell division in parthenogenetically activated oocytes and failed mitosis in fertilized oocytes. Although the nucleolinus may be a forgotten organelle, its demonstrated role in spindle formation suggests it deserves renewed attention. PMID:20643950

  17. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation.

    PubMed

    Zhang, Zhong Rong; Al Zaharna, Mazen; Wong, Matthew Man-Kin; Chiu, Sung-Kay; Cheung, Hon-Yeung

    2013-01-01

    Andrographolide (Andro) suppresses proliferation and triggers apoptosis in many types of cancer cells. Taxifolin (Taxi) has been proposed to prevent cancer development similar to other dietary flavonoids. In the present study, the cytotoxic and apoptotic effects of the addition of Andro alone and Andro and Taxi together on human prostate carcinoma DU145 cells were assessed. Andro inhibited prostate cancer cell proliferation by mitotic arrest and activation of the intrinsic apoptotic pathway. Although the effect of Taxi alone on DU145 cell proliferation was not significant, the combined use of Taxi with Andro significantly potentiated the anti-proliferative effect of increased mitotic arrest and apoptosis by enhancing the cleavage of poly(ADP-ribose) polymerase, and caspases-7 and -9. Andro together with Taxi enhanced microtubule polymerization in vitro, and they induced the formation of twisted and elongated spindles in the cancer cells, thus leading to mitotic arrest. In addition, we showed that depletion of MAD2, a component in the spindle assembly checkpoint (SAC), alleviated the mitotic block induced by the two compounds, suggesting that they trigger mitotic arrest by SAC activation. This study suggests that the anti-cancer activity of Andro can be significantly enhanced in combination with Taxi by disrupting microtubule dynamics and activating the SAC.

  18. Exercises to Improve Gait Abnormalities

    MedlinePlus

    ... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...

  19. Abnormal human sex chromosome constitutions

    SciTech Connect

    1993-12-31

    Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.

  20. The activity of thalamus and cerebral cortex neurons in rabbits during "slow wave-spindle" EEG complexes.

    PubMed

    Burikov, A A; Bereshpolova YuI

    1999-01-01

    "Slow wave-spindle" complexes were studied during slow wave sleep in rabbits at the thalamic (medial thalamus) and cortical (upper and lower layers of the sensorimotor cortex) levels. Slow wave complexes are biphasic positive-negative complexes or triphasic complexes with a predominantly negative component. Spindles have characteristics close to those of spontaneous sleep spindles. Complexes arise singly, as though inserted into the rhythm of spontaneous sleep spindles, or in series with periods similar to the spindle rhythm. Medial thalamus neurons and some cortical neurons had the same activity during waves as during spindles: if the neuron decreased (increased) its spike frequency in a spindle, then decreases (increases) in frequency were also seen in slow waves; if the neuron produced trains of discharges during spindles, then trains of activity were also seen from the slow-wave part of "slow wave-spindle" complexes. The membrane potential changed in a similar fashion: on a background of hyperpolarization which started at the slow wave, individual depolarization oscillations appeared in the EEG wave rhythm; these oscillations were not always accompanied by spike trains. The slow wave mechanism, the rhythms of isolated complexes and simultaneous complexes and spontaneous sleep spindles may share a common underlying mechanism: slow, cyclical variations in excitability in thalamocortical neuronal networks, which have previously been demonstrated for spindle-like activity. The possibility that there are common mechanisms for slow waves in complexes and other EEG slow waves, particularly delta activity, remains hypothetical.

  1. And the dead shall rise: Actin and myosin return to the spindle

    PubMed Central

    Sandquist, Joshua C.; Kita, Angela M.; Bement, William M.

    2011-01-01

    The spindle directs chromosome partitioning in eukaryotes and, for the last three decades, has been considered primarily a structure based on microtubules, microtubule motors, and other microtubule binding proteins. However, a surprisingly large body of both old and new studies suggests roles for actin filaments (F-actin) and myosins (F-actin-based motor proteins) in spindle assembly and function. Here we review these data, and conclude that in several cases the evidence for F-actin and myosins participation in spindle function is very strong, and in the situations where it is less strong, there is nevertheless enough evidence to warrant further investigation. PMID:21920311

  2. Aging affects passive stiffness and spindle function of the rat soleus muscle.

    PubMed

    Rosant, Cédric; Nagel, Marie-Danielle; Pérot, Chantal

    2007-04-01

    Aging affects many motor functions, notably the spinal stretch reflexes and muscle spindle sensitivity. Spindle activation also depends on the elastic properties of the structures linked to the proprioceptive receptors. We have calculated a spindle efficacy index, SEI, for old rats. This index relates the spindle sensitivity, deduced from electroneurograms recording (ENG), to the passive stiffness of the muscle. Spindle sensitivity and passive incremental stiffness were calculated during ramp and hold stretches imposed on pseudo-isolated soleus muscles of control rats (aged 4 months, n=12) and old rats (aged 24 months, n=16). SEI were calculated for the dynamic and static phases of ramp (1-80 mm/s) and for hold (0.5-2mm) stretches imposed at two reference lengths: length threshold for spindle afferents discharges, L(n) (neurogram length) and slack length, L(s). The passive incremental stiffness was calculated from the peak and steady values of passive tension, measured under the stretch conditions used for the ENG recordings, and taking into account the muscle cross-sectional area. The pseudo-isolated soleus muscles were also stretched to establish the stress-strain relationship and to calculate muscle stiffness constant. The contralateral muscle was used to count muscle spindles and spindle fibers (ATPase staining) and immunostained to identify MyHC isoforms. L(n) and L(s) lengths were not significantly different in the control group, while L(n) was significantly greater than L(s) in old muscles. Under dynamic conditions, the SEI of old muscles was the same as in controls at L(s), but it was significantly lower than in controls at L(n) due to increased passive incremental stiffness under the stretch conditions used to analyze the ENG. Under static conditions, the SEI of old muscles was significantly lower than control values at all the stretch amplitudes and threshold lengths tested, due to increased passive incremental stiffness and decreased spindle sensitivity

  3. Dual approach for automated sleep spindles detection within EEG background activity in infant polysomnograms.

    PubMed

    Held, Claudio M; Causa, Leonardo; Estévez, Pablo; Pérez, Claudio; Garrido, Marcelo; Algarín, Cecilia; Peirano, Patricio

    2004-01-01

    An automated system for sleep spindles detection within EEG background activity, combining two different approaches, is presented. The first approach applies detection criteria on the sigma-band filtered EEG signal, including fuzzy thresholds. The second approach mimics an expert's procedure. A sleep spindle detection is validated if both approaches agree. The method was applied on a testing set, consisting of continuous sleep recordings of two patients, totaling 1132 epochs (pages). A total of 803 sleep spindles events were marked by the experts. Results showed an 87.7% agreement between the detection system and the medical experts.

  4. Alterations of the spindle checkpoint pathway in clinicopathologically aggressive CpG island methylator phenotype clear cell renal cell carcinomas

    PubMed Central

    Arai, Eri; Gotoh, Masahiro; Tian, Ying; Sakamoto, Hiromi; Ono, Masaya; Matsuda, Akio; Takahashi, Yoriko; Miyata, Sayaka; Totsuka, Hirohiko; Chiku, Suenori; Komiyama, Motokiyo; Fujimoto, Hiroyuki; Matsumoto, Kenji; Yamada, Tesshi; Yoshida, Teruhiko

    2015-01-01

    CpG‐island methylator phenotype (CIMP)‐positive clear cell renal cell carcinomas (RCCs) are characterized by accumulation of DNA hypermethylation of CpG islands, clinicopathological aggressiveness and poor patient outcome. The aim of this study was to clarify the molecular pathways participating in CIMP‐positive renal carcinogenesis. Genome (whole‐exome and copy number), transcriptome and proteome (two‐dimensional image converted analysis of liquid chromatography‐mass spectrometry) analyses were performed using tissue specimens of 87 CIMP‐negative and 14 CIMP‐positive clear cell RCCs and corresponding specimens of non‐cancerous renal cortex. Genes encoding microtubule‐associated proteins, such as DNAH2, DNAH5, DNAH10, RP1 and HAUS8, showed a 10% or higher incidence of genetic aberrations (non‐synonymous single‐nucleotide mutations and insertions/deletions) in CIMP‐positive RCCs, whereas CIMP‐negative RCCs lacked distinct genetic characteristics. MetaCore pathway analysis of CIMP‐positive RCCs revealed that alterations of mRNA or protein expression were significantly accumulated in six pathways, all participating in the spindle checkpoint, including the “The metaphase checkpoint (p = 1.427 × 10−6),” “Role of Anaphase Promoting Complex in cell cycle regulation (p = 7.444 × 10−6)” and “Spindle assembly and chromosome separation (p = 9.260 × 10−6)” pathways. Quantitative RT‐PCR analysis revealed that mRNA expression levels for genes included in such pathways, i.e., AURKA, AURKB, BIRC5, BUB1, CDC20, NEK2 and SPC25, were significantly higher in CIMP‐positive than in CIMP‐negative RCCs. All CIMP‐positive RCCs showed overexpression of Aurora kinases, AURKA and AURKB, and this overexpression was mainly attributable to increased copy number. These data suggest that abnormalities of the spindle checkpoint pathway participate in CIMP‐positive renal carcinogenesis, and that AURKA and AURKB may be potential

  5. Epilepsy and chromosomal abnormalities

    PubMed Central

    2010-01-01

    Background Many chromosomal abnormalities are associated with Central Nervous System (CNS) malformations and other neurological alterations, among which seizures and epilepsy. Some of these show a peculiar epileptic and EEG pattern. We describe some epileptic syndromes frequently reported in chromosomal disorders. Methods Detailed clinical assessment, electrophysiological studies, survey of the literature. Results In some of these congenital syndromes the clinical presentation and EEG anomalies seems to be quite typical, in others the manifestations appear aspecific and no strictly linked with the chromosomal imbalance. The onset of seizures is often during the neonatal period of the infancy. Conclusions A better characterization of the electro clinical patterns associated with specific chromosomal aberrations could give us a valuable key in the identification of epilepsy susceptibility of some chromosomal loci, using the new advances in molecular cytogenetics techniques - such as fluorescent in situ hybridization (FISH), subtelomeric analysis and CGH (comparative genomic hybridization) microarray. However further studies are needed to understand the mechanism of epilepsy associated with chromosomal abnormalities. PMID:20438626

  6. Meiotic prophase abnormalities and metaphase cell death in MLH1-deficient mouse spermatocytes: insights into regulation of spermatogenic progress.

