Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang
2016-01-01
Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259
Zhao, Yanxin; Chen, Xizhuo; Zhong, Suyu; Cui, Zaixu; Gong, Gaolang; Dong, Qi; Nan, Yun
2016-01-01
Congenital amusia is a neurogenetic disorder that mainly affects the processing of musical pitch. Brain imaging evidence indicates that it is associated with abnormal structural and functional connections in the fronto-temporal region. However, a holistic understanding of the anatomical topology underlying amusia is still lacking. Here, we used probabilistic diffusion tensor imaging tractography and graph theory to examine whole brain white matter structural connectivity in 31 Mandarin-speaking amusics and 24 age- and IQ-matched controls. Amusics showed significantly reduced global connectivity, as indicated by the abnormally decreased clustering coefficient (Cp) and increased normalized shortest path length (λ) compared to the controls. Moreover, amusics exhibited enhanced nodal strength in the right inferior parietal lobule relative to controls. The co-existence of the lexical tone deficits was associated with even more deteriorated global network efficiency in amusics, as suggested by the significant correlation between the increments in normalized shortest path length (λ) and the insensitivity in lexical tone perception. Our study is the first to reveal reduced global connectivity efficiency in amusics as well as an increase in the global connectivity cost due to the co-existed lexical tone deficits. Taken together these results provide a holistic perspective on the anatomical substrates underlying congenital amusia. PMID:27211239
Zhao, Yanxin; Chen, Xizhuo; Zhong, Suyu; Cui, Zaixu; Gong, Gaolang; Dong, Qi; Nan, Yun
2016-05-23
Congenital amusia is a neurogenetic disorder that mainly affects the processing of musical pitch. Brain imaging evidence indicates that it is associated with abnormal structural and functional connections in the fronto-temporal region. However, a holistic understanding of the anatomical topology underlying amusia is still lacking. Here, we used probabilistic diffusion tensor imaging tractography and graph theory to examine whole brain white matter structural connectivity in 31 Mandarin-speaking amusics and 24 age- and IQ-matched controls. Amusics showed significantly reduced global connectivity, as indicated by the abnormally decreased clustering coefficient (Cp) and increased normalized shortest path length (λ) compared to the controls. Moreover, amusics exhibited enhanced nodal strength in the right inferior parietal lobule relative to controls. The co-existence of the lexical tone deficits was associated with even more deteriorated global network efficiency in amusics, as suggested by the significant correlation between the increments in normalized shortest path length (λ) and the insensitivity in lexical tone perception. Our study is the first to reveal reduced global connectivity efficiency in amusics as well as an increase in the global connectivity cost due to the co-existed lexical tone deficits. Taken together these results provide a holistic perspective on the anatomical substrates underlying congenital amusia.
Dynamical networks with topological self-organization
NASA Technical Reports Server (NTRS)
Zak, M.
2001-01-01
Coupled evolution of state and topology of dynamical networks is introduced. Due to the well organized tensor structure, the governing equations are presented in a canonical form, and required attractors as well as their basins can be easily implanted and controlled.
Decoding the topology of vascular organization
NASA Astrophysics Data System (ADS)
Katifori, Eleni
2012-02-01
Distribution and structural networks permeate virtually all life, from the cellular to the organismic level. They have allowed organisms to grow in size and complexity by ensuring efficient distribution of nutrients and structural support. Given their importance, these vascular and structural webs have been under strong evolutionary selection and their form frequently reflects important aspects of their function. We discuss the design principles behind the evolution of the architecture and topology of vascular and structural networks and present some examples (leaf venation, arterial vasculature of the neocortex and others) that elucidate them.
Abnormal Brain Network Organization in Body Dysmorphic Disorder
Arienzo, Donatello; Leow, Alex; Brown, Jesse A; Zhan, Liang; GadElkarim, Johnson; Hovav, Sarit; Feusner, Jamie D
2013-01-01
Body dysmorphic disorder (BDD) is characterized by preoccupation with misperceived defects of appearance, causing significant distress and disability. Previous studies suggest abnormalities in information processing characterized by greater local relative to global processing. The purpose of this study was to probe whole-brain and regional white matter network organization in BDD, and to relate this to specific metrics of symptomatology. We acquired diffusion-weighted 34-direction MR images from 14 unmedicated participants with DSM-IV BDD and 16 healthy controls, from which we conducted whole-brain deterministic diffusion tensor imaging tractography. We then constructed white matter structural connectivity matrices to derive whole-brain and regional graph theory metrics, which we compared between groups. Within the BDD group, we additionally correlated these metrics with scores on psychometric measures of BDD symptom severity as well as poor insight/delusionality. The BDD group showed higher whole-brain mean clustering coefficient than controls. Global efficiency negatively correlated with BDD symptom severity. The BDD group demonstrated greater edge betweenness centrality for connections between the anterior temporal lobe and the occipital cortex, and between bilateral occipital poles. This represents the first brain network analysis in BDD. Results suggest disturbances in whole brain structural topological organization in BDD, in addition to correlations between clinical symptoms and network organization. There is also evidence of abnormal connectivity between regions involved in lower-order visual processing and higher-order visual and emotional processing, as well as interhemispheric visual information transfer. These findings may relate to disturbances in information processing found in previous studies. PMID:23322186
Topological Defects at the Graphene/h-BN interface Abnormally Enhance Its Thermal Conductance.
Liu, Xiangjun; Zhang, Gang; Zhang, Yong-Wei
2016-08-10
Low thermal conductance across interface is often the limiting factor in managing heat in many advanced device applications. The most commonly used approach to enhance the thermal conductance is to reduce/eliminate the interfacial structural defects. Using a graphene/h-BN (Gr/h-BN) interface, we show surprisingly that topological defects are able to enhance the thermal conductance across the interface. It is found that the phonon transmission across the Gr/h-BN interface with 5|7 defects is higher than that of the pristine interface, which is in strong contrast to the common notion that interface defects promote phonon scattering. By analyzing the strain distribution and phonon vibrational spectra, we find that this abnormal enhancement in interfacial thermal conductance originates from the localization of the stress fields arising from misfit dislocations and their out-of-plane deformations at the interface. In the presence of the defects, the overall mismatch strain is reduced. In addition, the out-of-plane deformations screen the long-ranged dislocation strain fields, resulting in the stress fields to be localized only at the cores of the defects. This abnormal mechanism provides a new dimension to enhance the interfacial thermal conductance in two-dimensional heterostructures.
Topology and structural self-organization in folded proteins
NASA Astrophysics Data System (ADS)
Lundgren, M.; Krokhotin, Andrey; Niemi, Antti J.
2013-10-01
Topological methods are indispensable in theoretical studies of particle physics, condensed matter physics, and gravity. These powerful techniques have also been applied to biological physics. For example, knowledge of DNA topology is pivotal to the understanding as to how living cells function. Here, the biophysical repertoire of topological methods is extended, with the aim to understand and characterize the global structure of a folded protein. For this, the elementary concept of winding number of a vector field on a plane is utilized to introduce a topological quantity called the folding index of a crystallographic protein. It is observed that in the case of high resolution protein crystals, the folding index, when evaluated over the entire length of the crystallized protein backbone, has a very clear and strong propensity towards integer values. The observation proposes that the way how a protein folds into its biologically active conformation is a structural self-organization process with a topological facet that relates to the concept of solitons. It is proposed that the folding index has a potential to become a useful tool for the global, topological characterization of the folding pathways.
A Topological Model for C2 Organizations
2011-06-01
functions of the organization, and the capabilities of its members, as these sets somehow efine the boundaries of organizational performance and the...and functions of the organization, and the capabilities of its members, as these sets somehow efine the boundaries of organizational performance and
Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing
2016-01-01
Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371
Absence of cytoglobin promotes multiple organ abnormalities in aged mice
Thuy, Le Thi Thanh; Van Thuy, Tuong Thi; Matsumoto, Yoshinari; Hai, Hoang; Ikura, Yoshihiro; Yoshizato, Katsutoshi; Kawada, Norifumi
2016-01-01
Cytoglobin (Cygb) was identified in hepatic stellate cells (HSCs) and pericytes of all organs; however, the effects of Cygb on cellular functions remain unclear. Here, we report spontaneous and age-dependent malformations in multiple organs of Cygb−/− mice. Twenty-six percent of young Cygb−/− mice (<1 year old) showed heart hypertrophy, cystic disease in the kidney or ovary, loss of balance, liver fibrosis and lymphoma. Furthermore, 71.3% (82/115) of aged Cygb−/− mice (1–2 years old) exhibited abnormalities, such as heart hypertrophy and cancer development in multiple organs; by contrast, 5.8% (4/68) of aged wild-type (WT) mice had abnormalities (p < 0.0001). Interestingly, serum and urine analysis demonstrated that the concentration of nitric oxide metabolites increased significantly in Cygb−/− mice, resulting in an imbalance in the oxidative stress and antioxidant defence system that was reversed by NG-monomethyl-L-arginine treatment. A senescent phenotype and evidence of DNA damage were found in primary HSCs and the liver of aged Cygb−/− mice. Moreover, compared with HSC+/+, HSC−/− showed high expression of Il-6 and chemokine mRNA when cocultured with mouse Hepa 1–6 cells. Thus, the absence of Cygb in pericytes provokes organ abnormalities, possibly via derangement of the nitric oxide and antioxidant defence system and through accelerated cellular senescence. PMID:27146058
Self-organized topology of recurrence-based complex networks.
Yang, Hui; Liu, Gang
2013-12-01
With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.
Self-organized pseudo-graphene on grain boundaries in topological band insulators
NASA Astrophysics Data System (ADS)
Slager, Robert-Jan; Juričić, Vladimir; Lahtinen, Ville; Zaanen, Jan
2016-06-01
Semimetals are characterized by nodal band structures that give rise to exotic electronic properties. The stability of Dirac semimetals, such as graphene in two spatial dimensions, requires the presence of lattice symmetries, while akin to the surface states of topological band insulators, Weyl semimetals in three spatial dimensions are protected by band topology. Here we show that in the bulk of topological band insulators, self-organized topologically protected semimetals can emerge along a grain boundary, a ubiquitous extended lattice defect in any crystalline material. In addition to experimentally accessible electronic transport measurements, these states exhibit a valley anomaly in two dimensions influencing edge spin transport, whereas in three dimensions they appear as graphenelike states that may exhibit an odd-integer quantum Hall effect. The general mechanism underlying these semimetals—the hybridization of spinon modes bound to the grain boundary—suggests that topological semimetals can emerge in any topological material where lattice dislocations bind localized topological modes.
Chae, S. C.; Horibe, Y.; Jeong, D. Y.; Rodan, S.; Lee, N.; Cheong, S.-W.
2010-01-01
The interaction among topological defects can induce novel phenomena such as disclination pairs in liquid crystals and superconducting vortex lattices. Nanoscale topological vortices with swirling ferroelectric, magnetic, and structural antiphase relationships were found in multiferroic h-YMnO3. Herein, we report the discovery of intriguing, but seemingly irregular configurations of a zoo of topological vortices and antivortices. These configurations can be neatly analyzed in terms of graph theory and reflect the nature of self-organized criticality in complexity phenomena. External stimuli such as chemistry-driven or electric poling can induce the condensation and eventual annihilation of topological vortex–antivortex pairs. PMID:21115846
Self-organized charge puddles in a three-dimensional topological material
NASA Astrophysics Data System (ADS)
Borgwardt, N.; Lux, J.; Vergara, I.; Wang, Zhiwei; Taskin, A. A.; Segawa, Kouji; van Loosdrecht, P. H. M.; Ando, Yoichi; Rosch, A.; Grüninger, M.
2016-06-01
In three-dimensional (3D) topological materials, tuning of the bulk chemical potential is of crucial importance for observing their topological properties; for example, Weyl semimetals require chemical-potential tuning to the bulk Weyl nodes, while 3D topological insulators require tuning into the bulk band gap. Such tuning is often realized by compensation, i.e., by balancing the density of acceptors and donors. Here we show that in such a compensated 3D topological material, the possibility of local chemical-potential tuning is limited by the formation of self-organized charge puddles. The puddles arise from large fluctuations of the Coulomb potential of donors and acceptors. Their emergence is akin to the case of graphene, where charge puddles are already established as a key paradigm. However, there is an important difference: Puddles in graphene are simply dictated by the static distribution of defects in the substrate, whereas we find that puddles in 3D systems self-organize in a nontrivial way and show a strong temperature dependence. Such a self-organization is revealed by measurements of the optical conductivity of the bulk-insulating 3D topological insulator BiSbTeSe2, which pinpoints the presence of puddles at low temperatures as well as their surprising "evaporation" on a temperature scale of 30-40 K. The experimental observation is described semiquantitatively by Monte Carlo simulations. These show that the temperature scale is set by the Coulomb interaction between neighboring dopants and that puddles are destroyed by thermally activated carriers in a highly nonlinear screening process. This result indicates that understanding charge puddles is crucial for the control of the chemical potential in compensated 3D topological materials.
Topological research on diamagnetic susceptibilities of organic compounds.
Mu, Lailong; Feng, Changjun; He, Hongmei
2008-02-01
A novel molecular connectivity index, (m)chi('), based on the adjacency matrix of molecular graphs and novel atomic valence connectivities, delta(i)(') for predicting the molar diamagnetic susceptibilities of organic compounds is proposed. The delta(i)(') is defined as: delta(i)(') = delta(i)(nu) x Ei=12:625, where delta(i)(nu) and E(i) are the atomic valence connectivity and the valence orbital energy of atom i, respectively. A good QSPR model for molar diamagnetic susceptibilities can be constructed from (0)chi('), (1)chi('), (2)chi(') and (4)chi(p)(') using multivariate linear regression (MLR). The correlation coefficient r, standard error, and average absolute deviation of the MLR model are 0.9918, 5.56 cgs, and 4.26 cgs, respectively, for the 721 organic compounds tested (training set). Cross-validation using the leave-one-out method demonstrates that the MLR model is highly reliable statistically. Using the MLR model, the average absolute deviations of the predicted values of molar diamagnetic susceptibility of another 360 organic compounds (test set) is 4.34 cgs. The results show that the current method is more effective than literature methods for estimating the molar diamagnetic susceptibility of an organic compound. The MLR method thus provides an acceptable model for the prediction of molar diamagnetic susceptibilities of organic compounds.
