Science.gov

Sample records for abnormal tau protein

  1. Abnormal Phosphorylation of the Microtubule-Associated Protein τ (Tau) in Alzheimer Cytoskeletal Pathology

    NASA Astrophysics Data System (ADS)

    Grundke-Iqbal, Inge; Iqbal, Khalid; Tung, Yunn-Chyn; Quinlan, Maureen; Wisniewski, Henryk M.; Binder, Lester I.

    1986-07-01

    A monoclonal antibody to the microtubule-associated protein τ (tau) labeled some neurofibrillary tangles and plaque neurites, the two major locations of paired-helical filaments (PHF), in Alzheimer disease brain. The antibody also labeled isolated PHF that had been repeatedly washed with NaDodSO4. Dephosphorylation of the tissue sections with alkaline phosphatase prior to immunolabeling dramatically increased the number of tangles and plaques recognized by the antibody. The plaque core amyloid was not stained in either dephosphorylated or nondephosphorylated tissue sections. On immunoblots PHF polypeptides were labeled readily only when dephosphorylated. In contrast, a commercially available monoclonal antibody to a phosphorylated epitope of neurofilaments that labeled the tangles and the plaque neurites in tissue did not label any PHF polypeptides on immunoblots. The PHF polypeptides, labeled with the monoclonal antibody to τ , electrophoresed with those polypeptides recognized by antibodies to isolated PHF. The antibody to τ -labeled microtubules from normal human brains assembled in vitro but identically treated Alzheimer brain preparations had to be dephosphorylated to be completely recognized by this antibody. These findings suggest that τ in Alzheimer brain is an abnormally phosphorylated protein component of PHF.

  2. Cytoplasmic Retention of Protein Phosphatase 2A Inhibitor 2 (I2PP2A) Induces Alzheimer-like Abnormal Hyperphosphorylation of Tau*

    PubMed Central

    Arif, Mohammad; Wei, Jianshe; Zhang, Qi; Liu, Fei; Basurto-Islas, Gustavo; Grundke-Iqbal, Inge; Iqbal, Khalid

    2014-01-01

    Abnormal hyperphosphorylation of Tau leads to the formation of neurofibrillary tangles, a hallmark of Alzheimer disease (AD), and related tauopathies. The phosphorylation of Tau is regulated by protein phosphatase 2A (PP2A), which in turn is modulated by endogenous inhibitor 2 (I2PP2A). In AD brain, I2PP2A is translocated from neuronal nucleus to cytoplasm, where it inhibits PP2A activity and promotes abnormal phosphorylation of Tau. Here we describe the identification of a potential nuclear localization signal (NLS) in the C-terminal region of I2PP2A containing a conserved basic motif, 179RKR181, which is sufficient for directing its nuclear localization. The current study further presents an inducible cell model (Tet-Off system) of AD-type abnormal hyperphosphorylation of Tau by expressing I2PP2A in which the NLS was inactivated by 179RKR181 → AAA along with 168KR169 → AA mutations. In this model, the mutant NLS (mNLS)-I2PP2A (I2PP2AAA-AAA) was retained in the cell cytoplasm, where it physically interacted with PP2A and inhibited its activity. Inhibition of PP2A was associated with the abnormal hyperphosphorylation of Tau, which resulted in microtubule network instability and neurite outgrowth impairment. Expression of mNLS-I2PP2A activated CAMKII and GSK-3β, which are Tau kinases regulated by PP2A. The immunoprecipitation experiments showed the direct interaction of I2PP2A with PP2A and GSK-3β but not with CAMKII. Thus, the cell model provides insights into the nature of the potential NLS and the mechanistic relationship between I2PP2A-induced inhibition of PP2A and hyperphosphorylation of Tau that can be utilized to develop drugs preventing Tau pathology. PMID:25128526

  3. From tangles to tau protein.

    PubMed

    Iqbal, K; Novak, M

    2006-01-01

    Alois Alzheimer couldn't have chosen a name more appropriate than neurofibrillary tangles when one hundred years ago (Alzheimer, 1906) he presented this histopathological hallmark of the progressive dementing disorder, which got named after him as Alzheimer disease. Both, the structure and as well as the molecular composition of neurofibrillary tangles have baffled neuroscientists for many years. It was not till 1963 when with the help of the electron microscope the tangles were found to be made up of paired helical filaments (PHF). It took another 23 years before microtubule associated protein tau was immunohistochemically identified as the part of neurofibrillary tangles (Grundke-lqbal, 1986 a). The same year it was shown that tau protein in Alzheimer disease brain was abnormally hyperphosphorylated (Grundke-Iqbal, 1986 b). In 1988 Michal Novak, Cesar Milstein and Claude Wischik produced monoclonal antibody that was able to recognize then unknown protein in PHF. The antibody (MN423) allowed its isolation and let to full molecular characterization as protein tau. These studies provided molecular proof that tau protein was the major and an integral component of the PHF (Wischik et al, 1988 a, b, Goedert et al, 1988, Novak et al, 1989, 1991). Over the years the significance of tau pathology for the neurodegenerative diseases was discussed and often questioned. However, detailed studies of the maturation and distribution of NFTs, showing correlation with degree of cognitive decline and memory impairment in Alzheimer's disease (Braak and Braak, 1991), together with discovery of tau gene mutations causing fronto-temporal dementia in many families (Hutton et al, 1998) promoted tau as the major pathogenic force in neurodegenerative cascade. Further studies focused on tau dysfunctions revealed truncation and phosphorylation as two major posttranslational modifications responsible for toxic gain of function as an underlying cause of tauopathies including Alzheimer

  4. Tau in Alzheimer's disease and Down's syndrome is insoluble and abnormally phosphorylated.

    PubMed Central

    Hanger, D P; Brion, J P; Gallo, J M; Cairns, N J; Luthert, P J; Anderton, B H

    1991-01-01

    Some investigators have described the presence in Alzheimer's disease brain extracts of several abnormal forms of the microtubule-associated protein tau, based on their unusual mobility in SDS/PAGE. It has been proposed that these abnormal forms of tau may be the result of aberrant tau phosphorylation. In this study we show that tau in extracts of Alzheimer's disease brain can be separated into two fractions based upon its solubility (100,000 g x 1 h supernatant) in non-denaturing conditions (100 mM-Mes, pH 6.5, 0.5 mM-MgCl2, 1 mM-EGTA and 1 M-NaCl). The tau isoforms with decreased mobility in SDS/PAGE are predominantly in an insoluble fraction, whereas the soluble tau is indistinguishable by its mobility in SDS/PAGE from tau in soluble extracts of control brain. Insoluble tau displaying abnormal mobility on SDS/PAGE was only found in Alzheimer and adult Down's syndrome brains and was absent from the brains of age-matched controls and from foetal and infant Down's syndrome brains. There was a good correlation between the presence of insoluble tau in brain extracts and the abundance of neurofibrillary tangles and senile neuritic plaques. The monoclonal antibody Tau. 1 stained insoluble tau on Western blots only after treatment of the nitrocellulose transfers with alkaline phosphatase, implying that this insoluble tau is in a particular state of phosphorylation. We conclude that, in Alzheimer's disease, a fraction of tau has a modified phosphorylation state and a decreased solubility; these modifications may precede formation of the neurofibrillary tangles characteristic of Alzheimer's disease and Down's syndrome in adults. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:1826835

  5. AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo

    PubMed Central

    Domise, Manon; Didier, Sébastien; Marinangeli, Claudia; Zhao, Haitian; Chandakkar, Pallavi; Buée, Luc; Viollet, Benoit; Davies, Peter; Marambaud, Philippe; Vingtdeux, Valérie

    2016-01-01

    Neurofibrillary tangles (NFTs) are the pathological hallmark of neurodegenerative diseases commonly known as tauopathies. NFTs result from the intracellular aggregation of abnormally and hyperphosphorylated tau proteins. Tau functions, which include the regulation of microtubules dynamics, are dependent on its phosphorylation status. As a consequence, any changes in tau phosphorylation can have major impacts on synaptic plasticity and memory. Recently, it has been demonstrated that AMP-activated protein kinase (AMPK) was deregulated in the brain of Alzheimer’s disease (AD) patients where it co-localized with phosphorylated tau in pre-tangle and tangle-bearing neurons. Besides, it was found that AMPK was a tau kinase in vitro. Here, we find that endogenous AMPK activation in mouse primary neurons induced an increase of tau phosphorylation at multiple sites, whereas AMPK inhibition led to a rapid decrease of tau phosphorylation. We further show that AMPK mice deficient for one of the catalytic alpha subunits displayed reduced endogenous tau phosphorylation. Finally, we found that AMPK deficiency reduced tau pathology in the PS19 mouse model of tauopathy. These results show that AMPK regulates tau phosphorylation in mouse primary neurons as well as in vivo, and thus suggest that AMPK could be a key player in the development of AD pathology. PMID:27230293

  6. AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo.

    PubMed

    Domise, Manon; Didier, Sébastien; Marinangeli, Claudia; Zhao, Haitian; Chandakkar, Pallavi; Buée, Luc; Viollet, Benoit; Davies, Peter; Marambaud, Philippe; Vingtdeux, Valérie

    2016-01-01

    Neurofibrillary tangles (NFTs) are the pathological hallmark of neurodegenerative diseases commonly known as tauopathies. NFTs result from the intracellular aggregation of abnormally and hyperphosphorylated tau proteins. Tau functions, which include the regulation of microtubules dynamics, are dependent on its phosphorylation status. As a consequence, any changes in tau phosphorylation can have major impacts on synaptic plasticity and memory. Recently, it has been demonstrated that AMP-activated protein kinase (AMPK) was deregulated in the brain of Alzheimer's disease (AD) patients where it co-localized with phosphorylated tau in pre-tangle and tangle-bearing neurons. Besides, it was found that AMPK was a tau kinase in vitro. Here, we find that endogenous AMPK activation in mouse primary neurons induced an increase of tau phosphorylation at multiple sites, whereas AMPK inhibition led to a rapid decrease of tau phosphorylation. We further show that AMPK mice deficient for one of the catalytic alpha subunits displayed reduced endogenous tau phosphorylation. Finally, we found that AMPK deficiency reduced tau pathology in the PS19 mouse model of tauopathy. These results show that AMPK regulates tau phosphorylation in mouse primary neurons as well as in vivo, and thus suggest that AMPK could be a key player in the development of AD pathology. PMID:27230293

  7. Loss of HDAC6, a novel CHIP substrate, alleviates abnormal tau accumulation.

    PubMed

    Cook, Casey; Gendron, Tania F; Scheffel, Kristyn; Carlomagno, Yari; Dunmore, Judy; DeTure, Michael; Petrucelli, Leonard

    2012-07-01

    The abnormal accumulation of the microtubule-binding protein tau is associated with a number of neurodegenerative conditions, and correlates with cognitive decline in Alzheimer's disease. The ubiquitin ligase carboxy terminus of Hsp70-interacting protein (CHIP) and the molecular chaperone Hsp90 are implicated in protein triage decisions involving tau, and have consequently been targeted for therapeutic approaches aimed at decreasing tau burden. Here, we present evidence that CHIP binds, ubiquitinates and regulates expression of histone deacetylase 6 (HDAC6). As the deacetylase for Hsp90, HDAC6 modulates Hsp90 function and determines the favorability of refolding versus degradation of Hsp90 client proteins. Moreover, we demonstrate that HDAC6 levels positively correlate with tau burden, while a decrease in HDAC6 activity or expression promotes tau clearance. Consistent with previous research on Hsp90 clients in cancer, we provide evidence that a loss of HDAC6 activity augments the efficacy of an Hsp90 inhibitor and drives client degradation, in this case tau. Therefore, our current findings not only identify HDAC6 as a critical factor for the regulation of tau levels, but also indicate that a multi-faceted treatment approach could more effectively arrest tau accumulation in disease. PMID:22492994

  8. Pericellular Innervation of Neurons Expressing Abnormally Hyperphosphorylated Tau in the Hippocampal Formation of Alzheimer's Disease Patients

    PubMed Central

    Blazquez-Llorca, Lidia; Garcia-Marin, Virginia; DeFelipe, Javier

    2010-01-01

    Neurofibrillary tangles (NFT) represent one of the main neuropathological features in the cerebral cortex associated with Alzheimer's disease (AD). This neurofibrillary lesion involves the accumulation of abnormally hyperphosphorylated or abnormally phosphorylated microtubule-associated protein tau into paired helical filaments (PHF-tau) within neurons. We have used immunocytochemical techniques and confocal microscopy reconstructions to examine the distribution of PHF-tau-immunoreactive (ir) cells, and their perisomatic GABAergic and glutamatergic innervations in the hippocampal formation and adjacent cortex of AD patients. Furthermore, correlative light and electron microscopy was employed to examine these neurons and the perisomatic synapses. We observed two patterns of staining in PHF-tau-ir neurons, pattern I (without NFT) and pattern II (with NFT), the distribution of which varies according to the cortical layer and area. Furthermore, the distribution of both GABAergic and glutamatergic terminals around the soma and proximal processes of PHF-tau-ir neurons does not seem to be altered as it is indistinguishable from both control cases and from adjacent neurons that did not contain PHF-tau. At the electron microscope level, a normal looking neuropil with typical symmetric and asymmetric synapses was observed around PHF-tau-ir neurons. These observations suggest that the synaptic connectivity around the perisomatic region of these PHF-tau-ir neurons was apparently unaltered. PMID:20631843

  9. HS3ST2 expression is critical for the abnormal phosphorylation of tau in Alzheimer's disease-related tau pathology.

    PubMed

    Sepulveda-Diaz, Julia Elisa; Alavi Naini, Seyedeh Maryam; Huynh, Minh Bao; Ouidja, Mohand Ouidir; Yanicostas, Constantin; Chantepie, Sandrine; Villares, Joao; Lamari, Foudil; Jospin, Estelle; van Kuppevelt, Toin H; Mensah-Nyagan, Ayikoe Guy; Raisman-Vozari, Rita; Soussi-Yanicostas, Nadia; Papy-Garcia, Dulce

    2015-05-01

    Heparan sulphate (glucosamine) 3-O-sulphotransferase 2 (HS3ST2, also known as 3OST2) is an enzyme predominantly expressed in neurons wherein it generates rare 3-O-sulphated domains of unknown functions in heparan sulphates. In Alzheimer's disease, heparan sulphates accumulate at the intracellular level in disease neurons where they co-localize with the neurofibrillary pathology, while they persist at the neuronal cell membrane in normal brain. However, it is unknown whether HS3ST2 and its 3-O-sulphated heparan sulphate products are involved in the mechanisms leading to the abnormal phosphorylation of tau in Alzheimer's disease and related tauopathies. Here, we first measured the transcript levels of all human heparan sulphate sulphotransferases in hippocampus of Alzheimer's disease (n = 8; 76.8 ± 3.5 years old) and found increased expression of HS3ST2 (P < 0.001) compared with control brain (n = 8; 67.8 ± 2.9 years old). Then, to investigate whether the membrane-associated 3-O-sulphated heparan sulphates translocate to the intracellular level under pathological conditions, we used two cell models of tauopathy in neuro-differentiated SH-SY5Y cells: a tau mutation-dependent model in cells expressing human tau carrying the P301L mutation hTau(P301L), and a tau mutation-independent model in where tau hyperphosphorylation is induced by oxidative stress. Confocal microscopy, fluorescence resonance energy transfer, and western blot analyses showed that 3-O-sulphated heparan sulphates can be internalized into cells where they interact with tau, promoting its abnormal phosphorylation, but not that of p38 or NF-κB p65. We showed, in vitro, that the 3-O-sulphated heparan sulphates bind to tau, but not to GSK3B, protein kinase A or protein phosphatase 2, inducing its abnormal phosphorylation. Finally, we demonstrated in a zebrafish model of tauopathy expressing the hTau(P301L), that inhibiting hs3st2 (also known as 3ost2) expression results in a strong inhibition of the

  10. Extracellular Monomeric Tau Protein Is Sufficient to Initiate the Spread of Tau Protein Pathology*

    PubMed Central

    Michel, Claire H.; Kumar, Satish; Pinotsi, Dorothea; Tunnacliffe, Alan; St. George-Hyslop, Peter; Mandelkow, Eckhard; Mandelkow, Eva-Maria; Kaminski, Clemens F.; Kaminski Schierle, Gabriele S.

    2014-01-01

    Understanding the formation and propagation of aggregates of the Alzheimer disease-associated Tau protein in vivo is vital for the development of therapeutics for this devastating disorder. Using our recently developed live-cell aggregation sensor in neuron-like cells, we demonstrate that different variants of exogenous monomeric Tau, namely full-length Tau (hTau40) and the Tau-derived construct K18 comprising the repeat domain, initially accumulate in endosomal compartments, where they form fibrillar seeds that subsequently induce the aggregation of endogenous Tau. Using superresolution imaging, we confirm that fibrils consisting of endogenous and exogenous Tau are released from cells and demonstrate their potential to spread Tau pathology. Our data indicate a greater pathological risk and potential toxicity than hitherto suspected for extracellular soluble Tau. PMID:24235150

  11. Interaction of tau with the RNA-Binding Protein TIA1 Regulates tau Pathophysiology and Toxicity.

    PubMed

    Vanderweyde, Tara; Apicco, Daniel J; Youmans-Kidder, Katherine; Ash, Peter E A; Cook, Casey; Lummertz da Rocha, Edroaldo; Jansen-West, Karen; Frame, Alissa A; Citro, Allison; Leszyk, John D; Ivanov, Pavel; Abisambra, Jose F; Steffen, Martin; Li, Hu; Petrucelli, Leonard; Wolozin, Benjamin

    2016-05-17

    Dendritic mislocalization of microtubule associated protein tau is a hallmark of tauopathies, but the role of dendritic tau is unknown. We now report that tau interacts with the RNA-binding protein (RBP) TIA1 in brain tissue, and we present the brain-protein interactome network for TIA1. Analysis of the TIA1 interactome in brain tissue from wild-type (WT) and tau knockout mice demonstrates that tau is required for normal interactions of TIA1 with proteins linked to RNA metabolism, including ribosomal proteins and RBPs. Expression studies show that tau regulates the distribution of TIA1, and tau accelerates stress granule (SG) formation. Conversely, TIA1 knockdown or knockout inhibits tau misfolding and associated toxicity in cultured hippocampal neurons, while overexpressing TIA1 induces tau misfolding and stimulates neurodegeneration. Pharmacological interventions that prevent SG formation also inhibit tau pathophysiology. These studies suggest that the pathophysiology of tauopathy requires an intimate interaction with RNA-binding proteins. PMID:27160897

  12. Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration.

    PubMed

    Li, Liang; Sengupta, Amitabha; Haque, Niloufar; Grundke-Iqbal, Inge; Iqbal, Khalid

    2004-05-21

    Memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist, reduces the clinical deterioration in moderate-to-severe Alzheimer disease (AD) for which other treatments are not available. The activity of protein phosphatase (PP)-2A is compromised in AD brain and is believed to be a cause of the abnormal hyperphosphorylation of tau and the consequent neurofibrillary degeneration. Here we show that memantine inhibits and reverses the PP-2A inhibition-induced abnormal hyperphosphorylation and accumulation of tau in organotypic culture of rat hippocampal slices. Such restorative effects of memantine were not detected either with 5,7-dichlorokynurenic acid or with D(-)-2-amino-5-phosphopentanoic acid, NMDA receptor antagonists active at the glycine binding site and at the glutamate binding site, respectively. These findings show (1) that memantine inhibits and reverses the PP-2A inhibition-induced abnormal hyperphosphorylation of tau/neurofibrillary degeneration and (2) that this drug might be useful for the treatment of AD and related tauopathies. PMID:15147906

  13. Oligomer Formation of Tau Protein Hyperphosphorylated in Cells*

    PubMed Central

    Tepper, Katharina; Biernat, Jacek; Kumar, Satish; Wegmann, Susanne; Timm, Thomas; Hübschmann, Sabrina; Redecke, Lars; Mandelkow, Eva-Maria; Müller, Daniel J.; Mandelkow, Eckhard

    2014-01-01

    Abnormal phosphorylation (“hyperphosphorylation”) and aggregation of Tau protein are hallmarks of Alzheimer disease and other tauopathies, but their causative connection is still a matter of debate. Tau with Alzheimer-like phosphorylation is also present in hibernating animals, mitosis, or during embryonic development, without leading to pathophysiology or neurodegeneration. Thus, the role of phosphorylation and the distinction between physiological and pathological phosphorylation needs to be further refined. So far, the systematic investigation of highly phosphorylated Tau was difficult because a reliable method of preparing reproducible quantities was not available. Here, we generated full-length Tau (2N4R) in Sf9 cells in a well defined phosphorylation state containing up to ∼20 phosphates as judged by mass spectrometry and Western blotting with phospho-specific antibodies. Despite the high concentration in living Sf9 cells (estimated ∼230 μm) and high phosphorylation, the protein was not aggregated. However, after purification, the highly phosphorylated protein readily formed oligomers, whereas fibrils were observed only rarely. Exposure of mature primary neuronal cultures to oligomeric phospho-Tau caused reduction of spine density on dendrites but did not change the overall cell viability. PMID:25339173

  14. Tau Protein Modifications and Interactions: Their Role in Function and Dysfunction

    PubMed Central

    Mietelska-Porowska, Anna; Wasik, Urszula; Goras, Marcelina; Filipek, Anna; Niewiadomska, Grazyna

    2014-01-01

    Tau protein is abundant in the central nervous system and involved in microtubule assembly and stabilization. It is predominantly associated with axonal microtubules and present at lower level in dendrites where it is engaged in signaling functions. Post-translational modifications of tau and its interaction with several proteins play an important regulatory role in the physiology of tau. As a consequence of abnormal modifications and expression, tau is redistributed from neuronal processes to the soma and forms toxic oligomers or aggregated deposits. The accumulation of tau protein is increasingly recognized as the neuropathological hallmark of a number of dementia disorders known as tauopathies. Dysfunction of tau protein may contribute to collapse of cytoskeleton, thereby causing improper anterograde and retrograde movement of motor proteins and their cargos on microtubules. These disturbances in intraneuronal signaling may compromise synaptic transmission as well as trophic support mechanisms in neurons. PMID:24646911

  15. Tau deposition drives neuropathological, inflammatory and behavioral abnormalities independently of neuronal loss in a novel mouse model

    PubMed Central

    Cook, Casey; Kang, Silvia S.; Carlomagno, Yari; Lin, Wen-Lang; Yue, Mei; Kurti, Aishe; Shinohara, Mitsuru; Jansen-West, Karen; Perkerson, Emilie; Castanedes-Casey, Monica; Rousseau, Linda; Phillips, Virginia; Bu, Guojun; Dickson, Dennis W.; Petrucelli, Leonard; Fryer, John D.

    2015-01-01

    Aberrant tau protein accumulation drives neurofibrillary tangle (NFT) formation in several neurodegenerative diseases. Currently, efforts to elucidate pathogenic mechanisms and assess the efficacy of therapeutic targets are limited by constraints of existing models of tauopathy. In order to generate a more versatile mouse model of tauopathy, somatic brain transgenesis was utilized to deliver adeno-associated virus serotype 1 (AAV1) encoding human mutant P301L-tau compared with GFP control. At 6 months of age, we observed widespread human tau expression with concomitant accumulation of hyperphosphorylated and abnormally folded proteinase K resistant tau. However, no overt neuronal loss was observed, though significant abnormalities were noted in the postsynaptic scaffolding protein PSD95. Neurofibrillary pathology was also detected with Gallyas silver stain and Thioflavin-S, and electron microscopy revealed the deposition of closely packed filaments. In addition to classic markers of tauopathy, significant neuroinflammation and extensive gliosis were detected in AAV1-TauP301L mice. This model also recapitulates the behavioral phenotype characteristic of mouse models of tauopathy, including abnormalities in exploration, anxiety, and learning and memory. These findings indicate that biochemical and neuropathological hallmarks of tauopathies are accurately conserved and are independent of cell death in this novel AAV-based model of tauopathy, which offers exceptional versatility and speed in comparison with existing transgenic models. Therefore, we anticipate this approach will facilitate the identification and validation of genetic modifiers of disease, as well as accelerate preclinical assessment of potential therapeutic targets. PMID:26276810

  16. Deletion of endogenous Tau proteins is not detrimental in Drosophila

    PubMed Central

    Burnouf, Sylvie; Grönke, Sebastian; Augustin, Hrvoje; Dols, Jacqueline; Gorsky, Marianna Karina; Werner, Jennifer; Kerr, Fiona; Alic, Nazif; Martinez, Pedro; Partridge, Linda

    2016-01-01

    Human Tau (hTau) is a highly soluble and natively unfolded protein that binds to microtubules within neurons. Its dysfunction and aggregation into insoluble paired helical filaments is involved in the pathogenesis of Alzheimer’s disease (AD), constituting, together with accumulated β-amyloid (Aβ) peptides, a hallmark of the disease. Deciphering both the loss-of-function and toxic gain-of-function of hTau proteins is crucial to further understand the mechanisms leading to neurodegeneration in AD. As the fruit fly Drosophila melanogaster expresses Tau proteins (dTau) that are homologous to hTau, we aimed to better comprehend dTau functions by generating a specific tau knock-out (KO) fly line using homologous recombination. We observed that the specific removal of endogenous dTau proteins did not lead to overt, macroscopic phenotypes in flies. Indeed, survival, climbing ability and neuronal function were unchanged in tau KO flies. In addition, we did not find any overt positive or negative effect of dTau removal on human Aβ-induced toxicity. Altogether, our results indicate that the absence of dTau proteins has no major functional impact on flies, and suggests that our tau KO strain is a relevant model to further investigate the role of dTau proteins in vivo, thereby giving additional insights into hTau functions. PMID:26976084

  17. Deletion of endogenous Tau proteins is not detrimental in Drosophila.

    PubMed

    Burnouf, Sylvie; Grönke, Sebastian; Augustin, Hrvoje; Dols, Jacqueline; Gorsky, Marianna Karina; Werner, Jennifer; Kerr, Fiona; Alic, Nazif; Martinez, Pedro; Partridge, Linda

    2016-01-01

    Human Tau (hTau) is a highly soluble and natively unfolded protein that binds to microtubules within neurons. Its dysfunction and aggregation into insoluble paired helical filaments is involved in the pathogenesis of Alzheimer's disease (AD), constituting, together with accumulated β-amyloid (Aβ) peptides, a hallmark of the disease. Deciphering both the loss-of-function and toxic gain-of-function of hTau proteins is crucial to further understand the mechanisms leading to neurodegeneration in AD. As the fruit fly Drosophila melanogaster expresses Tau proteins (dTau) that are homologous to hTau, we aimed to better comprehend dTau functions by generating a specific tau knock-out (KO) fly line using homologous recombination. We observed that the specific removal of endogenous dTau proteins did not lead to overt, macroscopic phenotypes in flies. Indeed, survival, climbing ability and neuronal function were unchanged in tau KO flies. In addition, we did not find any overt positive or negative effect of dTau removal on human Aβ-induced toxicity. Altogether, our results indicate that the absence of dTau proteins has no major functional impact on flies, and suggests that our tau KO strain is a relevant model to further investigate the role of dTau proteins in vivo, thereby giving additional insights into hTau functions. PMID:26976084

  18. Abnormal tau induces cognitive impairment through two different mechanisms: synaptic dysfunction and neuronal loss

    PubMed Central

    Di, J.; Cohen, L. S.; Corbo, C. P.; Phillips, G. R.; El Idrissi, A.; Alonso, A. D.

    2016-01-01

    The hyperphosphorylated microtubule-associated protein tau is present in several neurodegenerative diseases, although the causal relationship remains elusive. Few mouse models used to study Alzheimer-like dementia target tau phosphorylation. We created an inducible pseudophosphorylated tau (Pathological Human Tau, PH-Tau) mouse model to study the effect of conformationally modified tau in vivo. Leaky expression resulted in two levels of PH-Tau: low basal level and higher upon induction (4% and 14% of the endogenous tau, respectively). Unexpectedly, low PH-Tau resulted in significant cognitive deficits, decrease in the number of synapses (seen by EM in the CA1 region), reduction of synaptic proteins, and localization to the nucleus. Induction of PH-Tau triggered neuronal death (60% in CA3), astrocytosis, and loss of the processes in CA1. These findings suggest, that phosphorylated tau is sufficient to induce neurodegeneration and that two different mechanisms can induce cognitive impairment depending on the levels of PH-Tau expression. PMID:26888634

  19. Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine.

    PubMed

    Chohan, Muhammad Omar; Khatoon, Sabiha; Iqbal, Inge-Grundke; Iqbal, Khalid

    2006-07-10

    The activity of protein phosphatase (PP)-2A, which regulates tau phosphorylation, is compromised in Alzheimer disease brain. Here we show that the transient transfection of PC12 cells with inhibitor-2 (I2PP2A) of PP2A causes abnormal hyperphosphorylation of tau at Ser396/Ser404 and Ser262/Ser356. This hyperphosphorylation of tau is observed only when a sub-cellular shift of I2PP2A takes place from the nucleus to the cytoplasm and is accompanied by cleavage of I2PP2A into a 20 kDa fragment. Memantine, an un-competitive inhibitor of N-methyl-D-aspartate receptors, inhibits this abnormal phosphorylation of tau and cell death and prevents the I2PP2A-induced inhibition of PP2A activity in vitro. These findings demonstrate novel mechanisms by which I2PP2A regulates the intracellular activity of PP2A and phosphorylation of tau, and by which Memantine modulates PP2A signaling and inhibits neurofibrillary degeneration. PMID:16806196

  20. Antisense-mediated Exon Skipping Decreases Tau Protein Expression: A Potential Therapy For Tauopathies

    PubMed Central

    Sud, Reeteka; Geller, Evan T; Schellenberg, Gerard D

    2014-01-01

    In Alzheimer's disease, progressive supranuclear palsy, and a number of other neurodegenerative diseases, the microtubule associated protein tau aggregates to form intracellular neurofibrillary tangles and glial tangles, abnormal structures that are part of disease pathogenesis. Disorders with aggregated tau are called tauopathies. Presently, there are no disease-modifying treatments for this disease class. Tau is encoded by the MAPT gene. We propose that reducing MAPT expression and thus the amount of tau protein made could prevent aggregation, and potentially be an approach to treat tauopathies. We tested 31 morpholinos, complementary to the sense strand of the MAPT gene to identify oligonucleotides that can downregulate MAPT expression and reduce the amount of tau protein produced. Oligonucleotides were tested in human neuroblastoma cell lines SH-SY5Y and IMR32. We identified several morpholinos that reduced MAPT mRNA expression up to 50% and tau protein levels up to ~80%. The two most potent oligonucleotides spanned the 3′ boundary of exons 1 and 5, masking the 5′-splice sites of these exons. Both morpholinos induced skipping of the targeted exons. These in vitro findings were confirmed in mice transgenic for the entire human MAPT gene and that express human tau protein. These studies demonstrate the feasibility of using modified oligonucleotides to alter tau expression. PMID:25072694

  1. Dimer model for Tau proteins bound in microtubule bundles

    NASA Astrophysics Data System (ADS)

    Hall, Natalie; Kluber, Alexander; Hayre, N. Robert; Singh, Rajiv; Cox, Daniel

    2013-03-01

    The microtubule associated protein tau is important in nucleating and maintaining microtubule spacing and structure in neuronal axons. Modification of tau is implicated as a later stage process in Alzheimer's disease, but little is known about the structure of tau in microtubule bundles. We present preliminary work on a proposed model for tau dimers in microtubule bundles (dimers are the minimal units since there is one microtubule binding domain per tau). First, a model of tau monomer was created and its characteristics explored using implicit solvent molecular dynamics simulation. Multiple simulations yield a partially collapsed form with separate positively/negatively charged clumps, but which are a factor of two smaller than required by observed microtubule spacing. We argue that this will elongate in dimer form to lower electrostatic energy at a cost of entropic ``spring'' energy. We will present preliminary results on steered molecular dynamics runs on tau dimers to estimate the actual force constant. Supported by US NSF Grant DMR 1207624.

  2. Tau protein binds to pericentromeric DNA: a putative role for nuclear tau in nucleolar organization.

    PubMed

    Sjöberg, Marcela K; Shestakova, Elena; Mansuroglu, Zeyni; Maccioni, Ricardo B; Bonnefoy, Eliette

    2006-05-15

    The microtubule-associated tau protein participates in the organization and integrity of the neuronal cytoskeleton. A nuclear form of tau has been described in neuronal and non-neuronal cells, which displays a nucleolar localization during interphase but is associated with nucleolar-organizing regions in mitotic cells. In the present study, based on immunofluorescence, immuno-FISH and confocal microscopy, we show that nuclear tau is mainly present at the internal periphery of nucleoli, partially colocalizing with the nucleolar protein nucleolin and human AT-rich alpha-satellite DNA sequences organized as constitutive heterochromatin. By using gel retardation, we demonstrate that tau not only colocalizes with, but also specifically binds to, AT-rich satellite DNA sequences apparently through the recognition of AT-rich DNA stretches. Here we propose a functional role for nuclear tau in relation to the nucleolar organization and/or heterochromatinization of a portion of RNA genes. Since nuclear tau has also been found in neurons from patients with Alzheimer's disease (AD), aberrant nuclear tau could affect the nucleolar organization during the course of AD. We discuss nucleolar tau associated with AT-rich alpha-satellite DNA sequences as a potential molecular link between trisomy 21 and AD. PMID:16638814

  3. Microtubule-associated protein tau in bovine retinal photoreceptor rod outer segments: comparison with brain tau.

    PubMed

    Yamazaki, Akio; Nishizawa, Yuji; Matsuura, Isao; Hayashi, Fumio; Usukura, Jiro; Bondarenko, Vladimir A

    2013-10-01

    Recent studies have suggested a possible involvement of abnormal tau in some retinal degenerative diseases. The common view in these studies is that these retinal diseases share the mechanism of tau-mediated degenerative diseases in brain and that information about these brain diseases may be directly applied to explain these retinal diseases. Here we collectively examine this view by revealing three basic characteristics of tau in the rod outer segment (ROS) of bovine retinal photoreceptors, i.e., its isoforms, its phosphorylation mode and its interaction with microtubules, and by comparing them with those of brain tau. We find that ROS contains at least four isoforms: three are identical to those in brain and one is unique in ROS. All ROS isoforms, like brain isoforms, are modified with multiple phosphate molecules; however, ROS isoforms show their own specific phosphorylation pattern, and these phosphorylation patterns appear not to be identical to those of brain tau. Interestingly, some ROS isoforms, under the normal conditions, are phosphorylated at the sites identical to those in Alzheimer's patient isoforms. Surprisingly, a large portion of ROS isoforms tightly associates with a membranous component(s) other than microtubules, and this association is independent of their phosphorylation states. These observations strongly suggest that tau plays various roles in ROS and that some of these functions may not be comparable to those of brain tau. We believe that knowledge about tau in the entire retinal network and/or its individual cells are also essential for elucidation of tau-mediated retinal diseases, if any. PMID:23712071

  4. Biochemistry and Cell Biology of Tau Protein in Neurofibrillary Degeneration

    PubMed Central

    Mandelkow, Eva-Maria; Mandelkow, Eckhard

    2012-01-01

    Tau represents the subunit protein of one of the major hallmarks of Alzheimer disease (AD), the neurofibrillary tangles, and is therefore of major interest as an indicator of disease mechanisms. Many of the unusual properties of Tau can be explained by its nature as a natively unfolded protein. Examples are the large number of structural conformations and biochemical modifications (phosphorylation, proteolysis, glycosylation, and others), the multitude of interaction partners (mainly microtubules, but also other cytoskeletal proteins, kinases, and phosphatases, motor proteins, chaperones, and membrane proteins). The pathological aggregation of Tau is counterintuitive, given its high solubility, but can be rationalized by short hydrophobic motifs forming β structures. The aggregation of Tau is toxic in cell and animal models, but can be reversed by suppressing expression or by aggregation inhibitors. This review summarizes some of the structural, biochemical, and cell biological properties of Tau and Tau fibers. Further aspects of Tau as a diagnostic marker and therapeutic target, its involvement in other Tau-based diseases, and its histopathology are covered by other chapters in this volume. PMID:22762014

  5. Cellular factors modulating the mechanism of tau protein aggregation.

    PubMed

    Fontaine, Sarah N; Sabbagh, Jonathan J; Baker, Jeremy; Martinez-Licha, Carlos R; Darling, April; Dickey, Chad A

    2015-05-01

    Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer's disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer's disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones. PMID:25666877

  6. Cellular factors modulating the mechanism of tau protein aggregation

    PubMed Central

    Fontaine, Sarah N.; Sabbagh, Jonathan J.; Baker, Jeremy; Martinez-Licha, Carlos R.; Darling, April

    2015-01-01

    Pathological accumulation of the microtubule-associated protein tau, in the form of neurofibrillary tangles, is a major hallmark of Alzheimer’s disease, the most prevalent neurodegenerative condition worldwide. In addition to Alzheimer’s disease, a number of neurodegenerative diseases, called tauopathies, are characterized by the accumulation of aggregated tau in a variety of brain regions. While tau normally plays an important role in stabilizing the microtubule network of the cytoskeleton, its dissociation from microtubules and eventual aggregation into pathological deposits is an area of intense focus for therapeutic development. Here we discuss the known cellular factors that affect tau aggregation, from post-translational modifications to molecular chaperones. PMID:25666877

  7. Tau pathology involves protein phosphatase 2A in parkinsonism-dementia of Guam.

    PubMed

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M; Iqbal, Khalid

    2014-01-21

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr(307) and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr(307) in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr(307). These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5-PP2A complex, and its phosphorylation at Tyr(307) by Src. PMID:24395787

  8. Tau pathology involves protein phosphatase 2A in Parkinsonism-dementia of Guam

    PubMed Central

    Arif, Mohammad; Kazim, Syed Faraz; Grundke-Iqbal, Inge; Garruto, Ralph M.; Iqbal, Khalid

    2014-01-01

    Parkinsonism-dementia (PD) of Guam is a neurodegenerative disease with parkinsonism and early-onset Alzheimer-like dementia associated with neurofibrillary tangles composed of hyperphosphorylated microtubule-associated protein, tau. β-N-methylamino-l-alanine (BMAA) has been suspected of being involved in the etiology of PD, but the mechanism by which BMAA leads to tau hyperphosphorylation is not known. We found a decrease in protein phosphatase 2A (PP2A) activity associated with an increase in inhibitory phosphorylation of its catalytic subunit PP2Ac at Tyr307 and abnormal hyperphosphorylation of tau in brains of patients who had Guam PD. To test the possible involvement of BMAA in the etiopathogenesis of PD, we studied the effect of this environmental neurotoxin on PP2A activity and tau hyperphosphorylation in mouse primary neuronal cultures and metabolically active rat brain slices. BMAA treatment significantly decreased PP2A activity, with a concomitant increase in tau kinase activity resulting in elevated tau hyperphosphorylation at PP2A favorable sites. Moreover, we found an increase in the phosphorylation of PP2Ac at Tyr307 in BMAA-treated rat brains. Pretreatment with metabotropic glutamate receptor 5 (mGluR5) and Src antagonists blocked the BMAA-induced inhibition of PP2A and the abnormal hyperphosphorylation of tau, indicating the involvement of an Src-dependent PP2A pathway. Coimmunoprecipitation experiments showed that BMAA treatment dissociated PP2Ac from mGluR5, making it available for phosphorylation at Tyr307. These findings suggest a scenario in which BMAA can lead to tau pathology by inhibiting PP2A through the activation of mGluR5, the consequent release of PP2Ac from the mGluR5–PP2A complex, and its phosphorylation at Tyr307 by Src. PMID:24395787

  9. Suppression of Parkin enhances nigrostriatal and motor neuron lesion in mice over-expressing human-mutated tau protein.

    PubMed

    Menéndez, J; Rodríguez-Navarro, J A; Solano, R M; Casarejos, M J; Rodal, I; Guerrero, R; Sánchez, M P; Avila, J; Mena, M A; de Yébenes, J G

    2006-07-01

    Abnormal deposition of protein tau takes place in the brain of patients with several neurodegenerative diseases. Few of these patients present frontotemporal dementia with parkinsonism and amyotrophy (FTDPA-17), an autosomal dominant tauopathy related to mutations of the gene that codes for protein tau, localized in chromosome 17. The great majority of patients with tauopathies such as Alzheimer's disease, sporadic frontotemporal dementia or progressive supranuclear palsy do not show a Mendelian pattern of inheritance. We have occasionally seen tauopathies in patients with parkin mutations and, therefore, hypothesized that the protein tau interacts with parkin. We have tested that hypothesis in mice with combined genetic modifications of tau (over-expression of human tau with three mutations known to produce FTDPA-17) and parkin (deleted) proteins. Homozygote parkin null or over-expressing mutated-human tau mice have subtle behavioral and molecular abnormalities but do not express a clinical phenotype of neurodegenerative disease. Mice with combined homozygous mutations of these two genes show progressively abnormal walking already noticeable at 3 months of age, loss of dopamine and dopamine markers in striatum, nuclear tau immunoreactive deposits in motor neurons of the spinal cord, abnormal expression of glial markers and enhanced levels of pro-apoptotic proteins; findings that were absent or less pronounced in homozygote animals with deletions of parkin or over-expression of tau. The double transgenic mice do not express normal mechanisms of adaptation to stress such as increased levels of GSH and Hsp-70. In addition, they have reduced levels of CHIP-Hsc70, a complex known to attenuate aggregation of tau and to enhance ubiquitination of phosphorylated tau. We have found high levels of phosphorylated tau in parkin-/-+tau(VLW) mice and a relative decrease of the inactivated pSer9 to total GSK-3 levels. Our data reveal that there are interactions between tau and

  10. Expression, purification and crystallization of a human tau-tubulin kinase 2 that phosphorylates tau protein

    SciTech Connect

    Kitano-Takahashi, Michiko; Morita, Hiroyuki; Kondo, Shin; Tomizawa, Kayoko; Kato, Ryohei; Tanio, Michikazu; Shirota, Yoshiko; Takahashi, Hiroshi; Sugio, Shigetoshi; Kohno, Toshiyuki

    2007-07-01

    The kinase domain (residues 1–331) of human tau-tubulin kinase 2 was expressed in insect cells, purified and crystallized. Diffraction data have been collected to 2.9 Å resolution. Tau-tubulin kinase 2 (TTBK2) is a Ser/Thr kinase that putatively phosphorylates residues Ser208 and Ser210 (numbered according to a 441-residue human tau isoform) in tau protein. Functional analyses revealed that a recombinant kinase domain (residues 1–331) of human TTBK2 expressed in insect cells with a baculovirus overexpression system retains kinase activity for tau protein. The kinase domain of TTBK2 was crystallized using the hanging-drop vapour-diffusion method. The crystals belong to space group P2{sub 1}2{sub 1}2{sub 1}, with unit-cell parameters a = 55.6, b = 113.7, c = 117.3 Å, α = β = γ = 90.0°. Diffraction data were collected to 2.9 Å resolution using synchrotron radiation at BL24XU of SPring-8.

  11. Carboxy terminus heat shock protein 70 interacting protein reduces tau-associated degenerative changes.

    PubMed

    Saidi, Laiq-Jan; Polydoro, Manuela; Kay, Kevin R; Sanchez, Laura; Mandelkow, Eva-Maria; Hyman, Bradley T; Spires-Jones, Tara L

    2015-01-01

    One of the hallmarks of Alzheimer's disease is the formation of neurofibrillary tangles, intracellular aggregates of hyperphosphorylated, mislocalized tau protein, which are associated with neuronal loss. Changes in tau are known to impair cellular transport (including that of mitochondria) and are associated with cell death in cell culture and mouse models of tauopathy. Thus clearing pathological forms of tau from cells is a key therapeutic strategy. One critical modulator in the degradation and clearance of misfolded proteins is the co-chaperone CHIP (Carboxy terminus Hsp70 interacting Protein), which is known to play a role in refolding and clearance of hyperphosphorylated tau. Here, we tested the hypothesis that CHIP could ameliorate pathological changes associated with tau. We find that co-expressing CHIP with full-length tau, tau truncated at D421 mimicking caspase cleavage, or the short tauRDΔK280 tau construct containing only the tau repeat domain with a tauopathy mutation, decreases tau protein levels in human H4 neuroglioma cells in a manner dependent on the Hsp70-binding TPR domain of CHIP. The observed reduction in tau levels by CHIP is associated with a decrease of tau phosphorylation and reduced levels of cleaved Caspase 3 indicating that CHIP plays an important role in preventing tau-induced pathological changes. Furthermore, tau-associated mitochondrial transport deficits are rescued by CHIP co-expression in H4 cells. Together, these data suggest that the co-chaperone CHIP can rescue the pathological effects of tau, and indicate that other diseases of protein misfolding and accumulation may also benefit from CHIP upregulation. PMID:25374103

  12. Traceless purification and desulfurization of tau protein ligation products.

    PubMed

    Reimann, Oliver; Smet-Nocca, Caroline; Hackenberger, Christian P R

    2015-01-01

    We present a novel strategy for the traceless purification and synthetic modification of peptides and proteins obtained by native chemical ligation. The strategy involves immobilization of a photocleavable semisynthetic biotin-protein conjugate on streptavidin-coated agarose beads, which eliminates the need for tedious rebuffering steps and allows the rapid removal of excess peptides and additives. On-bead desulfurization is followed by delivery of the final tag-free protein product. The strategy is demonstrated in the isolation of a tag-free Alzheimer's disease related human tau protein from a complex EPL mixture as well as a triphosphorylated peptide derived from the C-terminus of tau. PMID:25404175

  13. Can numerical modeling help understand the fate of tau protein in the axon terminal?

    PubMed

    Kuznetsov, I A; Kuznetsov, A V

    2016-01-01

    In this paper, we used mathematical modeling to investigate the fate of tau protein in the axon terminal. We developed a comprehensive model of tau transport that accounts for transport of cytosolic tau by diffusion, diffusion transport of microtubule (MT)-bound tau along the MT lattice, active motor-driven transport of MT-bound tau via slow axonal transport mechanism, and degradation of tau in the axon due to tau's finite half-life. We investigated the effect of different assumptions concerning the fate of tau in the terminal on steady-state transport of tau in the axon. In particular, we studied two possible scenarios: (i) tau is destroyed in the terminal and (ii) there is no tau destruction in the terminal, and to avoid tau accumulation we postulated zero flux of tau at the terminal. We found that the tau concentration and percentage of MT-bound tau are not very sensitive to the assumption concerning the fate of tau in the terminal, but the tau's flux and average velocity of tau transport are very sensitive to this assumption. This suggests that measuring the velocity of tau transport and comparing it with the results of mathematical modeling for different assumptions concerning tau's fate in the terminal can provide information concerning what happens to tau in the terminal. PMID:25563412

  14. Abnormal serine phosphorylation of insulin receptor substrate 1 is associated with tau pathology in Alzheimer's disease and tauopathies

    PubMed Central

    Yarchoan, Mark; Toledo, Jon B.; Lee, Edward B.; Arvanitakis, Zoe; Kazi, Hala; Han, Li-Ying; Louneva, Natalia; Lee, Virginia M.-Y.; Kim, Sangwon F.; Trojanowski, John Q.; Arnold, Steven E.

    2015-01-01

    Neuronal insulin signaling abnormalities have been associated with Alzheimer's disease (AD). However, the specificity of this association and its underlying mechanisms have been unclear. This study investigated the expression of abnormal serine phosphorylation of insulin receptor substrate 1 (IRS1) in 157 human brain autopsy cases that included AD, tauopathies, α-synucleinopathies, TDP-43 proteinopathies, and normal aging. IRS1-pS616, IRS1-pS312 and downstream target Akt-pS473 measures were most elevated in AD but were also significantly increased in the tauopathies: Pick's disease, corticobasal degeneration and progressive supranuclear palsy. Double immunofluorescence labeling showed frequent co-expression of IRS1-pS616 with pathologic tau in neurons and dystrophic neurites. To further investigate an association between tau and abnormal serine phosphorylation of IRS1, we examined the presence of abnormal IRS1-pS616 expression in pathological tau-expressing transgenic mice and demonstrated that abnormal IRS1-pS616 frequently co-localizes in tangle-bearing neurons. Conversely, we observed increased levels of hyperphosphorylated tau in the high-fat diet-fed mouse, a model of insulin resistance. These results provide confirmation and specificity that abnormal phosphorylation of IRS1 is a pathological feature of AD and other tauopathies, and provide support for an association between insulin resistance and abnormal tau as well as amyloid-β. PMID:25107476

  15. Tau Protein Mediates APP Intracellular Domain (AICD)-Induced Alzheimer’s-Like Pathological Features in Mice

    PubMed Central

    Dawson, Hana N.; Pimplikar, Sanjay W.

    2016-01-01

    Amyloid precursor protein (APP) is cleaved by gamma-secretase to simultaneously generate amyloid beta (Aβ) and APP Intracellular Domain (AICD) peptides. Aβ plays a pivotal role in Alzheimer’s disease (AD) pathogenesis but recent studies suggest that amyloid-independent mechanisms also contribute to the disease. We previously showed that AICD transgenic mice (AICD-Tg) exhibit AD-like features such as tau pathology, aberrant neuronal activity, memory deficits and neurodegeneration in an age-dependent manner. Since AD is a tauopathy and tau has been shown to mediate Aβ–induced toxicity, we examined the role of tau in AICD-induced pathological features. We report that ablating endogenous tau protects AICD-Tg mice from deficits in adult neurogenesis, seizure severity, short-term memory deficits and neurodegeneration. Deletion of tau restored abnormal phosphorylation of NMDA receptors, which is likely to underlie hyperexcitability and associated excitotoxicity in AICD-Tg mice. Conversely, overexpression of wild-type human tau aggravated receptor phosphorylation, impaired adult neurogenesis, memory deficits and neurodegeneration. Our findings show that tau is essential for mediating the deleterious effects of AICD. Since tau also mediates Aβ-induced toxic effects, our findings suggest that tau is a common downstream factor in both amyloid-dependent and–independent pathogenic mechanisms and therefore could be a more effective drug target for therapeutic intervention in AD. PMID:27459671

  16. Tau Protein Hyperphosphorylation and Aggregation in Alzheimer’s Disease and Other Tauopathies, and Possible Neuroprotective Strategies

    PubMed Central

    Šimić, Goran; Babić Leko, Mirjana; Wray, Selina; Harrington, Charles; Delalle, Ivana; Jovanov-Milošević, Nataša; Bažadona, Danira; Buée, Luc; de Silva, Rohan; Di Giovanni, Giuseppe; Wischik, Claude; Hof, Patrick R.

    2016-01-01

    Abnormal deposition of misprocessed and aggregated proteins is a common final pathway of most neurodegenerative diseases, including Alzheimer’s disease (AD). AD is characterized by the extraneuronal deposition of the amyloid β (Aβ) protein in the form of plaques and the intraneuronal aggregation of the microtubule-associated protein tau in the form of filaments. Based on the biochemically diverse range of pathological tau proteins, a number of approaches have been proposed to develop new potential therapeutics. Here we discuss some of the most promising ones: inhibition of tau phosphorylation, proteolysis and aggregation, promotion of intra- and extracellular tau clearance, and stabilization of microtubules. We also emphasize the need to achieve a full understanding of the biological roles and post-translational modifications of normal tau, as well as the molecular events responsible for selective neuronal vulnerability to tau pathology and its propagation. It is concluded that answering key questions on the relationship between Aβ and tau pathology should lead to a better understanding of the nature of secondary tauopathies, especially AD, and open new therapeutic targets and strategies. PMID:26751493

  17. Oligomerization of the protein tau in the Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Larini, Luca

    The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the microtubule associated protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau is extremely flexible and is classified as an intrinsically disordered protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules, which are an essential component of the cytoskeleton of the axon. The microtubule binding region of tau consists of 4 pseudo-repeats that are critical for aggregation as well. In this study, we focus on the aggregation propensity of different segments of the microtubule binding region as well as post-translational modifications that can alter tau dynamics and structure. We have performed replica exchange molecular dynamics simulations to characterize the ensemble of conformations of the monomer and small oligomers as well as how these structures are stabilized or destabilized by mutations and post-translational modifications.

  18. Microtubule-associated protein tau (tau) is a major antigenic component of paired helical filaments in Alzheimer disease.

    PubMed Central

    Kosik, K S; Joachim, C L; Selkoe, D J

    1986-01-01

    The detailed protein composition of the paired helical filaments (PHF) that accumulate in human neurons in aging and Alzheimer disease is unknown. However, the identity of certain components has been surmised by using immunocytochemical techniques. Whereas PHF share epitopes with neurofilament proteins and microtubule-associated protein (MAP) 2, we report evidence that the MAP tau (tau) appears to be their major antigenic component. Immunization of rabbits with NaDodSO4-extracted, partially purified PHF (free of normal cytoskeletal elements, including tau) consistently produces antibodies to tau but not, for example, to neurofilaments. Such PHF antibodies label all of the heterogeneous fetal and mature forms of tau from rat and human brain. Absorption of PHF antisera with heat-stable MAPs (rich in tau) results in almost complete loss of staining of neurofibrillary tangles (NFT) in human brain sections. An affinity-purified antibody to tau specifically labels NFT and the neurites of senile plaques in human brain sections as well as NaDodSO4-extracted NFT. tau-Immunoreactive NFT frequently extend into the apical dendrites of pyramidal neurons, suggesting an aberrant intracellular locus for this axonal protein. tau and PHF antibodies label tau proteins identically on electrophoretic transfer blots and stain the gel-excluded protein representing NaDodSO4-insoluble PHF in homogenates of human brain. The progressive accumulation of altered tau protein in neurons in Alzheimer disease may result in instability of microtubules, consequent loss of effective transport of molecules and organelles, and, ultimately, neuronal death. Images PMID:2424016

  19. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin

    PubMed Central

    Mansuroglu, Zeyni; Benhelli-Mokrani, Houda; Marcato, Vasco; Sultan, Audrey; Violet, Marie; Chauderlier, Alban; Delattre, Lucie; Loyens, Anne; Talahari, Smail; Bégard, Séverine; Nesslany, Fabrice; Colin, Morvane; Souès, Sylvie; Lefebvre, Bruno; Buée, Luc; Galas, Marie-Christine; Bonnefoy, Eliette

    2016-01-01

    Pericentromeric heterochromatin (PCH) gives rise to highly dense chromatin sub-structures rich in the epigenetic mark corresponding to the trimethylated form of lysine 9 of histone H3 (H3K9me3) and in heterochromatin protein 1α (HP1α), which regulate genome expression and stability. We demonstrate that Tau, a protein involved in a number of neurodegenerative diseases including Alzheimer’s disease (AD), binds to and localizes within or next to neuronal PCH in primary neuronal cultures from wild-type mice. Concomitantly, we show that the clustered distribution of H3K9me3 and HP1α, two hallmarks of PCH, is disrupted in neurons from Tau-deficient mice (KOTau). Such altered distribution of H3K9me3 that could be rescued by overexpressing nuclear Tau protein was also observed in neurons from AD brains. Moreover, the expression of PCH non-coding RNAs, involved in PCH organization, was disrupted in KOTau neurons that displayed an abnormal accumulation of stress-induced PCH DNA breaks. Altogether, our results demonstrate a new physiological function of Tau in directly regulating neuronal PCH integrity that appears disrupted in AD neurons. PMID:27605042

  20. Loss of Tau protein affects the structure, transcription and repair of neuronal pericentromeric heterochromatin.

    PubMed

    Mansuroglu, Zeyni; Benhelli-Mokrani, Houda; Marcato, Vasco; Sultan, Audrey; Violet, Marie; Chauderlier, Alban; Delattre, Lucie; Loyens, Anne; Talahari, Smail; Bégard, Séverine; Nesslany, Fabrice; Colin, Morvane; Souès, Sylvie; Lefebvre, Bruno; Buée, Luc; Galas, Marie-Christine; Bonnefoy, Eliette

    2016-01-01

    Pericentromeric heterochromatin (PCH) gives rise to highly dense chromatin sub-structures rich in the epigenetic mark corresponding to the trimethylated form of lysine 9 of histone H3 (H3K9me3) and in heterochromatin protein 1α (HP1α), which regulate genome expression and stability. We demonstrate that Tau, a protein involved in a number of neurodegenerative diseases including Alzheimer's disease (AD), binds to and localizes within or next to neuronal PCH in primary neuronal cultures from wild-type mice. Concomitantly, we show that the clustered distribution of H3K9me3 and HP1α, two hallmarks of PCH, is disrupted in neurons from Tau-deficient mice (KOTau). Such altered distribution of H3K9me3 that could be rescued by overexpressing nuclear Tau protein was also observed in neurons from AD brains. Moreover, the expression of PCH non-coding RNAs, involved in PCH organization, was disrupted in KOTau neurons that displayed an abnormal accumulation of stress-induced PCH DNA breaks. Altogether, our results demonstrate a new physiological function of Tau in directly regulating neuronal PCH integrity that appears disrupted in AD neurons. PMID:27605042

  1. Role of PrP(C) Expression in Tau Protein Levels and Phosphorylation in Alzheimer's Disease Evolution.

    PubMed

    Vergara, C; Ordóñez-Gutiérrez, L; Wandosell, F; Ferrer, I; del Río, J A; Gavín, R

    2015-01-01

    Alzheimer's disease (AD) is characterized by the presence of amyloid plaques mainly consisting of hydrophobic β-amyloid peptide (Aβ) aggregates and neurofibrillary tangles (NFTs) composed principally of hyperphosphorylated tau. Aβ oligomers have been described as the earliest effectors to negatively affect synaptic structure and plasticity in the affected brains, and cellular prion protein (PrP(C)) has been proposed as receptor for these oligomers. The most widely accepted theory holds that the toxic effects of Aβ are upstream of change in tau, a neuronal microtubule-associated protein that promotes the polymerization and stabilization of microtubules. However, tau is considered decisive for the progression of neurodegeneration, and, indeed, tau pathology correlates well with clinical symptoms such as dementia. Different pathways can lead to abnormal phosphorylation, and, as a consequence, tau aggregates into paired helical filaments (PHF) and later on into NFTs. Reported data suggest a regulatory tendency of PrP(C) expression in the development of AD, and a putative relationship between PrP(C) and tau processing is emerging. However, the role of tau/PrP(C) interaction in AD is poorly understood. In this study, we show increased susceptibility to Aβ-derived diffusible ligands (ADDLs) in neuronal primary cultures from PrP(C) knockout mice, compared to wild-type, which correlates with increased tau expression. Moreover, we found increased PrP(C) expression that paralleled with tau at early ages in an AD murine model and in early Braak stages of AD in affected individuals. Taken together, these results suggest a protective role for PrP(C) in AD by downregulating tau expression, and they point to this protein as being crucial in the molecular events that lead to neurodegeneration in AD. PMID:24965601

  2. Aggregation propensity of critical regions of the protein Tau

    NASA Astrophysics Data System (ADS)

    Muthee, Micaiah; Ahmed, Azka; Larini, Luca

    The Alzheimer's disease is an irreversible, progressive brain disorder that slowly destroys memory and thinking skills, which eventually leads to the ability to not able to carry out the simplest tasks. The Alzheimer's disease is characterized by the formation of protein aggregates both within and outside of the brain's cells, the neurons. Within the neurons, the aggregation of the protein tau leads to the destruction of the microtubules in the axon of the neuron. Tau belongs to a group of proteins referred to as Microtubule-Associated Proteins. It is extremely flexible and is classified as an intrinsically unstructured protein due to its low propensity to form secondary structure. Tau promotes tubulin assembly into microtubules thereby stabilizing the cytoskeleton of the axon of the neurons. The microtubule binding region of tau consists of 4 pseudo-repeats. In this study, we will focus on the aggregation propensity of two fragments. In this study we will focus on the PHF43 fragment that contains the third pseudo-repeat and has been shown experimentally to aggregate readily. Another fragment that contains the second pseudo-repeat will be considered as well. Mutations in this region are associated with various form of dementia and for this reason we will consider the mutant P301L.

  3. Amyloid Beta and Tau Proteins as Therapeutic Targets for Alzheimer's Disease Treatment: Rethinking the Current Strategy

    PubMed Central

    Mondragón-Rodríguez, Siddhartha; Perry, George; Zhu, Xiongwei; Boehm, Jannic

    2012-01-01

    Alzheimer's disease (AD) is defined by the concurrence of accumulation of abnormal aggregates composed of two proteins: Amyloid beta (Aβ) and tau, and of cellular changes including neurite degeneration and loss of neurons and cognitive functions. Based on their strong association with disease, genetically and pathologically, it is not surprising that there has been a focus towards developing therapies against the aggregated structures. Unfortunately, current therapies have but mild benefit. With this in mind we will focus on the relationship of synaptic plasticity with Aβ and tau protein and their role as potential targets for the development of therapeutic drugs. Finally, we will provide perspectives in developing a multifactorial strategy for AD treatment. PMID:22482074

  4. Phospholipid transfer protein (PLTP) reduces phosphorylation of tau in human neuronal cells (HCN2)

    PubMed Central

    Dong, Weijiang; Albers, John J.; Vuletic, Simona

    2009-01-01

    Tau function is regulated by phosphorylation, and abnormal tau phosphorylation in neurons is one of the key processes associated with development of Alzheimer’s disease and other tauopathies. In this study we provide evidence that phospholipid transfer protein (PLTP), one of the main lipid transfer proteins in the brain, significantly reduces levels of phosphorylated tau, and increases levels of the inactive form of glycogen synthase kinase-3β (GSK3β) in HCN2 cells. Furthermore, inhibition of the phosphatidylinositol-3 kinase (PI3K) reversed the PLTP-induced increase in levels of GSK3β phosphorylated at serine 9 (pGSK3βSer9) and partially reversed the PLTP-induced reduction in tau phosphorylation. We provide evidence that the PLTP-induced changes are not due to activation of Disabled-1 (Dab1), since PLTP reduced levels of total and phosphorylated Dab1 in HCN2 cells. We have also shown that inhibition of tyrosine kinase activity of insulin receptor (IR) and/or insulin-like growth factor 1 (IGF1) receptor (IGFR) reverses PLTP-induced increase in levels of phosphorylated Akt (pAktThr308 and pAktSer473), suggesting that PLTP-mediated activation of the PI3K/Akt pathway is dependent on IR/IGFR receptor tyrosine kinase activity. Our study suggests that PLTP may be an important modulator of signal transduction pathways in human neurons. PMID:19472218

  5. Identification of Novel Tau Interactions with Endoplasmic Reticulum Proteins in Alzheimer’s Disease Brain

    PubMed Central

    Meier, Shelby; Bell, Michelle; Lyons, Danielle N.; Ingram, Alexandria; Chen, Jing; Gensel, John C.; Zhu, Haining; Nelson, Peter T.; Abisambra, Jose F.

    2016-01-01

    Alzheimer’s disease (AD) is a progressive neurodegenerative disorder that is pathologically characterized by the formation of extracellular amyloid plaques and intraneuronal tau tangles. We recently identified that tau associates with proteins known to participate in endoplasmic reticulum (ER)-associated degradation (ERAD); consequently, ERAD becomes dysfunctional and causes neurotoxicity. We hypothesized that tau associates with other ER proteins, and that this association could also lead to cellular dysfunction in AD. Portions of human AD and non-demented age matched control brains were fractionated to obtain microsomes, from which tau was co-immunoprecipitated. Samples from both conditions containing tau and its associated proteins were analyzed by mass spectrometry. In total, we identified 91 ER proteins that co-immunoprecipitated with tau; 15.4% were common between AD and control brains, and 42.9% only in the AD samples. The remainder, 41.8% of the proteins, was only seen in the control brain samples. We identified a variety of previously unreported interactions between tau and ER proteins. These proteins participate in over sixteen functional categories, the most abundant being involved in RNA translation. We then determined that association of tau with these ER proteins was different between the AD and control samples. We found that tau associated equally with the ribosomal protein L28 but more robustly with the ribosomal protein P0. These data suggest that the differential association between tau and ER proteins in disease could reveal the pathogenic processes by which tau induces cellular dysfunction. PMID:26402096

  6. Phosphorylation of tau protein over time in rats subjected to transient brain ischemia.

    PubMed

    Song, Bo; Ao, Qiang; Wang, Zhen; Liu, Weiqiang; Niu, Ying; Shen, Qin; Zuo, Huancong; Zhang, Xiufang; Gong, Yandao

    2013-12-01

    Transient brain ischemia has been shown to induce hyperphosphorylation of the microtubule-associated protein tau. To further determine the mechanisms underlying these processes, we investigated the interaction between tau, glycogen synthase kinase (GSK)-3β and protein phos-phatase 2A. The results confirmed that tau protein was dephosphorylated during brain ischemia; in addition, the activity of GSK-3β was increased and the activity of protein phosphatase 2A was decreased. After reperfusion, tau protein was hyperphosphorylated, the activity of GSK-3β was decreased and the activity of protein phosphatase 2A remained low. Importantly, the interaction of tau with GSK-3β and protein phosphatase 2A was altered during ischemia and reperfusion. Lithium chloride could affect tau phosphorylation by regulating the interaction of tau with GSK-3β and protein phosphatase 2A, and improve learning and memory ability of rats after transient brain ischemia. The present study demonstrated that it was the interaction of tau with GSK-3β and protein phosphatase 2A, rather than their individual activities, that dominates the phosphorylation of tau in transient brain ischemia. Hyperphosphorylated tau protein may play an important role in the evolution of brain injury in ischemic stroke. The neuroprotective effects of lithium chloride partly depend on the inhibition of tau phosphorylation during transient brain ischemia. PMID:25206638

  7. Neuropathology of Frontotemporal Lobar Degeneration–Tau (FTLD-Tau)

    PubMed Central

    Dickson, Dennis W.; Kouri, Naomi; Murray, Melissa E.; Josephs, Keith A.

    2011-01-01

    A clinically and pathologically heterogeneous type of frontotemporal lobar degeneration has abnormal tau pathology in neurons and glia (FTLD-tau). Familial FTLD-tau is usually due to mutations in the tau gene (MAPT). Even FTLD-tau determined by MAPT mutations ha s clinical and pathologic heterogeneity. Tauopathies are subclassified according to the predominant species of tau that accumulates, with respect to alternative splicing of MAPT, with tau proteins containing 3 (3R) or 4 repeats (4R) of ~ 32 amino acids in the microtubule binding domain. In Pick's disease (PiD), 3R tau predominates, whereas 4R tau is characteristic of corticobasal degeneration (CBD) and progressive supranuclear palsy (PSP). Depending upon the specific mutation in MAPT, familial FTLD-tau can have 3R, 4R or a combination of 3R and 4R tau. PiD is the least common FTLD-tau characterized by neuronal Pick bodies in a stereotypic neuroanatomical distribution. PSP and CBD are more common than PiD and have extensive clinical and pathologic overlap, with no distinctive clinical syndrome or biomarker that permits their differentiation. Diagnosis rests upon postmortem examination of the brain and demonstration of globose tangles, oligodendroglial coiled bodies and tufted astrocytes in PSP or threads, pretangles and astrocytic plaques in CBD. The anatomical distribution of tau pathology determines the clinical presentation of PSP and CBD, as well as PiD. The basis for this selective cortical vulnerability in FTLD-tau is unknown. PMID:21720721

  8. Abnormalities of plasma cytokines and spleen in senile APP/PS1/Tau transgenic mouse model

    PubMed Central

    Yang, Seung-Hoon; Kim, Jiyoon; Lee, Michael Jisoo; Kim, YoungSoo

    2015-01-01

    The blood-based diagnosis has a potential to provide an alternative approach for easy diagnosis of Alzheimer’s disease (AD) with less invasiveness and low-cost. However, present blood-based AD diagnosis mainly focuses on measuring the plasma Aβ level because no other biomarkers are found to possess evident transport mechanisms to pass the blood-brain barrier. In order to avoid diagnosing non-demented individuals with Aβ abnormality, finding additional biomarkers to supplement plasma Aβ is essential. In this study, we introduce potential neurodegenerative biomarkers for blood-based diagnosis. We observed severe splenomegaly and structural destruction in the spleen with significantly decreased B lymphocytes in senile APPswe, PS1M146V and TauP301L transgenic mice. We also found that inflammatory cytokines associated with splenic dysfunction were altered in the plasma of these mice. These findings suggest potential involvement of the splenic dysfunction in AD and the importance of biomarker level alterations in the plasma as putative diagnostic targets for AD. PMID:26503550

  9. Tau exon 10 alternative splicing and tauopathies

    PubMed Central

    Liu, Fei; Gong, Cheng-Xin

    2008-01-01

    Abnormalities of microtubule-associated protein tau play a central role in neurofibrillary degeneration in several neurodegenerative disorders that collectively called tauopathies. Six isoforms of tau are expressed in adult human brain, which result from alternative splicing of pre-mRNA generated from a single tau gene. Alternative splicing of tau exon 10 results in tau isoforms containing either three or four microtubule-binding repeats (3R-tau and 4R-tau, respectively). Approximately equal levels of 3R-tau and 4R-tau are expressed in normal adult human brain, but the 3R-tau/4R-tau ratio is altered in the brains in several tauopathies. Discovery of silence mutations and intronic mutations of tau gene in some individuals with frontotemporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17), which only disrupt tau exon 10 splicing but do not alter tau's primary sequence, demonstrates that dysregulation of tau exon 10 alternative splicing and consequently of 3R-tau/4R-tau balance is sufficient to cause neurodegeneration and dementia. Here, we review the gene structure, transcripts and protein isoforms of tau, followed by the regulation of exon 10 splicing that determines the expression of 3R-tau or 4R-tau. Finally, dysregulation of exon 10 splicing of tau in several tauopathies is discussed. Understanding the molecular mechanisms by which tau exon 10 splicing is regulated and how it is disrupted in tauopathies will provide new insight into the mechanisms of these tauopathies and help identify new therapeutic targets to treat these disorders. PMID:18616804

  10. Effect of the microtubule-associated protein tau on dynamics of single-headed motor proteins KIF1A

    NASA Astrophysics Data System (ADS)

    Sparacino, J.; Farías, M. G.; Lamberti, P. W.

    2014-02-01

    Intracellular transport based on molecular motors and its regulation are crucial to the functioning of cells. Filamentary tracks of the cells are abundantly decorated with nonmotile microtubule-associated proteins, such as tau. Motivated by experiments on kinesin-tau interactions [Dixit et al., Science 319, 1086 (2008), 10.1126/science.1152993] we developed a stochastic model of interacting single-headed motor proteins KIF1A that also takes into account the interactions between motor proteins and tau molecules. Our model reproduces experimental observations and predicts significant effects of tau on bound time and run length which suggest an important role of tau in regulation of kinesin-based transport.

  11. Altered phosphorylation of. tau. protein in heat-shocked rats and patients with Alzheimer disease

    SciTech Connect

    Papasozomenos, S.C.; Yuan Su Baylor College of Medicine, Houston, TX )

    1991-05-15

    Six hours after heat shocking 2- to 3-month-old male and female Sprague-Dawley rats at 42C for 15 min, the authors analyzed {tau} protein immunoreactivity in SDS extracts of cerebrums and peripheral nerves by using immunoblot analysis and immunohistochemistry with the anti-{tau} monoclonal antibody Tau-1, which recognizes a phosphate-dependent nonphosphorylated epitope, and with {sup 125}I-labeled protein A. In the cerebal extracts, the authors found altered phosphorylation of {tau} in heat-shocked females, characterized by a marked reduction in the amount of nonphosphorylated {tau}, a doubling of the ratio of total (phosphorylated plus nonphosphorylated) {tau} to nonphosphorylated {tau}, and the appearance of the slowest moving phosphorylated {tau} polypeptide (68 kDa). Similar, but milder, changes were observed in male rats. Quantitative immunoblot analysis of cortex and the underlying white matter with Tau-1 and {sup 125}I-labeled protein A showed that the amount of phosphorylated {tau} progressively increased in the Alzheimer disease-affected cerebral cortex, while concurrently a proportionally lesser amount of {tau} entered the white matter axons. The similar findings for the rat heat-shock model and Alzheimer disease suggest that life stressors may play a role in the etiopathogenesis of Alzheimer's disease.

  12. Structural elucidation of the interaction between neurodegenerative disease-related tau protein with model lipid membranes

    NASA Astrophysics Data System (ADS)

    Jones, Emmalee M.

    A protein's sequence of amino acids determines how it folds. That folded structure is linked to protein function, and misfolding to dysfunction. Protein misfolding and aggregation into beta-sheet rich fibrillar aggregates is connected with over 20 neurodegenerative diseases, including Alzheimer's disease (AD). AD is characterized in part by misfolding, aggregation and deposition of the microtubule associated tau protein into neurofibrillary tangles (NFTs). However, two questions remain: What is tau's fibrillization mechanism, and what is tau's cytotoxicity mechanism? Tau is prone to heterogeneous interactions, including with lipid membranes. Lipids have been found in NFTs, anionic lipid vesicles induced aggregation of the microtubule binding domain of tau, and other protein aggregates induced ion permeability in cells. This evidence prompted our investigation of tau's interaction with model lipid membranes to elucidate the structural perturbations those interactions induced in tau protein and in the membrane. We show that although tau is highly charged and soluble, it is highly surface active and preferentially interacts with anionic membranes. To resolve molecular-scale structural details of tau and model membranes, we utilized X-ray and neutron scattering techniques. X-ray reflectivity indicated tau aggregated at air/water and anionic lipid membrane interfaces and penetrated into membranes. More significantly, membrane interfaces induced tau protein to partially adopt a more compact conformation with density similar to folded protein and ordered structure characteristic of beta-sheet formation. This suggests possible membrane-based mechanisms of tau aggregation. Membrane morphological changes were seen using fluorescence microscopy, and X-ray scattering techniques showed tau completely disrupts anionic membranes, suggesting an aggregate-based cytotoxicity mechanism. Further investigation of protein constructs and a "hyperphosphorylation" disease mimic helped

  13. Ectosomes: a new mechanism for non-exosomal secretion of tau protein.

    PubMed

    Dujardin, Simon; Bégard, Séverine; Caillierez, Raphaëlle; Lachaud, Cédrick; Delattre, Lucie; Carrier, Sébastien; Loyens, Anne; Galas, Marie-Christine; Bousset, Luc; Melki, Ronald; Aurégan, Gwennaëlle; Hantraye, Philippe; Brouillet, Emmanuel; Buée, Luc; Colin, Morvane

    2014-01-01

    Tau is a microtubule-associated protein that aggregates in neurodegenerative disorders known as tauopathies. Recently, studies have suggested that Tau may be secreted and play a role in neural network signalling. However, once deregulated, secreted Tau may also participate in the spreading of Tau pathology in hierarchical pathways of neurodegeneration. The mechanisms underlying neuron-to-neuron Tau transfer are still unknown; given the known role of extra-cellular vesicles in cell-to-cell communication, we wondered whether these vesicles could carry secreted Tau. We found, among vesicles, that Tau is predominately secreted in ectosomes, which are plasma membrane-originating vesicles, and when it accumulates, the exosomal pathway is activated. PMID:24971751

  14. Pseudophosphorylation of Tau at distinct epitopes or the presence of the P301L mutation targets the microtubule-associated protein Tau to dendritic spines.

    PubMed

    Xia, Di; Li, Chuanzhou; Götz, Jürgen

    2015-05-01

    Alzheimer's disease is characterized by the accumulation of amyloid-β (Aβ) and Tau in the brain. In mature neurons, Tau is concentrated in the axon and found at lower levels in the dendrite where it is required for targeting Fyn to the spines. Here Fyn mediates Aβ toxicity, which is vastly abrogated when Tau is either deleted or a truncated form of Tau (Tau(1-255)) is co-expressed. Interestingly, MAP2, a microtubule-binding protein with mainly dendritic localization that shares Fyn-binding motifs with Tau, does not mediate Aβ's synaptic toxicity in the absence of Tau. Here we show in hippocampal neurons that endogenous Tau enters the entire spine, albeit at low levels, whereas MAP2 only enters its neck or is restricted to the dendritic shaft. Based on an extensive mutagenesis study, we also reveal that the spine localization of Tau is facilitated by deletion of the microtubule-binding repeat domain. When distinct phosphorylation sites (AT180-T231/S235, 12E8-S262/S356, PHF1-S396/S404) were pseudophosphorylated (with glutamic acid, using alanine replacements as controls), Tau targeting to spines was markedly increased, whereas the pseudophosphorylation of the late phospho-epitope S422 had no effect. In determining the role physiological Fyn has in the spine localization of Tau, we found that neither were endogenous Tau levels reduced in Fyn knockout compared with wild-type synaptosomal brain fractions nor was the spine localization of over-expressed pseudophosphorylated or P301L Tau. This demonstrates that although Fyn targeting to the spine is Tau dependent, elevated levels of phosphorylated Tau or P301L Tau can enter the spine in a Fyn-independent manner. PMID:25558816

  15. Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52

    NASA Astrophysics Data System (ADS)

    Jo, Chulman; Gundemir, Soner; Pritchard, Susanne; Jin, Youngnam N.; Rahman, Irfan; Johnson, Gail V. W.

    2014-03-01

    Nuclear factor erythroid 2-related factor 2 (Nrf2) is a pivotal transcription factor in the defence against oxidative stress. Here we provide evidence that activation of the Nrf2 pathway reduces the levels of phosphorylated tau by induction of an autophagy adaptor protein NDP52 (also known as CALCOCO2) in neurons. The expression of NDP52, which we show has three antioxidant response elements (AREs) in its promoter region, is strongly induced by Nrf2, and its overexpression facilitates clearance of phosphorylated tau in the presence of an autophagy stimulator. In Nrf2-knockout mice, phosphorylated and sarkosyl-insoluble tau accumulates in the brains concurrent with decreased levels of NDP52. Moreover, NDP52 associates with phosphorylated tau from brain cortical samples of Alzheimer disease cases, and the amount of phosphorylated tau in sarkosyl-insoluble fractions is inversely proportional to that of NDP52. These results suggest that NDP52 plays a key role in autophagy-mediated degradation of phosphorylated tau in vivo.