    PubMed

    Eaker, Shannon; Cobb, John; Pyle, April; Handel, Mary Ann

    2002-09-01

    The MLH1 protein is required for normal meiosis in mice and its absence leads to failure in maintenance of pairing between bivalent chromosomes, abnormal meiotic division, and ensuing sterility in both sexes. In this study, we investigated whether failure to develop foci of MLH1 protein on chromosomes in prophase would lead to elimination of prophase spermatocytes, and, if not, whether univalent chromosomes could align normally on the meiotic spindle and whether metaphase spermatocytes would be delayed and/or eliminated. In spite of the absence of MLH1 foci, no apoptosis of spermatocytes in prophase was detected. In fact, chromosomes of pachytene spermatocytes from Mlh1(-/-) mice were competent to condense metaphase chromosomes, both in vivo and in vitro. Most condensed chromosomes were univalents with spatially distinct FISH signals. Typical metaphase events, such as synaptonemal complex breakdown and the phosphorylation of Ser10 on histone H3, occurred in Mlh1(-/-) spermatocytes, suggesting that there is no inhibition of onset of meiotic metaphase in the face of massive chromosomal abnormalities. However, the condensed univalent chromosomes did not align correctly onto the spindle apparatus in the majority of Mlh1(-/-) spermatocytes. Most meiotic metaphase spermatocytes were characterized with bipolar spindles, but chromosomes radiated away from the microtubule-organizing centers in a prometaphase-like pattern rather than achieving a bipolar orientation. Apoptosis was not observed until after the onset of meiotic metaphase. Thus, spermatocytes are not eliminated in direct response to the initial meiotic defect, but are eliminated later. Taken together, these observations suggest that a spindle assembly checkpoint, rather than a recombination or chiasmata checkpoint, may be activated in response to meiotic errors, thereby ensuring elimination of chromosomally abnormal gamete precursors.

  7. [Additional phragmoplast corrects abnormal cytokinesis in wheat x rye hybrid pollen mother cells].

    PubMed

    Gordeeva, E I; Shamina, N V; Dudka, L F; Kovtunenko, V Ia; Bolobolova, E U

    2009-01-01

    The phragmoplast dysfunction in wheat x rye hybrid F1 male meiosis has been described. The pollen mother cells (PMCs) show the phenotype where transition from central spindle fibers (forming a solid bundle) to a phragmoplast (hollow cylinder) is blocked. The blockade suppresses centrifugal movement of the phragmoplast and cell plate formation. The resulting cells occur to be binucleate. Sometimes, the two nuclei join and form one restitution nucleus. PMCs of wheat x rye F1 hybrid N D-144gp 06r. F1 (T. aestivum c. 93-60 T 9 x S. cereale c. Saratovskaya 7) showing this phenotype have an additional phragmoplast at late telophase. This happens like that in the case of immobile phragmoplast formation in meiosis in bicotyledons: the new phragmoplast arises by the aid of microtubules polymerization starting from the spindle poles. The new additional phragmoplast builds a new cell plate and accomplishes cytokinesis.

  8. Augmin shapes the anaphase spindle for efficient cytokinetic furrow ingression and abscission

    PubMed Central

    Uehara, Ryota; Kamasaki, Tomoko; Hiruma, Shota; Poser, Ina; Yoda, Kinya; Yajima, Junichiro; Gerlich, Daniel W.; Goshima, Gohta

    2016-01-01

    During anaphase, distinct populations of microtubules (MTs) form by either centrosome-dependent or augmin-dependent nucleation. It remains largely unknown whether these different MT populations contribute distinct functions to cytokinesis. Here we show that augmin-dependent MTs are required for the progression of both furrow ingression and abscission. Augmin depletion reduced the accumulation of anillin, a contractile ring regulator at the cell equator, yet centrosomal MTs were sufficient to mediate RhoA activation at the furrow. This defect in contractile ring organization, combined with incomplete spindle pole separation during anaphase, led to impaired furrow ingression. During the late stages of cytokinesis, astral MTs formed bundles in the intercellular bridge, but these failed to assemble a focused midbody structure and did not establish tight linkage to the plasma membrane, resulting in furrow regression. Thus augmin-dependent acentrosomal MTs and centrosomal MTs contribute to nonredundant targeting mechanisms of different cytokinesis factors, which are required for the formation of a functional contractile ring and midbody. PMID:26764096

  9. Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection.

    PubMed

    Katsarou, Konstantina; Wu, Yun; Zhang, Runxuan; Bonar, Nicola; Morris, Jenny; Hedley, Pete E; Bryan, Glenn J; Kalantidis, Kriton; Hornyik, Csaba

    2016-01-01

    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection.

  10. Insight on Genes Affecting Tuber Development in Potato upon Potato spindle tuber viroid (PSTVd) Infection

    PubMed Central

    Zhang, Runxuan; Bonar, Nicola; Morris, Jenny; Hedley, Pete E.; Bryan, Glenn J.; Kalantidis, Kriton; Hornyik, Csaba

    2016-01-01

    Potato (Solanum tuberosum L) is a natural host of Potato spindle tuber viroid (PSTVd) which can cause characteristic symptoms on developing plants including stunting phenotype and distortion of leaves and tubers. PSTVd is the type species of the family Pospiviroidae, and can replicate in the nucleus and move systemically throughout the plant. It is not well understood how the viroid can affect host genes for successful invasion and which genes show altered expression levels upon infection. Our primary focus in this study is the identification of genes which can affect tuber formation since viroid infection can strongly influence tuber development and especially tuber shape. In this study, we used a large-scale method to identify differentially expressed genes in potato. We have identified defence, stress and sugar metabolism related genes having altered expression levels upon infection. Additionally, hormone pathway related genes showed significant up- or down-regulation. DWARF1/DIMINUTO, Gibberellin 7-oxidase and BEL5 transcripts were identified and validated showing differential expression in viroid infected tissues. Our study suggests that gibberellin and brassinosteroid pathways have a possible role in tuber development upon PSTVd infection. PMID:26937634

  11. Abnormal mitosis triggers p53-dependent cell cycle arrest in human tetraploid cells.

    PubMed

    Kuffer, Christian; Kuznetsova, Anastasia Yurievna; Storchová, Zuzana

    2013-08-01

    Erroneously arising tetraploid mammalian cells are chromosomally instable and may facilitate cell transformation. An increasing body of evidence shows that the propagation of mammalian tetraploid cells is limited by a p53-dependent arrest. The trigger of this arrest has not been identified so far. Here we show by live cell imaging of tetraploid cells generated by an induced cytokinesis failure that most tetraploids arrest and die in a p53-dependent manner after the first tetraploid mitosis. Furthermore, we found that the main trigger is a mitotic defect, in particular, chromosome missegregation during bipolar mitosis or spindle multipolarity. Both a transient multipolar spindle followed by efficient clustering in anaphase as well as a multipolar spindle followed by multipolar mitosis inhibited subsequent proliferation to a similar degree. We found that the tetraploid cells did not accumulate double-strand breaks that could cause the cell cycle arrest after tetraploid mitosis. In contrast, tetraploid cells showed increased levels of oxidative DNA damage coinciding with the p53 activation. To further elucidate the pathways involved in the proliferation control of tetraploid cells, we knocked down specific kinases that had been previously linked to the cell cycle arrest and p53 phosphorylation. Our results suggest that the checkpoint kinase ATM phosphorylates p53 in tetraploid cells after abnormal mitosis and thus contributes to proliferation control of human aberrantly arising tetraploids.

  12. A ligand-independent integrin β1 mechanosensory complex guides spindle orientation

    PubMed Central

    Petridou, Nicoletta I.; Skourides, Paris A.

    2016-01-01

    Control of spindle orientation is a fundamental process for embryonic development, morphogenesis and tissue homeostasis, while defects are associated with tumorigenesis and other diseases. Force sensing is one of the mechanisms through which division orientation is determined. Here we show that integrin β1 plays a critical role in this process, becoming activated at the lateral regions of the cell cortex in a ligand-independent manner. This activation is force dependent and polar, correlating with the spindle capture sites. Inhibition of integrin β1 activation on the cortex and disruption of its asymmetric distribution leads to spindle misorientation, even when cell adhesion is β1 independent. Examining downstream targets reveals that a cortical mechanosensory complex forms on active β1, and regulates spindle orientation irrespective of cell context. We propose that ligand-independent integrin β1 activation is a conserved mechanism that allows cell responses to external stimuli. PMID:26952307

  13. Chromosome position at the spindle equator is regulated by chromokinesin and a bipolar microtubule array.

    PubMed

    Takagi, Jun; Itabashi, Takeshi; Suzuki, Kazuya; Ishiwata, Shin'ichi

    2013-09-30

    The chromosome alignment is mediated by polar ejection and poleward forces acting on the chromosome arm and kinetochores, respectively. Although components of the motile machinery such as chromokinesin have been characterized, their dynamics within the spindle is poorly understood. Here we show that a quantum dot (Qdot) binding up to four Xenopus chromokinesin (Xkid) molecules behaved like a nanosize chromosome arm in the meiotic spindle, which is self-organized in cytoplasmic egg extracts. Xkid-Qdots travelled long distances along microtubules by changing several tracks, resulting in their accumulation toward and distribution around the metaphase plate. The analysis indicated that the direction of motion and velocity depend on the distribution of microtubule polarity within the spindle. Thus, this mechanism is governed by chromokinesin motors, which is dependent on symmetrical microtubule orientation that may allow chromosomes to maintain their position around the spindle equator until correct microtubule-kinetochore attachment is established.

  14. A spindle cell hemangioendothelioma on the head resembling an arteriovenous malformation.

    PubMed

    Higashino, Takuya; Hirai, Rintaro

    2014-07-01

    A spindle cell hemangioendothelioma is a relatively uncommon lesion, especially on the head and neck. Recurrence occurs after local excision of 50% to 60% of these lesions; therefore, it is important to recognize this unusual neoplasm and avoid misdiagnosis. Here, we report a rare case of a spindle cell hemangioendothelioma of the head. A 37-year-old woman presented with a soft subcutaneous mass, 2.5 cm in size, on her right occipital region. The mass pulsated strongly and a thrill was present. Magnetic resonance imaging showed that some dilated feeding arteries flowed into the mass and that a flow-void sign was present. The lesion looked like an arteriovenous malformation, and a marginal resection was performed. Histologically, there was a mix of cavernous vascular cavities and Kaposi sarcomalike spindle cell vascular zones, which is compatible with a spindle cell hemangioendothelioma.

  15. Dyskerin, tRNA genes, and condensin tether pericentric chromatin to the spindle axis in mitosis

    PubMed Central

    Snider, Chloe E.; Stephens, Andrew D.; Kirkland, Jacob G.; Hamdani, Omar; Kamakaka, Rohinton T.