Number theoretic example of scale-free topology inducing self-organized criticality.
Luque, Bartolo; Miramontes, Octavio; Lacasa, Lucas
2008-10-10
In this Letter we present a general mechanism by which simple dynamics running on networks become self-organized critical for scale-free topologies. We illustrate this mechanism with a simple arithmetic model of division between integers, the division model. This is the simplest self-organized critical model advanced so far, and in this sense it may help to elucidate the mechanism of self-organization to criticality. Its simplicity allows analytical tractability, characterizing several scaling relations. Furthermore, its mathematical nature brings about interesting connections between statistical physics and number theoretical concepts. We show how this model can be understood as a self-organized stochastic process embedded on a network, where the onset of criticality is induced by the topology.
Emergent self-organized complex network topology out of stability constraints.
Perotti, Juan I; Billoni, Orlando V; Tamarit, Francisco A; Chialvo, Dante R; Cannas, Sergio A
2009-09-04
Although most networks in nature exhibit complex topologies, the origins of such complexity remain unclear. We propose a general evolutionary mechanism based on global stability. This mechanism is incorporated into a model of a growing network of interacting agents in which each new agent's membership in the network is determined by the agent's effect on the network's global stability. It is shown that out of this stability constraint complex topological properties emerge in a self-organized manner, offering an explanation for their observed ubiquity in biological networks.
Chromatin topology is coupled to Polycomb group protein subnuclear organization
Wani, Ajazul H.; Boettiger, Alistair N.; Schorderet, Patrick; Ergun, Ayla; Münger, Christine; Sadreyev, Ruslan I.; Zhuang, Xiaowei; Kingston, Robert E.; Francis, Nicole J.
2016-01-01
The genomes of metazoa are organized at multiple scales. Many proteins that regulate genome architecture, including Polycomb group (PcG) proteins, form subnuclear structures. Deciphering mechanistic links between protein organization and chromatin architecture requires precise description and mechanistic perturbations of both. Using super-resolution microscopy, here we show that PcG proteins are organized into hundreds of nanoscale protein clusters. We manipulated PcG clusters by disrupting the polymerization activity of the sterile alpha motif (SAM) of the PcG protein Polyhomeotic (Ph) or by increasing Ph levels. Ph with mutant SAM disrupts clustering of endogenous PcG complexes and chromatin interactions while elevating Ph level increases cluster number and chromatin interactions. These effects can be captured by molecular simulations based on a previously described chromatin polymer model. Both perturbations also alter gene expression. Organization of PcG proteins into small, abundant clusters on chromatin through Ph SAM polymerization activity may shape genome architecture through chromatin interactions. PMID:26759081
NASA Astrophysics Data System (ADS)
Dalapati, Sasanka; Addicoat, Matthew; Jin, Shangbin; Sakurai, Tsuneaki; Gao, Jia; Xu, Hong; Irle, Stephan; Seki, Shu; Jiang, Donglin
2015-07-01
Covalent organic frameworks (COFs) are an emerging class of highly ordered porous polymers with many potential applications. They are currently designed and synthesized through hexagonal and tetragonal topologies, limiting the access to and exploration of new structures and properties. Here, we report that a triangular topology can be developed for the rational design and synthesis of a new class of COFs. The triangular topology features small pore sizes down to 12 Å, which is among the smallest pores for COFs reported to date, and high π-column densities of up to 0.25 nm-2, which exceeds those of supramolecular columnar π-arrays and other COF materials. These crystalline COFs facilitate π-cloud delocalization and are highly conductive, with a hole mobility that is among the highest reported for COFs and polygraphitic ensembles.
Cross-Scale Integrin Regulation Organizes ECM and Tissue Topology.
Jülich, Dörthe; Cobb, Garrett; Melo, Ana M; McMillen, Patrick; Lawton, Andrew K; Mochrie, Simon G J; Rhoades, Elizabeth; Holley, Scott A
2015-07-06
The diverse morphologies of animal tissues are underlain by different configurations of adherent cells and extracellular matrix (ECM). Here, we elucidate a cross-scale mechanism for tissue assembly and ECM remodeling involving Cadherin 2, the ECM protein Fibronectin, and its receptor Integrin α5. Fluorescence cross-correlation spectroscopy within the zebrafish paraxial mesoderm mesenchyme reveals a physical association between Integrin α5 on adjacent cell membranes. This Integrin-Integrin complex correlates with conformationally inactive Integrin. Cadherin 2 stabilizes both the Integrin association and inactive Integrin conformation. Thus, Integrin repression within the adherent mesenchymal interior of the tissue biases Fibronectin fibrillogenesis to the tissue surface lacking cell-cell adhesions. Along nascent somite boundaries, Cadherin 2 levels decrease, becoming anti-correlated with levels of Integrin α5. Simultaneously, Integrin α5 clusters and adopts the active conformation and then commences ECM assembly. This cross-scale regulation of Integrin activation organizes a stereotypic pattern of ECM necessary for vertebrate body elongation and segmentation.
Metallacarborane-Based Metal-Organic Framework with a Complex Topology
Kennedy, RD; Clingerman, DJ; Morris, W; Wilmer, CE; Sarjeant, AA; Stern, CL; O'Keeffe, M; Snurr, RQ; Hupp, JT; Farha, OK; Mirkin, CA
2014-03-01
The long, linear cobalt(III) bis(dicarbollide)-based bis(isophthalic acid) anion was synthesized as a tetraphenylphosphonium salt in five steps from 8-iodo-closo-1,2-C2B10H11. The solvothermal reaction between the anionic bis(isophthalic acid) linker and copper(II) nitrate in acidified DMF yielded single crystals. Despite the tendency for copper(II) and analogous linear tetraacids to form members of an isoreticular family of metal-organic frameworks (MOFs) with the fof topology, single-crystal X-ray diffraction analysis revealed the growth of three different frameworks. These MOFs, NU-150, NU-151, and NU-152, have three distinct topologies: fof, sty, and hbk, respectively. NU-152 has a novel quadrinodal topology in which cuboctahedral coordination polyhedra are each connected to 10 neighboring polyhedra via the cobalt bis(dicarbollide) portions of the linkers. The formation of these frameworks illustrates the limitations of structure prediction in MOP chemistry and the possibility of using flexible linkers to generate unexpected topologies. Furthermore, this work represents the first example of the incorporation of an anionic bis(dicarbollide) unit into a MOF.
Vértes, Petra E; Bullmore, Edward T
2015-01-01
Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756
Evaluating topologically diverse metal–organic frameworks for cryo-adsorbed hydrogen storage
Gómez-Gualdrón, Diego A.; Colón, Yamil J.; Zhang, Xu; Wang, Timothy C.; Chen, Yu-Sheng; Hupp, Joseph T.; Yildirim, Taner; Farha, Omar K.; Zhang, Jian; Snurr, Randall Q.
2016-01-01
Metal–organic frameworks (MOFs) are porous materials synthesized by combining inorganic and organic molecular building blocks into crystalline networks of distinct topologies. Due to the combinatorial possibilities, there are millions of possible MOF structures. Aiming to exploit their exceptional tunability, surface areas and pore volumes, researchers have investigated MOFs for storage of gaseous fuels such as hydrogen for over a decade, but a suitable MOF to store hydrogen at ambient conditions has not yet been found. Here, we sought to rapidly determine the viability of using MOFs for hydrogen storage at recently proposed, cryogenic operating conditions. We constructed a large and structurally diverse set of 13 512 potential MOF structures based on 41 different topologies and used molecular simulation to determine MOF hydrogen deliverable capacities between 100 bar/77 K and 5 bar/160 K. The highest volumetric deliverable capacity was 57 g L-1 of MOF, which surpasses the 37 g L-1 of tank of the incumbent technology (compressing hydrogen to 700 bar at ambient temperature). To validate our in silico MOF construction method, we synthesized a new isoreticular family of MOFs (she-MOF-x series) based on the she topology, which is extremely rare among MOFs. To validate our hydrogen storage predictions, we activated and measured hydrogen adsorption on she-MOF-1 and NU-1103. The latter MOF showed outstanding stability and a good combination of volumetric and gravimetric performance, presenting 43.2 g L-1 of MOF and 12.6 wt% volumetric and gravimetric deliverable capacities, respectively.
Controlling the Spin Texture of Topological Insulators by Rational Design of Organic Molecules.
Jakobs, Sebastian; Narayan, Awadhesh; Stadtmüller, Benjamin; Droghetti, Andrea; Rungger, Ivan; Hor, Yew S; Klyatskaya, Svetlana; Jungkenn, Dominik; Stöckl, Johannes; Laux, Martin; Monti, Oliver L A; Aeschlimann, Martin; Cava, Robert J; Ruben, Mario; Mathias, Stefan; Sanvito, Stefano; Cinchetti, Mirko
2015-09-09
We present a rational design approach to customize the spin texture of surface states of a topological insulator. This approach relies on the extreme multifunctionality of organic molecules that are used to functionalize the surface of the prototypical topological insulator (TI) Bi2Se3. For the rational design we use theoretical calculations to guide the choice and chemical synthesis of appropriate molecules that customize the spin texture of Bi2Se3. The theoretical predictions are then verified in angular-resolved photoemission experiments. We show that, by tuning the strength of molecule-TI interaction, the surface of the TI can be passivated, the Dirac point can energetically be shifted at will, and Rashba-split quantum-well interface states can be created. These tailored interface properties-passivation, spin-texture tuning, and creation of hybrid interface states-lay a solid foundation for interface-assisted molecular spintronics in spin-textured materials.
Intrinsic Two-Dimensional Organic Topological Insulators in Metal-Dicyanoanthracene Lattices.
Zhang, L Z; Wang, Z F; Huang, B; Cui, B; Wang, Zhiming; Du, S X; Gao, H-J; Liu, Feng
2016-03-09
We predict theoretical existence of intrinsic two-dimensional organic topological insulator (OTI) states in Cu-dicyanoanthracene (DCA) lattice, a system that has also been grown experimentally on Cu substrate, based on first-principle density functional theory calculations. The pz-orbital Kagome bands having a Dirac point lying exactly at the Fermi level are found in the freestanding Cu-DCA lattice. The tight-binding model analysis, the calculated Chern numbers, and the semi-infinite Dirac edge states within the spin-orbit coupling gaps all confirm its intrinsic topological properties. The intrinsic TI states are found to originate from a proper number of electrons filling of the hybridized bands from Cu atomic and DCA molecular orbitals based on which similar lattices containing noble metal atoms (Au and Cu) and those molecules with two CN groups (DCA and cyanogens) are all predicted to be intrinsic OTIs.
Kostcheev, Serguei; Turover, Daniel; Salas-Montiel, Rafael; Nomenyo, Komla; Gokarna, Anisha; Lerondel, Gilles
2014-01-01
Summary Our aim was to elaborate a novel method for fully controllable large-scale nanopatterning. We investigated the influence of the surface topology, i.e., a pre-pattern of hydrogen silsesquioxane (HSQ) posts, on the self-organization of polystyrene beads (PS) dispersed over a large surface. Depending on the post size and spacing, long-range ordering of self-organized polystyrene beads is observed wherein guide posts were used leading to single crystal structure. Topology assisted self-organization has proved to be one of the solutions to obtain large-scale ordering. Besides post size and spacing, the colloidal concentration and the nature of solvent were found to have a significant effect on the self-organization of the PS beads. Scanning electron microscope and associated Fourier transform analysis were used to characterize the morphology of the ordered surfaces. Finally, the production of silicon molds is demonstrated by using the beads as a template for dry etching. PMID:25161854
Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization.
Ea, Vuthy; Baudement, Marie-Odile; Lesne, Annick; Forné, Thierry
2015-07-27
Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains' organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation. TAD borders directly impact on chromatin dynamics by restricting contacts within specific genomic portions thus confining chromatin loop formation within TADs. We discuss how sub-TAD chromatin dynamics, constrained into a recently described statistical helix conformation, can produce functional interactions by contact stabilization.
EEG abnormalities in clinically diagnosed brain death organ donors in Iranian tissue bank.
Tavakoli, Seyed Amir Hossein; Khodadadi, Abbas; Azimi Saein, Amir Reza; Bahrami-Nasab, Hasan; Hashemi, Behnam; Tirgar, Niloufar; Nozary Heshmati, Behnaz
2012-01-01
Brain death is defined as the permanent, irreversible and concurrent loss of all brain and brain stem functions. Brain death diagnosis is based on clinical criteria and it is not routine to use paraclinical studies. In some countries, electroencephalogram (EEG) is performed in all patients for the determination of brain death while there is some skepticism in relying on EEG as a confirmatory test for brain death diagnosis. In this study, we assessed the validity of EEG and its abnormalities in brain death diagnosis. In this retrospective study, we used 153 EEGs from medical records of 89 brain death patients in organ procurement unit of the Iranian Tissue Bank admitted during 2002-2008. We extracted and analyzed information including EEGs, which were examined by a neurologist for waves, artifacts and EEG abnormalities. The mean age of the patients was 27.2±12.7 years. The most common cause of brain death was multiple traumas due to accident (65%). The most prevalent artifact was electrical transformer. 125 EEGs (82%) were isoelectric (ECS) and seven EEGs (5%) were depictive of some cerebral activity which upon repeat EEGs, they showed ECS patterns too. There was no relationship between cause of brain death and cerebral activity in EEGs of the patients. In this study, we could confirm ECS patterns in all brain death patients whose status had earlier been diagnosed clinically. Considering the results of this study, it seems sensible to perform EEG as a final confirmatory test as an assurance to the patients' families.