  16. EFhd2 is a novel amyloid protein associated with pathological tau in Alzheimer's disease.

    PubMed

    Ferrer-Acosta, Yancy; Rodríguez-Cruz, Eva N; Orange, François; De Jesús-Cortés, Hector; Madera, Bismark; Vaquer-Alicea, Jaime; Ballester, Juan; Guinel, Maxime J-F; Bloom, George S; Vega, Irving E

    2013-06-01

    EFhd2 is a conserved calcium-binding protein, abundant within the central nervous system. Previous studies identified EFhd2 associated with pathological forms of tau proteins in the tauopathy mouse model JNPL3, which expresses the human tau(P301L) mutant. This association was validated in human tauopathies, such as Alzheimer's disease (AD). However, the role that EFhd2 may play in tauopathies is still unknown. Here, we show that EFhd2 formed amyloid structures in vitro, a capability that is reduced by calcium ions. Electron microscopy (EM) analyses demonstrated that recombinant EFhd2 formed filamentous structures. EM analyses of sarkosyl-insoluble fractions derived from human AD brains also indicated that EFhd2 co-localizes with aggregated tau proteins and formed granular structures. Immunohistological analyses of brain slices demonstrated that EFhd2 co-localizes with pathological tau proteins in AD brains, confirming the co-aggregation of EFhd2 and pathological tau. Furthermore, EFhd2's coiled-coil domain mediated its self-oligomerization in vitro and its association with tau proteins in JNPL3 mouse brain extracts. The results demonstrate that EFhd2 is a novel amyloid protein associated with pathological tau proteins in AD brain and that calcium binding may regulate the formation of EFhd2's amyloid structures. Hence, EFhd2 may play an important role in the pathobiology of tau-mediated neurodegeneration. PMID:23331044

  17. The Metamorphic Nature of the Tau Protein: Dynamic Flexibility Comes at a Cost.

    PubMed

    Sabbagh, Jonathan J; Dickey, Chad A

    2016-01-01

    Accumulation of the microtubule associated protein tau occurs in several neurodegenerative diseases including Alzheimer's disease (AD). The tau protein is intrinsically disordered, giving it unique structural properties that can be dynamically altered by post-translational modifications such as phosphorylation and cleavage. Over the last decade, technological advances in nuclear magnetic resonance (NMR) spectroscopy and structural modeling have permitted more in-depth insights into the nature of tau. These studies have helped elucidate how metamorphism of tau makes it ideally suited for dynamic microtubule regulation, but how it also facilitates tau self-assembly, oligomerization, and neurotoxicity. This review will focus on how the distinct structure of tau governs its function, accumulation, and toxicity as well as how other cellular factors such as molecular chaperones control these processes. PMID:26834532

  18. The Metamorphic Nature of the Tau Protein: Dynamic Flexibility Comes at a Cost

    PubMed Central

    Sabbagh, Jonathan J.; Dickey, Chad A.

    2016-01-01

    Accumulation of the microtubule associated protein tau occurs in several neurodegenerative diseases including Alzheimer's disease (AD). The tau protein is intrinsically disordered, giving it unique structural properties that can be dynamically altered by post-translational modifications such as phosphorylation and cleavage. Over the last decade, technological advances in nuclear magnetic resonance (NMR) spectroscopy and structural modeling have permitted more in-depth insights into the nature of tau. These studies have helped elucidate how metamorphism of tau makes it ideally suited for dynamic microtubule regulation, but how it also facilitates tau self-assembly, oligomerization, and neurotoxicity. This review will focus on how the distinct structure of tau governs its function, accumulation, and toxicity as well as how other cellular factors such as molecular chaperones control these processes. PMID:26834532

  19. Curcumin improves tau-induced neuronal dysfunction of nematodes.

    PubMed

    Miyasaka, Tomohiro; Xie, Ce; Yoshimura, Satomi; Shinzaki, Yuki; Yoshina, Sawako; Kage-Nakadai, Eriko; Mitani, Shohei; Ihara, Yasuo

    2016-03-01

    Tau is a key protein in the pathogenesis of various neurodegenerative diseases, which are categorized as tauopathies. Because the extent of tau pathologies is closely linked to that of neuronal loss and the clinical symptoms in Alzheimer's disease, anti-tau therapeutics, if any, could be beneficial to a broad spectrum of tauopathies. To learn more about tauopathy, we developed a novel transgenic nematode (Caenorhabditis elegans) model that expresses either wild-type or R406W tau in all the neurons. The wild-type tau-expressing worms exhibited uncoordinated movement (Unc) and neuritic abnormalities. Tau accumulated in abnormal neurites that lost microtubules. Similar abnormalities were found in the worms that expressed low levels of R406W-tau but were not in those expressing comparative levels of wild-type tau. Biochemical studies revealed that tau is aberrantly phosphorylated but forms no detergent-insoluble aggregates. Drug screening performed in these worms identified curcumin, a major phytochemical compound in turmeric, as a compound that reduces not only Unc but also the neuritic abnormalities in both wild-type and R406W tau-expressing worms. Our observations suggest that microtubule stabilization mediates the antitoxicity effect of curcumin. Curcumin is also effective in the worms expressing tau fragment, although it does not prevent the formation of tau-fragment dimers. These data indicate that curcumin improves the tau-induced neuronal dysfunction that is independent of insoluble aggregates of tau. PMID:26923403

  20. Sex hormone-related neurosteroids differentially rescue bioenergetic deficits induced by amyloid-β or hyperphosphorylated tau protein.

    PubMed

    Grimm, Amandine; Biliouris, Emily E; Lang, Undine E; Götz, Jürgen; Mensah-Nyagan, Ayikoe Guy; Eckert, Anne

    2016-01-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease marked by a progressive cognitive decline. Metabolic impairments are common hallmarks of AD, and amyloid-β (Aβ) peptide and hyperphosphorylated tau protein--the two foremost histopathological signs of AD--have been implicated in mitochondrial dysfunction. Neurosteroids have recently shown promise in alleviating cognitive and neuronal sequelae of AD. The present study evaluates the impact of neurosteroids belonging to the sex hormone family (progesterone, estradiol, estrone, testosterone, 3α-androstanediol) on mitochondrial dysfunction in cellular models of AD: human neuroblastoma cells (SH-SY5Y) stably transfected with constructs encoding (1) the human amyloid precursor protein (APP) resulting in overexpression of APP and Aβ, (2) wild-type tau (wtTau), and (3) mutant tau (P301L), that induces abnormal tau hyperphosphorylation. We show that while APP and P301L cells both display a drop in ATP levels, they present distinct mitochondrial impairments with regard to their bioenergetic profiles. The P301L cells presented a decreased maximal respiration and spare respiratory capacity, while APP cells exhibited, in addition, a decrease in basal respiration, ATP turnover, and glycolytic reserve. All neurosteroids showed beneficial effects on ATP production and mitochondrial membrane potential in APP/Aβ overexpressing cells while only progesterone and estradiol increased ATP levels in mutant tau cells. Of note, testosterone was more efficient in alleviating Aβ-induced mitochondrial deficits, while progesterone and estrogen were the most effective neurosteroids in our model of AD-related tauopathy. Our findings lend further support to the neuroprotective effects of neurosteroids in AD and may open new avenues for the development of gender-specific therapeutic approaches in AD. PMID:26198711

  1. Sodium selenate retards epileptogenesis in acquired epilepsy models reversing changes in protein phosphatase 2A and hyperphosphorylated tau.

    PubMed

    Liu, Shi-Jie; Zheng, Ping; Wright, David K; Dezsi, Gabi; Braine, Emma; Nguyen, Thanh; Corcoran, Niall M; Johnston, Leigh A; Hovens, Christopher M; Mayo, Jamie N; Hudson, Matthew; Shultz, Sandy R; Jones, Nigel C; O'Brien, Terence J

    2016-07-01

    There are no treatments in clinical practice known to mitigate the neurobiological processes that convert a healthy brain into an epileptic one, a phenomenon known as epileptogenesis. Downregulation of protein phosphatase 2A, a protein that causes the hyperphosphorylation of tau, is implicated in neurodegenerative diseases commonly associated with epilepsy, such as Alzheimer's disease and traumatic brain injury. Here we used the protein phosphatase 2A activator sodium selenate to investigate the role of protein phosphatase 2A in three different rat models of epileptogenesis: amygdala kindling, post-kainic acid status epilepticus, and post-traumatic epilepsy. Protein phosphatase 2A activity was decreased, and tau phosphorylation increased, in epileptogenic brain regions in all three models. Continuous sodium selenate treatment mitigated epileptogenesis and prevented the biochemical abnormalities, effects which persisted after drug withdrawal. Our studies indicate that limbic epileptogenesis is associated with downregulation of protein phosphatase 2A and the hyperphosphorylation of tau, and that targeting this mechanism with sodium selenate is a potential anti-epileptogenic therapy. PMID:27289302

  2. Tau protein is essential for stress-induced brain pathology.

    PubMed

    Lopes, Sofia; Vaz-Silva, João; Pinto, Vitor; Dalla, Christina; Kokras, Nikolaos; Bedenk, Benedikt; Mack, Natalie; Czisch, Michael; Almeida, Osborne F X; Sousa, Nuno; Sotiropoulos, Ioannis

    2016-06-28

    Exposure to chronic stress is frequently accompanied by cognitive and affective disorders in association with neurostructural adaptations. Chronic stress was previously shown to trigger Alzheimer's-like neuropathology, which is characterized by Tau hyperphosphorylation and missorting into dendritic spines followed by memory deficits. Here, we demonstrate that stress-driven hippocampal deficits in wild-type mice are accompanied by synaptic missorting of Tau and enhanced Fyn/GluN2B-driven synaptic signaling. In contrast, mice lacking Tau [Tau knockout (Tau-KO) mice] do not exhibit stress-induced pathological behaviors and atrophy of hippocampal dendrites or deficits of hippocampal connectivity. These findings implicate Tau as an essential mediator of the adverse effects of stress on brain structure and function. PMID:27274066

  3. Controlled Cortical Impact Traumatic Brain Injury in 3xTg-AD Mice Causes Acute Intra-axonal Amyloid-beta Accumulation and Independently Accelerates the Development of Tau Abnormalities

    PubMed Central

    Tran, Hien T; LaFerla, Frank M.; Holtzman, David M.; Brody, David L.

    2011-01-01

    Alzheimer’s disease (AD) is a neurodegenerative disorder characterized pathologically by progressive neuronal loss, extracellular plaques containing the amyloid-β (Aβ) peptides, and neurofibrillary tangles composed of hyperphosphorylated tau proteins. Aβ is thought to act upstream of tau, affecting its phosphorylation and therefore aggregation state. One of the major risk factors for AD is traumatic brain injury (TBI). Acute intra-axonal Aβ and diffuse extracellular plaques occur in approximately 30% of human subjects following severe TBI. Intra-axonal accumulations of tau but not tangle-like pathologies have also been found in these patients. Whether and how these acute accumulations contribute to subsequent AD development is not known, and the interaction between Aβ and tau in the setting of TBI has not been investigated. Here, we report that controlled cortical impact TBI in 3xTg-AD mice resulted in intra-axonal Aβ accumulations and increased phospho-tau immunoreactivity at 24 hours and up to 7 days post TBI. Given these findings, we investigated the relationship between Aβ and tau pathologies following trauma in this model by systemic treatment of Compound E to inhibit γ-secrectase activity, a proteolytic process required for Aβ production. Compound E treatment successfully blocked post-traumatic Aβ accumulation in these injured mice at both time points. However, tau pathology was not affected. Our data support a causal role for TBI in acceleration of AD-related pathologies, and suggest that TBI may independently affect Aβ and tau abnormalities. Future studies will be required to assess the behavioral and long-term neurodegenerative consequences of these pathologies. PMID:21715616

  4. Alzheimer's amyloid-β oligomers rescue cellular prion protein induced tau reduction via the Fyn pathway.

    PubMed

    Chen, Rong-Jie; Chang, Wei-Wei; Lin, Yu-Chun; Cheng, Pei-Lin; Chen, Yun-Ru

    2013-09-18

    Amyloid-β (Aβ) and tau are the pathogenic hallmarks in Alzheimer's disease (AD). Aβ oligomers are considered the actual toxic entities, and the toxicity relies on the presence of tau. Recently, Aβ oligomers have been shown to specifically interact with cellular prion protein (PrP(C)) where the role of PrP(C) in AD is still not fully understood. To investigate the downstream mechanism of PrP(C) and Aβ oligomer interaction and their possible relationships to tau, we examined tau expression in human neuroblastoma BE(2)-C cells transfected with murine PrP(C) and studied the effect under Aβ oligomer treatment. By Western blotting, we found that PrP(C) overexpression down-regulated tau protein and Aβ oligomer binding alleviated the tau reduction induced by wild type but not M128V PrP(C), the high AD risk polymorphic allele in human prion gene. PrP(C) lacking the Aβ oligomer binding site was incapable of rescuing the level of tau reduction. Quantitative RT-PCR showed the PrP(C) effect was attributed to tau reduction at the transcription level. Treatment with Fyn pathway inhibitors, Fyn kinase inhibitor PP2 and MEK inhibitor U0126, reversed the PrP(C)-induced tau reduction and Aβ oligomer treatment modulated Fyn kinase activity. The results suggested Fyn pathway regulated Aβ-PrP(C)-tau signaling. Overall, our results demonstrated that PrP(C) down-regulated tau via the Fyn pathway and the effect can be regulated by Aβ oligomers. Our study facilitated the understanding of molecular mechanisms among PrP(C), tau, and Aβ oligomers. PMID:23805846

  5. Reduced Tau protein expression is associated with frontotemporal degeneration with progranulin mutation.

    PubMed

    Papegaey, Anthony; Eddarkaoui, Sabiha; Deramecourt, Vincent; Fernandez-Gomez, Francisco-Jose; Pantano, Pierre; Obriot, Hélène; Machala, Camille; Anquetil, Vincent; Camuzat, Agnès; Brice, Alexis; Maurage, Claude-Alain; Le Ber, Isabelle; Duyckaerts, Charles; Buée, Luc; Sergeant, Nicolas; Buée-Scherrer, Valérie

    2016-01-01

    Reduction of Tau protein expression was described in 2003 by Zhukareva et al. in a variant of frontotemporal lobar degeneration (FTLD) referred to as diagnosis of dementia lacking distinctive histopathology, then re-classified as FTLD with ubiquitin inclusions. However, the analysis of Tau expression in FTLD has not been reconsidered since then. Knowledge of the molecular basis of protein aggregates and genes that are mutated in the FTLD spectrum would enable to determine whether the "Tau-less" is a separate pathological entity or if it belongs to an existing subclass of FTLD. To address this question, we have analyzed Tau expression in the frontal brain areas from control, Alzheimer's disease and FTLD cases, including FTLD- Tau (MAPT), FTLD-TDP (sporadic, FTLD-TDP-GRN, FTLD-TDP-C9ORF72) and sporadic FTLD-FUS, using western blot and 2D-DIGE (Two-Dimensional fluorescence Difference Gel Electrophoresis) approaches. Surprisingly, we found that most of the FTLD-TDP-GRN brains are characterized by a huge reduction of Tau protein expression without any decrease in Tau mRNA levels. Interestingly, only cases affected by point mutations, rather than cases with total deletion of one GRN allele, seem to be affected by this reduction of Tau protein expression. Moreover, proteomic analysis highlighted correlations between reduced Tau protein level, synaptic impairment and massive reactive astrogliosis in these FTLD-GRN cases. Consistent with a recent study, our data also bring new insights regarding the role of progranulin in neurodegeneration by suggesting its involvement in lysosome and synaptic regulation. Together, our results demonstrate a strong association between progranulin deficiency and reduction of Tau protein expression that could lead to severe neuronal and glial dysfunctions. Our study also indicates that this FTLD-TDP-GRN subgroup could be part as a distinct entity of FTLD classification. PMID:27435172

  6. Secreted beta-amyloid precursor protein stimulates mitogen-activated protein kinase and enhances tau phosphorylation.

    PubMed Central

    Greenberg, S M; Koo, E H; Selkoe, D J; Qiu, W Q; Kosik, K S

    1994-01-01

    Biological effects related to cell growth, as well as a role in the pathogenesis of Alzheimer disease, have been ascribed to the beta-amyloid precursor protein (beta-APP). Little is known, however, about the intracellular cascades that mediate these effects. We report that the secreted form of beta-APP potently stimulates mitogen-activated protein kinases (MAPKs). Brief exposure of PC-12 pheochromocytoma cells to beta-APP secreted by transfected Chinese hamster ovary cells stimulated the 43-kDa form of MAPK by > 10-fold. Induction of a dominant inhibitory form of ras in a PC12-derived cell line prevented the stimulation of MAPK by secreted beta-APP, demonstrating the dependence of the effect upon p21ras. Because the microtubule-associated protein tau is hyperphosphorylated in Alzheimer disease, we sought and found a 2-fold enhancement in tau phosphorylation associated with the beta-APP-induced MAPK stimulation. In the ras dominant inhibitory cell line, beta-APP failed to enhance phosphorylation of tau. The data presented here provide a link between secreted beta-APP and the phosphorylation state of tau. Images PMID:8041753

  7. Tau protein kinase I is essential for amyloid beta-protein-induced neurotoxicity.

    PubMed Central

    Takashima, A; Noguchi, K; Sato, K; Hoshino, T; Imahori, K

    1993-01-01

    Pathological changes of Alzheimer disease are characterized by cerebral cortical atrophy as a result of degeneration and loss of neurons. Typical histological lesions include numerous senile plaques composed of deposits of amyloid beta-protein and neurofibrillary tangles consisting predominantly of ubiquitin and highly phosphorylated tau proteins. Previously, tau protein kinase I (TPK I) was purified and its cDNA was cloned. To examine the biological role of this enzyme in neurons, we have studied the induction of its kinase activity in primary cultures of embryonic rat hippocampal neurons. Treatment of cultures with amyloid beta-protein significantly increased TPK I activity and induced the appearance of tau proteins recognized by the Alz-50 monoclonal antibody. In addition, though amyloid beta-protein was neurotoxic, either cycloheximide or actinomycin D prevented neuronal death. Death was also prevented by TPK I antisense oligonucleotides but not by sense oligonucleotides. These observations suggest that rat hippocampal neurons undergo programmed cell death in response to amyloid beta-protein and that TPK I is a key enzyme in this process. Images Fig. 1 Fig. 2 Fig. 3 Fig. 5 PMID:8356085

  8. Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease.

    PubMed

    Liu, Chang; Song, Xiaomin; Nisbet, Rebecca; Götz, Jürgen

    2016-04-01

    Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, "cell-to-cell signaling and interaction" and "neurological disease." The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue. PMID:26861879

  9. Co-immunoprecipitation with Tau Isoform-specific Antibodies Reveals Distinct Protein Interactions and Highlights a Putative Role for 2N Tau in Disease*

    PubMed Central

    Liu, Chang; Song, Xiaomin; Nisbet, Rebecca

    2016-01-01

    Alternative splicing generates multiple isoforms of the microtubule-associated protein Tau, but little is known about their specific function. In the adult mouse brain, three Tau isoforms are expressed that contain either 0, 1, or 2 N-terminal inserts (0N, 1N, and 2N). We generated Tau isoform-specific antibodies and performed co-immunoprecipitations followed by tandem mass tag multiplexed quantitative mass spectrometry. We identified novel Tau-interacting proteins of which one-half comprised membrane-bound proteins, localized to the plasma membrane, mitochondria, and other organelles. Tau was also found to interact with proteins involved in presynaptic signal transduction. MetaCore analysis revealed one major Tau interaction cluster that contained 33 Tau pulldown proteins. To explore the pathways in which these proteins are involved, we conducted an ingenuity pathway analysis that revealed two significant overlapping pathways, “cell-to-cell signaling and interaction” and “neurological disease.” The functional enrichment tool DAVID showed that in particular the 2N Tau-interacting proteins were specifically associated with neurological disease. Finally, for a subset of Tau interactions (apolipoprotein A1 (apoA1), apoE, mitochondrial creatine kinase U-type, β-synuclein, synaptogyrin-3, synaptophysin, syntaxin 1B, synaptotagmin, and synapsin 1), we performed reverse co-immunoprecipitations, confirming the preferential interaction of specific isoforms. For example, apoA1 displayed a 5-fold preference for the interaction with 2N, whereas β-synuclein showed preference for 0N. Remarkably, a reverse immunoprecipitation with apoA1 detected only the 2N isoform. This highlights distinct protein interactions of the different Tau isoforms, suggesting that they execute different functions in brain tissue. PMID:26861879

  10. Proteolytic cleavage of polymeric tau protein by caspase-3: implications for Alzheimer disease.

    PubMed

    Jarero-Basulto, Jose J; Luna-Muñoz, Jose; Mena, Raul; Kristofikova, Zdena; Ripova, Daniela; Perry, George; Binder, Lester I; Garcia-Sierra, Francisco

    2013-12-01

    Truncated tau protein at Asp(421) is associated with neurofibrillary pathology in Alzheimer disease (AD); however, little is known about its presence in the form of nonfibrillary aggregates. Here, we report immunohistochemical staining of the Tau-C3 antibody, which recognizes Asp(421)-truncated tau, in a group of AD cases with different extents of cognitive impairment. In the hippocampus, we found distinct nonfibrillary aggregates of Asp(421)-truncated tau. Unlike Asp(421)-composed neurofibrillary tangles, however, these nonfibrillary pathologies did not increase significantly with respect to the Braak staging and, therefore, make no significant contribution to cognitive impairment. On the other hand, despite in vitro evidence that caspase-3 cleaves monomeric tau at Asp(421), to date, this truncation has not been demonstrated to be executed by this protease in polymeric tau entities. We determined that Asp(421) truncation can be produced by caspase-3 in oligomeric and multimeric complexes of recombinant full-length tau in isolated native tau filaments in vitro and in situ in neurofibrillary tangles analyzed in fresh brain slices from AD cases. Our data suggest that generation of this pathologic Asp(421) truncation of tau in long-lasting fibrillary structures may produce further permanent toxicity for neurons in the brains of patients with AD. PMID:24226268

  11. Phylogenetic diversity of the expression of the microtubule-associated protein tau: implications for neurodegenerative disorders.

    PubMed

    Janke, C; Beck, M; Stahl, T; Holzer, M; Brauer, K; Bigl, V; Arendt, T

    1999-05-01

    The microtubule-associated protein tau regulates the dynamic stability of the neuronal cytoskeleton by interacting with microtubules. It is encoded by a single gene, but expressed in a variety of isoforms due to differential RNA splicing. Six isoforms can be found in the human central nervous system. These isoforms differ in their ability to promote the assembly of microtubules as well as in their capacity to stabilize existing microtubule structures. Furthermore, some of the isoforms of tau are specifically involved in the pathogenesis of neurodegenerative disorders. Thus, splicing of tau might critically influence the physiological functions of tau protein as well as the pathogenesis of neurodegenerative diseases with tauopathy. The present study addresses the differential expression of the six isoforms of tau in the central nervous system of 12 mammalian species including Homo sapiens. The occurrence of each of the six tau isoforms was highly variable. However, species that were phylogenetically related expressed a similar pattern of tau isoforms. These results suggest a phylogenetic descent of splicing paradigms, which can be matched with known phylogenetic concepts based on morphological and molecular genetical studies. Especially, the unique expression pattern of tau isoforms in the human central nervous system implicates a possible link to the particular vulnerability of humans to neurodegenerative disorders with tauopathy, namely Alzheimer's disease, frontotemporal dementia and Pick's disease. PMID:10320789

  12. Differential interaction and aggregation of 3-repeat and 4-repeat tau isoforms with 14-3-3{zeta} protein

    SciTech Connect

    Sadik, Golam; Tanaka, Toshihisa; Kato, Kiyoko; Yanagi, Kentaro; Kudo, Takashi; Takeda, Masatoshi

    2009-05-22

    Tau isoforms, 3-repeat (3R) and 4-repeat tau (4R), are differentially involved in neuronal development and in several tauopathies. 14-3-3 protein binds to tau and 14-3-3/tau association has been found both in the development and in tauopathies. To understand the role of 14-3-3 in the differential regulation of tau isoforms, we have performed studies on the interaction and aggregation of 3R-tau and 4R-tau, either phosphorylated or unphosphorylated, with 14-3-3{zeta}. We show by surface plasmon resonance studies that the interaction between unphosphorylated 3R-tau and 14-3-3{zeta} is {approx}3-folds higher than that between unphosphorylated 4R-tau and 14-3-3{zeta}. Phosphorylation of tau by protein kinase A (PKA) increases the affinity of both 3R- and 4R-tau for 14-3-3{zeta} to a similar level. An in vitro aggregation assay employing both transmission electron microscopy and fluorescence spectroscopy revealed the aggregation of unphosphorylated 4R-tau to be significantly higher than that of unphosphorylated 3R-tau following the induction of 14-3-3{zeta}. The filaments formed from 3R- and 4R-tau were almost similar in morphology. In contrast, the aggregation of both 3R- and 4R-tau was reduced to a similar low level after phosphorylation with PKA. Taken together, these results suggest that 14-3-3{zeta} exhibits a similar role for tau isoforms after PKA-phosphorylation, but a differential role for unphosphorylated tau. The significant aggregation of 4R-tau by 14-3-3{zeta} suggests that 14-3-3 may act as an inducer in the generation of 4R-tau-predominant neurofibrillary tangles in tauopathies.

  13. Hyperphosphorylation of tau protein in the ipsilateral thalamus after focal cortical infarction in rats.

    PubMed

    Dong, Da-Wei; Zhang, Yu-Sheng; Yang, Wan-Yong; Wang-Qin, Run-Qi; Xu, An-Ding; Ruan, Yi-Wen

    2014-01-16

    Hyperphosphorylation of tau has been considered as an important risk factor for neurodegenerative diseases. It has been found also in the cortex after focal cerebral ischemia. The present study is aimed at investigating changes of tau protein expression in the ipsilateral thalamus remote from the primary ischemic lesion site after distal middle cerebral artery occlusion (MCAO). The number of neurons in the ventroposterior thalamic nucleus (VPN) was evaluated using Nissl staining and neuronal nuclei (NeuN) immunostaining. Total tau and phosphorylated tau at threonine 231 (p-T231-tau) and serine 199 (p-S199-tau) levels, respectively, in the thalamus were measured using immunostaining and immunoblotting. Moreover, apoptosis was detected with terminal deoxynucleotidyl transferase-mediated digoxigenin-dUTP-biotin nick-end labeling (TUNEL) assay. It was found that the numbers of intact neurons and NeuN(+) cells within the ipsilateral VPN were reduced significantly compared with the sham-operated group, but the levels of p-T231-tau and p-S199-tau in the ipsilateral thalamus were increased significantly in rats subjected to ischemia for 3 days, 7 days and 28 days. Furthermore, the number of TUNEL-positive cells was increased in the ipsilateral VPN at 7 days and 28 days after MCAO. Thus, hyperphosphorylated tau protein is observed in ipsilateral thalamus after focal cerebral infarction in this study. Our findings suggest that the expression of hyperphosphorylated tau protein induced by ischemia may be associated with the secondary thalamic damage after focal cortical infarction via an apoptotic pathway. PMID:24216136

  14. Structure of a Protein Phosphatase 2A Holoenzyme: Insights into B55-Mediated Tau Dephosphorylation

    SciTech Connect

    Xu, Y.; Chen, Y; Zhang, P; Jeffrey, P; Shi, Y

    2008-01-01

    Protein phosphatase 2A (PP2A) regulates many essential aspects of cellular physiology. Members of the regulatory B/B55/PR55 family are thought to play a key role in the dephosphorylation of Tau, whose hyperphosphorylation contributes to Alzheimer's disease. The underlying mechanisms of the PP2A-Tau connection remain largely enigmatic. Here, we report the complete reconstitution of a Tau dephosphorylation assay and the crystal structure of a heterotrimeric PP2A holoenzyme involving the regulatory subunit B?. We show that B? specifically and markedly facilitates dephosphorylation of the phosphorylated Tau in our reconstituted assay. The B? subunit comprises a seven-bladed ? propeller, with an acidic, substrate-binding groove located in the center of the propeller. The ? propeller latches onto the ridge of the PP2A scaffold subunit with the help of a protruding ? hairpin arm. Structure-guided mutagenesis studies revealed the underpinnings of PP2A-mediated dephosphorylation of Tau.

  15. The unfolded protein response mediates reversible tau phosphorylation induced by metabolic stress

    PubMed Central

    van der Harg, J M; Nölle, A; Zwart, R; Boerema, A S; van Haastert, E S; Strijkstra, A M; Hoozemans, J JM; Scheper, W

    2014-01-01

    The unfolded protein response (UPR) is activated in neurodegenerative tauopathies such as Alzheimer's disease (AD) in close connection with early stages of tau pathology. Metabolic disturbances are strongly associated with increased risk for AD and are a potent inducer of the UPR. Here, we demonstrate that metabolic stress induces the phosphorylation of endogenous tau via activation of the UPR. Strikingly, upon restoration of the metabolic homeostasis, not only the levels of the UPR markers pPERK, pIRE1α and BiP, but also tau phosphorylation are reversed both in cell models as well as in torpor, a physiological hypometabolic model in vivo. Intervention in the UPR using the global UPR inhibitor TUDCA or a specific small-molecule inhibitor of the PERK signaling pathway, inhibits the metabolic stress-induced phosphorylation of tau. These data support a role for UPR-mediated tau phosphorylation as part of an adaptive response to metabolic stress. Failure to restore the metabolic homeostasis will lead to prolonged UPR activation and tau phosphorylation, and may thus contribute to AD pathogenesis. We demonstrate that the UPR is functionally involved in the early stages of tau pathology. Our data indicate that targeting of the UPR may be employed for early intervention in tau-related neurodegenerative diseases. PMID:25165879

  16. On-chip microtubule gliding assay for parallel measurement of tau protein species.

    PubMed

    Subramaniyan Parimalam, Subhathirai; Tarhan, Mehmet C; Karsten, Stanislav L; Fujita, Hiroyuki; Shintaku, Hirofumi; Kotera, Hidetoshi; Yokokawa, Ryuji

    2016-04-26

    Tau protein is a well-established biomarker for a group of neurodegenerative diseases collectively called tauopathies. So far, clinically relevant detection of tau species in cerebrospinal fluid (CSF) cannot be achieved without immunological methods. Recently, it was shown that different tau isoforms including the ones carrying various types of mutations affect microtubule (MT)-kinesin binding and velocity in an isoform specific manner. Here, based on these observations, we developed a microfluidic device to analyze tau mutations, isoforms and their ratios. The assay device consists of three regions: a MT reservoir which captures MTs from a solution to a kinesin-coated surface, a microchannel which guides gliding MTs, and an arrowhead-shaped collector which concentrates MTs. Tau-bound fluorescently labeled MTs (tau-MTs) were assayed, and the increase in fluorescence intensity (FI) corresponding to the total number of MTs accumulated was measured at the collector. We show that our device is capable of differentiating 3R and 4R tau isoform ratios and effects of point mutations within 5 minutes. Furthermore, radially oriented collector regions enable simultaneous FI measurements for six independent assays. Performing parallel assays in the proposed device with minimal image processing provides a cost-efficient, easy-to-use and fast tau detection platform. PMID:27056640

  17. Assembly and bundling of marginal band microtubule protein: role of tau.

    PubMed

    Sanchez, I; Cohen, W D

    1994-01-01

    Microtubule protein extracted from dogfish erythrocyte cytoskeletons by disassembly of marginal bands at low temperature formed linear microtubule (MT) bundles upon reassembly at 22 degrees C. The bundles, which were readily visible by video-enhanced phase contrast or DIC microscopy, increased in length and thickness with time. At steady state after 1 hour, most bundles were 6-11 microns in length and 2-5 MTs in thickness. No inter-MT cross-bridges were visible by negative staining. The bundles exhibited mechanical stability in flow as well as flexibility, in this respect resembling native marginal bands. As analyzed by SDS-PAGE and immunoblotting, our standard extraction conditions yielded MT protein preparations and bundles containing tau protein but not high molecular weight MAPs such as MAP-2 or syncolin. In addition, late fractions of MT protein obtained by gel filtration were devoid of high molecular weight proteins but still produced MT bundles. The marginal band tau was salt-extractable and heat-stable, bound antibodies to mammalian brain tau, and formed aggregates upon desalting. Antibodies to tau blocked MT assembly, but both assembly and bundling occurred in the presence of antibodies to actin or syncolin. The MTs were "unbundled" by subtilisin or by high salt (0.5-1 M KCl or NaCl), consistent with tau involvement in bundling. High salt extracts retained bundling activity, and salt-induced unbundling was reversible with desalting. However, reversibility was observed only after salt-induced MT disassembly had occurred. Reconstitution experiments showed that addition of marginal band tau to preassembled MTs did not produce bundles, whereas tau presence during MT reassembly did yield bundles. Thus, in this system, tau appears to play a role in both MT assembly and bundling, serving in the latter function as a coassembly factor. PMID:7820858

  18. Microtubule-associated protein tau: A marker of paclitaxel sensitivity in breast cancer

    PubMed Central

    Rouzier, Roman; Rajan, Radhika; Wagner, Peter; Hess, Kenneth R.; Gold, David L.; Stec, James; Ayers, Mark; Ross, Jeffrey S.; Zhang, Peter; Buchholz, Thomas A.; Kuerer, Henry; Green, Marjorie; Arun, Banu; Hortobagyi, Gabriel N.; Symmans, W. Fraser; Pusztai, Lajos

    2005-01-01

    Breast cancers show variable sensitivity to paclitaxel. There is no diagnostic test to identify tumors that are sensitive to this drug. We used U133A chips to identify genes that are associated with pathologic complete response (pCR) to preoperative paclitaxel-containing chemotherapy in stage I-III breast cancer (n = 82). Tau was the most differentially expressed gene. Tumors with pCR had significantly lower (P < 0.3 × 10-5) mRNA expression. Tissue arrays from 122 independent but similarly treated patients were used for validation by immunohistochemistry. Seventy-four percent of pCR cases were tau protein negative; the odds ratio for pCR was 3.7 (95% confidence interval, 1.6-8.6; P = 0.0013). In multivariate analysis, nuclear grade (P < 0.01), age <50 (P = 0.03), and tau-negative status (P = 0.04) were independent predictors of pCR. Small interfering RNA experiments were performed to examine whether down-regulation of tau increases sensitivity to chemotherapy in vitro. Down-regulation of tau increased sensitivity of breast cancer cells to paclitaxel but not to epirubicin. Tubulin polymerization assay was used to assess whether tau modulates binding of paclitaxel to tubulin. Preincubation of tubulin with tau resulted in decreased paclitaxel binding and reduced paclitaxel-induced microtubule polymerization. These data suggest that low tau expression renders microtubules more vulnerable to paclitaxel and makes breast cancer cells hypersensitive to this drug. Low tau expression may be used as a marker to select patients for paclitaxel therapy. Inhibition of tau function might be exploited as a therapeutic strategy to increase sensitivity to paclitaxel. PMID:15914550

  19. Computational Study of Pseudo-phosphorylation of the Microtubule associated Protein Tau

    NASA Astrophysics Data System (ADS)

    Prokopovich, Dmitriy; Larini, Luca

    This computational study focuses on the effect of pseudo-phosphorylation on the aggregation of the microtubule associated protein tau. In the axon of the neuron, tau regulates the assembly of microtubules in the cytoskeleton. This is important for both stabilization of and transport across the microtubules. One of the hallmarks of the Alzheimer's disease is that tau is hyper-phosphorylated and aggregates into neurofibrillary tangles that lay waste to the neurons. It is not known if hyper-phosphorylation directly causes the aggregation of tau into tangles. Experimentally, pseudo-phosphorylation mimics the effects of phosphorylation by mutating certain residues of the protein chain into charged residues. In this study, we will consider the fragment called PHF43 that belongs to the microtubule binding region and has been shown to readily aggregate.

  20. Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated.

    PubMed

    Ando, Kanae; Oka, Mikiko; Ohtake, Yosuke; Hayashishita, Motoki; Shimizu, Sawako; Hisanaga, Shin-Ichi; Iijima, Koichi M

    2016-09-16

    Abnormal phosphorylation of the microtubule-associated protein tau is observed in many neurodegenerative diseases, including Alzheimer's disease (AD). AD-related phosphorylation of two tau residues, Ser262 and Ser356, by PAR-1/MARK stabilizes tau in the initial phase of mismetabolism, leading to subsequent phosphorylation events, accumulation, and toxicity. However, the relative contribution of phosphorylation at each of these sites to tau stabilization has not yet been elucidated. In a Drosophila model of human tau toxicity, we found that tau was phosphorylated at Ser262, but not at Ser356, and that blocking Ser262 phosphorylation decreased total tau levels. By contrast, when PAR-1 was co-overexpressed with tau, tau was hyperphosphorylated at both Ser262 and Ser356. Under these conditions, the protein levels of tau were significantly elevated, and prevention of tau phosphorylation at both residues was necessary to completely suppress this elevation. These results suggest that tau phosphorylation at Ser262 plays the predominant role in tau stabilization when PAR-1/MARK activity is normal, whereas Ser356 phosphorylation begins to contribute to this process when PAR-1/MARK activity is abnormally elevated, as in diseased brains. PMID:27520376

  1. Protein aggregate formation in oligodendrocytes: tau and the cytoskeleton at the intersection of neuroprotection and neurodegeneration.

    PubMed

    Richter-Landsberg, Christiane

    2016-03-01

    Oligodendrocytes are dependent on an intact, dynamic microtubule (MT) network, which participates in the elaboration and stabilization of myelin forming extensions, and is essential for cellular sorting processes. The microtubule-associated protein tau is constituent of oligodendrocytes. During culture maturation it is developmentally regulated and important for MT stability, MT formation and intracellular trafficking. Downregulation of tau impairs process outgrowth and the transport of myelin basic protein (MBP) mRNA to the cell periphery. Cells fail to differentiate into MBP-expressing, sheet-forming oligodendrocytes. Tau-positive inclusions originating in oligodendrocytes and white matter pathology are prominent in frontotemporal dementias, such as Pick's disease, progressive supranuclear palsy and corticobasal degeneration. An impairment or overload of the proteolytic degradation systems, i.e. the ubiquitin proteasomal system and the lysosomal degradation pathway, has been connected to the formation of protein aggregates. Large protein aggregates are excluded from the proteasome and degraded by autophagy, which is a highly selective process and requires receptor proteins for ubiquitinated proteins, including histone deacetylase 6 (HDAC6). HDAC6 is present in oligodendrocytes, and α-tubulin and tau are substrates of HDAC6. In this review our current knowledge of the role of tau and protein aggregate formation in oligodendrocyte cell culture systems is summarized. PMID:26083267

  2. Hyperphosphorylation of Intrinsically Disordered Tau Protein Induces an Amyloidogenic Shift in Its Conformational Ensemble

    PubMed Central

    Zhu, Shaolong; Shala, Agnesa; Bezginov, Alexandr; Sljoka, Adnan; Audette, Gerald; Wilson, Derek J.

    2015-01-01

    Tau is an intrinsically disordered protein (IDP) whose primary physiological role is to stabilize microtubules in neuronal axons at all stages of development. In Alzheimer's and other tauopathies, tau forms intracellular insoluble amyloid aggregates known as neurofibrillary tangles, a process that appears in many cases to be preceded by hyperphosphorylation of tau monomers. Understanding the shift in conformational bias induced by hyperphosphorylation is key to elucidating the structural factors that drive tau pathology, however, as an IDP, tau is not amenable to conventional structural characterization. In this work, we employ a straightforward technique based on Time-Resolved ElectroSpray Ionization Mass Spectrometry (TRESI-MS) and Hydrogen/Deuterium Exchange (HDX) to provide a detailed picture of residual structure in tau, and the shifts in conformational bias induced by hyperphosphorylation. By comparing the native and hyperphosphorylated ensembles, we are able to define specific conformational biases that can easily be rationalized as enhancing amyloidogenic propensity. Representative structures for the native and hyperphosphorylated tau ensembles were generated by refinement of a broad sample of conformations generated by low-computational complexity modeling, based on agreement with the TRESI-HDX profiles. PMID:25767879

  3. Soluble amyloid precursor protein alpha inhibits tau phosphorylation through modulation of GSK3β signaling pathway.

    PubMed

    Deng, Juan; Habib, Ahsan; Obregon, Demian F; Barger, Steven W; Giunta, Brian; Wang, Yan-Jiang; Hou, Huayan; Sawmiller, Darrell; Tan, Jun

    2015-11-01

    We recently found that sAPPα decreases amyloid-beta generation by directly associating with β-site amyloid precursor protein (APP)-converting enzyme 1 (BACE1), thereby modulating APP processing. Because inhibition of BACE1 decreases glycogen synthase kinase 3 beta (GSK3β)-mediated Alzheimer's disease (AD)-like tau phosphorylation in AD patient-derived neurons, we determined whether sAPPα also reduces GSK3β-mediated tau phosphorylation. We initially found increased levels of inhibitory phosphorylation of GSK3β (Ser9) in primary neurons from sAPPα over-expressing mice. Further, recombinant human sAPPα evoked the same phenomenon in SH-SY5Y cells. Further, in SH-SY5Y cells over-expressing BACE1, and HeLa cells over-expressing human tau, sAPPα reduced GSK3β activity and tau phosphorylation. Importantly, the reductions in GSK3β activity and tau phosphorylation elicited by sAPPα were prevented by BACE1 but not γ-secretase inhibition. In accord, AD mice over-expressing human sAPPα had less GSK3β activity and tau phosphorylation compared with controls. These results implicate a direct relationship between APP β-processing and GSK3β-mediated tau phosphorylation and further define the central role of sAPPα in APP autoregulation and AD pathogenesis. PMID:26342176

  4. Ion Channel Formation by Tau Protein: Implications for Alzheimer’s Disease and Tauopathies

    PubMed Central

    2015-01-01

    Tau is a microtubule associated protein implicated in the pathogenesis of several neurodegenerative diseases. Because of the channel forming properties of other amyloid peptides, we employed planar lipid bilayers and atomic force microscopy to test tau for its ability to form ion permeable channels. Our results demonstrate that tau can form such channels, but only under acidic conditions. The channels formed are remarkably similar to amyloid peptide channels in their appearance, physical and electrical size, permanence, lack of ion selectivity, and multiple channel conductances. These channels differ from amyloid channels in their voltage dependence and resistance to blockade by zinc ion. These channels could explain tau’s pathologic role in disease by lowering membrane potential, dysregulating calcium, depolarizing mitochondria, or depleting energy stores. Tau might also combine with amyloid beta peptides to form toxic channels. PMID:26575330

  5. Reduced CSF p-Tau181 to Tau ratio is a biomarker for FTLD-TDP

    PubMed Central

    Watts, Kelly; Grossman, Murray; Glass, Jonathan; Lah, James J.; Hales, Chadwick; Shelnutt, Matthew; Van Deerlin, Vivianna; Trojanowski, John Q.; Levey, Allan I.

    2013-01-01

    Objectives: To validate the ability of candidate CSF biomarkers to distinguish between the 2 main forms of frontotemporal lobar degeneration (FTLD), FTLD with TAR DNA-binding protein 43 (TDP-43) inclusions (FTLD-TDP) and FTLD with Tau inclusions (FTLD-Tau). Methods: Antemortem CSF samples were collected from 30 patients with FTLD in a single-center validation cohort, and CSF levels of 5 putative FTLD-TDP biomarkers as well as levels of total Tau (t-Tau) and Tau phosphorylated at threonine 181 (p-Tau181) were measured using independent assays. Biomarkers most associated with FTLD-TDP were then tested in a separate 2-center validation cohort composed of subjects with FTLD-TDP, FTLD-Tau, Alzheimer disease (AD), and cognitively normal subjects. The sensitivity and specificity of FTLD-TDP biomarkers were determined. Results: In the first validation cohort, FTLD-TDP cases had decreased levels of p-Tau181 and interleukin-23, and increased Fas. Reduced ratio of p-Tau181 to t-Tau (p/t-Tau) was the strongest predictor of FTLD-TDP pathology. Analysis in the second validation cohort showed CSF p/t-Tau ratio <0.37 to distinguish FTLD-TDP from FTLD-Tau, AD, and healthy seniors with 82% sensitivity and 82% specificity. Conclusion: A reduced CSF p/t-Tau ratio represents a reproducible, validated biomarker for FTLD-TDP with performance approaching well-established CSF AD biomarkers. Introducing this biomarker into research and the clinical arena can significantly increase the power of clinical trials targeting abnormal accumulations of TDP-43 or Tau, and select the appropriate patients for target-specific therapies. Classification of evidence: This study provides Class II evidence that the CSF p/t-Tau ratio distinguishes FTLD-TDP from FTLD-Tau. PMID:24174584

  6. Regulation of alternative splicing of tau exon 10.

    PubMed

    Qian, Wei; Liu, Fei

    2014-04-01

    The neuronal microtubule-associated protein tau is abnormally hyperphosphorylated and aggregated into neurofibrillary tangles in the brains of individuals with Alzheimer's disease and related neurodegenerative disorders. The adult human brain expresses six isoforms of tau generated by alternative splicing of exons 2, 3, and 10 of its pre-mRNA. Exon 10 encodes the second microtubule-binding repeat of tau. Its alternative splicing produces tau isoforms with either three or four microtubule-binding repeats, termed 3R-tau and 4Rtau. In the normal adult human brain, the level of 3R-tau is approximately equal to that of 4R-tau. Several silent and intronic mutations of the tau gene associated with FTDP-17T (frontotemporal dementia with Parkinsonism linked to chromosome 17 and specifically characterized by tau pathology) only disrupt exon 10 splicing, but do not influence the primary sequence of the tau protein. Thus, abnormal exon 10 splicing is sufficient to cause neurodegeneration and dementia. Here, we review the regulation of tau exon 10 splicing by cis-elements and trans-factors and summarize all the mutations associated with FTDP-17T and related tauopathies. The findings suggest that correction of exon 10 splicing may be a potential target for tau exon 10 splicing-related tauopathies. PMID:24627328

  7. A preparation of Alzheimer paired helical filaments that displays distinct tau proteins by polyacrylamide gel electrophoresis.

    PubMed Central

    Greenberg, S G; Davies, P

    1990-01-01

    Paired helical filaments (PHFs) are prominent components of Alzheimer disease (AD) neurofibrillary tangles (NFTs). Rather than isolating NFTs, we selected for PHF populations that can be extracted from AD brain homogenates. About 50% of PHF immunoreactivity can be obtained in 27,200 x g supernatants following homogenization in buffers containing 0.8 M NaCl. We further enriched for PHFs by taking advantage of their insolubility in the presence of zwitterionic detergents and 2-mercaptoethanol, removal of aggregates by filtration through 0.45-microns filters, and sucrose density centrifugation. PHF-enriched fractions contained two to five proteins of 57-68 kDa that displayed the same antigenic properties as PHFs. Since the 57- to 68-kDa PHF proteins are antigenically related to tau proteins, they are similar to the tau proteins previously observed in NFTs. However, further analysis revealed that PHF-associated tau can be distinguished from normal, soluble tau by PHF antibodies that do not recognize human adult tau and by one- and two-dimensional PAGE. Images PMID:2116006

  8. Stabilization of Microtubule-Unbound Tau via Tau Phosphorylation at Ser262/356 by Par-1/MARK Contributes to Augmentation of AD-Related Phosphorylation and Aβ42-Induced Tau Toxicity

    PubMed Central

    Ando, Kanae; Maruko-Otake, Akiko; Ohtake, Yosuke; Hayashishita, Motoki; Sekiya, Michiko; Iijima, Koichi M.

    2016-01-01

    Abnormal accumulation of the microtubule-interacting protein tau is associated with neurodegenerative diseases including Alzheimer’s disease (AD). β-amyloid (Aβ) lies upstream of abnormal tau behavior, including detachment from microtubules, phosphorylation at several disease-specific sites, and self-aggregation into toxic tau species in AD brains. To prevent the cascade of events leading to neurodegeneration in AD, it is essential to elucidate the mechanisms underlying the initial events of tau mismetabolism. Currently, however, these mechanisms remain unclear. In this study, using transgenic Drosophila co-expressing human tau and Aβ, we found that tau phosphorylation at AD-related Ser262/356 stabilized microtubule-unbound tau in the early phase of tau mismetabolism, leading to neurodegeneration. Aβ increased the level of tau detached from microtubules, independent of the phosphorylation status at GSK3-targeted SP/TP sites. Such mislocalized tau proteins, especially the less phosphorylated species, were stabilized by phosphorylation at Ser262/356 via PAR-1/MARK. Levels of Ser262 phosphorylation were increased by Aβ42, and blocking this stabilization of tau suppressed Aβ42-mediated augmentation of tau toxicity and an increase in the levels of tau phosphorylation at the SP/TP site Thr231, suggesting that this process may be involved in AD pathogenesis. In contrast to PAR-1/MARK, blocking tau phosphorylation at SP/TP sites by knockdown of Sgg/GSK3 did not reduce tau levels, suppress tau mislocalization to the cytosol, or diminish Aβ-mediated augmentation of tau toxicity. These results suggest that stabilization of microtubule-unbound tau by phosphorylation at Ser262/356 via the PAR-1/MARK may act in the initial steps of tau mismetabolism in AD pathogenesis, and that such tau species may represent a potential therapeutic target for AD. PMID:27023670

  9. Early glycogen synthase kinase-3β and protein phosphatase 2A independent tau dephosphorylation during global brain ischaemia and reperfusion following cardiac arrest and the role of the adenosine monophosphate kinase pathway.

    PubMed

    Majd, Shohreh; Power, John H T; Koblar, Simon A; Grantham, Hugh J M

    2016-08-01

    Abnormal tau phosphorylation (p-tau) has been shown after hypoxic damage to the brain associated with traumatic brain injury and stroke. As the level of p-tau is controlled by Glycogen Synthase Kinase (GSK)-3β, Protein Phosphatase 2A (PP2A) and Adenosine Monophosphate Kinase (AMPK), different activity levels of these enzymes could be involved in tau phosphorylation following ischaemia. This study assessed the effects of global brain ischaemia/reperfusion on the immediate status of p-tau in a rat model of cardiac arrest (CA) followed by cardiopulmonary resuscitation (CPR). We reported an early dephosphorylation of tau at its AMPK sensitive residues, Ser(396) and Ser(262) after 2 min of ischaemia, which did not recover during the first two hours of reperfusion, while the tau phosphorylation at GSK-3β sensitive but AMPK insensitive residues, Ser(202) /Thr(205) (AT8), as well as the total amount of tau remained unchanged. Our data showed no alteration in the activities of GSK-3β and PP2A during similar episodes of ischaemia of up to 8 min and reperfusion of up to 2 h, and 4 weeks recovery. Dephosphorylation of AMPK followed the same pattern as tau dephosphorylation during ischaemia/reperfusion. Catalase, another AMPK downstream substrate also showed a similar pattern of decline to p-AMPK, in ischaemic/reperfusion groups. This suggests the involvement of AMPK in changing the p-tau levels, indicating that tau dephosphorylation following ischaemia is not dependent on GSK-3β or PP2A activity, but is associated with AMPK dephosphorylation. We propose that a reduction in AMPK activity is a possible early mechanism responsible for tau dephosphorylation. PMID:27177932

  10. Connecting the Dots Between Tau Dysfunction and Neurodegeneration

    PubMed Central

    Frost, Bess; Götz, Jürgen; Feany, Mel B.

    2014-01-01

    Tauopathies are devastating and ultimately fatal neurodegenerative diseases, which are histopathologically defined by insoluble filamentous deposits of abnormally phosphorylated tau protein within neurons and glia. Identifying the causes of abnormal tau phosphorylation and subsequent aggregation has been the focus of much research, and is currently a major target for the development of therapeutic interventions for tauopathies, including Alzheimer’s disease. Recently much has been learned about the sequence of events that lead from tau dysfunction to neuronal death. This review focuses on the cascade of events that are catalyzed by pathological tau, and highlights current and potential therapeutic strategies to target this pathway. PMID:25172552

  11. Aluminum interaction with human brain tau protein phosphorylation by various kinases

    SciTech Connect

    El-Sebae, A.H.; Zeid, M.M.A.; Saleh, M.A. . Environmental Chemistry and Toxicology Lab.); Abdel-Ghany, M.E.; Shalloway, D. ); Blancato, J. . Environmental Monitoring Systems Lab.)

    1993-01-01

    Phosphorylation is an indispensable process for energy and signal transduction in biological systems. AlCl[sub 3] at 10 nM to 10 uM range activated in-vitro [[gamma]-[sup 32]P] ATP phosphorylation of the brain (tau) [Tau] protein in both normal human or E. coli expressed [Tau] forms; in the presence of the kinases P34, PKP, and PKC to a maximum at 1 mM level. AlCl[sub 3] at 100 uM to 500 uM range induced non-enzymatic phosphorylation of [Tau] with [gamma]-ATP, [gamma]-GTP, and [alpha]-GTP, and [alpha]-GTP. AlCl[sub 3] activated histone phosphorylation by P34 in a similar pattern. The hyperphosphorylation of [Tau] with [gamma]-ATP, [gamma]-GTP, and [alpha]-GTP. AlCl[sub 3] activated histone phosphorylation by P34 in a similar pattern. The hyperphosphorylation of [Tau] by Al[sup 3+] was accompanied by molecular shift and mobility retardation in SDS-PAGE. This may demonstrate the mechanism of the longterm neurological effect of Al[sup 3+] in human brain leading to the formation of the neurofibrillary tangles related to Alzeheimer's disease.

  12. Subacute Changes in Cleavage Processing of Amyloid Precursor Protein and Tau following Penetrating Traumatic Brain Injury.

    PubMed

    Cartagena, Casandra M; Mountney, Andrea; Hwang, Hye; Swiercz, Adam; Rammelkamp, Zoe; Boutte, Angela M; Shear, Deborah A; Tortella, Frank C; Schmid, Kara E

    2016-01-01

    Traumatic brain injury (TBI) is an established risk factor for the development of Alzheimer's disease (AD). Here the effects of severe penetrating TBI on APP and tau cleavage processing were investigated in a rodent model of penetrating ballistic-like brain injury (PBBI). PBBI was induced by stereotactically inserting a perforated steel probe through the right frontal cortex of the anesthetized rat and rapidly inflating/deflating the probe's elastic tubing into an elliptical shaped balloon to 10% of total rat brain volume causing temporary cavitation injury. Separate animals underwent probe injury (PrI) alone without balloon inflation. Shams underwent craniectomy. Brain tissue was collected acutely (4h, 24h, 3d) and subacutely (7d) post-injury and analyzed by immunoblot for full length APP (APP-FL) and APP beta c-terminal fragments (βCTFs), full length tau (tau-FL) and tau truncation fragments and at 7d for cytotoxic Beta amyloid (Aβ) peptides Aβ40 and Aβ42 analysis. APP-FL was significantly decreased at 3d and 7d following PBBI whereas APP βCTFs were significantly elevated by 4h post-injury and remained elevated through 7d post-injury. Effects on βCTFs were mirrored with PrI, albeit to a lesser extent. Aβ40 and Aβ42 were significantly elevated at 7d following PBBI and PrI. Tau-FL decreased substantially 3d and 7d post-PBBI and PrI. Importantly, a 22 kDa tau fragment (tau22), similar to that found in AD, was significantly elevated by 4h and remained elevated through 7d post-injury. Thus both APP and tau cleavage was dramatically altered in the acute and subacute periods post-injury. As cleavage of these proteins has also been implicated in AD, TBI pathology shown here may set the stage for the later development of AD or other tauopathies. PMID:27428544

  13. The neuronal extracellular matrix restricts distribution and internalization of aggregated Tau-protein.

    PubMed

    Suttkus, A; Holzer, M; Morawski, M; Arendt, T

    2016-01-28

    Alzheimer's disease (AD) is a chronic degenerative disorder characterized by fibrillary aggregates of Aß and Tau-protein. Formation and progression of these pathological hallmarks throughout the brain follow a specific spatio-temporal pattern which provides the basis for neuropathological staging. Previously, we could demonstrate that cortical and subcortical neurons are less frequently affected by neurofibrillary degeneration if they are enwrapped by a specialized form of the hyaluronan-based extracellular matrix (ECM), the so called 'perineuronal net' (PN). PNs are composed of large aggregating chondroitin sulfate proteoglycans connected to a hyaluronan backbone, stabilized by link proteins and cross-linked via tenascin-R. Recently, PN-associated neurons were shown to be better protected against iron-induced neurodegeneration compared to neurons without PN, indicating a neuroprotective function. Here, we investigated the role of PNs in distribution and internalization of exogenous Tau-protein by using organotypic slice cultures of wildtype mice as well as mice lacking the ECM-components aggrecan, HAPLN1 or tenascin-R. We could demonstrate that PNs restrict both distribution and internalization of Tau. Accordingly, PN-ensheathed neurons were less frequently affected by Tau-internalization, than neurons without PN. Finally, the PNs as well as their three investigated components were shown to modulate the processes of distribution as well as internalization of Tau. PMID:26621125

  14. PE859, a Novel Tau Aggregation Inhibitor, Reduces Aggregated Tau and Prevents Onset and Progression of Neural Dysfunction In Vivo

    PubMed Central

    Okuda, Michiaki; Hijikuro, Ichiro; Fujita, Yuki; Wu, Xiaofeng; Nakayama, Shinichi; Sakata, Yoko; Noguchi, Yuji; Ogo, Makoto; Akasofu, Shigeru; Ito, Yoshimasa; Soeda, Yoshiyuki; Tsuchiya, Nobuhiko; Tanaka, Naoki; Takahashi, Takashi; Sugimoto, Hachiro

    2015-01-01

    In tauopathies, a neural microtubule-associated protein tau (MAPT) is abnormally aggregated and forms neurofibrillary tangle. Therefore, inhibition of the tau aggregation is one of the key approaches for the treatment of these diseases. Here, we have identified a novel tau aggregation inhibitor, PE859. An oral administration of PE859 resulted in the significant reduction of sarkosyl-insoluble aggregated tau along with the prevention of onset and progression of the motor dysfunction in JNPL3 P301L-mutated human tau transgenic mice. These results suggest that PE859 is useful for the treatment of tauopathies. PMID:25659102

  15. Intrinsic Tau Acetylation Is Coupled to Auto-Proteolytic Tau Fragmentation

    PubMed Central

    Cohen, Todd J.; Constance, Brian H.; Hwang, Andrew W.; James, Michael; Yuan, Chao-Xing

    2016-01-01

    Tau proteins are abnormally aggregated in a range of neurodegenerative tauopathies including Alzheimer’s disease (AD). Recently, tau has emerged as an extensively post-translationally modified protein, among which lysine acetylation is critical for normal tau function and its pathological aggregation. Here, we demonstrate that tau isoforms have different propensities to undergo lysine acetylation, with auto-acetylation occurring more prominently within the lysine-rich microtubule-binding repeats. Unexpectedly, we identified a unique intrinsic property of tau in which auto-acetylation induces proteolytic tau cleavage, thereby generating distinct N- and C-terminal tau fragments. Supporting a catalytic reaction-based mechanism, mapping and mutagenesis studies showed that tau cysteines, which are required for acetyl group transfer, are also essential for auto-proteolytic tau processing. Further mass spectrometry analysis identified the C-terminal 2nd and 4th microtubule binding repeats as potential sites of auto-cleavage. The identification of acetylation-mediated auto-proteolysis provides a new biochemical mechanism for tau self-regulation and warrants further investigation into whether auto-catalytic functions of tau are implicated in AD and other tauopathies. PMID:27383765

  16. Domains of tau protein, differential phosphorylation, and dynamic instability of microtubules.

    PubMed

    Trinczek, B; Biernat, J; Baumann, K; Mandelkow, E M; Mandelkow, E

    1995-12-01

    The dynamic instability of microtubules is thought to be regulated by MAPs and phosphorylation. Here we describe the effect of the neuronal microtubule-associated protein tau by observing the dynamics of single microtubules by video microscopy. We used recombinant tau isoforms and tau mutants, and we phosphorylated tau by the neuronal kinases MARK (affecting the KXGS motifs within tau's repeat domain) and cdk5 (phosphorylating Ser-Pro motifs in the regions flanking the repeats). The variants of tau can be broadly classified into three categories, depending on their potency to affect microtubule dynamics. "Strong" tau variants have four repeats and both flanking regions. "Medium" variants have one to three repeats and both flanking regions. "Weak" variants lack one or both of the flanking regions, or have no repeats; with such constructs, microtubule dynamics is not significantly different from that of pure tubulin. N- or C-terminal tails of tau have no influence on dynamic instability. The two ends of microtubules (plus and minus) showed different activities but analogous behavior. These results are consistent with the "jaws" model of tau where the flanking regions are considered as targeting domains whereas the addition of repeats makes them catalytically active in terms of microtubule stabilization. The dominant changes in the parameters of dynamic instability induced by tau are those in the dissociation rate and in the catastrophe rate (up to 30-fold). Other rates change only moderately or not at all (association rate increased up to twofold, rates of rescue or rapid shrinkage decreased up to approximately twofold). The order of repeats has little influence on microtubule dynamics (i.e., repeats can be re-arranged or interchanged), arguing in favor of the "distributed weak binding" model proposed by Butner and Kirschner (1991); however, we confirmed the presence of a "hotspot" of binding potential involving Lys274 and Lys281 observed by Goode and Feinstein, 1994

  17. Tau protein as a biomarker for asphyxia: A possible forensic tool?

    PubMed

    Salama, Mohamed; Mohamed, Wael M Y

    2016-06-01

    Asphyxial death has been a problem for forensic investigations due to the absence of a validated biomarker for the diagnosis of this event. Recently, research on brain affection by asphyxia raised hopes on the possible use of CNS markers for asphyxia. The cytoskeletal proteins seem to be attractive targets as they are vulnerable to hypoxia and can be affected in asphyxial deaths. Tau, an important cytoskeletal protein, showed affection in many neurodegenerative disorders and recently in some acute incidences like trauma and brain ischemia. In this report we show the affection of the normal pattern of tau and pathological aggregates of tau in the case of brain hypoxia. This may give new clues to asphyxial death investigations. PMID:27354936

  18. Complex proteinopathy with accumulations of prion protein, hyperphosphorylated tau, α-synuclein and ubiquitin in experimental bovine spongiform encephalopathy of monkeys

    PubMed Central

    Cervenak, Juraj; Bu, Ming; Miller, Lindsay; Asher, David M.

    2014-01-01

    Proteins aggregate in several slowly progressive neurodegenerative diseases called ‘proteinopathies’. Studies with cell cultures and transgenic mice overexpressing mutated proteins suggested that aggregates of one protein induced misfolding and aggregation of other proteins as well – a possible common mechanism for some neurodegenerative diseases. However, most proteinopathies are ‘sporadic’, without gene mutation or overexpression. Thus, proteinopathies in WT animals genetically close to humans might be informative. Squirrel monkeys infected with the classical bovine spongiform encephalopathy agent developed an encephalopathy resembling variant Creutzfeldt–Jakob disease with accumulations not only of abnormal prion protein (PrPTSE), but also three other proteins: hyperphosphorylated tau (p-tau), α-synuclein and ubiquitin; β-amyloid protein (Aβ) did not accumulate. Severity of brain lesions correlated with spongiform degeneration. No amyloid was detected. These results suggested that PrPTSE enhanced formation of p-tau and aggregation of α-synuclein and ubiquitin, but not Aβ, providing a new experimental model for neurodegenerative diseases associated with complex proteinopathies. PMID:24769839

  19. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition

    PubMed Central

    Rzechorzek, Nina M.; Connick, Peter; Livesey, Matthew R.; Borooah, Shyamanga; Patani, Rickie; Burr, Karen; Story, David; Wyllie, David J.A.; Hardingham, Giles E.; Chandran, Siddharthan

    2015-01-01

    Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs) to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift) are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C) to moderate (28 °C) cooling — conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients. PMID:26870825

  20. Hypothermic Preconditioning Reverses Tau Ontogenesis in Human Cortical Neurons and is Mimicked by Protein Phosphatase 2A Inhibition.

    PubMed

    Rzechorzek, Nina M; Connick, Peter; Livesey, Matthew R; Borooah, Shyamanga; Patani, Rickie; Burr, Karen; Story, David; Wyllie, David J A; Hardingham, Giles E; Chandran, Siddharthan

    2016-01-01

    Hypothermia is potently neuroprotective, but the molecular basis of this effect remains obscure. Changes in neuronal tau protein are of interest, since tau becomes hyperphosphorylated in injury-resistant, hypothermic brains. Noting inter-species differences in tau isoforms, we have used functional cortical neurons differentiated from human pluripotent stem cells (hCNs) to interrogate tau modulation during hypothermic preconditioning at clinically-relevant temperatures. Key tau developmental transitions (phosphorylation status and splicing shift) are recapitulated during hCN differentiation and subsequently reversed by mild (32 °C) to moderate (28 °C) cooling--conditions which reduce oxidative and excitotoxic stress-mediated injury in hCNs. Blocking a major tau kinase decreases hCN tau phosphorylation and abrogates hypothermic neuroprotection, whilst inhibition of protein phosphatase 2A mimics cooling-induced tau hyperphosphorylation and protects normothermic hCNs from oxidative stress. These findings indicate a possible role for phospho-tau in hypothermic preconditioning, and suggest that cooling drives human tau towards an earlier ontogenic phenotype whilst increasing neuronal resilience to common neurotoxic insults. This work provides a critical step forward in understanding how we might exploit the neuroprotective benefits of cooling without cooling patients. PMID:26870825

  1. Direct force measurements reveal that protein Tau confers short-range attractions and isoform-dependent steric stabilization to microtubules

    PubMed Central

    Chung, Peter J.; Choi, Myung Chul; Miller, Herbert P.; Feinstein, H. Eric; Raviv, Uri; Li, Youli; Wilson, Leslie; Feinstein, Stuart C.; Safinya, Cyrus R.

    2015-01-01

    Microtubules (MTs) are hollow cytoskeletal filaments assembled from αβ-tubulin heterodimers. Tau, an unstructured protein found in neuronal axons, binds to MTs and regulates their dynamics. Aberrant Tau behavior is associated with neurodegenerative dementias, including Alzheimer’s. Here, we report on a direct force measurement between paclitaxel-stabilized MTs coated with distinct Tau isoforms by synchrotron small-angle X-ray scattering (SAXS) of MT-Tau mixtures under osmotic pressure (P). In going from bare MTs to MTs with Tau coverage near the physiological submonolayer regime (Tau/tubulin-dimer molar ratio; ΦTau = 1/10), isoforms with longer N-terminal tails (NTTs) sterically stabilized MTs, preventing bundling up to PB ∼ 10,000–20,000 Pa, an order of magnitude larger than bare MTs. Tau with short NTTs showed little additional effect in suppressing the bundling pressure (PB ∼ 1,000–2,000 Pa) over the same range. Remarkably, the abrupt increase in PB observed for longer isoforms suggests a mushroom to brush transition occurring at 1/13 < ΦTau < 1/10, which corresponds to MT-bound Tau with NTTs that are considerably more extended than SAXS data for Tau in solution indicate. Modeling of Tau-mediated MT–MT interactions supports the hypothesis that longer NTTs transition to a polyelectrolyte brush at higher coverages. Higher pressures resulted in isoform-independent irreversible bundling because the polyampholytic nature of Tau leads to short-range attractions. These findings suggest an isoform-dependent biological role for regulation by Tau, with longer isoforms conferring MT steric stabilization against aggregation either with other biomacromolecules or into tight bundles, preventing loss of function in the crowded axon environment. PMID:26542680

  2. Docosahexaenoic acid reduces ER stress and abnormal protein accumulation and improves neuronal function following traumatic brain injury.

    PubMed

    Begum, Gulnaz; Yan, Hong Q; Li, Liaoliao; Singh, Amneet; Dixon, C Edward; Sun, Dandan

    2014-03-01

    In this study, we investigated the development of endoplasmic reticulum (ER) stress after traumatic brain injury (TBI) and the efficacy of post-TBI administration of docosahexaenoic acid (DHA) in reducing ER stress. TBI was induced by cortical contusion injury in Sprague-Dawley rats. Either DHA (16 mg/kg in DMSO) or vehicle DMSO (1 ml/kg) was administered intraperitoneally at 5 min after TBI, followed by a daily dose for 3-21 d. TBI triggered sustained expression of the ER stress marker proteins including phosphorylated eukaryotic initiation factor-2α, activating transcription factor 4, inositol requiring kinase 1, and C/EBP homologous protein in the ipsilateral cortex at 3-21 d after TBI. The prolonged ER stress was accompanied with an accumulation of abnormal ubiquitin aggregates and increased expression of amyloid precursor protein (APP) and phosphorylated tau (p-Tau) in the frontal cortex after TBI. The ER stress marker proteins were colocalized with APP accumulation in the soma. Interestingly, administration of DHA attenuated all ER stress marker proteins and reduced the accumulation of both ubiquitinated proteins and APP/p-Tau proteins. In addition, the DHA-treated animals exhibited early recovery of their sensorimotor function after TBI. In summary, our study demonstrated that TBI induces a prolonged ER stress, which is positively correlated with abnormal APP accumulation. The sustained ER stress may play a role in chronic neuronal damage after TBI. Our findings illustrate that post-TBI administration of DHA has therapeutic potentials in reducing ER stress, abnormal protein accumulation, and neurological deficits. PMID:24599472

  3. Tau pathology-mediated presynaptic dysfunction.

    PubMed

    Moreno, H; Morfini, G; Buitrago, L; Ujlaki, G; Choi, S; Yu, E; Moreira, J E; Avila, J; Brady, S T; Pant, H; Sugimori, M; Llinás, R R

    2016-06-14

    Brain tauopathies are characterized by abnormal processing of tau protein. While somatodendritic tau mislocalization has attracted considerable attention in tauopathies, the role of tau pathology in axonal transport, connectivity and related dysfunctions remains obscure. We have previously shown using the squid giant synapse that presynaptic microinjection of recombinant human tau protein (htau42) results in failure of synaptic transmission. Here, we evaluated molecular mechanisms mediating this effect. Thus, the initial event, observed after htau42 presynaptic injection, was an increase in transmitter release. This event was mediated by calcium release from intracellular stores and was followed by a reduction in evoked transmitter release. The effect of htau42 on synaptic transmission was recapitulated by a peptide comprising the phosphatase-activating domain of tau, suggesting activation of phosphotransferases. Accordingly, findings indicated that htau42-mediated toxicity involves the activities of both GSK3 and Cdk5 kinases. PMID:27012611

  4. The role of CDK5 and GSK3B kinases in hyperphosphorylation of microtubule associated protein tau (MAPT) in Alzheimer's disease

    PubMed Central

    Jayapalan, Saranya; Natarajan, Jeyakumar

    2013-01-01

    Alzheimer's disease is the most common form of dementia. Abnormal hyperphosphorylation of Microtubule associated protein tau (MAPT) is one of the hallmarks of Alzheimer's disease and related tau pathies. CDK5 and GSK3B are the two main protein kinases that have an important role in the abnormal hyperphosphorylation of MAPT which leads to Alzheimer's disease. Structural information for both MAPT-CDK5 and MAPT-GSK3B complexes being absent, we resorted to molecular modeling for gaining insight into the mechanism of implication of hyperphosphorylation of MAPT by both enzymes. First the tertiary structure of MAPT was modeled and its active regions were defined. This was followed by molecular docking and interaction studies of MAPT with CDK5 and GSK3B kinases to infer the role of these kinases in abnormal hyperphosphorylation of MAPT protein. In addition, we have investigated the characteristic features such as phosphorylation sites and ATP binding sites of MAPT and two kinases. Further we computed the stabilization centers and stabilization residues of the MAPT protein and two kinases before and after docking process. The overall results portray that CDK5 is strongly involved in the hyperphosphorylation of MAPT when compared to GSK3B. PMID:24497730

  5. CHIP-ping away at tau.

    PubMed

    Goryunov, Dmitry; Liem, Ronald K H

    2007-03-01

    Protein accumulation is a hallmark of many neurodegenerative disorders. In Alzheimer's disease (AD), a hyperphosphorylated form of the protein tau (p-tau) forms intracellular inclusions known as neurofibrillary tangles. Deposits of p-tau have also been found in the brains of patients with Down's syndrome, supranuclear palsy, and prion disease. Mutations in tau have been causally associated with at least one inherited neurologic disorder, frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17), implying that tau abnormalities by themselves can be a primary cause of degenerative diseases of the CNS. Removal of these p-tau species may occur by both chaperone-mediated refolding and degradation. In this issue of the JCI, Dickey and colleagues show that a cochaperone protein, carboxyl terminus of Hsp70-interacting protein (CHIP), in a complex with Hsp90 plays an important role in the removal of p-tau (see the related article beginning on page 648). Pharmacologic manipulation of Hsp90 may be used to alleviate p-tau accumulation in disease. PMID:17332887

  6. CSF Tau proteins reduce misdiagnosis of sporadic Creutzfeldt-Jakob disease suspected cases with inconclusive 14-3-3 result.

    PubMed

    Leitão, M J; Baldeiras, I; Almeida, M R; Ribeiro, M H; Santos, A C; Ribeiro, M; Tomás, J; Rocha, S; Santana, I; Oliveira, C R

    2016-09-01

    Cerebrospinal fluid (CSF) 14-3-3 protein supports sporadic Creutzfeldt-Jakob (sCJD) diagnosis, but often leads to weak-positive results and lacks standardization. In this study, we explored the added diagnostic value of Total Tau (t-Tau) and phosphorylated Tau (p-Tau) in sCJD diagnosis, particularly in the cases with inconclusive 14-3-3 result. 95 definite sCJD and 287 patients without prion disease (non-CJD) were included in this study. CSF samples were collected in routine clinical diagnosis and analysed for 14-3-3 detection by Western blot (WB). CSF t-Tau and p-Tau were quantified by commercial ELISA kits and PRNP and APOE genotyping assessed by PCR-RFLP. In a regression analysis of the whole cohort, 14-3-3 protein revealed an overall accuracy of 82 % (sensitivity = 96.7 %; specificity = 75.6 %) for sCJD. Regarding 14-3-3 clear positive results, we observed no added value either of t-Tau alone or p-Tau/t-Tau ratio in the model. On the other hand, considering 14-3-3 weak-positive cases, t-Tau protein increased the overall accuracy of 14-3-3 alone from 91 to 94 % and specificity from 74 to 93 % (p < 0.05), with no sensitivity improvement. However, inclusion of p-Tau/t-Tau ratio did not significantly improve the first model (p = 0.0595). Globally, t-Tau protein allowed a further discrimination of 65 % within 14-3-3 inconclusive results. Furthermore, PRNP MV genotype showed a trend to decrease 14-3-3 sensitivity (p = 0.051), but such effect was not seen on t-Tau protein. In light of these results, we suggest that t-Tau protein assay is of significant importance as a second marker in identifying 14-3-3 false-positive results among sCJD probable cases. PMID:27357003

  7. Expression of A152T human tau causes age-dependent neuronal dysfunction and loss in transgenic mice.

    PubMed

    Maeda, Sumihiro; Djukic, Biljana; Taneja, Praveen; Yu, Gui-Qiu; Lo, Iris; Davis, Allyson; Craft, Ryan; Guo, Weikun; Wang, Xin; Kim, Daniel; Ponnusamy, Ravikumar; Gill, T Michael; Masliah, Eliezer; Mucke, Lennart

    2016-04-01

    A152T-variant human tau (hTau-A152T) increases risk for tauopathies, including Alzheimer's disease. Comparing mice with regulatable expression of hTau-A152T or wild-type hTau (hTau-WT), we find age-dependent neuronal loss, cognitive impairments, and spontaneous nonconvulsive epileptiform activity primarily in hTau-A152T mice. However, overexpression of either hTau species enhances neuronal responses to electrical stimulation of synaptic inputs and to an epileptogenic chemical. hTau-A152T mice have higher hTau protein/mRNA ratios in brain, suggesting that A152T increases production or decreases clearance of hTau protein. Despite their functional abnormalities, aging hTau-A152T mice show no evidence for accumulation of insoluble tau aggregates, suggesting that their dysfunctions are caused by soluble tau. In human amyloid precursor protein (hAPP) transgenic mice, co-expression of hTau-A152T enhances risk of early death and epileptic activity, suggesting copathogenic interactions between hTau-A152T and amyloid-β peptides or other hAPP metabolites. Thus, the A152T substitution may augment risk for neurodegenerative diseases by increasing hTau protein levels, promoting network hyperexcitability, and synergizing with the adverse effects of other pathogenic factors. PMID:26931567

  8. Protein structural and surface water rearrangement constitute major events in the earliest aggregation stages of tau

    PubMed Central

    Pavlova, Anna; Cheng, Chi-Yuan; Kinnebrew, Maia; Lew, John; Dahlquist, Frederick W.; Han, Songi

    2016-01-01

    Protein aggregation plays a critical role in the pathogenesis of neurodegenerative diseases, and the mechanism of its progression is poorly understood. Here, we examine the structural and dynamic characteristics of transiently evolving protein aggregates under ambient conditions by directly probing protein surface water diffusivity, local protein segment dynamics, and interprotein packing as a function of aggregation time, along the third repeat domain and C terminus of Δtau187 spanning residues 255–441 of the longest isoform of human tau. These measurements were achieved with a set of highly sensitive magnetic resonance tools that rely on site-specific electron spin labeling of Δtau187. Within minutes of initiated aggregation, the majority of Δtau187 that is initially homogeneously hydrated undergoes structural transformations to form partially structured aggregation intermediates. This is reflected in the dispersion of surface water dynamics that is distinct around the third repeat domain, found to be embedded in an intertau interface, from that of the solvent-exposed C terminus. Over the course of hours and in a rate-limiting process, a majority of these aggregation intermediates proceed to convert into stable β-sheet structured species and maintain their stacking order without exchanging their subunits. The population of β-sheet structured species is >5% within 5 min of aggregation and gradually grows to 50–70% within the early stages of fibril formation, while they mostly anneal block-wisely to form elongated fibrils. Our findings suggest that the formation of dynamic aggregation intermediates constitutes a major event occurring in the earliest stages of tau aggregation that precedes, and likely facilitates, fibril formation and growth. PMID:26712030

  9. Parkin deletion causes cerebral and systemic amyloidosis in human mutated tau over-expressing mice.

    PubMed

    Rodríguez-Navarro, Jose A; Gómez, Ana; Rodal, Izaskun; Perucho, Juan; Martinez, Armando; Furió, Vicente; Ampuero, Israel; Casarejos, María J; Solano, Rosa M; de Yébenes, Justo García; Mena, Maria A

    2008-10-15

    Deposition of proteins leading to amyloid takes place in some neurodegenerative diseases such as Alzheimer's disease and Huntington's disease. Mutations of tau and parkin proteins produce neurofibrillary abnormalities without deposition of amyloid. Here we report that mature, parkin null, over-expressing human mutated tau (PK(-/-)/Tau(VLW)) mice have altered behaviour and dopamine neurotransmission, tau pathology in brain and amyloid deposition in brain and peripheral organs. PK(-/-)/Tau(VLW) mice have abnormal behaviour and severe drop out of dopamine neurons in the ventral midbrain, up to 70%, at 12 months and abundant phosphorylated tau positive neuritic plaques, neuro-fibrillary tangles, astrogliosis, microgliosis and plaques of murine beta-amyloid in the hippocampus. PK(-/-)/Tau(VLW) mice have organomegaly of the liver, spleen and kidneys. The electron microscopy of the liver confirmed the presence of a fibrillary protein deposits with amyloid characteristics. There is also accumulation of mouse tau in hepatocytes. These mice have lower levels of CHIP-HSP70, involved in the proteosomal degradation of tau, increased oxidative stress, measured as depletion of glutathione which, added to lack of parkin, could trigger tau accumulation and amyloidogenesis. This model is the first that demonstrates beta-amyloid deposits caused by over-expression of tau and without modification of the amyloid precursor protein, presenilins or secretases. PK(-/-)/Tau(VLW) mice provide a link between the two proteins more important for the pathogenesis of Alzheimer disease. PMID:18640988

  10. Temperature and solvent dependence of the dynamical landscape of tau protein conformations.

    PubMed

    Bianconi, Antonio; Ciasca, Gabriele; Tenenbaum, Alexander; Battisti, Anna; Campi, Gaetano

    2012-01-01

    We report the variation with temperature of the ensemble distribution of conformations spanned by the tau protein in its dynamical states measured by small-angle X-ray scattering (SAXS) using synchrotron radiation. The SAXS data show a clear temperature variation of the distribution of occupied protein conformations from 293 to 318 K. More conformations with a smaller radius of gyration are occupied at higher temperature. The protein-solvent interactions are shown by computer simulation to be essential for controlling the dynamics of protein conformations, providing evidence for the key role of water solvent in the protein dynamics, as proposed by Giorgio Careri. PMID:23277677

  11. Phosphopeptide Enrichment with TiO2-Modified Membranes and Investigation of Tau Protein Phosphorylation

    PubMed Central

    Tan, Yu-Jing; Sui, Dexin; Wang, Wei-Han; Kuo, Min-Hao; Reid, Gavin E.; Bruening, Merlin L.