    2014-01-01

    Condensin is enriched in the pericentromere of budding yeast chromosomes where it is constrained to the spindle axis in metaphase. Pericentric condensin contributes to chromatin compaction, resistance to microtubule-based spindle forces, and spindle length and variance regulation. Condensin is clustered along the spindle axis in a heterogeneous fashion. We demonstrate that pericentric enrichment of condensin is mediated by interactions with transfer ribonucleic acid (tRNA) genes and their regulatory factors. This recruitment is important for generating axial tension on the pericentromere and coordinating movement between pericentromeres from different chromosomes. The interaction between condensin and tRNA genes in the pericentromere reveals a feature of yeast centromeres that has profound implications for the function and evolution of mitotic segregation mechanisms. PMID:25332162

  16. F-actin mechanics control spindle centring in the mouse zygote

    PubMed Central

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition. PMID:26727405

  17. The association between sleep spindles and IQ in healthy school-age children.

    PubMed

    Gruber, Reut; Wise, Merrill S; Frenette, Sonia; Knäauper, Bärbel; Boom, Alice; Fontil, Laura; Carrier, Julie

    2013-08-01

    Recent studies have suggested that sleep is associated with IQ measures in children, but the underlying mechanism remains unknown. An association between sleep spindles and IQ has been found in adults, but only two previous studies have explored this topic in children. The goal of this study was to examine whether sleep spindle frequency, amplitude, duration and/or density were associated with performance on the perceptual reasoning, verbal comprehension, working memory, and processing speed subscales of the Wechsler Intelligence Scale for Children-IV (WISC-IV). We recruited 29 typically developing children 7-11 years of age. We used portable polysomnography to document sleep architecture in the natural home environment and evaluated IQ. We found that lower sleep spindle frequency was associated with better performance on the perceptual reasoning and working memory WISC-IV scales, but that sleep spindle amplitude, duration and density were not associated with performance on the IQ test.

  18. Mitotic noncoding RNA processing promotes kinetochore and spindle assembly in Xenopus

    PubMed Central

    Grenfell, Andrew W.

    2016-01-01

    Transcription at the centromere of chromosomes plays an important role in kinetochore assembly in many eukaryotes, and noncoding RNAs contribute to activation of the mitotic kinase Aurora B. However, little is known about how mitotic RNA processing contributes to spindle assembly. We found that inhibition of transcription initiation or RNA splicing, but not translation, leads to spindle defects in Xenopus egg extracts. Spliceosome inhibition resulted in the accumulation of high molecular weight centromeric transcripts, concomitant with decreased recruitment of the centromere and kinetochore proteins CENP-A, CENP-C, and NDC80 to mitotic chromosomes. In addition, blocking transcript synthesis or processing during mitosis caused accumulation of MCAK, a microtubule depolymerase, on the spindle, indicating misregulation of Aurora B. These findings suggest that co-transcriptional recruitment of the RNA processing machinery to nascent mitotic transcripts is an important step in kinetochore and spindle assembly and challenge the idea that RNA processing is globally repressed during mitosis. PMID:27402954

  19. Illusion caused by vibration of muscle spindles reveals an involvement of muscle spindle inputs in regulating isometric contraction of masseter muscles.

    PubMed

    Tsukiboshi, Taisuke; Sato, Hajime; Tanaka, Yuto; Saito, Mitsuru; Toyoda, Hiroki; Morimoto, Toshifumi; Türker, Kemal Sitki; Maeda, Yoshinobu; Kang, Youngnam

    2012-11-01

    Spindle Ia afferents may be differentially involved in voluntary isometric contraction, depending on the pattern of synaptic connections in spindle reflex pathways. We investigated how isometric contraction of masseter muscles is regulated through the activity of their muscle spindles that contain the largest number of intrafusal fibers among skeletal muscle spindles by examining the effects of vibration of muscle spindles on the voluntary isometric contraction. Subjects were instructed to hold the jaw at resting position by counteracting ramp loads applied on lower molar teeth. In response to the increasing-ramp load, the root mean square (RMS) of masseter EMG activity almost linearly increased under no vibration, while displaying a steep linear increase followed by a slower increase under vibration. The regression line of the relationship between the load and RMS was significantly steeper under vibration than under no vibration, suggesting that the subjects overestimated the ramp load and excessively counteracted it as reflected in the emergence of bite pressure. In response to the decreasing-ramp load applied following the increasing one, the RMS hardly decreased under vibration unlike under no vibration, leading to a generation of bite pressure even after the offset of the negative-ramp load until the vibration was ceased. Thus the subjects overestimated the increasing rate of the load while underestimating the decreasing rate of the load, due to the vibration-induced illusion of jaw opening. These observations suggest that spindle Ia/II inputs play crucial roles both in estimating the load and in controlling the isometric contraction of masseter muscles in the jaw-closed position.

  20. Eye movement abnormalities.

    PubMed

    Moncayo, Jorge; Bogousslavsky, Julien

    2012-01-01

    Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem.

  1. Slow sleep spindle and procedural memory consolidation in patients with major depressive disorder

    PubMed Central

    Nishida, Masaki; Nakashima, Yusaku; Nishikawa, Toru

    2016-01-01

    Introduction Evidence has accumulated, which indicates that, in healthy individuals, sleep enhances procedural memory consolidation, and that sleep spindle activity modulates this process. However, whether sleep-dependent procedural memory consolidation occurs in patients medicated for major depressive disorder remains unclear, as are the pharmacological and physiological mechanisms that underlie this process. Methods Healthy control participants (n=17) and patients medicated for major depressive disorder (n=11) were recruited and subjected to a finger-tapping motor sequence test (MST; nondominant hand) paradigm to compare the averaged scores of different learning phases (presleep, postsleep, and overnight improvement). Participants’ brain activity was recorded during sleep with 16 electroencephalography channels (between MSTs). Sleep scoring and frequency analyses were performed on the electroencephalography data. Additionally, we evaluated sleep spindle activity, which divided the spindles into fast-frequency spindle activity (12.5–16 Hz) and slow-frequency spindle activity (10.5–12.5 Hz). Result Sleep-dependent motor memory consolidation in patients with depression was impaired in comparison with that in control participants. In patients with depression, age correlated negatively with overnight improvement. The duration of slow-wave sleep correlated with the magnitude of motor memory consolidation in patients with depression, but not in healthy controls. Slow-frequency spindle activity was associated with reduction in the magnitude of motor memory consolidation in both groups. Conclusion Because the changes in slow-frequency spindle activity affected the thalamocortical network dysfunction in patients medicated for depression, dysregulated spindle generation may impair sleep-dependent memory consolidation. Our findings may help to elucidate the cognitive deficits that occur in patients with major depression both in the waking state and during sleep. PMID

  2. Warts phosphorylates Mud to promote Pins-mediated mitotic spindle orientation in Drosophila independent of Yorkie

    PubMed Central

    Dewey, Evan B.; Sanchez, Desiree; Johnston, Christopher A.

    2015-01-01

    SUMMARY Multicellular animals have evolved conserved signaling pathways that translate cell polarity cues into mitotic spindle positioning to control the orientation of cell division within complex tissue structures. These oriented cell divisions are essential for the development of cell diversity and the maintenance of tissue homeostasis. Despite intense efforts, the molecular mechanisms that control spindle orientation remain incompletely defined. Here we describe a role for the Hippo (Hpo) kinase complex in promoting Partner of Inscuteable (Pins)-mediated spindle orientation. Knockdown of Hpo, Salvador (Sav), or Warts (Wts) each result in a partial loss of spindle orientation, a phenotype previously described following loss of the Pins-binding protein Mushroom body defect (Mud). Similar to orthologs spanning yeast to mammals, Wts kinase localizes to mitotic spindle poles, a prominent site of Mud localization. Wts directly phosphorylates Mud in vitro within its C-terminal coiled-coil domain. This Mud coiled-coil domain directly binds the adjacent Pins-binding domain to dampen the Pins/Mud interaction, and Wts-mediated phosphorylation uncouples this intramolecular Mud interaction. Loss of Wts prevents cortical Pins/Mud association without affecting Mud accumulation at spindle poles, suggesting phosphorylation acts as a molecular switch to specifically activate cortical Mud function. Finally, loss of Wts in Drosophila imaginal disc epithelial cells results in diminished cortical Mud and defective planar spindle orientation. Our results provide new insights into the molecular basis for dynamic regulation of the cortical Pins/Mud spindle positioning complex and highlight a novel link with an essential, evolutionarily-conserved cell proliferation pathway. PMID:26592339

  3. Kinesin-8 effects on mitotic microtubule dynamics contribute to spindle function in fission yeast

    PubMed Central

    Gergely, Zachary R.; Crapo, Ammon; Hough, Loren E.; McIntosh, J. Richard; Betterton, Meredith D.

    2016-01-01

    Kinesin-8 motor proteins destabilize microtubules. Their absence during cell division is associated with disorganized mitotic chromosome movements and chromosome loss. Despite recent work studying effects of kinesin-8s on microtubule dynamics, it remains unclear whether the kinesin-8 mitotic phenotypes are consequences of their effect on microtubule dynamics, their well-established motor activity, or additional, unknown functions. To better understand the role of kinesin-8 proteins in mitosis, we studied the effects of deletion of the fission yeast kinesin-8 proteins Klp5 and Klp6 on chromosome movements and spindle length dynamics. Aberrant microtubule-driven kinetochore pushing movements and tripolar mitotic spindles occurred in cells lacking Klp5 but not Klp6. Kinesin-8–deletion strains showed large fluctuations in metaphase spindle length, suggesting a disruption of spindle length stabilization. Comparison of our results from light microscopy with a mathematical model suggests that kinesin-8–induced effects on microtubule dynamics, kinetochore attachment stability, and sliding force in the spindle can explain the aberrant chromosome movements and spindle length fluctuations seen. PMID:27146110

  4. Kif2a regulates spindle organization and cell cycle progression in meiotic oocytes

    PubMed Central

    Yi, Zi-Yun; Ma, Xue-Shan; Liang, Qiu-Xia; Zhang, Teng; Xu, Zhao-Yang; Meng, Tie-Gang; Ouyang, Ying-Chun; Hou, Yi; Schatten, Heide; Sun, Qing-Yuan; Quan, Song

    2016-01-01

    Kif2a is a member of the Kinesin-13 microtubule depolymerases. Here, we report the expression, subcellular localization and functions of Kif2a during mouse oocyte meiotic maturation. Immunoblotting analysis showed that Kif2a was gradually increased form GV to the M I stages, and then decreased slightly at the M II stage. Confocal microscopy identified that Kif2a localized to the meiotic spindle, especially concentrated at the spindle poles and inner centromeres in metaphase and translocated to the midbody at telophase. Kif2a depletion by siRNA microinjection generated severely defective spindles and misaligned chromosomes, reduced microtubule depolymerization, which led to significant pro-M I/M Iarrest and failure of first polar body (PB1) extrusion. Kif2a-depleted oocytes were also defective in spindle pole localization of γ-tubulin and showed spindle assembly checkpoint (SAC) protein Bub3 at the kinetochores even after 10 hr extended culture. These results demonstrate that Kif2a may act as a microtubule depolymerase, regulating microtubule dynamics, spindle assembly and chromosome congression, and thus cell cycle progression during mouse oocyte meiotic maturation. PMID:27991495

  5. The deubiquitinating enzyme complex BRISC is required for proper mitotic spindle assembly in mammalian cells

    PubMed Central

    Yan, Kaowen; Li, Li; Wang, Xiaojian; Hong, Ruisha; Zhang, Ying; Yang, Hua; Lin, Ming; Zhang, Sha; He, Qihua; Zheng, Duo; Tang, Jun; Yin, Yuxin