Sasaki, Yuji; Jampani, V S R; Tanaka, Chiharu; Sakurai, Nobutaka; Sakane, Shin; Le, Khoa V; Araoka, Fumito; Orihara, Hiroshi
2016-11-07
Topological defects in nematic liquid crystals are ubiquitous. The defects are important in understanding the fundamental properties of the systems, as well as in practical applications, such as colloidal self-assembly, optical vortex generation and templates for molecular self-assembly. Usually, spatially and temporally stable defects require geometrical frustration imposed by surfaces; otherwise, the system relaxes because of the high cost of the elastic energy. So far, multiple defects are kept in bulk nematic liquid crystals by top-down lithographic techniques. In this work, we stabilize a large number of umbilical defects by doping with an ionic impurity. This method does not require pre-patterned surfaces. We demonstrate that molecular reorientation controlled by an AC voltage induces periodic density modulation of ions accumulated at an electrically insulating polymer interface, resulting in self-organization of a two-dimensional square array of umbilical defects that is reconfigurable and tunable.
NASA Astrophysics Data System (ADS)
Sasaki, Yuji; Jampani, V. S. R.; Tanaka, Chiharu; Sakurai, Nobutaka; Sakane, Shin; Le, Khoa V.; Araoka, Fumito; Orihara, Hiroshi
2016-11-01
Topological defects in nematic liquid crystals are ubiquitous. The defects are important in understanding the fundamental properties of the systems, as well as in practical applications, such as colloidal self-assembly, optical vortex generation and templates for molecular self-assembly. Usually, spatially and temporally stable defects require geometrical frustration imposed by surfaces; otherwise, the system relaxes because of the high cost of the elastic energy. So far, multiple defects are kept in bulk nematic liquid crystals by top-down lithographic techniques. In this work, we stabilize a large number of umbilical defects by doping with an ionic impurity. This method does not require pre-patterned surfaces. We demonstrate that molecular reorientation controlled by an AC voltage induces periodic density modulation of ions accumulated at an electrically insulating polymer interface, resulting in self-organization of a two-dimensional square array of umbilical defects that is reconfigurable and tunable.
Sasaki, Yuji; Jampani, V.S.R.; Tanaka, Chiharu; Sakurai, Nobutaka; Sakane, Shin; Le, Khoa V.; Araoka, Fumito; Orihara, Hiroshi
2016-01-01
Topological defects in nematic liquid crystals are ubiquitous. The defects are important in understanding the fundamental properties of the systems, as well as in practical applications, such as colloidal self-assembly, optical vortex generation and templates for molecular self-assembly. Usually, spatially and temporally stable defects require geometrical frustration imposed by surfaces; otherwise, the system relaxes because of the high cost of the elastic energy. So far, multiple defects are kept in bulk nematic liquid crystals by top-down lithographic techniques. In this work, we stabilize a large number of umbilical defects by doping with an ionic impurity. This method does not require pre-patterned surfaces. We demonstrate that molecular reorientation controlled by an AC voltage induces periodic density modulation of ions accumulated at an electrically insulating polymer interface, resulting in self-organization of a two-dimensional square array of umbilical defects that is reconfigurable and tunable. PMID:27819290
Xu, Pengfei; Huang, Ruiwang; Wang, Jinhui; Van Dam, Nicholas T; Xie, Teng; Dong, Zhangye; Chen, Chunping; Gu, Ruolei; Zang, Yu-Feng; He, Yong; Fan, Jin; Luo, Yue-jia
2014-04-15
Opening and closing the eyes are fundamental behaviors for directing attention to the external versus internal world. However, it remains unclear whether the states of eyes-open (EO) relative to eyes-closed (EC) are associated with different topological organizations of functional neural networks for exteroceptive and interoceptive processing (processing the external world and internal state, respectively). Here, we used resting-state functional magnetic resonance imaging and neural network analysis to investigate the topological properties of functional networks of the human brain when the eyes were open versus closed. The brain networks exhibited higher cliquishness and local efficiency, but lower global efficiency during the EO state compared to the EC state. These properties suggest an increase in specialized information processing along with a decrease in integrated information processing in EO (vs. EC). More importantly, the "exteroceptive" network, including the attentional system (e.g., superior parietal gyrus and inferior parietal lobule), ocular motor system (e.g., precentral gyrus and superior frontal gyrus), and arousal system (e.g., insula and thalamus), showed higher regional nodal properties (nodal degree, efficiency and betweenness centrality) in EO relative to EC. In contrast, the "interoceptive" network, composed of visual system (e.g., lingual gyrus, fusiform gyrus and cuneus), auditory system (e.g., Heschl's gyurs), somatosensory system (e.g., postcentral gyrus), and part of the default mode network (e.g., angular gyrus and anterior cingulate gyrus), showed significantly higher regional properties in EC vs. EO. In addition, the connections across sensory modalities were altered by volitional eye opening. The synchronicity between the visual system and the motor, somatosensory and auditory systems, characteristic of EC, was attenuated in EO. Further, the connections between the visual system and the attention, arousal and subcortical systems were
NASA Astrophysics Data System (ADS)
Dong, Liang; Kim, Youngkuk; Er, Dequan; Rappe, Andrew M.; Shenoy, Vivek B.
2016-03-01
The quantum anomalous Hall (QAH) insulator is a novel topological state of matter characterized by a nonzero quantized Hall conductivity without an external magnetic field. Using first-principles calculations, we predict the QAH state in monolayers of covalent-organic frameworks based on the newly synthesized X3(C18H12N6) 2 structure where X represents 5 d transition metal elements Ta, Re, and Ir. The π conjugation between X dx z and dy z orbitals, mediated by N pz and C pz orbitals, gives rise to a massive Dirac spectrum in momentum space with a band gap of up to 24 meV due to strong spin-orbit coupling. We show that the QAH state can appear by chemically engineering the exchange field and the Fermi level in the monolayer structure, resulting in nonzero Chern numbers. Our results suggest a reliable pathway toward the realization of a QAH phase at temperatures between 100 K and room temperature in covalent-organic frameworks.
Wang, Yunhua; Liu, Yulan; Wang, Biao
2017-01-01
Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs. PMID:28134315
NASA Astrophysics Data System (ADS)
Wang, Yunhua; Liu, Yulan; Wang, Biao
2017-01-01
Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs.
NASA Astrophysics Data System (ADS)
Katsenis, Athanassios D.; Puškarić, Andreas; Štrukil, Vjekoslav; Mottillo, Cristina; Julien, Patrick A.; Užarević, Krunoslav; Pham, Minh-Hao; Do, Trong-On; Kimber, Simon A. J.; Lazić, Predrag; Magdysyuk, Oxana; Dinnebier, Robert E.; Halasz, Ivan; Friščić, Tomislav
2015-03-01
Chemical and physical transformations by milling are attracting enormous interest for their ability to access new materials and clean reactivity, and are central to a number of core industries, from mineral processing to pharmaceutical manufacturing. While continuous mechanical stress during milling is thought to create an environment supporting nonconventional reactivity and exotic intermediates, such speculations have remained without proof. Here we use in situ, real-time powder X-ray diffraction monitoring to discover and capture a metastable, novel-topology intermediate of a mechanochemical transformation. Monitoring the mechanochemical synthesis of an archetypal metal-organic framework ZIF-8 by in situ powder X-ray diffraction reveals unexpected amorphization, and on further milling recrystallization into a non-porous material via a metastable intermediate based on a previously unreported topology, herein named katsenite (kat). The discovery of this phase and topology provides direct evidence that milling transformations can involve short-lived, structurally unusual phases not yet accessed by conventional chemistry.
Wang, Yunhua; Liu, Yulan; Wang, Biao
2017-01-30
Periodically driven nontrivial quantum states open another door to engineer topological phases in solid systems by light. Here we show, based on the Floquet-Bloch theory, that the on-resonant linearly and circularly polarized infrared light brings in the exotic Floquet quantum spin Hall state and half-metal in two-dimensional Metal-organic frameworks (2D MOFs) because of the unbroken and broken time-reversal symmetry, respectively. We also observe that the off-resonant light triggers topological quantum phase transitions and induces semimetals with pseudospin-1 Dirac-Weyl fermions via the photon-dressed topological band structures of 2D MOFs. This work paves a way to design light-controlled spintronics and optoelectronics based on 2D MOFs.
Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson’s Disease
Koshimori, Yuko; Cho, Sang-Soo; Criaud, Marion; Christopher, Leigh; Jacobs, Mark; Ghadery, Christine; Coakeley, Sarah; Harris, Madeleine; Mizrahi, Romina; Hamani, Clement; Lang, Anthony E.; Houle, Sylvain; Strafella, Antonio P.
2016-01-01
The recent application of graph theory to brain networks promises to shed light on complex diseases such as Parkinson’s disease (PD). This study aimed to investigate functional changes in sensorimotor and cognitive networks in Parkinsonian patients, with a focus on inter- and intra-connectivity organization in the disease-associated nodal and hub regions using the graph theoretical analyses. Resting-state functional MRI data of a total of 65 participants, including 23 healthy controls (HCs) and 42 patients, were investigated in 120 nodes for local efficiency, betweenness centrality, and degree. Hub regions were identified in the HC and patient groups. We found nodal and hub changes in patients compared with HCs, including the right pre-supplementary motor area (SMA), left anterior insula, bilateral mid-insula, bilateral dorsolateral prefrontal cortex (DLPFC), and right caudate nucleus. In general, nodal regions within the sensorimotor network (i.e., right pre-SMA and right mid-insula) displayed weakened connectivity, with the former node associated with more severe bradykinesia, and impaired integration with default mode network regions. The left mid-insula also lost its hub properties in patients. Within the executive networks, the left anterior insular cortex lost its hub properties in patients, while a new hub region was identified in the right caudate nucleus, paralleled by an increased level of inter- and intra-connectivity in the bilateral DLPFC possibly representing compensatory mechanisms. These findings highlight the diffuse changes in nodal organization and regional hub disruption accounting for the distributed abnormalities across brain networks and the clinical manifestations of PD. PMID:27891090
The retinotopic organization of striate cortex is well predicted by surface topology
Benson, Noah C.; Butt, Omar H.; Datta, Ritobrato; Radoeva, Petya D.; Brainard, David H.; Aguirre, Geoffrey Karl
2012-01-01
Summary In 1918, Gordon Holmes combined observations of visual field scotomas across brain lesioned soldiers to produce a schematic map of the projection of the visual field upon the striate cortex [1]. One limit to the precision of his result, and the mapping of anatomy to retinotopy generally, is the substantial individual variation in the size [2,3], volumetric position [4], and cortical magnification [5] of area V1. When viewed within the context of the curvature of the cortical surface, however, the boundaries of striate cortex fall at a consistent location across individuals [6]. We asked if the surface topology of the human brain can be used to accurately predict the internal, retinotopic function of striate cortex as well. We used fMRI to measure polar angle and eccentricity in 25 participants and combined their maps within a left-right, transform-symmetric representation of the cortical surface [7]. These data were then fit using a deterministic, algebraic model of visual field representation [8]. We found that an anatomical image alone can be used to predict the retinotopic organization of striate cortex for an individual as accurately as 10–25 minutes of functional mapping. This indicates tight developmental linkage of structure and function within a primary, sensory cortical area. PMID:23041195
NASA Astrophysics Data System (ADS)
Dumitrescu, E.; Tewari, Sumanta
2013-12-01
We show that the pair of Majorana modes at each end of a 1D spin triplet superconductor with Δ↑↑=-Δ↓↓=pΔ0 (two time reversed copies of the Kitaev p-wave chain) are topologically robust to perturbations such as mixing by the Sz=0 component of the order parameter (Δ↑↓=Δ↓↑), transverse hopping, nonagnetic disorder, and also, importantly, to time-reversal (TR) breaking perturbations such as applied Zeeman fields/magnetic impurities and the mixing by the Sy=0 component of the order parameter (Δ↑↑=Δ↓↓). We show that the robustness to TR-breaking results from a hidden chiral symmetry, which places the system in the BDI class in the presence of the generic TR-breaking perturbations (the TR-invariant system is both DIII and BDI). Our work has important implications for the quasi-1D organic superconductors (TMTSF)2X (X =PF6,CIO4) (Bechgaard salts) and Li0.9Mo6O17, which have been proposed as triplet superconductors with equal spin pairing (Δ↑↑,Δ↓↓≠0,Δ↑↓=0) in the presence of magnetic fields.
Liu, Yan; Wu, Qian; Cui, Huiting; Li, Qinghe; Zhao, Yiqiang; Luo, Juan; Liu, Qiuyue; Sun, Xiuzhu; Tang, Bo; Zhang, Lei; Dai, Yunping; Li, Ning
2008-12-01
Both enhanced green fluorescence protein (EGFP) and neomycin phosphotransferase type II enzyme (NPTII) are widely used in transgenic studies, but their side effects have not been extensively investigated. In this study, we evaluated the expression profiles of the two marker genes and the relationship between their expression and organ abnormalities. Eight transgenic cloned cattle were studied, four harboring both EGFP and NPTII, and four harboring only the NPTII gene. Four age-matched cloned cattle were used as controls. EGFP and NPTII expression were measured and detected by Q-PCR, Western blot, ELISA, and RIA in heart, liver, and lungs, and the values ranged from 0.3 to 5 microg/g. The expression profiles exhibited differential or mosaic pattern between the organs, the pathologic symptoms of which were identified, but were similar to those of age-matched cloned cattle. All data indicated that the expression of EGFP and NPTII is not associated with organ abnormalities in transgenic cloned cattle.
Liu, Tian -Fu; Feng, Dawei; Chen, Ying -Pin; Zou, Lanfang; Bosch, Mathieu; Yuan, Shuai; Wei, Zhangwen; Fordham, Stephen; Wang, Kecheng; Zhou, Hong -Cai
2015-01-14
Through a topology-guided strategy, a series of Zr₆-containing isoreticular porphyrinic metal–organic frameworks (MOFs), PCN-228, PCN-229, and PCN-230, with ftw-a topology were synthesized using the extended porphyrinic linkers. The bulky porphyrin ring ligand effectively prevents the network interpenetration which often appears in MOFs with increased linker length. The pore apertures of the structures range from 2.5 to 3.8 nm, and PCN-229 demonstrates the highest porosity and BET surface area among the previously reported Zr-MOFs. Additionally, by changing the relative direction of the terminal phenyl rings, this series replaces a Zr₈ cluster with a smaller Zr₆ cluster in a topologically identical framework. The high connectivity of the Zr₆ cluster yields frameworks with enhanced stability despite high porosity and ultralarge linker. As a representative example, PCN-230, constructed with the most extended porphyrinic linker, shows excellent stability in aqueous solutions with pH values ranging from 0 to 12 and demonstrates one of the highest pH tolerances among all porphyrinic MOFs. This work not only presents a successful example of rational design of MOFs with desired topology, but also provides a strategy for construction of stable mesoporous MOFs.