    2013-01-01

    Selective enrichment of phosphopeptides prior to their analysis by mass spectrometry (MS) is vital for identifying protein phosphorylation sites involved in cellular regulation. This study describes modification of porous nylon substrates with TiO2 nanoparticles to create membranes that rapidly enrich phosphopeptides. Membranes with a 22-mm diameter bind 540 nmol of phosphoangiotensin and recover 70% of the phosphopeptides in mixtures with a 15-fold excess of non-phosphorylated proteins. Recovery is 90% for a pure phosphopeptide. Insertion of small membrane disks into HPLC fittings allows rapid enrichment of 5 mL of 1 fmol/μL phosphoprotein digests and concentration into small-volume (10’s of μL) eluates. The combination of membrane enrichment with tandem mass spectrometry reveals seven phosphorylation sites from in vivo phosphorylated tau (p-tau) protein, which is associated with Alzheimer’s disease. PMID:23638980

  12. SUMOylation at K340 inhibits tau degradation through deregulating its phosphorylation and ubiquitination.

    PubMed

    Luo, Hong-Bin; Xia, Yi-Yuan; Shu, Xi-Ji; Liu, Zan-Chao; Feng, Ye; Liu, Xing-Hua; Yu, Guang; Yin, Gang; Xiong, Yan-Si; Zeng, Kuan; Jiang, Jun; Ye, Keqiang; Wang, Xiao-Chuan; Wang, Jian-Zhi

    2014-11-18

    Intracellular accumulation of the abnormally modified tau is hallmark pathology of Alzheimer's disease (AD), but the mechanism leading to tau aggregation is not fully characterized. Here, we studied the effects of tau SUMOylation on its phosphorylation, ubiquitination, and degradation. We show that tau SUMOylation induces tau hyperphosphorylation at multiple AD-associated sites, whereas site-specific mutagenesis of tau at K340R (the SUMOylation site) or simultaneous inhibition of tau SUMOylation by ginkgolic acid abolishes the effect of small ubiquitin-like modifier protein 1 (SUMO-1). Conversely, tau hyperphosphorylation promotes its SUMOylation; the latter in turn inhibits tau degradation with reduction of solubility and ubiquitination of tau proteins. Furthermore, the enhanced SUMO-immunoreactivity, costained with the hyperphosphorylated tau, is detected in cerebral cortex of the AD brains, and β-amyloid exposure of rat primary hippocampal neurons induces a dose-dependent SUMOylation of the hyperphosphorylated tau. Our findings suggest that tau SUMOylation reciprocally stimulates its phosphorylation and inhibits the ubiquitination-mediated tau degradation, which provides a new insight into the AD-like tau accumulation. PMID:25378699

  13. Subacute Changes in Cleavage Processing of Amyloid Precursor Protein and Tau following Penetrating Traumatic Brain Injury

    PubMed Central

    Mountney, Andrea; Hwang, Hye; Swiercz, Adam; Rammelkamp, Zoe; Boutte, Angela M.; Shear, Deborah A.; Tortella, Frank C.; Schmid, Kara E.

    2016-01-01

    Traumatic brain injury (TBI) is an established risk factor for the development of Alzheimer’s disease (AD). Here the effects of severe penetrating TBI on APP and tau cleavage processing were investigated in a rodent model of penetrating ballistic-like brain injury (PBBI). PBBI was induced by stereotactically inserting a perforated steel probe through the right frontal cortex of the anesthetized rat and rapidly inflating/deflating the probe’s elastic tubing into an elliptical shaped balloon to 10% of total rat brain volume causing temporary cavitation injury. Separate animals underwent probe injury (PrI) alone without balloon inflation. Shams underwent craniectomy. Brain tissue was collected acutely (4h, 24h, 3d) and subacutely (7d) post-injury and analyzed by immunoblot for full length APP (APP-FL) and APP beta c-terminal fragments (βCTFs), full length tau (tau-FL) and tau truncation fragments and at 7d for cytotoxic Beta amyloid (Aβ) peptides Aβ40 and Aβ42 analysis. APP-FL was significantly decreased at 3d and 7d following PBBI whereas APP βCTFs were significantly elevated by 4h post-injury and remained elevated through 7d post-injury. Effects on βCTFs were mirrored with PrI, albeit to a lesser extent. Aβ40 and Aβ42 were significantly elevated at 7d following PBBI and PrI. Tau-FL decreased substantially 3d and 7d post-PBBI and PrI. Importantly, a 22 kDa tau fragment (tau22), similar to that found in AD, was significantly elevated by 4h and remained elevated through 7d post-injury. Thus both APP and tau cleavage was dramatically altered in the acute and subacute periods post-injury. As cleavage of these proteins has also been implicated in AD, TBI pathology shown here may set the stage for the later development of AD or other tauopathies. PMID:27428544

  14. Semi-synthesis of a tag-free O-GlcNAcylated tau protein by sequential chemoselective ligation.

    PubMed

    Schwagerus, Sergej; Reimann, Oliver; Despres, Clement; Smet-Nocca, Caroline; Hackenberger, Christian P R

    2016-05-01

    In this paper, the first semi-synthesis of the Alzheimer-relevant tau protein carrying an O-GlcNAcylation is demonstrated by using sequential chemoselective ligation. The 52-amino acid C-terminus of tau was obtained by native chemical ligation between two synthetic peptide fragments, one carrying the O-GlcNAc moiety on Ser400, which has recently been demonstrated to inhibit tau phosphorylation and to hinder tau oligomerization, and the other equipped with a photocleavable biotin handle. After desulfurization to deliver a native alanine at the ligation junction, the N-terminal cysteine was unmasked, and the peptide was further used for expressed protein ligation to generate the full-length tau protein, which was purified by a photocleavable biotin tag. We thus provide a synthetic route to obtain a homogenous tag-free O-GlcNAcylated tau protein that can further help to elucidate the significance of posttranslational modification on the tau protein and pave the way for evaluating possible drug targets in Alzheimer's disease. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd. PMID:27071766

  15. Effects of microtubule-associated protein tau expression on neural stem cell migration after spinal cord injury

    PubMed Central

    Qi, Zhi-ping; Wang, Guo-xiang; Xia, Peng; Hou, Ting-ting; Zhou, Hong-li; Wang, Tie-jun; Yang, Xiao-yu

    2016-01-01

    Our preliminary proteomics analysis suggested that expression of microtubule-associated protein tau is elevated in the spinal cord after injury. Therefore, the first aim of the present study was to examine tau expression in the injured spinal cord. The second aim was to determine whether tau can regulate neural stem cell migration, a critical factor in the successful treatment of spinal cord injury. We established rat models of spinal cord injury and injected them with mouse hippocampal neural stem cells through the tail vein. We used immunohistochemistry to show that the expression of tau protein and the number of migrated neural stem cells were markedly increased in the injured spinal cord. Furthermore, using a Transwell assay, we showed that neural stem cell migration was not affected by an elevated tau concentration in the outer chamber, but it was decreased by changes in intracellular tau phosphorylation state. These results demonstrate that neural stem cells have targeted migration capability at the site of injury, and that although tau is not a chemokine for targeted migration of neural stem cells, intracellular tau phosphorylation/dephosphorylation can inhibit cell migration. PMID:27073389

  16. Transfer of beta-amyloid precursor protein gene using adenovirus vector causes mitochondrial abnormalities in cultured normal human muscle.

    PubMed Central

    Askanas, V; McFerrin, J; Baqué, S; Alvarez, R B; Sarkozi, E; Engel, W K

    1996-01-01

    As in Alzheimer-disease (AD) brain, vacuolated muscle fibers of inclusion-body myositis (IBM) contain abnormally accumulated beta-amyloid precursor protein (beta APP), including its beta-amyloid protein epitope, and increased beta APP-751 mRNA. Other similarities between IBM muscle and AD brain phenotypes include paired helical filaments, hyperphosphorylated tau protein, apolipoprotein E, and mitochondrial abnormalities, including decreased cytochrome-c oxidase (COX) activity. The pathogenesis of these abnormalities in IBM muscle and AD brain is not known. We now report that direct transfer of the beta APP gene, using adenovirus vector, into cultured normal human muscle fibers causes structural abnormalities of mitochondria and decreased COX activity. In this adenovirus-mediated beta APP gene transfer, we demonstrated that beta APP overproduction can induce mitochondrial abnormalities. The data suggest that excessive beta APP may be responsible for mitochondrial and COX abnormalities in IBM muscle and perhaps AD brain. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8577761

  17. What Renders TAU Toxic

    PubMed Central

    Götz, Jürgen; Xia, Di; Leinenga, Gerhard; Chew, Yee Lian; Nicholas, Hannah R.

    2013-01-01

    TAU is a microtubule-associated protein that under pathological conditions such as Alzheimer’s disease (AD) forms insoluble, filamentous aggregates. When 20 years after TAU’s discovery the first TAU transgenic mouse models were established, one declared goal that was achieved was the modeling of authentic TAU aggregate formation in the form of neurofibrillary tangles. However, as we review here, it has become increasingly clear that TAU causes damage much before these filamentous aggregates develop. In fact, because TAU is a scaffolding protein, increased levels and an altered subcellular localization (due to an increased insolubility and impaired clearance) result in the interaction of TAU with cellular proteins with which it would otherwise either not interact or do so to a lesser degree, thereby impairing their physiological functions. We specifically discuss the non-axonal localization of TAU, the role phosphorylation has in TAU toxicity and how TAU impairs mitochondrial functions. A major emphasis is on what we have learned from the four available TAU knock-out models in mice, and the knock-out of the TAU/MAP2 homolog PTL-1 in worms. It has been proposed that in human pathological conditions such as AD, a rare toxic TAU species exists which needs to be specifically removed to abrogate TAU’s toxicity and restore neuronal functions. However, what is toxic in one context may not be in another, and simply reducing, but not fully abolishing TAU levels may be sufficient to abrogate TAU toxicity. PMID:23772223

  18. Muscle protein turnover in cattle of differing genetic backgrounds as measured by urinary N tau-methylhistidine excretion

    SciTech Connect

    McCarthy, F.D.; Bergen, W.G.; Hawkins, D.R.

    1983-12-01

    N tau-methylhistidine (N tau MH) was used as an index for muscle protein degradation and this index was utilized to evaluate degradation rates in young growing cattle. Initially, two Charolais crossbred heifers, 12 months of age, were used to measure the recovery of radioactivity in the urine for a 120-hour period after intravenous injection of (/sup 14/C)N tau MH. Of the radioactivity injected into the animals, 89.7% was recovered after 120 hours. With rate and amount of clearance as the criteria, the excretion of N tau MH in urine appears to be a valid index of muscle protein degradation in cattle. Eight steers of two genetic types were used to evaluate the effect of frame size on turnover rates of muscle proteins with N tau MH as an index. Large frame cattle (LG) excreted more N tau MH per day throughout the trial. Total daily creatinine excretion was less for small frame (SM) cattle showing an increase with time in LG and SM cattle. N tau MH-to-creatinine ratios showed a decline with time. Fractional breakdown rates (FBR) and fractional synthesis rates (FSR) appeared to parallel each other with rates tending to decrease with age. No differences were observed between LG and SM cattle for FBR, FSR or fractional growth rate (FGR).

  19. Selective reduction of soluble tau proteins in sporadic and familial frontotemporal dementias: an international follow-up study.

    PubMed

    Zhukareva, Victoria; Sundarraj, Sonali; Mann, David; Sjogren, Magnus; Blenow, Kaj; Clark, Christopher M; McKeel, Daniel W; Goate, Alison; Lippa, Carol F; Vonsattel, Jean-Paul; Growdon, John H; Trojanowski, John Q; Lee, Virginia M-Y

    2003-05-01

    Recently, biochemical criteria were proposed to complement histological criteria for the diagnosis of dementia lacking distinctive histopathology (DLDH), the most common pathological variant of frontotemporal dementias (FTDs), based on evidence of a selective reduction of soluble tau proteins in brains from a large cohort of sporadic DLDH and hereditary FTD (HDDD2 family) patients. To ensure that these findings are not unique to the populations included in the initial report, we extended the previous work by analyzing 22 additional DLDH brains from the United States and international centers. Our biochemical analyses here confirmed the previous findings by demonstrating substantial reductions in soluble brain tau in gray and white matter of 14 cases and moderate reductions in 6 cases of DLDH. We also analyzed brain samples from an additional affected HDDD2 family member, and remarkably, unlike other previously studied members of this kindred, this patient's brain contained substantial amounts of pathological or insoluble tau. These findings confirm and extend the definition of DLDH as a sporadic or familial "tau-less" tauopathy with reduced levels of soluble brain tau and no insoluble tau or fibrillary tau inclusions, and the data also underline the phenotypic heterogeneity of HDDD2, which parallels the phenotypic heterogeneity of other hereditary neurodegenerative FTD tauopathies caused by tau gene mutations. PMID:12677447

  20. Glutamate system, amyloid ß peptides and tau protein: functional interrelationships and relevance to Alzheimer disease pathology.

    PubMed

    Revett, Timothy J; Baker, Glen B; Jhamandas, Jack; Kar, Satyabrata

    2013-01-01

    Alzheimer disease is the most prevalent form of dementia globally and is characterized premortem by a gradual memory loss and deterioration of higher cognitive functions and postmortem by neuritic plaques containing amyloid ß peptide and neurofibrillary tangles containing phospho-tau protein. Glutamate is the most abundant neurotransmitter in the brain and is essential to memory formation through processes such as long-term potentiation and so might be pivotal to Alzheimer disease progression. This review discusses how the glutamatergic system is impaired in Alzheimer disease and how interactions of amyloid ß and glutamate influence synaptic function, tau phosphorylation and neurodegeneration. Interestingly, glutamate not only influences amyloid ß production, but also amyloid ß can alter the levels of glutamate at the synapse, indicating that small changes in the concentrations of both molecules could influence Alzheimer disease progression. Finally, we describe how the glutamate receptor antagonist, memantine, has been used in the treatment of individuals with Alzheimer disease and discuss its effectiveness. PMID:22894822

  1. CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation.

    PubMed

    Petrucelli, Leonard; Dickson, Dennis; Kehoe, Kathryn; Taylor, Julie; Snyder, Heather; Grover, Andrew; De Lucia, Michael; McGowan, Eileen; Lewis, Jada; Prihar, Guy; Kim, Jungsu; Dillmann, Wolfgang H; Browne, Susan E; Hall, Alexis; Voellmy, Richard; Tsuboi, Yoshio; Dawson, Ted M; Wolozin, Benjamin; Hardy, John; Hutton, Mike

    2004-04-01

    Molecular chaperones, ubiquitin ligases and proteasome impairment have been implicated in several neurodegenerative diseases, including Alzheimer's and Parkinson's disease, which are characterized by accumulation of abnormal protein aggregates (e.g. tau and alpha-synuclein respectively). Here we report that CHIP, an ubiquitin ligase that interacts directly with Hsp70/90, induces ubiquitination of the microtubule associated protein, tau. CHIP also increases tau aggregation. Consistent with this observation, diverse of tau lesions in human postmortem tissue were found to be immunopositive for CHIP. Conversely, induction of Hsp70 through treatment with either geldanamycin or heat shock factor 1 leads to a decrease in tau steady-state levels and a selective reduction in detergent insoluble tau. Furthermore, 30-month-old mice overexpressing inducible Hsp70 show a significant reduction in tau levels. Together these data demonstrate that the Hsp70/CHIP chaperone system plays an important role in the regulation of tau turnover and the selective elimination of abnormal tau species. Hsp70/CHIP may therefore play an important role in the pathogenesis of tauopathies and also represents a potential therapeutic target. PMID:14962978

  2. Minocycline alleviates beta-amyloid protein and tau pathology via restraining neuroinflammation induced by diabetic metabolic disorder

    PubMed Central

    Cai, Zhiyou; Yan, Yong; Wang, Yonglong

    2013-01-01

    Background Compelling evidence has shown that diabetic metabolic disorder plays a critical role in the pathogenesis of Alzheimer’s disease, including increased expression of β-amyloid protein (Aβ) and tau protein. Evidence has supported that minocycline, a tetracycline derivative, protects against neuroinflammation induced by neurodegenerative disorders or cerebral ischemia. This study has evaluated minocycline influence on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the brain of diabetic rats to clarify neuroprotection by minocycline under diabetic metabolic disorder. Method An animal model of diabetes was established by high fat diet and intraperitoneal injection of streptozocin. In this study, we investigated the effect of minocycline on expression of Aβ protein, tau phosphorylation, and inflammatory cytokines (interleukin-1β and tumor necrosis factor-α) in the hippocampus of diabetic rats via immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Results These results showed that minocycline decreased expression of Aβ protein and lowered the phosphorylation of tau protein, and retarded the proinflammatory cytokines, but not amyloid precursor protein. Conclusion On the basis of the finding that minocycline had no influence on amyloid precursor protein and beta-site amyloid precursor protein cleaving enzyme 1 which determines the speed of Aβ generation, the decreases in Aβ production and tau hyperphosphorylation by minocycline are through inhibiting neuroinflammation, which contributes to Aβ production and tau hyperphosphorylation. Minocycline may also lower the self-perpetuating cycle between neuroinflammation and the pathogenesis of tau and Aβ to act as a neuroprotector. Therefore, the ability of minocycline to modulate inflammatory reactions may be of great importance in the selection of neuroprotective agents, especially in chronic conditions

  3. The effect of human microtubule-associated-protein tau on the assembly structure of microtubules and its ionic strength dependence

    NASA Astrophysics Data System (ADS)

    Choi, M. C.; Raviv, U.; Miller, H. P.; Gaylord, M. R.; Kiris, E.; Ventimiglia, D.; Needleman, D. J.; Chung, P. J.; Deek, J.; Lapointe, N.; Kim, M. W.; Wilson, L.; Feinstein, S. C.; Safinya, C. R.

    2010-03-01

    Microtubules (MTs), 25 nm protein nanotubes, are among the major filamentous elements of the eukaryotic cytoskeleton involved in intracellular trafficking, cell division and the establishment and maintenance of cell shape. Microtubule-associated-protein tau regulates tubulin assembly, MT dynamics and stability. Aberrant tau action has long been correlated with numerous neurodegenerative diseases, including Alzheimer's, and fronto-temporal dementia with Parkinsonism linked to chromosome 17 (FTDP-17) Using synchrotron small angle x-ray scattering (SAXS) and binding assay, we examine the effects of tau on the assembly structure of taxol-stabilized MTs. We find that tau regulates the distribution of protofilament numbers in MTs as reflected in the observed increase in the average radius of MTs with increasing the tau/tubulin molar ratio. Additionally, tau-MT interactions are mediated to a large extent via electrostatic interactions: the binding affinity of tau to MTs is ionic strength dependent. Supported by DOE-BES DE-FG02-06ER46314, NSF DMR-0803103, NIH NS35010, NIH NS13560. (Ref) M.C. Choi, S.C. Feinstein, and C.R. Safinya et al. Biophys. J. 97; 519 (2009).

  4. Invited review: Frontotemporal dementia caused by microtubule-associated protein tau gene (MAPT) mutations: a chameleon for neuropathology and neuroimaging

    PubMed Central

    Ghetti, B; Oblak, A L; Boeve, B F; Johnson, K A; Dickerson, B C; Goedert, M

    2015-01-01

    Hereditary frontotemporal dementia associated with mutations in the microtubule-associated protein tau gene (MAPT) is a protean disorder. Three neuropathologic subtypes can be recognized, based on the presence of inclusions made of tau isoforms with three and four repeats, predominantly three repeats and mostly four repeats. This is relevant for establishing a correlation between structural magnetic resonance imaging and positron emission tomography using tracers specific for aggregated tau. Longitudinal studies will be essential to determine the evolution of anatomical alterations from the asymptomatic stage to the various phases of disease following the onset of symptoms. PMID:25556536

  5. Level of PICALM, a key component of clathrin-mediated endocytosis, is correlated with levels of phosphotau and autophagy-related proteins and is associated with tau inclusions in AD, PSP and Pick disease.

    PubMed

    Ando, Kunie; Tomimura, Karen; Sazdovitch, Véronique; Suain, Valérie; Yilmaz, Zehra; Authelet, Michèle; Ndjim, Marième; Vergara, Cristina; Belkouch, Mounir; Potier, Marie-Claude; Duyckaerts, Charles; Brion, Jean-Pierre

    2016-10-01

    Single nucleotide polymorphisms in PICALM, a key component of clathrin-mediated endocytosis machinery, have been identified as genetic susceptibility loci for late onset Alzheimer's disease (LOAD). We previously reported that PICALM protein levels were decreased in AD brains and that PICALM was co-localised with neurofibrillary tangles in LOAD, familial AD with PSEN1 mutations and Down syndrome. In the present study, we analysed PICALM expression, cell localisation and association with pathological cellular inclusions in other tauopathies and in non-tau related neurodegenerative diseases. We observed that PICALM was associated with neuronal tau pathology in Pick disease and in progressive supranuclear palsy (PSP) and co-localised with both 3R and 4R tau positive inclusions unlike in corticobasal degeneration (CBD) or in frontotemporal lobar degeneration (FTLD)-MAPT P301L. PICALM immunoreactivities were not detected in tau-positive tufted astrocytes in PSP, astrocytic plaques in CBD, Lewy bodies in Lewy body disease, diffuse type (LBD) and in TDP-43-positive inclusions in FTLD. In the frontal cortex in tauopathies, the ratio of insoluble to soluble PICALM was increased while the level of soluble PICALM was decreased and was inversely correlated with the level of phosphotau. PICALM decrease was also significantly correlated with increased LC3-II and decreased Beclin-1 levels in tauopathies and in non-tau related neurodegenerative diseases. These results suggest that there is a close relationship between abnormal PICALM processing, tau pathology and impairment of autophagy in human neurodegenerative diseases. PMID:27260836

  6. A68 proteins in Alzheimer's disease are composed of several tau isoforms in a phosphorylated state which affects their electrophoretic mobilities.

    PubMed Central

    Brion, J P; Hanger, D P; Couck, A M; Anderton, B H

    1991-01-01

    The tau-immunoreactive A68 polypeptides found in brains from patients with Alzheimer's disease have been studied by Western blotting using (1) antibodies to synthetic peptides corresponding to sequences that span the complete human tau molecule, and (2) antibodies specific for inserts 1 and 2 found towards the N-terminus of some tau isoforms. The three major A68 polypeptides were labelled by all of the antibodies to sequences common to all tau isoforms, but the faster-migrating A68 polypeptides was not labelled by either of the two antibodies specific for inserts 1 and 2. Treatment with alkaline phosphatase of non-solubilized A68 did not change its electrophoretic mobility on SDS/PAGE under the conditions described here. However, A68 that was solubilized before treating it with alkaline phosphatase was found to move faster on SDS/PAGE than untreated A68, to a position similar to that of normal tau. We also confirmed that A68 preparations contain numerous paired helical filaments (PHF). These PHF were labelled by all anti-tau antibodies, including insert-specific antibodies. Our results further support the notion that PHF contain abnormally phosphorylated tau in an aggregated state, and indicate that these abnormally phosphorylated tau forms are composed of several tau isoforms and that the full length of the tau molecule is present in these polypeptides. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:1953678

  7. Difference in fibril core stability between two tau four-repeat domain proteins: a hydrogen-deuterium exchange coupled to mass spectrometry study.

    PubMed

    Ramachandran, Gayathri; Udgaonkar, Jayant B

    2013-12-10

    One of the signatures of Alzheimer's disease and tauopathies is fibrillization of the microtubule-associated protein tau. The purpose of this study was to compare the high-resolution structure of fibrils formed by two different tau four-repeat domain constructs, tau4RD and tauK18, using hydrogen-deuterium exchange coupled to mass spectrometry as a tool. While the two fibrils are found to be constructed on similar structural principles, the tauK18 fibril has a slightly more stable core. This difference in fibril core stability appears to be reflective of the mechanistic differences in the aggregation pathways of the two proteins. PMID:24256615

  8. Modeling Alzheimer’s Disease in Mouse without Mutant Protein Overexpression: Cooperative and Independent Effects of Aβ and Tau

    PubMed Central

    Guo, Qinxi; Li, Hongmei; Cole, Allysa L.; Hur, Ji-Yeun; Li, Yueming; Zheng, Hui

    2013-01-01

    Background Alzheimer’s disease (AD), the most common cause of dementia in the elderly, has two pathological hallmarks: Aβ plaques and aggregation of hyperphosphorylated tau (p-tau). Aβ is a cleavage product of Amyloid Precursor Protein (APP). Presenilin 1 (PS1) and presenilin 2 (PS2) are the catalytic subunit of γ-secretase, which cleaves APP and mediates Aβ production. Genetic mutations in APP, PSEN1 or PSEN2 can lead to early onset of familial AD (FAD). Although mutations in the tau encoding gene MAPT leads to a subtype of frontotemporal dementia and these mutations have been used to model AD tauopathy, no MAPT mutations have been found to be associated with AD. Results To model AD pathophysiology in mice without the gross overexpression of mutant transgenes, we created a humanized AD mouse model by crossing the APP and PSEN1 FAD knock-in mice with the htau mice which express wildtype human MAPT genomic DNA on mouse MAPT null background (APP/PS1/htau). The APP/PS1/htau mice displayed mild, age-dependent, Aβ plaques and tau hyperphosphorylation, thus successfully recapitulating the late-onset AD pathological hallmarks. Selected biochemical analyses, including p-tau western blot, γ-secretase activity assay, and Aβ ELISA, were performed to study the interaction between Aβ and p-tau. Subsequent behavioral studies revealed that the APP/PS1/htau mice showed reduced mobility in old ages and exaggerated fear response. Genetic analysis suggested that the fear phenotype is due to a synergic interaction between Aβ and p-tau, and it can be completely abolished by tau deletion. Conclusion The APP/PS1/htau model represents a valuable and disease-relevant late-onset pre-clinical AD animal model because it incorporates human AD genetics without mutant protein overexpression. Analysis of the mice revealed both cooperative and independent effects of Aβ and p-tau. PMID:24278307

  9. Blocking Abeta42 accumulation delays the onset and progression of tau pathology via the C terminus of heat shock protein70-interacting protein: a mechanistic link between Abeta and tau pathology.

    PubMed

    Oddo, Salvatore; Caccamo, Antonella; Tseng, Bert; Cheng, David; Vasilevko, Vitaly; Cribbs, David H; LaFerla, Frank M

    2008-11-19

    The molecular alterations that induce tau pathology in Alzheimer disease (AD) are not known, particularly whether this is an amyloid-beta (Abeta)-dependent or -independent event. We addressed this issue in the 3xTg-AD mice using both genetic and immunological approaches and show that a selective decrease in Abeta(42) markedly delays the progression of tau pathology. The mechanism underlying this effect involves alterations in the levels of C terminus of heat shock protein70-interacting protein (CHIP) as we show that Abeta accumulation decreases CHIP expression and increases tau levels. We show that the Abeta-induced effects on tau were rescued by restoring CHIP levels. Our findings have profound clinical implications as they indicate that preventing Abeta accumulation will significantly alter AD progression. These data highlight the critical role CHIP plays as a link between Abeta and tau and identify CHIP as a new potential target not only for AD but for other neurodegenerative disorders characterized by tau accumulation. PMID:19020010

  10. MSUT2 is a determinant of susceptibility to tau neurotoxicity.

    PubMed

    Guthrie, Chris R; Greenup, Lynne; Leverenz, James B; Kraemer, Brian C

    2011-05-15

    Lesions containing abnormal aggregated tau protein are one of the diagnostic hallmarks of Alzheimer's disease (AD) and related tauopathy disorders. How aggregated tau leads to dementia remains enigmatic, although neuronal dysfunction and loss clearly contribute. We previously identified sut-2 as a gene required for tau neurotoxicity in a transgenic Caenorhabditis elegans model of tauopathy. Here, we further explore the role of sut-2 and show that overexpression of SUT-2 protein enhances tau-induced neuronal dysfunction, neurotoxicity and accumulation of insoluble tau. We also explore the relationship between sut-2 and its human homolog, mammalian SUT-2 (MSUT2) and find both proteins to be predominantly nuclear and localized to SC35-positive nuclear speckles. Using a cell culture model for the accumulation of pathological tau, we find that high tau levels lead to increased expression of MSUT2 protein. We analyzed MSUT2 protein in age-matched post-mortem brain samples from AD patients and observe a marked decrease in overall MSUT2 levels in the temporal lobe of AD patients. Analysis of post-mortem tissue from AD cases shows a clear reduction in neuronal MSUT2 levels in brain regions affected by tau pathology, but little change in regions lacking tau pathology. RNAi knockdown of MSUT2 in cultured human cells overexpressing tau causes a marked decrease in tau aggregation. Both cell culture and post-mortem tissue studies suggest that MSUT2 levels may influence neuronal vulnerability to tau toxicity and aggregation. Thus, neuroprotective strategies targeting MSUT2 may be of therapeutic interest for tauopathy disorders. PMID:21355046

  11. MSUT2 is a determinant of susceptibility to tau neurotoxicity

    PubMed Central

    Guthrie, Chris R.; Greenup, Lynne; Leverenz, James B.; Kraemer, Brian C.

    2011-01-01

    Lesions containing abnormal aggregated tau protein are one of the diagnostic hallmarks of Alzheimer's disease (AD) and related tauopathy disorders. How aggregated tau leads to dementia remains enigmatic, although neuronal dysfunction and loss clearly contribute. We previously identified sut-2 as a gene required for tau neurotoxicity in a transgenic Caenorhabditis elegans model of tauopathy. Here, we further explore the role of sut-2 and show that overexpression of SUT-2 protein enhances tau-induced neuronal dysfunction, neurotoxicity and accumulation of insoluble tau. We also explore the relationship between sut-2 and its human homolog, mammalian SUT-2 (MSUT2) and find both proteins to be predominantly nuclear and localized to SC35-positive nuclear speckles. Using a cell culture model for the accumulation of pathological tau, we find that high tau levels lead to increased expression of MSUT2 protein. We analyzed MSUT2 protein in age-matched post-mortem brain samples from AD patients and observe a marked decrease in overall MSUT2 levels in the temporal lobe of AD patients. Analysis of post-mortem tissue from AD cases shows a clear reduction in neuronal MSUT2 levels in brain regions affected by tau pathology, but little change in regions lacking tau pathology. RNAi knockdown of MSUT2 in cultured human cells overexpressing tau causes a marked decrease in tau aggregation. Both cell culture and post-mortem tissue studies suggest that MSUT2 levels may influence neuronal vulnerability to tau toxicity and aggregation. Thus, neuroprotective strategies targeting MSUT2 may be of therapeutic interest for tauopathy disorders. PMID:21355046

  12. Defined neurofilament, tau, and beta-amyloid precursor protein epitopes distinguish Alzheimer from non-Alzheimer senile plaques.

    PubMed Central

    Arai, H; Lee, V M; Otvos, L; Greenberg, B D; Lowery, D E; Sharma, S K; Schmidt, M L; Trojanowski, J Q

    1990-01-01

    Eight antisera and one monoclonal antibody to synthetic peptides that corresponded to domains extending over the entire length of the beta-amyloid precursor protein (beta-APP), and an antiserum to the full-length 695-amino acid form of the beta-APP, were raised to probe the composition of the core and corona of senile plaques (SPs). We localized distinct beta-APP domains, including the beta-amyloid protein or A4 region, within the SPs of 13 end-stage Alzheimer disease (AD) and 13 age-matched control samples of hippocampus and entorhinal cortex. The composition of SPs also was probed with antibodies to defined epitopes in tau (tau) as well as the large and mid-size neurofilament (NF) proteins. The most important observations were that beta-APP domains outside the A4 region were largely restricted to SP coronas in the AD samples, together with tau and NF determinants, whereas the same epitopes were absent from A4-positive blood vessels and exceptionally rare in non-AD SPs. Indeed, samples from a subset of the non-AD cases contained a considerable number of A4-positive SPs totally devoid of any of the other beta-APP, tau, and NF epitopes. These observations suggest that the deposition of the A4 protein in AD SPs results from the local processing of beta-APPs in association with tau and NF protein fragments. It is unclear whether this association is fortuitous or linked by common mechanisms. However, differences between the complement of beta-APP, tau, and NF protein epitopes in AD versus non-AD brains implicate a defect involving one or more steps in the posttranslational modification, degradation, or elimination of these proteins in AD brains, and this may account for the massive numbers of SPs that characterize AD. Images PMID:1690426

  13. Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner*

    PubMed Central

    Polanco, Juan Carlos; Scicluna, Benjamin James; Hill, Andrew Francis

    2016-01-01

    The microtubule-associated protein tau has a critical role in Alzheimer disease and related tauopathies. There is accumulating evidence that tau aggregates spread and replicate in a prion-like manner, with the uptake of pathological tau seeds causing misfolding and aggregation of monomeric tau in recipient cells. Here we focused on small extracellular vesicles enriched for exosomes that were isolated from the brains of tau transgenic rTg4510 and control mice. We found that these extracellular vesicles contained tau, although the levels were significantly higher in transgenic mice that have a pronounced tau pathology. Tau in the vesicles was differentially phosphorylated, although to a lower degree than in the brain cells from which they were derived. Several phospho-epitopes (AT8, AT100, and AT180) thought to be critical for tau pathology were undetected in extracellular vesicles. Despite this, when assayed with FRET tau biosensor cells, extracellular vesicles derived from transgenic mice were capable of seeding tau aggregation in a threshold-dependent manner. We also observed that the dye used to label extracellular vesicle membranes was still present during nucleation and formation of tau inclusions, suggesting either a role for membranes in the seeding or in the process of degradation. Together, we clearly demonstrate that extracellular vesicles can transmit tau pathology. This indicates a role for extracellular vesicles in the transmission and spreading of tau pathology. The characteristics of tau in extracellular vesicles and the seeding threshold we identified may explain why tau pathology develops very slowly in neurodegenerative diseases such as Alzheimer disease. PMID:27030011

  14. Extracellular Vesicles Isolated from the Brains of rTg4510 Mice Seed Tau Protein Aggregation in a Threshold-dependent Manner.

    PubMed

    Polanco, Juan Carlos; Scicluna, Benjamin James; Hill, Andrew Francis; Götz, Jürgen

    2016-06-10

    The microtubule-associated protein tau has a critical role in Alzheimer disease and related tauopathies. There is accumulating evidence that tau aggregates spread and replicate in a prion-like manner, with the uptake of pathological tau seeds causing misfolding and aggregation of monomeric tau in recipient cells. Here we focused on small extracellular vesicles enriched for exosomes that were isolated from the brains of tau transgenic rTg4510 and control mice. We found that these extracellular vesicles contained tau, although the levels were significantly higher in transgenic mice that have a pronounced tau pathology. Tau in the vesicles was differentially phosphorylated, although to a lower degree than in the brain cells from which they were derived. Several phospho-epitopes (AT8, AT100, and AT180) thought to be critical for tau pathology were undetected in extracellular vesicles. Despite this, when assayed with FRET tau biosensor cells, extracellular vesicles derived from transgenic mice were capable of seeding tau aggregation in a threshold-dependent manner. We also observed that the dye used to label extracellular vesicle membranes was still present during nucleation and formation of tau inclusions, suggesting either a role for membranes in the seeding or in the process of degradation. Together, we clearly demonstrate that extracellular vesicles can transmit tau pathology. This indicates a role for extracellular vesicles in the transmission and spreading of tau pathology. The characteristics of tau in extracellular vesicles and the seeding threshold we identified may explain why tau pathology develops very slowly in neurodegenerative diseases such as Alzheimer disease. PMID:27030011

  15. γ-Aminobutyric Acid Type A (GABAA) Receptor Activation Modulates Tau Phosphorylation*

    PubMed Central

    Nykänen, Niko-Petteri; Kysenius, Kai; Sakha, Prasanna; Tammela, Päivi; Huttunen, Henri J.

    2012-01-01

    Abnormal phosphorylation and aggregation of the microtubule-associated protein Tau are hallmarks of various neurodegenerative diseases, such as Alzheimer disease. Molecular mechanisms that regulate Tau phosphorylation are complex and currently incompletely understood. We have developed a novel live cell reporter system based on protein-fragment complementation assay to study dynamic changes in Tau phosphorylation status. In this assay, fusion proteins of Tau and Pin1 (peptidyl-prolyl cis-trans-isomerase 1) carrying complementary fragments of a luciferase protein serve as a sensor of altered protein-protein interaction between Tau and Pin1, a critical regulator of Tau dephosphorylation at several disease-associated proline-directed phosphorylation sites. Using this system, we identified several structurally distinct GABAA receptor modulators as novel regulators of Tau phosphorylation in a chemical library screen. GABAA receptor activation promoted specific phosphorylation of Tau at the AT8 epitope (Ser-199/Ser-202/Thr-205) in cultures of mature cortical neurons. Increased Tau phosphorylation by GABAA receptor activity was associated with reduced Tau binding to protein phosphatase 2A and was dependent on Cdk5 but not GSK3β kinase activity. PMID:22235112

  16. The N terminal region of human tau is present in Alzheimer's disease protein A68 and is incorporated into paired helical filaments.

    PubMed Central

    Crowe, A.; Ksiezak-Reding, H.; Liu, W. K.; Dickson, D. W.; Yen, S. H.

    1991-01-01

    Antibody (Ab) E-1 was raised to the amino terminus (19 to 33 amino acid residues) of human tau. It recognized Alzheimer's disease proteins A68 (MW 60, 64, 68 kd), labeled paired helical filaments, and had no reactivity with tau from rat, mouse, and bovine brains. The results indicate that the N terminus of tau is incorporated in A68 proteins and paired helical filaments and that human tau proteins contain species-specific amino acid sequences. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1721492

  17. Three-Dimensional Collagen Type I Matrix Up-Regulates Nuclear Isoforms of the Microtubule Associated Protein Tau Implicated in Resistance to Paclitaxel Therapy in Ovarian Carcinoma

    PubMed Central

    Gurler, Hilal; Yu, Yi; Choi, Jacqueline; Kajdacsy-Balla, Andre A.; Barbolina, Maria V.

    2015-01-01

    Epithelial ovarian carcinoma is the deadliest gynecologic malignancy. One reason underlying treatment failure is resistance to paclitaxel. Expression of the microtubule associated protein tau has recently been proposed as a predictor of response to paclitaxel in ovarian carcinoma patients. Expression of tau was probed using immunohistochemistry in 312 specimens of primary, and 40 specimens of metastatic, ovarian carcinoma. Serous epithelial ovarian carcinoma cell line models were used to determine the expression of tau by Western blot and immunofluorescence staining. Subcellular fractionation and Western blot were employed to examine nuclear and cytoplasmic localization of tau. Gene silencing and clonogenic assays were used to evaluate paclitaxel response. Tau was expressed in 44% of all tested cases. Among the primary serous epithelial ovarian carcinoma cases, 46% were tau-positive. Among the metastatic serous epithelial ovarian carcinomas, 63% were tau-positive. Cell culture experiments demonstrated that tau was expressed in multiple isoforms. Three-dimensional collagen I matrix culture conditions resulted in up-regulation of tau protein. Silencing of tau with specific siRNAs in a combination with three-dimensional culture conditions led to a significant decrease of the clonogenic ability of cells treated with paclitaxel. The data suggest that reduction of tau expression may sensitize ovarian carcinoma to the paclitaxel treatment. PMID:25658796

  18. Phosphorylated human tau associates with mouse prion protein amyloid in scrapie-infected mice but does not increase progression of clinical disease.

    PubMed

    Race, Brent; Phillips, Katie; Kraus, Allison; Chesebro, Bruce

    2016-07-01

    Tauopathies are a family of neurodegenerative diseases in which fibrils of human hyperphosphorylated tau (P-tau) are believed to cause neuropathology. In Alzheimer disease, P-tau associates with A-beta amyloid and contributes to disease pathogenesis. In familial human prion diseases and variant CJD, P-tau often co-associates with prion protein amyloid, and might also accelerate disease progression. To test this latter possibility, here we compared progression of amyloid prion disease in vivo after scrapie infection of mice with and without expression of human tau. The mice used expressed both anchorless prion protein (PrP) and membrane-anchored PrP, that generate disease associated amyloid and non-amyloid PrP (PrPSc) after scrapie infection. Human P-tau induced by scrapie infection was only rarely associated with non-amyloid PrPSc, but abundant human P-tau was detected at extracellular, perivascular and axonal deposits associated with amyloid PrPSc. This pathology was quite similar to that seen in familial prion diseases. However, association of human and mouse P-tau with amyloid PrPSc did not diminish survival time following prion infection in these mice. By analogy, human P-tau may not affect prion disease progression in humans. Alternatively, these results might be due to other factors, including rapidity of disease, blocking effects by mouse tau, or low toxicity of human P-tau in this model. PMID:27463540

  19. Sodium selenate, a protein phosphatase 2A activator, mitigates hyperphosphorylated tau and improves repeated mild traumatic brain injury outcomes.

    PubMed

    Tan, Xin L; Wright, David K; Liu, Shijie; Hovens, Christopher; O'Brien, Terence J; Shultz, Sandy R

    2016-09-01

    Mild traumatic brain injuries may result in cumulative brain damage and neurodegenerative disease. To date, there is no pharmaceutical intervention known to prevent these consequences. Hyperphosphorylated tau has been associated in this process, and protein phosphatase 2A 55 kDa regulatory B subunit (PP2A/PR55) - the major tau phosphatase - is decreased after a brain insult. Sodium selenate up-regulates PP2A/PR55 and dephosphorylates tau, and may hold promise as a treatment in the mild brain injury setting. Here we investigated sodium selenate treatment in rats given repeated mild traumatic brain injuries. Rats were given three mild fluid percussion injuries or three sham-injuries, and treated with sodium selenate (1 mg/kg/day) or saline-vehicle for three months before undergoing behavioral testing, MRI, and post-mortem analysis of brain tissue. Repeated mild traumatic brain injuries increased the phosphorylation of tau and decreased PP2A/PR55, whilst inducing brain atrophy and cognitive and sensorimotor deficits. Sodium selenate treatment increased PP2A/PR55, and decreased tau phosphorylation, brain damage, and cognitive and motor impairments in rats given repeated mild traumatic brain injuries. Our findings implicate PP2A/PR55 and tau as important mechanisms in the pathophysiological aftermath of repeated mild brain traumas, and support sodium selenate as a novel and translatable treatment for these common injuries. PMID:27163189

  20. Mitotic-like tau phosphorylation by p25-Cdk5 kinase complex.

    PubMed

    Hamdane, Malika; Sambo, Anne-Véronique; Delobel, Patrice; Bégard, Séverine; Violleau, Anne; Delacourte, André; Bertrand, Philippe; Benavides, Jesus; Buée, Luc

    2003-09-01

    Among tau phosphorylation sites, some phosphoepitopes referred to as abnormal ones are exclusively found on tau aggregated into filaments in Alzheimer's disease. Recent data suggested that molecular mechanisms similar to those encountered during mitosis may play a role in abnormal tau phosphorylation. In particular, TG-3 phosphoepitope is associated with early stages of neurofibrillary tangles (NFTs). In this study, we reported a suitable cell model consisting of SH-SY5Y cells stably transfected with an inducible p25 expression vector. It allows investigation of tau phosphorylation by p25-Cdk5 kinase complex in a neuronal context and avoiding p25-induced cytotoxicity. Immunoblotting analyses showed that p25-Cdk5 strongly phosphorylates tau protein not only at the AT8 epitope but also at the AT180 epitope and at the Alzheimer's mitotic epitope TG-3. Further biochemical analyses showed that abnormal phosphorylated tau accumulated in cytosol as a microtubule-free form, suggesting its impact on tau biological activity. Since tau abnormal phosphorylation occurred in dividing cells, TG-3 immunoreactivity was also investigated in differentiated neuronal ones, and both TG-3-immunoreactive tau and nucleolin, another early marker for NFT, were also generated. These data suggest that p25-Cdk5 is responsible for the mitotic-like phosphoepitopes present in NFT and argue for a critical role of Cdk5 in neurodegenerative mechanisms. PMID:12826674

  1. Interpretation of Serum Calcium in Patients with Abnormal Serum Proteins

    PubMed Central

    Payne, R. B.; Little, A. J.; Williams, R. B.; Milner, J. R.

    1973-01-01

    Two hundred consecutive specimens received in this laboratory for “liver function tests” showed a wide range of abnormal protein concentrations. Calcium concentration correlated closely with albumin (r = 0·867) but less closely with total protein (r = 0·682). A simple formula for adjusting calcium concentration was derived from the regression equation of calcium on albumin. Adjusted calcium = calcium - albumin + 4·0, where calcium is in mg/100 ml and albumin in g/100 ml. Low calcium concentrations were found in 49 (24·5%) and raised concentrations in six (3%) of the 200 blood specimens taken for liver function tests. After adjustment, the 95% limits of the observed range were identical with the 95% limits of the normal range determined in this laboratory. Unlike adjustments based on total protein or specific gravity, the adjustment on albumin in 39 specimens which showed hypergammaglobulinaemia on electrophoresis gave normal calcium concentrations. PMID:4758544

  2. Femtomolar Detection of Tau Proteins in Undiluted Plasma Using Surface Plasmon Resonance.

    PubMed

    Kim, Suhee; Wark, Alastair W; Lee, Hye Jin

    2016-08-01

    The ability to directly detect Tau protein and other neurodegenerative biomarkers in human plasma at clinically relevant concentrations continues to be a significant hurdle for the establishment of diagnostic tests for Alzheimer's disease (AD). In this article, we introduce a new DNA aptamer/antibody sandwich assay pairing and apply it for the detection of human Tau 381 in undiluted plasma at concentrations as low as 10 fM. This was achieved on a multichannel surface plasmon resonance (SPR) platform with the challenge of working in plasma overcome through the development of a tailored mixed monolayer surface chemistry. In addition, a robust methodology was developed involving various same chip control measurements on reference channels to which the detection signal was normalized. Comparative measurements in plasma between SPR and enzyme-linked immunosorbent assay (ELISA) measurements were also performed to highlight both the 1000-fold performance enhancement of SPR and the ability to measure both spiked and native concentrations that are not achievable with ELISA. PMID:27399254

  3. Taxol and tau overexpression induced calpain-dependent degradation of the microtubule-destabilizing protein SCG10.

    PubMed

    Vega, Irving E; Hamano, Tadanori; Propost, Josh A; Grenningloh, Gabriele; Yen, Shu-Hui

    2006-11-01

    Microtubule-stabilizing and -destabilizing proteins play a crucial role in regulating the dynamic instability of microtubules during neuronal development and synaptic transmission. The microtubule-destabilizing protein SCG10 is a neuron-specific protein implicated in neurite outgrowth. The SCG10 protein is significantly reduced in mature neurons, suggesting that its expression is developmentally regulated. In contrast, the microtubule-stabilizing protein tau is expressed in mature neurons and its function is essential for the maintenance of neuronal polarity and neuronal survival. Thus, the establishment and maintenance of neuronal polarity may down-regulate the protein level/function of SCG10. In this report, we show that treatment of PC12 cells and neuroblastoma cells with the microtubule-stabilizing drug Taxol induced a rapid degradation of the SCG10 protein. Consistently, overexpression of tau protein in neuroblastoma cells also induced a reduction in SCG10 protein levels. Calpain inhibitor MDL-28170, but not caspase inhibitors, blocked a significant decrease in SCG10 protein levels. Collectively, these results indicate that tau overexpression and Taxol treatment induced a calpain-dependent degradation of the microtubule-destabilizing protein SCG10. The results provide evidence for the existence of an intracellular mechanism involved in the regulation of SCG10 upon microtubule stabilization. PMID:16822511

  4. Passive immunization targeting the N-terminal projection domain of tau decreases tau pathology and improves cognition in a transgenic mouse model of Alzheimer disease and tauopathies.

    PubMed

    Dai, Chun-ling; Chen, Xia; Kazim, Syed Faraz; Liu, Fei; Gong, Cheng-Xin; Grundke-Iqbal, Inge; Iqbal, Khalid

    2015-04-01

    Intraneuronal accumulation of abnormally hyperphosphorylated tau in the brain is a histopathological hallmark of Alzheimer's disease and a family of related neurodegenerative disorders collectively called tauopathies. At present there is no effective treatment available for these progressive neurodegenerative diseases which are clinically characterized by dementia in mid to old-age. Here we report the treatment of 14-17-months-old 3xTg-AD mice with tau antibodies 43D (tau 6-18) and 77E9 (tau 184-195) to the N-terminal projection domain of tau or mouse IgG as a control by intraperitoneal injection once a week for 4 weeks, and the effects of the passive immunization on reduction of hyperphosphorylated tau, Aβ accumulation and cognitive performance in these animals. We found that treatment with tau antibodies 43D and 77E9 reduced total tau level, decreased tau hyperphosphorylated at Ser199, Ser202/Thr205 (AT8), Thr205, Ser262/356 (12E8), and Ser396/404 (PHF-1) sites, and a trend to reduce Aβ pathology. Most importantly, targeting N-terminal tau especially by 43D (tau 6-18) improved reference memory in the Morris water maze task in 3xTg-AD mice. We did not observe any abnormality in general physical characteristics of the treated animals with either of the two antibodies during the course of this study. Taken together, our studies demonstrate for the first time (1) that passive immunization targeting normal tau can effectively clear the hyperphosphorylated protein and possibly reduce Aβ pathology from the brain and (2) that targeting N-terminal projection domain of tau containing amino acid 6-18 is especially beneficial. Thus, targeting selective epitopes of N-terminal domain of tau may present a novel effective therapeutic opportunity for Alzheimer disease and other tauopathies. PMID:25233799

  5. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate.

    PubMed

    Bondulich, Marie K; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy; Hanger, Diane P

    2016-08-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  6. Tauopathy induced by low level expression of a human brain-derived tau fragment in mice is rescued by phenylbutyrate

    PubMed Central

    Bondulich, Marie K.; Guo, Tong; Meehan, Christopher; Manion, John; Rodriguez Martin, Teresa; Mitchell, Jacqueline C.; Hortobagyi, Tibor; Yankova, Natalia; Stygelbout, Virginie; Brion, Jean-Pierre; Noble, Wendy

    2016-01-01

    Human neurodegenerative tauopathies exhibit pathological tau aggregates in the brain along with diverse clinical features including cognitive and motor dysfunction. Post-translational modifications including phosphorylation, ubiquitination and truncation, are characteristic features of tau present in the brain in human tauopathy. We have previously reported an N-terminally truncated form of tau in human brain that is associated with the development of tauopathy and is highly phosphorylated. We have generated a new mouse model of tauopathy in which this human brain-derived, 35 kDa tau fragment (Tau35) is expressed in the absence of any mutation and under the control of the human tau promoter. Most existing mouse models of tauopathy overexpress mutant tau at levels that do not occur in human neurodegenerative disease, whereas Tau35 transgene expression is equivalent to less than 10% of that of endogenous mouse tau. Tau35 mice recapitulate key features of human tauopathies, including aggregated and abnormally phosphorylated tau, progressive cognitive and motor deficits, autophagic/lysosomal dysfunction, loss of synaptic protein, and reduced life-span. Importantly, we found that sodium 4-phenylbutyrate (Buphenyl®), a drug used to treat urea cycle disorders and currently in clinical trials for a range of neurodegenerative diseases, reverses the observed abnormalities in tau and autophagy, behavioural deficits, and loss of synapsin 1 in Tau35 mice. Our results show for the first time that, unlike other tau transgenic mouse models, minimal expression of a human disease-associated tau fragment in Tau35 mice causes a profound and progressive tauopathy and cognitive changes, which are rescued by pharmacological intervention using a clinically approved drug. These novel Tau35 mice therefore represent a highly disease-relevant animal model in which to investigate molecular mechanisms and to develop novel treatments for human tauopathies. PMID:27297240

  7. Characterization of the AT180 epitope of phosphorylated Tau protein by a combined nuclear magnetic resonance and fluorescence spectroscopy approach

    SciTech Connect

    Amniai, Laziza; Lippens, Guy; Landrieu, Isabelle

    2011-09-09

    Highlights: {yields} pThr231 of the Tau protein is necessary for the binding of the AT180 antibody. {yields} pSer235 of the Tau protein does not interfere with the AT180 recognition of pThr231. {yields} Epitope mapping is efficiently achieved by combining NMR and FRET spectroscopy. -- Abstract: We present here the characterization of the epitope recognized by the AT180 monoclonal antibody currently used to define an Alzheimer's disease (AD)-related pathological form of the phosphorylated Tau protein. Some ambiguity remains as to the exact phospho-residue(s) recognized by this monoclonal: pThr231 or both pThr231 and pSer235. To answer this question, we have used a combination of nuclear magnetic resonance (NMR) and fluorescence spectroscopy to characterize in a qualitative and quantitative manner the phospho-residue(s) essential for the epitope recognition. Data from the first step of NMR experiments are used to map the residues bound by the antibodies, which were found to be limited to a few residues. A fluorophore is then chemically attached to a cystein residue introduced close-by the mapped epitope, at arginine 221, by mutagenesis of the recombinant protein. The second step of Foerster resonance energy transfer (FRET) between the AT180 antibody tryptophanes and the phospho-Tau protein fluorophore allows to calculate a dissociation constant Kd of 30 nM. We show that the sole pThr231 is necessary for the AT180 recognition of phospho-Tau and that phosphorylation of Ser235 does not interfere with the binding.

  8. The Microtubule-Associated Protein Tau and Its Relevance for Pancreatic Beta Cells

    PubMed Central

    Maj, Magdalena; Hoermann, Gregor; Rasul, Sazan; Base, Wolfgang; Wagner, Ludwig; Attems, Johannes

    2016-01-01

    Structural and biochemical alterations of the microtubule-associated protein tau (MAPT) are associated with degenerative disorders referred to as tauopathies. We have previously shown that MAPT is present in human islets of Langerhans, human insulinomas, and pancreatic beta-cell line models, with biophysical similarities to the pathological MAPT in the brain. Here, we further studied MAPT in pancreatic endocrine tissue to better understand the mechanisms that lead to functional dysregulation of pancreatic beta cells. We found upregulation of MAPT protein expression in human insulinomas when compared to human pancreatic islets of Langerhans and an imbalance between MAPT isoforms in insulinomas tissue. We cloned one 3-repeat domain MAPT and transduced this into a beta-cell derived rodent cell line Rin-5F. Proliferation experiments showed higher growth rates and metabolic activities of cells overexpressing MAPT protein. We observed that a MAPT overexpressing cell line demonstrates altered insulin transcription, translation, and insulin secretion rates. We found the relative insulin secretion rates were significantly decreased in a MAPT overexpressing cell line and these findings could be confirmed using partial MAPT knock-down cell lines. Our findings support that MAPT may play an important role in insulin granule trafficking and indicate the importance of balanced MAPT phosphorylation and dephosphorylation for adequate insulin release. PMID:26824039

  9. Alzheimer's neurofibrillary tangles contain unique epitopes and epitopes in common with the heat-stable microtubule associated proteins tau and MAP2.

    PubMed Central

    Yen, S. H.; Dickson, D. W.; Crowe, A.; Butler, M.; Shelanski, M. L.

    1987-01-01

    Ten monoclonal antibodies raised against Alzheimer's neurofibrillary tangles (ANTs) were characterized for reactivity with heat-stable microtubule fractions from bovine and human brain. Five of the antibodies showed very little reaction, but the other five reacted strongly with heat-stable microtubule associated proteins (MAPs). The proteins recognized by these antibodies have estimated molecular weights similar to those of known heat-stable MAPs, tau (52-68 kd) and MAP2 (200-250 kd). That the proteins are indeed tau and MAP2 is demonstrated by reaction of electroblotted proteins with antibodies raised in mouse and guinea pig against bovine brain tau and MAP2. One anti-ANT antibody reacts only with tau, two bind strongly to tau and weakly to MAP2, one recognizes both tau and MAP2 equally well, and one primarily stains MAP2. Extraction of ANT with 2% SDS does not remove tau or MAP2 epitopes from ANT, indicating that epitopes shared with heat-stable MAPs are integral components of ANT. The existence of tau epitopes in ANT is also demonstrated by immunoblotting of ANT-enriched fractions with anti-tau antibodies. Most of the material recognized by anti-tau antibodies in ANT-enriched fractions is present in large molecules excluded by 3% polyacrylamide gel upon electrophoresis. Anti-tau antibodies immunostain ANT in immunofluorescence and immunoperoxidase studies. The immunostaining can be blocked by absorption of anti-tau antibodies with purified tau proteins from bovine brain. Not all ANTs in any given tissue section or isolated Alzheimer perikarial preparations, however, are stained by anti-tau antibodies. These results are consistent with previous studies that have demonstrated heterogeneity of ANTs. Whether this heterogeneity is due to biochemical modification of MAPs or absence of MAPs in some ANTs is unknown. The significance of what appear to be shared epitopes recognized by monoclonal antibodies in tau and MAP2, and the implications this may have on the

  10. Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer's disease: Identification as the microtubule-associated protein tau

    SciTech Connect

    Goedert, M.; Wischik, C.M.; Crowther, R.A.; Walker, J.E.; Klug, A. )

    1988-06-01

    Screening of cDNA libraries prepared from the frontal cortex of an Alzheimer's disease patient and from fetal human brain has led to isolation of the cDNA for a core protein of the paired helical filament of Alzheimer's disease. The partial amino acid sequence of this core protein was used to design synthetic oligonucleotide probes. The cDNA encodes a protein of 352 amino acids that contains a characteristic amino acid repeat in its carboxyl-terminal half. This protein is highly homologous to the sequence of the mouse microtubule-associated protein tau and thus constitutes the human equivalent of mouse tau. RNA blot analysis indicates the presence of two major transcripts, 6 and 2 kilobases long, with a wide distribution in normal human brain. Tau protein mRNAs were found in normal amounts in the frontal cortex from patients with Alzheimer's disease. The proof that at least part of tau protein forms a component of the paired helical filament core opens the way to understanding the mode of formation of paired helical filaments and thus, ultimately, the pathogenesis of Alzheimer's disease.

  11. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets.

    PubMed

    Zeinabad, Hojjat Alizadeh; Zarrabian, Alireza; Saboury, Ali Akbar; Alizadeh, Ali Mohammad; Falahati, Mojtaba

    2016-01-01

    Subtle changes in the structure of nanoparticles influence their surface tension and corresponding interaction with cells and proteins. Here, the interaction of the single wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) with different surface tension with tau protein was evaluated using a variety of techniques including far and near circular dichroism, fluorescence spectroscopy, dynamic light scattering, Zeta potential, and TEM evaluation. Also the cytotoxicity of SWCNT and MWCNT on the PC12 cell line as a model of nervous system cell line was investigated by the MTT, LDH, acridine orange/ethidium bromide staining, flow cytometry, caspase 3 activity, cell and membrane potential assays. It was observed that SWCNT induced more structural changes of tau protein relative to MWCNT/tau protein interaction. It was also revealed that SWCNT and MWCNT impaired the viability and complexity of PC12 cells in different modes of cytotoxicity. Analysis of cellular outcomes indicated that MWCNT in comparison with SWCNT resulted in induction of necrotic modes of cell death, whereas apoptotic modes of cell death were activated in SWCNT-incubated cells. Together these findings suggest that surface tension may be used to determine how nanoparticle structure affects neurotoxicity and protein conformational changes. PMID:27216374

  12. Interaction of single and multi wall carbon nanotubes with the biological systems: tau protein and PC12 cells as targets

    PubMed Central

    Zeinabad, Hojjat Alizadeh; Zarrabian, Alireza; Saboury, Ali Akbar; Alizadeh, Ali Mohammad; Falahati, Mojtaba

    2016-01-01

    Subtle changes in the structure of nanoparticles influence their surface tension and corresponding interaction with cells and proteins. Here, the interaction of the single wall carbon nanotube (SWCNT) and multiwall carbon nanotube (MWCNT) with different surface tension with tau protein was evaluated using a variety of techniques including far and near circular dichroism, fluorescence spectroscopy, dynamic light scattering, Zeta potential, and TEM evaluation. Also the cytotoxicity of SWCNT and MWCNT on the PC12 cell line as a model of nervous system cell line was investigated by the MTT, LDH, acridine orange/ethidium bromide staining, flow cytometry, caspase 3 activity, cell and membrane potential assays. It was observed that SWCNT induced more structural changes of tau protein relative to MWCNT/tau protein interaction. It was also revealed that SWCNT and MWCNT impaired the viability and complexity of PC12 cells in different modes of cytotoxicity. Analysis of cellular outcomes indicated that MWCNT in comparison with SWCNT resulted in induction of necrotic modes of cell death, whereas apoptotic modes of cell death were activated in SWCNT-incubated cells. Together these findings suggest that surface tension may be used to determine how nanoparticle structure affects neurotoxicity and protein conformational changes. PMID:27216374

  13. Protein interaction module-assisted function X (PIMAX) approach to producing challenging proteins including hyperphosphorylated tau and active CDK5/p25 kinase complex.

    PubMed

    Sui, Dexin; Xu, Xinjing; Ye, Xuemei; Liu, Mengyu; Mianecki, Maxwell; Rattanasinchai, Chotirat; Buehl, Christopher; Deng, Xiexiong; Kuo, Min-Hao

    2015-01-01

    Many biomedically critical proteins are underrepresented in proteomics and biochemical studies because of the difficulty of their production in Escherichia coli. These proteins might possess posttranslational modifications vital to their functions, tend to misfold and be partitioned into bacterial inclusion bodies, or act only in a stoichiometric dimeric complex. Successful production of these proteins requires efficient interaction between these proteins and a specific "facilitator," such as a protein-modifying enzyme, a molecular chaperone, or a natural physical partner within the dimeric complex. Here we report the design and application of a protein interaction module-assisted function X (PIMAX) system that effectively overcomes these hurdles. By fusing two proteins of interest to a pair of well-studied protein-protein interaction modules, we were able to potentiate the association of these two proteins, resulting in successful production of an enzymatically active cyclin-dependent kinase complex and hyperphosphorylated tau protein, which is intimately linked to Alzheimer disease. Furthermore, using tau isoforms quantitatively phosphorylated by GSK-3β and CDK5 kinases via PIMAX, we demonstrated the hyperphosphorylation-stimulated tau oligomerization in vitro, paving the way for new Alzheimer disease drug discoveries. Vectors for PIMAX can be easily modified to meet the needs of different applications. This approach thus provides a convenient and modular suite with broad implications for proteomics and biomedical research. PMID:25385071

  14. Biochemical classification of tauopathies by immunoblot, protein sequence and mass spectrometric analyses of sarkosyl-insoluble and trypsin-resistant tau.

    PubMed

    Taniguchi-Watanabe, Sayuri; Arai, Tetsuaki; Kametani, Fuyuki; Nonaka, Takashi; Masuda-Suzukake, Masami; Tarutani, Airi; Murayama, Shigeo; Saito, Yuko; Arima, Kunimasa; Yoshida, Mari; Akiyama, Haruhiko; Robinson, Andrew; Mann, David M A; Iwatsubo, Takeshi; Hasegawa, Masato

    2016-02-01

    Intracellular filamentous tau pathology is the defining feature of tauopathies, which form a subset of neurodegenerative diseases. We have analyzed pathological tau in Alzheimer's disease, and in frontotemporal lobar degeneration associated with tauopathy to include cases with Pick bodies, corticobasal degeneration, progressive supranuclear palsy, and ones due to intronic mutations in MAPT. We found that the C-terminal band pattern of the pathological tau species is distinct for each disease. Immunoblot analysis of trypsin-resistant tau indicated that the different band patterns of the 7-18 kDa fragments in these diseases likely reflect different conformations of tau molecular species. Protein sequence and mass spectrometric analyses revealed the carboxyl-terminal region (residues 243-406) of tau comprises the protease-resistant core units of the tau aggregates, and the sequence lengths and precise regions involved are different among the diseases. These unique assembled tau cores may be used to classify and diagnose disease strains. Based on these results, we propose a new clinicopathological classification of tauopathies based on the biochemical properties of tau. PMID:26538150

  15. U-box protein carboxyl terminus of Hsc70-interacting protein (CHIP) mediates poly-ubiquitylation preferentially on four-repeat Tau and is involved in neurodegeneration of tauopathy.

    PubMed

    Hatakeyama, Shigetsugu; Matsumoto, Masaki; Kamura, Takumi; Murayama, Miyuki; Chui, Du-Hua; Planel, Emmanuel; Takahashi, Ryosuke; Nakayama, Keiichi I; Takashima, Akihiko

    2004-10-01

    Neurofibrillary tangles (NFTs), which are composed of hyperphosphorylated and ubiquitylated tau, are exhibited at regions where neuronal loss occurs in neurodegenerative diseases; however, the mechanisms of NFT formation remain unknown. Molecular studies of frontotemporal dementia with parkinsonism-17 demonstrated that increasing the ratio of tau with exon 10 insertion induced fibrillar tau accumulation. Here, we show that carboxyl terminus of Hsc70-interacting protein (CHIP), a U-box protein, recognizes the microtubule-binding repeat region of tau and preferentially ubiquitylates four-repeat tau compared with three-repeat tau. Overexpression of CHIP induced the prompt degradation of tau, reduced the formation of detergent-insoluble tau and inhibited proteasome inhibitor-induced cell death. NFT bearing neurons in progressive supranuclear palsy, in which four-repeat tau is a component, showed the accumulation of CHIP. Thus, CHIP is a ubiquitin ligase for four-repeat tau and maintains neuronal survival by regulating the quality control of tau in neurons. PMID:15447663

  16. Rosiglitazone ameliorates diffuse axonal injury by reducing loss of tau and up-regulating caveolin-1 expression

    PubMed Central

    Zhao, Yong-lin; Song, Jin-ning; Ma, Xu-dong; Zhang, Bin-fei; Li, Dan-dong; Pang, Hong-gang

    2016-01-01

    Rosiglitazone up-regulates caveolin-1 levels and has neuroprotective effects in both chronic and acute brain injury. Therefore, we postulated that rosiglitazone may ameliorate diffuse axonal injury via its ability to up-regulate caveolin-1, inhibit expression of amyloid-beta precursor protein, and reduce the loss and abnormal phosphorylation of tau. In the present study, intraperitoneal injection of rosiglitazone significantly reduced the levels of amyloid-beta precursor protein and hyperphosphorylated tau (phosphorylated at Ser404(p-tau (S404)), and it increased the expression of total tau and caveolin-1 in the rat cortex. Our results show that rosiglitazone inhibits the expression of amyloid-beta precursor protein and lowers p-tau (S404) levels, and it reduces the loss of total tau, possibly by up-regulating caveolin-1. These actions of rosiglitazone may underlie its neuroprotective effects in the treatment of diffuse axonal injury. PMID:27482223

  17. Physiological and pathological phosphorylation of tau by Cdk5.

    PubMed

    Kimura, Taeko; Ishiguro, Koichi; Hisanaga, Shin-Ichi

    2014-01-01

    Hyperphosphorylation of microtubule-associated protein tau is one of the major pathological events in Alzheimer's disease (AD) and other related neurodegenerative diseases, including frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Mutations in the tau gene MAPT are a cause of FTDP-17, and the mutated tau proteins are hyperphosphorylated in patient brains. Thus, it is important to determine the molecular mechanism of hyperphosphorylation of tau to understand the pathology of these diseases collectively called tauopathy. Tau is phosphorylated at many sites via several protein kinases, and a characteristic is phosphorylation at Ser/Thr residues in Ser/Thr-Pro sequences, which are targeted by proline-directed protein kinases such as ERK, GSK3β, and Cdk5. Among these kinases, Cdk5 is particularly interesting because it could be abnormally activated in AD. Cdk5 is a member of the cyclin-dependent kinases (Cdks), but in contrast to the major Cdks, which promote cell cycle progression in proliferating cells, Cdk5 is activated in post-mitotic neurons via the neuron-specific activator p35. Cdk5-p35 plays a critical role in brain development and physiological synaptic activity. In contrast, in disease brains, Cdk5 is thought to be hyperactivated by p25, which is the N-terminal truncated form of p35 and is generated by cleavage with calpain. Several reports have indicated that tau is hyperphosphorylated by Cdk5-p25. However, normal and abnormal phosphorylation of tau by Cdk5 is still not completely understood. In this article, we summarize the physiological and pathological phosphorylation of tau via Cdk5. PMID:25076872

  18. Physiological and pathological phosphorylation of tau by Cdk5

    PubMed Central

    Kimura, Taeko; Ishiguro, Koichi; Hisanaga, Shin-ichi

    2014-01-01

    Hyperphosphorylation of microtubule-associated protein tau is one of the major pathological events in Alzheimer’s disease (AD) and other related neurodegenerative diseases, including frontotemporal dementia with parkinsonism linked to chromosome 17 (FTDP-17). Mutations in the tau gene MAPT are a cause of FTDP-17, and the mutated tau proteins are hyperphosphorylated in patient brains. Thus, it is important to determine the molecular mechanism of hyperphosphorylation of tau to understand the pathology of these diseases collectively called tauopathy. Tau is phosphorylated at many sites via several protein kinases, and a characteristic is phosphorylation at Ser/Thr residues in Ser/Thr-Pro sequences, which are targeted by proline-directed protein kinases such as ERK, GSK3β, and Cdk5. Among these kinases, Cdk5 is particularly interesting because it could be abnormally activated in AD. Cdk5 is a member of the cyclin-dependent kinases (Cdks), but in contrast to the major Cdks, which promote cell cycle progression in proliferating cells, Cdk5 is activated in post-mitotic neurons via the neuron-specific activator p35. Cdk5-p35 plays a critical role in brain development and physiological synaptic activity. In contrast, in disease brains, Cdk5 is thought to be hyperactivated by p25, which is the N-terminal truncated form of p35 and is generated by cleavage with calpain. Several reports have indicated that tau is hyperphosphorylated by Cdk5-p25. However, normal and abnormal phosphorylation of tau by Cdk5 is still not completely understood. In this article, we summarize the physiological and pathological phosphorylation of tau via Cdk5. PMID:25076872

  19. Divergent CSF tau alterations in two common tauopathies: Alzheimer’s disease and Progressive Supranuclear Palsy

    PubMed Central

    Wagshal, Dana; Sankaranarayanan, Sethu; Guss, Valerie; Hall, Tracey; Berisha, Flora; Lobach, Iryna; Karydas, Anna; Voltarelli, Lisa; Scherling, Carole; Heuer, Hilary; Tartaglia, Maria Carmela; Miller, Zachary; Coppola, Giovanni; Ahlijanian, Michael; Soares, Holly; Kramer, Joel H; Rabinovici, Gil D; Rosen, Howard J; Miller, Bruce L; Meredith, Jere; Boxer, Adam L

    2014-01-01

    Background Elevated CSF tau is considered a biomarker of neuronal injury in newly developed Alzheimer’s disease (AD) and mild cognitive impairment (MCI) criteria. However, previous studies have failed to detect alterations of tau species in other primary tauopathies. We assessed CSF tau protein abnormalities in AD, a tauopathy with prominent Aβ pathology, and progressive supranuclear palsy (PSP), a primary tauopathy characterized by deposition of four microtubule binding repeat (4R) tau with minimal Aβ pathology. Methods 26 normal control (NC), 37 AD, and 24 PSP patients participated in the study. AD and PSP were matched for severity using the clinical dementia rating sum of boxes (CDR-sb) scores. The INNO BIA AlzBio3 multiplex immunoassay was used to measure CSF Aβ, total tau, and ptau181. Additional, novel ELISAs targeting different N-terminal and central tau epitopes were developed to examine CSF tau components and to investigate interactions between diagnostic group, demographics, and genetic variables. Results PSP had lower CSF N-terminal and C-terminal tau concentrations than NC and AD measured with both the novel tau ELISAs and the standard AlzBio3 tau and ptau assays. AD had higher total tau and ptau levels than NC and PSP. There was a gender by diagnosis interaction in both AD and PSP for most tau species, with lower concentrations for male compared to female patients. Conclusions CSF tau fragment concentrations are different in PSP compared with AD despite the presence of severe tau pathology and neuronal injury in both disorders. CSF tau concentration likely reflects multiple factors in addition to the degree of neuronal injury. PMID:24899730

  20. Molecular chaperones and regulation of tau quality control: strategies for drug discovery in tauopathies

    PubMed Central

    Miyata, Yoshinari; Koren, John; Kiray, Janine; Dickey, Chad A; Gestwicki, Jason E

    2011-01-01

    Tau is a microtubule-associated protein that accumulates in at least 15 different neurodegenerative disorders, which are collectively referred to as tauopathies. In these diseases, tau is often hyperphosphorylated and found in aggregates, including paired helical filaments, neurofibrillary tangles and other abnormal oligomers. Tau aggregates are associated with neuron loss and cognitive decline, which suggests that this protein can somehow evade normal quality control allowing it to aberrantly accumulate and become proteotoxic. Consistent with this idea, recent studies have shown that molecular chaperones, such as heat shock protein 70 and heat shock protein 90, counteract tau accumulation and neurodegeneration in disease models. These molecular chaperones are major components of the protein quality control systems and they are specifically involved in the decision to retain or degrade many proteins, including tau and its modified variants. Thus, one potential way to treat tauopathies might be to either accelerate interactions of abnormal tau with these quality control factors or tip the balance of triage towards tau degradation. In this review, we summarize recent findings and suggest models for therapeutic intervention. PMID:21882945

  1. Internalized Tau sensitizes cells to stress by promoting formation and stability of stress granules

    PubMed Central

    Brunello, Cecilia A.; Yan, Xu; Huttunen, Henri J.