    2015-01-01

    Deubiquitinating enzymes (DUBs) negatively regulate protein ubiquitination and play an important role in diverse physiological processes, including mitotic division. The BRCC36 isopeptidase complex (BRISC) is a DUB that is specific for lysine 63–linked ubiquitin hydrolysis; however, its biological function remains largely undefined. Here, we identify a critical role for BRISC in the control of mitotic spindle assembly in cultured mammalian cells. BRISC is a microtubule (MT)-associated protein complex that predominantly localizes to the minus ends of K-fibers and spindle poles and directly binds to MTs; importantly, BRISC promotes the assembly of functional bipolar spindle by deubiquitinating the essential spindle assembly factor nuclear mitotic apparatus (NuMA). The deubiquitination of NuMA regulates its interaction with dynein and importin-β, which are required for its function in spindle assembly. Collectively, these results uncover BRISC as an important regulator of the mitotic spindle assembly and cell division, and have important implications for the development of anticancer drugs targeting BRISC. PMID:26195665

  6. A curved edge diffraction-utilized displacement sensor for spindle metrology.

    PubMed

    Lee, ChaBum; Mahajan, Satish M; Zhao, Rui; Jeon, Seongkyul

    2016-07-01

    This paper presents a new dimensional metrological sensing principle for a curved surface based on curved edge diffraction. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the spindle with non-contact sensors, typically a capacitive sensor (CS) or an eddy current sensor, pointed at the artifact. However, these sensors are designed for flat surface measurement. Therefore, measuring a target with a curved surface causes error. This is due to electric fields behaving differently between a flat and curved surface than between two flat surfaces. In this study, a laser is positioned incident to the cylindrical surface of the spindle, and a photodetector collects the total field produced by the diffraction around the target surface. The proposed sensor was compared with a CS within a range of 500 μm. The discrepancy between the proposed sensor and CS was 0.017% of the full range. Its sensing performance showed a resolution of 14 nm and a drift of less than 10 nm for 7 min of operation. This sensor was also used to measure dynamic characteristics of the spindle system (natural frequency 181.8 Hz, damping ratio 0.042) and spindle runout (22.0 μm at 2000 rpm). The combined standard uncertainty was estimated as 85.9 nm under current experiment conditions. It is anticipated that this measurement technique allows for in situ health monitoring of a precision spindle system in an accurate, convenient, and low cost manner.

  7. Mathematical models of proprioceptors. I. Control and transduction in the muscle spindle.

    PubMed

    Mileusnic, Milana P; Brown, Ian E; Lan, Ning; Loeb, Gerald E

    2006-10-01

    We constructed a physiologically realistic model of a lower-limb, mammalian muscle spindle composed of mathematical elements closely related to the anatomical components found in the biological spindle. The spindle model incorporates three nonlinear intrafusal fiber models (bag(1), bag(2), and chain) that contribute variously to action potential generation of primary and secondary afferents. A single set of model parameters was optimized on a number of data sets collected from feline soleus muscle, accounting accurately for afferent activity during a variety of ramp, triangular, and sinusoidal stretches. We also incorporated the different temporal properties of fusimotor activation as observed in the twitchlike chain fibers versus the toniclike bag fibers. The model captures the spindle's behavior both in the absence of fusimotor stimulation and during activation of static or dynamic fusimotor efferents. In the case of simultaneous static and dynamic fusimotor efferent stimulation, we demonstrated the importance of including the experimentally observed effect of partial occlusion. The model was validated against data that originated from the cat's medial gastrocnemius muscle and were different from the data used for the parameter determination purposes. The validation record included recently published experiments in which fusimotor efferent and spindle afferent activities were recorded simultaneously during decerebrate locomotion in the cat. This model will be useful in understanding the role of the muscle spindle and its fusimotor control during both natural and pathological motor behavior.

  8. Distribution of slow muscle fiber of muscle spindle in postnatal rat masseter muscle.

    PubMed

    Sato, Iwao; Imura, Kosuke; Miwa, Yoko; Ide, Yoshiaki; Murata, Megumi; Sunohara, Masataka

    2007-11-01

    We investigated the properties of the muscle spindle in the masseter muscle at an immunohistochemical level in rats fed for 6 weeks. Slow myosin heavy chain (MyHC) isoforms were measured and intrafusal fibers in the muscle spindle were studied to determine the relationship between the superficial and deep regions of rat masseter muscle after alternated feeding pattern. However, muscle spindles were found in both regions, mainly in the deep region of the posterior superficial region of masseter muscle. The total number of the slow fiber in the intrafusal fiber and number of muscle spindle in the deep region were high from 5 to 8 weeks old in spite of various dimensions of data such as diameter and the compositions of the intrafusal fiber. The relationship of the protein expression of slow MyHC in the two regions at 5 weeks old reversed five weeks later (10 weeks old). This period is an important stage because the mastication system in masseter muscle with muscle spindle may be changed during the alternated feeding pattern of suckling to mastication. The changes may be a marker of the feeding system and of the control by the tension receptor of muscle spindle in this stage of masseter muscle after postnatal development.

  9. The Contribution of Thalamocortical Core and Matrix Pathways to Sleep Spindles

    PubMed Central

    Piantoni, Giovanni; Halgren, Eric; Cash, Sydney S.

    2016-01-01

    Sleep spindles arise from the interaction of thalamic and cortical neurons. Neurons in the thalamic reticular nucleus (TRN) inhibit thalamocortical neurons, which in turn excite the TRN and cortical neurons. A fundamental principle of anatomical organization of the thalamocortical projections is the presence of two pathways: the diffuse matrix pathway and the spatially selective core pathway. Cortical layers are differentially targeted by these two pathways with matrix projections synapsing in superficial layers and core projections impinging on middle layers. Based on this anatomical observation, we propose that spindles can be classified into two classes, those arising from the core pathway and those arising from the matrix pathway, although this does not exclude the fact that some spindles might combine both pathways at the same time. We find evidence for this hypothesis in EEG/MEG studies, intracranial recordings, and computational models that incorporate this difference. This distinction will prove useful in accounting for the multiple functions attributed to spindles, in that spindles of different types might act on local and widespread spatial scales. Because spindle mechanisms are often hijacked in epilepsy and schizophrenia, the classification proposed in this review might provide valuable information in defining which pathways have gone awry in these neurological disorders. PMID:27144033

  10. Regulation of NDR1 activity by PLK1 ensures proper spindle orientation in mitosis

    PubMed Central

    Yan, Maomao; Chu, Lingluo; Qin, Bo; Wang, Zhikai; Liu, Xing; Jin, Changjiang; Zhang, Guanglan; Gomez, Marta; Hergovich, Alexander; Chen, Zhengjun; He, Ping; Gao, Xinjiao; Yao, Xuebiao

    2015-01-01

    Accurate chromosome segregation during mitosis requires the physical separation of sister chromatids which depends on correct position of mitotic spindle relative to membrane cortex. Although recent work has identified the role of PLK1 in spindle orientation, the mechanisms underlying PLK1 signaling in spindle positioning and orientation have not been fully illustrated. Here, we identified a conserved signaling axis in which NDR1 kinase activity is regulated by PLK1 in mitosis. PLK1 phosphorylates NDR1 at three putative threonine residues (T7, T183 and T407) at mitotic entry, which elicits PLK1-dependent suppression of NDR1 activity and ensures correct spindle orientation in mitosis. Importantly, persistent expression of non-phosphorylatable NDR1 mutant perturbs spindle orientation. Mechanistically, PLK1-mediated phosphorylation protects the binding of Mob1 to NDR1 and subsequent NDR1 activation. These findings define a conserved signaling axis that integrates dynamic kinetochore-microtubule interaction and spindle orientation control to genomic stability maintenance. PMID:26057687

  11. A curved edge diffraction-utilized displacement sensor for spindle metrology

    NASA Astrophysics Data System (ADS)

    Lee, ChaBum; Mahajan, Satish M.; Zhao, Rui; Jeon, Seongkyul

    2016-07-01

    This paper presents a new dimensional metrological sensing principle for a curved surface based on curved edge diffraction. Spindle error measurement technology utilizes a cylindrical or spherical target artifact attached to the spindle with non-contact sensors, typically a capacitive sensor (CS) or an eddy current sensor, pointed at the artifact. However, these sensors are designed for flat surface measurement. Therefore, measuring a target with a curved surface causes error. This is due to electric fields behaving differently between a flat and curved surface than between two flat surfaces. In this study, a laser is positioned incident to the cylindrical surface of the spindle, and a photodetector collects the total field produced by the diffraction around the target surface. The proposed sensor was compared with a CS within a range of 500 μm. The discrepancy between the proposed sensor and CS was 0.017% of the full range. Its sensing performance showed a resolution of 14 nm and a drift of less than 10 nm for 7 min of operation. This sensor was also used to measure dynamic characteristics of the spindle system (natural frequency 181.8 Hz, damping ratio 0.042) and spindle runout (22.0 μm at 2000 rpm). The combined standard uncertainty was estimated as 85.9 nm under current experiment conditions. It is anticipated that this measurement technique allows for in situ health monitoring of a precision spindle system in an accurate, convenient, and low cost manner.

  12. The critical role of sleep spindles in hippocampal-dependent memory: a pharmacology study.

    PubMed

    Mednick, Sara C; McDevitt, Elizabeth A; Walsh, James K; Wamsley, Erin; Paulus, Martin; Kanady, Jennifer C; Drummond, Sean P A

    2013-03-06

    An important function of sleep is the consolidation of memories, and features of sleep, such as rapid eye movement (REM) or sleep spindles, have been shown to correlate with improvements in discrete memory domains. Because of the methodological difficulties in modulating sleep, however, a causal link between specific sleep features and human memory consolidation is lacking. Here, we experimentally manipulated specific sleep features during a daytime nap via direct pharmacological intervention. Using zolpidem (Ambien), a short-acting GABAA agonist hypnotic, we show increased sleep spindle density and decreased REM sleep compared with placebo and sodium oxybate (Xyrem). Naps with increased spindles produced significantly better verbal memory and significantly worse perceptual learning but did not affect motor learning. The experimental spindles were similar to control spindles in amplitude and frequency, suggesting that the experimental intervention enhanced normal sleep processes. Furthermore, using statistical methods, we demonstrate for the first time a critical role of spindles in human hippocampal memory performance. The gains in memory consolidation exceed sleep-alone or control conditions and demonstrate the potential for targeted, exceptional memory enhancement in healthy adults with pharmacologically modified sleep.

  13. Electro-acoustic behavior of the mitotic spindle: a semi-classical coarse-grained model.

    PubMed

    Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A; Cifra, Michal

    2014-01-01

    The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells--a strategy used in novel methods for cancer treatment.