Zou, Ru-Qiang; Zhong, Rui-Qin; Du, Miao; Kiyobayashi, Tetsu; Xu, Qiang
2007-06-28
Two novel zinc and cadmium 4,4'-(hexafluoroisopropylidene)diphthalate metal-organic frameworks have been synthesized and characterized using single crystal X-ray diffraction analysis, and exhibit a unique fluorite topology and high thermal stabilities.
Kelch, Inken D.; Bogle, Gib; Sands, Gregory B.; Phillips, Anthony R. J.; LeGrice, Ian J.; Rod Dunbar, P.
2015-01-01
Understanding of the microvasculature has previously been limited by the lack of methods capable of capturing and modelling complete vascular networks. We used novel imaging and computational techniques to establish the topology of the entire blood vessel network of a murine lymph node, combining 63706 confocal images at 2 μm pixel resolution to cover a volume of 3.88 mm3. Detailed measurements including the distribution of vessel diameters, branch counts, and identification of voids were subsequently re-visualised in 3D revealing regional specialisation within the network. By focussing on critical immune microenvironments we quantified differences in their vascular topology. We further developed a morphology-based approach to identify High Endothelial Venules, key sites for lymphocyte extravasation. These data represent a comprehensive and continuous blood vessel network of an entire organ and provide benchmark measurements that will inform modelling of blood vessel networks as well as enable comparison of vascular topology in different organs. PMID:26567707
Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V.; Turley, Shannon J.; Ludewig, Burkhard
2016-01-01
Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses. PMID:27415420
Novkovic, Mario; Onder, Lucas; Cupovic, Jovana; Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V; Bocharov, Gennady; Turley, Shannon J; Ludewig, Burkhard
2016-07-01
Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses.
Li, Wenjun; Ward, B. Douglas; Liu, Xiaolin; Chen, Gang; Jones, Jennifer L; Antuono, Piero G.; Li, Shi-Jiang; Goveas, Joseph S.
2015-01-01
Background The topological architecture of the whole-brain functional networks in those with and without late-life depression (LLD) and amnestic mild cognitive impairment (aMCI) are unknown. Aims To investigate the differences in the small-world measures and the modular community structure of the functional networks between patients with LLD and aMCI when occurring alone or in combination and cognitively healthy nondepressed controls. Methods Seventy-nine elderly participants [LLD (n = 23), aMCI (n = 18), comorbid LLD and aMCI (n = 13), and controls (n = 25)] completed neuropsychiatric assessments. Graph theoretical methods were employed on resting-state functional connectivity magnetic resonance imaging data. Results LLD and aMCI comorbidity was associated with the greatest disruptions in functional integration measures (decreased global efficiency and increased path length); both LLD groups showed abnormal functional segregation (reduced local efficiency). The modular network organization was most variable in the comorbid group, followed by LLD-only patients. Decreased mean global, local and nodal efficiency metrics were associated with greater depressive symptom severity but not memory performance. Conclusions Consider the whole brain as a complex network may provide unique insights on the neurobiological underpinnings of LLD with and without cognitive impairment. PMID:25433036
NASA Astrophysics Data System (ADS)
Nenashev, A. V.; Wiemer, M.; Dvurechenskii, A. V.; Gebhard, F.; Koch, M.; Baranovskii, S. D.
2016-07-01
The apparent order δ of non-geminate recombination higher than δ = 2 has been evidenced in numerous experiments on organic bulk heterojunction (BHJ) structures intensively studied for photovoltaic applications. This feature is claimed puzzling, since the rate of the bimolecular recombination in organic BHJ systems is proportional to the product of the concentrations of recombining electrons and holes and therefore the reaction order δ = 2 is expected. In organic BHJ structures, electrons and holes are confined to two different material phases: electrons to the acceptor material (usually a fullerene derivative) while holes to the donor phase (usually a polymer). The non-geminate recombination of charge carriers can therefore happen only at the interfaces between the two phases. Considering a simple geometrical model of the BHJ system, we show that the apparent order of recombination can deviate from δ = 2 due solely to the topological structure of the system.
Abnormal brain white matter network in young smokers: a graph theory analysis study.
Zhang, Yajuan; Li, Min; Wang, Ruonan; Bi, Yanzhi; Li, Yangding; Yi, Zhang; Liu, Jixin; Yu, Dahua; Yuan, Kai
2017-03-13
Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in some specific fiber bundles in smokers. However, little is known about the changes in topological organization of WM structural network in young smokers. In current study, we acquired DTI datasets from 58 male young smokers and 51 matched nonsmokers and constructed the WM networks by the deterministic fiber tracking approach. Graph theoretical analysis was used to compare the topological parameters of WM network (global and nodal) and the inter-regional fractional anisotropy (FA) weighted WM connections between groups. The results demonstrated that both young smokers and nonsmokers had small-world topology in WM network. Further analysis revealed that the young smokers exhibited the abnormal topological organization, i.e., increased network strength, global efficiency, and decreased shortest path length. In addition, the increased nodal efficiency predominately was located in frontal cortex, striatum and anterior cingulate gyrus (ACG) in smokers. Moreover, based on network-based statistic (NBS) approach, the significant increased FA-weighted WM connections were mainly found in the PFC, ACG and supplementary motor area (SMA) regions. Meanwhile, the network parameters were correlated with the nicotine dependence severity (FTND) scores, and the nodal efficiency of orbitofrontal cortex was positive correlation with the cigarette per day (CPD) in young smokers. We revealed the abnormal topological organization of WM network in young smokers, which may improve our understanding of the neural mechanism of young smokers form WM topological organization level.
Du, Miao; Zhang, Zhi-Hui; Tang, Liang-Fu; Wang, Xiu-Guang; Zhao, Xiao-Jun; Batten, Stuart R
2007-01-01
To systematically explore the higher-dimensional network structures with mixed connectivity, a series of two-dimensional (2D) and three-dimensional (3D) metal-organic frameworks (MOFs) with unusual (3,6)-connected net topologies are presented. These crystalline materials include [{[Mn(btza)2(H2O)2].2 H2O}n] (1), [{[Zn(btza)2(H2O)2].2 H2O}n] (2), [{[Cu(btza)2].H2O}n] (3), and [{[Cd(btza)2].3 H2O}n] (4), which have been successfully assembled through a predesigned three-connected organic component bis(1,2,4-triazol-1-yl)acetate (btza) with a variety of octahedral metal cores based on the modular synthetic methodology. The topological paradigms shown in this work cover the 2D CdCl2, 3D (4(2).6)2(4(4).6(2).8(7).10(2)), and pyrite (pyr) types. That is, when properly treated with the familiar first-row divalent metal ions, btza may perfectly furnish the coordination spheres for effective connectivity to result in diverse (3,6)-connected nets. Beyond this, a detailed analysis of network topology for all known 3D (3,6)-connected frameworks in both inorganic and inorganic-organic hybrid materials is described. Specific network connectivity of these MOFs indicates that the metal centers represent the most significant and alterable factor in structural assembly, although they show reliable and similar geometries. In this context, the combination of the distinct d10 AgI ion with btza in different solvents affords two isomorphous MOFs [{[Ag(btza)].glycol}n] (5) and [{[Ag(btza)]CH3OH}n] (6) with a binodal 4-connected 3D SrAl2 (sra) topology. The network structures of MOFs 1-3 and 5 turn out to be more complicated and interesting if one considers the hydrogen bonding between the host coordination frameworks and the intercalated solvent molecules. Furthermore, the role of the included solvents in the generation and stabilization of MOFs 1-6 is also investigated.
Zhao, Tengda; Cao, Miao; Niu, Haijing; Zuo, Xi-Nian; Evans, Alan; He, Yong; Dong, Qi; Shu, Ni
2015-10-01
Lifespan is a dynamic process with remarkable changes in brain structure and function. Previous neuroimaging studies have indicated age-related microstructural changes in specific white matter tracts during development and aging. However, the age-related alterations in the topological architecture of the white matter structural connectome across the human lifespan remain largely unknown. Here, a cohort of 113 healthy individuals (ages 9-85) with both diffusion and structural MRI acquisitions were examined. For each participant, the high-resolution white matter structural networks were constructed by deterministic fiber tractography among 1024 parcellation units and were quantified with graph theoretical analyses. The global network properties, including network strength, cost, topological efficiency, and robustness, followed an inverted U-shaped trajectory with a peak age around the third decade. The brain areas with the most significantly nonlinear changes were located in the prefrontal and temporal cortices. Different brain regions exhibited heterogeneous trajectories: the posterior cingulate and lateral temporal cortices displayed prolonged maturation/degeneration compared with the prefrontal cortices. Rich-club organization was evident across the lifespan, whereas hub integration decreased linearly with age, especially accompanied by the loss of frontal hubs and their connections. Additionally, age-related changes in structural connections were predominantly located within and between the prefrontal and temporal modules. Finally, based on the graph metrics of structural connectome, accurate predictions of individual age were obtained (r = 0.77). Together, the data indicated a dynamic topological organization of the brain structural connectome across human lifespan, which may provide possible structural substrates underlying functional and cognitive changes with age.
An, Jianping; Chen, Xuejiao; Xie, Yuanwei; Zhao, Hui; Mao, Junfeng; Liang, Wangsheng; Ma, Xiangxing
2016-01-01
This study aimed to investigate the metabolic brain network and its relationship with depression symptoms using 18F-fluorodeoxyglucose positron emission tomography data in 78 pre-chemotherapy cancer patients with depression and 80 matched healthy subjects. Functional and structural imbalance or disruption of brain networks frequently occur following chemotherapy in cancer patients. However, few studies have focused on the topological organization of the metabolic brain network in cancer with depression, especially those without chemotherapy. The nodal and global parameters of the metabolic brain network were computed for cancer patients and healthy subjects. Significant decreases in metabolism were found in the frontal and temporal gyri in cancer patients compared with healthy subjects. Negative correlations between depression and metabolism were found predominantly in the inferior frontal and cuneus regions, whereas positive correlations were observed in several regions, primarily including the insula, hippocampus, amygdala, and middle temporal gyri. Furthermore, a higher clustering efficiency, longer path length, and fewer hubs were found in cancer patients compared with healthy subjects. The topological organization of the whole-brain metabolic networks may be disrupted in cancer. Finally, the present findings may provide a new avenue for exploring the neurobiological mechanism, which plays a key role in lessening the depression effects in pre-chemotherapy cancer patients. PMID:27832148
Abnormal Characteristics of Low Molecular Weight Organic Acids in Surface Water of the Jiaozhou Bay
NASA Astrophysics Data System (ADS)
Ding, H.; Liu, Z.; Yang, G.; Sun, L.
2012-12-01
Organic acids are important components of dissolved organic matter in sea water. Generally, in oxic sea water, the concentrations of low molecular weight organic acids (LMWOAs), such as formate, acetate and lactate are too low to be analyzed by high performance liquid chromatography (HPLC) directly. Our recent study of Jiaozhou Bay, Shandong, China showed that the concentrations of LMWOAs in the surface sea water were high enough to be quantified by HPLC. In the surface sea water of the bay, three typical LMWOAs----formate, acetate and lactate were identified. Concentrations of formate, lactate and acetate ranged from 1.97 to 5.29μmol/L, 5.79 to 12.77μmol/L and 1.97 to 7.23 μmol/L, respectively. The concentrations of all three organic acids varied dramatically in different areas of the bay. Low concentrations usually occurred in the central region and high concentrations usually occurred along coastal area. The contribution of LMWOAs to dissolved organic carbon (DOC) was significantly higher than published data. On average, total organic acid (TOA, considered as total concentration of the three identified organic acids) accounted for more than 20% of dissolved organic carbon (DOC) in the surface water of the Bay. The high concentrations of LMWOAs and their unusual high contribution to DOC were attributed to human activities such as sewage discharge, aquaculture and etc. along the coastal area.
... Listen Español Text Size Email Print Share Congenital Abnormalities Page Content Article Body About 3% to 4% ... of congenital abnormalities earlier. 5 Categories of Congenital Abnormalities Chromosome Abnormalities Chromosomes are structures that carry genetic ...
Liu, Chao; Gao, Chao-Ying; Yang, Weiting; Chen, Fang-Yuan; Pan, Qing-Jiang; Li, Jiyang; Sun, Zhong-Ming
2016-06-06
Two 3D uranyl organic frameworks (UOFs) with entangled structures, (HPhen)2[(UO2)2L2]·4.5H2O (1) and [(UO2)3(H2O)4L2]·6H2O (2), were synthesized using a rigid tripodal linker (4,4',4″-(phenylsilanetriyl)tribenzoic acid, H3L). Compound 1 represents a 2-fold interpenetrating UOF with the unique (10,3)-b topology. Compound 2 is composed of three interlocked sets of identical singlet networks and thus exhibits a rare 3D polythreading network with (3,4)-connected topology. These two compounds have been characterized by IR, UV-vis, and photoluminescent spectroscopy. A density functional theory (DFT) study on the model compounds of 1 and 2 shows good agreement of structural parameters and U═O stretching vibrational frequencies with experimental data. The experimentally measured absorption bands were well reproduced by the time-dependent DFT calculations.