    2016-01-01

    Stress granules are membrane-less RNA- and RNA-binding protein-containing complexes that are transiently assembled in stressful conditions to promote cell survival. Several stress granule-associated RNA-binding proteins have been associated with neurodegenerative diseases. In addition, a close link was recently identified between the stress granule core-nucleating protein TIA-1 and Tau. Tau is a central pathological protein in Alzheimer’s disease and other tauopathies, and misfolded, aggregated Tau is capable of propagating pathology via cell-to-cell transmission. Here we show that following internalization hyperphosphorylated extracellular Tau associates with stress granules in a TIA-1 dependent manner. Cytosolic Tau normally only weakly interacts with TIA-1 but mutations mimicking abnormal phosphorylation promote this interaction. We show that internalized Tau significantly delays normal clearance of stress granules in the recipient cells sensitizing them to secondary stress. These results suggest that secreted Tau species may have properties, likely related to its hyperphosphorylation and oligomerization, which promote pathological association of internalized Tau with stress granules altering their dynamics and reducing cell viability. We suggest that stress granules and TIA-1 play a central role in the cell-to-cell transmission of Tau pathology. PMID:27460788

  2. The relationship between truncation and phosphorylation at the C-terminus of tau protein in the paired helical filaments of Alzheimer's disease

    PubMed Central

    Flores-Rodríguez, Paola; Ontiveros-Torres, Miguel A.; Cárdenas-Aguayo, María C.; Luna-Arias, Juan P.; Meraz-Ríos, Marco A.; Viramontes-Pintos, Amparo; Harrington, Charles R.; Wischik, Claude M.; Mena, Raúl; Florán-Garduño, Benjamin; Luna-Muñoz, José

    2015-01-01

    We previously demonstrated that, in the early stages of tau processing in Alzheimer's disease, the N-terminal part of the molecule undergoes a characteristic cascade of phosphorylation and progressive misfolding of the proteins resulting in a structural conformation detected by Alz-50. In this immunohistochemical study of AD brain tissue, we have found that C-terminal truncation of tau at Asp-421 was an early event in tau aggregation and analyzed the relationship between phospho-dependent tau epitopes located at the C-terminus with truncation at Glu-391. The aim of this study was to determine whether C-terminal truncation may trigger events leading to the assembly of insoluble PHFs from soluble tau aggregates present in pre-tangle cells. Our findings suggest that there is a complex interaction between phosphorylated and truncated tau species. A model is presented here in which truncated tau protein represents an early neurotoxic species while phosphorylated tau species may provide a neuroprotective role in Alzheimer's disease. PMID:25717290

  3. Alpha 1-Antichymotrypsin, an Inflammatory Protein Overexpressed in the Brains of Patients with Alzheimer's Disease, Induces Tau Hyperphosphorylation through c-Jun N-Terminal Kinase Activation.

    PubMed

    Tyagi, Ethika; Fiorelli, Tina; Norden, Michelle; Padmanabhan, Jaya

    2013-01-01

    The association of inflammatory proteins with neuritic plaques in the brains of Alzheimer's disease (AD) patients has led to the hypothesis that inflammation plays a pivotal role in the development of pathology in AD. Earlier studies have shown that alpha 1-antichymotrypsin (ACT) enhances amyloid beta fibrillization and accelerated plaque formation in APP transgenic mice. Later studies from our laboratory have shown that purified ACT induces tau hyperphosphorylation and degeneration in neurons. In order to understand the mechanisms by which inflammatory proteins enhance tau hyperphosphorylation, we injected interleukin-1 β (IL-1 β ) intracerebroventricularly into mice expressing human ACT, human tau, or both transgenes. It was found that the hyperphosphorylation of tau in ACT and ACT/htau mice after IL-1 β injection correlated with increased phosphorylation of c-Jun N-terminal kinase (JNK). We verified the involvement of JNK in ACT-induced tau phosphorylation by utilizing JNK inhibitors in cultured primary neurons treated with ACT, and we found that the inhibitor showed complete prevention of ACT-induced tau phosphorylation. These results indicate that JNK is one of the major kinases involved in the ACT-mediated tau hyperphosphorylation and suggest that inhibitors of this kinase may protect against inflammation-induced tau hyperphosphorylation and neurodegeneration associated with AD. PMID:24175110

  4. Aluminum interaction with human brain tau protein phosphorylation by various kinases

    SciTech Connect

    El-Sebae; Abou Zeid, M.M.; Saleh, M.A. . Environmental Chemistry and Toxicology Lab.); Abdel-Ghany, M.E.; Shalloway, D. . Section of Biochemistry, Mol, and Cell Biology); Blancato, J. . Environmental Monit. Systems Lab.)

    1993-01-01

    Phosphorylation is an indispensable process for energy and signal transduction in biological systems. AlCl[sub 3] at 10 nM to 10 [mu]M range activated in-vitro [[gamma][sup [minus]32]P]ATP phosphorylation of the brain ([tau]) [Gamma] protein in both normal human or E.coli expressed [Gamma] forms; in the presence of the kinases P34,PKP, and PKC. However, higher concentrations of AlCl[sub 3] inhibited the [Gamma] phosphorylation with P34, PKP, and PKC to a maximum at 1 mM level. AlCl[sub 3] at 100 [mu]M to 500 [mu]M range induced non-enzymatic phosphorylation of [Gamma] with [gamma]-ATP, [gamma]-GTP, and [alpha]-GRP. AlCl[sub 3] activated histone phosphorylation by P34 in a similar pattern. The hyperphosphorylation of [Gamma] by Al[sup 3+] was accompanied in molecular shift and mobility retardation in SDS-PAGE. This may demonstrate the mechanism of the long term neurological effect of Al[sub 3+] in human brain leading to the formation of the neutrofibrillary tangles related to Alzeheimer's disease.

  5. Novel marker for the onset of frontotemporal dementia: early increase in activity-dependent neuroprotective protein (ADNP) in the face of Tau mutation.

    PubMed

    Schirer, Yulie; Malishkevich, Anna; Ophir, Yotam; Lewis, Jada; Giladi, Eliezer; Gozes, Illana

    2014-01-01

    Tauopathy, a major pathology in Alzheimer's disease, is also found in ~50% of frontotemporal dementias (FTDs). Tau transcript, a product of a single gene, undergoes alternative splicing to yield 6 protein species, each with either 3 or 4 microtubule binding repeat domains (tau 3R or 4R, associated with dynamic and stable microtubules, respectively). While the healthy human brain shows a 1/1 ratio of tau 3R/4R, this ratio may be dramatically changed in the FTD brain. We have previously discovered that activity-dependent neuroprotective protein (ADNP) is essential for brain formation in the mouse, with ADNP+/- mice exhibiting tauopathy, age-driven neurodegeneration and behavioral deficits. Here, in transgenic mice overexpressing a mutated tau 4R species, in the cerebral cortex but not in the cerebellum, we showed significantly increased ADNP expression (~3-fold transcripts) in the cerebral cortex of young transgenic mice (~disease onset), but not in the cerebellum, as compared to control littermates. The transgene-age-related increased ADNP expression paralleled augmented dynamic tau 3R transcript level compared to control littermates. Blocking mutated tau 4R transgene expression resulted in normalization of ADNP and tau 3R expression. ADNP was previously shown to be a member of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Here, Brahma (Brm), a component of the SWI/SNF complex regulating alternative splicing, showed a similar developmental expression pattern to ADNP. Immunoprecipitations further suggested Brm-ADNP interaction coupled to ADNP - polypyrimidine tract-binding protein (PTB)-associated splicing factor (PSF)-binding, with PSF being a direct regulator of tau transcript splicing. It should be noted that although we have shown a correlation between levels of ADNP and tau isoform expression three months of age, we are not presenting evidence of a direct link between the two. Future research into ADNP/tau relations is warranted. PMID

  6. The aqueous extract of Glycyrrhiza inflata can upregulate unfolded protein response-mediated chaperones to reduce tau misfolding in cell models of Alzheimer’s disease

    PubMed Central

    Chang, Kuo-Hsuan; Chen, I-Cheng; Lin, Hsuan-Yuan; Chen, Hsuan-Chiang; Lin, Chih-Hsin; Lin, Te-Hsien; Weng, Yu-Ting; Chao, Chih-Ying; Wu, Yih-Ru; Lin, Jung-Yaw; Lee-Chen, Guey-Jen; Chen, Chiung-Mei

    2016-01-01

    Background Alzheimer’s disease (AD) and several neurodegenerative disorders known as tauopathies are characterized by misfolding and aggregation of tau protein. Although several studies have suggested the potential of traditional Chinese medicine (TCM) as treatment for neurodegenerative diseases, the role of TCM in treating AD and tauopathies have not been well explored. Materials and methods Tau protein was coupled to the DsRed fluorophore by fusing a pro-aggregation mutant of repeat domain of tau (ΔK280 tauRD) with DsRed. The ΔK280 tauRD-DsRed fusion gene was then used to generate Tet-On 293 and SH-SY5Y cell clones as platforms to test the efficacy of 39 aqueous extracts of TCM in reducing tau misfolding and in neuroprotection. Results Seven TCM extracts demonstrated a significant reduction in tau misfolding and reactive oxidative species with low cytotoxicity in the ΔK280 tauRD-DsRed 293 cell model. Glycyrrhiza inflata and Panax ginseng also demonstrated the potential to improve neurite outgrowth in the ΔK280 tauRD-DsRed SH-SY5Y neuronal cell model. G. inflata further rescued the upregulation of ERN2 (pro-apoptotic) and downregulation of unfolded-protein-response-mediated chaperones ERP44, DNAJC3, and SERP1 in ΔK280 tauRD-DsRed 293 cells. Conclusion This in vitro study provides evidence that G. inflata may be a novel therapeutic for AD and tauopathies. Future applications of G. inflata on animal models of AD and tauopathies are warranted to corroborate its effect of reducing misfolding and potential disease modification. PMID:27013866

  7. Novel Marker for the Onset of Frontotemporal Dementia: Early Increase in Activity-Dependent Neuroprotective Protein (ADNP) in the Face of Tau Mutation

    PubMed Central

    Ophir, Yotam; Lewis, Jada; Giladi, Eliezer; Gozes, Illana

    2014-01-01

    Tauopathy, a major pathology in Alzheimer's disease, is also found in ∼50% of frontotemporal dementias (FTDs). Tau transcript, a product of a single gene, undergoes alternative splicing to yield 6 protein species, each with either 3 or 4 microtubule binding repeat domains (tau 3R or 4R, associated with dynamic and stable microtubules, respectively). While the healthy human brain shows a 1/1 ratio of tau 3R/4R, this ratio may be dramatically changed in the FTD brain. We have previously discovered that activity-dependent neuroprotective protein (ADNP) is essential for brain formation in the mouse, with ADNP+/− mice exhibiting tauopathy, age-driven neurodegeneration and behavioral deficits. Here, in transgenic mice overexpressing a mutated tau 4R species, in the cerebral cortex but not in the cerebellum, we showed significantly increased ADNP expression (∼3-fold transcripts) in the cerebral cortex of young transgenic mice (∼disease onset), but not in the cerebellum, as compared to control littermates. The transgene-age-related increased ADNP expression paralleled augmented dynamic tau 3R transcript level compared to control littermates. Blocking mutated tau 4R transgene expression resulted in normalization of ADNP and tau 3R expression. ADNP was previously shown to be a member of the SWItch/Sucrose NonFermentable (SWI/SNF) chromatin remodeling complex. Here, Brahma (Brm), a component of the SWI/SNF complex regulating alternative splicing, showed a similar developmental expression pattern to ADNP. Immunoprecipitations further suggested Brm-ADNP interaction coupled to ADNP - polypyrimidine tract-binding protein (PTB)-associated splicing factor (PSF)-binding, with PSF being a direct regulator of tau transcript splicing. It should be noted that although we have shown a correlation between levels of ADNP and tau isoform expression three months of age, we are not presenting evidence of a direct link between the two. Future research into ADNP/tau relations is

  8. Potential synergy between tau aggregation inhibitors and tau chaperone modulators

    PubMed Central

    2013-01-01

    Tau is a soluble, microtubule-associated protein known to aberrantly form amyloid-positive aggregates. This pathology is characteristic for more than 15 neuropathies, the most common of which is Alzheimer’s disease. Finding therapeutics to reverse or remove this non-native tau state is of great interest; however, at this time only one drug is entering phase III clinical trials for treating tauopathies. Generally, tau manipulation by therapeutics can either directly or indirectly alter tau aggregation and stability. Drugs that bind and change the conformation of tau itself are largely classified as aggregation inhibitors, while drugs that alter the activity of a tau-effector protein fall into several categories, such as kinase inhibitors, microtubule stabilizers, or chaperone modulators. Chaperone inhibitors that have proven effective in tau models include heat shock protein 90 inhibitors, heat shock protein 70 inhibitors and activators, as well as inducers of heat shock proteins. While many of these compounds can alter tau levels and/or aggregation states, it is possible that combining these approaches may produce the most optimal outcome. However, because many of these compounds have multiple off-target effects or poor blood–brain barrier permeability, the development of this synergistic therapeutic strategy presents significant challenges. This review will summarize many of the drugs that have been identified to alter tau biology, with special focus on therapeutics that prevent tau aggregation and regulate chaperone-mediated clearance of tau. PMID:24041111

  9. Potential natural products for Alzheimer's disease: targeted search using the internal ribosome entry site of tau and amyloid-β precursor protein.

    PubMed

    Tasi, Yun-Chieh; Chin, Ting-Yu; Chen, Ying-Ju; Huang, Chun-Chih; Lee, Shou-Lun; Wu, Tzong-Yuan

    2015-01-01

    Overexpression of the amyloid precursor protein (APP) and the hyperphosphorylation of the tau protein are vital in the understanding of the cause of Alzheimer's disease (AD). As a consequence, regulation of the expression of both APP and tau proteins is one important approach in combating AD. The APP and tau proteins can be targeted at the levels of transcription, translation and protein structural integrity. This paper reports the utilization of a bi-cistronic vector containing either APP or tau internal ribosome entry site (IRES) elements flanked by β-galactosidase gene (cap-dependent) and secreted alkaline phosphatase (SEAP) (cap-independent) to discern the mechanism of action of memantine, an N-methyl-D-aspartate (NMDA) receptor antagonist. Results indicate that memantine could reduce the activity of both the APP and tau IRES at a concentration of ~10 μM (monitored by SEAP activity) without interfering with the cap-dependent translation as monitored by the β-galactosidase assay. Western blot analysis of the tau protein in neuroblastoma (N2A) and rat hippocampal cells confirmed the halting of the expression of the tau proteins. We also employed this approach to identify a preparation named NB34, extracts of Boussingaultia baselloides (madeira-vine) fermented with Lactobacillus spp., which can function similarly to memantine in both IRES of APP and Tau. The water maze test demonstrated that NB34 could improve the spatial memory of a high fat diet induced neurodegeneration in apolipoprotein E-knockout (ApoE-/-) mice. These results revealed that the bi-cistronic vector provided a simple, and effective platform in screening and establishing the mechanistic action of potential compounds for the treatment and management of AD. PMID:25903151

  10. Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor

    PubMed Central

    Cornejo, Alberto; Salgado, Francisco; Caballero, Julio; Vargas, Reinaldo; Simirgiotis, Mario; Areche, Carlos

    2016-01-01

    Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS). In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer’s disease (AD). All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM) to 28 µg/mL (100 µM). In addition, we show how parietin interact with tau 306VQIVYK311 hexapeptide inside of the microtubule binding domain (4R) with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses. PMID:27548142

  11. Secondary Metabolites in Ramalina terebrata Detected by UHPLC/ESI/MS/MS and Identification of Parietin as Tau Protein Inhibitor.

    PubMed

    Cornejo, Alberto; Salgado, Francisco; Caballero, Julio; Vargas, Reinaldo; Simirgiotis, Mario; Areche, Carlos

    2016-01-01

    Liquid chromatography coupled with mass spectrometry is an outstanding methodology for fast analysis of phenolic compounds in biological samples. Twenty two compounds were quickly and accurately identified in the methanolic extract of the Antarctic lichen Ramalina terebrata for the first time using ultra high pressure liquid chromatography coupled with photodiode array detector and high resolution mass spectrometry (UHPLC-PDA-Q/Orbitrap/MS/MS). In addition, the extract and the four compounds isolated from this species were tested for the inhibitory activity of tau protein aggregation, which is a protein involved in Alzheimer's disease (AD). All compounds showed null activity with the exception of parietin, which it was able to inhibit aggregation process of tau in a concentration range between 3 µg/mL (10 µM) to 28 µg/mL (100 µM). In addition, we show how parietin interact with tau (306)VQIVYK(311) hexapeptide inside of the microtubule binding domain (4R) with the help of molecular docking experiments. Finally, the constituents present in the methanolic extract could possibly contribute to the established anti-aggregation activity for this extract and this in-depth analysis of the chemical composition of R. terebrata could guide further research into its medicinal properties and potential uses. PMID:27548142

  12. A Phosphorylation-Induced Turn Defines the Alzheimer's Disease AT8 Antibody Epitope on the Tau Protein.

    PubMed

    Gandhi, Neha S; Landrieu, Isabelle; Byrne, Cillian; Kukic, Predrag; Amniai, Laziza; Cantrelle, François-Xavier; Wieruszeski, Jean-Michel; Mancera, Ricardo L; Jacquot, Yves; Lippens, Guy

    2015-06-01

    Post mortem biochemical staging of Alzheimer's disease is currently based on immunochemical analysis of brain slices with the AT8 antibody. The epitope of AT8 is described around the pSer202/pThr205 region of the hyperphosphorylated form of the neuronal protein tau. In this study, NMR spectroscopy was used to precisely map the AT8 epitope on phosphorylated tau, and derive its defining structural features by a combination of NMR analyses and molecular dynamics. A particular turn conformation is stabilized by a hydrogen bond of the phosphorylated Thr205 residue to the amide proton of Gly207, and is further stabilized by the two Arg residues opposing the pSer202/pThr205. PMID:25881502

  13. Abnormal aquaporin-3 protein expression in hyperproliferative skin disorders.

    PubMed

    Voss, Kristen E; Bollag, Roni J; Fussell, Nicole; By, Charya; Sheehan, Daniel J; Bollag, Wendy B

    2011-10-01

    Non-melanoma skin cancers (NMSCs) and psoriasis represent common hyperproliferative skin disorders, with approximately one million new NMSC diagnoses each year in the United States alone and a psoriasis prevalence of about 2% worldwide. We recently demonstrated that the glycerol channel, aquaporin-3 (AQP3) and the enzyme phospholipase D2 (PLD2) interact functionally in epidermal keratinocytes of the skin to inhibit their proliferation. However, others have suggested that AQP3 is pro-proliferative in keratinocytes and is upregulated in the NMSC, squamous cell carcinoma (SCC). To evaluate the AQP3/PLD2 signaling module in skin diseases, we determined their levels in SCC, basal cell carcinoma (BCC) and psoriasis as compared to normal epidermis. Skin biopsies with the appropriate diagnoses (10 normal, 5 SCC, 13 BCC and 10 plaque psoriasis samples) were obtained from the pathology archives and examined by immunohistochemistry using antibodies recognizing AQP3 and PLD2. In normal epidermis AQP3, an integral membrane protein, was localized mainly to the plasma membrane and PLD2 to the cell periphery, particularly in suprabasal layers. In BCC, AQP3 and PLD2 levels were reduced as compared to the normal-appearing overlying epidermis. In SCC, AQP3 staining was "patchy," with areas of reduced AQP3 immunoreactivity exhibiting positivity for Ki67, a marker of proliferation. PLD2 staining was unchanged in SCC. In psoriasis, AQP3 staining was usually observed in the cytoplasm rather than in the membrane. Also, in the majority of psoriatic samples, PLD2 showed weak immunoreactivity or aberrant localization. These results suggest that abnormalities in the AQP3/PLD2 signaling module correlate with hyperproliferation in psoriasis and the NMSCs. PMID:21400035

  14. Frontotemporal lobar degeneration: old knowledge and new insight into the pathogenetic mechanisms of tau mutations

    PubMed Central

    Rossi, Giacomina; Tagliavini, Fabrizio

    2015-01-01

    Frontotemporal lobar degeneration (FTLD) is a group of heterogeneous neurodegenerative diseases which includes tauopathies. In the central nervous system (CNS) tau is the major microtubule-associated protein (MAP) of neurons, promoting assembly and stabilization of microtubules (MTs) required for morphogenesis and axonal transport. Primary tauopathies are characterized by deposition of abnormal fibrils of tau in neuronal and glial cells, leading to neuronal death, brain atrophy and eventually dementia. In genetic tauopathies mutations of tau gene impair the ability of tau to bind to MTs, alter the normal ratio among tau isoforms and favor fibril formation. Recently, additional functions have been ascribed to tau and different pathogenetic mechanisms are then emerging. In fact, a role of tau in DNA protection and genome stability has been reported and chromosome aberrations have been found associated with tau mutations. Furthermore, newly structurally and functionally characterized mutations have suggested novel pathological features, such as a tendency to form oligomeric rather than fibrillar aggregates. Tau mutations affecting axonal transport and plasma membrane interaction have also been described. In this article, we will review the pathogenetic mechanisms underlying tau mutations, focusing in particular on the less common aspects, so far poorly investigated. PMID:26528178

  15. Tau Oligomers: The Toxic Player at Synapses in Alzheimer’s Disease

    PubMed Central

    Guerrero-Muñoz, Marcos J.; Gerson, Julia; Castillo-Carranza, Diana L.

    2015-01-01

    Alzheimer’s disease (AD) is a progressive disorder in which the most noticeable symptoms are cognitive impairment and memory loss. However, the precise mechanism by which those symptoms develop remains unknown. Of note, neuronal loss occurs at sites where synaptic dysfunction is observed earlier, suggesting that altered synaptic connections precede neuronal loss. The abnormal accumulation of amyloid-β (Aβ) and tau protein is the main histopathological feature of the disease. Several lines of evidence suggest that the small oligomeric forms of Aβ and tau may act synergistically to promote synaptic dysfunction in AD. Remarkably, tau pathology correlates better with the progression of the disease than Aβ. Recently, a growing number of studies have begun to suggest that missorting of tau protein from the axon to the dendrites is required to mediate the detrimental effects of Aβ. In this review we discuss the novel findings regarding the potential mechanisms by which tau oligomers contribute to synaptic dysfunction in AD. PMID:26696824

  16. Detection of hyperphosphorylated tau protein and α-synuclein in spinal cord of patients with Alzheimer’s disease

    PubMed Central

    Guo, Yanjun; Wang, Luning; Zhu, Mingwei; Zhang, Honghong; Hu, Yazhuo; Han, Zhitao; Liu, Jia; Zhao, Weiqin; Wang, Dexin

    2016-01-01

    The aim of this study was to investigate the neuropathological features of the spinal cord in patients suffering with Alzheimer’s disease (AD). Spinal cord tissue collected from three AD patients and eight controls was selected for the study. Data were collected at T2, T8, T10, L4, and S2 spinal levels. The sections were subjected to hematoxylin and eosin and Gallyas–Braak staining methods and then were immunostained with antibodies such as phosphorylated tau protein (AT8), α-synuclein, Aβ, amyloid precursor protein, ubiquitin, and TDP-43. Pathological changes exhibited by the biomarkers were detected by microscopy. Neurofibrillary tangles (NFTs) were detectable in spinal anterior horn motor neurons in two of the three AD patients. AT8-positive axons or axon-like structures and AT8 expression in glial cells were detected in all three AD cases. Hyperphosphorylation of tau protein was detected in spinal anterior horn cells, glial cells, and axons, and its severity was associated with NFTs in the brain tissue. α-Synuclein-positive Lewy bodies and scattered Lewy-like neuritis were detected in the medial horn of the thoracic spinal cord and ventral sacral gray matter, respectively, in one patient who had AD with Lewy bodies. Neither amyloid deposition nor amyloid precursor protein and TDP-43 expression was detected in the spinal cord of AD patients. Spinal cord of AD patients was observed to contain phosphorylated tau protein and α-synuclein immunoreactive structures, which may play a role in dyskinesia and autonomic dysfunction in advanced AD. PMID:27013875

  17. Acute administration of L-dopa induces changes in methylation metabolites, reduced protein phosphatase 2A methylation and hyperphosphorylation of Tau protein in mouse brain

    PubMed Central

    Bottiglieri, Teodoro; Arning, Erland; Wasek, Brandi; Nunbhakdi-Craig, Viyada; Sontag, Jean-Marie; Sontag, Estelle

    2012-01-01

    Folate deficiency and hypomethylation have been implicated in a number of age-related neurodegenerative disorders including dementia and Parkinson’s disease (PD). Levodopa (L-dopa) therapy in PD patients has been shown to cause an increase in plasma total homocysteine (tHcy) as well as depleting cellular concentrations of the methyl donor, S-adenosylmethionine (SAM), and increasing the demethylated product S-adenosylhomocysteine (SAH). Modulation of the cellular SAM/SAH ratio can influence activity of methyltransferase enzymes including leucine carboxyl methyltransferase (LCMT1), that specifically methylates Ser/Thr protein phosphatase 2A (PP2A), a major Tau phosphatase. Here we show in human SH-SY5Y cells and dopaminergic neurons, and in wild type mice that L-dopa results in a reduced SAM/SAH ratio that is associated with hypomethylation of PP2A and increased phosphorylation of Tau (p-Tau) at the Alzheimer disease-like PHF-1 phosphoepitope. The effect of L-dopa on PP2A and p-Tau was exacerbated in cells exposed to folate deficiency. In the folate deficient mouse model, L-dopa resulted in a marked depletion of SAM and increase in SAH in various brain regions with parallel down regulation of PP2A methylation and increased Tau phosphorylation. L-dopa also enhanced demethylated PP2A amounts in the liver. These findings reveal a novel mechanism involving methylation-dependent pathways in which L-dopa induces PP2A hypomethylation and increases Tau phosphorylation, which may be potentially detrimental to neuronal cells. PMID:22764226

  18. Deletion of the ubiquitin ligase CHIP leads to the accumulation, but not the aggregation, of both endogenous phospho- and caspase-3-cleaved tau species.

    PubMed

    Dickey, Chad A; Yue, Mei; Lin, Wen-Lang; Dickson, Dennis W; Dunmore, Judith H; Lee, Wing C; Zehr, Cynthia; West, Gemma; Cao, Songsong; Clark, Amber M K; Caldwell, Guy A; Caldwell, Kim A; Eckman, Christopher; Patterson, Cam; Hutton, Michael; Petrucelli, Leonard

    2006-06-28

    Accumulation of the microtubule-associated protein tau into neurofibrillary lesions is a pathological consequence of several neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Hereditary mutations in the MAPT gene were shown to promote the formation of structurally distinct tau aggregates in patients that had a parkinsonian-like clinical presentation. Whether tau aggregates themselves or the soluble intermediate species that precede their aggregation are neurotoxic entities in these disorders has yet to be resolved; however, recent in vivo evidence supports the latter. We hypothesized that depletion of CHIP, a tau ubiquitin ligase, would lead to an increase in abnormal tau. Here, we show that deletion of CHIP in mice leads to the accumulation of non-aggregated, ubiquitin-negative, hyperphosphorylated tau species. CHIP-/- mice also have increased neuronal caspase-3 levels and activity, as well as caspase-cleaved tau immunoreactivity. Overexpression of mutant (P301L) human tau in CHIP-/- mice is insufficient to promote either argyrophilic or "pre-tangle" structures, despite marked phospho-tau accumulation throughout the brain. These observations are supported in post-developmental studies using RNA interference for CHIP (chn-1) in Caenorhabditis elegans and cell culture systems. Our results demonstrate that CHIP is a primary component in the ubiquitin-dependent degradation of tau. We also show that hyperphosphorylation and caspase-3 cleavage of tau both occur before aggregate formation. Based on these findings, we propose that polyubiquitination of tau by CHIP may facilitate the formation of insoluble filamentous tau lesions. PMID:16807328

  19. Accelerated Human Mutant Tau Aggregation by Knocking Out Murine Tau in a Transgenic Mouse Model

    PubMed Central

    Ando, Kunie; Leroy, Karelle; Héraud, Céline; Yilmaz, Zehra; Authelet, Michèle; Suain, Valèrie; De Decker, Robert; Brion, Jean-Pierre

    2011-01-01

    Many models of human tauopathies have been generated in mice by expression of a human mutant tau with maintained expression of mouse endogenous tau. Because murine tau might interfere with the toxic effects of human mutant tau, we generated a model in which a pathogenic human tau protein is expressed in the absence of wild-type tau protein, with the aim of facilitating the study of the pathogenic role of the mutant tau and to reproduce more faithfully a human tauopathy. The Tg30 line is a tau transgenic mouse model overexpressing human 1N4R double-mutant tau (P301S and G272V) that develops Alzheimer's disease-like neurofibrillary tangles in an age-dependent manner. By crossing Tg30 mice with mice invalidated for their endogenous tau gene, we obtained Tg30xtau−/− mice that express only exogenous human double-mutant 1N4R tau. Although Tg30xtau−/− mice express less tau protein compared with Tg30, they exhibit signs of decreased survival, increased proportion of sarkosyl-insoluble tau in the brain and in the spinal cord, increased number of Gallyas-positive neurofibrillary tangles in the hippocampus, increased number of inclusions in the spinal cord, and a more severe motor phenotype. Deletion of murine tau accelerated tau aggregation during aging of this mutant tau transgenic model, suggesting that murine tau could interfere with the development of tau pathology in transgenic models of human tauopathies. PMID:21281813

  20. Collapsin Response Mediator Protein-2 (CRMP2) is a Plausible Etiological Factor and Potential Therapeutic Target in Alzheimer’s Disease: Comparison and Contrast with Microtubule-Associated Protein Tau

    PubMed Central

    Hensley, Kenneth; Kursula, Petri

    2016-01-01

    Alzheimer’s disease (AD) has long been viewed as a pathology that must be caused either by aberrant amyloid-β protein precursor (AβPP) processing, dysfunctional tau protein processing, or a combination of these two factors. This is a reasonable assumption because amyloid-β peptide (Aβ) accumulation and tau hyperphosphorylation are the defining histological features in AD, and because AβPP and tau mutations can cause AD in humans or AD-like features in animal models. Nonetheless, other protein players are emerging that one can argue are significant etiological players in subsets of AD and potentially novel, druggable targets. In particular, the microtubule-associated protein CRMP2 (collapsin response mediator protein-2) bears striking analogies to tau and is similarly relevant to AD. Like tau, CRMP2 dynamically regulates microtubule stability; it is acted upon by the same kinases; collects similarly in neurofibrillary tangles (NFTs); and when sequestered in NFTs, complexes with critical synapse-stabilizing factors. Additionally, CRMP2 is becoming recognized as an important adaptor protein involved in vesicle trafficking, amyloidogenesis and autophagy, in ways that tau is not. This review systematically compares the biology of CRMP2 to that of tau in the context of AD and explores the hypothesis that CRMP2 is an etiologically significant protein in AD and participates in pathways that can be rationally engaged for therapeutic benefit. PMID:27079722

  1. Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB

    PubMed Central

    Polito, Vinicia A; Li, Hongmei; Martini-Stoica, Heidi; Wang, Baiping; Yang, Li; Xu, Yin; Swartzlander, Daniel B; Palmieri, Michela; di Ronza, Alberto; Lee, Virginia M-Y; Sardiello, Marco; Ballabio, Andrea; Zheng, Hui

    2014-01-01

    Accumulating evidence implicates impairment of the autophagy-lysosome pathway in Alzheimer's disease (AD). Recently discovered, transcription factor EB (TFEB) is a molecule shown to play central roles in cellular degradative processes. Here we investigate the role of TFEB in AD mouse models. In this study, we demonstrate that TFEB effectively reduces neurofibrillary tangle pathology and rescues behavioral and synaptic deficits and neurodegeneration in the rTg4510 mouse model of tauopathy with no detectable adverse effects when expressed in wild-type mice. TFEB specifically targets hyperphosphorylated and misfolded Tau species present in both soluble and aggregated fractions while leaving normal Tau intact. We provide in vitro evidence that this effect requires lysosomal activity and we identify phosphatase and tensin homolog (PTEN) as a direct target of TFEB that is required for TFEB-dependent aberrant Tau clearance. The specificity and efficacy of TFEB in mediating the clearance of toxic Tau species makes it an attractive therapeutic target for treating diseases of tauopathy including AD. PMID:25069841

  2. Ilex latifolia Prevents Amyloid β Protein (25-35)-Induced Memory Impairment by Inhibiting Apoptosis and Tau Phosphorylation in Mice.

    PubMed

    Kim, Joo Youn; Lee, Hong Kyu; Jang, Ji Yeon; Yoo, Jae Kuk; Seong, Yeon Hee

    2015-12-01

    Ilex latifolia Thunb. (Aquifoliaceae), a Chinese bitter tea called "kudingcha," has been widely consumed as a health beverage and found to possess antioxidant, antidiabetic, antihypertensive, anti-inflammatory, and anti-ischemic activities. The aim of the present study was to investigate the neuroprotective effects of an ethanol extract of I. latifolia against amyloid β protein (Aβ)-induced memory impairment in mice and neurotoxicity in cultured rat cortical neurons. Memory impairment in mice was induced by intracerebroventricular injection of 15 nmol Aβ (25-35) and measured by the passive avoidance test and Morris water maze test. Chronic administration of I. latifolia (25-100 mg/kg, p.o.) significantly prevented Aβ (25-35)-induced memory loss. I. latifolia also prevented the decrease of glutathione concentrations, increased lipid peroxidation, expression of phosphorylated tau (p-tau), and changes in apoptosis-associated proteins in the memory-impaired mouse brain. Exposure of cultured cortical neurons to 10 μM Aβ (25-35) for 36 h induced neuronal apoptotic death. The neuronal cell death, elevation of intracellular Ca(2+) concentration, generation of reactive oxygen species, and expression of proapoptotic proteins caused by Aβ (25-35) in the cultured neurons were inhibited by treatment with I. latifolia (1-50 μg/mL). These results suggest that I. latifolia may have a possible therapeutic role in managing cognitive impairment associated with Alzheimer's disease. The underlying mechanism might involve the antiapoptotic effects mediated by antioxidant activity and inhibition of p-tau formation. PMID:26291170

  3. Tau Biology and Tau-Directed Therapies for Alzheimer's Disease.

    PubMed

    Bakota, Lidia; Brandt, Roland

    2016-03-01

    Alzheimer's disease (AD) is characterised by a progressive loss of cognitive functions. Histopathologically, AD is defined by the presence of extracellular amyloid plaques containing Aβ and intracellular neurofibrillary tangles composed of hyperphosphorylated tau proteins. According to the now well-accepted amyloid cascade hypothesis is the Aβ pathology the primary driving force of AD pathogenesis, which then induces changes in tau protein leading to a neurodegenerative cascade during the progression of disease. Since many earlier drug trials aiming at preventing Aβ pathology failed to demonstrate efficacy, tau and microtubules have come into focus as prominent downstream targets. The article aims to develop the current concept of the involvement of tau in the neurodegenerative triad of synaptic loss, cell death and dendritic simplification. The function of tau as a microtubule-associated protein and versatile interaction partner will then be introduced and the rationale and progress of current tau-directed therapy will be discussed in the biological context. PMID:26729186

  4. Neuronal activity enhances tau propagation and tau pathology in vivo.

    PubMed

    Wu, Jessica W; Hussaini, S Abid; Bastille, Isle M; Rodriguez, Gustavo A; Mrejeru, Ana; Rilett, Kelly; Sanders, David W; Cook, Casey; Fu, Hongjun; Boonen, Rick A C M; Herman, Mathieu; Nahmani, Eden; Emrani, Sheina; Figueroa, Y Helen; Diamond, Marc I; Clelland, Catherine L; Wray, Selina; Duff, Karen E

    2016-08-01

    Tau protein can transfer between neurons transneuronally and trans-synaptically, which is thought to explain the progressive spread of tauopathy observed in the brain of patients with Alzheimer's disease. Here we show that physiological tau released from donor cells can transfer to recipient cells via the medium, suggesting that at least one mechanism by which tau can transfer is via the extracellular space. Neuronal activity has been shown to regulate tau secretion, but its effect on tau pathology is unknown. Using optogenetic and chemogenetic approaches, we found that increased neuronal activity stimulates the release of tau in vitro and enhances tau pathology in vivo. These data have implications for disease pathogenesis and therapeutic strategies for Alzheimer's disease and other tauopathies. PMID:27322420

  5. O-GlcNAcylation modulates the self-aggregation ability of the fourth microtubule-binding repeat of tau

    SciTech Connect

    Yu, C.-H.; Si Tong; Wu Weihui; Hu Jia; Du Jintang; Zhao Yufen; Li Yanmei

    2008-10-10

    In Alzheimer's disease (AD), tau protein is abnormally hyperphosphorylated and aggregated into paired helical filaments (PHFs). It was discovered recently that tau is also O-GlcNAcylated in human brains. And O-GlcNAcylation may regulate phosphorylation of tau in a site-specific manner. In this work, we focused on the fourth microtubule-binding repeat (R4) of tau, which has an O-GlcNAcylation site-Ser356. The aggregation behavior of this repeat and its O-GlcNAcylated form was investigated by turbidity, precipitation assay and electron microscopy. In addition, conformations of these two peptides were analyzed with circular dichroism (CD). Our results revealed that O-GlcNAcylation at Ser356 could greatly slow down the aggregation speed of R4 peptide. This modulation of O-GlcNAcylation on tau aggregation implies a new perspective of tau pathology.

  6. A local insult of okadaic acid in wild-type mice induces tau phosphorylation and protein aggregation in anatomically distinct brain regions.

    PubMed

    Baker, Siân; Götz, Jürgen

    2016-01-01

    In Alzheimer's disease (AD), the distribution and density of neurofibrillary tangles, a histological hallmark comprised predominately of phosphorylated tau protein, follows a distinct pattern through anatomically connected brain regions. Studies in transgenic mice engineered to regionally confine tau expression have suggested spreading of tau within neural networks. Furthermore, injection of protein lysates isolated from brains of transgenic mice or patients with tauopathies, including AD, were shown to behave like seeds, accelerating tau pathology and tangle formation in predisposed mice. However, it remains unclear how the initiation of primary aggregation events occurs and what triggers further dissemination throughout the neural system. To consolidate these findings, we pursued an alternative approach to assess the spreading of endogenous phosphorylated tau. To generate endogenous seeds, 130 nl of 100 μM protein phosphatase 2A inhibitor okadaic acid (OA) was injected unilaterally into the amygdala of 8-month-old C57Bl/6 wild-type mice. OA was detected in brain tissue by ELISA, and found to be restricted to the injected hemispheric quadrant, where it remained detectable a week post-injection. OA injection induced tau phosphorylation that was observed not only at the injection site but also in anatomically distinct areas across both hemispheres, including the cortex and hippocampus 24 h post-injection. An increase in insoluble tau was also observed in both hemispheres of injected brains by 7 days. Furthermore, thioflavin-S detected protein aggregation at the injection site and in the cortex of both injected and contralateral hemispheres. OA injection induced no thioflavin-positivity in tau knock-out mice. The data demonstrates that a local OA insult can rapidly initiate changes in protein phosphorylation, solubility and aggregation at anatomically distant sites. This model suggests that tau phosphorylation can be both a primary response to an insult, and a

  7. Decline of microtubule-associated protein tau after experimental stroke in differently aged wild-type and 3xTg mice with Alzheimer-like alterations.

    PubMed

    Michalski, Dominik; Preißler, Hartmut; Hofmann, Sarah; Kacza, Johannes; Härtig, Wolfgang

    2016-08-25

    Stroke therapies are still limited to a minority of patients. Considering time-dependent aspects of stroke, the penumbra concept describes the transition from functional to permanent tissue damage. Thereby, the role of cytoskeletal elements, as for instance microtubules with associated tau remains poorly understood and is therefore not yet considered for therapeutic approaches. This study explored the expression of microtubule-associated protein tau related to neuronal damage in stroke-affected brain regions. Wild-type and triple-transgenic mice of 3, 7 and 12months of age and with an Alzheimer-like background underwent experimental stroke. After 24h, brain sections were used for immunofluorescence labeling of tau and Neuronal Nuclei (NeuN). Potential functional consequences of cellular alterations were explored by statistical relationships to the general health condition, i.e. neurobehavioral deficits and loss of body weight. Immunoreactivity for whole tau decreased significantly in ischemic areas, while the decline at the border zone was more drastic for tau-immunoreactivity compared with the diminished NeuN labeling. Quantitative analyses confirmed pronounced sensitivity for tau-immunoreactivity in the ischemic border zone. Decline of tau- as well as NeuN-immunoreactivity correlated with body weight loss during the 24-h observation period. In conclusion, microtubule-associated protein tau was robustly identified as a highly sensitive cytoskeletal constitute under ischemic conditions, suggesting a pivotal role during the transition process toward long-lasting tissue damage. Consequently, cytoskeletal elements appear as promising targets for novel therapeutic approaches with the objective to impede ischemia-induced irreversible cellular degradation. PMID:27189884

  8. Is Abnormal Urine Protein/Osmolality Ratio Associated with Abnormal Renal Function in Patients Receiving Tenofovir Disoproxil Fumarate?

    PubMed Central

    Marcelin, Jasmine R.; Berg, Melody L.; Tan, Eugene M.; Amer, Hatem; Cummins, Nathan W.; Rizza, Stacey A.

    2016-01-01

    Background Risk factors for and optimal surveillance of renal dysfunction in patients on tenofovir disoproxil fumarate (TDF) remain unclear. We investigated whether a urine protein-osmolality (P/O) ratio would be associated with renal dysfunction in HIV-infected persons on TDF. Methods This retrospective, single-center study investigated the relationship between parameters of renal function (estimated glomerular filtration rate (eGFR) and P/O-ratio) and risk factors for development of kidney dysfunction. Subjects were HIV-infected adults receiving TDF with at least one urinalysis and serum creatinine performed between 2010 and 2013. Regression analyses were used to analyze risk factors associated with abnormal P/O-ratio and abnormal eGFR during TDF therapy. Results Patients were predominately male (81%); (65%) were Caucasian. Mean age was 45.1(±11.8) years; median [IQR] TDF duration was 3.3 years. [1.5–7.6]. Median CD4+ T cell count and HIV viral load were 451 cells/μL [267.5–721.5] and 62 copies/mL [0–40,150], respectively. Abnormal P/O-ratio was not associated with low eGFR. 68% of subjects had an abnormal P/O-ratio and 9% had low eGFR. Duration of TDF use, age, diabetes and hypertension were associated with renal dysfunction in this study. After adjustment for age, subjects on TDF > 5 years had almost a four-fold increased likelihood of having an abnormal P/O-ratio than subjects on TDF for < 1yr (OR 3.9; 95% CI 1.2–14.0; p = 0.024). Conclusion Abnormal P/O-ratio is common in HIV-infected patients on TDF but was not significantly associated with low eGFR, suggesting that abnormal P/O-ratio may be a very early biomarker of decreased renal function in HIV infected patients. PMID:26872144

  9. Amyloid-β Peptides and Tau Protein as Biomarkers in Cerebrospinal and Interstitial Fluid Following Traumatic Brain Injury: A Review of Experimental and Clinical Studies

    PubMed Central

    Tsitsopoulos, Parmenion P.; Marklund, Niklas

    2013-01-01

    Traumatic brain injury (TBI) survivors frequently suffer from life-long deficits in cognitive functions and a reduced quality of life. Axonal injury, observed in many severe TBI patients, results in accumulation of amyloid precursor protein (APP). Post-injury enzymatic cleavage of APP can generate amyloid-β (Aβ) peptides, a hallmark finding in Alzheimer’s disease (AD). At autopsy, brains of AD and a subset of TBI victims display some similarities including accumulation of Aβ peptides and neurofibrillary tangles of hyperphosphorylated tau proteins. Most epidemiological evidence suggests a link between TBI and AD, implying that TBI has neurodegenerative sequelae. Aβ peptides and tau may be used as biomarkers in interstitial fluid (ISF) using cerebral microdialysis and/or cerebrospinal fluid (CSF) following clinical TBI. In the present review, the available clinical and experimental literature on Aβ peptides and tau as potential biomarkers following TBI is comprehensively analyzed. Elevated CSF and ISF tau protein levels have been observed following severe TBI and suggested to correlate with clinical outcome. Although Aβ peptides are produced by normal neuronal metabolism, high levels of long and/or fibrillary Aβ peptides may be neurotoxic. Increased CSF and/or ISF Aβ levels post-injury may be related to neuronal activity and/or the presence of axonal injury. The heterogeneity of animal models, clinical cohorts, analytical techniques, and the complexity of TBI in the available studies make the clinical value of tau and Aβ as biomarkers uncertain at present. Additionally, the link between early post-injury changes in tau and Aβ peptides and the future risk of developing AD remains unclear. Future studies using methods such as rapid biomarker sampling combined with enhanced analytical techniques and/or novel pharmacological tools could provide additional information on the importance of Aβ peptides and tau protein in both the acute pathophysiology and long

  10. Binding of the Three-Repeat Domain of Tau to Phospholipid Membranes induces an Aggregated-Like State of the Protein

    PubMed Central

    Künze, Georg; Barré, Patrick; Scheidt, Holger A.; Thomas, Lars; Eliezer, David; Huster, Daniel

    2013-01-01

    In patients with Alzheimer’s disease, the microtubule-associated protein tau is found aggregated into paired helical filaments (PHFs) in neurofibrillary deposits. In solution, tau is intrinsically unstructured. However, the tubulin binding domain consisting of three or four 31–32 amino acid repeat regions exhibits both helical and β-structure propensity and makes up the proteolysis resistant core of PHFs. Here, we studied the structure and dynamics of the three-repeat domain of tau (i.e. K19) when bound to membranes consisting of a phosphatidylcholine and phosphatidylserine mixture or phosphatidylserine alone. Tau K19 binds to phospholipid vesicles with submicromolar affinity as measured by fluorescence spectroscopy. The interaction is driven by electrostatic forces between the positively charged protein and the phospholipid head groups. The structure of the membrane-bound state of K19 was studied using CD spectroscopy and solid-state magic-angle spinning NMR spectroscopy. To this end, the protein was selectively 13C-labeled at all valine and leucine residues. Isotropic chemical shift values of tau K19 were consistent with a β-structure. In addition, motionally averaged 1H-13C dipolar couplings indicated a high rigidity of the protein backbone. The structure formation of K19 was also shown to depend on the charge density of the membrane. Phosphatidylserine membranes induced a gain in the α-helix structure along with an immersion of K19 into the phospholipid bilayer as indicated by a reduction of the lipid chain 2H NMR order parameter. Our results provide structural insights into the membrane-bound state of tau K19 and support a potential role of phospholipid membranes in mediating the physiological and pathological functions of tau. PMID:22521809

  11. Aging-related tau astrogliopathy (ARTAG): harmonized evaluation strategy.

    PubMed

    Kovacs, Gabor G; Ferrer, Isidro; Grinberg, Lea T; Alafuzoff, Irina; Attems, Johannes; Budka, Herbert; Cairns, Nigel J; Crary, John F; Duyckaerts, Charles; Ghetti, Bernardino; Halliday, Glenda M; Ironside, James W; Love, Seth; Mackenzie, Ian R; Munoz, David G; Murray, Melissa E; Nelson, Peter T; Takahashi, Hitoshi; Trojanowski, John Q; Ansorge, Olaf; Arzberger, Thomas; Baborie, Atik; Beach, Thomas G; Bieniek, Kevin F; Bigio, Eileen H; Bodi, Istvan; Dugger, Brittany N; Feany, Mel; Gelpi, Ellen; Gentleman, Stephen M; Giaccone, Giorgio; Hatanpaa, Kimmo J; Heale, Richard; Hof, Patrick R; Hofer, Monika; Hortobágyi, Tibor; Jellinger, Kurt; Jicha, Gregory A; Ince, Paul; Kofler, Julia; Kövari, Enikö; Kril, Jillian J; Mann, David M; Matej, Radoslav; McKee, Ann C; McLean, Catriona; Milenkovic, Ivan; Montine, Thomas J; Murayama, Shigeo; Lee, Edward B; Rahimi, Jasmin; Rodriguez, Roberta D; Rozemüller, Annemieke; Schneider, Julie A; Schultz, Christian; Seeley, William; Seilhean, Danielle; Smith, Colin; Tagliavini, Fabrizio; Takao, Masaki; Thal, Dietmar Rudolf; Toledo, Jon B; Tolnay, Markus; Troncoso, Juan C; Vinters, Harry V; Weis, Serge; Wharton, Stephen B; White, Charles L; Wisniewski, Thomas; Woulfe, John M; Yamada, Masahito; Dickson, Dennis W

    2016-01-01

    Pathological accumulation of abnormally phosphorylated tau protein in astrocytes is a frequent, but poorly characterized feature of the aging brain. Its etiology is uncertain, but its presence is sufficiently ubiquitous to merit further characterization and classification, which may stimulate clinicopathological studies and research into its pathobiology. This paper aims to harmonize evaluation and nomenclature of aging-related tau astrogliopathy (ARTAG), a term that refers to a morphological spectrum of astroglial pathology detected by tau immunohistochemistry, especially with phosphorylation-dependent and 4R isoform-specific antibodies. ARTAG occurs mainly, but not exclusively, in individuals over 60 years of age. Tau-immunoreactive astrocytes in ARTAG include thorn-shaped astrocytes at the glia limitans and in white matter, as well as solitary or clustered astrocytes with perinuclear cytoplasmic tau immunoreactivity that extends into the astroglial processes as fine fibrillar or granular immunopositivity, typically in gray matter. Various forms of ARTAG may coexist in the same brain and might reflect different pathogenic processes. Based on morphology and anatomical distribution, ARTAG can be distinguished from primary tauopathies, but may be concurrent with primary tauopathies or other disorders. We recommend four steps for evaluation of ARTAG: (1) identification of five types based on the location of either morphologies of tau astrogliopathy: subpial, subependymal, perivascular, white matter, gray matter; (2) documentation of the regional involvement: medial temporal lobe, lobar (frontal, parietal, occipital, lateral temporal), subcortical, brainstem; (3) documentation of the severity of tau astrogliopathy; and (4) description of subregional involvement. Some types of ARTAG may underlie neurological symptoms; however, the clinical significance of ARTAG is currently uncertain and awaits further studies. The goal of this proposal is to raise awareness of

  12. Assessment of microtubule-associated protein (MAP)-Tau expression as a predictive and prognostic marker in TACT; a trial assessing substitution of sequential docetaxel for FEC as adjuvant chemotherapy for early breast cancer.

    PubMed

    Irshad, S; Gillett, C; Pinder, S E; A'hern, R P; Dowsett, M; Ellis, I O; Bartlett, J M S; Bliss, J M; Hanby, A; Johnston, S; Barrett-Lee, P; Ellis, P; Tutt, A

    2014-04-01

    The TACT trial is the largest study assessing the benefit of taxanes as part of adjuvant therapy for early breast cancer. The goal of this translational study was to clarify the predictive and prognostic value of Tau within the TACT trial. Tissue microarrays (TMA) were available from 3,610 patients. ER, PR, HER2 from the TACT trial and Tau protein expression was determined by immunohistochemistry on duplicate TMAs. Two parallel scoring systems were generated for Tau expression ('dichotomised' vs. 'combined' score). The positivity rate of Tau expression was 50 % in the trial population (n = 2,483). Tau expression correlated positively with ER (p < 0.001) and PR status (p < 0.001); but negatively with histological grade (p < 0.001) and HER2 status (p < 0.001). Analyses with either scoring systems for Tau expression demonstrated no significant interaction between Tau expression and efficacy of docetaxel. Contrary to the hypothesis that taxane benefit would be enriched in Tau negative/low patients, the only groups with a suggestion of a reduced event rate in the taxane group were the HER2-positive, Tau positive subgroups. Tau expression was seen to be a prognostic factor on univariate analysis associated with an improved DFS, independent of the treatment group (p < 0.001). It had no prognostic value in ER-negative tumours and the weak prognostic effect of Tau in ER-positive tumours (p = 0.02) diminished, when considering ER as an ordinal variable. On multivariable analyses, Tau had no prognostic value in either group. In addition, no significant interaction between Tau expression and benefit from docetaxel in patients within the PR-positive and negative subsets was seen. This is now the second large adjuvant study, and the first with quantitative analysis of ER and Tau expression, failing to show an association between Tau and taxane benefit with limited utility as a prognostic marker for Tau in ER-positive early breast cancer patients. PMID:24519386

  13. Protein Kinase C Activation as a Potential Therapeutic Strategy in Alzheimer's Disease: Is there a Role for Embryonic Lethal Abnormal Vision-like Proteins?

    PubMed

    Talman, Virpi; Pascale, Alessia; Jäntti, Maria; Amadio, Marialaura; Tuominen, Raimo K

    2016-08-01

    Alzheimer's disease (AD), the most common cause of dementia, is an irreversible and progressive neurodegenerative disorder. It affects predominantly brain areas that are critical for memory and learning and is characterized by two main pathological hallmarks: extracellular amyloid plaques and intracellular neurofibrillary tangles. Protein kinase C (PKC) has been classified as one of the cognitive kinases controlling memory and learning. By regulating several signalling pathways involved in amyloid and tau pathologies, it also plays an inhibitory role in AD pathophysiology. Among downstream targets of PKC are the embryonic lethal abnormal vision (ELAV)-like RNA-binding proteins that modulate the stability and the translation of specific target mRNAs involved in synaptic remodelling linked to cognitive processes. This MiniReview summarizes the current evidence on the role of PKC and ELAV-like proteins in learning and memory, highlighting how their derangement can contribute to AD pathophysiology. This last aspect emphasizes the potential of pharmacological activation of PKC as a promising therapeutic strategy for the treatment of AD. PMID:27001133

  14. Pattern of tau hyperphosphorylation and neurotransmitter markers in the brainstem of senescent tau filament forming transgenic mice.

    PubMed

    Morcinek, Kerstin; Köhler, Christoph; Götz, Jürgen; Schröder, Hannsjörg

    2013-02-25

    The early occurrence of brainstem-related symptoms, e.g. gait and balance impairment, apathy and depression in Alzheimer's disease patients suggests brainstem involvement in the initial pathogenesis. To address the question whether tau filament forming mice expressing mutated human tau mirror histopathological changes observed in Alzheimer brainstem, the degree and distribution of neurofibrillary lesions as well as the pattern of cholinergic and monoaminergic neurons were investigated. The expression of the human tau transgene was observed in multiple brainstem nuclei, particularly in the magnocellular reticular formation, vestibular nuclei, cranial nerve motor nuclei, sensory trigeminal nerve nuclei, inferior and superior colliculi, periaqueductal and pontine gray matter, and the red nucleus. Most of the human tau-immunoreactive cell groups also showed tau hyperphosphorylation at the epitopes Thr231/Ser235 and Ser202/Thr205, while abnormal tau phosphorylation at the epitope Ser422 or silver stained structures were almost totally lacking. We found no obvious differences in distribution and density of cholinergic and monoaminergic neurons between tau-transgenic and wild type mice. Although numerous brainstem nuclei in our model expressed human tau protein, the development of neurofibrillary tangles, neuropil threads and ghost tangles was rare and likewise its distribution differed largely from Alzheimer's disease pattern. The number of monoaminergic neurons remained unchanged in the transgenic mice, while monoaminergic nuclei in Alzheimer brainstem showed a distinct neuronal loss. However, the distribution of pretangle-affected neurons in the tau-transgenic mice partly resembled those seen in progressive supranuclear palsy, presenting these animals as a model to examine brainstem pathogenesis of progressive supranuclear palsy. PMID:23261664

  15. Inhibition of tau aggregation by a rosamine derivative that blocks tau intermolecular disulfide cross-linking.

    PubMed

    Haque, Md Mamunul; Kim, Dohee; Yu, Young Hyun; Lim, Sungsu; Kim, Dong Jin; Chang, Young-Tae; Ha, Hyung-Ho; Kim, Yun Kyung

    2014-09-01

    Abnormal tau aggregates are presumed to be neurotoxic and are an important therapeutic target for multiple neurodegenerative disorders including Alzheimer's disease. Growing evidence has shown that tau intermolecular disulfide cross-linking is critical in generating tau oligomers that serve as a building block for higher-order aggregates. Here we report that a small molecule inhibitor prevents tau aggregation by blocking the generation of disulfide cross-linked tau oligomers. Among the compounds tested, a rosamine derivative bearing mild thiol reactivity selectively labeled tau and effectively inhibited oligomerization and fibrillization processes in vitro. Our data suggest that controlling tau oxidation status could be a new therapeutic strategy for prevention of abnormal tau aggregation. PMID:24919397

  16. Clamp-loader-helicase interaction in Bacillus. Leucine 381 is critical for pentamerization and helicase binding of the Bacillus tau protein.

    PubMed

    Haroniti, A; Till, R; Smith, M C M; Soultanas, P

    2003-09-23

    Recently, we revealed the architecture of the clamp-loader-helicase (tau-DnaB) complex in Bacillus by atomic force microscopy imaging and constructed a structural model, whereby a pentameric clamp-loader interacts with the hexameric helicase. Crucial to this model is the assumption that the clamp-loader forms a pentamer in the absence of other components of the clamp-loader complex such as deltadelta'. Here, we show that the Bacillus subtilis tau protein, even in the absence of deltadelta', interacts as a pentamer with the hexameric DnaB and that the L381 of tau is critical for the integrity of the tau oligomer and interaction with DnaB. The effects of the L381A mutation were confirmed by gel filtration, ultracentrifugation, circular dichroism, cross-linking studies, and genetic replacement of the dnaX gene with a mutant L381A dnaX gene in vivo. The L381A protein is able to support growth in vivo only when expressed in high quantities. Finally, despite the fact that a mutation at P465 has been reported to result in a thermosensitive gene in vivo, a P465L mutant protein interacts with DnaB in vitro suggesting that this defect is not a result of a defective tau-DnaB interaction. PMID:12974630

  17. Hippocampal tau pathology is related to neuroanatomical connections: an ageing population-based study.

    PubMed

    Lace, G; Savva, G M; Forster, G; de Silva, R; Brayne, C; Matthews, F E; Barclay, J J; Dakin, L; Ince, P G; Wharton, S B

    2009-05-01

    Deposits of abnormally phosphorylated tau protein are found in numerous neurodegenerative disorders; the 'tauopathies', which include Alzheimer's and Pick's diseases, but tau pathology is also found in the ageing brain. Variation in tau pathology in brain ageing and its relationship to development of tauopathies and cognitive impairment remains unclear. We aimed to determine the extent and pattern of spread of tau pathology in the hippocampus, a susceptible region important in dementia and milder states of memory impairment, using hippocampal samples from the elderly population-based Medical Research Council Cognitive Function and Ageing Study neuropathology cohort. Tau deposition was assessed in hippocampal anatomical sub-regions using the AT8 antibody to phosphorylated tau and isoform-specific antibodies to 3 and 4-repeat tau (RD3 and RD4). Abeta pathology was also assessed. In this population sample, which includes the full ageing spectrum from individuals with no cognitive impairment to those with dementia satisfying clinico-pathology criteria for Alzheimer's disease, we have demonstrated a high prevalence at death of tau pathology. AT8, Abeta, RD3 and RD4 showed similar regional distribution and increased RD3 was noted in late-stage ghost tangles. Abeta was shown to be a poor explanatory variable for tau pathology. Tau deposition progressed in a hierarchical manner. Hippocampal input regions and projection zones (such as lateral entorhinal cortex, CA1/subiculum border and outer molecular layer of dentate) were initially affected, with anterograde progression though the hippocampal circuitry. Six hippocampal tau anatomical stages were defined, each linking projectionally to their adjacent stages, suggesting spread of tau malfunction through neuroanatomical pathways in hippocampal ageing. These stages were significantly associated with dementia, and may provide a clinically useful tool in the clinico-pathological assessment of dementia and mild cognitive

  18. Focal adhesion protein abnormalities in myelodysplastic mesenchymal stromal cells

    SciTech Connect

    Aanei, Carmen Mariana; Eloae, Florin Zugun; Flandrin-Gresta, Pascale; Tavernier, Emmanuelle; Carasevici, Eugen; Guyotat, Denis; Campos, Lydia

    2011-11-01

    Direct cell-cell contact between haematopoietic progenitor cells (HPCs) and their cellular microenvironment is essential to maintain 'stemness'. In cancer biology, focal adhesion (FA) proteins are involved in survival signal transduction in a wide variety of human tumours. To define the role of FA proteins in the haematopoietic microenvironment of myelodysplastic syndromes (MDS), CD73-positive mesenchymal stromal cells (MSCs) were immunostained for paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and p130CAS, and analysed for reactivity, intensity and cellular localisation. Immunofluorescence microscopy allowed us to identify qualitative and quantitative differences, and subcellular localisation analysis revealed that in pathological MSCs, paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} formed nuclear molecular complexes. Increased expression of paxillin, pFAK [Y{sup 397}], and HSP90{alpha}/{beta} and enhanced nuclear co-localisation of these proteins correlated with a consistent proliferative advantage in MSCs from patients with refractory anaemia with excess blasts (RAEB) and negatively impacted clonogenicity of HPCs. These results suggest that signalling via FA proteins could be implicated in HPC-MSC interactions. Further, because FAK is an HSP90{alpha}/{beta} client protein, these results suggest the utility of HSP90{alpha}/{beta} inhibition as a target for adjuvant therapy for myelodysplasia.

  19. Cascade of tau toxicity in inducible hippocampal brain slices and prevention by aggregation inhibitors

    PubMed Central

    Messing, Lars; Mandelkow, Eckhard; Mandelkow, Eva-Maria

    2016-01-01

    Mislocalization and aggregation of the axonal protein Tau are hallmarks of Alzheimer disease and other tauopathies. Here, we studied the relationship between Tau aggregation, loss of spines and neurons, and reversibility by aggregation inhibitors. To this end we established an in vitro model of tauopathy based on regulatable transgenic hippocampal organotypic slice cultures prepared from mice expressing pro-aggregant TauRDΔK. Transgene expression was monitored by a bioluminescence reporter assay. Abnormal Tau phosphorylation, mislocalization of exogenous and endogenous Tau into the somatodendritic compartment, followed by reduction of dendritic spines, altered morphology from mushroom-shaped to thin spines, dysregulation of Ca++ dynamics, Tau aggregation, neuronal loss and elevated activation of microglia. Neurotoxicity was mediated by Caspase-3 activation and correlated with the expression level of pro-aggregant TauRDΔK. Finally, Tau aggregates appeared in areas CA1 and CA3 after three weeks in vitro. Neurodegeneration was relieved by aggregation inhibitors or by switching off transgene expression. Thus the slice culture model is suitable for monitoring the development of tauopathy and the therapeutic benefit of anti-aggregation drugs. PMID:23158765

  20. Loss of prion protein leads to age-dependent behavioral abnormalities and changes in cytoskeletal protein expression

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cellular prion protein (PrPC) is a multifunctional protein, whose exact physiological role remains elusive. Since previous studies indicated a neuroprotective function of PrPC, we investigated whether Prnp knockout mice(Prnp0/0)display age-dependent behavioral abnormalities. Matched sets of Prnp0/0 ...

  1. Rapid degradation of abnormal proteins in vacuoles from Acer pseudoplatanus L. cells

    SciTech Connect

    Canut, H.; Alibert, G.; Carrasco, A.; Boudet, A.M.

    1986-06-01

    In Acer pseudoplatanus cells, the proteins synthesized in the presence of an amino acid analog ((/sup 14/C)p-fluorophenylalanine), were degraded more rapidly than normal ones ((/sup 14/C)phenylalanine as precursor). The degradation of an important part of these abnormal proteins occurred inside the vacuoles. The degradation process was not apparently associated to a specific proteolytic system but was related to a preferential transfer of these aberrant proteins from the cytoplasm to the vacuole.

  2. Cognitive defects are reversible in inducible mice expressing pro-aggregant full-length human Tau

    PubMed Central

    Sydow, Astrid; Hofmann, Anne; Wu, Dan; Messing, Lars; Balschun, Detlef; D'Hooge, Rudi; Mandelkow, Eva-Maria

    2016-01-01

    Neurofibrillary lesions of abnormal Tau are hallmarks of Alzheimer´s disease and frontotemporal dementias. Our regulatable (Tet-OFF) mouse models of tauopathy express variants of human full-length Tau in the forebrain (CaMKIIα promoter) either with mutation ΔK280 (pro-aggregant) or ΔK280/I277P/I308P (anti-aggregant). Co-expression of luciferase enables in vivo quantification of gene expression by bioluminescence imaging. Pro-aggregant mice develop synapse loss and Tau pathology including missorting, phosphorylation and early pretangle formation, whereas anti-aggregant mice do not. We correlated hippocampal Tau pathology with learning/memory performance and synaptic plasticity. Pro-aggregant mice at 16 months of gene expression exhibited severe cognitive deficits in Morris water-maze and in passive-avoidance paradigms, whereas anti-aggregant mice were comparable to controls. Cognitive impairment of pro-aggregant mice was accompanied by loss of hippocampal LTP in CA1 and CA3 areas and by a reduction of synaptic proteins and dendritic spines, although no neuronal loss was observed. Remarkably, memory and LTP recovered when pro-aggregant Tau was switched-OFF for ∼4 months, Tau phosphorylation and missorting were reversed, and synapses recovered. Moreover soluble and insoluble pro-aggregant hTau40 disappeared while insoluble mouse Tau was still present. This study links early Tau pathology without neurofibrillary tangles and neuronal death to cognitive decline and synaptic dysfunction. It demonstrates that Tau-induced impairments are reversible after switching-OFF pro-aggregant Tau. Therefore our mouse model may mimic an early phase of AD when the hippocampus does not yet suffer from irreversible cell death but cognitive deficits are already striking. It offers potential to evaluate drugs with regard to learning and memory performance. PMID:22532069

  3. Tau Splicing and the Intricacies of Dementia

    PubMed Central

    Andreadis, Athena

    2011-01-01

    Tau is a microtubule associated protein that fulfills several functions critical for neuronal formation and health. Tau discharges its functions by producing multiple isoforms via regulated alternative splicing. These isoforms modulate tau function in normal brain by altering the domains of the protein, thereby influencing its localization, conformation and post-translational modifications and hence its availability and affinity for microtubules and other ligands. Disturbances in tau expression result in disruption of the neuronal cytoskeleton and formation of tau structures (neurofibrillary tangles) found in brains of dementia sufferers. More specifically, aberrations in tau splicing regulation directly cause several neurodegenerative diseases which lead to dementia. In this review, I present our cumulative knowledge of tau splicing regulation in connection with neurodegeneration and also briefly go over the still-extensive list of questions that are connected to tau (dys)function. PMID:21604267

  4. miR-106b inhibits tau phosphorylation at Tyr18 by targeting Fyn in a model of Alzheimer's disease.

    PubMed

    Liu, Wei; Zhao, Jingya; Lu, Guangxiu

    2016-09-16

    Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by β-amyloid deposits and neurofibrillary tangles consisting of hyperphosphorylated tau protein. Increasing evidence has revealed that microRNAs (miRNAs) are implicated in the pathogenesis of AD. However, the effect of miRNAs on abnormal tau phosphorylation remains largely unclear so far. In this study, we investigated the role of miR-106b in tau phosphorylation and identified a new molecular mechanism of the hyperphosphorylation of tau. The results of qRT-PCR showed that the expression level of miR-106b was decreased, but Fyn was increased in the temporal cortex of AD patients. Overexpression of miR-106b inhibited Aβ1-42-induced tau phosphorylation at Tyr18 in SH-SY5Y cells stably expressing tau (SH-SY5Y/tau), whereas no changes were observed in tau phosphorylation at Ser396/404. Dual-luciferase reporter gene assay validated that Fyn was a direct target gene of miR-106b. In addition, western blot analysis revealed that Fyn protein expression was suppressed when SH-SY5Y cells were transfected with miR-106b mimics. Endogenous Fyn expression was knockdown by transfection with a small interfering RNA specific for Fyn (si-Fyn). The phosphorylation level of tau at Tyr 18 was decreased in the si-Fyn group compared with the negative control group, but the inhibitory effect of si-Fyn on tau phosphorylation was attenuated when miR-106b expression was inhibited. Taken together, these data suggest that miR-106b inhibits Aβ1-42-induced tau phosphorylation at Tyr18 by targeting Fyn. Our findings extend the knowledge about the regulation of tau phosphorylation and the regulatory mechanism of Fyn gene expression. PMID:27520374

  5. Increased 4R-Tau Induces Pathological Changes in a Human-Tau Mouse Model.

    PubMed

    Schoch, Kathleen M; DeVos, Sarah L; Miller, Rebecca L; Chun, Seung J; Norrbom, Michaela; Wozniak, David F; Dawson, Hana N; Bennett, C Frank; Rigo, Frank; Miller, Timothy M

    2016-06-01

    Pathological evidence for selective four-repeat (4R) tau deposition in certain dementias and exon 10-positioned MAPT mutations together suggest a 4R-specific role in causing disease. However, direct assessments of 4R toxicity have not yet been accomplished in vivo. Increasing 4R-tau expression without change to total tau in human tau-expressing mice induced more severe seizures and nesting behavior abnormality, increased tau phosphorylation, and produced a shift toward oligomeric tau. Exon 10 skipping could also be accomplished in vivo, providing support for a 4R-tau targeted approach to target 4R-tau toxicity and, in cases of primary MAPT mutation, eliminate the disease-causing mutation. PMID:27210553

  6. Tau imaging in neurodegenerative diseases.

    PubMed

    Dani, M; Brooks, D J; Edison, P

    2016-06-01

    Aggregated tau protein is a major neuropathological substrate central to the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration and chronic traumatic encephalopathy. In AD, it has been shown that the density of hyperphosphorylated tau tangles correlates closely with neuronal dysfunction and cell death, unlike β-amyloid. Until now, diagnostic and pathologic information about tau deposition has only been available from invasive techniques such as brain biopsy or autopsy. The recent development of selective in-vivo tau PET imaging ligands including [(18)F]THK523, [(18)F]THK5117, [(18)F]THK5105 and [(18)F]THK5351, [(18)F]AV1451(T807) and [(11)C]PBB3 has provided information about the role of tau in the early phases of neurodegenerative diseases, and provided support for diagnosis, prognosis, and imaging biomarkers to track disease progression. Moreover, the spatial and longitudinal relationship of tau distribution compared with β - amyloid and other pathologies in these diseases can be mapped. In this review, we discuss the role of aggregated tau in tauopathies, the challenges posed in developing selective tau ligands as biomarkers, the state of development in tau tracers, and the new clinical information that has been uncovered, as well as the opportunities for improving diagnosis and designing clinical trials in the future. PMID:26572762

  7. Abnormal pulmonary macrophages in lysinuric protein intolerance. Ultrastructural, morphometric, and x-ray microanalytic study.

    PubMed

    Parto, K; Mäki, J; Pelliniemi, L J; Simell, O

    1994-05-01

    Pediatric patients with lysinuric protein intolerance are predisposed to develop alveolar hemorrhage and pulmonary alveolar proteinosis. We evaluated the ultrastructural features of pulmonary alveolar proteinosis and the potential abnormality of pulmonary macrophages in lysinuric protein intolerance. Lung tissue specimens obtained at autopsy were examined by transmission electron microscopy. Pulmonary macrophages from bronchoalveolar lavages were studied by electron microscopy, morphometry, and x-ray microanalysis and compared with control cells. The macrophages of patients with lysinuric protein intolerance contained significantly more multilamellar structures than did control cells and showed electron-dense material identified to contain excess iron. The predisposition to develop alveolar proteinosis and the abnormal ultrastructure of pulmonary macrophages suggest altered phospholipid metabolism in patients with lysinuric protein intolerance. The marked intramacrophageal accumulations of iron might indicate altered iron metabolism or subclinical hemorrhages in lung tissue. PMID:8192561

  8. Truncation of tau at E391 Promotes Early Pathological Changes in Transgenic Mice

    PubMed Central

    McMillan, Pamela J.; Kraemer, Brian C.; Robinson, Linda; Leverenz, James B.; Raskind, Murray; Schellenberg, Gerard

    2011-01-01

    Proteolytic cleavage of tau at glutamic acid 391 (E391) is linked to the pathogenesis of Alzheimer disease (AD). This C-terminal truncated tau species exists in neurofibrillary tangles and abnormal neurites in the brains of AD patients and may potentiate tau polymerization. We generated a mouse model that expresses human tau truncated at E391 to begin to elucidate the role of this C-terminal truncated tau species in the development of tau pathology. Our results show that truncated but otherwise wild type human tau is sufficient to drive pre-tangle pathological changes in tau, including accumulation of insoluble tau, somatodendritic redistribution, formation of pathological conformations, and dual phosphorylation of tau at sites associated with AD pathology. In addition, these mice exhibit atypical neuritic tau immunoreactivity, including abnormal neuritic processes and dystrophic neurites. These results suggest that changes in tau proteolysis can initiate tauopathy. PMID:22002427

  9. Acetylated Tau Obstructs KIBRA-Mediated Signaling in Synaptic Plasticity and Promotes Tauopathy-Related Memory Loss.

    PubMed

    Tracy, Tara E; Sohn, Peter Dongmin; Minami, S Sakura; Wang, Chao; Min, Sang-Won; Li, Yaqiao; Zhou, Yungui; Le, David; Lo, Iris; Ponnusamy, Ravikumar; Cong, Xin; Schilling, Birgit; Ellerby, Lisa M; Huganir, Richard L; Gan, Li

    2016-04-20

    Tau toxicity has been implicated in the emergence of synaptic dysfunction in Alzheimer's disease (AD), but the mechanism by which tau alters synapse physiology and leads to cognitive decline is unclear. Here we report abnormal acetylation of K274 and K281 on tau, identified in AD brains, promotes memory loss and disrupts synaptic plasticity by reducing postsynaptic KIdney/BRAin (KIBRA) protein, a memory-associated protein. Transgenic mice expressing human tau with lysine-to-glutamine mutations to mimic K274 and K281 acetylation (tauKQ) exhibit AD-related memory deficits and impaired hippocampal long-term potentiation (LTP). TauKQ reduces synaptic KIBRA levels and disrupts activity-induced postsynaptic actin remodeling and AMPA receptor insertion. The LTP deficit was rescued by promoting actin polymerization or by KIBRA expression. In AD patients with dementia, we found enhanced tau acetylation is linked to loss of KIBRA. These findings suggest a novel mechanism by which pathogenic tau causes synaptic dysfunction and cognitive decline in AD pathogenesis. PMID:27041503

  10. The green tea polyphenol (−)-epigallocatechin gallate prevents the aggregation of tau protein into toxic oligomers at substoichiometric ratios

    PubMed Central

    Wobst, Heike J; Sharma, Apurwa; Diamond, Marc I; Wanker, Erich E; Bieschke, Jan

    2015-01-01

    The accumulation of amyloid-beta (Aβ) and tau aggregates is a pathological hallmark of Alzheimer's disease. Both polypeptides form fibrillar deposits, but several lines of evidence indicate that Aβ and tau form toxic oligomeric aggregation intermediates. Depleting such structures could thus be a powerful therapeutic strategy. We generated a fragment of tau (His-K18ΔK280) that forms stable, toxic, oligomeric tau aggregates in vitro. We show that (−)-epigallocatechin gallate (EGCG), a green tea polyphenol that was previously found to reduce Aβ aggregation, inhibits the aggregation of tau K18ΔK280 into toxic oligomers at ten- to hundred-fold substoichiometric concentrations, thereby rescuing toxicity in neuronal model cells. PMID:25436420

  11. Intranasal insulin prevents anesthesia-induced hyperphosphorylation of tau in 3xTg-AD mice

    PubMed Central

    Chen, Yanxing; Run, Xiaoqin; Liang, Zhihou; Zhao, Yang; Dai, Chun-ling; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2014-01-01

    Background: It is well documented that elderly individuals are at increased risk of cognitive decline after anesthesia. General anesthesia is believed to be a risk factor for Alzheimer’s disease (AD). Recent studies suggest that anesthesia may increase the risk for cognitive decline and AD through promoting abnormal hyperphosphorylation of tau, which is crucial to neurodegeneration seen in AD. Methods: We treated 3xTg-AD mice, a commonly used transgenic mouse model of AD, with daily intranasal administration of insulin (1.75 U/day) for one week. The insulin- and control-treated mice were then anesthetized with single intraperitoneal injection of propofol (250 mg/kg body weight). Tau phosphorylation and tau protein kinases and phosphatases in the brains of mice 30 min and 2 h after propofol injection were then investigated by using Western blots and immunohistochemistry. Results: Propofol strongly promoted hyperphosphorylation of tau at several AD-related phosphorylation sites. Intranasal administration of insulin attenuated propofol-induced hyperphosphorylation of tau, promoted brain insulin signaling, and led to up-regulation of protein phosphatase 2A, a major tau phosphatase in the brain. Intranasal insulin also resulted in down-regulation of several tau protein kinases, including cyclin-dependent protein kinase 5, calcium/calmodulin-dependent protein kinase II, and c-Jun N-terminal kinase. Conclusion: Our results demonstrate that pretreatment with intranasal insulin prevents AD-like tau hyperphosphorylation. These findings provide the first evidence supporting that intranasal insulin administration might be used for the prevention of anesthesia-induced cognitive decline and increased risk for AD and dementia. PMID:24910612

  12. Cypermethrin Stimulates GSK3β-Dependent Aβ and p-tau Proteins and Cognitive Loss in Young Rats: Reduced HB-EGF Signaling and Downstream Neuroinflammation as Critical Regulators.