  14. Electro-Acoustic Behavior of the Mitotic Spindle: A Semi-Classical Coarse-Grained Model

    PubMed Central

    Havelka, Daniel; Kučera, Ondřej; Deriu, Marco A.; Cifra, Michal

    2014-01-01

    The regulation of chromosome separation during mitosis is not fully understood yet. Microtubules forming mitotic spindles are targets of treatment strategies which are aimed at (i) the triggering of the apoptosis or (ii) the interruption of uncontrolled cell division. Despite these facts, only few physical models relating to the dynamics of mitotic spindles exist up to now. In this paper, we present the first electromechanical model which enables calculation of the electromagnetic field coupled to acoustic vibrations of the mitotic spindle. This electromagnetic field originates from the electrical polarity of microtubules which form the mitotic spindle. The model is based on the approximation of resonantly vibrating microtubules by a network of oscillating electric dipoles. Our computational results predict the existence of a rapidly changing electric field which is generated by either driven or endogenous vibrations of the mitotic spindle. For certain values of parameters, the intensity of the electric field and its gradient reach values which may exert a not-inconsiderable force on chromosomes which are aligned in the spindle midzone. Our model may describe possible mechanisms of the effects of ultra-short electrical and mechanical pulses on dividing cells—a strategy used in novel methods for cancer treatment. PMID:24497952

  15. Age-related changes in sleep spindles characteristics during daytime recovery following a 25-hour sleep deprivation

    PubMed Central

    Rosinvil, T.; Lafortune, M.; Sekerovic, Z.; Bouchard, M.; Dubé, J.; Latulipe-Loiselle, A.; Martin, N.; Lina, J. M.; Carrier, J.

    2015-01-01

    Objectives: The mechanisms underlying sleep spindles (~11–15 Hz; >0.5 s) help to protect sleep. With age, it becomes increasingly difficult to maintain sleep at a challenging time (e.g., daytime), even after sleep loss. This study compared spindle characteristics during daytime recovery and nocturnal sleep in young and middle-aged adults. In addition, we explored whether spindles characteristics in baseline nocturnal sleep were associated with the ability to maintain sleep during daytime recovery periods in both age groups. Methods: Twenty-nine young (15 women and 14 men; 27.3 y ± 5.0) and 31 middle-aged (19 women and 13 men; 51.6 y ± 5.1) healthy subjects participated in a baseline nocturnal sleep and a daytime recovery sleep after 25 hours of sleep deprivation. Spindles were detected on artifact-free Non-rapid eye movement (NREM) sleep epochs. Spindle density (nb/min), amplitude (μV), frequency (Hz), and duration (s) were analyzed on parasagittal (linked-ears) derivations. Results: In young subjects, spindle frequency increased during daytime recovery sleep as compared to baseline nocturnal sleep in all derivations, whereas middle-aged subjects showed spindle frequency enhancement only in the prefrontal derivation. No other significant interaction between age group and sleep condition was observed. Spindle density for all derivations and centro-occipital spindle amplitude decreased whereas prefrontal spindle amplitude increased from baseline to daytime recovery sleep in both age groups. Finally, no significant correlation was found between spindle characteristics during baseline nocturnal sleep and the marked reduction in sleep efficiency during daytime recovery sleep in both young and middle-aged subjects. Conclusion: These results suggest that the interaction between homeostatic and circadian pressure modulates spindle frequency differently in aging. Spindle characteristics do not seem to be linked with the ability to maintain daytime recovery sleep. PMID

  16. Comparison of a Four-Section Spindle and Stomacher for Efficacy of Detaching Microorganisms from Fresh Vegetables.

    PubMed

    Kim, Do-Kyun; Kim, Soo-Ji; Kang, Dong-Hyun

    2015-07-01

    This study was undertaken to compare the effect of the spindle and stomacher for detaching microorganisms from fresh vegetables. The spindle is an apparatus for detaching microorganisms from food surfaces, which was developed in our laboratory. When processed with the spindle, food samples were barely disrupted, the original shape was maintained, and the diluent was clear, facilitating further detection analysis more easily than with stomacher treatment. The four-section spindle consists of four sample bag containers (A, B, C, and D) to economize time and effort by simultaneously processing four samples. The aerobic plate counts (APC) of 50 fresh vegetable samples were measured following spindle and stomacher treatment. Correlations between the two methods for each section of the spindle and stomacher were very high (R(2) = 0.9828 [spindle compartment A; Sp A], 0.9855 [Sp B], 0.9848 [Sp C], and 0.9851 [Sp D]). One-tenth milliliter of foodborne pathogens suspensions was inoculated onto surfaces of food samples, and ratios of spindle-to-stomacher enumerations were close to 1.00 log CFU/g between every section of the spindle and stomacher. One of the greatest features of the spindle is that it can treat large-sized samples that exceed 200 g. Uncut whole apples, green peppers, potatoes, and tomatoes were processed by the spindle and by hand massaging by 2 min. Large-sized samples were also assayed for aerobic plate count and recovery of the three foodborne pathogens, and the difference between each section of the spindle and hand massaging was not significant (P > 0.05). This study demonstrated that the spindle apparatus can be an alternative device for detaching microorganisms from all fresh vegetable samples for microbiological analysis by the food processing industry.

  17. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint

    PubMed Central

    Kitagawa, Mayumi; Caldez, Matias J.; Gunaratne, Jayantha; Lee, Sang Hyun

    2016-01-01

    The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL) MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC) maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA) rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing. PMID:27631493

  18. Automated sleep-spindle detection in healthy children polysomnograms.

    PubMed

    Causa, Leonardo; Held, Claudio M; Causa, Javier; Estévez, Pablo A; Perez, Claudio A; Chamorro, Rodrigo; Garrido, Marcelo; Algarín, Cecilia; Peirano, Patricio

    2010-09-01

    We present a new methodology to detect and characterize sleep spindles (SSs), based on the nonlinear algorithms, empirical-mode decomposition, and Hilbert-Huang transform, which provide adequate temporal and frequency resolutions in the electroencephalographic analysis. In addition, the application of fuzzy logic allows to emulate expert's procedures. Additionally, we built a database of 56 all-night polysomnographic recordings from children for training and testing, which is among the largest annotated databases published on the subject. The database was split into training (27 recordings), validation (10 recordings), and testing (19 recordings) datasets. The SS events were marked by sleep experts using visual inspection, and these marks were used as golden standard. The overall SS detection performance on the testing dataset of continuous all-night sleep recordings was 88.2% sensitivity, 89.7% specificity, and 11.9% false-positive (FP) rate. Considering only non-REM sleep stage 2, the results showed 92.2% sensitivity, 90.1% specificity, and 8.9% FP rate. In general, our system presents enhanced results when compared with most systems found in the literature, thus improving SS detection precision significantly without the need of hypnogram information.

  19. Sleep spindles in midday naps enhance learning in preschool children.

    PubMed

    Kurdziel, Laura; Duclos, Kasey; Spencer, Rebecca M C

    2013-10-22

    Despite the fact that midday naps are characteristic of early childhood, very little is understood about the structure and function of these sleep bouts. Given that sleep benefits memory in young adults, it is possible that naps serve a similar function for young children. However, children transition from biphasic to monophasic sleep patterns in early childhood, eliminating the nap from their daily sleep schedule. As such, naps may contain mostly light sleep stages and serve little function for learning and memory during this transitional age. Lacking scientific understanding of the function of naps in early childhood, policy makers may eliminate preschool classroom nap opportunities due to increasing curriculum demands. Here we show evidence that classroom naps support learning in preschool children by enhancing memories acquired earlier in the day compared with equivalent intervals spent awake. This nap benefit is greatest for children who nap habitually, regardless of age. Performance losses when nap-deprived are not recovered during subsequent overnight sleep. Physiological recordings of naps support a role of sleep spindles in memory performance. These results suggest that distributed sleep is critical in early learning; when short-term memory stores are limited, memory consolidation must take place frequently.

  20. Robust control of mitotic spindle orientation in the developing epidermis

    PubMed Central

    Poulson, Nicholas D.

    2010-01-01

    Progenitor cells must balance self-amplification and production of differentiated progeny during development and homeostasis. In the epidermis, progenitors divide symmetrically to increase surface area and asymmetrically to promote stratification. In this study, we show that individual epidermal cells can undergo both types of division, and therefore, the balance is provided by the sum of individual cells’ choices. In addition, we define two control points for determining a cell’s mode of division. First is the expression of the mouse Inscuteable gene, which is sufficient to drive asymmetric cell division (ACD). However, there is robust control of division orientation as excessive ACDs are prevented by a change in the localization of NuMA, an effector of spindle orientation. Finally, we show that p63, a transcriptional regulator of stratification, does not control either of these processes. These data have uncovered two important regulatory points controlling ACD in the epidermis and allow a framework for analysis of how external cues control this important choice. PMID:21098114

  1. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities.

    PubMed

    Lenie, Sandy; Cortvrindt, Rita; Eichenlaub-Ritter, Ursula; Smitz, Johan

    2008-03-12

    Bisphenol A (BPA), a widely used environmental contaminant, may exert weak estrogenic, anti-androgenic and anti-thyroidic activities. BPA is suspected to possess aneugenic properties that may affect somatic cells and mammalian oocytes. Oocyte growth and maturation depend upon a complex bi-directional signaling between the oocyte and its companion somatic cells. Consequently, disturbances in oocyte maturation may originate either from direct effects of BPA at the level of the oocyte or from indirect influences at the follicular level, such as alterations in hormonal homeostasis. This study aimed to analyze the effects of chronic BPA exposure (3 nM to 30 microM) on follicle-enclosed growth and maturation of mouse oocytes in vitro. Oocytes were cultured and their spindle and chromosomes were stained by alpha-tubulin immunofluorescence and ethidium homodimer-2, respectively. Confocal microscopy was utilized for subsequent analysis. Only follicles that were exposed to 30 microM BPA during follicular development showed a slightly reduced granulosa cell proliferation and a lower total estrogen production, but they still developed and formed antral-like cavities. However, 18% of oocytes were unable to resume meiosis after stimulation of oocyte maturation, and 37% arrested after germinal vesicle breakdown, significantly different from controls (p<0.05). Only 45% of the oocytes extruded a first polar body (p < 0.05). 30 microM BPA led also to a significant increase in meiosis I-arrested oocytes with unaligned chromosomes and spindle aberrations. Oocytes that were able to progress beyond meiosis I, frequently arrested at an abnormal telophase I. Additionally, in many oocytes exposed to low chronic BPA that matured to meiosis II chromosomes failed to congress at the spindle equator. In conclusion, mouse follicle culture reveals non-linear dose-dependent effects of BPA on the meiotic spindle in mouse oocytes when exposure was chronic throughout oocyte growth and maturation.

  2. Use of abnormal preprophase bands to decipher division plane determination

    NASA Technical Reports Server (NTRS)

    Granger, C.; Cyr, R.