Zhang, Yue-Biao; Furukawa, Hiroyasu; Ko, Nakeun; Nie, Weixuan; Park, Hye Jeong; Okajima, Satoshi; Cordova, Kyle E; Deng, Hexiang; Kim, Jaheon; Yaghi, Omar M
2015-02-25
Metal-organic framework-177 (MOF-177) is one of the most porous materials whose structure is composed of octahedral Zn4O(-COO)6 and triangular 1,3,5-benzenetribenzoate (BTB) units to make a three-dimensional extended network based on the qom topology. This topology violates a long-standing thesis where highly symmetric building units are expected to yield highly symmetric networks. In the case of octahedron and triangle combinations, MOFs based on pyrite (pyr) and rutile (rtl) nets were expected instead of qom. In this study, we have made 24 MOF-177 structures with different functional groups on the triangular BTB linker, having one or more functionalities. We find that the position of the functional groups on the BTB unit allows the selection for a specific net (qom, pyr, and rtl), and that mixing of functionalities (-H, -NH2, and -C4H4) is an important strategy for the incorporation of a specific functionality (-NO2) into MOF-177 where otherwise incorporation of such functionality would be difficult. Such mixing of functionalities to make multivariate MOF-177 structures leads to enhancement of hydrogen uptake by 25%.
Cañadillas-Delgado, Laura; Fabelo, Oscar; Pasán, Jorge; Déniz, Mariadel; Martínez-Benito, Carla; Díaz-Gallifa, Pau; Martín, Tomás; Ruiz-Pérez, Catalina
2014-02-01
Three new metal-organic framework structures containing Eu(III) and the little explored methanetriacetate (C7H7O6(3-), mta(3-)) ligand have been synthesized. Gel synthesis yields a two-dimensional framework with the formula [Eu(mta)(H2O)3]n·2nH2O, (I), while two polymorphs of the three-dimensional framework material [Eu(mta)(H2O)]n·nH2O, (II) and (III), are obtained through hydrothermal synthesis at either 423 or 443 K. Compounds (I) and (II) are isomorphous with previously reported Gd(III) compounds, but compound (III) constitutes a new phase. Compound (I) can be described in terms of dinuclear [Eu2(H2O)4](6+) units bonded through mta(3-) ligands to form a two-dimensional framework with topology corresponding to a (6,3)-connected binodal (4(3))(4(6)6(6)8(3))-kgd net, where the dinuclear [Eu2(H2O)4](6+) units are considered as a single node. Compounds (II) and (III) have distinct three-dimensional topologies, namely a (4(12)6(3))(4(9)6(6))-nia net for (II) and a (4(10)6(5))(4(11)6(4))-K2O2; 36641 net for (III). The crystal density of (III) is greater than that of (II), consistent with the increase of temperature, and thereby autogeneous pressure, in the hydrothermal synthesis.
Ovchinnikov, Igor V.
2011-05-15
Here, a scenario is proposed, according to which a generic self-organized critical (SOC) system can be looked upon as a Witten-type topological field theory (W-TFT) with spontaneously broken Becchi-Rouet-Stora-Tyutin (BRST) symmetry. One of the conditions for the SOC is the slow driving noise, which unambiguously suggests Stratonovich interpretation of the corresponding stochastic differential equation (SDE). This, in turn, necessitates the use of Parisi-Sourlas-Wu stochastic quantization procedure, which straightforwardly leads to a model with BRST-exact action, i.e., to a W-TFT. In the parameter space of the SDE, there must exist full-dimensional regions where the BRST symmetry is spontaneously broken by instantons, which in the context of SOC are essentially avalanches. In these regions, the avalanche-type SOC dynamics is liberated from overwise a rightful dynamics-less W-TFT, and a Goldstone mode of Fadeev-Popov ghosts exists. Goldstinos represent moduli of instantons (avalanches) and being gapless are responsible for the critical avalanche distribution in the low-energy, long-wavelength limit. The above arguments are robust against moderate variations of the SDE's parameters and the criticality is 'self-tuned'. The proposition of this paper suggests that the machinery of W-TFTs may find its applications in many different areas of modern science studying various physical realizations of SOC. It also suggests that there may in principle exist a connection between some SOC's and the concept of topological quantum computing.
Magosso, E; Cuppini, C; Ursino, M
2006-01-01
Synchronization of neuronal activity in the gamma-band has been shown to play an important role in higher cognitive functions, by grouping together the necessary information in different cortical areas to achieve a coherent perception. In the present work, we used a neural network of Wilson-Cowan oscillators to analyze the problem of binding and segmentation of high-level objects. Binding is achieved by implementing in the network the similarity and prior knowledge Gestalt rules. Similarity law is realized via topological maps within the network. Prior knowledge originates by means of a Hebbian rule of synaptic change; objects are memorized in the network with different strengths. Segmentation is realized via a global inhibitor which allows desynchronisation among multiple objects avoiding interference. Simulation results performed with a 40x40 neural grid, using three simultaneous input objects, show that the network is able to recognize and segment objects in several different conditions (different degrees of incompleteness or distortion of input patterns), exhibiting the higher reconstruction performances the higher the strength of object memory. The presented model represents an integrated approach for investigating the relationships among learning, memory, topological organization and gamma-band synchronization.
Zhang, Yue-Biao; Furukawa, Hiroyasu; Ko, Nakeun; Nie, Weixuan; Park, Hye Jeong; Okajima, Satoshi; Cordova, Kyle E.; Deng, Hexiang; Kim, Jaheon; Yaghi, Omar M.
2015-02-25
Metal–organic framework-177 (MOF-177) is one of the most porous materials whose structure is composed of octahedral Zn_{4}O(-COO)_{6} and triangular 1,3,5-benzenetribenzoate (BTB) units to make a three-dimensional extended network based on the qom topology. This topology violates a long-standing thesis where highly symmetric building units are expected to yield highly symmetric networks. In the case of octahedron and triangle combinations, MOFs based on pyrite (pyr) and rutile (rtl) nets were expected instead of qom. In this study, we have made 24 MOF-177 structures with different functional groups on the triangular BTB linker, having one or more functionalities. We find that the position of the functional groups on the BTB unit allows the selection for a specific net (qom, pyr, and rtl), and that mixing of functionalities (-H, -NH_{2}, and -C_{4}H_{4}) is an important strategy for the incorporation of a specific functionality (-NO_{2}) into MOF-177 where otherwise incorporation of such functionality would be difficult. Such mixing of functionalities to make multivariate MOF-177 structures leads to enhancement of hydrogen uptake by 25%.
Symmetry-guided synthesis of highly porous metal-organic frameworks with fluorite topology.
Zhang, Muwei; Chen, Ying-Pin; Bosch, Mathieu; Gentle, Thomas; Wang, Kecheng; Feng, Dawei; Wang, Zhiyong U; Zhou, Hong-Cai
2014-01-13
Two stable, non-interpenetrated MOFs, PCN-521 and PCN-523, were synthesized by a symmetry-guided strategy. Augmentation of the 4-connected nodes in the fluorite structure with a rigid tetrahedral ligand and substitution of the 8-connected nodes by the Zr/Hf clusters yielded MOFs with large octahedral interstitial cavities. They are the first examples of Zr/Hf MOFs with tetrahedral linkers. PCN-521 has the largest BET surface area (3411 m(2) g(-1)), pore size (20.5×20.5×37.4 Å) and void volume (78.5%) of MOFs formed from tetrahedral ligands. This work not only demonstrates a successful implementation of rational design of MOFs with desired topology, but also provides a systematic way of constructing non-interpenetrated MOFs with high porosity.
Alezi, Dalal; Peedikakkal, Abdul Malik P; Weseliński, Łukasz J; Guillerm, Vincent; Belmabkhout, Youssef; Cairns, Amy J; Chen, Zhijie; Wojtas, Łukasz; Eddaoudi, Mohamed
2015-04-29
Gaining control over the assembly of highly porous rare-earth (RE) based metal-organic frameworks (MOFs) remains challenging. Here we report the latest discoveries on our continuous quest for highly connected nets. The topological exploration based on the noncompatibility of a 12-connected RE polynuclear carboxylate-based cluster, points of extension matching the 12 vertices of the cuboctahedron (cuo), with 3-connected organic ligands led to the discovery of two fascinating and highly connected minimal edge-transitive nets, pek and aea. The reduced symmetry of the employed triangular tricarboxylate ligand, as compared to the prototype highly symmetrical 1,3,5-benzene(tris)benzoic acid guided the concurrent occurrence of nonanuclear [RE9(μ3-OH)12(μ3-O)2(O2C-)12] and hexanuclear [RE6(OH)8(O2C-)8] carboxylate-based clusters as 12-connected and 8-connected molecular building blocks in the structure of a 3-periodic pek-MOF based on a novel (3,8,12)-c trinodal net. The use of a tricarboxylate ligand with modified angles between carboxylate moieties led to the formation of a second MOF containing solely nonanuclear clusters and exhibiting once more a novel and a highly connected (3,12,12)-c trinodal net with aea topology. Notably, it is the first time that RE-MOFs with double six-membered ring (d6R) secondary building units are isolated, representing therefore a critical step forward toward the design of novel and highly coordinated materials using the supermolecular building layer approach while considering the d6Rs as building pillars. Lastly, the potential of these new MOFs for gas separation/storage was investigated by performing gas adsorption studies of various probe gas molecules over a wide range of pressures. Noticeably, pek-MOF-1 showed excellent volumetric CO2 and CH4 uptakes at high pressures.
Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R.; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I.; Opal, Puneet; Goldman, Robert D.
2016-01-01
Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320
Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I; Opal, Puneet; Goldman, Robert D
2016-02-15
Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility.
Shu, Ni; Li, Xin; Ma, Chao; Zhang, Junying; Chen, Kewei; Liang, Ying; Chen, Yaojing; Zhang, Zhanjun
2015-01-01
The polymorphism of the Apolipoprotein E (APOE) promoter rs405509 can regulate the transcriptional activity of the APOE gene and is related to Alzheimer’s disease (AD). However, its effects on cognitive performance and the underlying brain mechanisms remain unknown. Here, we performed a battery of neuropsychological tests in a large sample (837 subjects) of nondemented elderly Chinese people, and explored the related brain mechanisms via the construction of diffusion MRI-based structural connectome and graph analysis from a subset (84 subjects) of the sample. Cognitively, the rs405509 risk allele (TT) carriers showed decreased attention and execution functions compared with non-carriers (GG/GT). Regarding the topological alterations of the brain connectome, the risk allele group exhibited reduced global and local efficiency of white matter structural networks, mainly in the left anterior and posterior cingulate cortices (PCC). Importantly, the efficiency of the left PCC is correlated with the impaired attention function and mediates the impacts of the rs405509 genotype on attention. These results demonstrated that the rs405509 polymorphism affects attention function in nondemented elderly people, possibly by modulating brain structural connectivity of the PCC. This polymorphism may help us to understand the neural mechanisms of cognitive aging and to serve as a potential marker assessing the risk of AD. PMID:26314833
Changes in topological organization of functional PET brain network with normal aging.
Liu, Zhiliang; Ke, Lining; Liu, Huafeng; Huang, Wenhua; Hu, Zhenghui
2014-01-01
Recent studies about brain network have suggested that normal aging is associated with alterations in coordinated patterns of the large-scale brain functional and structural systems. However, age-related changes in functional networks constructed via positron emission tomography (PET) data are still barely understood. Here, we constructed functional brain networks composed of 90 regions in younger (mean age 36.5 years) and older (mean age 56.3 years) age groups with PET data. 113 younger and 110 older healthy individuals were separately selected for two age groups, from a physical examination database. Corresponding brain functional networks of the two groups were constructed by thresholding average cerebral glucose metabolism correlation matrices of 90 regions and analysed using graph theoretical approaches. Although both groups showed normal small-world architecture in the PET networks, increased clustering and decreased efficiency were found in older subjects, implying a degeneration process that brain system shifts from a small-world network to regular one along with normal aging. Moreover, normal senescence was related to changed nodal centralities predominantly in association and paralimbic cortex regions, e.g. increasing in orbitofrontal cortex (middle) and decreasing in left hippocampus. Additionally, the older networks were about equally as robust to random failures as younger counterpart, but more vulnerable against targeted attacks. Finally, methods in the construction of the PET networks revealed reasonable robustness. Our findings enhanced the understanding about the topological principles of PET networks and changes related to normal aging.
Changes in Topological Organization of Functional PET Brain Network with Normal Aging
Liu, Huafeng; Huang, Wenhua; Hu, Zhenghui
2014-01-01
Recent studies about brain network have suggested that normal aging is associated with alterations in coordinated patterns of the large-scale brain functional and structural systems. However, age-related changes in functional networks constructed via positron emission tomography (PET) data are still barely understood. Here, we constructed functional brain networks composed of regions in younger (mean age years) and older (mean age years) age groups with PET data. younger and older healthy individuals were separately selected for two age groups, from a physical examination database. Corresponding brain functional networks of the two groups were constructed by thresholding average cerebral glucose metabolism correlation matrices of regions and analysed using graph theoretical approaches. Although both groups showed normal small-world architecture in the PET networks, increased clustering and decreased efficiency were found in older subjects, implying a degeneration process that brain system shifts from a small-world network to regular one along with normal aging. Moreover, normal senescence was related to changed nodal centralities predominantly in association and paralimbic cortex regions, e.g. increasing in orbitofrontal cortex (middle) and decreasing in left hippocampus. Additionally, the older networks were about equally as robust to random failures as younger counterpart, but more vulnerable against targeted attacks. Finally, methods in the construction of the PET networks revealed reasonable robustness. Our findings enhanced the understanding about the topological principles of PET networks and changes related to normal aging. PMID:24586370
Sun, Yayong; Zhao, Siwei; Ma, Haoran; Han, Yi; Liu, Kang; Wang, Lei
2016-06-15
Two novel three-dimensional (3D) pillar-layered metal-organic frameworks (MOFs), namely [Zn{sub 2}(μ{sub 2}-OH)(boaba)(1,4-bmimb)]{sub n} (1) and {[Zn_5K_2(μ_2-H_2O)_2(boaba)_4(1,2-bmimb)_2(H_2O)_2]·H_2O}{sub n} (2), were prepared by hydrothermal reactions (H{sub 3}boaba=3,5-bis-oxyacetate-benzoic acid; 1,4-bmimb=1,4-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene; 1,2-bmimb =1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene). Notably, 1 exhibits a (3,5)-connected binodal (6{sup 3})(6{sup 9}·8)-gra net with binuclear [Zn{sub 2}(μ{sub 2}-OH)(COO)]{sup 2+} clusters, while 2 shows a novel (4,4,5,9)-connected 4-nodal net constructed from the unique Zn(II)-K(I) heterometal rod-like substructures. The results indicate that the disposition of the 2-methylimidazolyl groups of bis(imidazole) ligands have a significant effect on structural diversity. Moreover, the photoluminescence properties of 1 and 2 have been investigated. - Graphical abstract: Two novel 3D pillar-layered metal-organic coordination networks with aromatic multicarboxylate anion and bis(imidazole) ligands have been synthesized and structurally characterized. Display Omitted - Highlights: • It is rarely reported that metal-organic frameworks prepared with 3,5-bis-oxyacetate-benzoic acid. • Two metal-organic frameworks based on positional isomeric ligands were synthesized and structurally characterized. • Compond 1 displays unique (3,5)-connected binodal gra topology. • Compound 2 exhibits (4,4,5,9)-connected 4-nodal topology based on the Zn(II)-K(I) heterometal rod-like substructures. • The photoluminescence properties of compound 1 and 2 have been investigated.