    PubMed

    Maurya, Shailendra Kumar; Mishra, Juhi; Abbas, Sabiya; Bandyopadhyay, Sanghamitra

    2016-03-01

    Pesticide exposure is recognized as a risk factor for Alzheimer's disease (AD). We investigated early signs of AD-like pathology upon exposure to a pyrethroid pesticide, cypermethrin, reported to impair neurodevelopment. We treated weanling rats with cypermethrin (10 and 25 mg/kg) and detected dose-dependent increase in the key proteins of AD, amyloid beta (Aβ), and phospho-tau, in frontal cortex and hippocampus as early as postnatal day 45. Upregulation of Aβ pathway involved an increase in amyloid precursor protein (APP) and its pro-amyloidogenic processing through beta-secretase (BACE) and gamma-secretase. Tau pathway entailed elevation in tau and glycogen-synthase kinase-3-beta (GSK3β)-dependent, phospho-tau. GSK3β emerged as a molecular link between the two pathways, evident from reduction in phospho-tau as well as BACE upon treating GSK3β inhibitor, lithium chloride. Exploring the mechanism revealed an attenuated heparin-binding epidermal growth factor (HB-EGF) signaling and downstream astrogliosis-mediated neuroinflammation to be responsible for inducing Aβ and phospho-tau. Cypermethrin caused a proximal reduction in HB-EGF, which promoted astrocytic nuclear factor kappa B signaling and astroglial activation close to Aβ and phospho-tau. Glial activation stimulated generation of interleukin-1 (IL-1), which upregulated GSK3β, and APP and tau as well, resulting in co-localization of Aβ and phospho-tau with IL-1 receptor. Intracerebral insertion of exogenous HB-EGF restored its own signaling and suppressed neuroinflammation and thereby Aβ and phospho-tau in cypermethrin-exposed rats, proving a central role of reduced HB-EGF signaling in cypermethrin-mediated neurodegeneration. Furthermore, cypermethrin stimulated cognitive impairments, which could be prevented by exogenous HB-EGF. Our data demonstrate that cypermethrin induces premature upregulation of GSK3β-dependent Aβ and tau pathways, where HB-EGF signaling and neuroinflammation serve as

  13. Effects of chronic noise on mRNA and protein expression of CRF family molecules and its relationship with p-tau in the rat prefrontal cortex.

    PubMed

    Gai, Zhihui; Li, Kang; Sun, Huanrui; She, Xiaojun; Cui, Bo; Wang, Rui

    2016-09-15

    Chronic noise exposure has been associated with Alzheimer's disease (AD)-like pathological changes, such as tau hyperphosphorylation and β-amyloid peptide accumulation in the prefrontal cortex (PFC). Corticotropin-releasing factor (CRF) is the central driving force in the stress response and a regulator of tau phosphorylation via binding to CRF receptors (CRFR). Little is known about the CRF system in relation to noise-induced AD-like changes in the PFC. The aim of this study was to explore the effects of chronic noise exposure on the CRF system in the PFC of rats and its relationship to tau phosphorylation. Male Wistar rats were randomly divided into control and noise exposure groups. The CRF system was evaluated following chronic noise exposure (95dB sound pressure level white noise, 4h/day×30days). Chronic noise significantly accelerated the progressive overproduction of corticosterone and upregulated CRF and CRFR1 mRNA and protein, both of which persisted 7-14days after noise exposure. In contrast, CRFR2 was elevated 3-7days following the last stimulus. Double-labeling immunofluorescence co-localized p-tau with CRF in PFC neurons. The results suggest that chronic noise exposure elevates the expression of the CRF system, which may contribute to AD-like changes. PMID:27538655

  14. Regulation of age-related structural integrity in neurons by protein with tau-like repeats (PTL-1) is cell autonomous.

    PubMed

    Chew, Yee Lian; Fan, Xiaochen; Götz, Jürgen; Nicholas, Hannah R

    2014-01-01

    PTL-1 is the sole homolog of the MAP2/MAP4/tau family in Caenorhabditis elegans. Accumulation of tau is a pathological hallmark of neurodegenerative diseases such as Alzheimer's disease. Therefore, reducing tau levels has been suggested as a therapeutic strategy. We previously showed that PTL-1 maintains age-related structural integrity in neurons, implying that excessive reduction in the levels of a tau-like protein is detrimental. Here, we demonstrate that the regulation of neuronal ageing by PTL-1 occurs via a cell-autonomous mechanism. We re-expressed PTL-1 in a null mutant background using a pan-neuronal promoter to show that PTL-1 functions in neurons to maintain structural integrity. We next expressed PTL-1 only in touch neurons and showed rescue of the neuronal ageing phenotype of ptl-1 mutant animals in these neurons but not in another neuronal subset, the ventral nerve cord GABAergic neurons. Knockdown of PTL-1 in touch neurons also resulted in premature neuronal ageing in these neurons but not in GABAergic neurons. Additionally, expression of PTL-1 in touch neurons alone was unable to rescue the shortened lifespan observed in ptl-1 mutants, but pan-neuronal re-expression restored wild-type longevity, indicating that, at least for a specific group of mechanosensory neurons, premature neuronal ageing and organismal ageing can be decoupled. PMID:24898126

  15. A rare case of rapidly progressive dementia with elevated RT-QuIC and negative 14-3-3 and tau proteins.

    PubMed

    Trikamji, Bhavesh; Hamlin, Clive; Baldwin, Kelly J

    2016-05-01

    Creutzfeldt-Jakob disease (CJD) is characterized by rapidly progressing dementia with death usually occurring within 6 months. There is no verified disease-specific pre-mortem diagnostic test besides brain biopsy. We describe a 66 y old previously high functioning male who presented with a 5 month history of rapidly progressive dementia. Neurological examination revealed a score of 19/30 on MOCA testing. An extensive workup into various causes of dementia including electroencephalography and imaging studies was unremarkable. The cerebrospinal fluid was sent to National Prion Disease Center and it revealed elevated RT-QuIC levels with negative 14-3-3 and T tau proteins. Based on literature review, our case is one of few living subjects with elevated RT-QuIC levels and negative 14-3-3 and tau proteins. PMID:27249661

  16. Utilizing the peptidyl-prolyl cis-trans isomerase pin1 as a probe of its phosphorylated target proteins. Examples of binding to nuclear proteins in a human kidney cell line and to tau in Alzheimer's diseased brain.

    PubMed

    Thorpe, J R; Morley, S J; Rulten, S L

    2001-01-01

    The human parvulin Pin1 is a member of the peptidyl-prolyl cis-trans isomerase group of proteins, which modulate the assembly, folding, activity, and transport of essential cellular proteins. Pin1 is a mitotic regulator interacting with a range of proteins that are phosphorylated before cell division. In addition, an involvement of Pin1 in the tau-related neurodegenerative brain disorders has recently been shown. In this context, Pin1 becomes depleted from the nucleus in Alzheimer's disease (AD) neurons when it is redirected to the large amounts of hyperphosphorylated tau associated with the neurofibrillary tangles. This depletion from the nucleus may ultimately contribute to neuron cell death. Recently we have devised a novel methodology in which exogenous Pin1 is used as a TEM probe for its target proteins. Here we extend this methodology to provide further evidence that Pin1 binds at enhanced levels to mitotic nuclear proteins and to hyperphosphorylated tau in AD brain. We suggest that exogenous Pin1 labeling can be used to elucidate the phosphorylation status of its target proteins in general and could specifically provide important insights into the development of tau-related neurodegenerative brain disorders. PMID:11118482

  17. Isorhynchophylline treatment improves the amyloid-β-induced cognitive impairment in rats via inhibition of neuronal apoptosis and tau protein hyperphosphorylation.

    PubMed

    Xian, Yan-Fang; Mao, Qing-Qiu; Wu, Justin C Y; Su, Zi-Ren; Chen, Jian-Nan; Lai, Xiao-Ping; Ip, Siu-Po; Lin, Zhi-Xiu

    2014-01-01

    The progressive accumulation of amyloid-β (Aβ) in the form of senile plaques has been recognized as a key causative factor leading to the cognitive deficits seen in Alzheimer's disease (AD). Recent evidence indicates that Aβ induces neurotoxicity in the primary neuronal cultures as well as in the brain. Previously, we have demonstrated that isorhynchophylline (IRN), the major chemical ingredient of Uncaria rhynchophylla, possessed potent neuroprotective effects. In the present study, we aimed to investigate the effect of IRN on cognitive function, neuronal apoptosis, and tau protein hyperphosphorylation in the hippocampus of the Aβ25-35-treated rats and to elucidate its action mechanisms. We showed that Aβ25-35 injection caused spatial memory impairment, neuronal apoptosis, and tau protein hyperphosphorylation. Treatment with IRN (20 or 40 mg/kg) for 21 days could significantly ameliorate the cognitive deficits induced by Aβ25-35 in the rats. In addition, IRN attenuated the Aβ25-35-induced neuronal apoptosis in hippocampus by down-regulating the protein and mRNA levels of the ratio of Bcl-2/Bax, cleaved caspase-3 and caspase-9, as well as suppressing the tau protein hyperphosphorylation at the Ser396, Ser404, and Thr205 sites. Mechanistic study showed that IRN could inhibit the glycogen synthase kinase 3β (GSK-3β) activity, and activate the phosphorylation of phosphatidylinositol 3-kinase (PI3K) substrate Akt. These results indicate that down-regulation of GSK-3β activity and activation of PI3K/Akt signaling pathway are intimately involved in the neuroprotection of IRN. The experimental findings provide further evidence to affirm the potential of IRN as a worthy candidate for further development into a therapeutic agent for AD and other tau pathology-related neurodegenerative diseases. PMID:24164737

  18. Stimulation of EphB2 attenuates tau phosphorylation through PI3K/Akt-mediated inactivation of glycogen synthase kinase-3β

    PubMed Central

    Jiang, Jun; Wang, Zhi-Hao; Qu, Min; Gao, Di; Liu, Xiu-Ping; Zhu, Ling-Qiang; Wang, Jian-Zhi

    2015-01-01

    Abnormal tau hyperphosphorylation is an early pathological marker of Alzheimer’s disease (AD), however, the upstream factors that regulate tau phosphorylation are not illustrated and there is no efficient strategy to arrest tau hyperphosphorylation. Here, we find that activation of endogenous EphB2 receptor by ligand stimulation (ephrinB1/Fc) or by ectopic expression of EphB2 plus the ligand stimulation induces a remarkable tau dephosphorylation at multiple AD-associated sites in SK-N-SH cells and human embryonic kidney cells that stably express human tau (HEK293-tau). In cultured hippocampal neurons and the hippocampus of human tau transgenic mice, dephosphorylation of tau proteins was also detected by stimulation of EphB2 receptor. EphB2 activation inhibits glycogen synthase kinase-3β (GSK-3β), a crucial tau kinase, and activates phosphatidylinositol-3-kinase (PI3K)/Akt both in vitro and in vivo, whereas simultaneous inhibition of PI3K or upregulation of GSK-3β abolishes the EphB2 stimulation-induced tau dephosphorylation. Finally, we confirm that ephrinB1/Fc treatment induces tyrosine phosphorylation (activation) of EphB2, while deletion of the tyrosine kinase domain (VM) of EphB2 eliminates the receptor stimulation-induced GSK-3β inhibition and tau dephosphorylation. We conclude that activation of EphB2 receptor kinase arrests tau hyperphosphorylation through PI3K-/Akt-mediated GSK-3β inhibition. Our data provide a novel membranous target to antagonize AD-like tau pathology. PMID:26119563

  19. A Simple Model to Study Tau Pathology

    PubMed Central

    Houck, Alexander L.; Hernández, Félix; Ávila, Jesús

    2016-01-01

    Tau proteins play a role in the stabilization of microtubules, but in pathological conditions, tauopathies, tau is modified by phosphorylation and can aggregate into aberrant aggregates. These aggregates could be toxic to cells, and different cell models have been used to test for compounds that might prevent these tau modifications. Here, we have used a cell model involving the overexpression of human tau in human embryonic kidney 293 cells. In human embryonic kidney 293 cells expressing tau in a stable manner, we have been able to replicate the phosphorylation of intracellular tau. This intracellular tau increases its own level of phosphorylation and aggregates, likely due to the regulatory effect of some growth factors on specific tau kinases such as GSK3. In these conditions, a change in secreted tau was observed. Reversal of phosphorylation and aggregation of tau was found by the use of lithium, a GSK3 inhibitor. Thus, we propose this as a simple cell model to study tau pathology in nonneuronal cells due to their viability and ease to work with. PMID:26949341

  20. Neuroinflammatory Gene Regulation, Mitochondrial Function, Oxidative Stress, and Brain Lipid Modifications With Disease Progression in Tau P301S Transgenic Mice as a Model of Frontotemporal Lobar Degeneration-Tau.

    PubMed

    López-González, Irene; Aso, Ester; Carmona, Margarita; Armand-Ugon, Mercedes; Blanco, Rosi; Naudí, Alba; Cabré, Rosanna; Portero-Otin, Manuel; Pamplona, Reinald; Ferrer, Isidre

    2015-10-01

    Tau P301S transgenic mice (PS19 line) are used as a model of frontotemporal lobar degeneration (FTLD)-tau. Behavioral alterations in these mice begin at approximately 4 months of age. We analyzed molecular changes related to disease progression in these mice. Hyperphosphorylated 4Rtau increased in neurons from 1 month of age in entorhinal and piriform cortices to the neocortex and other regions. A small percentage of neurons developed an abnormal tau conformation, tau truncation, and ubiquitination only at 9/10 months of age. Astrocytosis, microgliosis, and increased inflammatory cytokine and immune mediator expression also occurred at this late stage; hippocampi were the most markedly affected. Altered mitochondrial function, increased reactive oxygen species production, and limited protein oxidative damage were observed in advanced disease. Tau oligomers were only present in P301S mice, they were found in somatosensory cortex and hippocampi at the age of 3 months, and they increased across time in the somatosensory cortex and were higher and sustained in hippocampi. Age-related modifications in lipid composition occurred in both P301S and wild-type mice with regional and phenotypic differences; however, changes of total lipids did not seem to have pathogenic implications. Apoptosis only occurred in restricted regions in late disease. The complex tau pathology, mitochondrial alterations, oxidative stress damage, glial reactions, neuroinflammation, and cell death in P301S mice likely parallel those in FTLD-tau. Thus, therapies should focus first on abnormal tau rather than secondary events that appear late in the course of FTLD-tau. PMID:26360374

  1. Natural cannabinoids improve dopamine neurotransmission and tau and amyloid pathology in a mouse model of tauopathy.

    PubMed

    Casarejos, Maria J; Perucho, Juan; Gomez, Ana; Muñoz, Maria P; Fernandez-Estevez, Marian; Sagredo, Onintza; Fernandez Ruiz, Javier; Guzman, Manuel; de Yebenes, Justo Garcia; Mena, Maria A

    2013-01-01

    Cannabinoids are neuroprotective in models of neurodegenerative dementias. Their effects are mostly mediated through CB1 and CB2 receptor-dependent modulation of excitotoxicity, inflammation, oxidative stress, and other processes. We tested the effects of Sativex®, a mixture of Δ9-tetrahydrocannabinol and cannabidiol, acting on both CB1 and CB2 receptors, in parkin-null, human tau overexpressing (PK-/-/TauVLW) mice, a model of complex frontotemporal dementia, parkinsonism, and lower motor neuron disease. The animals received Sativex®, 4.63 mg/kg, ip, daily, for one month, at six months of age, at the onset of the clinical symptoms. We evaluated the effects of Sativex® on behavior, dopamine neurotransmission, glial activation, redox state, mitochondrial activity, and deposition of abnormal proteins. PK-/-/TauVLW mice developed the neurological deficits, but those treated with Sativex® showed less abnormal behaviors related to stress, less auto and hetero-aggression, and less stereotypy. Sativex® significantly reduced the intraneuronal, MAO-related free radicals produced during dopamine metabolism in the limbic system. Sativex® also decreased gliosis in cortex and hippocampus, increased the ratio reduced/oxidized glutathione in the limbic system, reduced the levels of iNOS, and increased those of complex IV in the cerebral cortex. With regard to tau and amyloid pathology, Sativex® reduced the deposition of both in the hippocampus and cerebral cortex of PK-/-/TauVLW mice and increased autophagy. Sativex®, even after a short administration in animals with present behavioral and pathological abnormalities, improves the phenotype, the oxidative stress, and the deposition of proteins in PK-/-/TauVLW mice, a model of complex neurodegenerative disorders. PMID:23478312

  2. Synchrotron Small Angle X-Ray Scattering Quantitatively Detects Angstrom Level Changes in the Average Radius of Taxol-Stabilized Microtubules Decorated with the Microtubule-Associated-Protein Tau

    NASA Astrophysics Data System (ADS)

    Choi, Myung Chul; Raviv, Uri; Li, Youli; Miller, Herbert P.; Needleman, Daniel J.; Kim, Mahn Won; Wilson, Leslie; Feinstein, Stuart C.; Safinya, Cyrus R.

    2011-01-01

    With the emerging proteomics era the scientific community is beginning the daunting task of understanding the structures and functions of a large number of self-assembling proteins. Here, our study was concerned with the effect of the microtubule-associated-protein (MAP) tau on the assembled structure of taxol-stabilized microtubules. Significantly, the synchrotron small angle x-ray scattering (SAXS) technique is able to quantitatively detect angstrom level changes in the average diameter of the microtubules modeled as a simple hollow nanotube with a fixed wall thickness. We show that the electrostatic binding of MAP tau isoforms to taxol-stabilized MTs leads to a controlled increase in the average radius of microtubules with increasing coverage of tau on the MT surface. The increase in the average diameter results from an increase in the distribution of protofilament numbers in MTs upon binding of MAP tau.

  3. Tau regulates the subcellular localization of calmodulin

    SciTech Connect

    Barreda, Elena Gomez de

    2011-05-13

    Highlights: {yields} In this work we have tried to explain how a cytoplasmic protein could regulate a cell nuclear function. We have tested the role of a cytoplasmic protein (tau) in regulating the expression of calbindin gene. We found that calmodulin, a tau-binding protein with nuclear and cytoplasmic localization, increases its nuclear localization in the absence of tau. Since nuclear calmodulin regulates calbindin expression, a decrease in nuclear calmodulin, due to the presence of tau that retains it at the cytoplasm, results in a change in calbindin expression. -- Abstract: Lack of tau expression in neuronal cells results in a change in the expression of few genes. However, little is known about how tau regulates gene expression. Here we show that the presence of tau could alter the subcellular localization of calmodulin, a protein that could be located at the cytoplasm or in the nucleus. Nuclear calmodulin binds to co-transcription factors, regulating the expression of genes like calbindin. In this work, we have found that in neurons containing tau, a higher proportion of calmodulin is present in the cytoplasm compared with neurons lacking tau and that an increase in cytoplasmic calmodulin correlates with a higher expression of calbindin.

  4. Twisted tubulofilaments of inclusion body myositis muscle resemble paired helical filaments of Alzheimer brain and contain hyperphosphorylated tau.

    PubMed Central

    Askanas, V.; Engel, W. K.; Bilak, M.; Alvarez, R. B.; Selkoe, D. J.

    1994-01-01

    We immunostained muscle biopsies of 8 patients with sporadic inclusion body myositis (S-IBM), 7 patients with autosomal recessive hereditary inclusion body myopathy (H-IBM) (both diseases being characterized by similar muscle fiber vacuoles containing inclusions), and 11 normal and disease controls. We used the following well-characterized antibodies against tau protein: Tau-1, Alz-50, and anti-paired helical filament (PHF) antiserum. By light microscopy, in all S-IBM muscle biopsies virtually all vacuoles immunoreactive for ubiquitin and beta-amyloid protein also contained inclusions immunoreactive with Alz-50 and anti-PHF antiserum. With tau-1 antibody, strong immunoreactivity in the vacuoles was obtained only after dephosphorylation of muscle sections. By electronmicroscopy, all three antibodies immunodecorated exclusively cytoplasmic twisted tubulofilaments (TTFs). In H-IBM, virtually all ubiquitin and beta-amyloid-positive muscle fiber vacuoles contained inclusions immunoreactive with anti-PHF antiserum, but in only 40% of those fibers were the inclusions immunoreactive with Alz-50. In six H-IBM patients there were no tau-1 immunoreactive inclusions in any of their vacuolated muscle fibers; in one patient, 24% of the vacuolated fibers had tau-1 immunoreactivity. By demonstrating that hyperphosphorylated tau, which is characteristic of Alzheimer brain PHFs, is a component of S-IBM-muscle TTFs (which are also ultrastructurally similar to PHFs), our study: 1) provides the first demonstration of abnormally accumulated tau in nonneural tissue and 2) suggests that the cytopathogenesis in Alzheimer brain and S-IBM muscle may share some similar mechanisms. Whether the difference in tau immunoreactivity between S-IBM and most of the H-IBM patients reflects a difference in genetically determined transcriptional or posttranslational modifications of tau protein or other factors remains to be determined. Images Figure 1 Figure 2 Figure 3 Figure 4 PMID:8291607

  5. Stress acts cumulatively to precipitate Alzheimer's disease-like tau pathology and cognitive deficits.

    PubMed

    Sotiropoulos, Ioannis; Catania, Caterina; Pinto, Lucilia G; Silva, Rui; Pollerberg, G Elizabeth; Takashima, Akihiko; Sousa, Nuno; Almeida, Osborne F X

    2011-05-25

    Stressful life experiences are likely etiological factors in sporadic forms of Alzheimer's disease (AD). Many AD patients hypersecrete glucocorticoids (GCs), and their GC levels correlate with the rate of cognitive impairment and extent of neuronal atrophy. Severity of cognitive deficits in AD correlates strongly with levels of hyperphosphorylated forms of the cytoskeletal protein TAU, an essential mediator of the actions of amyloid β (Aβ), another molecule with a key pathogenic role in AD. Our objective was to investigate the sequential interrelationships between these various pathogenic elements, in particular with respect to the mechanisms through which stress might precipitate cognitive decline. We thus examined whether stress, through the mediation of GCs, influences TAU hyperphosphorylation, a critical and early event in the cascade of processes leading to AD pathology. Results from healthy, wild-type, middle-aged rats show that chronic stress and GC induce abnormal hyperphosphorylation of TAU in the hippocampus and prefrontal cortex (PFC), with contemporaneous impairments of hippocampus- and PFC-dependent behaviors. Exogenous GC potentiated the ability of centrally infused Aβ to induce hyperphosphorylation of TAU epitopes associated with AD and cytoplasmic accumulation of TAU, while previous exposure to stress aggravated the biochemical and behavioral effects of GC in Aβ-infused animals. Thus, lifetime stress/GC exposure may have a cumulative impact on the onset and progress of AD pathology, with TAU hyperphosphorylation serving to transduce the negative effects of stress and GC on cognition. PMID:21613497

  6. Protein 4.1R–deficient mice are viable but have erythroid membrane skeleton abnormalities

    PubMed Central

    Shi, Zheng-Tao; Afzal, Veena; Coller, Barry; Patel, Dipti; Chasis, Joel A.; Parra, Marilyn; Lee, Gloria; Paszty, Chris; Stevens, Mary; Walensky, Loren; Peters, Luanne L.; Mohandas, Narla; Rubin, Edward; Conboy, John G.

    1999-01-01

    A diverse family of protein 4.1R isoforms is encoded by a complex gene on human chromosome 1. Although the prototypical 80-kDa 4.1R in mature erythrocytes is a key component of the erythroid membrane skeleton that regulates erythrocyte morphology and mechanical stability, little is known about 4.1R function in nucleated cells. Using gene knockout technology, we have generated mice with complete deficiency of all 4.1R protein isoforms. These 4.1R-null mice were viable, with moderate hemolytic anemia but no gross abnormalities. Erythrocytes from these mice exhibited abnormal morphology, lowered membrane stability, and reduced expression of other skeletal proteins including spectrin and ankyrin, suggesting that loss of 4.1R compromises membrane skeleton assembly in erythroid progenitors. Platelet morphology and function were essentially normal, indicating that 4.1R deficiency may have less impact on other hematopoietic lineages. Nonerythroid 4.1R expression patterns, viewed using histochemical staining for lacZ reporter activity incorporated into the targeted gene, revealed focal expression in specific neurons in the brain and in select cells of other major organs, challenging the view that 4.1R expression is widespread among nonerythroid cells. The 4.1R knockout mice represent a valuable animal model for exploring 4.1R function in nonerythroid cells and for determining pathophysiological sequelae to 4.1R deficiency. PMID:9927493

  7. The role of tau in the pathological process and clinical expression of Huntington’s disease

    PubMed Central

    Vuono, Romina; Winder-Rhodes, Sophie; de Silva, Rohan; Cisbani, Giulia; Drouin-Ouellet, Janelle; Spillantini, Maria G.; Cicchetti, Francesca

    2015-01-01

    Huntington’s disease is a neurodegenerative disorder caused by an abnormal CAG repeat expansion within exon 1 of the huntingtin gene HTT. While several genetic modifiers, distinct from the Huntington’s disease locus itself, have been identified as being linked to the clinical expression and progression of Huntington’s disease, the exact molecular mechanisms driving its pathogenic cascade and clinical features, especially the dementia, are not fully understood. Recently the microtubule associated protein tau, MAPT, which is associated with several neurodegenerative disorders, has been implicated in Huntington’s disease. We explored this association in more detail at the neuropathological, genetic and clinical level. We first investigated tau pathology by looking for the presence of hyperphosphorylated tau aggregates, co-localization of tau with mutant HTT and its oligomeric intermediates in post-mortem brain samples from patients with Huntington’s disease (n = 16) compared to cases with a known tauopathy and healthy controls. Next, we undertook a genotype–phenotype analysis of a large cohort of patients with Huntington’s disease (n = 960) with a particular focus on cognitive decline. We report not only on the tau pathology in the Huntington’s disease brain but also the association between genetic variation in tau gene and the clinical expression and progression of the disease. We found extensive pathological inclusions containing abnormally phosphorylated tau protein that co-localized in some instances with mutant HTT. We confirmed this related to the disease process rather than age, by showing it is also present in two patients with young-onset Huntington’s disease (26 and 40 years old at death). In addition we demonstrate that tau oligomers (suggested to be the most likely neurotoxic tau entity) are present in the Huntington’s disease brains. Finally we highlight the clinical significance of this pathology by demonstrating that the MAPT

  8. Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery

    PubMed Central

    Wang, Yan; Meriin, Anatoli B.; Zaarur, Nava; Romanova, Nina V.; Chernoff, Yury O.; Costello, Catherine E.; Sherman, Michael Y.

    2009-01-01

    In mammalian cells, abnormal proteins that escape proteasome-dependent degradation form small aggregates that can be transported into a centrosome-associated structure, called an aggresome. Here we demonstrate that in yeast a single aggregate formed by the huntingtin exon 1 with an expanded polyglutamine domain (103QP) represents a bona fide aggresome that colocalizes with the spindle pole body (the yeast centrosome) in a microtubule-dependent fashion. Since a polypeptide lacking the proline-rich region (P-region) of huntingtin (103Q) cannot form aggresomes, this domain serves as an aggresome-targeting signal. Coexpression of 103Q with 25QP, a soluble polypeptide that also carries the P-region, led to the recruitment of 103Q to the aggresome via formation of hetero-oligomers, indicating the aggresome targeting in trans. To identify additional factors involved in aggresome formation and targeting, we purified 103QP aggresomes and 103Q aggregates and identified the associated proteins using mass spectrometry. Among the aggresome-associated proteins we identified, Cdc48 (VCP/p97) and its cofactors, Ufd1 and Nlp4, were shown genetically to be essential for aggresome formation. The 14-3-3 protein, Bmh1, was also found to be critical for aggresome targeting. Its interaction with the huntingtin fragment and its role in aggresome formation required the huntingtin N-terminal N17 domain, adjacent to the polyQ domain. Accordingly, the huntingtin N17 domain, along with the P-region, plays a role in aggresome targeting. We also present direct genetic evidence for the protective role of aggresomes by demonstrating genetically that aggresome targeting of polyglutamine polypeptides relieves their toxicity.—Wang, Y., Meriin, A. B., Zaarur, N., Romanova, N. V., Chernoff, Y. O., Costello, C. E., Sherman, M. Y. Abnormal proteins can form aggresome in yeast: aggresome-targeting signals and components of the machinery. PMID:18854435

  9. CCDC115 Deficiency Causes a Disorder of Golgi Homeostasis with Abnormal Protein Glycosylation.

    PubMed

    Jansen, Jos C; Cirak, Sebahattin; van Scherpenzeel, Monique; Timal, Sharita; Reunert, Janine; Rust, Stephan; Pérez, Belén; Vicogne, Dorothée; Krawitz, Peter; Wada, Yoshinao; Ashikov, Angel; Pérez-Cerdá, Celia; Medrano, Celia; Arnoldy, Andrea; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; Quelhas, Dulce; Diogo, Luisa; Rymen, Daisy; Jaeken, Jaak; Guffon, Nathalie; Cheillan, David; van den Heuvel, Lambertus P; Maeda, Yusuke; Kaiser, Olaf; Schara, Ulrike; Gerner, Patrick; van den Boogert, Marjolein A W; Holleboom, Adriaan G; Nassogne, Marie-Cécile; Sokal, Etienne; Salomon, Jody; van den Bogaart, Geert; Drenth, Joost P H; Huynen, Martijn A; Veltman, Joris A; Wevers, Ron A; Morava, Eva; Matthijs, Gert; Foulquier, François; Marquardt, Thorsten; Lefeber, Dirk J

    2016-02-01

    Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal

  10. Insulin dysfunction and Tau pathology

    PubMed Central

    El Khoury, Noura B.; Gratuze, Maud; Papon, Marie-Amélie; Bretteville, Alexis; Planel, Emmanuel

    2013-01-01

    The neuropathological hallmarks of Alzheimer's disease (AD) include senile plaques of β-amyloid (Aβ) peptides (a cleavage product of the Amyloid Precursor Protein, or APP) and neurofibrillary tangles (NFT) of hyperphosphorylated Tau protein assembled in paired helical filaments (PHF). NFT pathology is important since it correlates with the degree of cognitive impairment in AD. Only a small proportion of AD is due to genetic variants, whereas the large majority of cases (~99%) is late onset and sporadic in origin. The cause of sporadic AD is likely to be multifactorial, with external factors interacting with biological or genetic susceptibilities to accelerate the manifestation of the disease. Insulin dysfunction, manifested by diabetes mellitus (DM) might be such factor, as there is extensive data from epidemiological studies suggesting that DM is associated with an increased relative risk for AD. Type 1 diabetes (T1DM) and type 2 diabetes (T2DM) are known to affect multiple cognitive functions in patients. In this context, understanding the effects of diabetes on Tau pathogenesis is important since Tau pathology show a strong relationship to dementia in AD, and to memory loss in normal aging and mild cognitive impairment. Here, we reviewed preclinical studies that link insulin dysfunction to Tau protein pathogenesis, one of the major pathological hallmarks of AD. We found more than 30 studies reporting Tau phosphorylation in a mouse or rat model of insulin dysfunction. We also payed attention to potential sources of artifacts, such as hypothermia and anesthesia, that were demonstrated to results in Tau hyperphosphorylation and could major confounding experimental factors. We found that very few studies reported the temperature of the animals, and only a handful did not use anesthesia. Overall, most published studies showed that insulin dysfunction can promote Tau hyperphosphorylation and pathology, both directly and indirectly, through hypothermia. PMID:24574966

  11. Positive 14-3-3 and tau proteins in a sporadic Creutzfeldt-Jakob disease case and a brief perspective of prion diseases in Colombia.

    PubMed

    Escandón-Vargas, Kevin; Zorrilla-Vaca, Andrés; Corral-Prado, Raúl Heli

    2016-01-01

    Prion diseases are rare neurodegenerative disorders occurring worldwide and affecting both humans and animals. Herein, we present the case of a patient diagnosed with definite sporadic Creutzfeldt-Jakob disease in Cali, Colombia. Besides neurological examination, 14-3-3 and tau proteins were valuable tools supporting the diagnosis. We also present a brief perspective of the prion diseases reported in Colombia to date. Although the incidence of prion diseases is unknown in Colombia, our literature review revealed that one case of scrapie in 1981 and 29 human sporadic cases of Creutzfeldt-Jakob disease have been documented and published in our country. PMID:27622622

  12. Use of protein database for the computation of the dipole moments of normal and abnormal hemoglobins.

    PubMed Central

    Takashima, S

    1993-01-01

    Previously, we discussed the calculation of the dipole moments of small proteins using the three-dimensional protein data-base. Our results demonstrate that the calculated dipole moments are in acceptable agreement with measured values. We, however, noted the difficulty of the calculation with larger proteins, in particular those consisting of several subunits. Hemoglobin (Hb) is a protein having a molecular weight of 64,000 that consists of four subunits, a typical case where the computation was found to be difficult. To circumvent the difficulties, we calculated the dipole moment of each subunit separately. The dipole moment of the whole protein was calculated by the vectorial summation of subunit moments. With this method, the calculated net dipole moment is in good agreement with the experimental value. Our calculation shows that the dipole moment vectors of subunits are, by and large, antiparallel in tetramers causing partial cancellation of the net dipole moment. In addition to normal HbA, the dipole moment of abnormal HbS was calculated using an approximate computational technique. Because of the loss of two negative changes as a result of the replacement of glutamic acid with valine in beta-chains, the dipole moment of HbS was found, experimentally and theoretically, to be significantly smaller than that of HbA. PMID:8324190

  13. Properties of the monomeric form of human 14-3-3ζ protein and its interaction with tau and HspB6.

    PubMed

    Sluchanko, Nikolai N; Sudnitsyna, Maria V; Seit-Nebi, Alim S; Antson, Alfred A; Gusev, Nikolai B

    2011-11-15

    Dimers formed by seven isoforms of the human 14-3-3 protein participate in multiple cellular processes. The dimeric form has been extensively characterized; however, little is known about the structure and properties of the monomeric form of 14-3-3. The monomeric form is involved in the assembly of homo- and heterodimers, which could partially dissociate back into monomers in response to phosphorylation at Ser58. To obtain monomeric forms of human 14-3-3ζ, we produced four protein constructs with different combinations of mutated (M) or wild-type (W) segments E(5), (12)LAE(14), and (82)YREKIE(87). Under a wide range of expression conditions in Escherichia coli, the MMM and WMM mutants were insoluble, whereas WMW and MMW mutants were soluble, highly expressed, and purified to homogeneity. WMW and MMW mutants remained monomeric over a wide range of concentrations while retaining the α-helical structure characteristic of wild-type 14-3-3. However, WMW and MMW mutants were highly susceptible to proteolysis and had much lower thermal stabilities than the wild-type protein. Using WMW and MMW mutants, we show that the monomeric form interacts with the tau protein and with the HspB6 protein, in both cases forming complexes with a 1:1 stoichiometry, in contrast to the 2:1 and/or 2:2 complexes formed by wild-type 14-3-3. Significantly, this interaction requires phosphorylation of tau protein and HspB6. Because of minimal changes in structure, MMW and especially WMW mutant proteins are promising candidates for analyzing the effect of monomerization on the physiologically important properties of 14-3-3ζ. PMID:21978388

  14. Formation and propagation of tau oligomeric seeds.

    PubMed

    Gerson, Julia E; Kayed, Rakez

    2013-01-01

    Tau misfolding and aggregation leads to the formation of neurofibrillary tangles (NFTs), which have long been considered one of the main pathological hallmarks for numerous neurodegenerative diseases known as tauopathies, including Alzheimer's Disease (AD) and Parkinson's Disease (PD). However, recent studies completed both in vitro and in vivo suggest that intermediate forms of tau, known as tau oligomers, between the monomeric form and NFTs are the true toxic species in disease and the best targets for anti-tau therapies. However, the exact mechanism by which the spread of pathology occurs is unknown. Evidence suggests that tau oligomers may act as templates for the misfolding of native tau, thereby seeding the spread of the toxic forms of the protein. Recently, researchers have reported the ability of tau oligomers to enter and exit cells, propagating from disease-affected regions to unaffected areas. While the mechanism by which the spreading of misfolded tau occurs has yet to be elucidated, there are a few different models which have been proposed, including cell membrane stress and pore-formation, endocytosis and exocytosis, and non-traditional secretion of protein not enclosed by a membrane. Coming to an understanding of how toxic tau species seed and spread through the brain will be crucial to finding effective treatments for neurodegenerative tauopathies. PMID:23882255

  15. Inhibition of Both Hsp70 Activity and Tau Aggregation in Vitro Best Predicts Tau Lowering Activity of Small Molecules.

    PubMed

    Martin, Mackenzie D; Baker, Jeremy D; Suntharalingam, Amirthaa; Nordhues, Bryce A; Shelton, Lindsey B; Zheng, Dali; Sabbagh, Jonathan J; Haystead, Timothy A J; Gestwicki, Jason E; Dickey, Chad A

    2016-07-15

    Three scaffolds with inhibitory activity against the heat shock protein 70 (Hsp70) family of chaperones have been found to enhance the degradation of the microtubule associated protein tau in cells, neurons, and brain tissue. This is important because tau accumulation is linked to neurodegenerative diseases including Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). Here, we expanded upon this study to investigate the anti-tau efficacy of additional scaffolds with Hsp70 inhibitory activity. Five of the nine scaffolds tested lowered tau levels, with the rhodacyanine and phenothiazine scaffolds exhibiting the highest potency as previously described. Because phenothiazines also inhibit tau aggregation in vitro, we suspected that this activity might be a more accurate predictor of tau lowering. Interestingly, the rhodacyanines did inhibit in vitro tau aggregation to a similar degree as phenothiazines, correlating well with tau-lowering efficacy in cells and ex vivo slices. Moreover, other Hsp70 inhibitor scaffolds with weaker tau-lowering activity in cells inhibited tau aggregation in vitro, albeit at lower potencies. When we tested six well-characterized tau aggregation inhibitors, we determined that this mechanism of action was not a better predictor of tau-lowering than Hsp70 inhibition. Instead, we found that compounds possessing both activities were the most effective at promoting tau clearance. Moreover, cytotoxicity and PAINS activity are critical factors that can lead to false-positive lead identification. Strategies designed around these principles will likely yield more efficacious tau-lowering compounds. PMID:27177119

  16. Cytoplasmic SET induces tau hyperphosphorylation through a decrease of methylated phosphatase 2A

    PubMed Central

    2014-01-01

    Background The neuronal cytoplasmic localization of SET, an inhibitor of the phosphatase 2A (PP2A), results in tau hyperphosphorylation in the brains of Alzheimer patients through mechanisms that are still not well defined. Results We used primary neurons and mouse brain slices to show that SET is translocated to the cytoplasm in a manner independent of both its cleavage and over-expression. The localization of SET in the cytoplasm, either by the translocation of endogenous SET or by internalization of the recombinant full-length SET protein, induced tau hyperphosphorylation. Cytoplasmic recombinant full-length SET in mouse brain slices induced a decrease of PP2A activity through a decrease of methylated PP2A levels. The levels of methylated PP2A were negatively correlated with tau hyperphosphorylation at Ser-202 but not with the abnormal phosphorylation of tau at Ser-422. Conclusions The presence of full-length SET in the neuronal cytoplasm is sufficient to impair PP2A methylation and activity, leading to tau hyperphosphorylation. In addition, our data suggest that tau hyperphosphorylation is regulated by different mechanisms at distinct sites. The translocation of SET to the neuronal cytoplasm, the low activity of PP2A, and tau hyperphosphorylation are associated in the brains of Alzheimer patients. Our data show a link between the translocation of SET in the cytoplasm and the decrease of methylated PP2A levels leading to a decrease of PP2A activity and tau hyperphosphorylation. This chain of events may contribute to the pathogenesis of Alzheimer disease. PMID:24981783

  17. Normal protein content but abnormally inhibited enzyme activity in muscle carnitine palmitoyltransferase II deficiency.

    PubMed

    Lehmann, Diana; Zierz, Stephan

    2014-04-15

    The biochemical consequences of the disease causing mutations of muscle carnitine palmitoyltransferase II (CPT II) deficiency are still enigmatic. Therefore, CPT II was characterized in muscle biopsies of nine patients with genetically proven muscle CPT II deficiency. Total CPT activity (CPT I+CPT II) of patients was not significantly different from that of controls. Remaining activities upon inhibition by malonyl-CoA and Triton X-100 were significantly reduced in patients. Immunohistochemically CPT II protein was predominantly expressed in type-I-fibers with the same intensity in patients as in controls. Western blot showed the same CPT II staining intensity ratio in patients and controls. CPT I and CPT II protein concentrations estimated by ELISA were not significantly different in patients and in controls. Citrate synthase activity in patients was significantly increased. Total CPT activity significantly correlated with both CPT I and CPT II protein concentrations in patients and controls. This implies (i) that normal total CPT activity in patients with muscle CPT II deficiency is not due to compensatory increase of CPT I activity and that (ii) the mutant CPT II is enzymatically active. The data further support the notion that in muscle CPT II deficiency enzyme activity and protein content are not reduced, but rather abnormally inhibited when fatty acid metabolism is stressed. PMID:24602495

  18. Trans-cellular propagation of Tau aggregation by fibrillar species.

    PubMed

    Kfoury, Najla; Holmes, Brandon B; Jiang, Hong; Holtzman, David M; Diamond, Marc I

    2012-06-01

    Aggregation of the microtubule associated protein Tau is associated with several neurodegenerative disorders, including Alzheimer disease and frontotemporal dementia. In Alzheimer disease, Tau pathology spreads progressively throughout the brain, possibly along existing neural networks. However, it is still unclear how the propagation of Tau misfolding occurs. Intriguingly, in animal models, vaccine-based therapies have reduced Tau and synuclein pathology by uncertain mechanisms, given that these proteins are intracellular. We have previously speculated that trans-cellular propagation of misfolding could be mediated by a process similar to prion pathogenesis, in which fibrillar Tau aggregates spread pathology from cell to cell. However, there has been little evidence to demonstrate true trans-cellular propagation of Tau misfolding, in which Tau aggregates from one cell directly contact Tau protein in the recipient cell to trigger further aggregation. Here we have observed that intracellular Tau fibrils are directly released into the medium and then taken up by co-cultured cells. Internalized Tau aggregates induce fibrillization of intracellular Tau in these naive recipient cells via direct protein-protein contact that we demonstrate using FRET. Tau aggregation can be amplified across several generations of cells. An anti-Tau monoclonal antibody blocks Tau aggregate propagation by trapping fibrils in the extracellular space and preventing their uptake. Thus, propagation of Tau protein misfolding among cells can be mediated by release and subsequent uptake of fibrils that directly contact native protein in recipient cells. These results support the model of aggregate propagation by templated conformational change and suggest a mechanism for vaccine-based therapies in neurodegenerative diseases. PMID:22461630

  19. Progranulin reduction is associated with increased tau phosphorylation in P301L tau transgenic mice.

    PubMed

    Hosokawa, Masato; Arai, Tetsuaki; Masuda-Suzukake, Masami; Kondo, Hiromi; Matsuwaki, Takashi; Nishihara, Masugi; Hasegawa, Masato; Akiyama, Haruhiko

    2015-02-01

    Granulin (GRN) mutations have been identified in familial frontotemporal lobar degeneration patients with ubiquitin pathology. GRN transcript haploinsufficiency is proposed as a disease mechanism that leads to the loss of functional progranulin (PGRN) protein. Thus, these mutations are strongly involved in frontotemporal lobar degeneration pathogenesis. Moreover, recent findings indicate that GRN mutations are associated with other neurodegenerative disorders with tau pathology, including Alzheimer disease and corticobasal degeneration. To investigate the potential influence of a decline in PGRN protein on tau accumulation, P301L tau transgenic mice were interbred with GRN-deficient mice, producing P301L tau transgenic mice harboring the GRN hemizygote. Brains were collected from 13- and 19-month-old mice, and sequential extraction of proteins, immunoblotting, and immunohistochemical analyses were performed. Immunoblotting analysis revealed that tau phosphorylation was accelerated in the Tris-saline soluble fraction of 13-month-old and in the sarkosyl-insoluble fraction of 19-month-old P301L tau/GRN hemizygotes compared with those in fractions from P301L tau transgenic mice. Activity of cyclin-dependent kinases was also upregulated in the brains of P301L tau/GRN hemizygote mice. Although the mechanisms involved in these findings remain unknown, our data suggest that a reduction in PGRN protein might contribute to phosphorylation and intraneuronal accumulation of tau. PMID:25575133

  20. A clinical perspective: anti tau's treatment in Alzheimer's disease.

    PubMed

    Fuentes, P; Catalan, J

    2011-09-01

    Alzheimer΄s Disease (AD) physiopathology is not yet totally established. Nevertheless it is known that a metabolism dysfunction of the amyloid beta precursor protein (APP) and the abnormal tau protein phosphorylation lead to the formation of neuritic plaques and neurofibrillary tangles, respectively. These events finally drive to the clinical expression of dementia. Formally approved during the past decade, treatments for AD are lacking of an updating, being essentially symptomatic. Anticholinesterase agents have failed in providing a substantial improvement in the mental health condition of AD patients. On the other hand, antiamyloid strategies, have failed in their efficacy or security on their last development phases. In this context, tau represents a potential therapeutic target, by the action of drugs that diminish its aggregation, or acting by altering its phosphorylation or filaments formation. There is also anti-tau miscellaneous strategies such as normal microtubule-stabilizing agents. Thus, it might be possible that in a near future the neurodegenerative process could be stopped. PMID:21605037

  1. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    PubMed

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-01

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. PMID:25921538

  2. Growth of plasmodium falciparum in human erythrocytes containing abnormal membrane proteins

    SciTech Connect

    Schulman, S. City Univ. of New York, NY ); Roth, E.F. Jr.; Cheng, B.; Rybicki, A.C.; Sussman, I.I.; Wong, M.; Nagel, R.L.; Schwartz, R.S. ); Wang, W. ); Ranney, H.M. )

    1990-09-01

    To evaluate the role of erythrocyte (RBC) membrane proteins in the invasion and maturation of Plasmodium falciparum, the authors have studied, in culture, abnormal RBCs containing quantitative or qualitative membrane protein defects. These defects included hereditary spherocytosis (HS) due to decreases in the content of spectrin (HS(Sp{sup +})), hereditary elliptocytosis (HE) due to protein 4.1 deficiency (HE(4.1{sup 0})), HE due to a spectrin {alpha}I domain structural variant that results in increased content of spectrin dimers (HE(Sp{alpha}{sup I/65})), and band 3 structural variants. Parasite invasion, measured by the initial uptake of ({sup 3}H)hypoxanthine 18 hr after inoculation with merozoites, was normal in all of the pathologic RBCs. In contrast, RBCs from six HS(Sp{sup +}) subjects showed marked growth inhibition that became apparent after the first or second growth cycle. The extent of decreased parasite growth in HS(Sp{sup +}) RBCs closely correlated with the extent of RBC spectrin deficiency. Homogeneous subpopulations of dense HS RBCs exhibited decreased parasite growth to the same extent as did HS whole blood. RBCs from four HE subjects showed marked parasite growth and development.

  3. Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations.

    PubMed

    Iovino, Mariangela; Agathou, Sylvia; González-Rueda, Ana; Del Castillo Velasco-Herrera, Martin; Borroni, Barbara; Alberici, Antonella; Lynch, Timothy; O'Dowd, Sean; Geti, Imbisaat; Gaffney, Daniel; Vallier, Ludovic; Paulsen, Ole; Káradóttir, Ragnhildur Thóra; Spillantini, Maria Grazia

    2015-11-01

    Tauopathies, such as Alzheimer's disease, some cases of frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy, are characterized by aggregates of the microtubule-associated protein tau, which are linked to neuronal death and disease development and can be caused by mutations in the MAPT gene. Six tau isoforms are present in the adult human brain and they differ by the presence of 3(3R) or 4(4R) C-terminal repeats. Only the shortest 3R isoform is present in foetal brain. MAPT mutations found in human disease affect tau binding to microtubules or the 3R:4R isoform ratio by altering exon 10 splicing. We have differentiated neurons from induced pluripotent stem cells derived from fibroblasts of controls and patients with N279K and P301L MAPT mutations. Induced pluripotent stem cell-derived neurons recapitulate developmental tau expression, showing the adult brain tau isoforms after several months in culture. Both N279K and P301L neurons exhibit earlier electrophysiological maturation and altered mitochondrial transport compared to controls. Specifically, the N279K neurons show abnormally premature developmental 4R tau expression, including changes in the 3R:4R isoform ratio and AT100-hyperphosphorylated tau aggregates, while P301L neurons are characterized by contorted processes with varicosity-like structures, some containing both alpha-synuclein and 4R tau. The previously unreported faster maturation of MAPT mutant human neurons, the developmental expression of 4R tau and the morphological alterations may contribute to disease development. PMID:26220942

  4. Early maturation and distinct tau pathology in induced pluripotent stem cell-derived neurons from patients with MAPT mutations

    PubMed Central

    Iovino, Mariangela; Agathou, Sylvia; González-Rueda, Ana; Del Castillo Velasco-Herrera, Martin; Borroni, Barbara; Alberici, Antonella; Lynch, Timothy; O’Dowd, Sean; Geti, Imbisaat; Gaffney, Daniel; Vallier, Ludovic; Paulsen, Ole; Káradóttir, Ragnhildur Thóra

    2015-01-01

    Tauopathies, such as Alzheimer’s disease, some cases of frontotemporal dementia, corticobasal degeneration and progressive supranuclear palsy, are characterized by aggregates of the microtubule-associated protein tau, which are linked to neuronal death and disease development and can be caused by mutations in the MAPT gene. Six tau isoforms are present in the adult human brain and they differ by the presence of 3(3R) or 4(4R) C-terminal repeats. Only the shortest 3R isoform is present in foetal brain. MAPT mutations found in human disease affect tau binding to microtubules or the 3R:4R isoform ratio by altering exon 10 splicing. We have differentiated neurons from induced pluripotent stem cells derived from fibroblasts of controls and patients with N279K and P301L MAPT mutations. Induced pluripotent stem cell-derived neurons recapitulate developmental tau expression, showing the adult brain tau isoforms after several months in culture. Both N279K and P301L neurons exhibit earlier electrophysiological maturation and altered mitochondrial transport compared to controls. Specifically, the N279K neurons show abnormally premature developmental 4R tau expression, including changes in the 3R:4R isoform ratio and AT100-hyperphosphorylated tau aggregates, while P301L neurons are characterized by contorted processes with varicosity-like structures, some containing both alpha-synuclein and 4R tau. The previously unreported faster maturation of MAPT mutant human neurons, the developmental expression of 4R tau and the morphological alterations may contribute to disease development. PMID:26220942

  5. Park2-null/tau transgenic mice reveal a functional relationship between parkin and tau.

    PubMed

    Guerrero, Rosa; Navarro, Paloma; Gallego, Eva; Avila, Jesus; de Yebenes, Justo G; Sanchez, Marina P

    2008-03-01

    Mutations, haplotypes, and polymorphisms of tau and Park-2 genes constitute risk factors for developing tauopathies. In order to analyze the possible relationship between parkin and tau we generated a double-mutant mouse deficient for Park-2 expression and overexpressing a mutant tau protein (hTauVLW). Mice develop normally, although the median survival rate is considerably reduced with respect to wild type (45%). Aggregates of phosphorylated tau in neurons and reactive gliosis are quite abundant in cortex and hippocampus of these mice. Moreover, while in young transgenic mice the hTauVLW immunostained transgene product is observed in both cell bodies and dendrites, the hTauVLW mutant protein is only detected in the neuronal cell bodies when Park-2 gene is additionally deleted. Moreover, DNA fragmentation was detected by the TUNEL method, and cerebral atrophy is also present in these regions. The levels of phosphorylated tau and Hsp70 are increased in the double-mutant mice, while CHIP expression in hippocampus is lower when the Park-2 gene is deleted. Thus, the combination of Park-2 gene deletion with hTauVLW transgene overexpression in mice produces serious neuropathological effects, which reflect the existence of some relationship between both proteins. PMID:18376058

  6. Antisense Reduction of Tau in Adult Mice Protects against Seizures

    PubMed Central

    DeVos, Sarah L.; Goncharoff, Dustin K.; Chen, Guo; Kebodeaux, Carey S.; Yamada, Kaoru; Stewart, Floy R.; Schuler, Dorothy R.; Maloney, Susan E.; Wozniak, David F.; Rigo, Frank; Bennett, C. Frank; Cirrito, John R.; Holtzman, David M.

    2013-01-01

    Tau, a microtubule-associated protein, is implicated in the pathogenesis of Alzheimer's Disease (AD) in regard to both neurofibrillary tangle formation and neuronal network hyperexcitability. The genetic ablation of tau substantially reduces hyperexcitability in AD mouse lines, induced seizure models, and genetic in vivo models of epilepsy. These data demonstrate that tau is an important regulator of network excitability. However, developmental compensation in the genetic tau knock-out line may account for the protective effect against seizures. To test the efficacy of a tau reducing therapy for disorders with a detrimental hyperexcitability profile in adult animals, we identified antisense oligonucleotides that selectively decrease endogenous tau expression throughout the entire mouse CNS—brain and spinal cord tissue, interstitial fluid, and CSF—while having no effect on baseline motor or cognitive behavior. In two chemically induced seizure models, mice with reduced tau protein had less severe seizures than control mice. Total tau protein levels and seizure severity were highly correlated, such that those mice with the most severe seizures also had the highest levels of tau. Our results demonstrate that endogenous tau is integral for regulating neuronal hyperexcitability in adult animals and suggest that an antisense oligonucleotide reduction of tau could benefit those with epilepsy and perhaps other disorders associated with tau-mediated neuronal hyperexcitability. PMID:23904623

  7. New Features about Tau Function and Dysfunction

    PubMed Central

    Medina, Miguel; Hernández, Félix; Avila, Jesús

    2016-01-01

    Tau is a brain microtubule-associated protein that directly binds to a microtubule and dynamically regulates its structure and function. Under pathological conditions, tau self-assembles into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary pathology is a common feature in a number of neurodegenerative disorders, collectively referred to as tauopathies, the most common of which is Alzheimer’s disease (AD). Beyond its classical role as a microtubule-associated protein, recent advances in our understanding of tau cellular functions have revealed novel insights into their important role during pathogenesis and provided potential novel therapeutic targets. Regulation of tau behavior and function under physiological and pathological conditions is mainly achieved through post-translational modifications, including phosphorylation, glycosylation, acetylation, and truncation, among others, indicating the complexity and variability of factors influencing regulation of tau toxicity, all of which have significant implications for the development of novel therapeutic approaches in various neurodegenerative disorders. A more comprehensive understanding of the molecular mechanisms regulating tau function and dysfunction will provide us with a better outline of tau cellular networking and, hopefully, offer new clues for designing more efficient approaches to tackle tauopathies in the near future. PMID:27104579

  8. New Features about Tau Function and Dysfunction.

    PubMed

    Medina, Miguel; Hernández, Félix; Avila, Jesús

    2016-01-01

    Tau is a brain microtubule-associated protein that directly binds to a microtubule and dynamically regulates its structure and function. Under pathological conditions, tau self-assembles into filamentous structures that end up forming neurofibrillary tangles. Prominent tau neurofibrillary pathology is a common feature in a number of neurodegenerative disorders, collectively referred to as tauopathies, the most common of which is Alzheimer's disease (AD). Beyond its classical role as a microtubule-associated protein, recent advances in our understanding of tau cellular functions have revealed novel insights into their important role during pathogenesis and provided potential novel therapeutic targets. Regulation of tau behavior and function under physiological and pathological conditions is mainly achieved through post-translational modifications, including phosphorylation, glycosylation, acetylation, and truncation, among others, indicating the complexity and variability of factors influencing regulation of tau toxicity, all of which have significant implications for the development of novel therapeutic approaches in various neurodegenerative disorders. A more comprehensive understanding of the molecular mechanisms regulating tau function and dysfunction will provide us with a better outline of tau cellular networking and, hopefully, offer new clues for designing more efficient approaches to tackle tauopathies in the near future. PMID:27104579

  9. 5-HT(2C) serotonin receptor blockade prevents tau protein hyperphosphorylation and corrects the defect in hippocampal synaptic plasticity caused by a combination of environmental stressors in mice.

    PubMed

    Busceti, Carla Letizia; Di Pietro, Paola; Riozzi, Barbara; Traficante, Anna; Biagioni, Francesca; Nisticò, Robert; Fornai, Francesco; Battaglia, Giuseppe; Nicoletti, Ferdinando; Bruno, Valeria

    2015-09-01

    Exposure to multimodal sensory stressors is an everyday occurrence and sometimes becomes very intense, such as during rave parties or other recreational events. A growing body of evidence suggests that strong environmental stressors might cause neuronal dysfunction on their own in addition to their synergistic action with illicit drugs. Mice were exposed to a combination of physical and sensory stressors that are reminiscent of those encountered in a rave party. However, this is not a model of rave because it lacks the rewarding properties of rave. A 14-h exposure to environmental stressors caused an impairment of hippocampal long-term potentiation (LTP) and spatial memory, and an enhanced phosphorylation of tau protein in the CA1 and CA3 regions. These effects were transient and critically depended on the activation of 5-HT2C serotonin receptors, which are highly expressed in the CA1 region. Acute systemic injection of the selective 5-HT2C antagonist, RS-102,221 (2 mg/kg, i.p., 2 min prior the onset of stress), prevented tau hyperphosphorylation and also corrected the defects in hippocampal LTP and spatial memory. These findings suggest that passive exposure to a combination of physical and sensory stressors causes a reversible hippocampal dysfunction, which might compromise mechanisms of synaptic plasticity and spatial memory for a few days. Drugs that block 5-HT2C receptors might protect the hippocampus against the detrimental effect of environmental stressors. PMID:26145279

  10. Abnormal expression of vesicular transport proteins in pulmonary arterial hypertension in monocrotaline-treated rats.

    PubMed

    Zhang, Hongliang; Luo, Qin; Liu, Zhihong; Wang, Yong; Zhao, Zhihui

    2015-03-01

    Intracellular vesicular transport is shown to be dysfunctional in pulmonary arterial hypertension (PAH). However, the expression of intracellular vesicular transport proteins in PAH remains unclear. To elucidate the possible role of these proteins in the development of PAH, the changes in the expressions of N-ethyl-maleimide-sensitive factor (NSF), α-soluble NSF attachment protein (α-SNAP), synaptosome-associated membrane protein 23 (SNAP23), type 2 bone morphogenetic receptor (BMPR2), caveolin-1 (cav-1), and endothelial nitric oxide synthase (eNOS) were examined in lung tissues of monocrotaline (MCT)-treated rats by real-time polymerase chain reaction and western blot analysis. In addition, caspase-3, also examined by western blot analysis, was used as an indicator of apoptosis. Our data showed that during the development of PAH, the expressions of NSF, α-SNAP, and SNAP23 were significantly increased before pulmonary arterial pressure started to increase and then significantly decreased after PAH was established. The expressions of BMPR2 and eNOS were similar to those of NSF, α-SNAP, and SNAP23; however, the expression of cav-1 was down-regulated after MCT treatment. Caspase-3 expression was increased after exposure to MCT. In conclusion, the expressions of NSF, α-SNAP, and SNPA23 changed greatly during the onset of PAH, which was accompanied by abnormal expressions of BMPR2, cav-1, and eNOS, as well as an increase in apoptosis. Thus, changes in NSF, α-SNAP, and SNAP23 expressions appear to be mechanistically associated with the development of PAH in MCT-treated rats. PMID:25630652

  11. Comparison of trichloroacetic acid with other protein-precipitating agents in enriching abnormal prion protein for Western blot analysis.

    PubMed

    LeBrun, Matthew; Huang, Hongsheng; He, Runtao; Booth, Stephanie; Balachandran, Aru; Li, Xuguang

    2008-06-01

    Detection of the abnormal or the pathogenic form of prion protein (PrP(Sc)) by Western blot (WB) is challenging, especially, for samples derived from cell cultures that contain low levels of PrP(Sc). A variety of PrP(Sc) concentration methods have been reported with various PrP(Sc) recovery efficiencies. Ultracentrifugation is one of the methods used frequently to enrich the pathogenic form of PrP(Sc) prior to WB analyses. The resulting PrP(Sc) pellet is extremely insoluble and often requires sonication to be dissolved, potentially generating aerosols. We modified the common protein-precipitating protocol using trichloroacetic acid to concentrate PrP(Sc) by slow-speed centrifugation, followed by solubilization of the pellets with 6 mol/L urea prior to sodium dodecyl sulphate -- polyacrylamide gel electrophoresis and WB analyses. Comparative studies suggest this simple trichloroacetic acid protocol was more effective in enriching PrP(Sc) presented in cell cultures and brain homogenates than other reported protein-precipitating methods. Furthermore, incorporation of the urea treatment step to dissolve the precipitated PrP(Sc) pellets helped to reduce the infectivity of PrP(Sc). PMID:18535632

  12. Efficacy and Mechanism of a Glycoside Compound Inhibiting Abnormal Prion Protein Formation in Prion-Infected Cells: Implications of Interferon and Phosphodiesterase 4D-Interacting Protein

    PubMed Central

    Nishizawa, Keiko; Oguma, Ayumi; Kawata, Maki; Sakasegawa, Yuji; Teruya, Kenta

    2014-01-01

    ABSTRACT A new type of antiprion compound, Gly-9, was found to inhibit abnormal prion protein formation in prion-infected neuroblastoma cells, in a prion strain-independent manner, when the cells were treated for more than 1 day. It reduced the intracellular prion protein level and significantly modified mRNA expression levels of genes of two types: interferon-stimulated genes were downregulated after more than 2 days of treatment, and the phosphodiesterase 4D-interacting protein gene, a gene involved in microtubule growth, was upregulated after more than 1 day of treatment. A supplement of interferon given to the cells partly restored the abnormal prion protein level but did not alter the normal prion protein level. This interferon action was independent of the Janus activated kinase-signal transducer and activator of transcription signaling pathway. Therefore, the changes in interferon-stimulated genes might be a secondary effect of Gly-9 treatment. However, gene knockdown of phosphodiesterase 4D-interacting protein restored or increased both the abnormal prion protein level and the normal prion protein level, without transcriptional alteration of the prion protein gene. It also altered the localization of abnormal prion protein accumulation in the cells, indicating that phosphodiesterase 4D-interacting protein might affect prion protein levels by altering the trafficking of prion protein-containing structures. Interferon and phosphodiesterase 4D-interacting protein had no direct mutual link, demonstrating that they regulate abnormal prion protein levels independently. Although the in vivo efficacy of Gly-9 was limited, the findings for Gly-9 provide insights into the regulation of abnormal prion protein in cells and suggest new targets for antiprion compounds. IMPORTANCE This report describes our study of the efficacy and potential mechanism underlying the antiprion action of a new antiprion compound with a glycoside structure in prion-infected cells, as well as

  13. Estimation of Tau and Phosphorylated Tau181 in Serum of Alzheimer’s Disease and Mild Cognitive Impairment Patients

    PubMed Central

    Shekhar, Shashank; Kumar, Rahul; Rai, Nitish; Kumar, Vijay; Singh, Kusum; Upadhyay, Ashish Datt; Tripathi, Manjari; Dwivedi, Sadanand; Dey, Aparajit B.; Dey, Sharmistha

    2016-01-01

    The elevated level of cerebrospinal fluid (CSF) Tau and phosphorylated Tau181 (p-Tau181) proteins are well established hallmarks of Alzheimer’s disease (AD). Elevated level of p-Tau181 can differentiate AD from other neurodegenerative disease. However, the expression level of these proteins in serum of AD patient is not well set up. This study sought to evaluate the level of Tau and p-Tau181 in serum of AD, and mild cognitive impairment (MCI) patients for an alternative approach to establish protein-based markers by convenient way. Blood samples were collected from 39 AD patients, 37 MCI patients and 37 elderly individuals as controls. The levels of Tau and p-Tau181 in the serum of the different groups were measured by label free real time Surface Plasmon Resonance technology by using specific antibodies, and were further confirmed by the conventional western blot method. An appropriate statistical analysis, including Receiver Operating Characteristic (ROC), was performed. The concentrations of serum Tau and p-Tau181 were significantly higher (p<0.00001) in AD (Tau; 47.49±9.00ng/μL, p-Tau181; 0.161±0.04 ng/μL) compared to MCI (Tau; 39.26±7.78 ng/μL, p-Tau181; 0.135±0.02 ng/μL) and were further higher compared to elderly controls (Tau; 34.92±6.58 ng/μL, p-Tau181; 0.122±0.01 ng/ μL). A significant (p<0.0001) downhill correlation was found between Tau as well as p-Tau181 levels with HMSE and MoCA score. This study for the first time reports the concentration of Tau and p-Tau181 in serum of AD and MCI patients. The cutoff values of Tau and p-Tau181 of AD and MCI patients with sensitivity and specificity reveal that serum level of these proteins can be used as a predictive marker for AD and MCI. PMID:27459603

  14. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation

    PubMed Central

    Jansen, Eric J. R.; Timal, Sharita; Ryan, Margret; Ashikov, Angel; van Scherpenzeel, Monique; Graham, Laurie A.; Mandel, Hanna; Hoischen, Alexander; Iancu, Theodore C.; Raymond, Kimiyo; Steenbergen, Gerry; Gilissen, Christian; Huijben, Karin; van Bakel, Nick H. M.; Maeda, Yusuke; Rodenburg, Richard J.; Adamowicz, Maciej; Crushell, Ellen; Koenen, Hans; Adams, Darius; Vodopiutz, Julia; Greber-Platzer, Susanne; Müller, Thomas; Dueckers, Gregor; Morava, Eva; Sykut-Cegielska, Jolanta; Martens, Gerard J. M.; Wevers, Ron A.; Niehues, Tim; Huynen, Martijn A.; Veltman, Joris A.; Stevens, Tom H.; Lefeber, Dirk J.

    2016-01-01

    The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function. PMID:27231034

  15. Prognostic value of serum tumor abnormal protein in gastric cancer patients

    PubMed Central

    LAN, FENG; ZHU, MING; QI, QIUFENG; ZHANG, YAPING; LIU, YONGPING

    2016-01-01

    Aberrant glycosylation of protein occurs in nearly all types of cancers and has been confirmed to be associated with tumor progression, metastasis and the survival rate of patients. The present study aimed to explore the prognostic value of tumor abnormal protein (TAP) in gastric cancer patients. TAP was detected in the blood of 42 gastric cancer patients and 56 healthy volunteers by using the TAP testing kit. Univariate and multivariate Cox regression analysis were performed to evaluate the prognostic value of TAP. In total, 64.3% of gastric cancer patients were positive for TAP, and TAP was significantly correlated with poor prognosis [progression-free survival (PFS), 4.2 vs. 12.6 months; P=0.043]. TAP [hazard ratio (HR), 64.487; P<0.01), differentiation (HR, 17.279; P<0.01) and TNM stage (HR, 45.480; P<0.01) were found to be independent predictive factors for PFS. Furthermore, Kaplan-Meier curves indicated that TAP is associated with a reduced PFS in gastric cancer patients. The results of the present study therefore indicated that the TAP test has significant prognostic value for gastric cancer patients. PMID:27330802

  16. ATP6AP1 deficiency causes an immunodeficiency with hepatopathy, cognitive impairment and abnormal protein glycosylation.

    PubMed

    Jansen, Eric J R; Timal, Sharita; Ryan, Margret; Ashikov, Angel; van Scherpenzeel, Monique; Graham, Laurie A; Mandel, Hanna; Hoischen, Alexander; Iancu, Theodore C; Raymond, Kimiyo; Steenbergen, Gerry; Gilissen, Christian; Huijben, Karin; van Bakel, Nick H M; Maeda, Yusuke; Rodenburg, Richard J; Adamowicz, Maciej; Crushell, Ellen; Koenen, Hans; Adams, Darius; Vodopiutz, Julia; Greber-Platzer, Susanne; Müller, Thomas; Dueckers, Gregor; Morava, Eva; Sykut-Cegielska, Jolanta; Martens, Gerard J M; Wevers, Ron A; Niehues, Tim; Huynen, Martijn A; Veltman, Joris A; Stevens, Tom H; Lefeber, Dirk J

    2016-01-01

    The V-ATPase is the main regulator of intra-organellar acidification. Assembly of this complex has extensively been studied in yeast, while limited knowledge exists for man. We identified 11 male patients with hemizygous missense mutations in ATP6AP1, encoding accessory protein Ac45 of the V-ATPase. Homology detection at the level of sequence profiles indicated Ac45 as the long-sought human homologue of yeast V-ATPase assembly factor Voa1. Processed wild-type Ac45, but not its disease mutants, restored V-ATPase-dependent growth in Voa1 mutant yeast. Patients display an immunodeficiency phenotype associated with hypogammaglobulinemia, hepatopathy and a spectrum of neurocognitive abnormalities. Ac45 in human brain is present as the common, processed ∼40-kDa form, while liver shows a 62-kDa intact protein, and B-cells a 50-kDa isoform. Our work unmasks Ac45 as the functional ortholog of yeast V-ATPase assembly factor Voa1 and reveals a novel link of tissue-specific V-ATPase assembly with immunoglobulin production and cognitive function. PMID:27231034

  17. AGGREGATED, WILD-TYPE PRION PROTEIN CAUSES NEUROLOGICAL DYSFUNCTION AND SYNAPTIC ABNORMALITIES

    PubMed Central

    Chiesa, Roberto; Piccardo, Pedro; Biasini, Emiliano; Ghetti, Bernardino; Harris, David A.

    2008-01-01

    The neurotoxic forms of the prion protein (PrP) that cause neurodegeneration in prion diseases remain to be conclusively identified. Considerable evidence points to the importance of non-infectious oligomers of PrP in the pathogenic process. In this study, we describe lines of Tg(WT) transgenic mice that over-express wild-type PrP by either ∼5-fold or ∼10-fold (depending on whether the transgene array is, respectively, hemizygous or homozygous). Homozygous but not hemizygous Tg(WT) mice develop a spontaneous neurodegenerative illness characterized clinically by tremor and paresis. Both kinds of mice accumulate large numbers of punctate PrP deposits in the molecular layer of the cerebellum as well as in several other brain regions, and they display abnormally enlarged synaptic terminals accompanied by a dramatic proliferation of membranous structures. The over-expressed PrP in Tg(WT) mice assembles into an insoluble form that is mildly protease-resistant and is recognizable by aggregation-specific antibodies, but that is not infectious in transmission experiments. Taken together, our results demonstrate that non-infectious aggregates of wild-type PrP are neurotoxic, particularly to synapses, and they suggest common pathogenic mechanisms shared by prion diseases and non-transmissible neurodegenerative disorders associated with protein misfolding. PMID:19052217

  18. Pathways of tau fibrillization.

    PubMed

    Kuret, Jeff; Chirita, Carmen N; Congdon, Erin E; Kannanayakal, Theresa; Li, Guibin; Necula, Mihaela; Yin, Haishan; Zhong, Qi

    2005-01-01

    New methods for analyzing tau fibrillization have yielded insights into the biochemical transitions involved in the process. Here we review the parallels between the sequential progression of tau fibrillization observed macroscopically in Alzheimer's disease (AD) lesions and the pathway of tau aggregation observed in vitro with purified tau preparations. In addition, pharmacological agents for further dissection of fibrillization mechanism and lesion formation are discussed. PMID:15615636

  19. MicroRNA-146a suppresses ROCK1 allowing hyperphosphorylation of tau in Alzheimer’s disease

    PubMed Central

    Wang, Gang; Huang, Yue; Wang, Li-Ling; Zhang, Yong-Fang; Xu, Jing; Zhou, Yi; Lourenco, Guinevere F.; Zhang, Bei; Wang, Ying; Ren, Ru-Jing; Halliday, Glenda M.; Chen, Sheng-Di

    2016-01-01

    MicroRNA-146a is upregulated in the brains of patients with Alzheimer’s disease (AD). Here, we show that the rho-associated, coiled-coil containing protein kinase 1 (ROCK1) is a target of microRNA-146a in neural cells. Knockdown of ROCK1 mimicked the effects of microRNA-146a overexpression and induced abnormal tau phosphorylation, which was associated with inhibition of phosphorylation of the phosphatase and tensin homolog (PTEN). The ROCK1/PTEN pathway has been implicated in the neuronal hyperphosphorylation of tau that occurs in AD. To determine the function of ROCK1 in AD, brain tissue from 17 donors with low, intermediate or high probability of AD pathology were obtained and analyzed. Data showed that ROCK1 protein levels were reduced and ROCK1 colocalised with hyperphosphorylated tau in early neurofibrillary tangles. Intra-hippocampal delivery of a microRNA-146a specific inhibitor (antagomir) into 5xFAD mice showed enhanced hippocampal levels of ROCK1 protein and repressed tau hyperphosphorylation, partly restoring memory function in the 5xFAD mice. Our in vitro and in vivo results confirm that dysregulation of microRNA-146a biogenesis contributes to tau hyperphosphorylation and AD pathogenesis, and inhibition of this microRNA could be a viable novel in vivo therapy for AD. PMID:27221467

  20. Opposite effects of two estrogen receptors on tau phosphorylation through disparate effects on the miR-218/PTPA pathway

    PubMed Central

    Xiong, Yan-Si; Liu, Fang-Fang; Liu, Dan; Huang, He-Zhou; Wei, Na; Tan, Lu; Chen, Jian-Guo; Man, Heng-Ye; Gong, Cheng-Xin; Lu, Youming; Wang, Jian-Zhi; Zhu, Ling-Qiang

    2015-01-01

    The two estrogen receptors (ERs), ERα and ERβ, mediate the diverse biological functions of estradiol. Opposite effects of ERα and ERβ have been found in estrogen-induced cancer cell proliferation and differentiation as well as in memory-related tasks. However, whether these opposite effects are implicated in the pathogenesis of Alzheimer’s disease (AD) remains unclear. Here, we find that ERα and ERβ play contrasting roles in regulating tau phosphorylation, which is a pathological hallmark of AD. ERα increases the expression of miR-218 to suppress the protein levels of its specific target, protein tyrosine phosphatase α (PTPα). The downregulation of PTPα results in the abnormal tyrosine hyperphosphorylation of glycogen synthase kinase-3β (resulting in activation) and protein phosphatase 2A (resulting in inactivation), the major tau kinase and phosphatase. Suppressing the increased expression of miR-218 inhibits the ERα-induced tau hyperphosphorylation as well as the PTPα decline. In contrast, ERβ inhibits tau phosphorylation by limiting miR-218 levels and restoring the miR-218 levels antagonized the attenuation of tau phosphorylation by ERβ. These data reveal for the first time opposing roles for ERα and ERβ in AD pathogenesis and suggest potential therapeutic targets for AD. PMID:26111662

  1. Soya protein attenuates abnormalities of the renin-angiotensin system in adipose tissue from obese rats.

    PubMed

    Frigolet, María E; Torres, Nimbe; Tovar, Armando R

    2012-01-01

    Several metabolic disturbances during obesity are associated with adipose tissue-altered functions. Adipocytes contain the renin-angiotensin system (RAS), which regulates signalling pathways that control angiogenesis via Akt in an autocrine fashion. Soya protein (Soy) consumption modifies the gene expression pattern in adipose tissue, resulting in an improved adipocyte function. Therefore, the aim of the present work is to study whether dietary Soy regulates the expression of RAS and angiogenesis-related genes and its association with the phosphorylated state of Akt in the adipose tissue of obese rats. Animals were fed a 30 % Soy or casein (Cas) diet containing 5 or 25 % fat for 160 d. mRNA abundance was studied in the adipose tissue, and Akt phosphorylation and hormone release were measured in the primary adipocyte culture. The present results show that Soy treatment in comparison with Cas consumption induces lower angiotensin release and increased insulin-stimulated Akt activation in adipocytes. Furthermore, Soy consumption varies the expression of RAS and angiogenesis-related genes, which maintain cell size and vascularity in the adipose tissue of rats fed a high-fat diet. Thus, adipocyte hypertrophy and impaired angiogenesis, which are frequently observed in dysfunctional adipose tissue, were avoided by consuming dietary Soy. Taken together, these findings suggest that Soy can be used as a dietary strategy to preserve adipocyte functionality and to prevent obesity abnormalities. PMID:21736766

  2. Strain-Dependent Effect of Macroautophagy on Abnormally Folded Prion Protein Degradation in Infected Neuronal Cells

    PubMed Central

    Ishibashi, Daisuke; Homma, Takujiro; Nakagaki, Takehiro; Fuse, Takayuki; Sano, Kazunori; Takatsuki, Hanae; Atarashi, Ryuichiro; Nishida, Noriyuki

    2015-01-01

    Prion diseases are neurodegenerative disorders caused by the accumulation of abnormal prion protein (PrPSc) in the central nervous system. With the aim of elucidating the mechanism underlying the accumulation and degradation of PrPSc, we investigated the role of autophagy in its degradation, using cultured cells stably infected with distinct prion strains. The effects of pharmacological compounds that inhibit or stimulate the cellular signal transduction pathways that mediate autophagy during PrPSc degradation were evaluated. The accumulation of PrPSc in cells persistently infected with the prion strain Fukuoka-1 (FK), derived from a patient with Gerstmann–Sträussler–Scheinker syndrome, was significantly increased in cultures treated with the macroautophagy inhibitor 3-methyladenine (3MA) but substantially reduced in those treated with the macroautophagy inducer rapamycin. The decrease in FK-derived PrPSc levels was mediated, at least in part, by the phosphatidylinositol 3-kinase/MEK signalling pathway. By contrast, neither rapamycin nor 3MA had any apparently effect on PrPSc from either the 22L or the Chandler strain, indicating that the degradation of PrPSc in host cells might be strain-dependent. PMID:26368533

  3. Phosphorylated tau and the neurodegenerative foldopathies.

    PubMed

    Kosik, Kenneth S; Shimura, Hideki

    2005-01-01

    Many studies have implicated phosphorylated tau in the Alzheimer disease process. However, the cellular fate of phosphorylated tau has only recently been described. Recent work has shown that tau phosphorylation at substrate sites for the kinases Cdk5 and GSK3-beta can trigger the binding of tau to the chaperones Hsc70 and Hsp27. The binding of phosphorylated tau to Hsc70 implied that the complex may be a substrate for the E3 ligase CHIP and this possibility was experimentally verified. The presence of this system in cells suggests that phosphorylated tau may hold toxic dangers for cell viability, and the response of the cell is to harness a variety of protective mechanisms. These include binding to chaperones, which may prevent more toxic conformations of the protein, ubiquitination which will direct the protein to the proteasome, segregation of tau aggregates from the cellular machinery, and recruitment of Hsp27 which will confer anti-apoptotic properties to the cell. PMID:15615647

  4. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells

    PubMed Central

    Li, Tong; Paudel, Hemant K.