    2001-01-01

    Many premitotic plant cells possess a cortical preprophase band of microtubules and actin filaments that encircles the nucleus. In vacuolated cells, the preprophase band is visibly connected to the nucleus by a cytoplasmic raft of actin filaments and microtubules termed the phragmosome. Typically, the location of the preprophase band and phragmosome corresponds to, and thus is thought to influence, the location of the cell division plane. To better understand the function of the preprophase band and phragmosome in orienting division, we used a green fluorescent protein-based microtubule reporter protein to observe mitosis in living tobacco bright yellow 2 cells possessing unusual preprophase bands. Observations of mitosis in these unusual cells support the involvement of the preprophase band/phragmosome in properly positioning the preprophase nucleus, influencing spindle orientation such that the cytokinetic phragmoplast initially grows in an appropriate direction, and delineating a region in the cell cortex that attracts microtubules and directs later stages of phragmoplast growth. Thus, the preprophase band/phragmosome appears to perform several interrelated functions to orient the division plane. However, functional information associated with the preprophase band is not always used or needed and there appears to be an age or distance-dependent character to the information. Cells treated with the anti-actin drug, latrunculin B, are still able to position the preprophase nucleus suggesting that microtubules may play a dominant role in premitotic positioning. Furthermore, in treated cells, spindle location and phragmoplast insertion are frequently abnormal suggesting that actin plays a significant role in nuclear anchoring and phragmoplast guidance. Thus, the microtubule and actin components of the preprophase band/phragmosome execute complementary activities to ensure proper orientation of the division plane.

  3. Pigmented spindle cell nevus: clues for differentiating it from spindle cell malignant melanoma. A comprehensive survey including clinicopathologic, immunohistochemical, and FISH studies.

    PubMed

    Díaz, Alba; Valera, Alexandra; Carrera, Cristina; Hakim, Sofía; Aguilera, Paula; García, Adriana; Palou, Josep; Puig, Susana; Malvehy, Josep; Alos, Llúcia

    2011-11-01

    Pigmented spindle cell nevus (PSCN), also known as Reed nevus, is a distinctive melanocytic tumor that can show worrisome clinical and histologic features mimicking a malignant melanoma. From a series of 46 pigmented spindle cell melanocytic lesions, including 22 PSCN and 24 spindle cell malignant melanomas (SCMMs), we collected clinical and histopathologic characteristics and evaluated cell cycle and apoptosis regulators by immunohistochemistry. Moreover, fluorescence in situ hybridization (FISH) using probes targeting 6p25 (RREB1), 11q13 (CCND1), 6q23 (MYB), and centromere 6 was performed. PSCN presented in younger people, frequently in women, and were small lesions under 7 mm in diameter affecting the lower limbs, whereas SCMMs arose more frequently in the trunk, upper limbs, and head and neck region. Histologically, symmetry, good lateral demarcation, and uniformity of cellular nests were significantly differential features of PSCN, whereas pagetoid and adnexal spread were frequently seen in both tumors. Immunohistochemical markers that significantly differed from melanomas were Ki-67, cyclin D1, and survivin. FISH was positive in 1 of 15 PSCN and was negative in 4 of 15 SCMMs. These results correlated to a sensitivity of 73% and a specificity of 93%. In conclusion, in the evaluation of pigmented spindle cell melanocytic tumors, the integration of clinical and histologic assessment is essential. However, ancillary techniques such as proliferation antigen Ki-67, cyclin D1, survivin, and FISH can be useful as adjunctive tools.

  4. An index of spindle efficacy obtained by measuring electroneurographic activity and passive tension in the rat soleus muscle.

    PubMed

    Rosant, Cédric; Pérot, Chantal

    2006-01-30

    While muscle spindle afferent discharges are known to change with altered muscle use, the way in which the changes in spindle discharge are affected by modifications to the elastic properties of the muscle-tendon unit remains to analyze. This paper describes a methodology to define, in the rat, a spindle efficacy index. This index relates the spindle afferent discharges recorded from electroneurograms (ENG) due to muscle stretch to the passive elastic properties of the muscle-tendon unit quantified during the stretch imposed for the ENGs recordings. The stretches were applied to the rat soleus muscle after the Achilles tendon was severed. The spindle afferent discharges were characterized from the root mean square (RMS) values of electroneurograms (ENGs) recorded from the soleus nerve. The first step of the study was to validate the definition of dynamic and static indices (DI and SI) of spindle discharges from RMS-ENG as classically done when isolated afferents are studied. The slopes of the DI-stretch velocity or SI-stretch amplitude relationships gave the indices of spindle sensitivity under dynamic and static conditions, respectively. Incremental stiffness was calculated to describe the passive elastic properties during the dynamic and static phases of ramp and hold stretches applied at different amplitudes and velocities. The spindle efficacy index (SEI) is the ratio between the indices of spindle sensitivity and incremental stiffness values. Both spindle discharges and incremental stiffness increased with stretch amplitude under dynamic and static conditions. The corresponding SEI values were constant whatever the stretch amplitude. This result validates the relationship between spindle discharges and passive incremental stiffness. This method can be proposed to study, in the rat, the spindle function when the muscles are suspected to present changes in their neuromechanical properties.

  5. Fusimotor control of spindle sensitivity regulates central and peripheral coding of joint angles.

    PubMed

    Lan, Ning; He, Xin

    2012-01-01

    Proprioceptive afferents from muscle spindles encode information about peripheral joint movements for the central nervous system (CNS). The sensitivity of muscle spindle is nonlinearly dependent on the activation of gamma (γ) motoneurons in the spinal cord that receives inputs from the motor cortex. How fusimotor control of spindle sensitivity affects proprioceptive coding of joint position is not clear. Furthermore, what information is carried in the fusimotor signal from the motor cortex to the muscle spindle is largely unknown. In this study, we addressed the issue of communication between the central and peripheral sensorimotor systems using a computational approach based on the virtual arm (VA) model. In simulation experiments within the operational range of joint movements, the gamma static commands (γ(s)) to the spindles of both mono-articular and bi-articular muscles were hypothesized (1) to remain constant, (2) to be modulated with joint angles linearly, and (3) to be modulated with joint angles nonlinearly. Simulation results revealed a nonlinear landscape of Ia afferent with respect to both γ(s) activation and joint angle. Among the three hypotheses, the constant and linear strategies did not yield Ia responses that matched the experimental data, and therefore, were rejected as plausible strategies of spindle sensitivity control. However, if γ(s) commands were quadratically modulated with joint angles, a robust linear relation between Ia afferents and joint angles could be obtained in both mono-articular and bi-articular muscles. With the quadratic strategy of spindle sensitivity control, γ(s) commands may serve as the CNS outputs that inform the periphery of central coding of joint angles. The results suggest that the information of joint angles may be communicated between the CNS and muscles via the descending γ(s) efferent and Ia afferent signals.

  6. Can loss of muscle spindle afferents explain the ataxic gait in Riley-Day syndrome?

    PubMed

    Macefield, Vaughan G; Norcliffe-Kaufmann, Lucy; Gutiérrez, Joel; Axelrod, Felicia B; Kaufmann, Horacio

    2011-11-01

    The Riley-Day syndrome is the most common of the hereditary sensory and autonomic neuropathies (Type III). Among the well-recognized clinical features are reduced pain and temperature sensation, absent deep tendon reflexes and a progressively ataxic gait. To explain the latter we tested the hypothesis that muscle spindles, or their afferents, are absent in hereditary sensory and autonomic neuropathy III by attempting to record from muscle spindle afferents from a nerve supplying the leg in 10 patients. For comparison we also recorded muscle spindles from 15 healthy subjects and from two patients with hereditary sensory and autonomic neuropathy IV, who have profound sensory disturbances but no ataxia. Tungsten microelectrodes were inserted percutaneously into fascicles of the common peroneal nerve at the fibular head. Intraneural stimulation within muscle fascicles evoked twitches at normal stimulus currents (10-30 µA), and deep pain (which often referred) at high intensities (1 mA). Microneurographic recordings from muscle fascicles revealed a complete absence of spontaneously active muscle spindles in patients with hereditary sensory and autonomic neuropathy III; moreover, responses to passive muscle stretch could not be observed. Conversely, muscle spindles appeared normal in patients with hereditary sensory and autonomic neuropathy IV, with mean firing rates of spontaneously active endings being similar to those recorded from healthy controls. Intraneural stimulation within cutaneous fascicles evoked paraesthesiae in the fascicular innervation territory at normal stimulus intensities, but cutaneous pain was never reported during high-intensity stimulation in any of the patients. Microneurographic recordings from cutaneous fascicles revealed the presence of normal large-diameter cutaneous mechanoreceptors in hereditary sensory and autonomic neuropathy III. Our results suggest that the complete absence of functional muscle spindles in these patients explains

  7. Responses in Rat Core Auditory Cortex are Preserved during Sleep Spindle Oscillations

    PubMed Central

    Sela, Yaniv; Vyazovskiy, Vladyslav V.; Cirelli, Chiara; Tononi, Giulio; Nir, Yuval

    2016-01-01

    Study Objectives: Sleep is defined as a reversible state of reduction in sensory responsiveness and immobility. A long-standing hypothesis suggests that a high arousal threshold during non-rapid eye movement (NREM) sleep is mediated by sleep spindle oscillations, impairing thalamocortical transmission of incoming sensory stimuli. Here we set out to test this idea directly by examining sensory-evoked neuronal spiking activity during natural sleep. Methods: We compared neuronal (n = 269) and multiunit activity (MUA), as well as local field potentials (LFP) in rat core auditory cortex (A1) during NREM sleep, comparing responses to sounds depending on the presence or absence of sleep spindles. Results: We found that sleep spindles robustly modulated the timing of neuronal discharges in A1. However, responses to sounds were nearly identical for all measured signals including isolated neurons, MUA, and LFPs (all differences < 10%). Furthermore, in 10% of trials, auditory stimulation led to an early termination of the sleep spindle oscillation around 150–250 msec following stimulus onset. Finally, active ON states and inactive OFF periods during slow waves in NREM sleep affected the auditory response in opposite ways, depending on stimulus intensity. Conclusions: Responses in core auditory cortex are well preserved regardless of sleep spindles recorded in that area, suggesting that thalamocortical sensory relay remains functional during sleep spindles, and that sensory disconnection in sleep is mediated by other mechanisms. Citation: Sela Y, Vyazovskiy VV, Cirelli C, Tononi G, Nir Y. Responses in rat core auditory cortex are preserved during sleep spindle oscillations. SLEEP 2016;39(5):1069–1082. PMID:26856904

  8. B-Cyclin/CDKs Regulate Mitotic Spindle Assembly by Phosphorylating Kinesins-5 in Budding Yeast

    PubMed Central

    Chee, Mark K.; Haase, Steven B.