Nishimoto, Sogo; Yamawaki, Manami; Akiyama, Koichi; Kakinuma, Yoshimi; Kitamura, Shin-Ichi; Sugahara, Takuya
2009-04-01
It is well known that heavy oil pollution results in various negative impacts on the marine environment. Although there is a low possibility of direct exposure to heavy oil, the chemical substances contained in heavy oil may be released into the environment and accumulated by marine organisms which in turn can be taken by humans via the food chain. In this study, we examined the biological risk of heavy oil extract using the common mouse, whose genetic backgrounds and immune system are well known and relatively homologous to humans. Water-soluble fraction (WSF) was extracted from heavy oil with water and the extract orally administrated to female or male mice for 7 days. In the WSF administrated group, cystoma-like formation was observed in the ovary in approximately 80% of female mice. On the other hand, we found that the prostate gland size in male mice was markedly reduced in comparison with male control mice. Continuous administration of WSF for 28 days resulted in continued hypertrophy of the cystoma around the ovary and atrophy in the prostate gland. In addition, it was revealed that chemical substances within WSF have estrogenic activity. A major component of heavy oil, polycyclic aromatic hydrocarbons (PAHs), is known to present estrogenic activity. It is likely that the cystoma-like formation in female mice and atrophy of prostate gland in male resulted of estrogenic substances present in the WSF which might be the PAHs.
Singh, Nina; Lortholary, Olivier; Dromer, Françoise; Alexander, Barbara D.; Gupta, Krishan L.; John, George T.; del Busto, Ramon; Klintmalm, Goran B.; Somani, Jyoti; Lyon, G. Marshall; Prusell, Kenneth; Stosor, Valentina; Muňoz, Patricia; Limaye, Ajit P.; Kalil, Andre C.; Pruett, Timothy L.; Garcia-Diaz, Julia; Humar, Atul; Houston, Sally; House, Andrew A.; Wray, Dannah; Orloff, Susan; Dowdy, Lorraine A.; Fisher, Robert A.; Heitman, Joseph; Wagener, Marilyn M.; Husain, Shahid
2009-01-01
Background Prognostic implications of cryptococcal antigen and outcomes associated with CNS cryptococcal lesions in solid organ transplant (SOT) recipients have not been fully defined. Methods Patients were derived form a cohort of 122 SOT recipients with cryptococcosis in a multicenter study from 1999–2006. Results CNS cryptococcosis was documented in 61 patients. Serum or CSF antigen titers did not correlate with mortality at 90 days or CSF sterilization at 2 weeks. CNS lesions were identified in 16 patients and included leptomeningeal lesions in 8, parenchymal lesions in 6 and hydrocephalus in 2. Overall, 13/16 CNS lesions were present at the time of diagnosis. One parenchymal and 2 hydrocephalus lesions however, developed after diagnosis and fulfilled the criteria for immune reconstitution syndrome (IRS). CSF antigen titers were higher with meningeal vs. parenchymal lesions, and hydrocephalus (p=0.015). Mortality was 50% (3/6) for patients with parenchymal, 12.5% (1/8) for those with leptomeningeal, and 0/3 for patients with hydrocephalus. Mortality was 31% (4/13) for patients with CNS lesions at baseline and 0/3 in those with new onset lesions. Conclusions Despite a greater antigen titer with meningeal lesions, outcomes tended to be worse with parenchymal compared to meningeal lesions or hydrocephalus. New onset CNS lesions may represent IRS and appeared to be associated with better outcome. PMID:18791444
Gurzhiy, Vladislav V.
2015-09-15
Single crystals of seven novel uranyl oxysalts of selenium with protonated methylamine molecules, [C{sub 2}H{sub 8}N]{sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (I), [C{sub 2}H{sub 8}N]{sub 2}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}(H{sub 2}O)] (II), [C{sub 4}H{sub 15}N{sub 3}][H{sub 3}O]{sub 0.5}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 2.93}(SeO{sub 3}){sub 0.07}(H{sub 2}O)](NO{sub 3}){sub 0.5} (III), [C{sub 2}H{sub 8}N]{sub 3}[H{sub 5}O{sub 2}][(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub 2}(H{sub 2}O){sub 5} (IV), [C{sub 2}H{sub 8}N]{sub 2}[H{sub 3}O][(UO{sub 2}){sub 3}(SeO{sub 4}){sub 4}(HSeO{sub 3})(H{sub 2}O)](H{sub 2}SeO{sub 3}){sub 0.2} (V), [C{sub 4}H{sub 12}N]{sub 3}[H{sub 3}O][(UO{sub 2}){sub 3}(SeO{sub 4}){sub 5}(H{sub 2}O)] (VI), and [C{sub 2}H{sub 8}N]{sub 3}(C{sub 2}H{sub 7}N)[(UO{sub 2}){sub 3}(SeO{sub 4}){sub 4}(HSeO{sub 3})(H{sub 2}O)] (VII) have been prepared by isothermal evaporation from aqueous solutions. Their crystal structures have been solved by direct methods and their uranyl selenate and selenite–selenate units investigated using black-and-white graphs from the viewpoints of topology of interpolyhedral linkages and isomeric variations. The crystal structure of IV is based upon complex layers with unique topology, which has not been observed previously in uranyl selenates. Investigations of the statistics and local distribution of the U–O{sub br}–Se bond angles demonstrates that shorter angles associate with undulations, whereas larger angles correspond to planar areas of the uranyl selenite layers. - Graphical abstract: Crystal structures of the seven novel Se-contaning uranyl oxysalts that contain protonated organic molecules as interlayer species have been investigated from the viewpoints of topology of interpolyhedral linkages, isomeric variations and flexibility of structural units. - Highlights: • Single crystals of seven novel uranyl oxysalts were prepared by evaporation method. • The graph theory was used
NASA Astrophysics Data System (ADS)
Maurice, Pascal; Baud, Stéphanie; Bocharova, Olga V.; Bocharov, Eduard V.; Kuznetsov, Andrey S.; Kawecki, Charlotte; Bocquet, Olivier; Romier, Beatrice; Gorisse, Laetitia; Ghirardi, Maxime; Duca, Laurent; Blaise, Sébastien; Martiny, Laurent; Dauchez, Manuel; Efremov, Roman G.; Debelle, Laurent
2016-12-01
Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139–159 (TM1) and 316–333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity.
Maurice, Pascal; Baud, Stéphanie; Bocharova, Olga V.; Bocharov, Eduard V.; Kuznetsov, Andrey S.; Kawecki, Charlotte; Bocquet, Olivier; Romier, Beatrice; Gorisse, Laetitia; Ghirardi, Maxime; Duca, Laurent; Blaise, Sébastien; Martiny, Laurent; Dauchez, Manuel; Efremov, Roman G.; Debelle, Laurent
2016-01-01
Neuraminidase 1 (NEU1) is a lysosomal sialidase catalyzing the removal of terminal sialic acids from sialyloconjugates. A plasma membrane-bound NEU1 modulating a plethora of receptors by desialylation, has been consistently documented from the last ten years. Despite a growing interest of the scientific community to NEU1, its membrane organization is not understood and current structural and biochemical data cannot account for such membrane localization. By combining molecular biology and biochemical analyses with structural biophysics and computational approaches, we identified here two regions in human NEU1 - segments 139–159 (TM1) and 316–333 (TM2) - as potential transmembrane (TM) domains. In membrane mimicking environments, the corresponding peptides form stable α-helices and TM2 is suited for self-association. This was confirmed with full-size NEU1 by co-immunoprecipitations from membrane preparations and split-ubiquitin yeast two hybrids. The TM2 region was shown to be critical for dimerization since introduction of point mutations within TM2 leads to disruption of NEU1 dimerization and decrease of sialidase activity in membrane. In conclusion, these results bring new insights in the molecular organization of membrane-bound NEU1 and demonstrate, for the first time, the presence of two potential TM domains that may anchor NEU1 in the membrane, control its dimerization and sialidase activity. PMID:27917893
Martínez-Montes, Eduardo
2013-01-01
This paper aims to study the abnormal patterns of brain glucose metabolism co-variations in Alzheimer disease (AD) and Mild Cognitive Impairment (MCI) patients compared to Normal healthy controls (NC) using the Alzheimer Disease Neuroimaging Initiative (ADNI) database. The local cerebral metabolic rate for glucose (CMRgl) in a set of 90 structures belonging to the AAL atlas was obtained from Fluro-Deoxyglucose Positron Emission Tomography data in resting state. It is assumed that brain regions whose CMRgl values are significantly correlated are functionally associated; therefore, when metabolism is altered in a single region, the alteration will affect the metabolism of other brain areas with which it interrelates. The glucose metabolism network (represented by the matrix of the CMRgl co-variations among all pairs of structures) was studied using the graph theory framework. The highest concurrent fluctuations in CMRgl were basically identified between homologous cortical regions in all groups. Significant differences in CMRgl co-variations in AD and MCI groups as compared to NC were found. The AD and MCI patients showed aberrant patterns in comparison to NC subjects, as detected by global and local network properties (global and local efficiency, clustering index, and others). MCI network’s attributes showed an intermediate position between NC and AD, corroborating it as a transitional stage from normal aging to Alzheimer disease. Our study is an attempt at exploring the complex association between glucose metabolism, CMRgl covariations and the attributes of the brain network organization in AD and MCI. PMID:23894356
Miner, Daniel; Triesch, Jochen
2016-01-01
Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function. Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality and an overrepresentation of certain triangular motifs. Additional evidence suggests a significant distance dependency to connectivity over a local scale of a few hundred microns, and particular patterns of synaptic turnover dynamics, including a heavy-tailed distribution of synaptic efficacies, a power law distribution of synaptic lifetimes, and a tendency for stronger synapses to be more stable over time. Understanding how many of these non-random features simultaneously arise would provide valuable insights into the development and function of the cortex. While previous work has modeled some of the individual features of local cortical wiring, there is no model that begins to comprehensively account for all of them. We present a spiking network model of a rodent Layer 5 cortical slice which, via the interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms, qualitatively reproduces these non-random effects when combined with simple topological constraints. Our model suggests that mechanisms of self-organization arising from a small number of plasticity rules provide a parsimonious explanation for numerous experimentally observed non-random features of recurrent cortical wiring. Interestingly, similar mechanisms have been shown to endow recurrent networks with powerful learning abilities, suggesting that these mechanism are central to understanding both structure and function of cortical synaptic wiring. PMID:26866369
Polanía, Rafael; Nitsche, Michael A; Paulus, Walter
2011-08-01
Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that alters cortical excitability and activity in a polarity-dependent way. Stimulation for few minutes has been shown to induce plastic alterations of cortical excitability and to improve cognitive performance. These effects might be caused by stimulation-induced alterations of functional cortical network connectivity. We aimed to investigate the impact of tDCS on cortical network function through functional connectivity and graph theoretical analysis. Single recordings in healthy volunteers with 62 electroencephalography channels were acquired before and after 10 min of facilitatory anodal tDCS over the primary motor cortex (M1), combined with inhibitory cathodal tDCS of the contralateral frontopolar cortex, in resting state and during voluntary hand movements. Correlation matrices containing all 62 pairwise electrode combinations were calculated with the synchronization likelihood (SL) method and thresholded to construct undirected graphs for the θ, α, β, low-γ and high-γ frequency bands. SL matrices and undirected graphs were compared before and after tDCS. Functional connectivity patterns significantly increased within premotor, motor, and sensorimotor areas of the stimulated hemisphere during motor activity in the 60-90 Hz frequency range. Additionally, tDCS-induced significant intrahemispheric and interhemispheric connectivity changes in all the studied frequency bands. In summary, we show for the first time evidence for tDCS-induced changes in brain synchronization and topological functional organization.
Zhang, Rongfei; Zhang, Liujun; Jiang, Dongsheng; Zheng, Kai; Cui, Yibin; Li, Mei; Wu, Bing; Cheng, Shupei
2014-05-01
Organ coefficients (including kidney, testis, liver and spleen coefficient) and abnormal sperm rate were used in our study to reflect the exposure to the Yangzte River water. The concentrations of total dissolved metals and semi-volatile organic compounds in tap and source water were measured by ICP-OES and GC-MS, respectively. After mice were fed with purified water (CK), Nanjing tap water (NJT) and Nanjing source water (NJS) for 90 day, the individual and organs (including kidney, testis, liver and spleen) of each mouse were weighted. And abnormal sperm types (such as hook less, banana-like form, amorphous, folded and two tails) were determined by microscope. The results showed that significant differences of liver coefficient between experimental group (NJT, NJS) and control group (CK) were observed; furthermore liver coefficient is positive correlation with the concentrations of total dissolved metals. However, no significant differences of abnormal sperm rates between experimental group (NJT, NJS) and control group (CK) were noted. So liver coefficient might be more sensitive than other organ coefficients to reflect the exposure to tap water and source water, while abnormal sperm rate could not be used to reveal the exposure to them.