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer’s disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445–6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  5. 14-3-3ζ Mediates Tau Aggregation in Human Neuroblastoma M17 Cells.

    PubMed

    Li, Tong; Paudel, Hemant K

    2016-01-01

    Microtubule-associated protein tau is the major component of paired helical filaments (PHFs) associated with the neuropathology of Alzheimer's disease (AD). Tau in the normal brain binds and stabilizes microtubules. Tau isolated from PHFs is hyperphosphorylated, which prevents it from binding to microtubules. Tau phosphorylation has been suggested to be involved in the development of NFT pathology in the AD brain. Recently, we showed that 14-3-3ζ is bound to tau in the PHFs and when incubated in vitro with 14-3-3ζ, tau formed amorphous aggregates, single-stranded straight filaments, double stranded ribbon-like filaments and PHF-like filaments that displayed close resemblance with corresponding ultrastructures of AD brain. Surprisingly however, phosphorylated and non-phosphorylated tau aggregated in a similar manner, indicating that tau phosphorylation does not affect in vitro tau aggregation (Qureshi et al (2013) Biochemistry 52, 6445-6455). In this study, we have examined the role of tau phosphorylation in tau aggregation in cellular level. We have found that in human M17 neuroblastoma cells, tau phosphorylation by GSK3β or PKA does not cause tau aggregation, but promotes 14-3-3ζ-induced tau aggregation by destabilizing microtubules. Microtubule disrupting drugs also promoted 14-3-3ζ-induced tau aggregation without changing tau phosphorylation in M17 cell. In vitro, when incubated with 14-3-3ζ and microtubules, nonphosphorylated tau bound to microtubules and did not aggregate. Phosphorylated tau on the other hand did not bind to microtubules and aggregated. Our data indicate that microtubule-bound tau is resistant to 14-3-3ζ-induced tau aggregation and suggest that tau phosphorylation promotes tau aggregation in the brain by detaching tau from microtubules and thus making it accessible to 14-3-3ζ. PMID:27548710

  6. Conditional Tat protein brain expression in the GT-tg bigenic mouse induces cerebral fractional anisotropy abnormalities

    PubMed Central

    Carey, Amanda N.; Liu, Xiaoxu; Mintzopoulos, Dionyssios; Paris, Jason J.; McLaughlin, Jay P.; Kaufman, Marc J.

    2015-01-01

    Cerebral white matter changes including tissue water diffusion abnormalities detected with diffusion tensor magnetic resonance imaging (DTI) are commonly found in humans with Human Immunodeficiency Virus (HIV) infection, as well as in animal models of the disorder. The severities of some of these abnormalities have been reported to correlate with measures of disease progression or severity, or with the degree of cognitive dysfunction. Accordingly, DTI may be a useful translational biomarker. HIV-Tat protein appears to be an important factor in the viral pathogenesis of HIV-associated neurotoxicity. We previously reported cerebral gray matter density reductions in the GT-tg bigenic mouse treated with doxycycline (Dox) to conditionally induce Tat protein expression. Presently, we administered intraperitoneal (i.p.) Dox (100 mg/kg/day) for 7 days to GT-tg mice to determine whether induction of conditional Tat expression led to the development of cerebral DTI abnormalities. Perfused and fixed brains from eight GT-tg mice administered Dox and eight control mice administered saline i.p. were extracted and underwent DTI scans on a 9.4 Tesla scanner. A whole brain analysis detected fractional anisotropy (FA) reductions in several areas including insular and endopiriform regions, as well as within the dorsal striatum. These findings suggest that exposure to Tat protein is sufficient to induce FA abnormalities, and further support the use of the GT-tg mouse to model some effects of HIV. PMID:25619988

  7. MTHFSD and DDX58 are novel RNA-binding proteins abnormally regulated in amyotrophic lateral sclerosis.

    PubMed

    MacNair, Laura; Xiao, Shangxi; Miletic, Denise; Ghani, Mahdi; Julien, Jean-Pierre; Keith, Julia; Zinman, Lorne; Rogaeva, Ekaterina; Robertson, Janice

    2016-01-01

    Tar DNA-binding protein 43 (TDP-43) is an RNA-binding protein normally localized to the nucleus of cells, where it elicits functions related to RNA metabolism such as transcriptional regulation and alternative splicing. In amyotrophic lateral sclerosis, TDP-43 is mislocalized from the nucleus to the cytoplasm of diseased motor neurons, forming ubiquitinated inclusions. Although mutations in the gene encoding TDP-43, TARDBP, are found in amyotrophic lateral sclerosis, these are rare. However, TDP-43 pathology is common to over 95% of amyotrophic lateral sclerosis cases, suggesting that abnormalities of TDP-43 play an active role in disease pathogenesis. It is our hypothesis that a loss of TDP-43 from the nucleus of affected motor neurons in amyotrophic lateral sclerosis will lead to changes in RNA processing and expression. Identifying these changes could uncover molecular pathways that underpin motor neuron degeneration. Here we have used translating ribosome affinity purification coupled with microarray analysis to identify the mRNAs being actively translated in motor neurons of mutant TDP-43(A315T) mice compared to age-matched non-transgenic littermates. No significant changes were found at 5 months (presymptomatic) of age, but at 10 months (symptomatic) the translational profile revealed significant changes in genes involved in RNA metabolic process, immune response and cell cycle regulation. Of 28 differentially expressed genes, seven had a ≥ 2-fold change; four were validated by immunofluorescence labelling of motor neurons in TDP-43(A315T) mice, and two of these were confirmed by immunohistochemistry in amyotrophic lateral sclerosis cases. Both of these identified genes, DDX58 and MTHFSD, are RNA-binding proteins, and we show that TDP-43 binds to their respective mRNAs and we identify MTHFSD as a novel component of stress granules. This discovery-based approach has for the first time revealed translational changes in motor neurons of a TDP-43 mouse model

  8. Curcumin Suppresses Soluble Tau Dimers and Corrects Molecular Chaperone, Synaptic, and Behavioral Deficits in Aged Human Tau Transgenic Mice*

    PubMed Central

    Ma, Qiu-Lan; Zuo, Xiaohong; Yang, Fusheng; Ubeda, Oliver J.; Gant, Dana J.; Alaverdyan, Mher; Teng, Edmond; Hu, Shuxin; Chen, Ping-Ping; Maiti, Panchanan; Teter, Bruce; Cole, Greg M.; Frautschy, Sally A.

    2013-01-01

    The mechanisms underlying Tau-related synaptic and cognitive deficits and the interrelationships between Tau species, their clearance pathways, and synaptic impairments remain poorly understood. To gain insight into these mechanisms, we examined these interrelationships in aged non-mutant genomic human Tau mice, with established Tau pathology and neuron loss. We also examined how these interrelationships changed with an intervention by feeding mice either a control diet or one containing the brain permeable beta-amyloid and Tau aggregate binding molecule curcumin. Transgene-dependent elevations in soluble and insoluble phospho-Tau monomer and soluble Tau dimers accompanied deficits in behavior, hippocampal excitatory synaptic markers, and molecular chaperones (heat shock proteins (HSPs)) involved in Tau degradation and microtubule stability. In human Tau mice but not control mice, HSP70, HSP70/HSP72, and HSP90 were reduced in membrane-enriched fractions but not in cytosolic fractions. The synaptic proteins PSD95 and NR2B were reduced in dendritic fields and redistributed into perikarya, corresponding to changes observed by immunoblot. Curcumin selectively suppressed levels of soluble Tau dimers, but not of insoluble and monomeric phospho-Tau, while correcting behavioral, synaptic, and HSP deficits. Treatment increased PSD95 co-immunoprecipitating with NR2B and, independent of transgene, increased HSPs implicated in Tau clearance. It elevated HSP90 and HSC70 without increasing HSP mRNAs; that is, without induction of the heat shock response. Instead curcumin differentially impacted HSP90 client kinases, reducing Fyn without reducing Akt. In summary, curcumin reduced soluble Tau and elevated HSPs involved in Tau clearance, showing that even after tangles have formed, Tau-dependent behavioral and synaptic deficits can be corrected. PMID:23264626

  9. Optimization and Biodistribution of [(11)C]-TKF, An Analog of Tau Protein Imaging Agent [(18)F]-THK523.

    PubMed

    Kong, Yanyan; Guan, Yihui; Hua, Fengchun; Zhang, Zhengwei; Lu, Xiuhong; Zhu, Tengfang; Zhao, Bizeng; Zhu, Jianhua; Li, Cong; Chen, Jian

    2016-01-01

    The quantification of neurofibrillary tangles (NFTs) using specific PET tracers can facilitate the diagnosis of Alzheimer's disease (AD) and allow monitoring of disease progression and treatment efficacy. [(18)F]-THK523 has shown high affinity and selectivity for tau pathology. However, its high retention in white matter, which makes simple visual inspection difficult, may limit its use in research or clinical settings. In this paper, we optimized the automated radiosynthesis of [(11)C]-TKF and evaluated its biodistribution and toxicity in C57 mice. [(11)C]-TKF can be made by reaction precursor with [(11)C]MeOTf or (11)CH₃I, but [(11)C]MeOTf will give us higher labeling yields and specific activity. [(11)C]-TKF presented better brain uptake in normal mouse than [(18)F]-THK523 (3.23% ± 1.25% ID·g(-1) vs. 2.62% ± 0.39% ID·g(-1) at 2 min post-injection). The acute toxicity studies of [(11)C]-TKF were unremarkable. PMID:27527142

  10. Overexpression of Wild-Type Murine Tau Results in Progressive Tauopathy and Neurodegeneration

    PubMed Central

    Adams, Stephanie J.; Crook, Richard J.P.; DeTure, Michael; Randle, Suzanne J.; Innes, Amy E.; Yu, Xin Z.; Lin, Wen-Lang; Dugger, Brittany N.; McBride, Melinda; Hutton, Mike; Dickson, Dennis W.; McGowan, Eileen

    2009-01-01

    Here, we describe the generation and characterization of a novel tau transgenic mouse model (mTau) that overexpresses wild-type murine tau protein by twofold compared with endogenous levels. Transgenic tau expression was driven by a BAC transgene containing the entire wild-type mouse tau locus, including the endogenous promoter and the regulatory elements associated with the tau gene. The mTau model therefore differs from other tau models in that regulation of the genomic mouse transgene mimics that of the endogenous gene, including normal exon splicing regulation. Biochemical data from the mTau mice demonstrated that modest elevation of mouse tau leads to tau hyperphosphorylation at multiple pathologically relevant epitopes and accumulation of sarkosyl-insoluble tau. The mTau mice show a progressive increase in hyperphosphorylated tau pathology with age up to 15 to 18 months, which is accompanied by gliosis and vacuolization. In contrast, older mice show a decrease in tau pathology levels, which may represent hippocampal neuronal loss occurring in this wild-type model. Collectively, these results describe a novel model of tauopathy that develops pathological changes reminiscent of early stage Alzheimer’s disease and other related neurodegenerative diseases, achieved without overexpression of a mutant human tau transgene. This model will provide an important tool for understanding the early events leading to the development of tau pathology and a model for analysis of potential therapeutic targets for sporadic tauopathies. PMID:19717642

  11. The Dynamics and Turnover of Tau Aggregates in Cultured Cells: INSIGHTS INTO THERAPIES FOR TAUOPATHIES.

    PubMed

    Guo, Jing L; Buist, Arjan; Soares, Alberto; Callaerts, Kathleen; Calafate, Sara; Stevenaert, Frederik; Daniels, Joshua P; Zoll, Bryan E; Crowe, Alex; Brunden, Kurt R; Moechars, Diederik; Lee, Virginia M Y

    2016-06-17

    Filamentous tau aggregates, the hallmark lesions of Alzheimer disease (AD), play key roles in neurodegeneration. Activation of protein degradation systems has been proposed to be a potential strategy for removing pathological tau, but it remains unclear how effectively tau aggregates can be degraded by these systems. By applying our previously established cellular model system of AD-like tau aggregate induction using preformed tau fibrils, we demonstrate that tau aggregates induced in cells with regulated expression of full-length mutant tau can be gradually cleared when soluble tau expression is suppressed. This clearance is at least partially mediated by the autophagy-lysosome pathway, although both the ubiquitin-proteasome system and the autophagy-lysosome pathway are deficient in handling large tau aggregates. Importantly, residual tau aggregates left after the clearance phase leads to a rapid reinstatement of robust tau pathology once soluble tau expression is turned on again. Moreover, we succeeded in generating monoclonal cells persistently carrying tau aggregates without obvious cytotoxicity. Live imaging of GFP-tagged tau aggregates showed that tau inclusions are dynamic structures constantly undergoing "fission" and "fusion," which facilitate stable propagation of tau pathology in dividing cells. These findings provide a greater understanding of cell-to-cell transmission of tau aggregates in dividing cells and possibly neurons. PMID:27129267

  12. Activation of Asparaginyl Endopeptidase Leads to Tau Hyperphosphorylation in Alzheimer Disease*

    PubMed Central

    Basurto-Islas, Gustavo; Grundke-Iqbal, Inge; Tung, Yunn Chyn; Liu, Fei; Iqbal, Khalid

    2013-01-01

    Neurofibrillary pathology of abnormally hyperphosphorylated Tau is a key lesion of Alzheimer disease and other tauopathies, and its density in the brain directly correlates with dementia. The phosphorylation of Tau is regulated by protein phosphatase 2A, which in turn is regulated by inhibitor 2, I2PP2A. In acidic conditions such as generated by brain ischemia and hypoxia, especially in association with hyperglycemia as in diabetes, I2PP2A is cleaved by asparaginyl endopeptidase at Asn-175 into the N-terminal fragment (I2NTF) and the C-terminal fragment (I2CTF). Both I2NTF and I2CTF are known to bind to the catalytic subunit of protein phosphatase 2A and inhibit its activity. Here we show that the level of activated asparaginyl endopeptidase is significantly increased, and this enzyme and I2PP2A translocate, respectively, from neuronal lysosomes and nucleus to the cytoplasm where they interact and are associated with hyperphosphorylated Tau in Alzheimer disease brain. Asparaginyl endopeptidase from Alzheimer disease brain could cleave GST-I2PP2A, except when I2PP2A was mutated at the cleavage site Asn-175 to Gln. Finally, an induction of acidosis by treatment with kainic acid or pH 6.0 medium activated asparaginyl endopeptidase and consequently produced the cleavage of I2PP2A, inhibition of protein phosphatase 2A, and hyperphosphorylation of Tau, and the knockdown of asparaginyl endopeptidase with siRNA abolished this pathway in SH-SY5Y cells. These findings suggest the involvement of brain acidosis in the etiopathogenesis of Alzheimer disease, and asparaginyl endopeptidase-I2PP2A-protein phosphatase 2A-Tau hyperphosphorylation pathway as a therapeutic target. PMID:23640887

  13. Leptospira interrogans induces uterine inflammatory responses and abnormal expression of extracellular matrix proteins in dogs.

    PubMed

    Wang, Wei; Gao, Xuejiao; Guo, Mengyao; Zhang, Wenlong; Song, Xiaojing; Wang, Tiancheng; Zhang, Zecai; Jiang, Haichao; Cao, Yongguo; Zhang, Naisheng

    2014-10-01

    Leptospira interrogans (L. interrogans), a worldwide zoonosis, infect humans and animals. In dogs, four syndromes caused by leptospirosis have been identified: icteric, hemorrhagic, uremic (Stuttgart disease) and reproductive (abortion and premature or weak pups), and also it caused inflammation. Extracellular matrix (ECM) is a complex mixture of matrix molecules that is crucial to the reproduction. Both inflammatory response and ECM are closed relative to reproductive. The aim of this study was to clarify how L. interrogans affected the uterus of dogs, by focusing on the inflammatory responses, and ECM expression in dogs uterine tissue infected by L. interrogans. In the present study, 27 dogs were divided into 3 groups, intrauterine infusion with L. interrogans, to make uterine infection, sterile EMJH, and normal saline as a control, respectively. The uteruses were removed by surgical operation in 10, 20, and 30 days, respectively. The methods of histopathological analysis, ELISA, Western blot and qPCR were used. The results showed that L. interrogans induced significantly inflammatory responses, which were characterized by inflammatory cellular infiltration and high expression levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in uterine tissue of these dogs. Furthermore, L. interrogans strongly down-regulated the expression of ECM (collagens (CL) IV, fibronectins (FN) and laminins (LN)) in mRNA and protein levels. These data indicated that strongly inflammatory responses, and abnormal regulation of ECM might contribute to the proliferation of dogs infected by L. interrogans. PMID:25153777

  14. Untangling tau imaging.

    PubMed

    Villemagne, Victor L; Okamura, Nobuyuki; Rowe, Christopher C

    2016-01-01

    In vivo imaging of tau deposits is providing a better understanding of the temporal and spatial tau deposition in the brain, allowing a more comprehensive insight into the causes, diagnoses, and potentially treatment of tauopathies such as Alzheimer's disease, progressive supranuclear palsy, corticobasal syndrome, chronic traumatic encephalopathy, and some variants of frontotemporal lobar degeneration. The assessment of tau deposition in the brain over time will allow a deeper understanding of the relationship between tau and other variables such as cognition, genotype, and neurodegeneration, as well as assessing the role tau plays in ageing. Preliminary human studies suggest that tau imaging could also be used as a diagnostic, prognostic, and theranostic biomarker, as well as a surrogate marker for target engagement, patient recruitment, and efficacy monitoring for disease-specific therapeutic trials. PMID:27489878

  15. Naphthoquinone-Tryptophan Hybrid Inhibits Aggregation of the Tau-Derived Peptide PHF6 and Reduces Neurotoxicity.

    PubMed

    Frenkel-Pinter, Moran; Tal, Sharon; Scherzer-Attali, Roni; Abu-Hussien, Malak; Alyagor, Idan; Eisenbaum, Tal; Gazit, Ehud; Segal, Daniel

    2016-01-20

    Tauopathies, such as Alzheimer's disease (AD), are a group of disorders characterized neuropathologically by intracellular toxic accumulations of abnormal protein aggregates formed by misfolding of the microtubule-associated protein tau. Since protein self-assembly appears to be an initial key step in the pathology of this group of diseases, intervening in this process can be both a prophylactic measure and a means for modifying the course of the disease for therapeutic purposes. We and others have shown that aromatic small molecules can be effective inhibitors of aggregation of various protein assemblies, by binding to the aromatic core in aggregation-prone motifs and preventing their self-assembly. Specifically, we have designed a series of small aromatic naphthoquinone-tryptophan hybrid molecules as candidate aggregation inhibitors of β -sheet based assembly and demonstrated their efficacy toward inhibiting aggregation of the amyloid-β peptide, another culprit of AD, as well as of various other aggregative proteins involved in other protein misfolding diseases. Here we tested whether a leading naphthoquinone-tryptophan hybrid molecule, namely NQTrp, can be repurposed as an inhibitor of the aggregation of the tau protein in vitro and in vivo. We show that the molecule inhibits the in vitro assembly of PHF6, the aggregation-prone fragment of tau protein, reduces hyperphosphorylated tau deposits and ameliorates tauopathy-related behavioral defect in an established transgenic Drosophila model expressing human tau. We suggest that NQTrp, or optimized versions of it, could act as novel disease modifying drugs for AD and other tauopathies. PMID:26836184

  16. Vascular variant of prion protein cerebral amyloidosis with tau-positive neurofibrillary tangles: the phenotype of the stop codon 145 mutation in PRNP.

    PubMed Central

    Ghetti, B; Piccardo, P; Spillantini, M G; Ichimiya, Y; Porro, M; Perini, F; Kitamoto, T; Tateishi, J; Seiler, C; Frangione, B; Bugiani, O; Giaccone, G; Prelli, F; Goedert, M; Dlouhy, S R; Tagliavini, F

    1996-01-01

    Deposition of PrP amyloid in cerebral vessels in conjunction with neurofibrillary lesions is the neuropathologic hallmark of the dementia associated with a stop mutation at codon 145 of PRNP, the gene encoding the prion protein (PrP). In this disorder, the vascular amyloid in tissue sections and the approximately 7.5-kDa fragment extracted from amyloid are labeled by antibodies to epitopes located in the PrP sequence including amino acids 90-147. Amyloid-laden vessels are also labeled by antibodies against the C terminus, suggesting that PrP from the normal allele is involved in the pathologic process. Abundant neurofibrillary lesions are present in the cerebral gray matter. They are composed of paired helical filaments, are labeled with antibodies that recognize multiple phosphorylation sites in tau protein, and are similar to those observed in Alzheimer disease. A PrP cerebral amyloid angiopathy has not been reported in diseases caused by PRNP mutations or in human transmissible spongiform encephalopathies; we propose to name this phenotype PrP cerebral amyloid angiopathy (PrP-CAA). Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 PMID:8570627

  17. Tau polarisation at LEP

    NASA Astrophysics Data System (ADS)

    Alemany, Ricard

    1999-04-01

    The measurements of the tau polarisation at LEP I are reviewed. Special emphasis is given to the new preliminary results presented at this conference. The ALEPH collaboration has studied the polarisation as a function of the polar angle using a new method based on the tau direction reconstruction and fully exploiting the angular correlations. A second traditional approach, based on the single tau decays has been also developed. The DELPHI collaboration has also studied the full data sample using an individual tau decay method and an inclusive hadronic selection. The results from the four experiments are presented with discussion of the compatibility among the methods and experiments.

  18. Tau-Driven Neuronal and Neurotrophic Dysfunction in a Mouse Model of Early Tauopathy

    PubMed Central

    Mazzaro, Nadia; Barini, Erica; Spillantini, Maria Grazia; Goedert, Michel; Medini, Paolo

    2016-01-01

    Tauopathies are neurodegenerative diseases characterized by intraneuronal inclusions of hyperphosphorylated tau protein and abnormal expression of brain-derived neurotrophic factor (BDNF), a key modulator of neuronal survival and function. The severity of both these pathological hallmarks correlate with the degree of cognitive impairment in patients. However, how tau pathology specifically modifies BDNF signaling and affects neuronal function during early prodromal stages of tauopathy remains unclear. Here, we report that the mild tauopathy developing in retinal ganglion cells (RGCs) of the P301S tau transgenic (P301S) mouse induces functional retinal changes by disrupting BDNF signaling via the TrkB receptor. In adult P301S mice, the physiological visual response of RGCs to pattern light stimuli and retinal acuity decline significantly. As a consequence, the activity-dependent secretion of BDNF in the vitreous is impaired in P301S mice. Further, in P301S retinas, TrkB receptors are selectively upregulated, but uncoupled from downstream extracellular signal-regulated kinase (ERK) 1/2 signaling. We also show that the impairment of TrkB signaling is triggered by tau pathology and mediates the tau-induced dysfunction of visual response. Overall our results identify a neurotrophin-mediated mechanism by which tau induces neuronal dysfunction during prodromal stages of tauopathy and define tau-driven pathophysiological changes of potential value to support early diagnosis and informed therapeutic decisions. SIGNIFICANCE STATEMENT This work highlights the potential molecular mechanisms by which initial tauopathy induces neuronal dysfunction. Combining clinically used electrophysiological techniques (i.e., electroretinography) and molecular analyses, this work shows that in a relevant model of early tauopathy, the retina of the P301S mutant human tau transgenic mouse, mild tau pathology results in functional changes of neuronal activity, likely due to selective impairment

  19. Phosphorylation of tau by glycogen synthase kinase 3beta affects the ability of tau to promote microtubule self-assembly.

    PubMed Central

    Utton, M A; Vandecandelaere, A; Wagner, U; Reynolds, C H; Gibb, G M; Miller, C C; Bayley, P M; Anderton, B H

    1997-01-01

    To study the effects of phosphorylation by glycogen synthase kinase-3beta (GSK-3beta) on the ability of the microtubule-associated protein tau to promote microtubule self-assembly, tau isoform 1 (foetal tau) and three mutant forms of this tau isoform were investigated. The three mutant forms of tau had the following serine residues, known to be phosphorylated by GSK-3, replaced with alanine residues so as to preclude their phosphorylation: (1) Ser-199 and Ser-202 (Ser-199/202-->Ala), (2) Ser-235 (Ser-235-->Ala) and (3) Ser-396 and Ser-404 (Ser-396/404-->Ala). Wild-type tau and the mutant forms of tau were phosphorylated with GSK-3beta, and their ability to promote microtubule self-assembly was compared with the corresponding non-phosphorylated tau species. In the non-phosphorylated form, wild-type tau and all of the mutants affected the mean microtubule length and number concentrations of assembled microtubules in a manner consistant with enhanced microtubule nucleation. Phosphorylation of these tau species with GSK-3beta consistently reduced the ability of a given tau species to promote microtubule self-assembly, although the affinity of the tau for the microtubules was not greatly affected by phosphorylation since the tau species remained largely associated with the microtubules. This suggests that the regulation of microtubule assembly can be controlled by phosphorylation of tau at sites accessible to GSK-3beta by a mechanism that does not necessarily involve the dissociation of tau from the microtubules. PMID:9169608

  20. Evidence for two distinct binding sites for tau on microtubules

    PubMed Central

    Makrides, Victoria; Massie, Michelle R.; Feinstein, Stuart C.; Lew, John

    2004-01-01

    The microtubule-associated protein tau regulates diverse and essential microtubule functions, from the nucleation and promotion of microtubule polymerization to the regulation of microtubule polarity and dynamics, as well as the spacing and bundling of axonal microtubules. Thermodynamic studies show that tau interacts with microtubules in the low- to mid-nanomolar range, implying moderate binding affinity. At the same time, it is well established that microtubule-bound tau does not undergo exchange with the bulk medium readily, suggesting that the tau-microtubule interaction is essentially irreversible. Given this dilemma, we investigated the mechanism of interaction between tau and microtubules in kinetic detail. Stopped-flow kinetic analysis reveals moderate binding affinity between tau and preassembled microtubules and rapid dissociation/association kinetics. In contrast, when microtubules are generated by copolymerization of tubulin and tau, a distinct population of microtubule-bound tau is observed, the binding of which seems irreversible. We propose that reversible binding occurs between tau and the surface of preassembled microtubules, whereas irreversible binding results when tau is coassembled with tubulin into a tau-microtubule copolymer. Because the latter is expected to be physiologically relevant, its characterization is of central importance. PMID:15096589

  1. Measurement of the tau lifetime

    SciTech Connect

    Jaros, J.A.

    1982-10-01

    If the tau lepton couples to the charged weak current with universal strength, its lifetime can be expressed in terms of the muon's lifetime, the ratio of the masses of the muon and the tau, and the tau's branching ratio into e anti nu/sub e/ nu/sub tau/ as tau/sub tau/ = tau/sub ..mu../ (m/sub ..mu..//m/sub tau/)/sup 5/ B(tau ..-->.. e anti nu/sub e/nu/sub tau/) = 2.8 +- 0.2 x 10/sup -13/ s. This paper describes the measurement of the tau lifetime made by the Mark II collaboration, using a new high precision drift chamber in contunction with the Mark II detector at PEP. The results of other tau lifetime measurements are summarized.

  2. Tau: The Center of a Signaling Nexus in Alzheimer's Disease

    PubMed Central

    Khan, Shahzad S.; Bloom, George S.

    2016-01-01

    Tau is a microtubule-associated protein whose misfolding, hyper-phosphorylation, loss of normal function and toxic gain of function are linked to several neurodegenerative disorders, including Alzheimer's disease (AD). This review discusses the role of tau in amyloid-β (Aβ) induced toxicity in AD. The consequences of tau dysfunction, starting from the axon and concluding at somadendritic compartments, will be highlighted. PMID:26903798

  3. Anorexigenic lipopeptides ameliorate central insulin signaling and attenuate tau phosphorylation in hippocampi of mice with monosodium glutamate-induced obesity.

    PubMed

    Špolcová, Andrea; Mikulášková, Barbora; Holubová, Martina; Nagelová, Veronika; Pirnik, Zdenko; Zemenová, Jana; Haluzík, Martin; Železná, Blanka; Galas, Marie-Christine; Maletínská, Lenka

    2015-01-01

    Numerous epidemiological and experimental studies have demonstrated that patients who suffer from metabolic disorders, such as type 2 diabetes mellitus (T2DM) or obesity, have higher risks of cognitive dysfunction and of Alzheimer's disease (AD). Impaired insulin signaling in the brain could contribute to the formation of neurofibrillary tangles, which contain an abnormally hyperphosphorylated tau protein. This study aimed to determine whether potential tau hyperphosphorylation could be detected in an obesity-induced pre-diabetes state and whether anorexigenic agents could affect this state. We demonstrated that 6-month-old mice with monosodium glutamate (MSG) obesity, which represent a model of obesity-induced pre-diabetes, had increased tau phosphorylation at Ser396 and Thr231 in the hippocampus compared with the controls, as determined by western blots. Two weeks of subcutaneous treatment with a lipidized analog of prolactin-releasing peptide (palm-PrRP31) or with the T2DM drug liraglutide, which both had a central anorexigenic effect, resulted in increased phosphorylation of the insulin cascade kinases PDK1 (Ser241), Akt (Thr308), and GSK-3β (Ser9). Furthermore, these drugs attenuated phosphorylation at Ser396, Thr231, and Thr212 of tau and of the primary tau kinases in the hippocampi of 6-month-old MSG-obese mice. We identified tau hyperphosphorylation in the obesity-induced pre-diabetes state in MSG-obese mice and demonstrated the beneficial effects of palm-PrRP31 and liraglutide, both of known central anorexigenic effects, on hippocampal insulin signaling and on tau phosphorylation. PMID:25624414

  4. Abnormal prion protein in the retina of Rocky Mountain elk (Cervus Elaphus Nelsoni)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Background: Chronic wasting disease (CWD), a transmissible spongiform encephalopathy, has been reported in captive and free-ranging mule deer (Odocoileus hemionus hemionus), white-tailed deer (Odocoileus virginianus) and Rocky Mountain elk (Cervus elaphus nelsoni). An abnormal isoform of a prion pro...

  5. Tau Mislocation in Glucocorticoid-Triggered Hippocampal Pathology.

    PubMed

    Pinheiro, Sara; Silva, Joana; Mota, Cristina; Vaz-Silva, João; Veloso, Ana; Pinto, Vítor; Sousa, Nuno; Cerqueira, João; Sotiropoulos, Ioannis

    2016-09-01

    The exposure to high glucocorticoids (GC) triggers neuronal atrophy and cognitive deficits, but the exact cellular mechanisms underlying the GC-associated dendritic remodeling and spine loss are still poorly understood. Previous studies have implicated sustained GC elevations in neurodegenerative mechanisms through GC-evoked hyperphosphorylation of the cytoskeletal protein Tau while Tau mislocation has recently been proposed as relevant in Alzheimer's disease (AD) pathology. In light of the dual cytoplasmic and synaptic role of Tau, this study monitored the impact of prolonged GC treatment on Tau intracellular localization and its phosphorylation status in different cellular compartments. We demonstrate, both by biochemical and ultrastructural analysis, that GC administration led to cytosolic and dendritic Tau accumulation in rat hippocampus, and triggered Tau hyperphosphorylation in epitopes related to its malfunction (Ser396/404) and cytoskeletal pathology (e.g., Thr231 and Ser262). In addition, we show, for the first time, that chronic GC administration also increased Tau levels in synaptic compartment; however, at the synapse, there was an increase in phosphorylation of Ser396/404, but a decrease of Thr231. These GC-triggered Tau changes were paralleled by reduced levels of synaptic scaffolding proteins such as PSD-95 and Shank proteins as well as reduced dendritic branching and spine loss. These in vivo findings add to our limited knowledge about the underlying mechanisms of GC-evoked synaptic atrophy and neuronal disconnection implicating Tau missorting in mechanism(s) of synaptic damage, beyond AD pathology. PMID:26328538

  6. PICALM modulates autophagy activity and tau accumulation

    PubMed Central

    Moreau, Kevin; Fleming, Angeleen; Imarisio, Sara; Lopez Ramirez, Ana; Mercer, Jacob L.; Jimenez-Sanchez, Maria; Bento, Carla F.; Puri, Claudia; Zavodszky, Eszter; Siddiqi, Farah; Lavau, Catherine P.; Betton, Maureen; O’Kane, Cahir J.; Wechsler, Daniel S.; Rubinsztein, David C.

    2014-01-01

    Genome-wide association studies have identified several loci associated with Alzheimer’s disease (AD), including proteins involved in endocytic trafficking such as PICALM/CALM (phosphatidylinositol binding clathrin assembly protein). It is unclear how these loci may contribute to AD pathology. Here we show that CALM modulates autophagy and alters clearance of tau, a protein which is a known autophagy substrate and which is causatively linked to AD, both in vitro and in vivo. Furthermore, altered CALM expression exacerbates tau-mediated toxicity in zebrafish transgenic models. CALM influences autophagy by regulating the endocytosis of SNAREs, such as VAMP2, VAMP3 and VAMP8, which have diverse effects on different stages of the autophagy pathway, from autophagosome formation to autophagosome degradation. This study suggests that the AD genetic risk factor CALM modulates autophagy, and this may affect disease in a number of ways including modulation of tau turnover. PMID:25241929

  7. Disruption of Axonal Transport Perturbs Bone Morphogenetic Protein (BMP) - Signaling and Contributes to Synaptic Abnormalities in Two Neurodegenerative Diseases

    PubMed Central

    Kang, Min Jung; Hansen, Timothy J.; Mickiewicz, Monique; Kaczynski, Tadeusz J.; Fye, Samantha; Gunawardena, Shermali

    2014-01-01

    Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases. PMID:25127478

  8. Monitoring of Intracellular Tau Aggregation Regulated by OGA/OGT Inhibitors.

    PubMed

    Lim, Sungsu; Haque, Md Mamunul; Nam, Ghilsoo; Ryoo, Nayeon; Rhim, Hyewhon; Kim, Yun Kyung

    2015-01-01

    Abnormal phosphorylation of tau has been considered as a key pathogenic mechanism inducing tau aggregation in multiple neurodegenerative disorders, collectively called tauopathies. Recent evidence showed that tau phosphorylation sites are protected with O-linked β-N-acetylglucosamine (O-GlcNAc) in normal brain. In pathological condition, tau is de-glycosylated and becomes a substrate for kinases. Despite the importance of O-GlcNAcylation in tau pathology, O-GlcNAc transferase (OGT), and an enzyme catalyzing O-GlcNAc to tau, has not been carefully investigated in the context of tau aggregation. Here, we investigated intracellular tau aggregation regulated by BZX2, an inhibitor of OGT. Upon the inhibition of OGT, tau phosphorylation increased 2.0-fold at Ser199 and 1.5-fold at Ser396, resulting in increased tau aggregation. Moreover, the BZX2 induced tau aggregation was efficiently reduced by the treatment of Thiamet G, an inhibitor of O-GlcNAcase (OGA). Our results demonstrated the protective role of OGT in tau aggregation and also suggest the counter-regulatory mechanism of OGA and OGT in tau pathology. PMID:26343633

  9. Monitoring of Intracellular Tau Aggregation Regulated by OGA/OGT Inhibitors

    PubMed Central

    Lim, Sungsu; Haque, Md. Mamunul; Nam, Ghilsoo; Ryoo, Nayeon; Rhim, Hyewhon; Kim, Yun Kyung

    2015-01-01

    Abnormal phosphorylation of tau has been considered as a key pathogenic mechanism inducing tau aggregation in multiple neurodegenerative disorders, collectively called tauopathies. Recent evidence showed that tau phosphorylation sites are protected with O-linked β-N-acetylglucosamine (O-GlcNAc) in normal brain. In pathological condition, tau is de-glycosylated and becomes a substrate for kinases. Despite the importance of O-GlcNAcylation in tau pathology, O-GlcNAc transferase (OGT), and an enzyme catalyzing O-GlcNAc to tau, has not been carefully investigated in the context of tau aggregation. Here, we investigated intracellular tau aggregation regulated by BZX2, an inhibitor of OGT. Upon the inhibition of OGT, tau phosphorylation increased 2.0-fold at Ser199 and 1.5-fold at Ser396, resulting in increased tau aggregation. Moreover, the BZX2 induced tau aggregation was efficiently reduced by the treatment of Thiamet G, an inhibitor of O-GlcNAcase (OGA). Our results demonstrated the protective role of OGT in tau aggregation and also suggest the counter-regulatory mechanism of OGA and OGT in tau pathology. PMID:26343633

  10. A novel approach for targeted elimination of CSPG4-positive triple-negative breast cancer cells using a MAP tau-based fusion protein.

    PubMed

    Amoury, Manal; Mladenov, Radoslav; Nachreiner, Thomas; Pham, Anh-Tuan; Hristodorov, Dmitrij; Di Fiore, Stefano; Helfrich, Wijnand; Pardo, Alessa; Fey, Georg; Schwenkert, Michael; Thepen, Theophilus; Kiessling, Fabian; Hussain, Ahmad F; Fischer, Rainer; Kolberg, Katharina; Barth, Stefan

    2016-08-15

    Chondroitin sulfate proteoglycan 4 (CSPG4) has been identified as a highly promising target antigen for immunotherapy of triple-negative breast cancer (TNBC). TNBC represents a highly aggressive heterogeneous group of tumors lacking expression of estrogen, progesterone and human epidermal growth factor receptor 2. TNBC is particularly prevalent among young premenopausal women. No suitable targeted therapies are currently available and therefore, novel agents for the targeted elimination of TNBC are urgently needed. Here, we present a novel cytolytic fusion protein (CFP), designated αCSPG4(scFv)-MAP, that consists of a high affinity CSPG4-specific single-chain antibody fragment (scFv) genetically fused to a functionally enhanced form of the human microtubule-associated protein (MAP) tau. Our data indicate that αCSPG4(scFv)-MAP efficiently targets CSPG4(+) TNBC-derived cell lines MDA-MB-231 and Hs 578T and potently inhibits their growth with IC50 values of ∼200 nM. Treatment with αCSPG(scFv)-MAP resulted in induction of the mitochondrial stress pathway by activation of caspase-9 as well as endonuclease G translocation to the nucleus, while induction of the caspase-3 apoptosis pathway was not detectable. Importantly, in vivo studies in mice bearing human breast cancer xenografts revealed efficient targeting to and accumulation of αCSPG4(scFv)-MAP at tumor sites resulting in prominent tumor regression. Taken together, this preclinical proof of concept study confirms the potential clinical value of αCSPG4(scFv)-MAP as a novel targeted approach for the elimination of CSPG4-positive TNBC. PMID:27037627

  11. Tyrosine Nitration within the Proline-Rich Region of Tau in Alzheimer's Disease

    PubMed Central

    Reyes, Juan F.; Fu, Yifan; Vana, Laurel; Kanaan, Nicholas M.; Binder, Lester I.

    2011-01-01

    A substantial body of evidence suggests that nitrative injury contributes to neurodegeneration in Alzheimer's disease (AD) and other neurodegenerative disorders. Previously, we showed in vitro that within the tau protein the N-terminal tyrosine residues (Y18 and Y29) are more susceptible to nitrative modifications than other tyrosine sites (Y197 and Y394). Using site-specific antibodies to nitrated tau at Y18 and Y29, we identified tau nitrated in both glial (Y18) and neuronal (Y29) tau pathologies. In this study, we report the characterization of two novel monoclonal antibodies, Tau-nY197 and Tau-nY394, recognizing tau nitrated at Y197 and Y394, respectively. By Western blot analysis, Tau-nY197 labeled soluble tau and insoluble paired helical filament proteins (PHF-tau) nitrated at Y197 from control and AD brain samples. Tau-nY394 failed to label soluble tau isolated from control or severe AD samples, but labeled insoluble PHF-tau to a limited extent. Immunohistochemical analysis using Tau-nY197 revealed the hallmark tau pathology associated with AD; Tau-nY394 did not detect any pathological lesions characteristic of the disorder. These data suggest that a subset of the hallmark pathological inclusions of AD contain tau nitrated at Y197. However, nitration at Y197 was also identified in soluble tau from all control samples, including those at Braak stage 0, suggesting that nitration at this site in the proline-rich region of tau may have normal biological functions in the human brain. PMID:21514440

  12. Absence of a Role for Phosphorylation in the Tau Pathology of Alzheimer’s Disease

    PubMed Central

    Lai, Robert Y. K.; Harrington, Charles R.; Wischik, Claude M.

    2016-01-01

    Alzheimer’s disease is characterized by redistribution of the tau protein pool from soluble to aggregated states. Aggregation forms proteolytically stable core polymers restricted to the repeat domain, and this binding interaction has prion-like properties. We have compared the binding properties of tau and tubulin in vitro using a system in which we can measure binding affinities for proteins alternated between solid and aqueous phases. The study reveals that a phase-shifted repeat domain fragment from the Paired Helical Filament core contains all that is required for high affinity tau-tau binding. Unlike tau-tubulin binding, tau-tau binding shows concentration-dependent enhancement in both phase directions due to an avidity effect which permits one molecule to bind to many as the concentration in the opposite phase increases. Phosphorylation of tau inhibits tau-tau binding and tau-tubulin binding to equivalent extents. Tau-tau binding is favoured over tau-tubulin binding by factors in the range 19–41-fold, irrespective of phosphorylation status. A critical requirement for tau to become aggregation-competent is prior binding to a solid-phase substrate, which induces a conformational change in the repeat domain permitting high-affinity binding to occur even if tau is phosphorylated. The endogenous species enabling this nucleation event to occur in vivo remains to be identified. The findings of the study suggest that development of disease-modifying drugs for tauopathies should not target phosphorylation, but rather should target inhibitors of tau-tau binding or inhibitors of the binding interaction with as yet unidentified endogenous polyanionic substrates required to nucleate tau assembly. PMID:27070645

  13. Acetylation mimic of lysine 280 exacerbates human Tau neurotoxicity in vivo

    PubMed Central

    Gorsky, Marianna Karina; Burnouf, Sylvie; Dols, Jacqueline; Mandelkow, Eckhard; Partridge, Linda

    2016-01-01

    Dysfunction and accumulation of the microtubule-associated human Tau (hTau) protein into intraneuronal aggregates is observed in many neurodegenerative disorders including Alzheimer’s disease (AD). Reversible lysine acetylation has recently emerged as a post-translational modification that may play an important role in the modulation of hTau pathology. Acetylated hTau species have been observed within hTau aggregates in human AD brains and multi-acetylation of hTau in vitro regulates its propensity to aggregate. However, whether lysine acetylation at position 280 (K280) modulates hTau-induced toxicity in vivo is unknown. We generated new Drosophila transgenic models of hTau pathology to evaluate the contribution of K280 acetylation to hTau toxicity, by analysing the respective toxicity of pseudo-acetylated (K280Q) and pseudo-de-acetylated (K280R) mutant forms of hTau. We observed that mis-expression of pseudo-acetylated K280Q-hTau in the adult fly nervous system potently exacerbated fly locomotion defects and photoreceptor neurodegeneration. In addition, modulation of K280 influenced total hTau levels and phosphorylation without changing hTau solubility. Altogether, our results indicate that pseudo-acetylation of the single K280 residue is sufficient to exacerbate hTau neurotoxicity in vivo, suggesting that acetylated K280-hTau species contribute to the pathological events leading to neurodegeneration in AD. PMID:26940749

  14. Polymeric alkylpyridinium salts permit intracellular delivery of human Tau in rat hippocampal neurons: requirement of Tau phosphorylation for functional deficits.

    PubMed

    Koss, Dave J; Robinson, Lianne; Mietelska-Porowska, Anna; Gasiorowska, Anna; Sepčić, Kristina; Turk, Tom; Jaspars, Marcel; Niewiadomska, Grazyna; Scott, Roderick H; Platt, Bettina; Riedel, Gernot

    2015-12-01

    Patients suffering from tauopathies including frontotemporal dementia (FTD) and Alzheimer's disease (AD) present with intra-neuronal aggregation of microtubule-associated protein Tau. During the disease process, Tau undergoes excessive phosphorylation, dissociates from microtubules and aggregates into insoluble neurofibrillary tangles (NFTs), accumulating in the soma. While many aspects of the disease pathology have been replicated in transgenic mouse models, a region-specific non-transgenic expression model is missing. Complementing existing models, we here report a novel region-specific approach to modelling Tau pathology. Local co-administration of the pore-former polymeric 1,3-alkylpyridinium salts (Poly-APS) extracted from marine sponges, and synthetic full-length 4R recombinant human Tau (hTau) was performed in vitro and in vivo. At low doses, Poly-APS was non-toxic and cultured cells exposed to Poly-APS (0.5 µg/ml) and hTau (1 µg/ml; ~22 µM) had normal input resistance, resting-state membrane potentials and Ca(2+) transients induced either by glutamate or KCl, as did cells exposed to a low concentration of the phosphatase inhibitor Okadaic acid (OA; 1 nM, 24 h). Combined hTau loading and phosphatase inhibition resulted in a collapse of the membrane potential, suppressed excitation and diminished glutamate and KCl-stimulated Ca(2+) transients. Stereotaxic infusions of Poly-APS (0.005 µg/ml) and hTau (1 µg/ml) bilaterally into the dorsal hippocampus at multiple sites resulted in hTau loading of neurons in rats. A separate cohort received an additional 7-day minipump infusion of OA (1.2 nM) intrahippocampally. When tested 2 weeks after surgery, rats treated with Poly-APS+hTau+OA presented with subtle learning deficits, but were also impaired in cognitive flexibility and recall. Hippocampal plasticity recorded from slices ex vivo was diminished in Poly-APS+hTau+OA subjects, but not in other treatment groups. Histological sections confirmed the intracellular

  15. Hyperphosphorylation results in tau dysfunction in DNA folding and protection.

    PubMed

    Lu, Yang; He, Hai-Jin; Zhou, Jun; Miao, Jun-Ye; Lu, Jing; He, Ying-Ge; Pan, Rong; Wei, Yan; Liu, Ying; He, Rong-Qiao

    2013-01-01

    Hyperphosphorylation of tau occurs in preclinical and clinical stages of Alzheimer's disease (AD), and hyperphosphorylated tau is the main constituent of the paired helical filaments in the brains of mild cognitive impairment and AD patients. While most of the work described so far focused on the relationship between hyperphosphorylation of tau and microtubule disassembly as well as axonal transport impairments, both phenomena ultimately leading to cell death, little work has been done to study the correlation between tau hyperphosphorylation and DNA damage. As we showed in this study, tau hyperphosphorylation and DNA damage co-occurred under formaldehyde treatment in N2a cells, indicating that phosphorylated tau (p-Tau) induced by formaldehyde may be involved in DNA impairment. After phosphorylation, the effect of tau in preventing DNA from thermal denaturation was diminished, its ability to accelerate DNA renaturation was lost, and its function in protecting DNA from reactive oxygen species (ROS) attack was impaired. Thus, p-Tau is not only associated with the disassembly of the microtubule system, but also plays a crucial role in DNA impairment. Hyperphosphorylation-mediated dysfunction of tau protein in prevention of DNA structure from damage under the attack of ROS may provide novel insights into the mechanisms underlying tauopathies. PMID:24064506

  16. Is the presence of abnormal prion protein in the renal glomeruli of feline species presenting with FSE authentic?

    PubMed

    Lezmi, Stéphane; Baron, Thierry G M; Bencsik, Anna A

    2010-01-01

    In a recent paper written by Hilbe et al (BMC vet res, 2009), the nature and specificity of the prion protein deposition in the kidney of feline species affected with feline spongiform encephalopathy (FSE) were clearly considered doubtful. This article was brought to our attention because we published several years ago an immunodetection of abnormal prion protein in the kidney of a cheetah affected with FSE. At this time we were convinced of its specificity but without having all the possibilities to demonstrate it. As previously published by another group, the presence of abnormal prion protein in some renal glomeruli in domestic cats affected with FSE is indeed generally considered as doubtful mainly because of low intensity detected in this organ and because control kidneys from safe animals present also a weak prion immunolabelling. Here we come back on these studies and thought it would be helpful to relay our last data to the readers of BMC Vet res for future reference on this subject.Here we come back on our material as it is possible to study and demonstrate the specificity of prion immunodetection using the PET-Blot method (Paraffin Embedded Tissue--Blot). It is admitted that this method allows detecting the Proteinase K (PK) resistant form of the abnormal prion protein (PrPres) without any confusion with unspecific immunoreaction. We re-analysed the kidney tissue versus adrenal gland and brain samples from the same cheetah affected with TSE using this PET-Blot method. The PET-Blot analysis revealed specific PrPres detection within the brain, adrenal gland and some glomeruli of the kidney, with a complete identicalness compared to our previous detection using immunohistochemistry. In conclusion, these new data enable us to confirm with assurance the presence of specific abnormal prion protein in the adrenal gland and in the kidney of the cheetah affected with FSE. It also emphasizes the usefulness for the re-examination of any available tissue blocks with

  17. Exosomal Protein Deficiencies: How Abnormal RNA Metabolism Results in Childhood-Onset Neurological Diseases

    PubMed Central

    Müller, Juliane S.; Giunta, Michele; Horvath, Rita

    2016-01-01

    Defects of RNA metabolism have been increasingly identified in various forms of inherited neurological diseases. Recently, abnormal RNA degradation due to mutations in human exosome subunit genes has been shown to cause complex childhood onset neurological presentations including spinal muscular atrophy, pontocerebellar hypoplasia and myelination deficiencies. This paper summarizes our current knowledge about the exosome in human neurological disease and provides some important insights into potential disease mechanisms. PMID:27127732

  18. NMR Meets Tau: Insights into Its Function and Pathology

    PubMed Central

    Lippens, Guy; Landrieu, Isabelle; Smet, Caroline; Huvent, Isabelle; Gandhi, Neha S.; Gigant, Benoît; Despres, Clément; Qi, Haoling; Lopez, Juan

    2016-01-01

    In this review, we focus on what we have learned from Nuclear Magnetic Resonance (NMR) studies on the neuronal microtubule-associated protein Tau. We consider both the mechanistic details of Tau: the tubulin relationship and its aggregation process. Phosphorylation of Tau is intimately linked to both aspects. NMR spectroscopy has depicted accurate phosphorylation patterns by different kinases, and its non-destructive character has allowed functional assays with the same samples. Finally, we will discuss other post-translational modifications of Tau and its interaction with other cellular factors in relationship to its (dys)function. PMID:27338491

  19. NMR Meets Tau: Insights into Its Function and Pathology.

    PubMed

    Lippens, Guy; Landrieu, Isabelle; Smet, Caroline; Huvent, Isabelle; Gandhi, Neha S; Gigant, Benoît; Despres, Clément; Qi, Haoling; Lopez, Juan

    2016-01-01

    In this review, we focus on what we have learned from Nuclear Magnetic Resonance (NMR) studies on the neuronal microtubule-associated protein Tau. We consider both the mechanistic details of Tau: the tubulin relationship and its aggregation process. Phosphorylation of Tau is intimately linked to both aspects. NMR spectroscopy has depicted accurate phosphorylation patterns by different kinases, and its non-destructive character has allowed functional assays with the same samples. Finally, we will discuss other post-translational modifications of Tau and its interaction with other cellular factors in relationship to its (dys)function. PMID:27338491

  20. Pfaffian and Determinantal Tau Functions

    NASA Astrophysics Data System (ADS)

    van de Leur, Johan W.; Orlov, Alexander Yu.

    2015-11-01

    Adler, Shiota and van Moerbeke observed that a tau function of the Pfaff lattice is a square root of a tau function of the Toda lattice hierarchy of Ueno and Takasaki. In this paper, we give a representation theoretical explanation for this phenomenon. We consider 2-BKP and two-component 2-KP tau functions. We shall show that a square of a BKP tau function is equal to a certain two-component KP tau function and a square of a 2-BKP tau function is equal to a certain two-component 2-KP tau function.

  1. Nuclear Tau and Its Potential Role in Alzheimer's Disease.

    PubMed

    Bukar Maina, Mahmoud; Al-Hilaly, Youssra K; Serpell, Louise C

    2016-01-01

    Tau protein, found in both neuronal and non-neuronal cells, forms aggregates in neurons that constitutes one of the hallmarks of Alzheimer's disease (AD). For nearly four decades, research efforts have focused more on tau's role in physiology and pathology in the context of the microtubules, even though, for over three decades, tau has been localised in the nucleus and the nucleolus. Its nuclear and nucleolar localisation had stimulated many questions regarding its role in these compartments. Data from cell culture, mouse brain, and the human brain suggests that nuclear tau could be essential for genome defense against cellular distress. However, its nature of translocation to the nucleus, its nuclear conformation and interaction with the DNA and other nuclear proteins highly suggest it could play multiple roles in the nucleus. To find efficient tau-based therapies, there is a need to understand more about the functional relevance of the varied cellular distribution of tau, identify whether specific tau transcripts or isoforms could predict tau's localisation and function and how they are altered in diseases like AD. Here, we explore the cellular distribution of tau, its nuclear localisation and function and its possible involvement in neurodegeneration. PMID:26751496

  2. Sequestration of tau by granulovacuolar degeneration in Alzheimer's disease.

    PubMed Central

    Bondareff, W.; Wischik, C. M.; Novak, M.; Roth, M.

    1991-01-01

    Antibodies directed against three regions of tau have been used in a histologic study of granulovacuolar degeneration (GVD) in Alzheimer's disease (AD). Granulovascular degeneration complexes, consisting of a dense granule in a less-dense vacuole, were found in hippocampal pyramidal neurons in all patients studied. Anti-tau antibodies directed against the N-and C-termini, and the repeat region of tau, were found to immunolabel the granule of the GVD complex. Intracellular neurofibrillary tangles also were labeled by these antibodies. In particular, MAb6.423, which recognizes tau protein sequestered in paired helical filaments (PHF) in AD, but not the normal tau proteins so far described in human brain, labeled GVD granules. Contrarily, a generic tau marker (MAb7.51), which immunolabels all known isoforms of isolated and expressed tau protein, including PHF-tau, did not label the GVD granule. These findings demonstrate that the entire tau molecule is sequestered within the GVD granule, and that the tau protein found in GVD complexes is antigenically related to that found in PHFs. There is, however, a difference in the way in which the repeat region of tau is incorporated into the two structures, making the MAb7.51 epitope unavailable in the GVD complex. These findings suggest that the formation of GVD complexes in hippocampal pyramidal neurons vulnerable to neurofibrillary degeneration may represent an alternative pathway for dealing with an aberrant molecular complex, which contributes to the formation of GVD granules and neurofibrillary tangles in AD. Images Figure 1 PMID:1909492

  3. Sustained high levels of neuroprotective, high molecular weight, phosphorylated tau in the longest-lived rodent

    PubMed Central

    Orr, Miranda E.; Garbarino, Valentina R.; Salinas, Angelica; Buffenstein, Rochelle

    2016-01-01

    Tau protein is primarily expressed in neuronal axons and modulates microtubule stability. Tau phosphorylation, aggregation and subcellular mislocalization coincide with neurodegeneration in numerous diseases, including Alzheimer's disease [AD]. During AD pathogenesis, tau misprocessing accompanies Aß accumulation; however, AD animal models, despite elevated Aß, fail to develop tauopathy. To assess whether lack of tau pathology is linked to short lifespan common to most AD models, we examined tau processing in extraordinarily long-lived, mouse-sized naked mole-rats (NMR; ~32 years), which express appreciable levels of Aß throughout life. NMRs, like other mammals, displayed highest tau phosphorylation during brain development. While tau phosphorylation decreased with aging, unexpectedly adult NMRs had higher levels than transgenic mice overexpressing mutant human tau. However, in sharp contrast with the somatodendritic accumulation of misprocessed tau in the transgenic mice, NMRs maintain axonal tau localization. Intriguingly, the adult NMR tau protein is 88kDa, much larger than 45-68kDa tau expressed in other mammals. We propose that this 88kDa tau protein may offer exceptional microtubule stability and neuroprotection against lifelong elevated Aß. PMID:25576082

  4. Uptake and Degradation of Protease-Sensitive and -Resistant Forms of Abnormal Human Prion Protein Aggregates by Human Astrocytes

    PubMed Central

    Choi, Young Pyo; Head, Mark W.; Ironside, James W.; Priola, Suzette A.

    2015-01-01

    Sporadic Creutzfeldt-Jakob disease is the most common of the human prion diseases, a group of rare, transmissible, and fatal neurologic diseases associated with the accumulation of an abnormal form (PrPSc) of the host prion protein. In sporadic Creutzfeldt-Jakob disease, disease-associated PrPSc is present not only as an aggregated, protease-resistant form but also as an aggregated protease-sensitive form (sPrPSc). Although evidence suggests that sPrPSc may play a role in prion pathogenesis, little is known about how it interacts with cells during prion infection. Here, we show that protease-sensitive abnormal PrP aggregates derived from patients with sporadic Creutzfeldt-Jakob disease are taken up and degraded by immortalized human astrocytes similarly to abnormal PrP aggregates that are resistant to proteases. Our data suggest that relative proteinase K resistance does not significantly influence the astrocyte's ability to degrade PrPSc. Furthermore, the cell does not appear to distinguish between sPrPSc and protease-resistant PrPSc, suggesting that sPrPSc could contribute to prion infection. PMID:25280631

  5. Genetic variations in tau-tubulin kinase-1 are linked to Alzheimer's disease in a Spanish case-control cohort.

    PubMed

    Vázquez-Higuera, José Luis; Martínez-García, Ana; Sánchez-Juan, Pascual; Rodríguez-Rodríguez, Eloy; Mateo, Ignacio; Pozueta, Ana; Frank, Ana; Valdivieso, Fernando; Berciano, José; Bullido, María J; Combarros, Onofre

    2011-03-01

    Neurofibrillary tangles, one of the characteristic neuropathological lesions found in Alzheimer's disease (AD) brains, are composed of abnormally hyperphosphorylated tau protein. Tau-tubulin kinase-1 (TTBK1) is a brain-specific protein kinase involved in tau phosphorylation at AD-related sites. We examined genetic variations of TTBK1 by genotyping nine haplotype tagging SNPs (htSNPs) (rs2104142, rs2651206, rs10807287, rs7764257, rs3800294, rs1995300, rs2756173, rs6936397, and rs6458330) in a group of 645 Spanish late-onset AD patients and 738 healthy controls. Using a recessive genetic model, minor allele homozygotes for rs2651206 in intron 1 (OR=0.50, p=0.0003), rs10807287 in intron 5 (OR=0.49, p=0.0002), and rs7764257 in intron 9 (OR=0.57, p=0.023), which are in strong linkage disequilibrium, had a lower risk of developing AD than subjects homozygotes and heterozygotes for the major allele. TTBK1 is a promising new candidate tau phosphorylation-related gene for AD risk. PMID:20096481

  6. Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice

    PubMed Central

    Sontag, Jean-Marie; Wasek, Brandi; Taleski, Goce; Smith, Josephine; Arning, Erland; Sontag, Estelle; Bottiglieri, Teodoro

    2014-01-01

    Common functional polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, a key enzyme in folate and homocysteine metabolism, influence risk for a variety of complex disorders, including developmental, vascular, and neurological diseases. MTHFR deficiency is associated with elevation of homocysteine levels and alterations in the methylation cycle. Here, using young and aged Mthfr knockout mouse models, we show that mild MTHFR deficiency can lead to brain-region specific impairment of the methylation of Ser/Thr protein phosphatase 2A (PP2A). Relative to wild-type controls, decreased expression levels of PP2A and leucine carboxyl methyltransferase (LCMT1) were primarily observed in the hippocampus and cerebellum, and to a lesser extent in the cortex of young null Mthfr−/− and aged heterozygous Mthfr+/− mice. A marked down regulation of LCMT1 correlated with the loss of PP2A/Bα holoenzymes. Dietary folate deficiency significantly decreased LCMT1, methylated PP2A and PP2A/Bα levels in all brain regions examined from aged Mthfr+/+ mice, and further exacerbated the regional effects of MTHFR deficiency in aged Mthfr+/− mice. In turn, the down regulation of PP2A/Bα was associated with enhanced phosphorylation of Tau, a neuropathological hallmark of Alzheimer’s disease (AD). Our findings identify hypomethylation of PP2A enzymes, which are major CNS phosphatases, as a novel mechanism by which MTHFR deficiency and Mthfr gene-diet interactions could lead to disruption of neuronal homeostasis, and increase the risk for a variety of neuropsychiatric disorders, including age-related diseases like sporadic AD. PMID:25202269

  7. Altered protein phosphatase 2A methylation and Tau phosphorylation in the young and aged brain of methylenetetrahydrofolate reductase (MTHFR) deficient mice.

    PubMed

    Sontag, Jean-Marie; Wasek, Brandi; Taleski, Goce; Smith, Josephine; Arning, Erland; Sontag, Estelle; Bottiglieri, Teodoro

    2014-01-01

    Common functional polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, a key enzyme in folate and homocysteine metabolism, influence risk for a variety of complex disorders, including developmental, vascular, and neurological diseases. MTHFR deficiency is associated with elevation of homocysteine levels and alterations in the methylation cycle. Here, using young and aged Mthfr knockout mouse models, we show that mild MTHFR deficiency can lead to brain-region specific impairment of the methylation of Ser/Thr protein phosphatase 2A (PP2A). Relative to wild-type controls, decreased expression levels of PP2A and leucine carboxyl methyltransferase (LCMT1) were primarily observed in the hippocampus and cerebellum, and to a lesser extent in the cortex of young null Mthfr (-/-) and aged heterozygous Mthfr (+/-) mice. A marked down regulation of LCMT1 correlated with the loss of PP2A/Bα holoenzymes. Dietary folate deficiency significantly decreased LCMT1, methylated PP2A and PP2A/Bα levels in all brain regions examined from aged Mthfr (+/+) mice, and further exacerbated the regional effects of MTHFR deficiency in aged Mthfr (+/-) mice. In turn, the down regulation of PP2A/Bα was associated with enhanced phosphorylation of Tau, a neuropathological hallmark of Alzheimer's disease (AD). Our findings identify hypomethylation of PP2A enzymes, which are major CNS phosphatases, as a novel mechanism by which MTHFR deficiency and Mthfr gene-diet interactions could lead to disruption of neuronal homeostasis, and increase the risk for a variety of neuropsychiatric disorders, including age-related diseases like sporadic AD. PMID:25202269

  8. Microtubule-associated protein tau (Mapt) is expressed in terminally differentiated odontoblasts and severely down-regulated in morphologically disturbed odontoblasts of Runx2 transgenic mice.

    PubMed

    Miyazaki, Toshihiro; Baba, Tomomi T; Mori, Masako; Moriishi, Takeshi; Komori, Toshihisa

    2015-08-01

    Runx2 is an essential transcription factor for osteoblast and odontoblast differentiation and the terminal differentiation of chondrocytes. We have previously shown that the terminal differentiation of odontoblasts is inhibited in Runx2 transgenic {Tg(Col1a1-Runx2)} mice under the control of the 2.3-kb Col1a1 promoter, which directs the transgene expression to osteoblasts and odontoblasts. Odontoblasts show severe reductions in Dspp and nestin expression and lose their characteristic polarized morphology, including a long process extending to dentin, in Tg(Col1a1-Runx2) mice. We study the molecular mechanism of odontoblast morphogenesis by comparing gene expression in the molars of wild-type and Tg(Col1a1-Runx2) mice, focusing on cytoskeleton-related genes. Using microarray, we found that the gene expression of microtubule-associated protein tau (Mapt), a neuronal phosphoprotein with important roles in neuronal biology and microtubule dynamics and assembly, was high in wild-type molars but severely reduced in Tg(Col1a1-Runx2) molars. Immunohistochemical analysis revealed that Mapt was specifically expressed in terminally differentiated odontoblasts including their processes in wild-type molars but its expression was barely detectable in Tg(Col1a1-Runx2) molars. Double-staining of Mapt and Runx2 showed their reciprocal expression in odontoblasts. Mapt and tubulin co-localized in odontoblasts in wild-type molars. Immunoelectron microscopic analysis demonstrated Mapt lying around α-tubulin-positive filamentous structures in odontoblast processes. Thus, Mapt is a useful marker for terminally differentiated odontoblasts and might play an important role in odontoblast morphogenesis. PMID:25707508

  9. Short Fibrils Constitute the Major Species of Seed-Competent Tau in the Brains of Mice Transgenic for Human P301S Tau

    PubMed Central

    Jackson, Samuel J.; Kerridge, Caroline; Cooper, Jane; Cavallini, Annalisa; Falcon, Benjamin; Cella, Claire V.; Landi, Alessia; Szekeres, Philip G.; Murray, Tracey K.; Ahmed, Zeshan; Goedert, Michel; Hutton, Michael; O'Neill, Michael J.

    2016-01-01

    The interneuronal propagation of aggregated tau is believed to play an important role in the pathogenesis of human tauopathies. It requires the uptake of seed-competent tau into cells, seeding of soluble tau in recipient neurons and release of seeded tau into the extracellular space to complete the cycle. At present, it is not known which tau species are seed-competent. Here, we have dissected the molecular characteristics of seed-competent tau species from the TgP301S tau mouse model using various biochemical techniques and assessed their seeding ability in cell and animal models. We found that sucrose gradient fractions from brain lysates seeded cellular tau aggregation only when large (>10 mer) aggregated, hyperphosphorylated (AT8- and AT100-positive) and nitrated tau was present. In contrast, there was no detectable seeding by fractions containing small, oligomeric (<6 mer) tau. Immunodepletion of the large aggregated AT8-positive tau strongly reduced seeding; moreover, fractions containing these species initiated the formation and spreading of filamentous tau pathology in vivo, whereas fractions containing tau monomers and small oligomeric assemblies did not. By electron microscopy, seed-competent sucrose gradient fractions contained aggregated tau species ranging from ring-like structures to small filaments. Together, these findings indicate that a range of filamentous tau aggregates are the major species that underlie the spreading of tau pathology in the P301S transgenic model. SIGNIFICANCE STATEMENT The spread of tau pathology from neuron to neuron is postulated to account for, or at least to contribute to, the overall propagation of tau pathology during the development of human tauopathies including Alzheimer's disease. It is therefore important to characterize the native tau species responsible for this process of seeding and pathology spreading. Here, we use several biochemical techniques to dissect the molecular characteristics of native tau protein

  10. Short Fibrils Constitute the Major Species of Seed-Competent Tau in the Brains of Mice Transgenic for Human P301S Tau.

    PubMed

    Jackson, Samuel J; Kerridge, Caroline; Cooper, Jane; Cavallini, Annalisa; Falcon, Benjamin; Cella, Claire V; Landi, Alessia; Szekeres, Philip G; Murray, Tracey K; Ahmed, Zeshan; Goedert, Michel; Hutton, Michael; O'Neill, Michael J; Bose, Suchira

    2016-01-20

    The interneuronal propagation of aggregated tau is believed to play an important role in the pathogenesis of human tauopathies. It requires the uptake of seed-competent tau into cells, seeding of soluble tau in recipient neurons and release of seeded tau into the extracellular space to complete the cycle. At present, it is not known which tau species are seed-competent. Here, we have dissected the molecular characteristics of seed-competent tau species from the TgP301S tau mouse model using various biochemical techniques and assessed their seeding ability in cell and animal models. We found that sucrose gradient fractions from brain lysates seeded cellular tau aggregation only when large (>10 mer) aggregated, hyperphosphorylated (AT8- and AT100-positive) and nitrated tau was present. In contrast, there was no detectable seeding by fractions containing small, oligomeric (<6 mer) tau. Immunodepletion of the large aggregated AT8-positive tau strongly reduced seeding; moreover, fractions containing these species initiated the formation and spreading of filamentous tau pathology in vivo, whereas fractions containing tau monomers and small oligomeric assemblies did not. By electron microscopy, seed-competent sucrose gradient fractions contained aggregated tau species ranging from ring-like structures to small filaments. Together, these findings indicate that a range of filamentous tau aggregates are the major species that underlie the spreading of tau pathology in the P301S transgenic model. Significance statement: The spread of tau pathology from neuron to neuron is postulated to account for, or at least to contribute to, the overall propagation of tau pathology during the development of human tauopathies including Alzheimer's disease. It is therefore important to characterize the native tau species responsible for this process of seeding and pathology spreading. Here, we use several biochemical techniques to dissect the molecular characteristics of native tau protein

  11. Myofibrillar myopathy with abnormal foci of desmin positivity. II. Immunocytochemical analysis reveals accumulation of multiple other proteins.

    PubMed

    De Bleecker, J L; Engel, A G; Ertl, B B

    1996-05-01

    The two major types of lesions in myofibrillar myopathy consist of hyaline spheroidal structures composed of compacted myofibrillar residues, and nonhyaline lesions that comprise foci of myofibrillar destruction. We employed immunocytochemical analysis to further characterize these abnormalities. The nonhyaline lesions are depleted of actin, alpha-actinin, myosin, and, less consistently, of titin and nebulin. Thus, each major component of the myofibrils is lost or decreased. These lesions also react strongly for both NCAM and desmin. By contrast, the hyaline structures are highly enriched in actin, are immunoreactive for fast and slow myosin, and show increased expression of titin, nebulin, and alpha-actinin. They fail to react for NCAM and react variably for desmin. Both types of lesion react, but with differing intensities, for gelsolin, dystrophin, beta-amyloid precursor protein (beta APP) epitopes amino-terminal to the alpha-secretase site, alpha 1-antichymotrypsin, and ubiquitin, and both can be congophilic. The increased expressions of desmin, dystrophin and gelsolin in muscle are also confirmed by immunoblot studies. The results, in harmony with the ultrastructural findings described in the companion paper, suggest that myofibrillar myopathy is conditioned by abnormal activation of a degradative process that primarily affects the myofibrils. A structural abnormality of desmin alone may not be sufficient to disrupt the myofibrillar architecture, but abnormal activation of a phosphorylating process could account for dissolution of the myofibrils. The cause and significance of the ectopic overexpression of desmin, dystrophin, NCAM, and beta APP components, and the chemical basis of the congophilia remain unknown. PMID:8627347

  12. Measurements of the tau Mass and Mass Difference of the tau^+ and tau^- at BABAR

    SciTech Connect

    Aubert, B.; Karyotakis, Y.; Lees, J.P.; Poireau, V.; Prencipe, E.; Prudent, X.; Tisserand, V.; Garra Tico, J.; Grauges, E.; Martinelli, M.; Palano, A.; Pappagallo, M.; Eigen, G.; Stugu, B.; Sun, L.; Battaglia, M.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /UC, Berkeley /Birmingham U. /Ruhr U., Bochum /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, San Diego /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /INFN, Ferrara /INFN, Ferrara /Ferrara U. /Frascati /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /INFN, Genoa /INFN, Genoa /Genoa U. /Harvard U. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Milan /Milan U. /INFN, Milan /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /Mt. Holyoke Coll. /INFN, Naples /Naples U. /INFN, Naples /INFN, Naples /Naples U. /NIKHEF, Amsterdam /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Padua /Padua U. /INFN, Padua /INFN, Padua /Padua U. /Paris U., VI-VII /Pennsylvania U. /INFN, Perugia /Perugia U. /INFN, Pisa /Pisa U. /INFN, Pisa /Pisa, Scuola Normale Superiore /INFN, Pisa /Pisa U. /INFN, Pisa /Princeton U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /INFN, Rome /Rome U. /INFN, Rome /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /Valencia U. /Victoria U. /Warwick U. /Wisconsin U., Madison

    2009-10-30

    The authors present the result of a precision measurement of the mass of the {tau} lepton, M{sub {tau}}, based on 423 fb{sup -1} of data recorded at the {Upsilon}(4S) resonance with the BABAR detector. Using a pseudomass endpoint method, they determine the mass to be 1776.68 {+-} 0.12(stat) {+-} 0.41(syst) MeV. They also measure the mass difference between the {tau}{sup +} and {tau}{sup -}, and obtain (M{sub {tau}{sup +}} - M{sub {tau}{sup -}})/M{sub AVG}{sup {tau}} = (-3.4 {+-} 1.3(stat) {+-} 0.3(syst)) x 10{sup -4}, where M{sub AVG}{sup {tau}} is the average value of M{sub {tau}{sup +}} and M{sub {tau}{sup -}}.

  13. Depletion of microglia and inhibition of exosome synthesis halt tau propagation.

    PubMed

    Asai, Hirohide; Ikezu, Seiko; Tsunoda, Satoshi; Medalla, Maria; Luebke, Jennifer; Haydar, Tarik; Wolozin, Benjamin; Butovsky, Oleg; Kügler, Sebastian; Ikezu, Tsuneya

    2015-11-01

    Accumulation of pathological tau protein is a major hallmark of Alzheimer's disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus-based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target. PMID:26436904

  14. Depletion of microglia and inhibition of exosome synthesis halt tau propagation

    PubMed Central

    Asai, Hirohide; Ikezu, Seiko; Tsunoda, Satoshi; Medalla, Maria; Luebke, Jennifer; Haydar, Tarik; Wolozin, Benjamin; Butovsky, Oleg; Kügler, Sebastian; Ikezu, Tsuneya

    2015-01-01

    Accumulation of pathological tau protein is a major hallmark of Alzheimer’s disease. Tau protein spreads from the entorhinal cortex to the hippocampal region early in the disease. Microglia, the primary phagocytes in the brain, are positively correlated with tau pathology, but their involvement in tau propagation is unknown. We developed an adeno-associated virus–based model exhibiting rapid tau propagation from the entorhinal cortex to the dentate gyrus in 4 weeks. We found that depleting microglia dramatically suppressed the propagation of tau and reduced excitability in the dentate gyrus in this mouse model. Moreover, we demonstrate that microglia spread tau via exosome secretion, and inhibiting exosome synthesis significantly reduced tau propagation in vitro and in vivo. These data suggest that microglia and exosomes contribute to the progression of tauopathy and that the exosome secretion pathway may be a therapeutic target. PMID:26436904

  15. Alzheimer’s disease imaging with a novel Tau targeted near infrared ratiometric probe

    PubMed Central

    Kim, Hye-Yeong; Sengupta, Urmi; Shao, Pin; Guerrero-Muñoz, Marcos J; Kayed, Rakez; Bai, Mingfeng

    2013-01-01

    Neurofibrillary tangles (NFTs) have long been recognized as one of the pathological hallmarks in Alzheimer’s disease (AD). Recent studies, however, showed that soluble aggregated Tau species, especially hyperphosphorylated Tau oligomers, which are formed at early stage of AD prior to the formation of NFT, disrupted neural system integration. Unfortunately, little is known about Tau aggregates, and few Tau targeted imaging probe has been reported. Successful development of new imaging methods that can visualize early stages of Tau aggregation specifically will obviously be important for AD imaging, as well as understanding Tau-associated neuropathology of AD. Here, we report the first NIR ratiometric probe, CyDPA2, that targets Tau aggregates. The specificity of CyPDA2 to aggregated Tau was evaluated with in vitro hyperphosphorylated Tau proteins (pTau), as well as ex vivo Tau samples from AD human brain samples and the tauopathy transgenic mouse model, P301L. The characteristic enhancements of absorption ratio and fluorescence intensity in CyDPA2 were observed in a pTau concentration-dependent manner. In addition, fluorescence microscopy and gel staining studies demonstrated CyDPA2-labeled Tau aggregates. These data indicate that CyDPA2 is a promising imaging probe for studying Tau pathology and diagnosing AD at an early stage. PMID:23526074

  16. Learning and Memory Deficits upon TAU Accumulation in "Drosophila" Mushroom Body Neurons

    ERIC Educational Resources Information Center

    Mershin, Andreas; Pavlopoulos, Elias; Fitch, Olivia; Braden, Brittany C.; Nanopoulos, Dimitri V.; Skoulakis, Efthimios M. C.

    2004-01-01

    Mutations in the neuronal-specific microtubule-binding protein TAU are associated with several dementias and neurodegenerative diseases. However, the effects of elevated TAU accumulation on behavioral plasticity are unknown. We report that directed expression of wild-type vertebrate and "Drosophila" TAU in adult mushroom body neurons, centers for…

  17. Identification of nuclear. tau. isoforms in human neuroblastoma cells

    SciTech Connect

    Loomis, P.A.; Howard, T.H.; Castleberry, R.P.; Binder, L.I. )

    1990-11-01

    The {tau} proteins have been reported only in association with microtubules and with ribosomes in situ, in the normal central nervous system. In addition, {tau} has been shown to be an integral component of paired helical filaments, the principal constituent of the neurofibrillary tangles found in brains of patients with Alzheimer's disease and of most aged individuals with Down syndrome (trisomy 21). The authors report here the localization of the well-characterized Tau-1 monoclonal antibody to the nucleolar organizer regions of the acrocentric chromosomes and to their interphase counterpart, the fibrillar component of the nucleolus, in human neuroblastoma cells. Similar localization to the nucleolar organizer regions was also observed in other human cell lines and in one monkey kidney cell line but was not seen in non-primate species. Immunochemically, they further demonstrated the existence of the entire {tau} molecule in the isolated nuclei of neuroblastoma cells. Nuclear {tau} proteins, like the {tau} proteins of the paired helical filaments, cannot be extracted in standard SDS-containing electrophoresis sample buffer but require pretreatment with formic acid prior to immunoblot analysis. This work indicates that {tau} may function in processes not directly associated with microtubules and that highly insoluble complexes of {tau} may also play a role in normal cellular physiology.