    2010-01-01

    Although it has been known for many years that B-cyclin/CDK complexes regulate the assembly of the mitotic spindle and entry into mitosis, the full complement of relevant CDK targets has not been identified. It has previously been shown in a variety of model systems that B-type cyclin/CDK complexes, kinesin-5 motors, and the SCFCdc4 ubiquitin ligase are required for the separation of spindle poles and assembly of a bipolar spindle. It has been suggested that, in budding yeast, B-type cyclin/CDK (Clb/Cdc28) complexes promote spindle pole separation by inhibiting the degradation of the kinesins-5 Kip1 and Cin8 by the anaphase-promoting complex (APCCdh1). We have determined, however, that the Kip1 and Cin8 proteins are present at wild-type levels in the absence of Clb/Cdc28 kinase activity. Here, we show that Kip1 and Cin8 are in vitro targets of Clb2/Cdc28 and that the mutation of conserved CDK phosphorylation sites on Kip1 inhibits spindle pole separation without affecting the protein's in vivo localization or abundance. Mass spectrometry analysis confirms that two CDK sites in the tail domain of Kip1 are phosphorylated in vivo. In addition, we have determined that Sic1, a Clb/Cdc28-specific inhibitor, is the SCFCdc4 target that inhibits spindle pole separation in cells lacking functional Cdc4. Based on these findings, we propose that Clb/Cdc28 drives spindle pole separation by direct phosphorylation of kinesin-5 motors. PMID:20463882

  9. Prolonged hyperpolarizing potentials precede spindle oscillations in the thalamic reticular nucleus

    PubMed Central

    Fuentealba, Pablo; Timofeev, Igor; Steriade, Mircea

    2004-01-01

    The thalamic reticular (RE) nucleus is a key structure in the generation of spindles, a hallmark bioelectrical oscillation during early stages of sleep. Intracellular recordings of RE neurons in vivo revealed the presence of prolonged hyperpolarizing potentials preceding spindles in a subgroup (30%) of neurons. These hyperpolarizations (6-10 mV) lasted for 200-300 ms and were present just before the onset of spontaneously occurring spindle waves. Corticothalamic volleys also were effective in generating such hyperpolarizations followed by spindles in RE neurons. A drop of up to 40% in the apparent input resistance (Rin) was associated with these hyperpolarizing potentials, suggesting an active process rather than disfacilitation. Accordingly, the reversal potential was approximately -100 mV for both spontaneous and cortically elicited hyperpolarizations, consistent with the activation of slow K+ conductances. QX-314 in the recording pipettes decreased both the amplitude and incidence of prolonged hyperpolarizations, suggesting the participation of G protein-dependent K+ currents in the generation of hyperpolarizations. Simultaneous extracellular and intracellular recordings in the RE nucleus demonstrated that some RE neurons discharged during the hyperpolarizations and, thus, may be implicated in their generation. The prolonged hyperpolarizations preceding spindles may play a role in the transition from tonic to bursting firing of RE neurons within a range of membrane potential (-60 to -65 mV) at which they set favorable conditions for the generation of low-threshold spike bursts that initiate spindle sequences. These data are further arguments for the generation of spindles within the thalamic RE nucleus. PMID:15210981

  10. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  11. Systemic abnormalities in liver disease

    PubMed Central

    Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro

    2009-01-01

    Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648

  12. Expression of nestin, desmin and vimentin in intact and regenerating muscle spindles of rat hind limb skeletal muscles.

    PubMed

    Cízková, Dana; Soukup, Tomás; Mokrý, Jaroslav

    2009-02-01

    We describe the expression and distribution patterns of nestin, desmin and vimentin in intact and regenerating muscle spindles of the rat hind limb skeletal muscles. Regeneration was induced by intramuscular isotransplantation of extensor digitorum longus (EDL) or soleus muscles from 15-day-old rats into the EDL muscle of adult female inbred Lewis rats. The host muscles with grafts were excised after 7-, 16-, 21- and 29-day survival and immunohistochemically stained. Nestin expression in intact spindles in host muscles was restricted to Schwann cells of sensory and motor nerves. In transplanted muscles, however, nestin expression was also found in regenerating "spindle fibers", 7 and 16 days after grafting. From the 21st day onwards, the regenerated spindle fibers were devoid of nestin immunoreactivity. Desmin was detected in spindle fibers at all developmental stages in regenerating as well as in intact spindles. Vimentin was expressed in cells of the outer and inner capsules of all muscle spindles and in newly formed myoblasts and myotubes of regenerating spindles 7 days after grafting. Our results show that the expression pattern of these intermediate filaments in regenerating spindle fibers corresponds to that found in regenerating extrafusal fibers, which supports our earlier suggestion that they resemble small-diameter extrafusal fibers.

  13. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures

    PubMed Central

    Seldin, Lindsey; Muroyama, Andrew; Lechler, Terry

    2016-01-01

    Mitotic spindle orientation is used to generate cell fate diversity and drive proper tissue morphogenesis. A complex of NuMA and dynein/dynactin is required for robust spindle orientation in a number of cell types. Previous research proposed that cortical dynein/dynactin was sufficient to generate forces on astral microtubules (MTs) to orient the spindle, with NuMA acting as a passive tether. In this study, we demonstrate that dynein/dynactin is insufficient for spindle orientation establishment in keratinocytes and that NuMA’s MT-binding domain, which targets MT tips, is also required. Loss of NuMA-MT interactions in skin caused defects in spindle orientation and epidermal differentiation, leading to neonatal lethality. In addition, we show that NuMA-MT interactions are also required in adult mice for hair follicle morphogenesis and spindle orientation within the transit-amplifying cells of the matrix. Loss of spindle orientation in matrix cells results in defective differentiation of matrix-derived lineages. Our results reveal an additional and direct function of NuMA during mitotic spindle positioning, as well as a reiterative use of spindle orientation in the skin to build diverse structures. DOI: http://dx.doi.org/10.7554/eLife.12504.001 PMID:26765568

  14. Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1.

    PubMed

    Scarfone, Ilaria; Piatti, Simonetta

    2015-10-02

    The budding yeast S. cerevisiae divides asymmetrically and is an excellent model system for asymmetric cell division. As for other asymmetrically dividing cells, proper spindle positioning along the mother-daughter polarity axis is crucial for balanced chromosome segregation. Thus, a surveillance mechanism named Spindle Position Checkpoint (SPOC) inhibits mitotic exit and cytokinesis until the mitotic spindle is properly oriented, thereby preventing the generation of cells with aberrant ploidies. The small GTPase Tem1 is required to trigger a Hippo-like protein kinase cascade, named Mitotic Exit Network (MEN), that is essential for mitotic exit and cytokinesis but also contributes to correct spindle alignment in metaphase. Importantly, Tem1 is the target of the SPOC, which relies on the activity of the GTPase-activating complex (GAP) Bub2-Bfa1 to keep Tem1 in the GDP-bound inactive form. Tem1 forms a hetero-trimeric complex with Bub2-Bfa1 at spindle poles (SPBs) that accumulates asymmetrically on the bud-directed spindle pole during mitosis when the spindle is properly positioned. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. We have recently shown that Tem1 residence at SPBs depends on its nucleotide state and, importantly, asymmetry of the Bub2-Bfa1-Tem1 complex does not promote mitotic exit but rather controls spindle positioning.

  15. Coupling spindle position with mitotic exit in budding yeast: The multifaceted role of the small GTPase Tem1

    PubMed Central

    Scarfone, Ilaria; Piatti, Simonetta

    2015-01-01

    The budding yeast S. cerevisiae divides asymmetrically and is an excellent model system for asymmetric cell division. As for other asymmetrically dividing cells, proper spindle positioning along the mother-daughter polarity axis is crucial for balanced chromosome segregation. Thus, a surveillance mechanism named Spindle Position Checkpoint (SPOC) inhibits mitotic exit and cytokinesis until the mitotic spindle is properly oriented, thereby preventing the generation of cells with aberrant ploidies. The small GTPase Tem1 is required to trigger a Hippo-like protein kinase cascade, named Mitotic Exit Network (MEN), that is essential for mitotic exit and cytokinesis but also contributes to correct spindle alignment in metaphase. Importantly, Tem1 is the target of the SPOC, which relies on the activity of the GTPase-activating complex (GAP) Bub2-Bfa1 to keep Tem1 in the GDP-bound inactive form. Tem1 forms a hetero-trimeric complex with Bub2-Bfa1 at spindle poles (SPBs) that accumulates asymmetrically on the bud-directed spindle pole during mitosis when the spindle is properly positioned. In contrast, the complex remains symmetrically localized on both poles of misaligned spindles. We have recently shown that Tem1 residence at SPBs depends on its nucleotide state and, importantly, asymmetry of the Bub2-Bfa1-Tem1 complex does not promote mitotic exit but rather controls spindle positioning. PMID:26507466

  16. Aberrant spindle dynamics and cytokinesis in Dictyostelium discoideum cells that lack glycogen synthase kinase 3.

    PubMed

    Harwood, Adrian J; Forde-Thomas, Josephine E; Williams, Hazel; Samereier, Matthias; Müller-Taubenberger, Annette

    2013-01-01

    Eukaryotic cell division requires the co-ordinated assembly and disassembly of the mitotic spindle, accurate chromosome segregation and temporal control of cytokinesis to generate two daughter cells. While the absolute details of these processes differ between organisms, there are evolutionarily conserved core components common to all eukaryotic cells, whose identification will reveal the key processes that control cell division. Glycogen synthase kinase 3 (GSK-3) is a major protein kinase found throughout the eukaryotes and regulates many processes, including cell differentiation, growth, motility and apoptosis. In animals, GSK-3 associates with mitotic spindles and its inhibition causes mis-regulation of chromosome segregation. Two suppressor screens in yeast point to a more general effect of GSK-3 on cell division, however the direct role of GSK-3 in control of mitosis has not been explored outside the animal kingdom. Here we report that the Dictyostelium discoideum GSK-3 orthologue, GskA, associates with the mitotic spindle during cell division, as seen for its mammalian counterparts. Dictyostelium possesses only a single GSK-3 gene that can be deleted to eliminate all GSK-3 activity. We found that gskA-null mutants failed to elongate their mitotic spindle and were unable to divide in shaking culture, but have no chromosome segregation defect. These results suggest further conservation for the role of GSK-3 in the regulation of spindle dynamics during mitosis, but also reveal differences in the mechanisms ensuring accurate chromosome segregation.

  17. Patterns of tubulin isotype synthesis and usage during mitotic spindle morphogenesis in Physarum.

    PubMed

    Paul, E C; Roobol, A; Foster, K E; Gull, K

    1987-01-01

    Tubulin synthesis in the naturally synchronous plasmodium of Physarum polycephalum is a markedly periodic event restricted to the late G2 period of the cell cycle. Mitosis in the plasmodium is intranuclear, and there are no cytoplasmic microtubules at any stage of the cell cycle. We have combined a biochemical investigation of the synthesis of the plasmodial tubulin isotypes and their participation in the mitotic spindle with a microscopic study (immunofluorescence) of the development of spindle microtubules throughout the cell cycle. We have shown that all four tubulin isotypes identified in the plasmodium (alpha 1, alpha 2, beta 1 and beta 2) are present in the mitotic spindle. The stoichiometry of isotype usage in the mitotic spindle generally reflects the overall abundance of isotypes in the plasmodium as a whole: beta 2 greater than alpha 1 greater than alpha 2 greater than beta 1. We have also shown that tubulins synthesized in the G2 period of one cell cycle can be incorporated into the spindles of the immediately ensuing mitosis and have sufficient biological longevity to allow participation in the mitotic divisions of future cell cycles. Thus, the phenomenon of periodic tubulin synthesis does not reflect a restricted use of tubulin to the cell cycle in which it was synthesized. The major polymerization of tubulin in the nucleus occurred less than 30 min before metaphase. A novel tubulin-containing structure was, however, present in the nucleus approximately 60 min before metaphase. Polymerized tubulin is rapidly removed from the nucleus following nucleokinesis.