... page: //medlineplus.gov/ency/article/001093.htm Alveolar abnormalities To use the sharing features on this page, please enable JavaScript. Alveolar abnormalities are changes in the tiny air sacs in ...
Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... 2012:chap 71. Zaiac MN, Walker A. Nail abnormalities associated with systemic pathologies. Clin Dermatol . 2013;31: ...
Wilkinson, Charles W.; Pagulayan, Kathleen F.; Petrie, Eric C.; Mayer, Cynthia L.; Colasurdo, Elizabeth A.; Shofer, Jane B.; Hart, Kim L.; Hoff, David; Tarabochia, Matthew A.; Peskind, Elaine R.
2011-01-01
Studies of traumatic brain injury from all causes have found evidence of chronic hypopituitarism, defined by deficient production of one or more pituitary hormones at least 1 year after injury, in 25–50% of cases. Most studies found the occurrence of posttraumatic hypopituitarism (PTHP) to be unrelated to injury severity. Growth hormone deficiency (GHD) and hypogonadism were reported most frequently. Hypopituitarism, and in particular adult GHD, is associated with symptoms that resemble those of PTSD, including fatigue, anxiety, depression, irritability, insomnia, sexual dysfunction, cognitive deficiencies, and decreased quality of life. However, the prevalence of PTHP after blast-related mild TBI (mTBI), an extremely common injury in modern military operations, has not been characterized. We measured concentrations of 12 pituitary and target-organ hormones in two groups of male US Veterans of combat in Iraq or Afghanistan. One group consisted of participants with blast-related mTBI whose last blast exposure was at least 1 year prior to the study. The other consisted of Veterans with similar military deployment histories but without blast exposure. Eleven of 26, or 42% of participants with blast concussions were found to have abnormal hormone levels in one or more pituitary axes, a prevalence similar to that found in other forms of TBI. Five members of the mTBI group were found with markedly low age-adjusted insulin-like growth factor-I (IGF-I) levels indicative of probable GHD, and three had testosterone and gonadotropin concentrations consistent with hypogonadism. If symptoms characteristic of both PTHP and PTSD can be linked to pituitary dysfunction, they may be amenable to treatment with hormone replacement. Routine screening for chronic hypopituitarism after blast concussion shows promise for appropriately directing diagnostic and therapeutic decisions that otherwise may remain unconsidered and for markedly facilitating recovery and rehabilitation. PMID
Chen, Qing; Xue, Wei; Lin, Jian-Bin; Wei, Yong-Sheng; Yin, Zheng; Zeng, Ming-Hua; Kurmoo, Mohamedally; Chen, Xiao-Ming
2016-08-16
A series of highly connected metal-organic frameworks (MOFs), [Co8 (O)(OH)4 (H2 O)4 (ina)8 ](NO3 )2 ⋅2 C2 H5 OH⋅4 H2 O (1), [Co8 (O)(OH)4 (H2 O)4 (pba)8 ](NO3 )2 ⋅8 C2 H5 OH⋅28 H2 O (2), and [Co8 (O)(OH)4 (H2 O)4 (pbba)8 ](NO3 )2 ⋅guest (3), in which ina=isonicotinate, pba=4-pyridylbenzoate, and pbba=4-(pyridine-4-yl)phenylbenzoate, is reported. These MOFs contain a new secondary building unit (SBU), with a square Co4 (μ4 -O) central unit having the rare μ4 -O(2-) motif, which is decorated by the other four peripheral cobalt atoms through μ3 -OH in a windmill-like shape. This SBU holds 16 divergent connecting organic ligands, pyridyl-carboxylates, to form three different frameworks. The high porosity of desolvated 2 is shown by the efficient gas absorption of N2 , CO2 , CH4 , and H2 . In addition, 1 and 2 exhibit unusual canted antiferromagnetic behavior with spin-glass-like relaxation, with blocking temperatures that are fairly high, 20 K (1) and 10 K (2), for cobalt materials. The relationship between the metal clusters and linkers has been studied, in which the size and rotational degrees of freedom of the ligands are found to control the topology, gas sorption, and magnetic properties.
Topological Methods for Visualization
Berres, Anne Sabine
2016-04-07
This slide presentation describes basic topological concepts, including topological spaces, homeomorphisms, homotopy, betti numbers. Scalar field topology explores finding topological features and scalar field visualization, and vector field topology explores finding topological features and vector field visualization.
Wang, Zhenqiang; Tanabe, Kristine K; Cohen, Seth M
2009-01-05
2-Amino-1,4-benzenedicarboxylic acid (NH(2)-BDC) has been found to be a compatible building block for the construction of two new metal-organic frameworks (MOFs) that have structures isoreticular to reported MOFs that use 1,4-benzenedicarboxylic acid (BDC) as a building block. DMOF-1-NH(2) (DABCO MOF-1-NH(2)) is a derivative of a previously studied MOF that contains two-dimensional square grids based on NH(2)-BDC and zinc(II) paddle-wheel units; the grid layers are connected by DABCO (1,4-diazabicyclo[2.2.2]octane) molecules that coordinate in the axial positions of the paddlewheel secondary-building units (SBUs). UMCM-1-NH(2) is an NH(2)-BDC derivative of UMCM-1 (University of Michigan Crystalline Material-1), a highly porous MOF reported by Matzger et al., and consists of both NH(2)-BDC and BTB (BTB = 4,4',4''-benzene-1,3,5-triyl-tribenzoate) linkers with Zn(4)O SBUs. The structure of UMCM-1-NH(2) was confirmed by single-crystal X-ray diffraction. By using NH(2)-BDC to generate these MOFs, the pendant amino groups can serve as a chemical handle that can be manipulated via postsynthetic modification with alkyl anhydrides. Reactions of each MOF and different anhydrides have been performed to compare the extent of conversion, thermal and structural stability, and Brunauer-Emmett-Teller surface areas afforded by the resulting materials. Under comparable reaction conditions, (1)H NMR of digested samples show that UMCM-1-NH(2) has conversions comparable to that of IRMOF-3, while DMOF-1-NH(2) only shows high conversions with smaller anhydrides. Under specific reaction conditions, higher conversions were obtained with complete retention of crystallinity, as verified by single-crystal X-ray diffraction experiments. The results presented here demonstrate three important findings: (a) NH(2)-BDC can be used as a surrogate for BDC in a number of MOFs thereby providing a handle for postsynthetic modification, (b) postsynthetic modification is a general strategy to
Liu, TF; Feng, DW; Chen, YP; Zou, LF; Bosch, M; Yuan, S; Wei, ZW; Fordham, S; Wang, KC; Zhou, HC
2015-01-14
Through a topology-guided strategy, a series of Zr-6-containing isoreticular porphyrinic metalorganic frameworks (MOFs), PCN-228, PCN-229, and PCN-230, with ftw-a topology were synthesized using the extended porphyrinic linkers. The bulky porphyrin ring ligand effectively prevents the network interpenetration which often appears in MOFs with increased linker length. The pore apertures of the structures range from 2.5 to 3.8 nm, and PCN-229 demonstrates the highest porosity and BET surface area among the previously reported Zr-MOFs. Additionally, by changing the relative direction of the terminal phenyl rings, this series replaces a Zr-8 cluster with a smaller Zr-6 cluster in a topologically identical framework. The high connectivity of the Zr-6 cluster yields frameworks with enhanced stability despite high porosity and ultralarge linker. As a representative example, PCN-230, constructed with the most extended porphyrinic linker, shows excellent stability in aqueous solutions with pH values ranging from 0 to 12 and demonstrates one of the highest pH tolerances among all porphyrinic MOFs. This work not only presents a successful example of rational design of MOFs with desired topology, but also provides a strategy for construction of stable mesoporous MOFs.
1993-12-31
Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Tiwari, S. C.
2008-03-01
We associate intrinsic energy equal to hν /2 with the spin angular momentum of photon, and propose a topological model based on orbifold in space and tifold in time as topological obstructions. The model is substantiated using vector wavefield disclinations. The physical photon is suggested to be a particlelike topological photon and a propagating wave such that the energy hν of photon is equally divided between spin energy and translational energy, corresponding to linear momentum of hν /c. The enigma of wave-particle duality finds natural resolution, and the proposed model gives new insights into the phenomena of interference and emission of radiation.
Ursino, Mauro; Magosso, Elisa; Cuppini, Cristiano
2009-02-01
Synchronization of neural activity in the gamma band is assumed to play a significant role not only in perceptual processing, but also in higher cognitive functions. Here, we propose a neural network of Wilson-Cowan oscillators to simulate recognition of abstract objects, each represented as a collection of four features. Features are ordered in topological maps of oscillators connected via excitatory lateral synapses, to implement a similarity principle. Experience on previous objects is stored in long-range synapses connecting the different topological maps, and trained via timing dependent Hebbian learning (previous knowledge principle). Finally, a downstream decision network detects the presence of a reliable object representation, when all features are oscillating in synchrony. Simulations performed giving various simultaneous objects to the network (from 1 to 4), with some missing and/or modified properties suggest that the network can reconstruct objects, and segment them from the other simultaneously present objects, even in case of deteriorated information, noise, and moderate correlation among the inputs (one common feature). The balance between sensitivity and specificity depends on the strength of the Hebbian learning. Achieving a correct reconstruction in all cases, however, requires ad hoc selection of the oscillation frequency. The model represents an attempt to investigate the interactions among topological maps, autoassociative memory, and gamma-band synchronization, for recognition of abstract objects.
Jin, Dafei; Lu, Ling; Wang, Zhong; Fang, Chen; Joannopoulos, John D.; Soljačić, Marin; Fu, Liang; Fang, Nicholas X.
2016-01-01
Classical wave fields are real-valued, ensuring the wave states at opposite frequencies and momenta to be inherently identical. Such a particle–hole symmetry can open up new possibilities for topological phenomena in classical systems. Here we show that the historically studied two-dimensional (2D) magnetoplasmon, which bears gapped bulk states and gapless one-way edge states near-zero frequency, is topologically analogous to the 2D topological p+ip superconductor with chiral Majorana edge states and zero modes. We further predict a new type of one-way edge magnetoplasmon at the interface of opposite magnetic domains, and demonstrate the existence of zero-frequency modes bounded at the peripheries of a hollow disk. These findings can be readily verified in experiment, and can greatly enrich the topological phases in bosonic and classical systems. PMID:27892453
NASA Astrophysics Data System (ADS)
Jin, Dafei; Lu, Ling; Wang, Zhong; Fang, Chen; Joannopoulos, John D.; Soljačić, Marin; Fu, Liang; Fang, Nicholas X.
2016-11-01
Classical wave fields are real-valued, ensuring the wave states at opposite frequencies and momenta to be inherently identical. Such a particle-hole symmetry can open up new possibilities for topological phenomena in classical systems. Here we show that the historically studied two-dimensional (2D) magnetoplasmon, which bears gapped bulk states and gapless one-way edge states near-zero frequency, is topologically analogous to the 2D topological p+ip superconductor with chiral Majorana edge states and zero modes. We further predict a new type of one-way edge magnetoplasmon at the interface of opposite magnetic domains, and demonstrate the existence of zero-frequency modes bounded at the peripheries of a hollow disk. These findings can be readily verified in experiment, and can greatly enrich the topological phases in bosonic and classical systems.
Alezi, Dalal; Spanopoulos, Ioannis; Tsangarakis, Constantinos; Shkurenko, Aleksander; Adil, Karim; Belmabkhout, Youssef; O Keeffe, Michael; Eddaoudi, Mohamed; Trikalitis, Pantelis N
2016-10-05
The ability to direct the assembly of hexagonal building units offers great prospective to construct the awaited and looked-for hypothetical polybenzene (pbz) or "cubic graphite" structure, described 70 years ago. Here, we demonstrate the successful use of reticular chemistry as an appropriate strategy for the design and deliberate construction of a zirconium-based metal-organic framework (MOF) with the intricate pbz underlying net topology. The judicious selection of the perquisite hexagonal building units, six connected organic and inorganic building blocks, allowed the formation of the pbz-MOF-1, the first example of a Zr(IV)-based MOF with pbz topology. Prominently, pbz-MOF-1 is highly porous, with associated pore size and pore volume of 13 Å and 0.99 cm(3) g(-1), respectively, and offers high gravimetric and volumetric methane storage capacities (0.23 g g(-1) and 210.4 cm(3) (STP) cm(-3) at 80 bar). Notably, the pbz-MOF-1 pore system permits the attainment of one of the highest CH4 adsorbed phase density enhancements at high pressures (0.15 and 0.21 g cm(-3) at 35 and 65 bar, respectively) as compared to benchmark microporous MOFs.
Chromatin Topological Transitions
NASA Astrophysics Data System (ADS)
Lavelle, C.; Bancaud, A.; Recouvreux, P.; Barbi, M.; Victor, J.; Viovy, J.
DNA transaction events occurring during a cell cycle (transcription,repair, replication) are always associated with severe topological constraints on the double helix. However, since nuclear DNA is bound to various proteins (including histones) that control its accessibility and 3D organization, these topological constraints propagate or accumulate on a chromatin substrate. This paper focuses on chromatin fiber response to physiological mechanical constraints expected to occur during transcription elongation. We will show in particular how recent single molecule techniques help us to understand how chromatin conformational dynamics could manage harsh DNA supercoiling changes.
Gabig, T G
1980-07-01
Certain qualitative abnormalities in neutrophils and blood monocytes are associated with frequent, severe, and recurrent bacterial infections leading to fatal sepsis, while other qualitative defects demonstrated in vitro may have few or no clinical sequelae. These qualitative defects are discussed in terms of the specific functions of locomotion, phagocytosis, degranulation, and bacterial killing.
NASA Astrophysics Data System (ADS)
Gurzhiy, Vladislav V.; Kovrugin, Vadim M.; Tyumentseva, Olga S.; Mikhaylenko, Pavel A.; Krivovichev, Sergey V.; Tananaev, Ivan G.