  18. Abnormal protein turnover and anabolic resistance to exercise in sarcopenic obesity.

    PubMed

    Nilsson, Mats I; Dobson, Justin P; Greene, Nicholas P; Wiggs, Michael P; Shimkus, Kevin L; Wudeck, Elyse V; Davis, Amanda R; Laureano, Marissa L; Fluckey, James D

    2013-10-01

    Obesity may impair protein synthesis rates and cause anabolic resistance to growth factors, hormones, and exercise, ultimately affecting skeletal muscle mass and function. To better understand muscle wasting and anabolic resistance with obesity, we assessed protein 24-h fractional synthesis rates (24-h FSRs) in selected hind-limb muscles of sedentary and resistance-exercised lean and obese Zucker rats. Despite atrophied hind-limb muscles (-28% vs. lean rats), 24-h FSRs of mixed proteins were significantly higher in quadriceps (+18%) and red or white gastrocnemius (+22 or +38%, respectively) of obese animals when compared to lean littermates. Basal synthesis rates of myofibrillar (+8%) and mitochondrial proteins (-1%) in quadriceps were not different between phenotypes, while manufacture of cytosolic proteins (+12%) was moderately elevated in obese cohorts. Western blot analyses revealed a robust activation of p70S6k (+178%) and a lower expression of the endogenous mTOR inhibitor DEPTOR (-28%) in obese rats, collectively suggesting that there is an obesity-induced increase in net protein turnover favoring degradation. Lastly, the protein synthetic response to exercise of mixed (-7%), myofibrillar (+6%), and cytosolic (+7%) quadriceps subfractions was blunted compared to the lean phenotype (+34, +40, and +17%, respectively), indicating a muscle- and subfraction-specific desensitization to the anabolic stimulus of exercise in obese animals. PMID:23804240

  19. Soya protein ameliorates the metabolic abnormalities of dysfunctional adipose tissue of dyslipidaemic rats fed a sucrose-rich diet.

    PubMed

    Oliva, María E; Selenscig, Dante; D'Alessandro, María E; Chicco, Adriana; Lombardo, Yolanda B

    2011-04-01

    The present study investigates whether the replacement of dietary casein by soya protein isolate could be able to improve and/or even revert the morphological and metabolic abnormalities underlying the adipose tissue dysfunction of dyslipidaemic rats chronically fed (8 months) a sucrose-rich (62·5 %) diet (SRD). For this purpose, Wistar rats were fed a SRD for 4 months. From months 4 to 8, half the animals continued with the SRD and the other half were fed a SRD in which the source of protein, casein, was substituted by soya. The control group received a diet in which the source of carbohydrate was maize starch. Compared with the SRD-fed group, the results showed that: (1) soya protein decreased body-weight gain, limited the accretion of visceral adiposity and decreased adipose tissue cell volume without changes in total cell number; (2) soya protein increased the protein mass expression of PPARγ, which was significantly reduced in the fat pad of the SRD-fed rats; (3) the activity of the enzymes involved in the de novo lipogenesis of adipose tissue was significantly decreased/normalised; (4) soya protein corrected the inhibitory effect of SRD upon the anti-lipolytic action of insulin, reduced basal lipolysis and normalised the protein mass expression of GLUT-4. Dyslipidaemia, glucose homeostasis and plasma leptin levels returned to control values. The present study provides data showing the beneficial effects of soya protein to improve and/or revert the adipose tissue dysfunction of a dyslipidaemic insulin-resistant rat model and suggests that soya could maintain the functionality of the adipose tissue-liver axis improving/reverting lipotoxicity. PMID:21118606

  20. Tau physics results from SLD

    SciTech Connect

    Daoudi, M.; SLD Collaboration

    1996-08-10

    Results on {tau} physics at SLD are presented. They are based on 4,316 {tau}-pair events selected from a 150 k Z{sup 0} data sample collected at the SLC. These results include measurements of the {tau} lifetime ({tau}{sub r} = 288.1 {+-} 6.1 {+-} 3.3 fs), the {tau} Michel parameters ({rho} = 0.71 {+-} 0.09 {+-} 0.04, {zeta} = 1.03 {+-} 0.36 {+-} 0.05, and {zeta}{delta} = 0.84 {+-} 0.27 {+-} 0.05), and the {tau} neutrino helicity (h{sub {nu}} = {minus}0.81 {+-} 0.18 {+-} 0.03).

  1. ELISA measurement of specific antibodies to phosphorylated tau in intravenous immunoglobulin products.

    PubMed

    Loeffler, David A; Klaver, Andrea C; Coffey, Mary P

    2015-10-01

    The therapeutic effects of intravenous immunoglobulin (IVIG) products were recently studied in Alzheimer's disease (AD) patients. Pilot studies produced encouraging results but phase II and III trials gave disappointing results; a further study is in progress. IVIG products contain antibodies to tau protein, the main component of neurofibrillary tangles (NFTs). The tau used to detect IVIG's anti-tau antibodies in previous studies was non-phosphorylated recombinant human tau-441, but NFT-associated tau is extensively phosphorylated. The objective of this study was to determine if various IVIG products contain specific antibodies to phosphorylated tau (anti-pTau antibodies). ELISAs were used to evaluate binding of six IVIG products to a 12 amino acid peptide, tau 196-207, which was phosphorylated ("pTau peptide") or non-phosphorylated ("non-pTau peptide") at Serine-199 and Serine-202. Both amino acid residues are phosphorylated in AD NFTs. Each IVIG's "anti-pTau antibody ratio" was calculated by dividing its binding to the pTau peptide by its binding to the non-pTau peptide. Seven experiments were performed and data were pooled, with each experiment contributing one data point from each IVIG product. Mean anti-pTau antibody ratios greater than 1.0, suggesting specific antibodies to phosphorylated tau, were found for three IVIG products. Because administration of antibodies to phosphorylated tau has been found to reduce tau-associated pathology in transgenic mouse models of tauopathy, increasing the levels of anti-pTau antibodies, together with other selected antibodies such as anti-Aβ, in IVIG might increase its ability to slow AD's progression. PMID:26330100

  2. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers

    PubMed Central

    Puschmann, Andreas; Schöll, Michael; Ohlsson, Tomas; van Swieten, John; Honer, Michael; Englund, Elisabet

    2016-01-01

    Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer’s disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein. PMID:27357347

  3. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers.

    PubMed

    Smith, Ruben; Puschmann, Andreas; Schöll, Michael; Ohlsson, Tomas; van Swieten, John; Honer, Michael; Englund, Elisabet; Hansson, Oskar

    2016-09-01

    Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with (18)F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer's disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited (18)F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was (18)F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β ((18)F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that (18)F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein. PMID:27357347

  4. Norepinephrine Deficiency Is Caused by Combined Abnormal mRNA Processing and Defective Protein Trafficking of Dopamine β-Hydroxylase*

    PubMed Central

    Kim, Chun-Hyung; Leung, Amanda; Huh, Yang Hoon; Yang, Eungi; Kim, Deog-Joong; Leblanc, Pierre; Ryu, Hoon; Kim, Kyungjin; Kim, Dong-Wook; Garland, Emily M.; Raj, Satish R.; Biaggioni, Italo; Robertson, David; Kim, Kwang-Soo

    2011-01-01

    Human norepinephrine (NE) deficiency (or dopamine β-hydroxylase (DBH) deficiency) is a rare congenital disorder of primary autonomic failure, in which neurotransmitters NE and epinephrine are undetectable. Although potential pathogenic mutations, such as a common splice donor site mutation (IVS1+2T→C) and various missense mutations, in NE deficiency patients were identified, molecular mechanisms underlying this disease remain unknown. Here, we show that the IVS1+2T→C mutation results in a non-detectable level of DBH protein production and that all three missense mutations tested lead to the DBH protein being trapped in the endoplasmic reticulum (ER). Supporting the view that mutant DBH induces an ER stress response, exogenous expression of mutant DBH dramatically induced expression of BiP, a master ER chaperone. Furthermore, we found that a pharmacological chaperone, glycerol, significantly rescued defective trafficking of mutant DBH proteins. Taken together, we propose that NE deficiency is caused by the combined abnormal processing of DBH mRNA and defective protein trafficking and that this disease could be treated by a pharmacological chaperone(s). PMID:21209083

  5. Norepinephrine deficiency is caused by combined abnormal mRNA processing and defective protein trafficking of dopamine beta-hydroxylase.

    PubMed

    Kim, Chun-Hyung; Leung, Amanda; Huh, Yang Hoon; Yang, Eungi; Kim, Deog-Joong; Leblanc, Pierre; Ryu, Hoon; Kim, Kyungjin; Kim, Dong-Wook; Garland, Emily M; Raj, Satish R; Biaggioni, Italo; Robertson, David; Kim, Kwang-Soo

    2011-03-18

    Human norepinephrine (NE) deficiency (or dopamine β-hydroxylase (DBH) deficiency) is a rare congenital disorder of primary autonomic failure, in which neurotransmitters NE and epinephrine are undetectable. Although potential pathogenic mutations, such as a common splice donor site mutation (IVS1+2T→C) and various missense mutations, in NE deficiency patients were identified, molecular mechanisms underlying this disease remain unknown. Here, we show that the IVS1+2T→C mutation results in a non-detectable level of DBH protein production and that all three missense mutations tested lead to the DBH protein being trapped in the endoplasmic reticulum (ER). Supporting the view that mutant DBH induces an ER stress response, exogenous expression of mutant DBH dramatically induced expression of BiP, a master ER chaperone. Furthermore, we found that a pharmacological chaperone, glycerol, significantly rescued defective trafficking of mutant DBH proteins. Taken together, we propose that NE deficiency is caused by the combined abnormal processing of DBH mRNA and defective protein trafficking and that this disease could be treated by a pharmacological chaperone(s). PMID:21209083

  6. Interaction of cinnamaldehyde and epicatechin with tau: implications of beneficial effects in modulating Alzheimer's disease pathogenesis.

    PubMed

    George, Roshni C; Lew, John; Graves, Donald J

    2013-01-01

    Abnormal modifications in tau such as hyperphosphorylation, oxidation, and glycation interfere with its interaction with microtubules leading to its dissociation and self-aggregation into neurofibrillary tangles, a hallmark of Alzheimer's disease (AD). Previously we reported that an aqueous extract of cinnamon has the ability to inhibit tau aggregation in vitro and can even induce dissociation of tangles isolated from AD brain. In the present study, we carried out investigations with cinnamaldehyde (CA) and epicatechin (EC), two components of active cinnamon extract. We found that CA and the oxidized form of EC (ECox) inhibited tau aggregation in vitro and the activity was due to their interaction with the two cysteine residues in tau. Mass spectrometry of a synthetic peptide, SKCGS, representing the actual tau sequence, identified the thiol as reacting with CA and ECox. Use of a cysteine double mutant of tau showed the necessity of cysteine for aggregation inhibition by CA. The interaction of CA with tau cysteines was reversible and the presence of CA did not impair the biological function of tau in tubulin assembly in vitro. Further, these compounds protected tau from oxidation caused by the reactive oxygen species, H2O2, and prevented subsequent formation of high molecular weight species that are considered to stimulate tangle formation. Finally, we observed that EC can sequester highly reactive and toxic byproducts of oxidation such as acrolein. Our results suggest that small molecules that form a reversible interaction with cysteines have the potential to protect tau from abnormal modifications. PMID:23531502

  7. Measles Inclusion-Body Encephalitis: Neuronal Phosphorylated Tau Protein is Present in the Biopsy but not in the Autoptic Specimens of the Same Patient.

    PubMed

    Maderna, Emanuela; Fugnanesi, Valeria; Morbin, Michela; Cacciatore, Francesca; Spinello, Sonia; Godani, Massimiliano; Zoia, Riccardo; Tagliavini, Fabrizio; Giaccone, Giorgio

    2016-07-01

    Tauopathies are sporadic or familial neurodegenerative diseases characterized by the accumulation of phosphorylated tau in neurons and glial cells and include encephalitis related to measles virus such as subacute sclerosing panencephalitis. We describe a 45-year-old woman, with a history of lymphoma treated with immunosuppressant therapy who underwent an open biopsy of the right frontal cortex for a suspect of encephalitis, and died 4 days later. The neuropathological assessment on the bioptic sample revealed edema, severe gliosis and microglial activation, with lymphomonocytic perivascular cuffing and neurons containing both nuclear and cytoplasmic eosinofilic inclusions that ultrastructurally appeared as tubular and curvilinear non-membrane-bound 12-18 nm structures, leading to the diagnosis of measles inclusion-bodies encephalitis. The biopsy specimen showed several cortical neurons with intense perikaryal immunoreactivity for anti-tau antibodies recognizing phosphorylated epitopes while on autoptic specimens no phosphorylated tau immunoreactivity was detected. Our findings suggest that in specific conditions biopsy-derived human tau may be phosphorylated at sites that may result not phosphorylated in autopsy-derived specimens, most likely caused by post-mortem dephosphorylation. PMID:26462994

  8. Tau physiology and pathomechanisms in frontotemporal lobar degeneration.

    PubMed

    Bodea, Liviu-Gabriel; Eckert, Anne; Ittner, Lars Matthias; Piguet, Olivier; Götz, Jürgen

    2016-08-01

    Frontotemporal lobar degeneration (FTLD) has been associated with toxic intracellular aggregates of hyperphosphorylated tau (FTLD-tau). Moreover, genetic studies identified mutations in the MAPT gene encoding tau in familial cases of the disease. In this review, we cover a range of aspects of tau function, both in the healthy and diseased brain, discussing several in vitro and in vivo models. Tau structure and function in the healthy brain is presented, accentuating its distinct compartmentalization in neurons and its role in microtubule stabilization and axonal transport. Furthermore, tau-driven pathology is discussed, introducing current concepts and the underlying experimental evidence. Different aspects of pathological tau phosphorylation, the protein's genomic and domain organization as well as its spreading in disease, together with MAPT-associated mutations and their respective models are presented. Dysfunction related to other post-transcriptional modifications and their effect on normal neuronal functions such as cell cycle, epigenetics and synapse dynamics are also discussed, providing a mechanistic explanation for the observations made in FTLD-tau cases, with the possibility for therapeutic intervention. In this review, we cover aspects of tau function, both in the healthy and diseased brain, referring to different in vitro and in vivo models. In healthy neurons, tau is compartmentalized, with higher concentrations found in the distal part of the axon. Cargo molecules are sensitive to this gradient. A disturbed tau distribution, as found in frontotemporal lobar degeneration (FTLD-tau), has severe consequences for cellular physiology: tau accumulates in the neuronal soma and dendrites, leading among others to microtubule depolymerization and impaired axonal transport. Tau forms insoluble aggregates that sequester additional molecules stalling cellular physiology. Neuronal communication is gradually lost as toxic tau accumulates in dendritic spines

  9. Cadmium-induced cell death of basal forebrain cholinergic neurons mediated by muscarinic M1 receptor blockade, increase in GSK-3β enzyme, β-amyloid and tau protein levels.

    PubMed

    Del Pino, Javier; Zeballos, Gabriela; Anadón, María José; Moyano, Paula; Díaz, María Jesús; García, José Manuel; Frejo, María Teresa

    2016-05-01

    Cadmium is a neurotoxic compound which induces cognitive alterations similar to those produced by Alzheimer's disease (AD). However, the mechanism through which cadmium induces this effect remains unknown. In this regard, we described in a previous work that cadmium blocks cholinergic transmission and induces a more pronounced cell death on cholinergic neurons from basal forebrain which is partially mediated by AChE overexpression. Degeneration of basal forebrain cholinergic neurons, as happens in AD, results in memory deficits attributable to the loss of cholinergic modulation of hippocampal synaptic circuits. Moreover, cadmium has been described to activate GSK-3β, induce Aβ protein production and tau filament formation, which have been related to a selective loss of basal forebrain cholinergic neurons and development of AD. The present study is aimed at researching the mechanisms of cell death induced by cadmium on basal forebrain cholinergic neurons. For this purpose, we evaluated, in SN56 cholinergic mourine septal cell line from basal forebrain region, the cadmium toxic effects on neuronal viability through muscarinic M1 receptor, AChE splice variants, GSK-3β enzyme, Aβ and tau proteins. This study proves that cadmium induces cell death on cholinergic neurons through blockade of M1 receptor, overexpression of AChE-S and GSK-3β, down-regulation of AChE-R and increase in Aβ and total and phosphorylated tau protein levels. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on cholinergic neurons and suggest that cadmium could mediate these mechanisms by M1R blockade through AChE splices altered expression. PMID:26026611

  10. Alzheimer’s Disease-Like Tau Neuropathology Leads to Memory Deficits and Loss of Functional Synapses in a Novel Mutated Tau Transgenic Mouse without Any Motor Deficits

    PubMed Central

    Schindowski, Katharina; Bretteville, Alexis; Leroy, Karelle; Bégard, Séverine; Brion, Jean-Pierre; Hamdane, Malika; Buée, Luc

    2006-01-01

    Tau transgenic mice are valuable models to investigate the role of tau protein in Alzheimer’s disease and other tauopathies. However, motor dysfunction and dystonic posture interfering with behavioral testing are the most common undesirable effects of tau transgenic mice. Therefore, we have generated a novel mouse model (THY-Tau22) that expresses human 4-repeat tau mutated at sites G272V and P301S under a Thy1.2-promotor, displaying tau pathology in the absence of any motor dysfunction. THY-Tau22 shows hyperphosphorylation of tau on several Alzheimer’s disease-relevant tau epitopes (AT8, AT100, AT180, AT270, 12E8, tau-pSer396, and AP422), neurofibrillary tangle-like inclusions (Gallyas and MC1-positive) with rare ghost tangles and PHF-like filaments, as well as mild astrogliosis. These mice also display deficits in hippocampal synaptic transmission and impaired behavior characterized by increased anxiety, delayed learning from 3 months, and reduced spatial memory at 10 months. There are no signs of motor deficits or changes in motor activity at any age investigated. This mouse model therefore displays the main features of tau pathology and several of the pathophysiological disturbances observed during neurofibrillary degeneration. This model will serve as an experimental tool in future studies to investigate mechanisms underlying cognitive deficits during pathogenic tau aggregation. PMID:16877359

  11. Tau/Amyloid Beta 42 Peptide Test (Alzheimer Biomarkers)

    MedlinePlus

    ... page: Was this page helpful? Also known as: Alzheimer Biomarkers Formal name: Tau Protein and Amyloid Beta ... supplemental tests to help establish a diagnosis of Alzheimer disease and to distinguish between AD and other ...

  12. Role of the Long Non-Coding RNA MAPT-AS1 in Regulation of Microtubule Associated Protein Tau (MAPT) Expression in Parkinson's Disease

    PubMed Central

    Coupland, Kirsten G.; Kim, Woojin S.; Halliday, Glenda M.; Hallupp, Marianne; Dobson-Stone, Carol; Kwok, John B. J.

    2016-01-01

    Studies investigating the pathogenic role of the microtubule associated protein tau (MAPT) gene in Parkinson’s disease (PD) have indicated that DNA methylation of the promoter region is aberrant in disease, leading to dysregulated MAPT expression. We examined two potential regulators of MAPT gene expression in respect to PD, a promoter-associated long non-coding RNA MAPT-AS1, and DNA methyltransferases (DNMTs), enzymes responsible for new and maintenance of DNA methylation. We assessed the relationship between expression levels of MAPT and the candidate MAPT-AS1, DNMT1, DNMT3A and DNMT3B transcripts in four brain regions with varying degrees of cell loss and pathology (putamen, anterior cingulate cortex, visual cortex and cerebellum) in N = 10 PD and N = 10 controls. We found a significant decrease in MAPT-AS1 expression in PD (p = 7.154 x 10−6). The transcript levels of both MAPT-AS1 (p = 2.569 x 10−4) and DNMT1 (p = 0.001) correlated with those of MAPT across the four brain regions, but not with each other. Overexpression of MAPT-AS1 decreased MAPT promoter activity by ∼2.2 to 4.3 fold in an in vitro luciferase assay performed in two cell lines (p ≤ 2.678 x 10−4). Knock-down expression of MAPT-AS1 led to a 1.3 to 6.3 fold increase in methylation of the endogenous MAPT promoter (p ≤ 0.011) and a 1.2 to 1.5 fold increased expression of the 4-repeat MAPT isoform transcript (p ≤ 0.013). In conclusion, MAPT-AS1 and DNMT1 have been identified as potential epigenetic regulators of MAPT expression in PD across four different brain regions. Our data also suggest that increased MAPT expression could be associated with disease state, but not with PD neuropathology severity. PMID:27336847

  13. Internalization of the Extracellular Full-Length Tau Inside Neuro2A and Cortical Cells Is Enhanced by Phosphorylation.

    PubMed

    Wauters, Mathilde; Wattiez, Ruddy; Ris, Laurence

    2016-01-01

    Tau protein is mainly intracellular. However, several studies have demonstrated that full-length Tau can be released into the interstitial fluid of the brain. The physiological or pathological function of this extracellular Tau remains unknown. Moreover, as evidence suggests, extracellular Tau aggregates can be internalized by neurons, seeding Tau aggregation. However, much less is known about small species of Tau. In this study, we hypothesized that the status of phosphorylation could alter the internalization of recombinant Tau in Neuro2A and cortical cells. Our preliminary results revealed that the highly phosphorylated form of Tau entered the cells ten times more easily than a low phosphorylated one. This suggests that hyperphosphorylated Tau protein could spread between neurons in pathological conditions such as Alzheimer's disease. PMID:27548242

  14. Nanoscale Drug Delivery Platforms Overcome Platinum-Based Resistance in Cancer Cells Due to Abnormal Membrane Protein Trafficking

    PubMed Central

    Xue, Xue; Hall, Matthew D.; Zhang, Qiang; Wang, Paul C.; Gottesman, Michael M.; Liang, Xing-Jie

    2014-01-01

    The development of cellular resistance to platinum-based chemotherapies is often associated with reduced intracellular platinum concentrations. In some models, this reduction is due to abnormal membrane protein trafficking, resulting in reduced uptake by transporters at the cell surface. Given the central role of platinum drugs in the clinic, it is critical to overcome cisplatin resistance by bypassing the plasma membrane barrier to significantly increase the intracellular cisplatin concentration enough to inhibit the proliferation of cisplatin-resistant cells. Therefore, rational design of appropriate nanoscale drug delivery platforms (nDDPs) loaded with cisplatin or other platinum analogs as payloads is a possible strategy to solve this problem. This review will focus on the known mechanism of membrane trafficking in cisplatin-resistant cells, and the development and employment of nDDPs to improve cell uptake of cisplatin. PMID:24219825

  15. Tau Clearance Mechanisms and Their Possible Role in the Pathogenesis of Alzheimer Disease

    PubMed Central

    Chesser, Adrianne S.; Pritchard, Susanne M.; Johnson, Gail V. W.

    2013-01-01

    One of the defining pathological features of Alzheimer disease (AD) is the intraneuronal accumulation of tau. The tau that forms these accumulations is altered both posttranslationally and conformationally, and there is now significant evidence that soluble forms of these modified tau species are the toxic entities rather than the insoluble neurofibrillary tangles. However there is still noteworthy debate concerning which specific pathological forms of tau are the contributors to neuronal dysfunction and death in AD. Given that increases in aberrant forms of tau play a role in the neurodegeneration process in AD, there is growing interest in understanding the degradative pathways that remove tau from the cell, and the selectivity of these different pathways for various forms of tau. Indeed, one can speculate that deficits in a pathway that selectively removes certain pathological forms of tau could play a pivotal role in AD. In this review we will discuss the different proteolytic and degradative machineries that may be involved in removing tau from the cell. How deficits in these different degradative pathways may contribute to abnormal accumulation of tau in AD will also be considered. In addition, the issue of the selective targeting of specific tau species to a given degradative pathway for clearance from the cell will be addressed. PMID:24027553

  16. Transmission of the BSE agent to mice in the absence of detectable abnormal prion protein.

    PubMed

    Lasmézas, C I; Deslys, J P; Robain, O; Jaegly, A; Beringue, V; Peyrin, J M; Fournier, J G; Hauw, J J; Rossier, J; Dormont, D

    1997-01-17

    The agent responsible for transmissible spongiform encephalopathies (TSEs) is thought to be a malfolded, protease-resistant version (PrPres) of the normal cellular prion protein (PrP). The interspecies transmission of bovine spongiform encephalopathy (BSE) to mice was studied. Although all of the mice injected with homogenate from BSE-infected cattle brain exhibited neurological symptoms and neuronal death, more than 55 percent had no detectable PrPres. During serial passage, PrPres appeared after the agent became adapted to the new host. Thus, PrPres may be involved in species adaptation, but a further unidentified agent may actually transmit BSE. PMID:8994041

  17. Tau physics with polarized beams

    SciTech Connect

    Daoudi, M.

    1995-11-01

    We present the first results on tau physics using polarized beams. These include measurements of the {tau} Michel parameters {xi} and {xi}{delta} and the {tau} neutrino helicity h{sub {nu}}. The measurements were performed using the SLD detector at the Stanford Linear Collider (SLC).

  18. Review of tau lepton decays

    SciTech Connect

    Stoker, D.P.

    1991-07-01

    Measurements of the {tau} decay modes are reviewed and compared with the predictions of the Standard Model. While the agreement is generally good, the status of the 1-prong puzzle'' remains controversial and a discrepancy between the measured leptonic branching fractions and the {tau} lifetime persists. Prospects for precision measurements at a Tau-Charm Factory are also reviewed. 20 refs., 2 tabs.

  19. Tau co-organizes dynamic microtubule and actin networks

    PubMed Central

    Elie, Auréliane; Prezel, Elea; Guérin, Christophe; Denarier, Eric; Ramirez-Rios, Sacnicte; Serre, Laurence; Andrieux, Annie; Fourest-Lieuvin, Anne; Blanchoin, Laurent; Arnal, Isabelle

    2015-01-01

    The crosstalk between microtubules and actin is essential for cellular functions. However, mechanisms underlying the microtubule-actin organization by cross-linkers remain largely unexplored. Here, we report that tau, a neuronal microtubule-associated protein, binds to microtubules and actin simultaneously, promoting in vitro co-organization and coupled growth of both networks. By developing an original assay to visualize concomitant microtubule and actin assembly, we show that tau can induce guided polymerization of actin filaments along microtubule tracks and growth of single microtubules along actin filament bundles. Importantly, tau mediates microtubule-actin co-alignment without changing polymer growth properties. Mutagenesis studies further reveal that at least two of the four tau repeated motifs, primarily identified as tubulin-binding sites, are required to connect microtubules and actin. Tau thus represents a molecular linker between microtubule and actin networks, enabling a coordination of the two cytoskeletons that might be essential in various neuronal contexts. PMID:25944224

  20. Yokukansan, a traditional Japanese medicine, ameliorates memory disturbance and abnormal social interaction with anti-aggregation effect of cerebral amyloid β proteins in amyloid precursor protein transgenic mice.

    PubMed

    Fujiwara, H; Takayama, S; Iwasaki, K; Tabuchi, M; Yamaguchi, T; Sekiguchi, K; Ikarashi, Y; Kudo, Y; Kase, Y; Arai, H; Yaegashi, N

    2011-04-28

    The deposition of amyloid β protein (Aβ) is a consistent pathological hallmark of Alzheimer's disease (AD) brains. Therefore, inhibition of Aβ aggregation in the brain is an attractive therapeutic and preventive strategy in the development of disease-modifying drugs for AD. An in vitro study demonstrated that yokukansan (YKS), a traditional Japanese medicine, inhibited Aβ aggregation in a concentration-dependent manner. An in vivo study demonstrated that YKS and Uncaria hook (UH), a constituent of YKS, prevented the accumulation of cerebral Aβ. YKS also improved the memory disturbance and abnormal social interaction such as increased aggressive behavior and decreased social behavior in amyloid precursor protein transgenic mice. These results suggest that YKS is likely to be a potent and novel therapeutic agent to prevent and/or treat AD, and that this may be attributed to UH. PMID:21303686

  1. Epilepsy, Behavioral Abnormalities, and Physiological Comorbidities in Syntaxin-Binding Protein 1 (STXBP1) Mutant Zebrafish

    PubMed Central

    Grone, Brian P.; Marchese, Maria; Hamling, Kyla R.; Kumar, Maneesh G.; Krasniak, Christopher S.; Sicca, Federico; Santorelli, Filippo M.; Patel, Manisha; Baraban, Scott C.

    2016-01-01

    Mutations in the synaptic machinery gene syntaxin-binding protein 1, STXBP1 (also known as MUNC18-1), are linked to childhood epilepsies and other neurodevelopmental disorders. Zebrafish STXBP1 homologs (stxbp1a and stxbp1b) have highly conserved sequence and are prominently expressed in the larval zebrafish brain. To understand the functions of stxbp1a and stxbp1b, we generated loss-of-function mutations using CRISPR/Cas9 gene editing and studied brain electrical activity, behavior, development, heart physiology, metabolism, and survival in larval zebrafish. Homozygous stxbp1a mutants exhibited a profound lack of movement, low electrical brain activity, low heart rate, decreased glucose and mitochondrial metabolism, and early fatality compared to controls. On the other hand, homozygous stxbp1b mutants had spontaneous electrographic seizures, and reduced locomotor activity response to a movement-inducing “dark-flash” visual stimulus, despite showing normal metabolism, heart rate, survival, and baseline locomotor activity. Our findings in these newly generated mutant lines of zebrafish suggest that zebrafish recapitulate clinical phenotypes associated with human syntaxin-binding protein 1 mutations. PMID:26963117

  2. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia.

    PubMed

    Jobling, Rebekah K; Assoum, Mirna; Gakh, Oleksandr; Blaser, Susan; Raiman, Julian A; Mignot, Cyril; Roze, Emmanuel; Dürr, Alexandra; Brice, Alexis; Lévy, Nicolas; Prasad, Chitra; Paton, Tara; Paterson, Andrew D; Roslin, Nicole M; Marshall, Christian R; Desvignes, Jean-Pierre; Roëckel-Trevisiol, Nathalie; Scherer, Stephen W; Rouleau, Guy A; Mégarbané, André; Isaya, Grazia; Delague, Valérie; Yoon, Grace

    2015-06-01

    Non-progressive cerebellar ataxias are a rare group of disorders that comprise approximately 10% of static infantile encephalopathies. We report the identification of mutations in PMPCA in 17 patients from four families affected with cerebellar ataxia, including the large Lebanese family previously described with autosomal recessive cerebellar ataxia and short stature of Norman type and localized to chromosome 9q34 (OMIM #213200). All patients present with non-progressive cerebellar ataxia, and the majority have intellectual disability of variable severity. PMPCA encodes α-MPP, the alpha subunit of mitochondrial processing peptidase, the primary enzyme responsible for the maturation of the vast majority of nuclear-encoded mitochondrial proteins, which is necessary for life at the cellular level. Analysis of lymphoblastoid cells and fibroblasts from patients homozygous for the PMPCA p.Ala377Thr mutation and carriers demonstrate that the mutation impacts both the level of the alpha subunit encoded by PMPCA and the function of mitochondrial processing peptidase. In particular, this mutation impacts the maturation process of frataxin, the protein which is depleted in Friedreich ataxia. This study represents the first time that defects in PMPCA and mitochondrial processing peptidase have been described in association with a disease phenotype in humans. PMID:25808372

  3. Abnormal lipopolysaccharide binding protein as marker of gastrointestinal inflammation in Parkinson disease

    PubMed Central

    Pal, Gian D.; Shaikh, Maliha; Forsyth, Christopher B.; Ouyang, Bichun; Keshavarzian, Ali; Shannon, Kathleen M.

    2015-01-01

    Objective: An inflammation-driven model of PD has been proposed based on the endotoxin lipopolysaccaride (LPS), a potential source of inflammation in the gastrointestinal system linked to neurotoxicity. Systemic exposure to bacterial endotoxin (LPS) can be determined by measuring plasma LPS binding protein (LBP). We aimed to evaluate whether lipopolysaccharide binding protein (LBP) can be used to distinguish PD subjects from control subjects and to assess whether LBP levels correlate with PD disease severity. Methods: We measured plasma LBP (ng/ml) using an ELISA kit in 94 PD subjects of various stages and 97 control subjects. Disease severity was assessed using the UPDRS and Hoehn and Yahr staging. The LBP level between the PD and control groups was compared using analysis of covariance. Spearman correlation was used to explore the relationship between LBP level and disease severity. Results: The mean LBP level in PD subjects (n = 94) was significantly different from control subjects (n = 95, p = 0.018). In PD subjects, we did not find a correlation between mean LBP level and disease severity. Conclusions: Our data suggests that LBP is one GI biomarker related to LPS induced neurotoxicity. However, there was significant variability in LBP levels within the PD and control groups, limiting its utility as a stand-alone biomarker. This study supports the role of LPS induced neurotoxicity in PD and further exploration of this pathway may be useful in developing sensitive and specific biomarkers for PD. PMID:26388718

  4. Abnormalities of ADP/ATP carrier protein in J-2-N cardiomyopathic hamsters.

    PubMed

    Kato, M; Yang, J; Iwai, T; Tanamura, A; Arino, T; Kawashima, O; Takeda, N

    1993-02-17

    ADP/ATP carrier protein (AAC) is located in the mitochondrial inner membrane and has an important function in mitochondrial energy supply. This protein transports ATP to the cytoplasm and counter transports ADP into the mitochondria. J-2-N cardiomyopathic hamsters were investigated to determine the AAC content in cardiac mitochondria. After recording an electrocardiogram and collecting blood, the cardiac mitochondria were isolated. The mitochondrial membranes were labelled with eosin-5-maleimide (EMA) and separated on SDS polyacrylamide gels. The position of the AAC component was identified by exposing the gel under UV light, and the AAC content was determined by densitometry after staining with Coomassie blue. The AAC content ratio was significantly decreased in both 10-week-old and 1-year survived J-2-N hamsters when compared to control Golden hamster. Among 10-week-old J-2-N hamsters, the decrease in the AAC content ratio was more marked for the animals with more severe myocardial damage. The H(+)-ATPase activities of mitochondrial membrane were higher in 10-week-old J-2-N hamsters than in control hamsters. These results suggest that the decrease of AAC in J-2-N hamster plays an important role in the pathogenesis of cardiomyopathy in J-2-N hamsters. PMID:8455591

  5. PMPCA mutations cause abnormal mitochondrial protein processing in patients with non-progressive cerebellar ataxia

    PubMed Central

    Jobling, Rebekah K.; Assoum, Mirna; Gakh, Oleksandr; Blaser, Susan; Raiman, Julian A.; Mignot, Cyril; Roze, Emmanuel; Dürr, Alexandra; Brice, Alexis; Lévy, Nicolas; Prasad, Chitra; Paton, Tara; Paterson, Andrew D.; Roslin, Nicole M.; Marshall, Christian R.; Desvignes, Jean-Pierre; Roëckel-Trevisiol, Nathalie; Scherer, Stephen W.; Rouleau, Guy A.; Mégarbané, André; Isaya, Grazia

    2015-01-01

    Non-progressive cerebellar ataxias are a rare group of disorders that comprise approximately 10% of static infantile encephalopathies. We report the identification of mutations in PMPCA in 17 patients from four families affected with cerebellar ataxia, including the large Lebanese family previously described with autosomal recessive cerebellar ataxia and short stature of Norman type and localized to chromosome 9q34 (OMIM #213200). All patients present with non-progressive cerebellar ataxia, and the majority have intellectual disability of variable severity. PMPCA encodes α-MPP, the alpha subunit of mitochondrial processing peptidase, the primary enzyme responsible for the maturation of the vast majority of nuclear-encoded mitochondrial proteins, which is necessary for life at the cellular level. Analysis of lymphoblastoid cells and fibroblasts from patients homozygous for the PMPCA p.Ala377Thr mutation and carriers demonstrate that the mutation impacts both the level of the alpha subunit encoded by PMPCA and the function of mitochondrial processing peptidase. In particular, this mutation impacts the maturation process of frataxin, the protein which is depleted in Friedreich ataxia. This study represents the first time that defects in PMPCA and mitochondrial processing peptidase have been described in association with a disease phenotype in humans. PMID:25808372

  6. Measurements of the decays tau/sup -/. -->. rho/sup -/. nu. /sub tau/, tau/sup -/. -->. pi. /sup -/. nu. /sub tau/ and tau/sup -/. -->. K*-(892). nu. /sub tau/ using the MARK II detector at SPEAR

    SciTech Connect

    Dorfan, J.

    1981-04-01

    Measurements of the branching fractions for the Cabibbo favored decays tau/sup -/ ..-->.. rho/sup -/ ..-->.. ..pi../sup -/..nu../sub tau/ and the Cabibbo suppressed decay mode tau/sup -/ ..-->.. K*/sup -/ (892)..nu../sub tau/ are presented. The energy dependence of the tau/sup +/tau/sup -/ production cross section is obtained for the decays tau/sup -/ ..-->.. rho/sup -/..nu../sub tau/ and these spectra agree well with the classification of the tau/sup -/ as a spin-1/2 point particle. Fits to the production cross section yield a measurement of M/sub tau/ = (1787 +- 10) MeV/c/sup 2/ for the tau mass. Ninety-five percent confidence upper limits for the forbidden decay tau/sup -/ ..-->.. K*/sup -/(1430)..nu../sub tau/ and the tau neutrino mass are presented.

  7. LRRK2 Promotes Tau Accumulation, Aggregation and Release.

    PubMed

    Guerreiro, Patrícia Silva; Gerhardt, Ellen; Lopes da Fonseca, Tomás; Bähr, Mathias; Outeiro, Tiago Fleming; Eckermann, Katrin

    2016-07-01

    Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are known as the most frequent cause of familial Parkinson's disease (PD), but are also present in sporadic cases. The G2019S-LRRK2 mutation is located in the kinase domain of the protein, and has consistently been reported to promote a gain of kinase function. Several proteins have been reported as LRRK2 substrates and/or interactors, suggesting possible pathways involved in neurodegeneration in PD. Hyperphosphorylated Tau protein accumulates in neurofibrillary tangles, a typical pathological hallmark in Alzheimer's disease and frontotemporal dementia. In addition, it is also frequently found in the brains of PD patients. Although LRRK2 is a kinase, it appears that a putative interaction with Tau is phosphorylation-independent. However, the underlying mechanisms and the cellular consequences of this interaction are still unclear. In this study, we demonstrate an interaction between LRRK2 and Tau and that LRRK2 promotes the accumulation of non-monomeric and high-molecular weight (HMW) Tau species independent of its kinase activity. Interestingly, we found that LRRK2 increases Tau secretion, possibly as a consequence of an impairment of Tau proteasomal degradation. Our data highlight a mechanism through which LRRK2 regulates intracellular Tau levels, contributing to the progression of the pathology caused by the LRRK2-mediated proteasome impairment. In total, our findings suggest that the interplay between LRRK2 and proteasome activity might constitute a valid target for therapeutic intervention in PD. PMID:26014385

  8. GSK-3β dysregulation contributes to parkinson's-like pathophysiology with associated region-specific phosphorylation and accumulation of tau and α-synuclein.

    PubMed

    Credle, J J; George, J L; Wills, J; Duka, V; Shah, K; Lee, Y-C; Rodriguez, O; Simkins, T; Winter, M; Moechars, D; Steckler, T; Goudreau, J; Finkelstein, D I; Sidhu, A

    2015-05-01

    Aberrant posttranslational modifications (PTMs) of proteins, namely phosphorylation, induce abnormalities in the biological properties of recipient proteins, underlying neurological diseases including Parkinson's disease (PD). Genome-wide studies link genes encoding α-synuclein (α-Syn) and Tau as two of the most important in the genesis of PD. Although several kinases are known to phosphorylate α-Syn and Tau, we focused our analysis on GSK-3β because of its accepted role in phosphorylating Tau and to increasing evidence supporting a strong biophysical relationship between α-Syn and Tau in PD. Therefore, we investigated transgenic mice, which express a point mutant (S9A) of human GSK-3β. GSK-3β-S9A is capable of activation through endogenous natural signaling events, yet is unable to become inactivated through phosphorylation at serine-9. We used behavioral, biochemical, and in vitro analysis to assess the contributions of GSK-3β to both α-Syn and Tau phosphorylation. Behavioral studies revealed progressive age-dependent impairment of motor function, accompanied by loss of tyrosine hydroxylase-positive (TH+ DA-neurons) neurons and dopamine production in the oldest age group. Magnetic resonance imaging revealed deterioration of the substantia nigra in aged mice, a characteristic feature of PD patients. At the molecular level, kinase-active p-GSK-3β-Y216 was seen at all ages throughout the brain, yet elevated levels of p-α-Syn-S129 and p-Tau (S396/404) were found to increase with age exclusively in TH+ DA-neurons of the midbrain. p-GSK-3β-Y216 colocalized with p-Tau and p-α-Syn-S129. In vitro kinase assays showed that recombinant human GSK-3β directly phosphorylated α-Syn at a single site, Ser129, in addition to its known ability to phosphorylate Tau. Moreover, α-Syn and Tau together cooperated with one another to increase the magnitude or rate of phosphorylation of the other by GSK-3β. Together, these data establish a novel upstream role for GSK-3

  9. TAU2012 Summary

    NASA Astrophysics Data System (ADS)

    Pich, Antonio

    2014-08-01

    The main highlights discussed at TAU2012 are briefly summarized. Besides the standard topics on lepton physics covered also at previous conferences (universality, QCD tests, Vus determination from τ decay, g - 2, ν oscillations, lepton-flavour violation), the τ lepton is playing now a very important role in searches for new physics phenomena.

  10. Spatial Intensity Distribution Analysis Reveals Abnormal Oligomerization of Proteins in Single Cells.

    PubMed

    Godin, Antoine G; Rappaz, Benjamin; Potvin-Trottier, Laurent; Kennedy, Timothy E; De Koninck, Yves; Wiseman, Paul W

    2015-08-18

    Knowledge of membrane receptor organization is essential for understanding the initial steps in cell signaling and trafficking mechanisms, but quantitative analysis of receptor interactions at the single-cell level and in different cellular compartments has remained highly challenging. To achieve this, we apply a quantitative image analysis technique-spatial intensity distribution analysis (SpIDA)-that can measure fluorescent particle concentrations and oligomerization states within different subcellular compartments in live cells. An important technical challenge faced by fluorescence microscopy-based measurement of oligomerization is the fidelity of receptor labeling. In practice, imperfect labeling biases the distribution of oligomeric states measured within an aggregated system. We extend SpIDA to enable analysis of high-order oligomers from fluorescence microscopy images, by including a probability weighted correction algorithm for nonemitting labels. We demonstrated that this fraction of nonemitting probes could be estimated in single cells using SpIDA measurements on model systems with known oligomerization state. Previously, this artifact was measured using single-step photobleaching. This approach was validated using computer-simulated data and the imperfect labeling was quantified in cells with ion channels of known oligomer subunit count. It was then applied to quantify the oligomerization states in different cell compartments of the proteolipid protein (PLP) expressed in COS-7 cells. Expression of a mutant PLP linked to impaired trafficking resulted in the detection of PLP tetramers that persist in the endoplasmic reticulum, while no difference was measured at the membrane between the distributions of wild-type and mutated PLPs. Our results demonstrate that SpIDA allows measurement of protein oligomerization in different compartments of intact cells, even when fractional mislabeling occurs as well as photobleaching during the imaging process, and

  11. Mutant prenyltransferase-like mitochondrial protein (PLMP) and mitochondrial abnormalities in kd/kd mice

    PubMed Central

    Peng, Min; Jarett, Leonard; Meade, Ray; Madaio, Michael P.; Hancock, Wayne W.; George, Alfred L.; Neilson, Eric G.; Gasser, David L.

    2008-01-01

    Background Mice that are homozygous for the kidney disease (kd) mutation are apparently healthy for the first 8 weeks of life, but spontaneously develop a severe form of interstitial nephritis that progresses to end-stage renal disease (ESRD) by 4 to 8 months of age. By testing for linkage to microsatellite markers, we previously localized the kd gene to a YAC/BAC contig. Methods The sequence of the entire critical region was examined, and candidate genes were identified. These candidate genes were sequenced in both mutant (kd/kd) mice and normal controls. The phenotype was further characterized by immunohistochemistry and electron microscopy. Transgenic mice were constructed that carried the wild-type allele of the prime candidate gene, and this transgene was transferred to a kd/kd background by breeding. Results We have obtained evidence that kd is a mutant allele of a novel gene for a prenyltransferase-like mitochondrial protein (PLMP). This gene is alternatively spliced, with the larger gene product having one domain that resembles transprenyltransferase and another that is similar to geranylgeranyl pyrophosphate synthase. The smaller gene product includes only the first domain. An antiserum to PLMP localizes to mitochondria, and ultrastructural defects are present in the mitochondria of renal tubular epithelial cells, and to a lesser extent, hepatocytes and heart cells from kd/kd mice. In a line of kd/kd mice that carried the wild-type PLMP allele as a transgene, only 1 out of 13 animals expressed the disease by 120 days of age. Conclusion The kd allele codes for a novel protein that localizes to the mitochondria, and the kd/kd mouse has dysmorphic mitochondria in the renal tubular epithelial cells. This mouse is therefore a unique animal model for studying mechanisms that lead to tubulointerstitial nephritis. PMID:15200409

  12. Effects of wild type tau and disease-linked tau mutations on microtubule organization and intracellular trafficking.

    PubMed

    Yu, Dezhi; Feinstein, Stuart C; Valentine, Megan T

    2016-05-24

    We investigate the effects of transient expression of wild type (WT) and disease-linked mutations of tau (R406W, P301L, ΔN296) on cytoskeletal organization and cargo transport in COS-7 cells, which are natively tau-free. The introduction of tau proteins (either WT or mutant forms) leads to a dramatic restructuring of the microtubule cytoskeleton, as observed using immunofluorescence microscopy. Yet, this microtubule bundling and aggregation has a modest effect on the speed and travel distance of motor-driven cargo transport, as measured by the motions of fluorescently-labeled lysosomes. This suggests that localized transport events are insensitive to the global structure of the microtubule cytoskeleton. Importantly, we also found no evidence that the disease-linked tau mutants were particularly toxic; in fact we found that expression of mutant and WT tau had similar effects on overall microtubule structure and transport phenotypes. PMID:26674472

  13. Dimethyl Sulfoxide Induces Both Direct and Indirect Tau Hyperphosphorylation

    PubMed Central

    Julien, Carl; Marcouiller, François; Bretteville, Alexis; El Khoury, Noura B.; Baillargeon, Joanie; Hébert, Sébastien S.; Planel, Emmanuel

    2012-01-01

    Dimethyl sulfoxide (DMSO) is widely used as a solvent or vehicle for biological studies, and for treatment of specific disorders, including traumatic brain injury and several forms of amyloidosis. As Alzheimer’s disease (AD) brains are characterized by deposits of β-amyloid peptides, it has been suggested that DMSO could be used as a treatment for this devastating disease. AD brains are also characterized by aggregates of hyperphosphorylated tau protein, but the effect of DMSO on tau phosphorylation is unknown. We thus investigated the impact of DMSO on tau phosphorylation in vitro and in vivo. One hour following intraperitoneal administration of 1 or 2 ml/kg DMSO in mice, no change was observed in tau phosphorylation. However, at 4 ml/kg, tau was hyperphosphorylated at AT8 (Ser202/Thr205), PHF-1 (Ser396/Ser404) and AT180 (Thr231) epitopes. At this dose, we also noticed that the animals were hypothermic. When the mice were maintained normothermic, the effect of 4 ml/kg DMSO on tau hyperphosphorylation was prevented. On the other hand, in SH-SY5Y cells, 0.1% DMSO induced tau hyperphosphorylation at AT8 and AT180 phosphoepitopes in normothermic conditions. Globally, these findings demonstrate that DMSO can induce tau hyperphosphorylation indirectly via hypothermia in vivo, and directly in vitro. These data should caution researchers working with DMSO as it can induce artifactual results both in vivo and in vitro. PMID:22768202

  14. Tau-based therapeutics for Alzheimer's disease: active and passive immunotherapy.

    PubMed

    Panza, Francesco; Solfrizzi, Vincenzo; Seripa, Davide; Imbimbo, Bruno P; Lozupone, Madia; Santamato, Andrea; Tortelli, Rosanna; Galizia, Ilaria; Prete, Camilla; Daniele, Antonio; Pilotto, Alberto; Greco, Antonio; Logroscino, Giancarlo

    2016-09-01

    Pharmacological manipulation of tau protein in Alzheimer's disease included microtubule-stabilizing agents, tau protein kinase inhibitors, tau aggregation inhibitors, active and passive immunotherapies and, more recently, inhibitors of tau acetylation. Animal studies have shown that both active and passive approaches can remove tau pathology and, in some cases, improve cognitive function. Two active vaccines targeting either nonphosphorylated (AAD-vac1) and phosphorylated tau (ACI-35) have entered Phase I testing. Notwithstanding, the recent discontinuation of the monoclonal antibody RG7345 for Alzheimer's disease, two other antitau antibodies, BMS-986168 and C2N-8E12, are also currently in Phase I testing for progressive supranuclear palsy. After the recent impressive results in animal studies obtained by salsalate, the dimer of salicylic acid, inhibitors of tau acetylation are being actively pursued. PMID:27485083

  15. Hyperphosphorylated tau and neurofilament and cytoskeletal disruptions in mice overexpressing human p25, an activator of cdk5

    PubMed Central

    Ahlijanian, Michael K.; Barrezueta, Nestor X.; Williams, Robert D.; Jakowski, Amy; Kowsz, Kim P.; McCarthy, Sheryl; Coskran, Timothy; Carlo, Anthony; Seymour, Patricia A.; Burkhardt, John E.; Nelson, Robert B.; McNeish, John D.

    2000-01-01

    Hyperphosphorylation of microtubule-associated proteins such as tau and neurofilament may underlie the cytoskeletal abnormalities and neuronal death seen in several neurodegenerative diseases including Alzheimer's disease. One potential mechanism of microtubule-associated protein hyperphosphorylation is augmented activity of protein kinases known to associate with microtubules, such as cdk5 or GSK3β. Here we show that tau and neurofilament are hyperphosphorylated in transgenic mice that overexpress human p25, an activator of cdk5. The p25 transgenic mice display silver-positive neurons using the Bielschowsky stain. Disturbances in neuronal cytoskeletal organization are apparent at the ultrastructural level. These changes are localized predominantly to the amygdala, thalamus/hypothalamus, and cortex. The p25 transgenic mice display increased spontaneous locomotor activity and differences from control in the elevated plus-maze test. The overexpression of an activator of cdk5 in transgenic mice results in increased cdk5 activity that is sufficient to produce hyperphosphorylation of tau and neurofilament as well as cytoskeletal disruptions reminiscent of Alzheimer's disease and other neurodegenerative diseases. PMID:10706614

  16. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients

    PubMed Central

    Bieghs, Liesbeth; Brohus, Malene; Kristensen, Ida B.; Abildgaard, Niels; Bøgsted, Martin; Johnsen, Hans E.; Conover, Cheryl A.; De Bruyne, Elke; Vanderkerken, Karin

    2016-01-01

    Insulin-like growth factor (IGF) signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM). In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6), leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM (n = 17), monoclonal gammopathy of undetermined significance (MGUS) (n = 37), and control individuals (n = 15), using ELISA (IGFs) and 125I-IGF1 Western Ligand Blotting (IGFBPs). MGUS and MM patients displayed a significant increase in intact IGFBP-2 (2.5–3.8 fold) and decrease in intact IGFBP-3 (0.6–0.5 fold) in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration. PMID:27111220

  17. Abnormal IGF-Binding Protein Profile in the Bone Marrow of Multiple Myeloma Patients.

    PubMed

    Bieghs, Liesbeth; Brohus, Malene; Kristensen, Ida B; Abildgaard, Niels; Bøgsted, Martin; Johnsen, Hans E; Conover, Cheryl A; De Bruyne, Elke; Vanderkerken, Karin; Overgaard, Michael T; Nyegaard, Mette

    2016-01-01

    Insulin-like growth factor (IGF) signalling plays a key role in homing, progression, and treatment resistance in multiple myeloma (MM). In the extracellular environment, the majority of IGF molecules are bound to one of six IGF-binding proteins (IGFBP1-6), leaving a minor fraction of total IGF free and accessible for receptor activation. In MM, high IGF-receptor type 1 expression levels correlate with a poor prognosis, but the status and role of IGF and IGFBPs in the pathobiology of MM is unknown. Here we measured total IGF1, IGF2, and intact IGFBP levels in blood and bone marrow samples from MM (n = 17), monoclonal gammopathy of undetermined significance (MGUS) (n = 37), and control individuals (n = 15), using ELISA (IGFs) and 125I-IGF1 Western Ligand Blotting (IGFBPs). MGUS and MM patients displayed a significant increase in intact IGFBP-2 (2.5-3.8 fold) and decrease in intact IGFBP-3 (0.6-0.5 fold) in the circulation compared to control individuals. Further, IGFBP-2 as well as total IGFBP levels were significantly lower in bone marrow compared to circulation in MM and MGUS only, whereas IGF1, IGF2, and IGFBP-3 were equally distributed between the two compartments. In conclusion, the profound change in IGFBP profile strongly suggests an increased IGF bioavailability in the bone marrow microenvironment in MGUS and MM, despite no change in growth factor concentration. PMID:27111220

  18. Subcutaneous administration of liraglutide ameliorates learning and memory impairment by modulating tau hyperphosphorylation via the glycogen synthase kinase-3β pathway in an amyloid β protein induced alzheimer disease mouse model.

    PubMed

    Qi, Liqin; Ke, Linfang; Liu, Xiaohong; Liao, Lianming; Ke, Sujie; Liu, Xiaoying; Wang, Yanping; Lin, Xiaowei; Zhou, Yu; Wu, Lijuan; Chen, Zhou; Liu, Libin

    2016-07-15

    Type 2 diabetes mellitus is a risk factor for Alzheimer's disease (AD). The glucagon-like peptide-1 analog liraglutide, a novel long-lasting incretin hormone, has been used to treat type 2 diabetes mellitus. In addition, liraglutide has been shown to be neurotrophic and neuroprotective. Here, we investigated the effects of liraglutide on amyloid β protein (Aβ)-induced AD in mice and explored its mechanism of action. The results showed that subcutaneous administration of liraglutide (25nmol/day), once daily for 8 weeks, prevented memory impairments in the Y Maze and Morris Water Maze following Aβ1-42 intracerebroventricular injection, and alleviated the ultra-structural changes of pyramidal neurons and chemical synapses in the hippocampal CA1 region. Furthermore, liraglutide reduced Aβ1-42-induced tau phosphorylation via the protein kinase B and glycogen synthase kinase-3β pathways. Thus liraglutide may alleviate cognitive impairment in AD by at least decreasing the phosphorylation of tau. PMID:27131827

  19. Histone deacetylase 6 inhibition improves memory and reduces total tau levels in a mouse model of tau deposition

    PubMed Central

    2014-01-01

    Introduction Tau pathology is associated with a number of age-related neurodegenerative disorders. Few treatments have been demonstrated to diminish the impact of tau pathology in mouse models and none are yet effective in humans. Histone deacetylase 6 (HDAC6) is an enzyme that removes acetyl groups from cytoplasmic proteins, rather than nuclear histones. Its substrates include tubulin, heat shock protein 90 and cortactin. Tubastatin A is a selective inhibitor of HDAC6. Modification of tau pathology by specific inhibition of HDAC6 presents a potential therapeutic approach in tauopathy. Methods We treated rTg4510 mouse models of tau deposition and non-transgenic mice with tubastatin (25 mg/kg) or saline (0.9%) from 5 to 7 months of age. Cognitive behavior analysis, histology and biochemical analysis were applied to access the effect of tubastatin on memory, tau pathology and neurodegeneration (hippocampal volume). Results We present data showing that tubastatin restored memory function in rTg4510 mice and reversed a hyperactivity phenotype. We further found that tubastatin reduced the levels of total tau, both histologically and by western analysis. Reduction in total tau levels was positively correlated with memory improvement in these mice. However, there was no impact on phosphorylated forms of tau, either by histology or western analysis, nor was there an impact on silver positive inclusions histologically. Conclusion Potential mechanisms by which HDAC6 inhibitors might benefit the rTg4510 mouse include stabilization of microtubules secondary to increased tubulin acetylation, increased degradation of tau secondary to increased acetylation of HSP90 or both. These data support the use of HDAC6 inhibitors as potential therapeutic agents against tau pathology. PMID:24576665

  20. High Doses of Bone Morphogenetic Protein 2 Induce Structurally Abnormal Bone and Inflammation In Vivo

    PubMed Central

    Zara, Janette N.; Siu, Ronald K.; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M.; Ting, Kang

    2011-01-01

    The major Food and Drug Association–approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL. PMID:21247344

  1. High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo.

    PubMed

    Zara, Janette N; Siu, Ronald K; Zhang, Xinli; Shen, Jia; Ngo, Richard; Lee, Min; Li, Weiming; Chiang, Michael; Chung, Jonguk; Kwak, Jinny; Wu, Benjamin M; Ting, Kang; Soo, Chia

    2011-05-01

    The major Food and Drug Association-approved osteoinductive factors in wide clinical use are bone morphogenetic proteins (BMPs). Although BMPs can promote robust bone formation, they also induce adverse clinical effects, including cyst-like bone formation and significant soft tissue swelling. In this study, we evaluated multiple BMP2 doses in a rat femoral segmental defect model and in a minimally traumatic rat femoral onlay model to determine its dose-dependent effects. Results of our femoral segmental defect model established a low BMP2 concentration range (5 and 10 μg/mL, total dose 0.375 and 0.75 μg in 75 μg total volume) unable to induce defect fusion, a mid-range BMP2 concentration range able to fuse the defect without adverse effects (30 μg/mL, total dose 2.25 μg in 75 μg total volume), and a high BMP2 concentration range (150, 300, and 600 μg/mL, total dose 11.25, 22.5, and 45 μg in 75 μg total volume) able to fuse the defect, but with formation of cyst-like bony shells filled with histologically confirmed adipose tissue. In addition, compared to control, 4 mg/mL BMP2 also induced significant tissue inflammatory infiltrates and exudates in the femoral onlay model that was accompanied by increased numbers of osteoclast-like cells at 3, 7, and 14 days. Overall, we consistently reproduced BMP2 side effects of cyst-like bone and soft tissue swelling using high BMP2 concentration approaching the typical human 1500 μg/mL. PMID:21247344

  2. Blocking protein farnesylation improves nuclear shape abnormalities in keratinocytes of mice expressing the prelamin A variant in Hutchinson-Gilford progeria syndrome.

    PubMed

    Wang, Yuexia; Ostlund, Cecilia; Worman, Howard J

    2010-01-01

    Hutchinson-Gilford progeria syndrome (HGPS) is an accelerated aging disorder caused by mutations in LMNA leading to expression of a truncated prelamin A variant termed progerin. Whereas a farnesylated polypeptide is normally removed from the carboxyl-terminus of prelamin A during endoproteolytic processing to lamin A, progerin lacks the cleavage site and remains farnesylated. Cultured cells from human subjects with HGPS and genetically modified mice expressing progerin have nuclear morphological abnormalities, which are reversed by inhibitors of protein farnesylation. In addition, treatment with protein farnesyltransferase inhibitors improves whole animal phenotypes in mouse models of HGPS. However, improvement in nuclear morphology in tissues after treatment of animals has not been demonstrated. We therefore treated transgenic mice that express progerin in epidermis with the protein farnesyltransferase inhibitor FTI-276 or a combination of pravastatin and zoledronate to determine if they reversed nuclear morphological abnormalities in tissue. Immunofluorescence microscopy and "blinded" electron microscopic analysis demonstrated that systemic administration of FTI-276 or pravastatin plus zoledronate significantly improved nuclear morphological abnormalities in keratinocytes of transgenic mice. These results show that pharmacological blockade of protein prenylation reverses nuclear morphological abnormalities that occur in HGPS in vivo. They further suggest that skin biopsy may be useful to determine if protein farnesylation inhibitors are exerting effects in subjects with HGPS in clinical trials. PMID:21326826

  3. Convergence of Presenilin- and Tau-mediated Pathways on Axonal Trafficking and Neuronal Function

    PubMed Central

    Peethumnongsin, Erica; Yang, Li; Kallhoff-Muñoz, Verena; Hu, Lingyun; Takashima, Akihiko; Pautler, Robia G.; Zheng, Hui

    2010-01-01

    Alzheimer’s disease (AD) is a significant and growing health problem in the aging population. Although definitive mechanisms of pathogenesis remain elusive, genetic and histological clues have implicated the proteins presenilin (PS) and tau as key players in AD development. PS mutations lead to familial AD, and although tau is not mutated in AD, tau pathology is a hallmark of the disease. Axonal transport deficits are a common feature of several neurodegenerative disorders and may represent a point of intersection of PS and tau function. To investigate the contribution of wild-type, as opposed to mutant, tau to axonal transport defects in the context of presenilin loss, we used a mouse model postnatally deficient for PS (PS cDKO) and expressing wild-type human tau (WtTau). The resulting PS cDKO;WtTau mice exhibited early tau pathology and axonal transport deficits that preceded development of these phenotypes in WtTau or PS cDKO mice. These deficits were associated with reduced neurotrophin signaling, defective learning and memory and impaired synaptic plasticity. The combination of these effects accelerated neurodegeneration in PS cDKO;WtTau mice. Our results strongly support a convergent role for PS and tau in axonal transport and neuronal survival and function and implicate their misregulation as a contributor to AD pathogenesis. PMID:20926667

  4. Mechanisms of tau and Aβ-induced excitotoxicity.

    PubMed

    Pallo, Susanne P; DiMaio, John; Cook, Alexis; Nilsson, Bradley; Johnson, Gail V W

    2016-03-01

    Excitotoxicity was originally postulated to be a late stage side effect of Alzheimer׳s disease (AD)-related neurodegeneration, however more recent studies indicate that it may occur early in AD and contribute to the neurodegenerative process. Tau and amyloid beta (Aβ), the main components of neurofibrillary tangles (NFTs) and amyloid plaques, have been implicated in cooperatively and independently facilitating excitotoxicity. Our study investigated the roles of tau and Aβ in AD-related excitotoxicity. In vivo studies showed that tau knockout (tau(-/-)) mice were significantly protected from seizures and hippocampal superoxide production induced with the glutamate analog, kainic acid (KA). We hypothesized that tau accomplished this by facilitating KA-induced Ca(2+) influx into neurons, however lentiviral tau knockdown failed to ameliorate KA-induced Ca(2+) influx into primary rat cortical neurons. We further investigated if tau cooperated with Aβ to facilitate KA-induced Ca(2+) influx. While Aβ biphasically modulated the KA-induced Cacyt(2+) responses, tau knockdown continued to have no effect. Therefore, tau facilitates KA-induced seizures and superoxide production in a manner that does not involve facilitation of Ca(2+) influx through KA receptors (KAR). On the other hand, acute pretreatment with Aβ (10 min) enhanced KA-induced Ca(2+) influx, while chronic Aβ (24 h) significantly reduced it, regardless of tau knockdown. Given previously published connections between Aβ, group 1 metabotropic glutamate receptors (mGluRs), and KAR regulation, we hypothesized that Aβ modulates KAR via a G-protein coupled receptor pathway mediated by group 1 mGluRs. We found that Aβ did not activate group 1 mGluRs and inhibition of these receptors did not reverse Aβ modulation of KA-induced Ca(2+) influx. Therefore, Aβ biphasically regulates KAR via a mechanism that does not involve group 1mGluR activation. PMID:26731336

  5. Amyloid and tau cerebrospinal fluid biomarkers in HIV infection

    PubMed Central

    2009-01-01

    Background Because of the emerging intersections of HIV infection and Alzheimer's disease, we examined cerebrospinal fluid (CSF) biomarkers related of amyloid and tau metabolism in HIV-infected patients. Methods In this cross-sectional study we measured soluble amyloid precursor proteins alpha and beta (sAPPα and sAPPβ), amyloid beta fragment 1-42 (Aβ1-42), and total and hyperphosphorylated tau (t-tau and p-tau) in CSF of 86 HIV-infected (HIV+) subjects, including 21 with AIDS dementia complex (ADC), 25 with central nervous system (CNS) opportunistic infections and 40 without neurological symptoms and signs. We also measured these CSF biomarkers in 64 uninfected (HIV-) subjects, including 21 with Alzheimer's disease, and both younger and older controls without neurological disease. Results CSF sAPPα and sAPPβ concentrations were highly correlated and reduced in patients with ADC and opportunistic infections compared to the other groups. The opportunistic infection group but not the ADC patients had lower CSF Aβ1-42 in comparison to the other HIV+ subjects. CSF t-tau levels were high in some ADC patients, but did not differ significantly from the HIV+ neuroasymptomatic group, while CSF p-tau was not increased in any of the HIV+ groups. Together, CSF amyloid and tau markers segregated the ADC patients from both HIV+ and HIV- neuroasymptomatics and from Alzheimer's disease patients, but not from those with opportunistic infections. Conclusions Parallel reductions of CSF sAPPα and sAPPβ in ADC and CNS opportunistic infections suggest an effect of CNS immune activation or inflammation on neuronal amyloid synthesis or processing. Elevation of CSF t-tau in some ADC and CNS infection patients without concomitant increase in p-tau indicates neural injury without preferential accumulation of hyperphosphorylated tau as found in Alzheimer's disease. These biomarker changes define pathogenetic pathways to brain injury in ADC that differ from those of Alzheimer's disease

  6. 3D Visualization of the Temporal and Spatial Spread of Tau Pathology Reveals Extensive Sites of Tau Accumulation Associated with Neuronal Loss and Recognition Memory Deficit in Aged Tau Transgenic Mice

    PubMed Central

    Fu, Hongjun; Hussaini, S. Abid; Wegmann, Susanne; Profaci, Caterina; Daniels, Jacob D.; Herman, Mathieu; Emrani, Sheina; Figueroa, Helen Y.; Hyman, Bradley T.; Davies, Peter; Duff, Karen E.

    2016-01-01

    3D volume imaging using iDISCO+ was applied to observe the spatial and temporal progression of tau pathology in deep structures of the brain of a mouse model that recapitulates the earliest stages of Alzheimer’s disease (AD). Tau pathology was compared at four timepoints, up to 34 months as it spread through the hippocampal formation and out into the neocortex along an anatomically connected route. Tau pathology was associated with significant gliosis. No evidence for uptake and accumulation of tau by glia was observed. Neuronal cells did appear to have internalized tau, including in extrahippocampal areas as a small proportion of cells that had accumulated human tau protein did not express detectible levels of human tau mRNA. At the oldest timepoint, mature tau pathology in the entorhinal cortex (EC) was associated with significant cell loss. As in human AD, mature tau pathology in the EC and the presence of tau pathology in the neocortex correlated with cognitive impairment. 3D volume imaging is an ideal technique to easily monitor the spread of pathology over time in models of disease progression. PMID:27466814

  7. 3D Visualization of the Temporal and Spatial Spread of Tau Pathology Reveals Extensive Sites of Tau Accumulation Associated with Neuronal Loss and Recognition Memory Deficit in Aged Tau Transgenic Mice.

    PubMed

    Fu, Hongjun; Hussaini, S Abid; Wegmann, Susanne; Profaci, Caterina; Daniels, Jacob D; Herman, Mathieu; Emrani, Sheina; Figueroa, Helen Y; Hyman, Bradley T; Davies, Peter; Duff, Karen E

    2016-01-01

    3D volume imaging using iDISCO+ was applied to observe the spatial and temporal progression of tau pathology in deep structures of the brain of a mouse model that recapitulates the earliest stages of Alzheimer's disease (AD). Tau pathology was compared at four timepoints, up to 34 months as it spread through the hippocampal formation and out into the neocortex along an anatomically connected route. Tau pathology was associated with significant gliosis. No evidence for uptake and accumulation of tau by glia was observed. Neuronal cells did appear to have internalized tau, including in extrahippocampal areas as a small proportion of cells that had accumulated human tau protein did not express detectible levels of human tau mRNA. At the oldest timepoint, mature tau pathology in the entorhinal cortex (EC) was associated with significant cell loss. As in human AD, mature tau pathology in the EC and the presence of tau pathology in the neocortex correlated with cognitive impairment. 3D volume imaging is an ideal technique to easily monitor the spread of pathology over time in models of disease progression. PMID:27466814

  8. Synthesis and Initial Evaluation of YM-08, a Blood-Brain Barrier Permeable Derivative of the Heat Shock Protein 70 (Hsp70) Inhibitor MKT-077, Which Reduces Tau Levels

    PubMed Central

    2013-01-01

    The molecular chaperone, heat shock protein 70 (Hsp70), is an emerging drug target for treating neurodegenerative tauopathies. We recently found that one promising Hsp70 inhibitor, MKT-077, reduces tau levels in cellular models. However, MKT-077 does not penetrate the blood-brain barrier (BBB), limiting its use as either a clinical candidate or probe for exploring Hsp70 as a drug target in the central nervous system (CNS). We hypothesized that replacing the cationic pyridinium moiety in MKT-077 with a neutral pyridine might improve its clogP and enhance its BBB penetrance. To test this idea, we designed and synthesized YM-08, a neutral analogue of MKT-077. Like the parent compound, YM-08 bound to Hsp70 in vitro and reduced phosphorylated tau levels in cultured brain slices. Pharmacokinetic evaluation in CD1 mice showed that YM-08 crossed the BBB and maintained a brain/plasma (B/P) value of ∼0.25 for at least 18 h. Together, these studies suggest that YM-08 is a promising scaffold for the development of Hsp70 inhibitors suitable for use in the CNS. PMID:23472668

  9. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess)

    NASA Astrophysics Data System (ADS)

    Koo, Hyun-Na; Yun, Seung-Hwan; Yoon, Changmann; Kim, Gil-Hah

    2012-01-01

    The American serpentine leafminer fly, Liriomyza trifolii (Burgess), is one of the most destructive polyphagous pests worldwide. In this study, we determined electron beam doses for inhibition of normal development of the leaf miner and investigated the effect of electron beam irradiation on DNA damage and p53 stability. Eggs (0-24 h old), larvae (2nd instar), puparia (0-24 h old after pupariation) and adults (24 h after emergence) were irradiated with increasing doses of electron beam irradiation (six levels between 30 and 200 Gy). At 150 Gy, the number of adults that developed from irradiated eggs, larvae and puparia was lower than in the untreated control. Fecundity and egg hatchability decreased depending on the doses applied. Reciprocal crosses between irradiated and unirradiated flies demonstrated that males were more radiotolerant than females. Adult longevity was not affected in all stages. The levels of DNA damage in L. trifolii adults were evaluated using the alkaline comet assay. Our results indicate that electron beam irradiation increased levels of DNA damage in a dose-dependent manner. Moreover, low doses of electron beam irradiation led to the rapid appearance of p53 protein within 6 h; however, it decreased after exposure to high doses (150 Gy and 200 Gy). These results suggest that electron beam irradiation induced not only abnormal development and reproduction but also p53 stability caused by DNA damage in L. trifolii. We conclude that a minimum dose of 150 Gy should be sufficient for female sterilization of L. trifolii.

  10. Meiosis I Arrest Abnormalities Lead to Severe Oligozoospermia in Meiosis 1 Arresting Protein (M1ap)-Deficient Mice1

    PubMed Central

    Arango, Nelson Alexander; Li, Li; Dabir, Deepa; Nicolau, Fotini; Pieretti-Vanmarcke, Rafael; Koehler, Carla; McCarrey, John R.; Lu, Naifang; Donahoe, Patricia K.

    2013-01-01

    ABSTRACT Meiosis 1 arresting protein (M1ap) is a novel vertebrate gene expressed exclusively in germ cells of the embryonic ovary and the adult testis. In male mice, M1ap expression, which is present from spermatogonia to secondary spermatocytes, is evolutionarily conserved and has a specific spatial and temporal pattern suggestive of a role during germ cell development. To test its function, mice deficient in M1ap were created. Whereas females had histologically normal ovaries, males exhibited reduced testicular size and a myriad of tubular defects, which led to severe oligozoospermia and infertility. Although some germ cells arrested at the zygotene/pachytene stages, most cells advanced to metaphase I before arresting and entering apoptosis. Cells that reached metaphase I were unable to properly align their chromosomes at the metaphase plate due to abnormal chromosome synapses and failure to form crossover foci. Depending on the state of tubular degeneration, all germ cells, with the exemption of spermatogonia, disappeared; with further deterioration, tubules displaying only Sertoli cells reminiscent of Sertoli cell-only syndrome in humans were observed. Our results uncovered an essential role for M1ap as a novel germ cell gene not previously implicated in male germ cell development and suggest that mutations in M1AP could account for some cases of nonobstructive oligozoospermia in men. PMID:23269666

  11. Human wild-type full-length tau accumulation disrupts mitochondrial dynamics and the functions via increasing mitofusins

    PubMed Central

    Li, Xia-Chun; Hu, Yu; Wang, Zhi-hao; Luo, Yu; Zhang, Yao; Liu, Xiu-Ping; Feng, Qiong; Wang, Qun; Ye, Keqiang; Liu, Gong-Ping; Wang, Jian-Zhi

    2016-01-01

    Intracellular accumulation of tau protein is hallmark of sporadic Alzheimer’s disease (AD), however, the cellular mechanism whereby tau accumulation causes neurodegeneration is poorly understood. Here we report that overexpression of human wild-type full-length tau (termed htau) disrupted mitochondrial dynamics by enhancing fusion and induced their perinuclear accumulation in HEK293 cells and rat primary hippocampal neurons. The htau accumulation at later stage inhibited mitochondrial functions shown by the decreased ATP level, the ratio of ATP/ADP and complex I activity. Simultaneously, the cell viability was decreased with retraction of the cellular/neuronal processes. Further studies demonstrated that htau accumulation increased fusion proteins, including OPA1 and mitofusins (Mfn1, Mfn2) and reduced the ubiquitination of Mfn2. Downregulation of the mitofusins by shRNA to ~45% or ~52% of the control levels attenuated the htau-enhanced mitochondrial fusion and restored the functions, while downregulation of OPA1 to ~50% of the control level did not show rescue effects. Finally, abnormal mitochondrial accumulation and dysfunction were also observed in the brains of htau transgenic mice. Taken together, our data demonstrate that htau accumulation decreases cell viability and causes degeneration via enhancing mitofusin-associated mitochondrial fusion, which provides new insights into the molecular mechanisms underlying tauopathies. PMID:27099072

  12. Abnormal accumulation of NACP/alpha-synuclein in neurodegenerative disorders.

    PubMed Central

    Takeda, A.; Mallory, M.; Sundsmo, M.; Honer, W.; Hansen, L.; Masliah, E.

    1998-01-01

    The precursor of the non-Abeta component of Alzheimer's disease amyloid (NACP) (also known as a-synuclein) is a presynaptic terminal molecule that accumulates in the plaques of Alzheimer's disease. Recent studies have shown that a mutation in NACP is associated with familial Parkinson's disease, and that Lewy bodies are immunoreactive with antibodies against this molecule. To clarify the patterns of accumulation and differences in abnormal compartmentalization, we studied NACP immunoreactivity using double immunolabeling and laser scanning confocal microscopy in the cortex of patients with various neurodegenerative disorders. In Lewy body variant of Alzheimer's disease, diffuse Lewy body disease, and Parkinson's disease, NACP was found to immunolabel cortical Lewy bodies, abnormal neurites, and dystrophic neurites in the plaques. Double-labeling studies showed that all three of these neuropathological structures also contained ubiquitin, synaptophysin, and neurofilament (but not tau) immunoreactivity. In contrast, neurofibrillary tangles, neuropil threads, Pick bodies, ballooned neurons, and glial tangles (most of which were tau positive) were NACP negative. These results support the view that NACP specifically accumulates in diseases related to Lewy bodies such as Lewy body variant of Alzheimer's disease, diffuse Lewy body disease, and Parkinson's disease and suggests a role for this synaptic protein in the pathogenesis of neurodegeneration. Images Figure 1 Figure 2 Figure 3 PMID:9466562

  13. Decays of the heavy lepton, tau (1785)

    SciTech Connect

    Blocker, C.A.

    1980-04-01

    The structure of the weak hadronic current coupled to the tau is investigated via some of the hadronic decays of the tau. The vector current coupling is determined by measuring the tau ..-->.. rho ..nu../sub tau/ branching ratio. The axial-vector coupling is determined by measuring the tau ..-->.. ..pi.. ..nu../sub tau/ branching ratio. The Cabibbo structure of the hadronic current is established by observing the decay tau ..-->.. K*(890)..nu../sub tau/ and measuring its branching ratio. The branching ratios for the decays tau ..-->.. e anti ..nu../sub e/..nu../sub tau/ and tau ..-->.. ..mu.. anti ..nu../sub ..mu../..nu../sub tau/ are measured as a normalization for the hadronic decays and as a check on the validity of the measurements. The leptonic branching ratios agree well with previous experiments. From a kinematic fit to the pion energy spectrum in the decay tau ..-->.. ..pi.. ..nu../sub tau/, an upper limit (95% confidence level) of 245 MeV is placed on the tau neutrino mass. From a simultaneous fit of the center of mass energy dependence of the tau production cross section and the pion energy spectrum in the decay tau ..-->.. ..pi.. ..nu../sub tau/, the tau mass is determined to be 1.787 +- .010 GeV/c. All properties of the tau measured here are consistent with it being a sequential lepton coupled to the ordinary weak hadronic current.