  18. Zika virus causes supernumerary foci with centriolar proteins and impaired spindle positioning

    PubMed Central

    Wolf, Benita; Diop, Fodé; Ferraris, Pauline; Wichit, Sineewanlaya; Busso, Coralie; Missé, Dorothée

    2017-01-01

    Zika virus (ZIKV) causes congenital microcephaly. Although ZIKV can impair cell cycle progression and provoke apoptosis, which probably contributes to disease aetiology through depletion of neural progenitor cells, additional cellular mechanisms may be important. Here, we investigated whether ZIKV infection alters centrosome number and spindle positioning, because such defects are thought to be at the root of inherited primary autosomal recessive microcephaly (MCPH). In addition to HeLa cells, in which centrosome number and spindle positioning can be well monitored, we analysed retinal epithelial cells (RPE-1), as well as brain-derived microglial (CHME-5) and neural progenitor (ReN) cells, using immunofluorescence. We established that ZIKV infection leads to supernumerary foci containing centriolar proteins that in some cases drive multipolar spindle assembly, as well as spindle positioning defects in HeLa, RPE-1 and CHME-5 cells, but not in ReN cells. We uncovered similar phenotypes in HeLa cells upon infection with dengue virus (DENV-2), another flavivirus that does not target brain cells and does not cause microcephaly. We conclude that infection with Flaviviridae can increase centrosome numbers and impair spindle positioning, thus potentially contributing to microcephaly in the case of Zika. PMID:28100662

  19. [Response properties of the jaw-closing muscle spindle during decreased occlusal vertical dimension in rats].

    PubMed

    Fujita, Koichi

    2008-03-01

    The masseter-muscle spindle is regarded as being highly adaptable to increases in the occlusal vertical dimension (iOVD), it is hypothesized that spindle function would adapt to a decrease in occlusal vertical dimension (dOVD) as well. Seventy-five 5-week-old female Wistar rats were divided into Control (n = 25) and Experimental (n = 50) groups; those in the Experimental group received a 2.0-mm composite resin build-up to the maxillary molars. The Experimental group was divided into the resin-removal group (n = 25, build-up resin was removed) and the non resin-removal group (n = 25) 8 weeks later; i. e., when the animals were 13 weeks old. Electrophysiological recordings were obtained from masseter-muscle spindle afferents in 13, 14, 15, 19, 21-week-old rats (n = 5 rats each) under general anesthesia Masseter-muscle spindle sensitivity was significantly lower in the resin-removal group 1 week after resin-removal and for the rest of the observation period. The present results indicate that masseter-muscle spindles may not completely adapt to dOVD and may affect jaw function.

  20. Changes in muscle spindle firing in response to length changes of neighboring muscles.

    PubMed

    Smilde, Hiltsje A; Vincent, Jake A; Baan, Guus C; Nardelli, Paul; Lodder, Johannes C; Mansvelder, Huibert D; Cope, Tim C; Maas, Huub

    2016-06-01

    Skeletal muscle force can be transmitted to the skeleton, not only via its tendons of origin and insertion but also through connective tissues linking the muscle belly to surrounding structures. Through such epimuscular myofascial connections, length changes of a muscle may cause length changes within an adjacent muscle and hence, affect muscle spindles. The aim of the present study was to investigate the effects of epimuscular myofascial forces on feedback from muscle spindles in triceps surae muscles of the rat. We hypothesized that within an intact muscle compartment, muscle spindles not only signal length changes of the muscle in which they are located but can also sense length changes that occur as a result of changing the length of synergistic muscles. Action potentials from single afferents were measured intra-axonally in response to ramp-hold release (RHR) stretches of an agonistic muscle at different lengths of its synergist, as well as in response to synergist RHRs. A decrease in force threshold was found for both soleus (SO) and lateral gastrocnemius afferents, along with an increase in length threshold for SO afferents. In addition, muscle spindle firing could be evoked by RHRs of the synergistic muscle. We conclude that muscle spindles not only signal length changes of the muscle in which they are located but also local length changes that occur as a result of changing the length and relative position of synergistic muscles.

  1. [Method of isolation of intrafusal fibres of muscle spindle in soleus of rats].

    PubMed

    Zhao, Xue-Hong; Fan, Xiao-Li; Liu, Guang-Bin

    2013-08-25

    Capsule restricts the further study on muscle spindle function and the involved mechanism. The aim of this study was to establish the isolation method of intrafusal fibres from the isolated rat muscle spindle. Intrafusal fibres were harvested from muscle spindle of soleus muscle in rats using neutrase-collagenase digestion. A variety of incubation mediums have been tested to find out an appropriate medium of intrafusal fibers in vitro. Trypan blue staining was used to detect cell death, and patch clamp was used to record resting potential. The results showed that the intrafusal fibres incubated with amine acid-saline solution were almost all dead. DMEM could maintain good condition of the fibres, but excess CO2 ventilation would induce cellular swelling or even death. While Leiboviz's 15 (L-15) medium can guarantee 1-2 h of physiological condition of the intrafusal fibres. Coverslips treated with gelatin, polylysine and serum was the better interfaces for the intrafusal fibres to adhere easily, compared with regularly treated coverslip. The resting potential of intrafusal fibres was (-45.3 ± 5.1) mV, consistent with others obtained from in vivo muscle spindle from cats and frogs. These results suggest that the isolation method of the intrafusal fibres has been successfully established in the present study, providing a new approach in better understanding of muscle spindle activities and the involved mechanism.

  2. Pharmacologically increasing sleep spindles enhances recognition for negative and high-arousal memories.

    PubMed

    Kaestner, Erik J; Wixted, John T; Mednick, Sara C

    2013-10-01

    Sleep affects declarative memory for emotional stimuli differently than it affects declarative memory for nonemotional stimuli. However, the interaction between specific sleep characteristics and emotional memory is not well understood. Recent studies on how sleep affects emotional memory have focused on rapid eye movement sleep (REM) but have not addressed non-REM sleep, particularly sleep spindles. This is despite the fact that sleep spindles are implicated in declarative memory as well as neural models of memory consolidation (e.g., hippocampal neural replay). Additionally, many studies examine a limited range of emotional stimuli and fail to disentangle differences in memory performance because of variance in valence and arousal. Here, we experimentally increase non-REM sleep features, sleep spindle density, and SWS, with pharmacological interventions using zolpidem (Ambien) and sodium oxybate (Xyrem) during daytime naps. We use a full spread of emotional stimuli to test all levels of valence and arousal. We find that increasing sleep spindle density increases memory discrimination (da) for highly arousing and negative stimuli without altering measures of bias (ca). These results indicate a broader role for sleep in the processing of emotional stimuli with differing effects based on arousal and valence, and they raise the possibility that sleep spindles causally facilitate emotional memory consolidation. These findings are discussed in terms of the known use of hypnotics in individuals with emotional mood disorders.

  3. Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing.

    PubMed

    Vietri, Marina; Schink, Kay O; Campsteijn, Coen; Wegner, Catherine Sem; Schultz, Sebastian W; Christ, Liliane; Thoresen, Sigrid B; Brech, Andreas; Raiborg, Camilla; Stenmark, Harald

    2015-06-11

    At the onset of metazoan cell division the nuclear envelope breaks down to enable capture of chromosomes by the microtubule-containing spindle apparatus. During anaphase, when chromosomes have separated, the nuclear envelope is reassembled around the forming daughter nuclei. How the nuclear envelope is sealed, and how this is coordinated with spindle disassembly, is largely unknown. Here we show that endosomal sorting complex required for transport (ESCRT)-III, previously found to promote membrane constriction and sealing during receptor sorting, virus budding, cytokinesis and plasma membrane repair, is transiently recruited to the reassembling nuclear envelope during late anaphase. ESCRT-III and its regulatory AAA (ATPase associated with diverse cellular activities) ATPase VPS4 are specifically recruited by the ESCRT-III-like protein CHMP7 to sites where the reforming nuclear envelope engulfs spindle microtubules. Subsequent association of another ESCRT-III-like protein, IST1, directly recruits the AAA ATPase spastin to sever microtubules. Disrupting spastin function impairs spindle disassembly and results in extended localization of ESCRT-III at the nuclear envelope. Interference with ESCRT-III functions in anaphase is accompanied by delayed microtubule disassembly, compromised nuclear integrity and the appearance of DNA damage foci in subsequent interphase. We propose that ESCRT-III, VPS4 and spastin cooperate to coordinate nuclear envelope sealing and spindle disassembly at nuclear envelope-microtubule intersection sites during mitotic exit to ensure nuclear integrity and genome safeguarding, with a striking mechanistic parallel to cytokinetic abscission.

  4. Interphase adhesion geometry is transmitted to an internal regulator for spindle orientation via caveolin-1

    PubMed Central

    Matsumura, Shigeru; Kojidani, Tomoko; Kamioka, Yuji; Uchida, Seiichi; Haraguchi, Tokuko; Kimura, Akatsuki; Toyoshima, Fumiko

    2016-01-01

    Despite theoretical and physical studies implying that cell-extracellular matrix adhesion geometry governs the orientation of the cell division axis, the molecular mechanisms that translate interphase adhesion geometry to the mitotic spindle orientation remain elusive. Here, we show that the cellular edge retraction during mitotic cell rounding correlates with the spindle axis. At the onset of mitotic cell rounding, caveolin-1 is targeted to the retracting cortical region at the proximal end of retraction fibres, where ganglioside GM1-enriched membrane domains with clusters of caveola-like structures are formed in an integrin and RhoA-dependent manner. Furthermore, Gαi1–LGN–NuMA, a well-known regulatory complex of spindle orientation, is targeted to the caveolin-1-enriched cortical region to guide the spindle axis towards the cellular edge retraction. We propose that retraction-induced cortical heterogeneity of caveolin-1 during mitotic cell rounding sets the spindle orientation in the context of adhesion geometry. PMID:27292265

  5. Review of the touch preparation cytology of spindle epithelial tumor with thymus-like differentiation

    PubMed Central

    Yi, Kijong; Rehman, Abdul; Jang, Se Min; Paik, Seung Sam

    2016-01-01

    We experienced a case of spindle epithelial tumor with thymus-like differentiation (SETTLE) with touch preparation cytology performed during the intraoperative frozen section diagnosis in a 22-year-old woman. The tumor was partially encapsulated by fibrous capsule. It was a highly cellular biphasic tumor characterized by fasciculated spindle cells with streaming pattern and tubulopapillary epithelial component. The tumor cells were positive for cytokeratin, vimentin, c-kit, epithelial membrane antigen (EMA), and thyroid transcription factor-1 (TTF-1). However, the tumor cells were negative for thyroglobulin, calcitonin, CD99, S-100 protein, CD34, smooth muscle actin, HBME-1, and galectin-3. The reviewed touch smears showed tight clusters with high cellularity. Most cellular clusters showed papillary configuration. However, some clusters showed spindle cells with streaming pattern. The spindle tumor cells showed elongated and cigar-shaped nuclei. Although the incidence is very r