  14. Behind the curtain of tauopathy: a show of multiple players orchestrating tau toxicity.

    PubMed

    Huang, Yunpeng; Wu, Zhihao; Zhou, Bing

    2016-01-01

    tau, a microtubule-associated protein, directly binds with microtubules to dynamically regulate the organization of cellular cytoskeletons, and is especially abundant in neurons of the central nervous system. Under disease conditions such as Pick's disease, progressive supranuclear palsy, frontotemporal dementia, parkinsonism linked to chromosome 17 and Alzheimer's disease, tau proteins can self-assemble to paired helical filaments progressing to neurofibrillary tangles. In these diseases, collectively referred to as "tauopathies", alterations of diverse tau modifications including phosphorylation, metal ion binding, glycosylation, as well as structural changes of tau proteins have all been observed, indicating the complexity and variability of factors in the regulation of tau toxicity. Here, we review our current knowledge and hypotheses from relevant studies on tau toxicity, emphasizing the roles of phosphorylations, metal ions, folding and clearance control underlining tau etiology and their regulations. A summary of clinical efforts and associated findings of drug candidates under development is also presented. It is hoped that a more comprehensive understanding of tau regulation will provide us with a better blueprint of tau networking in neuronal cells and offer hints for the design of more efficient strategies to tackle tau-related diseases in the future. PMID:26403791

  15. Relative abundance of tau and neurofilament epitopes in hippocampal neurofibrillary tangles.

    PubMed Central

    Schmidt, M. L.; Lee, V. M.; Trojanowski, J. Q.

    1990-01-01

    Neurofibrillary tangles (NFTs) derive, in part, from normal neuronal cytoskeletal proteins, ie, large portions of tau (tau) but only restricted segments of the peripheral domains of the high- and middle-molecular weight neurofilament subunits. To learn more about the events leading to the incorporation of tau and neurofilament epitopes into NFTs, the relative abundance of tau and NF determinants in these lesions was quantitatively analyzed in hippocampi from Alzheimer disease (AD) patients and age-matched controls using monoclonal antibodies specific for tau or for NF proteins. Immunostained NFTs appeared qualitatively the same in both AD and controls, ie, every epitope found in AD NFTs occurred also in the NFTs of the control patients. However, in hippocampi with only a few tangles, tau epitopes, but no NF epitopes, were detected in NFTs. In contrast, both tau and NF epitopes were present in those tangles that were found in hippocampi with abundant NFTs. Nevertheless, the number of tau-positive NFTs generally exceeded the number of NF-positive NFTs. These findings indicate that tau epitopes are more abundant than NF epitopes in NFTs and that the formation of NFTs may be linked to a derangement in the normal metabolism of tau that is more extensive than alterations in NF protein metabolism. Images Figure 1 PMID:1693468

  16. Early Axonopathy Preceding Neurofibrillary Tangles in Mutant Tau Transgenic Mice

    PubMed Central

    Leroy, Karelle; Bretteville, Alexis; Schindowski, Katharina; Gilissen, Emmanuel; Authelet, Michèle; De Decker, Robert; Yilmaz, Zehra; Buée, Luc; Brion, Jean-Pierre

    2007-01-01

    Neurodegenerative diseases characterized by brain and spinal cord involvement often show widespread accumulations of tau aggregates. We have generated a transgenic mouse line (Tg30tau) expressing in the forebrain and the spinal cord a human tau protein bearing two pathogenic mutations (P301S and G272V). These mice developed age-dependent brain and hippocampal atrophy, central and peripheral axonopathy, progressive motor impairment with neurogenic muscle atrophy, and neurofibrillary tangles and had decreased survival. Axonal spheroids and axonal atrophy developed early before neurofibrillary tangles. Neurofibrillary inclusions developed in neurons at 3 months and were of two types, suggestive of a selective vulnerability of neurons to form different types of fibrillary aggregates. A first type of tau-positive neurofibrillary tangles, more abundant in the forebrain, were composed of ribbon-like 19-nm-wide filaments and twisted paired helical filaments. A second type of tau and neurofilament-positive neurofibrillary tangles, more abundant in the spinal cord and the brainstem, were composed of 10-nm-wide neurofilaments and straight 19-nm filaments. Unbiased stereological analysis indicated that total number of pyramidal neurons and density of neurons in the lumbar spinal cord were not reduced up to 12 months in Tg30tau mice. This Tg30tau model thus provides evidence that axonopathy precedes tangle formation and that both lesions can be dissociated from overt neuronal loss in selected brain areas but not from neuronal dysfunction. PMID:17690183

  17. Effects of macromolecular crowding and osmolyte on human Tau fibrillation.

    PubMed

    Wu, Yingying; Teng, Ningning; Li, Sen

    2016-09-01

    Tau fibrillation is reported to be involved in neurodegenerative disorders, such as Alzheimer's disease, in which the natural environment is very crowded in the cells. Understanding the role of crowding environments in regulating Tau fibrillation is of great importance for elucidating the etiology of these diseases. In this experiment, the effects of macromolecular crowding and osmolyte reagents in the crowding environment on Tau fibrillation were studied by thioflavin T binding, SDS-PAGE and TEM assays. Ficoll 70 and Dextran 70 of different concentrations were used as macromolecular crowding reagents inside the cells and showed a strong enhancing effect on the fibrillation of normal and hyperphosphorylated Tau. The enhancing effect of Dextran is stronger than that of Ficoll 70 at the same concentration. In addition, the cellular osmolyte sucrose was found to protect Tau against fibrillation, and inhibit the enhancing effect of macromolecular crowding on Tau fibrillation. A possible model for the fibrillation process of Tau and the effect of macromolecular crowding and osmolyte on this process was proposed based on these experimental results. The information obtained from our study can enhance the understanding of how proteins aggregate and avoid aggregation in crowded physiological environments and might lead to a better understanding of the molecular mechanisms of Alzheimer's disease in vivo. PMID:26683879

  18. Tau physics at future facilities

    SciTech Connect

    Perl, M.L.

    1994-12-01

    This paper dicusses and projects the tau research which may be carried out at CESR, at BEPC, at the SLC, in the next few years at LEP I, at the asymmetric B-factories under construction in Japan and the United States and, if built, a tau-charm factory. As the size of tau data sets increases, there is an increasing need to reduce the effects of systematic errors on the precision and search range of experiments. In most areas of tau physics there is a large amount of progress to be made, but in a few areas it will be difficult to substantially improve the precision of present measurements.

  19. Effects of tau domain-specific antibodies and intravenous immunoglobulin on tau aggregation and aggregate degradation.

    PubMed

    Esteves-Villanueva, Jose O; Trzeciakiewicz, Hanna; Loeffler, David A; Martić, Sanela

    2015-01-20

    Tau pathology, including neurofibrillary tangles, develops in Alzheimer's disease (AD). The aggregation and hyperphosphorylation of tau are potential therapeutic targets for AD. Administration of anti-tau antibodies reduces tau pathology in transgenic "tauopathy" mice; however, the optimal tau epitopes and conformations to target are unclear. Also unknown is whether intravenous immunoglobulin (IVIG) products, currently being evaluated in AD trials, exert effects on pathological tau. This study examined the effects of anti-tau antibodies targeting different tau epitopes and the IVIG Gammagard on tau aggregation and preformed tau aggregates. Tau aggregation was assessed by transmission electron microscopy and fluorescence spectroscopy, and the binding affinity of the anti-tau antibodies for tau was evaluated by enzyme-linked immunosorbent assays. Antibodies used were anti-tau 1-150 ("D-8"), anti-tau 259-266 ("Paired-262"), anti-tau 341-360 ("A-10"), and anti-tau 404-441 ("Tau-46"), which bind to tau's N-terminus, microtubule binding domain (MBD) repeat sequences R1 and R4, and the C-terminus, respectively. The antibodies Paired-262 and A-10, but not D-8 and Tau-46, reduced tau fibrillization and degraded preformed tau aggregates, whereas the IVIG reduced tau aggregation but did not alter preformed aggregates. The binding affinities of the antibodies for the epitope for which they were specific did not appear to be related to their effects on tau aggregation. These results confirm that antibody binding to tau's MBD repeat sequences may inhibit tau aggregation and indicate that such antibodies may also degrade preformed tau aggregates. In the presence of anti-tau antibodies, the resulting tau morphologies were antigen-dependent. The results also suggested the possibility of different pathways regulating antibody-mediated inhibition of tau aggregation and antibody-mediated degradation of preformed tau aggregates. PMID:25545358

  20. Increased cerebral vascular reactivity in the tau expressing rTg4510 mouse: evidence against the role of tau pathology to impair vascular health in Alzheimer's disease

    PubMed Central

    Wells, Jack A; Holmes, Holly E; O'Callaghan, James M; Colgan, Niall; Ismail, Ozama; Fisher, Elizabeth MC; Siow, Bernard; Murray, Tracey K; Schwarz, Adam J; O'Neill, Michael J; Collins, Emily C; Lythgoe, Mark F

    2015-01-01

    Vascular abnormalities are a key feature of Alzheimer's disease (AD). Imaging of cerebral vascular reactivity (CVR) is a powerful tool to investigate vascular health in clinical populations although the cause of reduced CVR in AD patients is not fully understood. We investigated the specific role of tau pathology in CVR derangement in AD using the rTg4510 mouse model. We observed an increase in CVR in cortical regions with tau pathology. These data suggest that tau pathology alone does not produce the clinically observed decreases in CVR and implicates amyloid pathology as the dominant etiology of impaired CVR in AD patients. PMID:25515210

  1. Increased cerebral vascular reactivity in the tau expressing rTg4510 mouse: evidence against the role of tau pathology to impair vascular health in Alzheimer's disease.

    PubMed

    Wells, Jack A; Holmes, Holly E; O'Callaghan, James M; Colgan, Niall; Ismail, Ozama; Fisher, Elizabeth Mc; Siow, Bernard; Murray, Tracey K; Schwarz, Adam J; O'Neill, Michael J; Collins, Emily C; Lythgoe, Mark F

    2015-03-01

    Vascular abnormalities are a key feature of Alzheimer's disease (AD). Imaging of cerebral vascular reactivity (CVR) is a powerful tool to investigate vascular health in clinical populations although the cause of reduced CVR in AD patients is not fully understood. We investigated the specific role of tau pathology in CVR derangement in AD using the rTg4510 mouse model. We observed an increase in CVR in cortical regions with tau pathology. These data suggest that tau pathology alone does not produce the clinically observed decreases in CVR and implicates amyloid pathology as the dominant etiology of impaired CVR in AD patients. PMID:25515210

  2. Loss of medial septum cholinergic neurons in THY-Tau22 mouse model: what links with tau pathology?

    PubMed

    Belarbi, K; Burnouf, S; Fernandez-Gomez, F-J; Desmercières, J; Troquier, L; Brouillette, J; Tsambou, L; Grosjean, M-E; Caillierez, R; Demeyer, D; Hamdane, M; Schindowski, K; Blum, D; Buée, L

    2011-09-01

    Alzheimer's disease (AD) is a neurodegenerative disorder histologically defined by the cerebral accumulation of amyloid deposits and neurofibrillary tangles composed of hyperphosphorylated tau proteins. Loss of basal forebrain cholinergic neurons is another hallmark of the disease thought to contribute to the cognitive dysfunctions. To this date, the mechanisms underlying cholinergic neurons degeneration remain uncertain. The present study aimed to investigate the relationship between neurofibrillary degeneration and cholinergic defects in AD using THY-Tau22 transgenic mouse model exhibiting a major hippocampal AD-like tau pathology and hyperphosphorylated tau species in the septohippocampal pathway. Here, we report that at a time THY-Tau22 mice display strong reference memory alterations, the retrograde transport of fluorogold through the septohippocampal pathway is altered. This impairment is associated with a significant reduction in the number of choline acetyltransferase (ChAT)-immunopositive cholinergic neurons in the medial septum. Analysis of nerve growth factor (NGF) levels supports an accumulation of the mature neurotrophin in the hippocampus of THY-Tau22 mice, consistent with a decrease of its uptake or retrograde transport by cholinergic terminals. Finally, our data strongly support that tau pathology could be instrumental in the cholinergic neuronal loss observed in AD. PMID:21605043

  3. Appoptosin-Mediated Caspase Cleavage of Tau Contributes to Progressive Supranuclear Palsy Pathogenesis.

    PubMed

    Zhao, Yingjun; Tseng, I-Chu; Heyser, Charles J; Rockenstein, Edward; Mante, Michael; Adame, Anthony; Zheng, Qiuyang; Huang, Timothy; Wang, Xin; Arslan, Pharhad E; Chakrabarty, Paramita; Wu, Chengbiao; Bu, Guojun; Mobley, William C; Zhang, Yun-Wu; St George-Hyslop, Peter; Masliah, Eliezer; Fraser, Paul; Xu, Huaxi

    2015-09-01

    Progressive supranuclear palsy (PSP) is a movement disorder characterized by tau neuropathology where the underlying mechanism is unknown. An SNP (rs1768208 C/T) has been identified as a strong risk factor for PSP. Here, we identified a much higher T-allele occurrence and increased levels of the pro-apoptotic protein appoptosin in PSP patients. Elevations in appoptosin correlate with activated caspase-3 and caspase-cleaved tau levels. Appoptosin overexpression increased caspase-mediated tau cleavage, tau aggregation, and synaptic dysfunction, whereas appoptosin deficiency reduced tau cleavage and aggregation. Appoptosin transduction impaired multiple motor functions and exacerbated neuropathology in tau-transgenic mice in a manner dependent on caspase-3 and tau. Increased appoptosin and caspase-3-cleaved tau were also observed in brain samples of patients with Alzheimer's disease and frontotemporal dementia with tau inclusions. Our findings reveal a novel role for appoptosin in neurological disorders with tau neuropathology, linking caspase-3-mediated tau cleavage to synaptic dysfunction and behavioral/motor defects. PMID:26335643

  4. Characterization of Prefibrillar Tau Oligomers in Vitro and in Alzheimer Disease*

    PubMed Central

    Patterson, Kristina R.; Remmers, Christine; Fu, Yifan; Brooker, Sarah; Kanaan, Nicholas M.; Vana, Laurel; Ward, Sarah; Reyes, Juan F.; Philibert, Keith; Glucksman, Marc J.; Binder, Lester I.

    2011-01-01

    Neurofibrillary tangles, composed of insoluble aggregates of the microtubule-associated protein Tau, are a pathological hallmark of Alzheimer disease (AD) and other tauopathies. However, recent evidence indicates that neuronal dysfunction precedes the formation of these insoluble fibrillar deposits, suggesting that earlier prefibrillar Tau aggregates may be neurotoxic. To determine the composition of these aggregates, we have employed a photochemical cross-linking technique to examine intermolecular interactions of full-length Tau in vitro. Using this method, we demonstrate that dimerization is an early event in the Tau aggregation process and that these dimers self-associate to form larger oligomeric aggregates. Moreover, using these stabilized Tau aggregates as immunogens, we generated a monoclonal antibody that selectively recognizes Tau dimers and higher order oligomeric aggregates but shows little reactivity to Tau filaments in vitro. Immunostaining indicates that these dimers/oligomers are markedly elevated in AD, appearing in early pathological inclusions such as neuropil threads and pretangle neurons as well as colocalizing with other early markers of Tau pathogenesis. Taken as a whole, the work presented herein demonstrates the existence of alternative Tau aggregates that precede formation of fibrillar Tau pathologies and raises the possibility that these hierarchical oligomeric forms of Tau may contribute to neurodegeneration. PMID:21550980

  5. SIL1 Rescued Bip Elevation-Related Tau Hyperphosphorylation in ER Stress.

    PubMed

    Liu, Zan-Chao; Chu, Jiang; Lin, Li; Song, Jie; Ning, Lin-Na; Luo, Hong-Bin; Yang, Shu-Sheng; Shi, Yan; Wang, Qun; Qu, Na; Zhang, Qi; Wang, Jian-Zhi; Tian, Qing

    2016-03-01

    Endoplasmic reticulum (ER) stress has been indicated in the early stage of Alzheimer's disease (AD), in which tau hyperphosphorylation is one major pathological alteration. The elevation of binding immunoglobulin protein (Bip), an important ER chaperon, was reported in AD brain. It is important to study the roles of ER-related chaperons in tau hyperphosphorylation. In this research, increased Bip was found in the brains of the AD model mice (Tg2576) compared to the age-matched control mice. Meanwhile, deficiency of SIL1, an important co-chaperon of Bip, was observed in brains of Tg2576 mice and in ER stress both in vivo and in vitro. Then, we transfected Bip-EGFP plasmid into HEK293 cells stably expressing the longest human tau (HEK293/tau) or N2a cells and found that increased Bip induced tau hyperphosphorylation via activating glycogen synthase kinase-3β (GSK-3β), an important tau kinase, and increased the association with tau and GSK-3β. When we overexpressed SIL1 in Bip-transfected HEK293/tau cells and thapsigargin-treated HEK293/tau cells, significantly reduced tau hyperphosphorylation and GSK-3β activation were observed. These results suggested the important roles of ER-related chaperons, Bip and SIL1, in AD-like tau hyperphosphorylation. PMID:25575678

  6. Stage-dependent agreement between cerebrospinal fluid proteins and FDG-PET findings in Alzheimer's disease.

    PubMed

    Yakushev, Igor; Muller, Matthias J; Buchholz, Hans-Georg; Lang, Ulrike; Rossmann, Heidi; Hampel, Harald; Schreckenberger, Mathias; Fellgiebel, Andreas

    2012-02-01

    Cerebral hypometabolism and abnormal levels of amyloid beta (Aβ), total (t-tau) and phosphorylated tau (ptau) proteins in cerebrospinal fluid (CSF) are established biomarkers of Alzheimer's disease (AD). We examined the agreement between these biomarkers in a single center study of patients with AD of severity extending over a wide range. Forty seven patients (MMSE 21.4 ± 3.6, range 13-28 points) with incipient and probable AD underwent positron emission tomography with [18F]-fluorodeoxyglucose (FDG-PET) and lumbar puncture for CSF assays of Aβ1-42, p-tau181, and t-tau. All findings were classified as either positive or negative for AD. Statistical analyses were performed for the whole sample (n=47) and for the subgroups stratified as mild (MMSE > 20 points, n=30) and moderate (MMSE < 21 points, n=17) AD. In the whole patient sample, the agreement with the FDG-PET finding was 77% (chance-corrected kappa [κ]=0.34, p=0.016) for t-tau, 68% (κ=0.10, n.s.) for p-tau181, and 68% (κ=0.04, n.s.) for Aβ1-42. No significant agreement was found in the mild AD subgroup, while there was a strong agreement for t-tau (94%, κ=0.77, p=0.001) and p-tau181 (88%, κ=0.60, p=0.014) in the moderate AD group. A significant agreement between the FDG-PET and CSF tau findings in patients with AD supports the view that both are markers of neurodegeneration. CSF tau proteins and FDG-PET might substitute each other as supportive diagnostic tools in patients with suspected moderate-to-severe Alzheimer's dementia, while this is not the case in subjects at an earlier disease stage. PMID:22044023

  7. UX Tau A

    NASA Technical Reports Server (NTRS)

    2007-01-01

    This is an artist's rendition of the one-million-year-old star system called UX Tau A, located approximately 450 light-years away. Observations from NASA's Spitzer Space Telescope showed a gap in the dusty planet-forming disk swirling around the system's central sun-like star.

    Spitzer saw a gap in UX Tau A's disk that extends from 0.2 to 56 astronomical units (an astronomical unit is the distance between the sun and Earth). The gap extends from the equivalent of Mercury to Pluto in our solar system, and is sandwiched between thick inner and outer disks on either side. Astronomers suspect that the gap was carved out by one or more forming planets.

    Such dusty disks are where planets are thought to be born. Dust grains clump together like snowballs to form larger rocks, and then the bigger rocks collide to form the cores of planets. When rocks revolve around their central star, they act like cosmic vacuum cleaners, picking up all the gas and dust in their path and creating gaps.

    Although gaps have been detected in disks swirling around young stars before, UX Tau A is special because the gap is sandwiched between two thick disks of dust. An inner thick dusty disk hugs the central star, then, moving outward, there is a gap, followed by another thick doughnut-shaped disk. Other systems with gaps contain very little to no dust near the central star. In other words, those gaps are more like big holes in the centers of disks.

    Some scientists suspect that these holes could have been carved out by a process called photoevaporation. Photoevaporation occurs when radiation from the central star heats up the gas and dust around it to the point where it evaporates away. The fact that there is thick disk swirling extremely close to UX Tau A's central star rules out the photoevaporation scenario. If photoevaporation from the star played a role, then large amounts of dust would not be floating so close to the star.

  8. Recognition of tau epitopes by anti-neurofilament antibodies that bind to Alzheimer neurofibrillary tangles.

    PubMed Central

    Ksiezak-Reding, H; Dickson, D W; Davies, P; Yen, S H

    1987-01-01

    Eleven anti-neurofilament (anti-NF) monoclonal antibodies were studied for their reactivity with heat-stable, microtubule-associated proteins and Alzheimer neurofibrillary tangles (ANT). On immunoblots of NF proteins, the antibodies recognized epitopes that were variably sensitive to Escherichia coli alkaline phosphatase. Eight of the antibodies showed reactivity with ANT and decreased binding to electroblotted NF after phosphatase treatment. The same eight antibodies reacted with tau proteins from bovine and rat brain, binding to tau proteins was also substantially reduced by phosphatase. Of the eight antibodies that bound to animal tau proteins, five also bound to tau proteins from normal human brain. All of the antibodies that bound to animal tau proteins stained ANT in frozen tissue sections. Brief treatment of tissue sections with trypsin in most cases enhanced antibody binding to ANT. All antibodies that lacked reactivity with tau proteins failed to bind ANT. Phosphatase treatment of Alzheimer tissue sections did not change the immunoreactivity of ANT and neurites in senile plaques with ANT-reactive, anti-NF antibodies, except for two antibodies that showed decreased binding to ANT. In contrast, axonal staining was decreased or eliminated by phosphatase treatment, similar to the response of electroblotted NF and tau proteins. These results suggest that staining of ANT by anti-NF antibodies may be due to cross-reaction of anti-NF with epitopes in tau proteins, the epitopes in axons, NF, and tau are sensitive to the effect of phosphatase, whereas the majority of those in ANT are not, and some of the epitopes in ANT that are shared with NF and tau proteins are not readily accessible to antibody binding. Images PMID:2437579

  9. Abnormal Expression of Urea Transporter Protein in a Rat Model of Hepatorenal Syndrome Induced by Succinylated Gelatin

    PubMed Central

    Song, Weiping; Qi, Xiaolong; Zhang, Wenhui; Zhao, C Yingying; Cao, Yan; Wang, Fei; Yang, Changqing

    2015-01-01

    Background Hepatorenal syndrome (HRS) is a serious complication of advanced chronic liver disease. Abdominal compartment syndrome (ACS) occurs with dysfunction of multiple organs when abdominal pressure increases. Here, we report on a novel model of ACS with ascites and a model of HRS in rats to observe the urea transporter protein (UT) expression in the 2 models. Material/Methods A liver cirrhosis model was induced by CCl4. After changes of liver histopathology were observed, rats were injected intraperitoneally with succinylated gelatin to establish a model of ACS and HRS. Then, changes in BUN, Cr, and renal histopathology were detected. Moreover, the UT in ACS and HRS were also quantified. Results The surfaces of liver in the cirrhotic group became coarse, with visible small nodules and became yellow and greasy. The normal structure of the hepatic lobules were destroyed, and hyperplasia of fibrotic tissue and pseudo-lobe was observed. The levels of BUN and Cr were significantly increased in rats suffering from ACS and HRS, respectively, compared to their control groups. In addition, the mRNA levels of UT-A2 and UT-A3 decreased in rats with HRS compared to cirrhotic rats. However, there was no significant difference between the mRNA levels of UT-A2, UT-A3, and UT-B in rats with ACS vs. normal rats. Conclusions It is feasible to model ACS in rats by injecting succinylated gelatin into the abdominal cavity. Increasing the intra-abdominal pressure by succinylated gelatin is also a novel approach for modeling HRS in cirrhotic rats. Compared with control rats, there is an abnormal mRNA expression of UT in ACS rats and HRS rats. PMID:26414230

  10. Direct cellular delivery of human proteasomes to delay tau aggregation.

    PubMed

    Han, Dong Hoon; Na, Hee-Kyung; Choi, Won Hoon; Lee, Jung Hoon; Kim, Yun Kyung; Won, Cheolhee; Lee, Seung-Han; Kim, Kwang Pyo; Kuret, Jeff; Min, Dal-Hee; Lee, Min Jae

    2014-01-01

    The 26S proteasome is the primary machinery that degrades ubiquitin (Ub)-conjugated proteins, including many proteotoxic proteins implicated in neurodegeneraton. It has been suggested that the elevation of proteasomal activity is tolerable to cells and may be beneficial to prevent the accumulation of protein aggregates. Here we show that purified proteasomes can be directly transported into cells through mesoporous silica nanoparticle-mediated endocytosis. Proteasomes that are loaded onto nanoparticles through non-covalent interactions between polyhistidine tags and nickel ions fully retain their proteolytic activity. Cells treated with exogenous proteasomes are more efficient in degrading overexpressed human tau than endogenous proteasomal substrates, resulting in decreased levels of tau aggregates. Moreover, exogenous proteasome delivery significantly promotes cell survival against proteotoxic stress caused by tau and reactive oxygen species. These data demonstrate that increasing cellular proteasome activity through the direct delivery of purified proteasomes may be an effective strategy for reducing cellular levels of proteotoxic proteins. PMID:25476420

  11. Using Human iPSC-Derived Neurons to Model TAU Aggregation

    PubMed Central

    Verheyen, An; Diels, Annick; Dijkmans, Joyce; Oyelami, Tutu; Meneghello, Giulia; Mertens, Liesbeth; Versweyveld, Sofie; Borgers, Marianne; Buist, Arjan; Peeters, Pieter; Cik, Miroslav

    2015-01-01

    Alzheimer’s disease and frontotemporal dementia are amongst the most common forms of dementia characterized by the formation and deposition of abnormal TAU in the brain. In order to develop a translational human TAU aggregation model suitable for screening, we transduced TAU harboring the pro-aggregating P301L mutation into control hiPSC-derived neural progenitor cells followed by differentiation into cortical neurons. TAU aggregation and phosphorylation was quantified using AlphaLISA technology. Although no spontaneous aggregation was observed upon expressing TAU-P301L in neurons, seeding with preformed aggregates consisting of the TAU-microtubule binding repeat domain triggered robust TAU aggregation and hyperphosphorylation already after 2 weeks, without affecting general cell health. To validate our model, activity of two autophagy inducers was tested. Both rapamycin and trehalose significantly reduced TAU aggregation levels suggesting that iPSC-derived neurons allow for the generation of a biologically relevant human Tauopathy model, highly suitable to screen for compounds that modulate TAU aggregation. PMID:26720731

  12. NPAS4 Facilitates the Autophagic Clearance of Endogenous Tau in Rat Cortical Neurons.

    PubMed

    Fan, Wenhui; Long, Yan; Lai, Yujie; Wang, Xuefeng; Chen, Guojun; Zhu, Binglin

    2016-04-01

    Tau, a microtubule-binding phosphoprotein, plays a critical role in the stabilisation of microtubules and neuronal function. However, hyperphosphorylated tau is involved in the pathogenesis of Alzheimer's disease (AD) and other tauopathies. The facilitation of tau clearance is now regarded as a valid therapeutic strategy for these neurodegenerative tauopathies. Here, we provide the first demonstration that the over-expression of neuronal PAS domain protein 4 (NPAS4)-induced autophagy and effectively facilitated the clearance of endogenous total and phosphorylated tau in rat primary cortical neurons. Moreover, the activation of autophagy by serum depletion significantly decreased endogenous total and phosphorylated tau levels. Autophagy inhibitors, such as 3-methyladenine (3-MA) and chloroquine (CQ), induced tau aggregation. However, NPAS4 over-expression reversed the aggregation of tau that was induced by the inhibition of autophagy. Interestingly, proteasome inhibition by MG132, had no effect on autophagy, but did reduce tau levels, indicating that NPAS4 may also degrade tau proteins through an unknown proteasome-mediated mechanism. Furthermore, NPAS4 did not alter the activity of two major tau kinases, glycogen synthase kinase 3β (GSK3β) and cyclin-dependent kinase 5 (CDK5). Taken together, the results indicate that targeting NPAS4 could provide a therapeutic approach for the treatment of AD and other tauopathies. PMID:26635026

  13. Two polypeptide chains in yeast transcription factor tau interact with DNA

    SciTech Connect

    Gabrielsen, O.S.; Marzouki, N.; Ruet, A.; Sentenac, A.; Fromageot, P.

    1989-05-05

    Yeast transcription factor tau interacts with the A and B blocks of the intragenic promoter of tRNA genes. The structure of tau was investigated by identifying the polypeptide chains specifically complexed to the tRNA3Glu gene. Highly purified factor, obtained by an improved purification procedure, contained several polypeptide chains, four of which (Mr = 145,000, 135,000, 100,000 and 65,000) comigrated with tau-DNA complex by polyacrylamide gel electrophoresis. Antibodies raised against the 145- and 100-kDa components altered the migration of tau-DNA complexes in band shift assays and inhibited tRNA synthesis in a reconstituted transcription system. These components are immunologically unrelated proteins. By UV cross-linking to /sup 32/P-body-labeled tDNA followed by extensive DNase treatment, two polypeptides of the same size (145 and 100 kDa) were found to be radioactively labeled. Factor tau, therefore, appears to be a multisubunit DNA-binding protein with two distinct polypeptides contributing to DNA recognition. Limited proteolysis of tau generated a protease-resistant tau B (tau B) domain that binds solely to the B block. tau B-tDNA complexes were recognized by anti-145 IgG and contained a 120-kDa polypeptide that could originate from the 145-kDa component by proteolysis. These results strongly suggest that the 145-kDa polypeptide belongs to tau B and is responsible for B block binding.

  14. Tau triage decisions mediated by the chaperone network.

    PubMed

    Cook, Casey; Petrucelli, Leonard

    2013-01-01

    The pathological accumulation of the microtubule-binding protein tau is linked to an increasing number of neurodegenerative conditions associated with aging, though the mechanisms by which tau accumulates in disease are unclear. In this review, we will summarize our previous research assessing the mechanism of action, as well as the therapeutic potential of Hsp90 inhibition for the treatment of tauopathies. Specifically, we describe the development of a high-throughput screening approach to identify and rank compounds, and demonstrate the selective elimination of aberrant p-tau species in the brain following treatment with an Hsp90 inhibitor. Additionally, we identify CHIP as an essential component of the Hsp90 chaperone complex that mediates tau degradation, and present evidence to suggest that CHIP functions to identify and sequester neurotoxic tau species. Finally, we discuss recent data identifying an additional mechanism by which CHIP modulates protein triage decisions involving Hsp90. Specifically, CHIP indirectly regulates Hsp90 chaperone activity by modulating steady-state levels of the Hsp90 deacetylase, HDAC6, thus influencing both the acetylation state and function of Hsp90. Thus future research directions will focus on the manipulation of this network to promote degradation of pathogenic tau species in disease. PMID:22596270

  15. Tau decays: A theoretical perspective

    SciTech Connect

    Marciano, W.J.

    1992-11-01

    Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and ``new physics`` searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given.

  16. Tau decays: A theoretical perspective

    SciTech Connect

    Marciano, W.J.

    1992-11-01

    Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and new physics'' searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given.

  17. Tau identification at the Tevatron

    SciTech Connect

    Levy, Stephen; /Chicago U., EFI

    2005-07-01

    Methods for reconstructing and identifying the hadronic decays of tau leptons with the CDF and D0 detectors at the Fermilab Tevatron collider in Run II are described. Precision electroweak measurements of W and Z gauge boson cross sections are presented as well as results of searches for physics beyond the Standard Model with hadronically decaying tau leptons in the final state.

  18. Tau isoform regulation is region- and cell-specific in mouse brain.

    PubMed

    McMillan, Pamela; Korvatska, Elena; Poorkaj, Parvoneh; Evstafjeva, Zana; Robinson, Linda; Greenup, Lynne; Leverenz, James; Schellenberg, Gerard D; D'Souza, Ian

    2008-12-20

    Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Alternative splicing of the tau gene (MAPT) generates six tau isoforms, distinguishable by the exclusion or inclusion of a repeat region of exon 10, which are referred to as 3-repeat (3R) and 4-repeat (4R) tau, respectively. We developed transgenic mouse models that express the entire human MAPT gene in the presence and absence of the mouse Mapt gene and compared the expression and regulation of mouse and human tau isoforms during development and in the young adult. We found differences between mouse and human tau in the regulation of exon 10 inclusion. Despite these differences, the isoform splicing pattern seen in normal human brain is replicated in our mouse models. In addition, we found that all tau, both in the neonate and young adult, is phosphorylated. We also examined the normal anatomic distribution of mouse and human tau isoforms in mouse brain. We observed developmental and species-specific variations in the expression of 3R- and 4R-tau within the frontal cortex and hippocampus. In addition, there were differences in the cellular distribution of the isoforms. Mice transgenic for the human MAPT gene exhibited higher levels of neuronal cell body expression of tau compared to wildtype mice. This neuronal cell body expression of tau was limited to the 3R isoform, whereas expression of 4R-tau was more "synaptic like," with granular staining of neuropil rather than in neuronal cell bodies. These developmental and species-specific differences in the regulation and distribution of tau isoforms may be important to the understanding of normal and pathologic tau isoform expression. PMID:18925637

  19. Tau isoform regulation is region and cell-specific in mouse brain

    PubMed Central

    McMillan, Pamela; Korvatska, Elena; Poorkaj, Parvoneh; Evstafjeva, Zana; Robinson, Linda; Greenup, Lynne; Leverenz, James; Schellenberg, Gerard D.; D’Souza, Ian

    2008-01-01

    Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Alternative splicing of the tau gene (MAPT) generates six tau isoforms, distinguishable by the exclusion or inclusion of a repeat region of exon 10, that are referred to as 3-repeat (3R) and 4-repeat (4R) tau, respectively. We developed transgenic mouse models that express the entire human MAPT gene in the presence and absence of the mouse Mapt gene and compared the expression and regulation of mouse and human tau isoforms during development and in the young adult. We found differences between mouse and human tau in the regulation of exon 10 inclusion. Despite these differences, the isoform splicing pattern seen in normal human brain is replicated in our mouse models. In addition, we found that all tau, both in the neonate and young adult, is phosphorylated. We also examined the normal anatomic distribution of mouse and human tau isoforms in mouse brain. We observed developmental and species-specific variations in the expression of 3R and 4R-tau within the frontal cortex and hippocampus. In addition, there were differences in the cellular distribution of the isoforms. Mice transgenic for the human MAPT gene exhibited higher levels of neuronal cell body expression of tau compared to wild-type mice. This neuronal cell body expression of tau was limited to the 3R isoform, whereas expression of 4R tau was more “synaptic like”, with granular staining of neuropil rather than in neuronal cell bodies. These developmental and species-specific differences in the regulation and distribution of tau isoforms may be important to the understanding of normal and pathologic tau isoform expression. PMID:18925637

  20. Meiotic abnormalities

    SciTech Connect

    1993-12-31

    Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.

  1. A Novel, Ultrasensitive Assay for Tau: Potential for Assessing Traumatic Brain Injury in Tissues and Biofluids

    PubMed Central

    Chang, Binggong; Davies, Peter; Wagner, Amy K.; Robertson, Claudia S.; Wang, Kevin K.W.

    2015-01-01

    Abstract Traumatic brain injury (TBI) is a cause of death and disability and can lead to tauopathy-related dementia at an early age. Pathologically, TBI results in axonal injury that is coupled to tau hyperphosphorylation, leading to microtubule instability and tau-mediated neurodegeneration. This suggests that the forms of this protein might serve as neuroinjury-related biomarkers for diagnosis of injury severity and prognosis of the neurological damage prior to clinical expression. We initially determined whether we could detect tau in body fluids using a highly sensitive assay. We used a novel immunoassay, enhanced immunoassay using multi-arrayed fiberoptics (EIMAF) either alone or in combination with rolling circle amplification (a-EIMAF) for the detection of total (T) and phosphorylated (P) tau proteins from brains and biofluids (blood, CSF) of rodents following controlled cortical impact (CCI) and human patients post severe TBI (sTBI). This assay technology for tau is the most sensitive to date with a detection limit of approximately 100 ag/mL for either T-tau and P-tau. In the rodent models, T-tau and P-tau levels in brain and blood increased following CCI during the acute phase and remained high during the chronic phase (30 d). In human CSF samples, T-tau and P-tau increased during the sampling period (5–6 d). T-tau and P-tau in human serum rose during the acute phase and decreased during the chronic stage but was still detectable beyond six months post sTBI. Thus, EIMAF has the potential for assessing both the severity of the proximal injury and the prognosis using easily accessible samples. PMID:25177776

  2. Rapid and Highly Sensitive Detection of Variant Creutzfeldt - Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies

    PubMed Central

    Belondrade, Maxime; Nicot, Simon; Béringue, Vincent; Coste, Joliette; Lehmann, Sylvain; Bougard, Daisy

    2016-01-01

    The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10−8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions. PMID:26800081

  3. Rapid and Highly Sensitive Detection of Variant Creutzfeldt-Jakob Disease Abnormal Prion Protein on Steel Surfaces by Protein Misfolding Cyclic Amplification: Application to Prion Decontamination Studies.

    PubMed

    Belondrade, Maxime; Nicot, Simon; Béringue, Vincent; Coste, Joliette; Lehmann, Sylvain; Bougard, Daisy

    2016-01-01

    The prevalence of variant Creutzfeldt-Jakob disease (vCJD) in the population remains uncertain, although it has been estimated that 1 in 2000 people in the United Kingdom are positive for abnormal prion protein (PrPTSE) by a recent survey of archived appendix tissues. The prominent lymphotropism of vCJD prions raises the possibility that some surgical procedures may be at risk of iatrogenic vCJD transmission in healthcare facilities. It is therefore vital that decontamination procedures applied to medical devices before their reprocessing are thoroughly validated. A current limitation is the lack of a rapid model permissive to human prions. Here, we developed a prion detection assay based on protein misfolding cyclic amplification (PMCA) technology combined with stainless-steel wire surfaces as carriers of prions (Surf-PMCA). This assay allowed the specific detection of minute quantities (10-8 brain dilution) of either human vCJD or ovine scrapie PrPTSE adsorbed onto a single steel wire, within a two week timeframe. Using Surf-PMCA we evaluated the performance of several reference and commercially available prion-specific decontamination procedures. Surprisingly, we found the efficiency of several marketed reagents to remove human vCJD PrPTSE was lower than expected. Overall, our results demonstrate that Surf-PMCA can be used as a rapid and ultrasensitive assay for the detection of human vCJD PrPTSE adsorbed onto a metallic surface, therefore facilitating the development and validation of decontamination procedures against human prions. PMID:26800081

  4. Sequestration of sorcin by aberrant forms of tau results in the defective calcium homeostasis

    PubMed Central

    Kim, Song-In; Lee, Hee Jae; Kim, Sung-Soo; Kwon, Yong-Soo

    2016-01-01

    Neurofi brillary tangles (NFTs) of microtubule-associated protein tau are a pathological hallmark of Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress has been known to be involved in the pathogenesis of AD. However, the exact role of ER stress in tau pathology has not yet been clearly elucidated. In present study, the possible relationship between tau pathology and ER stress was examined in terms of sorcin, which is a calcium binding protein and plays an important role in calcium homeostasis. Our previous yeast two hybrid study showed that sorcin is a novel tau interacting protein. Caspase-3-cleaved tau (T4C3) showed significantly increased tau-sorcin interaction compared to wild type tau (T4). Thapsigargin-induced ER stress and co-expression of constitutively active GSK3β (GSK3β-S9A) also exhibited significantly increased tau-sorcin interactions. T4C3-expressing cells showed potentiated thapsigargin-induced apoptosis and disruption of intracellular calcium homeostasis compared to T4-expressing cells. Overexpression of sorcin signifi cantly attenuated thapsigargin-induced apoptosis and disruption of calcium homeostasis. In contrary, siRNA-mediated knock-down of sorcin showed significantly increased thapsigargin-induced apoptosis and disruption of calcium homeostasis. These data strongly suggest that sequestration of sorcin by aberrant forms of tau compromises the function of sorcin, such as calcium homeostasis and cellular resistance by ER stress, which may consequently result in the contribution to the progression of AD. PMID:27382355

  5. The Tau-Charm Factory and tau physics

    SciTech Connect

    Perl, M.L.

    1989-04-01

    An international group of physicists is developing the concept and design of a Tau-Charm Factory: a two-ring, electron-positron, circular collider with 1.5 /< =/ /radical/s /< =/ 4.2 GeV and a design luminosity of 10/sup 33/ cm/sup /minus/2/ s/sup /minus/1/. This paper presents the concept of the facility and outlines the tau lepton physics which can be done. A companion talk by R. Schindler discusses the D/sup 0/, D/sup /+-//, and D/sub s/ physics at a Tau-Charm Factory. 25 refs., 2 tabs.

  6. Arginine/serine-rich protein interaction domain-dependent modulation of a tau exon 10 splicing enhancer: altered interactions and mechanisms for functionally antagonistic FTDP-17 mutations Delta280K AND N279K.

    PubMed

    D'Souza, Ian; Schellenberg, Gerard D

    2006-02-01

    Tau exon 10 splicing is altered by autosomal dominant mutations that cause frontotemporal dementia with parkinsonism chromosome 17-type and by unknown mechanisms in other related neurodegenerative disorders. Identifying cis- and trans-regulators of tau exon 10 splicing is therefore crucial for understanding disease mechanisms. We previously identified several splicing enhancers and silencers within exon 10 and intron 10. Here, we show that splicing factors SF2/ASF, Tra2beta, and a 50-kDa nuclear protein bind in vitro to the polypurine enhancer at the 5' end of exon 10. Disease splicing mutations N279K and Delta280K disrupt the enhancer and alter associations with these factors. N279K targets robustly bind Tra2beta compared with the normal enhancer, which may explain why N279K enhances exon 10 splicing in vivo. In contrast, factor associations with Delta280K targets are nearly undetectable, explaining why Delta280K almost abolishes exon 10 splicing in vivo. Small interfering RNA-mediated suppression of endogenous SF2/ASF and Tra2beta significantly reduces exon 10 splicing. Exogenous SF2/ASF dramatically enhances normal exon 10 splicing and efficiently rescues the Delta280K splicing defect. Domain deletion analyses show that the C-terminal RS domains of SF2/ASF and Tra2beta are required for normal exon 10 splicing in vivo. In contrast to Tra2beta, the SF2/ASF RS domain remains essential in the presence of a strengthened enhancer or when either weak splice site is strengthened. The data suggest that SF2/ASF has both essential and regulatory roles, whereas Tra2beta has a supporting role in exon 10 splicing. PMID:16308321

  7. Massive accumulation of modified tau and severe depletion of normal tau characterize the cerebral cortex and white matter of Alzheimer's disease. Demonstration using the hydrated autoclaving method.

    PubMed Central

    Shin, R. W.; Iwaki, T.; Kitamoto, T.; Sato, Y.; Tateishi, J.

    1992-01-01

    Using the hydrated autoclaving method, a new immunohistochemical procedure to enhance tau immunoreactivity in formalin-fixed brain tissue, the authors recently reported that tau protein is detected in neuronal cell bodies and proximal dendrites, gray matter neuropil, axons, and glial cells in normal human hippocampus and neocortex. In the this study, the authors performed a comparative study of the distribution of normal and modified forms of tau in Alzheimer's disease (AD) and control brains. In the cerebral cortex and white matter of AD brains, a massive accumulation of modified tau and/or severe depletion of normal tau were documented in all the tau compartments. In mild AD cases, gray matter neuropil, axons, and glial cells were less severely involved than neuronal perikarya. In the controls, neuronal perikarya were often involved by modified tau accumulation, but the other compartments showed normal distribution. These observations suggest that modifications of tau which lead to neurofibrillary lesions in AD may begin in neuronal perikarya and extend to the other tau compartments in advanced stages of the disease. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1373272

  8. a Measurement of Tau Polarization

    NASA Astrophysics Data System (ADS)

    Walsh, Arthur Michael

    At ALEPH, polarized tau pairs are produced in e^+e^- annihilations at the Z peak. The polarization depends on the tau production angle and is measured by spin analyzing tau decays in the modes tauto{rm e}nu |nu, tautomunu |nu, tautopinu, tautorhonu and tauto{rm a}_1nu . This leads to a measurement of the Z couplings to taus and electrons, {cal A} _tau and {cal A }_{rm e}, where {cal A}_{l} = 2g_sp {V}{l}g_sp{A}{l }/(g_sp{V}{l}^2 + g_sp{A}{l}^2). The values obtained using the 1992 data are { cal A}_tau = 0.129 +/- 0.016 +/- 0.010 and {cal A} _{rm e} = 0.136 +/- 0.022 +/- 0.007, where the first error is statistical and the second is systematic. Assuming electron-tau universality leads to {cal A}_{ rm e-tau} = 0.131 +/- 0.013 +/- 0.006. This result has been combined with the published ALEPH result for the 1990 and 1991 data for a measurement of the effective weak mixing angle sin ^2 theta_sp{W}{ rm eff} = 0.2334 +/- 0.0014.

  9. Pathological conformations involving the amino terminus of tau occur early in Alzheimer's disease and are differentially detected by monoclonal antibodies.

    PubMed

    Combs, Benjamin; Hamel, Chelsey; Kanaan, Nicholas M

    2016-10-01

    Conformational changes involving the amino terminus of the tau protein are among the earliest alterations associated with tau pathology in Alzheimer's disease and other tauopathies. This region of tau contains a phosphatase-activating domain (PAD) that is aberrantly exposed in pathological forms of the protein, an event that is associated with disruptions in anterograde fast axonal transport. We utilized four antibodies that recognize the amino terminus of tau, TNT1, TNT2 (a novel antibody), Tau12, and Tau13, to further study this important region. Using scanning alanine mutations in recombinant tau proteins, we refined the epitopes of each antibody. We examined the antibodies' relative abilities to specifically label pathological tau in non-denaturing and denaturing assays to gain insight into some of the mechanistic details of PAD exposure. We then determined the pattern of tau pathology labeled by each antibody in human hippocampal sections at various disease stages in order to characterize PAD exposure in the context of disease progression. The characteristics of reactivity for the antibodies fell into two groups. TNT1 and TNT2 recognized epitopes within amino acids 7-12 and specifically identified recombinant tau aggregates and pathological tau from Alzheimer's disease brains in a conformation-dependent manner. These antibodies labeled early pre-tangle pathology from neurons in early Braak stages and colocalized with thiazine red, a marker of fibrillar pathology, in classic neurofibrillary tangles. However, late tangles were negative for TNT1 and TNT2 indicating a loss of the epitope in later stages of tangle evolution. In contrast, Tau12 and Tau13 both identified discontinuous epitopes in the amino terminus and were unable to differentiate between normal and pathological tau in biochemical and tissue immunohistological assays. Despite the close proximity of these epitopes, the antibodies demonstrated remarkably different abilities to identify pathological

  10. The Co-chaperone BAG2 Sweeps PHF Insoluble Tau from the Microtubule

    PubMed Central

    Carrettiero, Daniel C.; Hernandez, Israel; Neveu, Pierre; Papagiannakopoulos, Thales; Kosik, Kenneth S.

    2009-01-01

    Tau inclusions are a prominent feature of many neurodegenerative diseases including Alzheimer’s disease. Their accumulation in neurons as ubiquitinated filaments suggests a failure in the degradation limb of the Tau pathway. The components of a Tau protein triage system consisting of CHIP/Hsp70 and other chaperones have begun to emerge. However, the site of triage and the master regulatory elements are unknown. Here we report an elegant mechanism of Tau degradation involving the co-chaperone BAG2. The BAG2/Hsp70 complex is tethered to the microtubule and this complex can capture and deliver Tau to the proteasome for ubiquitin-independent degradation. This complex preferentially degrades sarkosyl insoluble Tau and phosphorylated Tau. BAG2 levels in cells are under the physiological control of the microRNA miR-128a, which can tune PHF Tau levels in neurons. Thus we propose that ubiquitinated Tau inclusions arise due to shunting of Tau degradation toward a less efficient ubiquitin-dependent pathway. PMID:19228967

  11. Tau Acts as a Mediator for Alzheimer's Disease-Related Synaptic Deficits

    PubMed Central

    Liao, Dezhi; Miller, Eric C.; Teravskis, Peter J.

    2014-01-01

    The two histopathological hallmarks of Alzheimer's disease (AD) are amyloid plaques containing multiple forms of Aβ and neurofibrillary tangles containing phosphorylated tau proteins. As mild cognitive impairment frequently occurs long before the clinical diagnosis of Alzheimer's disease, the scientific community has been increasingly interested in the roles of Aβ and tau in earlier cellular changes that lead to functional deficits. Therefore, great progress has recently been made in understanding how Aβ or tau causes synaptic dysfunction. However, the interaction between the Aβ and tau-initiated intracellular cascades that lead to synaptic dysfunction remains elusive. The cornerstone of the two decade-old hypothetical amyloid cascade model is that amyloid pathologies precede tau pathologies. Although the premise of Aβ-tau pathway remains valid, the model keeps evolving as new signaling events are discovered that lead to functional deficits and neurodegeneration. Recent progress has been made in understanding Aβ-PrPC-Fyn-mediated neurotoxicity and synaptic deficits. Although still elusive, many novel upstream and downstream signaling molecules have been found to modulate tau mislocalization and tau hyperphosphorylation. Here we will discuss the mechanistic interactions between Aβ-PrPC-mediated neurotoxicity and tau-mediated synaptic deficits in an updated amyloid cascade model with calcium and tau as the central mediators. PMID:24712999

  12. α-Synuclein Fibrils Exhibit Gain of Toxic Function, Promoting Tau Aggregation and Inhibiting Microtubule Assembly.

    PubMed

    Oikawa, Takayuki; Nonaka, Takashi; Terada, Makoto; Tamaoka, Akira; Hisanaga, Shin-Ichi; Hasegawa, Masato

    2016-07-15

    α-Synuclein is the major component of Lewy bodies and Lewy neurites in Parkinson disease and dementia with Lewy bodies and of glial cytoplasmic inclusions in multiple system atrophy. It has been suggested that α-synuclein fibrils or intermediate protofibrils in the process of fibril formation may have a toxic effect on neuronal cells. In this study, we investigated the ability of soluble monomeric α-synuclein to promote microtubule assembly and the effects of conformational changes of α-synuclein on Tau-promoted microtubule assembly. In marked contrast to previous findings, monomeric α-synuclein had no effect on microtubule polymerization. However, both α-synuclein fibrils and protofibrils inhibited Tau-promoted microtubule assembly. The inhibitory effect of α-synuclein fibrils was greater than that of the protofibrils. Dot blot overlay assay and spin-down techniques revealed that α-synuclein fibrils bind to Tau and inhibit microtubule assembly by depleting the Tau available for microtubule polymerization. Using various deletion mutants of α-synuclein and Tau, the acidic C-terminal region of α-synuclein and the basic central region of Tau were identified as regions involved in the binding. Furthermore, introduction of α-synuclein fibrils into cultured cells overexpressing Tau protein induced Tau aggregation. These results raise the possibility that α-synuclein fibrils interact with Tau, inhibit its function to stabilize microtubules, and also promote Tau aggregation, leading to dysfunction of neuronal cells. PMID:27226637

  13. Inhibition of tau aggregation in a novel Caenorhabditis elegans model of tauopathy mitigates proteotoxicity.

    PubMed

    Fatouros, Chronis; Pir, Ghulam Jeelani; Biernat, Jacek; Koushika, Sandhya Padmanabhan; Mandelkow, Eckhard; Mandelkow, Eva-Maria; Schmidt, Enrico; Baumeister, Ralf

    2012-08-15

    Increased Tau protein amyloidogenicity has been causatively implicated in several neurodegenerative diseases, collectively called tauopathies. In pathological conditions, Tau becomes hyperphosphorylated and forms intracellular aggregates. The deletion of K280, which is a mutation that commonly appears in patients with frontotemporal dementia with Parkinsonism linked to chromosome 17, enhances Tau aggregation propensity (pro-aggregation). In contrast, introduction of the I277P and I308P mutations prevents β-sheet formation and subsequent aggregation (anti-aggregation). In this study, we created a tauopathy model by expressing pro- or anti-aggregant Tau species in the nervous system of Caenorhabditis elegans. Animals expressing the highly amyloidogenic Tau species showed accelerated Tau aggregation and pathology manifested by severely impaired motility and evident neuronal dysfunction. In addition, we observed that the axonal transport of mitochondria was perturbed in these animals. Control animals expressing the anti-aggregant combination had rather mild phenotype. We subsequently tested several Tau aggregation inhibitor compounds and observed a mitigation of Tau proteotoxicity. In particular, a novel compound that crosses the blood-brain barrier of mammals proved effective in ameliorating the motility as well as delaying the accumulation of neuronal defects. Our study establishes a new C. elegans model of Tau aggregation-mediated toxicity and supports the emerging notion that inhibiting the nucleation of Tau aggregation can be neuroprotective. PMID:22611162

  14. Stages and Conformations of the Tau Repeat Domain during Aggregation and Its Effect on Neuronal Toxicity*

    PubMed Central

    Kumar, Satish; Tepper, Katharina; Kaniyappan, Senthilvelrajan; Biernat, Jacek; Wegmann, Susanne; Mandelkow, Eva-Maria; Müller, Daniel J.; Mandelkow, Eckhard

    2014-01-01

    Several neurodegenerative diseases are characterized by the aggregation and posttranslational modifications of Tau protein. Its “repeat domain” (TauRD) is mainly responsible for the aggregation properties, and oligomeric forms are thought to dominate the toxic effects of Tau. Here we investigated the conformational transitions of this domain during oligomerization and aggregation in different states of β-propensity and pseudo-phosphorylation, using several complementary imaging and spectroscopic methods. Although the repeat domain generally aggregates more readily than full-length Tau, its aggregation was greatly slowed down by phosphorylation or pseudo-phosphorylation at the KXGS motifs, concomitant with an extended phase of oligomerization. Analogous effects were observed with pro-aggregant variants of TauRD. Oligomers became most evident in the case of the pro-aggregant mutant TauRDΔK280, as monitored by atomic force microscopy, and the fluorescence lifetime of Alexa-labeled Tau (time-correlated single photon counting (TCSPC)), consistent with its pronounced toxicity in mouse models. In cell models or primary neurons, neither oligomers nor fibrils of TauRD or TauRDΔK280 had a toxic effect, as seen by assays with lactate dehydrogenase and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, respectively. However, oligomers of pro-aggregant TauRDΔK280 specifically caused a loss of spine density in differentiated neurons, indicating a locally restricted impairment of function. PMID:24825901

  15. Potent inhibition of tau fibrillization with a multivalent ligand

    SciTech Connect

    Honson, Nicolette S.; Jensen, Jordan R.; Darby, Michael V.; Kuret, Jeff

    2007-11-09

    Small-molecule inhibitors of tau fibrillization are under investigation as tools for interrogating the tau aggregation pathway and as potential therapeutic agents for Alzheimer's disease. Established inhibitors include thiacarbocyanine dyes, which can inhibit recombinant tau fibrillization in the presence of anionic surfactant aggregation inducers. In an effort to increase inhibitory potency, a cyclic bis-thiacarbocyanine molecule containing two thiacarbocyanine moieties was synthesized and characterized with respect to tau fibrillization inhibitory activity by electron microscopy and ligand aggregation state by absorbance spectroscopy. Results showed that the inhibitory activity of the bis-thiacarbocyanine was qualitatively similar to a monomeric cyanine dye, but was more potent with 50% inhibition achieved at {approx}80 nM concentration. At all concentrations tested in aqueous solution, the bis-thiacarbocyanine collapsed to form a closed clamshell structure. However, the presence of tau protein selectively stabilized the open conformation. These results suggest that the inhibitory activity of bis-thiacarbocyanine results from multivalency, and reveal a route to more potent tau aggregation inhibitors.

  16. Quantitative Analysis of Tau-Microtubule Interaction Using FRET

    PubMed Central

    Di Maïo, Isabelle L.; Barbier, Pascale; Allegro, Diane; Brault, Cédric; Peyrot, Vincent

    2014-01-01

    The interaction between the microtubule associated protein, tau and the microtubules is investigated. A fluorescence resonance energy transfer (FRET) assay was used to determine the distance separating tau to the microtubule wall, as well as the binding parameters of the interaction. By using microtubules stabilized with Flutax-2 as donor and tau labeled with rhodamine as acceptor, a donor-to-acceptor distance of 54 ± 1 Å was found. A molecular model is proposed in which Flutax-2 is directly accessible to tau-rhodamine molecules for energy transfer. By titration, we calculated the stoichiometric dissociation constant to be equal to 1.0 ± 0.5 µM. The influence of the C-terminal tails of αβ-tubulin on the tau-microtubule interaction is presented once a procedure to form homogeneous solution of cleaved tubulin has been determined. The results indicate that the C-terminal tails of α- and β-tubulin by electrostatic effects and of recruitment seem to be involved in the binding mechanism of tau. PMID:25196605

  17. Fibroblasts from patients with Diamond-Blackfan anaemia show abnormal expression of genes involved in protein synthesis, amino acid metabolism and cancer

    PubMed Central

    Avondo, Federica; Roncaglia, Paola; Crescenzio, Nicoletta; Krmac, Helena; Garelli, Emanuela; Armiraglio, Marta; Castagnoli, Carlotta; Campagnoli, Maria Francesca; Ramenghi, Ugo; Gustincich, Stefano; Santoro, Claudio; Dianzani, Irma

    2009-01-01

    Background Diamond-Blackfan anaemia (DBA) is a rare inherited red cell hypoplasia characterised by a defect in the maturation of erythroid progenitors and in some cases associated with malformations. Patients have an increased risk of solid tumors. Mutations have been found in several ribosomal protein (RP) genes, i.e RPS19, RPS24, RPS17, RPL5, RPL11, RPL35A. Studies in haematopoietic progenitors from patients show that haplo-insufficiency of an RP impairs rRNA processing and ribosome biogenesis. DBA lymphocytes show reduced protein synthesis and fibroblasts display abnormal rRNA processing and impaired proliferation. Results To evaluate the involvement of non-haematopoietic tissues in DBA, we have analysed global gene expression in fibroblasts from DBA patients compared to healthy controls. Microarray expression profiling using Affymetrix GeneChip Human Genome U133A 2.0 Arrays revealed that 421 genes are differentially expressed in DBA patient fibroblasts. These genes include a large cluster of ribosomal proteins and factors involved in protein synthesis and amino acid metabolism, as well as genes associated to cell death, cancer and tissue development. Conclusion This analysis reports for the first time an abnormal gene expression profile in a non-haematopoietic cell type in DBA. These data support the hypothesis that DBA may be due to a defect in general or specific protein synthesis. PMID:19765279

  18. Tau Accumulation in Primary Motor Cortex of Variant Alzheimer's Disease with Spastic Paraparesis.

    PubMed

    Lyoo, Chul Hyoung; Cho, Hanna; Choi, Jae Yong; Hwang, Mi Song; Hong, Sang Kyoon; Kim, Yun Joong; Ryu, Young Hoon; Lee, Myung Sik

    2016-02-16

    We studied topographic distribution of tau and amyloid-β in a patient with variant Alzheimer's disease with spastic paraparesis (VarAD) by comparing AD patients. The proband developed progressive memory impairment, dysarthria, and spastic paraparesis at age 23. Heterozygous missense mutation (L166P) was found in exon 6 of presenilin-1 gene. The proband showed prominently increased amyloid binding in striatum and cerebellum and asymmetrical tau binding in the primary sensorimotor cortex contralateral to the side more affected by spasticity. We suspect that upper motor neuron dysfunctions may be attributed to excessive abnormal tau accumulation rather than amyloid-β in the primary motor cortex. PMID:26890779

  19. Effect of treadmill exercise on PI3K/AKT/mTOR, autophagy, and Tau hyperphosphorylation in the cerebral cortex of NSE/htau23 transgenic mice

    PubMed Central

    Kang, Eun-Bum; Cho, Joon-Yong

    2015-01-01

    Purpose Neurofibrillary tangles, one of pathological features of Alzheimer’s disease, are produced by the hyperphosphorylation and aggregation of tau protein. This study aimed to investigate the effects of treadmill exercise on PI3K/AKT/mTOR signal transmission, autophagy, and cognitive ability that are involved in the hyperphosphorylation and aggregation of tau protein. Methods Experimental animals (NSE/htau23 mice) were divided into non-transgenic control group (Non-Tg-Control; CON; n = 7), transgenic control group (Tg-CON; n = 7), and transgenic exercise group (Tg-Treadmill Exercise; TE; n = 7). The Tg-TE group was subjected to treadmill exercise for 12 weeks. After the treadmill exercise was completed, the cognitive ability was determined by conducting underwater maze tests. Western blot was conducted to determine the phosphorylation status of PI3K/AKT/mTOR proteins and autophagy-related proteins (Beclin-1, p62, LC3-B); hyperphosphorylation and aggregation of tau protein (Ser199/202, Ser404, Thr231, PHF-1); and phosphorylation of GSK-3β, which is involved in the phosphorylation of tau protein in the cerebral cortex of experimental animals. Results In the Tg-TE group that was subjected to treadmill exercise for 12 weeks, abnormal mTOR phosphorylation of PI3K/AKT proteins was improved via increased phosphorylation and its activity was inhibited by increased GSK-3β phosphorylation compared with those in the Tg-CON group, which was used as the control group. In addition, the expression of Beclin-1 protein involved in autophagosome formation was increased in the Tg-TE group compared with that in the Tg-CON group, whereas that of p62 protein was reduced in the Tg-TE group compared with that in the Tg-CON group. Autophagy was activated owing to the increased expression of LC3-B that controls the completion of autophagosome formation. The hyperphosphorylation and aggregation (Ser199/202, Ser404, Thr231, PHF-1) of tau protein was found to be reduced in the Tg

  20. Congenital Abnormalities

    MedlinePlus

    ... serious health problems (e.g. Down syndrome ). Single-Gene Abnormalities Sometimes the chromosomes are normal in number, ... blood flow to the fetus impair fetal growth. Alcohol consumption and certain drugs during pregnancy significantly increase ...

  1. Craniofacial Abnormalities

    MedlinePlus

    ... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...

  2. Walking abnormalities

    MedlinePlus

    ... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...

  3. Chromosome Abnormalities

    MedlinePlus

    ... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...

  4. Nail abnormalities

    MedlinePlus

    Nail abnormalities are problems with the color, shape, texture, or thickness of the fingernails or toenails. ... Fungus or yeast cause changes in the color, texture, and shape of the nails. Bacterial infection may ...

  5. Photometric and spectroscopic monitoring of AA Tau, DN Tau, UX Tau A, T Tau, RY Tau, Lk Ca 4, and Lk Ca 7

    NASA Technical Reports Server (NTRS)

    Vrba, F. J.; Chugainov, P. F.; Weaver, W. B.; Stauffer, J. S.

    1993-01-01

    We report the results of a UBVRI photometric monitoring campaign for three classical T Tauri stars (AA Tau, DN Tau, and UX Tau A) and two weak emission line T Tauri stars (Lk Ca 4 and Lk Ca 7). Observations were obtained at three sites during a core observing period spanning UT 1985 October 14 through UT 1985 December 25, with additional observations continuing until UT 1986 April 6. Concurrent spectrophotometric observations were obtained for all main program stars except Lk Ca 7 and additionally for T Tau, RW Aur, and RY Tau. Periodic photometric variability, assumed to be the stars' rotation periods, were found for AA Tau, DN Tau, Lk Ca 4, and Lk Ca 7, respectively, as 8.2, 6.3, 3.4, and 5.7 days. Several U-filter flares were observed for Lk Ca 4 and Lk Ca 7, which are strongly concentrated toward phases of minimum light. Correlations are found between H-alpha line strengths and V magnitudes for AA Tau and RY Tau. An analysis of absolute color variations of classical T Tauri stars confirms that hot spots are the predominant cause of these stars' variability. Our overall results are consistent with earlier findings that long-lived cool spots are responsible for most of the variability found for weak-emission T Tauri stars, while temporal hot spots are primarily responsible for the observed variability found in classical T Tauri stars.

  6. Interplay between Velocity and Travel Distance of Kinesin-based Transport in the Presence of Tau

    NASA Astrophysics Data System (ADS)

    Xu, Jing; King, Stephen; Lapierre-Landry, Maryse; Nemec, Brian

    2014-03-01

    Although the disease-relevant microtubule-associated protein tau is known to severely inhibit kinesin-based transport in vitro, potential mechanisms for reversing this detrimental effect to maintain healthy transport in cells remain unknown. Here we report the unambiguous up-regulation of multiple-kinesin travel distance despite the presence of tau, via decreased single-kinesin velocity. Intriguingly, the presence of tau also modestly reduced velocity in multiple-kinesin transport. Our stochastic simulations indicate that the tau-mediated reduction in single-kinesin travel is sufficient for the observed reduction in multiple-kinesin velocity. Taken together, our observations suggest that single-kinesin velocity is a promising experimental handle for tuning the effect of tau on multiple-kinesin travel distance, and uncover a previously unexplored role of tau for inhibiting multiple-kinesin velocity via reducing single-kinesin travel distance. This work was supported in part by NIH grant NS048501 to SJK.

  7. Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila.

    PubMed

    Jackson, George R; Wiedau-Pazos, Martina; Sang, Tzu-Kang; Wagle, Naveed; Brown, Carlos A; Massachi, Sasan; Geschwind, Daniel H

    2002-05-16

    Pathologic alterations in the microtubule-associated protein tau have been implicated in a number of neurodegenerative disorders, including Alzheimer's disease (AD), progressive supranuclear palsy (PSP), and frontotemporal dementia (FTD). Here, we show that tau overexpression, in combination with phosphorylation by the Drosophila glycogen synthase kinase-3 (GSK-3) homolog and wingless pathway component (Shaggy), exacerbated neurodegeneration induced by tau overexpression alone, leading to neurofibrillary pathology in the fly. Furthermore, manipulation of other wingless signaling molecules downstream from shaggy demonstrated that components of the Wnt signaling pathway modulate neurodegeneration induced by tau pathology in vivo but suggested that tau phosphorylation by GSK-3beta differs from canonical Wnt effects on beta-catenin stability and TCF activity. The genetic system we have established provides a powerful reagent for identification of novel modifiers of tau-induced neurodegeneration that may serve as future therapeutic targets. PMID:12062036

  8. The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer's Disease

    PubMed Central

    Liu, Zhenzhen; Li, Tao; Li, Ping; Wei, Nannan; Zhao, Zhiquan; Liang, Huimin; Ji, Xinying; Chen, Wenwu; Xue, Mengzhou; Wei, Jianshe

    2015-01-01

    Alzheimer's disease (AD) is the most common form of dementia. The pathological hallmarks of AD are amyloid plaques [aggregates of amyloid-beta (Aβ)] and neurofibrillary tangles (aggregates of tau). Growing evidence suggests that tau accumulation is pathologically more relevant to the development of neurodegeneration and cognitive decline in AD patients than Aβ plaques. Oxidative stress is a prominent early event in the pathogenesis of AD and is therefore believed to contribute to tau hyperphosphorylation. Several studies have shown that the autophagic pathway in neurons is important under physiological and pathological conditions. Therefore, this pathway plays a crucial role for the degradation of endogenous soluble tau. However, the relationship between oxidative stress, tau protein hyperphosphorylation, autophagy dysregulation, and neuronal cell death in AD remains unclear. Here, we review the latest progress in AD, with a special emphasis on oxidative stress, tau hyperphosphorylation, and autophagy. We also discuss the relationship of these three factors in AD. PMID:26171115

  9. Tau loss attenuates neuronal network hyperexcitability in mouse and Drosophila genetic models of epilepsy

    PubMed Central

    Holth, Jerrah K.; Bomben, Valerie C.; Reed, J. Graham; Inoue, Taeko; Younkin, Linda; Younkin, Steven G.; Pautler, Robia G.; Botas, Juan; Noebels, Jeffrey L.

    2013-01-01

    Neuronal network hyperexcitability underlies the pathogenesis of seizures and is a component of some degenerative neurological disorders such as Alzheimer’s disease (AD). Recently, the microtubule binding protein tau has been implicated in the regulation of network synchronization. Genetic removal of Mapt, the gene encoding tau, in AD models overexpressing amyloid-beta (Aβ) decreases hyperexcitability and normalizes the excitation/inhibition imbalance. Whether this effect of tau removal is specific to Aβ mouse models remains to be determined. Here we examined tau as an excitability modifier in the non-AD nervous system using genetic deletion of tau in mouse and Drosophila models of hyperexcitability. Kcna1−/− mice lack Kv1.1 delayed rectifier currents and exhibit severe spontaneous seizures, early lethality, and megencephaly. Young Kcna1−/− mice retained wild-type levels of Aβ, tau, and tau phospho-Thr231. Decreasing tau in Kcna1−/− mice reduced hyperexcitability and alleviated seizure-related comorbidities. Tau reduction decreased Kcna1−/− video-EEG recorded seizure frequency and duration as well as normalized Kcna1−/− hippocampal network hyperexcitability in vitro. Additionally, tau reduction increased Kcna1−/− survival and prevented megencephaly and hippocampal hypertrophy, as determined by MRI. Bang-sensitive Drosophila mutants display paralysis and seizures in response to mechanical stimulation, providing a complementary excitability assay for epistatic interactions. We found that tau reduction significantly decreased seizure sensitivity in two independent bang-sensitive mutant models, kcc and eas. Our results indicate that tau plays a general role in regulating intrinsic neuronal network hyperexcitability independently of Aβ overexpression and suggest that reducing tau function could be a viable target for therapeutic intervention in seizure disorders and antiepileptogenesis. PMID:23345237

  10. Prolonged nitric oxide treatment induces tau aggregation in SH-SY5Y cells.

    PubMed

    Takahashi, Muneaki; Chin, Yo; Nonaka, Takashi; Hasegawa, Masato; Watanabe, Nobuo; Arai, Takao

    2012-02-21

    Presence of cytoplasmic tau aggregates is a hallmark of brains in patients with tauopathies such as Alzheimer's disease. However, the mechanism underlying formation of these insoluble tau aggregates remains elusive. In this study, we investigated the impact of prolonged nitric oxide (NO) exposure on neuronal SH-SY5Y cells overexpressing human tau. Treatment with the NO donor DETA NONOate for up to 48h resulted in an increase in S-nitrosation of cellular proteins, inactivation of proteasome, and impairment of respiration. Western blot analysis of Triton X-soluble fractions of NO-treated cells revealed that persistent NO treatment increased heterogeneity in tau molecule size, as a result of dephosphorylation, and induced the formation of sodium dodecyl sulfate (SDS)-stable oligomeric tau aggregates, stabilized by disulfide bonds. Moreover, further NO treatment induced the formation of SDS-stable insoluble tau mega-aggregates that were composed of dephosphorylated full-length tau molecules and other proteins, and were stabilized through disulfide bonds. Evaluation of the role of these tau aggregates as potential seeds for tau fibrillization and elucidation of their formation mechanism in our model, could lead to better understanding of the pathogenesis of tauopathies. PMID:22249117

  11. Hadronic Tau Decays at BaBar

    SciTech Connect

    Nugent, I.M.; /Victoria U.

    2007-10-25

    Precision measurements of the exclusive branching fraction {tau}{sup -} {yields} K{sup -}{pi}{sup 0}{nu}{sub {tau}} and {tau}{sup -} {yields} h{sup -}h{sup -}h{sup +}{nu}{sub {tau}}, where the h represent either a pion or a kaon, from the BABAR Experiment are presented. The branching fraction for {tau}{sup -} {yields} K{sup -}K{sup -}K{sup +}{nu}{sub {tau}} is the first resonant plus non-resonant measurement of this mode and the branching fraction {tau}{sup -} {yields} {phi}{pi}{sup -}{nu}{sub {tau}} is also a first measurement. In addition we present the new measurement of the branching fraction of {tau}{sup -} {yields} {phi}K{sup -}{nu}{sub {tau}}.

  12. Characterization of novel CSF Tau and ptau biomarkers for Alzheimer's disease.

    PubMed

    Meredith, Jere E; Sankaranarayanan, Sethu; Guss, Valerie; Lanzetti, Anthony J; Berisha, Flora; Neely, Robert J; Slemmon, J Randall; Portelius, Erik; Zetterberg, Henrik; Blennow, Kaj; Soares, Holly; Ahlijanian, Michael; Albright, Charles F

    2013-01-01

    Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer's disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases. PMID:24116116

  13. Characterization of Novel CSF Tau and ptau Biomarkers for Alzheimer’s Disease

    PubMed Central

    Guss, Valerie; Lanzetti, Anthony J.; Berisha, Flora; Neely, Robert J.; Slemmon, J. Randall; Portelius, Erik; Zetterberg, Henrik; Blennow, Kaj; Soares, Holly; Ahlijanian, Michael; Albright, Charles F.

    2013-01-01

    Cerebral spinal fluid (CSF) Aβ42, tau and p181tau are widely accepted biomarkers of Alzheimer’s disease (AD). Numerous studies show that CSF tau and p181tau levels are elevated in mild-to-moderate AD compared to age-matched controls. In addition, these increases might predict preclinical AD in cognitively normal elderly. Despite their importance as biomarkers, the molecular nature of CSF tau and ptau is not known. In the current study, reverse-phase high performance liquid chromatography was used to enrich and concentrate tau prior to western-blot analysis. Multiple N-terminal and mid-domain fragments of tau were detected in pooled CSF with apparent sizes ranging from <20 kDa to ~40 kDa. The pattern of tau fragments in AD and control samples were similar. In contrast, full-length tau and C-terminal-containing fragments were not detected. To quantify levels, five tau ELISAs and three ptau ELISAs were developed to detect different overlapping regions of the protein. The discriminatory potential of each assay was determined using 20 AD and 20 age-matched control CSF samples. Of the tau ELISAs, the two assays specific for tau containing N-terminal sequences, amino acids 9-198 (numbering based on tau 441) and 9-163, exhibited the most significant differences between AD and control samples. In contrast, CSF tau was not detected with an ELISA specific for a more C-terminal region (amino acids 159-335). Significant discrimination was also observed with ptau assays measuring amino acids 159-p181 and 159-p231. Interestingly, the discriminatory potential of p181 was reduced when measured in the context of tau species containing amino acids 9-p181. Taken together, these results demonstrate that tau in CSF occurs as a series of fragments and that discrimination of AD from control is dependent on the subset of tau species measured. These assays provide novel tools to investigate CSF tau and ptau as biomarkers for other neurodegenerative diseases. PMID:24116116

  14. Reversible conformational change of tau2 epitope on exposure to detergent in glial cytoplasmic inclusions of multiple system atrophy.

    PubMed

    Shibuya, Katsuhiko; Uchihara, Toshiki; Nakamura, Ayako; Ishiyama, Miyako; Yamaoka, Keiko; Yagishita, Saburo; Iwabuchi, Kiyoshi; Kosaka, Kenji

    2003-05-01

    Tau-like immunoreactivity (IR) on glial cytoplasmic inclusions (GCIs) of multiple system atrophy (MSA) was investigated with a panel of anti-tau antibodies and we found that tau2, one of the phosphorylation-independent antibodies, preferentially immunolabeled GCIs. Co-presence (0.03%) of polyethyleneglycol- p-isooctylphenyl ether (Triton X-100, TX) with tau2, however, abolished this IR on GCIs, but did not abolish tau2 IR on neurofibrillary tangles (NFTs). Tau2-immunoreactive bands on immunoblot of brain homogenates from MSA brains were retrieved mainly in a TRIS-saline-soluble fraction, as reported in normal brains. This was in contrast to SDS-soluble fractions from brain with Down's syndrome, which contained tau2-immunoreactive bands of higher molecular weight. It indicates that the appearance of tau2 IR on GCIs is not related to hyperphosphorylation of tau. These tau2-immunoreactive bands, except those from bovine brain, were similarly abolished in the presence of TX (0.06%), and repeated washing after exposure to TX restored the tau2 IR on immunohistochemistry and on immunoblot. These findings can be explained if the modified tau2 epitope undergoes a reversible conformational change on exposure to TX, which is reversible after washing. Because the conformation centered at Ser101 of bovine tau is crucial for its affinity to tau2, the Ser-like conformation mimicked by its human counterpart Pro may represent pathological modification of tau shared by GCIs and NFTs. The relative resistance of tau2 epitope on NFTs on exposure to TX suggests that tau woven into NFTs confers additional stability to the pathological conformation of tau2 epitope. The conformation of the tau2 epitope in GCIs is not as stable as in NFTs, suggesting that tau proteins are not the principal constituents of the fibrillary structures of GCIs, even though they were immunodecorated with tau2. The difference in the susceptibility of the tau2 epitope to TX may distinguish its conformational states

  15. iTRAQ-based proteomic analysis of plasma reveals abnormalities in lipid metabolism proteins in chronic kidney disease-related atherosclerosis.

    PubMed

    Luczak, Magdalena; Formanowicz, Dorota; Marczak, Łukasz; Suszyńska-Zajczyk, Joanna; Pawliczak, Elżbieta; Wanic-Kossowska, Maria; Stobiecki, Maciej

    2016-01-01

    Patients with chronic kidney disease (CKD) have a considerably higher risk of death due to cardiovascular causes. Using an iTRAQ MS/MS approach, we investigated the alterations in plasma protein accumulation in patients with CKD and classical cardiovascular disease (CVD) without CKD. The proteomic analysis led to the identification of 130 differentially expressed proteins among CVD and CKD patients and healthy volunteers. Bioinformatics analysis revealed that 29 differentially expressed proteins were involved in lipid metabolism and atherosclerosis, 20 of which were apolipoproteins and constituents of high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Although dyslipidemia is common in CKD patients, we found that significant changes in ap