2015-09-01
Single crystals of seven novel uranyl oxysalts of selenium with protonated methylamine molecules, [C2H8N]2[(UO2)(SeO4)2(H2O)] (I), [C2H8N]2[(UO2)2(SeO4)3(H2O)] (II), [C4H15N3][H3O]0.5[(UO2)2(SeO4)2.93(SeO3)0.07(H2O)](NO3)0.5 (III), [C2H8N]3[H5O2][(UO2)2(SeO4)3(H2O)2]2(H2O)5 (IV), [C2H8N]2[H3O][(UO2)3(SeO4)4(HSeO3)(H2O)](H2SeO3)0.2 (V), [C4H12N]3[H3O][(UO2)3(SeO4)5(H2O)] (VI), and [C2H8N]3(C2H7N)[(UO2)3(SeO4)4(HSeO3)(H2O)] (VII) have been prepared by isothermal evaporation from aqueous solutions. Their crystal structures have been solved by direct methods and their uranyl selenate and selenite-selenate units investigated using black-and-white graphs from the viewpoints of topology of interpolyhedral linkages and isomeric variations. The crystal structure of IV is based upon complex layers with unique topology, which has not been observed previously in uranyl selenates. Investigations of the statistics and local distribution of the U-Obr-Se bond angles demonstrates that shorter angles associate with undulations, whereas larger angles correspond to planar areas of the uranyl selenite layers.
Liu, Jixin; Zhao, Ling; Nan, Jiaofen; Li, Guoying; Xiong, Shiwei; von Deneen, Karen M; Gong, Qiyong; Liang, Fanrong; Qin, Wei; Tian, Jie
2013-10-01
The human brain organization of cortical networks has optimized trade-off architecture for the economical minimization of connection distance and maximizing valuable topological properties; however, whether this network configuration is disrupted in chronic migraine remains unknown. Here, employing the diffusion tensor imaging and graph theory approaches to construct white matter networks in 26 patients with migraine (PM) and 26 gender-matched healthy controls (HC), we investigated relationships between structural connectivity, cortical network architecture and anatomical distance in the two groups separately. Compared with the HC group, the patients showed longer global distance connection in PM, with proportionally less short-distance and more medium-distance; correspondingly, the patients showed abnormal global topology in their structural networks, mainly presented as a higher clustering coefficient. Moreover, the abnormal association between these two network features was also found. Intriguingly, the network measure that combined the nodal anatomical distance and network topology could distinguish PM from HC with high accuracy of 90.4%. We also demonstrated a high reproducibility of our findings across different parcellation schemes. Our results demonstrated that long-term migraine may result in a abnormal optimization of a trade-off between wiring cost and network topology in white matter structural networks and highlights the potential for combining spatial and topological aspects as a network marker, which may provide valuable insights into the understanding of brain network reorganization that could be attributed to the underlying pathophysiology resulting from migraine.
Fowler, K.D.
1993-07-01
This action plan describes the criteria and the organizational responsibilities required for ensuring that waste storage tanks with high organic contents are maintained in a safe condition at the Hanford Site. In addition, response actions are outlined for (1) prevention or mitigation of excessive temperatures; or (2) a material release from any waste tank with high organic content. Other response actions may be defined by Westinghouse Hanford Company Systems Engineering if a waste tank parameter goes out of specification. Trend analysis indicates the waste tank parameters have seasonal variations, but are otherwise stable.
Kambe, Tetsuya; Sakamoto, Ryota; Kusamoto, Tetsuro; Pal, Tigmansu; Fukui, Naoya; Hoshiko, Ken; Shimojima, Takahiro; Wang, Zhengfei; Hirahara, Toru; Ishizaka, Kyoko; Hasegawa, Shuji; Liu, Feng; Nishihara, Hiroshi
2014-10-15
A bulk material comprising stacked nanosheets of nickel bis(dithiolene) complexes is investigated. The average oxidation number is -3/4 for each complex unit in the as-prepared sample; oxidation or reduction respectively can change this to 0 or -1. Refined electrical conductivity measurement, involving a single microflake sample being subjected to the van der Pauw method under scanning electron microscopy control, reveals a conductivity of 1.6 × 10(2) S cm(-1), which is remarkably high for a coordination polymeric material. Conductivity is also noted to modulate with the change of oxidation state. Theoretical calculation and photoelectron emission spectroscopy reveal the stacked nanosheets to have a metallic nature. This work provides a foothold for the development of the first organic-based two-dimensional topological insulator, which will require the precise control of the oxidation state in the single-layer nickel bisdithiolene complex nanosheet (cf. Liu, F. et al. Nano Lett. 2013, 13, 2842).
Zhang, Xin; Zhang, Xu; Johnson, Jacob A.; Chen, Yu-Sheng; Zhang, Jian
2016-06-24
Two non-interpenetrated zirconium metal–organic frameworks (Zr-MOFs), NPF-200 and NPF-201, were synthesized via the assembly of elongated tetrahedral linkers with Zr_{6} and Zr_{8} clusters. They represent the first examples of MOFs to have the β-UH_{3}-like, 4,12,12T1 topology. Upon activation, NPF-200 exhibits the largest BET surface area (5463 m^{2} g^{–1}) and void volume (81.6%) among all MOFs formed from tetrahedral ligands. Composed of negative-charged boron-centered tetrahedral linkers, NPF-201 is an anionic Zr-MOF which selectively uptakes photoactive [Ru(bpy)_{3}]^{2+} for heterogeneous photo-oxidation of thioanisole.
Kim, Seok-Hyung; Scott, Sarah A; Bennett, Michael J; Carson, Robert P; Fessel, Joshua; Brown, H Alex; Ess, Kevin C
2013-06-01
Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463) ) that has an inactivating mutation in the etfa gene. dxa(vu463) recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463) zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463) zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1) with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.
Abnormalities in Structural Covariance of Cortical Gyrification in Parkinson's Disease
Xu, Jinping; Zhang, Jiuquan; Zhang, Jinlei; Wang, Yue; Zhang, Yanling; Wang, Jian; Li, Guanglin; Hu, Qingmao; Zhang, Yuanchao
2017-01-01
Although abnormal cortical morphology and connectivity between brain regions (structural covariance) have been reported in Parkinson's disease (PD), the topological organizations of large-scale structural brain networks are still poorly understood. In this study, we investigated large-scale structural brain networks in a sample of 37 PD patients and 34 healthy controls (HC) by assessing the structural covariance of cortical gyrification with local gyrification index (lGI). We demonstrated prominent small-world properties of the structural brain networks for both groups. Compared with the HC group, PD patients showed significantly increased integrated characteristic path length and integrated clustering coefficient, as well as decreased integrated global efficiency in structural brain networks. Distinct distributions of hub regions were identified between the two groups, showing more hub regions in the frontal cortex in PD patients. Moreover, the modular analyses revealed significantly decreased integrated regional efficiency in lateral Fronto-Insula-Temporal module, and increased integrated regional efficiency in Parieto-Temporal module in the PD group as compared to the HC group. In summary, our study demonstrated altered topological properties of structural networks at a global, regional and modular level in PD patients. These findings suggests that the structural networks of PD patients have a suboptimal topological organization, resulting in less effective integration of information between brain regions. PMID:28326021
Topological Aspects of Information Retrieval.
ERIC Educational Resources Information Center
Egghe, Leo; Rousseau, Ronald
1998-01-01
Discusses topological aspects of theoretical information retrieval, including retrieval topology; similarity topology; pseudo-metric topology; document spaces as topological spaces; Boolean information retrieval as a subsystem of any topological system; and proofs of theorems. (LRW)
Sugar, Terrel; Wassenhove-McCarthy, Deborah J; Esko, Jeffrey D; van Kuppevelt, Toin H; Holzman, Lawrence; McCarthy, Kevin J
2014-02-01
Heparan sulfate proteoglycans have been shown to modulate podocyte adhesion to--and pedicel organization on--the glomerular basement membrane. Recent studies showed that foot process effacement developed in a mutant mouse model whose podocytes were unable to assemble heparan sulfate glycosaminoglycan chains. This study, a further refinement, explored the role of heparan N-sulfation on podocyte behavior. A novel mutant mouse (Ndst1(-/-)) was developed, having podocyte-specific deletion of Ndst1, the enzyme responsible for N-sulfation of heparan sulfate chains. Podocytes having this mutation had foot process effacement and abnormal adhesion to Bowman's capsule. Although glomerular hypertrophy did develop in the kidneys of mutant animals, mesangial expansion was not seen. The lack of heparan N-sulfation did not affect the expression of agrin or perlecan proteoglycan core proteins. Loss of N-sulfation did not result in significant proteinuria, but the increase in the albumin/creatinine ratio was coincident with the development of the enlarged lysosomes in the proximal tubules. Thus, although the renal phenotype of the Ndst1(-/-) mouse is mild, the data show that heparan chain N-sulfation plays a key role in podocyte organization.
Pereira, Joana B.; Mijalkov, Mite; Kakaei, Ehsan; Mecocci, Patricia; Vellas, Bruno; Tsolaki, Magda; Kłoszewska, Iwona; Soininen, Hilka; Spenger, Christian; Lovestone, Simmon; Simmons, Andrew; Wahlund, Lars-Olof; Volpe, Giovanni; Westman, Eric
2016-01-01
Recent findings suggest that Alzheimer's disease (AD) is a disconnection syndrome characterized by abnormalities in large-scale networks. However, the alterations that occur in network topology during the prodromal stages of AD, particularly in patients with stable mild cognitive impairment (MCI) and those that show a slow or faster progression to dementia, are still poorly understood. In this study, we used graph theory to assess the organization of structural MRI networks in stable MCI (sMCI) subjects, late MCI converters (lMCIc), early MCI converters (eMCIc), and AD patients from 2 large multicenter cohorts: ADNI and AddNeuroMed. Our findings showed an abnormal global network organization in all patient groups, as reflected by an increased path length, reduced transitivity, and increased modularity compared with controls. In addition, lMCIc, eMCIc, and AD patients showed a decreased path length and mean clustering compared with the sMCI group. At the local level, there were nodal clustering decreases mostly in AD patients, while the nodal closeness centrality detected abnormalities across all patient groups, showing overlapping changes in the hippocampi and amygdala and nonoverlapping changes in parietal, entorhinal, and orbitofrontal regions. These findings suggest that the prodromal and clinical stages of AD are associated with an abnormal network topology. PMID:27178195
Duan, Xing; Yu, Jiancan; Cai, Jianfeng; He, Yabing; Wu, Chuande; Zhou, Wei; Yildirim, Taner; Zhang, Zhangjing; Xiang, Shengchang; O'Keeffe, Michael; Chen, Banglin; Qian, Guodong
2013-03-11
A rare sty type microporous metal-organic framework, Cu(2)(FDDI) (; H(4)FDDI = tetramethyl 5,5'-(9H-fluorene-2,7-diyl)diisophthalate acid), was solvothermally synthesized and structurally characterized. With open metal sites and suitable pore space for their interactions with methane molecules, exhibits absolute methane storage of 180 cm(3)(STP) cm(-3) at room temperature and 35 bar, enabling it to be one of the very few porous MOFs whose methane storage capacities have met and/or approached the DOE target of 180 cm(3)(STP) cm(-3) for material-based methane storage.
Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian
2014-03-03
Crystal engineering of the nbo metal-organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu2(Cu-tactmb)(H2O)3(NO3)2]. This MOF demonstrates high catalytic activity for the chemical fixation of CO2 into cyclic carbonates at room temperature under 1 atm pressure.
Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J.; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian
2015-02-20
Crystal engineering of the nbo metal–organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu₂(Cu-tactmb)(H₂O)₃(NO₃)₂]. This MOF demonstrates high catalytic activity for the chemical fixation of CO₂ into cyclic carbonates at room temperature under 1 atm pressure.
Topological Lifshitz transitions
NASA Astrophysics Data System (ADS)
Volovik, G. E.
2017-01-01
Different types of Lifshitz transitions are governed by topology in momentum space. They involve the topological transitions with the change of topology of Fermi surfaces, Weyl and Dirac points, nodal lines, and also the transitions between the fully gapped states.
Detection of Active Topology Probing Deception
2015-09-01
NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS DETECTION OF ACTIVE TOPOLOGY PROBING DECEPTION by Weiyou Nicholas Phua September 2015 Thesis...SUBTITLE DETECTION OF ACTIVE TOPOLOGY PROBING DECEPTION 5. FUNDING NUMBERS H98230221650 6. AUTHOR(S) Weiyou Nicholas Phua 7. PERFORMING ORGANIZATION NAME(S...intents, being able to infer the topology of a network is crucial to both operators and adversaries alike. Tracer- oute is a common active probing
Spin-polarized Dirac cones and topological nontriviality in a metal-organic framework Ni2C24S6H12.
Wei, Lin; Zhang, Xiaoming; Zhao, Mingwen
2016-03-21
Dirac cones in the band structure make a great contribution to the unique electronic properties of graphene. But the spin-degeneracy of Dirac cones limits the application of graphene in spintronics. Here, using first-principles calculations, we propose a two-dimensional (2D) metal-organic framework (MOF), Ni2C24S6H12, with spin-polarized Dirac cones at the six corners of the Brillouin zone (BZ). Ferromagnetism is quite stable with a high Curie temperature (630 K) as revealed by Monte Carlo simulation within the Ising model. Taking spin-orbit coupling into account, band gaps are opened up at the Dirac point (5.9 meV) and Γ point (10.4 meV) in the BZ, making Ni2C24S6H12 a Chern topological insulator which is implemented for achieving the quantum anomalous Hall effect. These interesting properties enable Ni2C24S6H12 to be a promising candidate material for spintronics device applications.
Shih, Yung-Han; Wang, Kuen-Yun; Singco, Brenda; Lin, Chia-Her; Huang, Hsi-Ya
2016-11-08
In this study, we first demonstrated the effect of two types of metal-organic framework-polymer (MOF-polymer) monoliths on in-tube solid-phase microextraction (IT-SPME) of sulfonamides. Sulfonamides were successfully adsorbed onto MIL-101(Cr)-polymer but were difficult to elute due to these sulfonamides could interact via Lewis acid-base interaction with the presence of Cr(III) coordinatively unsaturated metal sites (CUS). Moreover, the cage-type topology of MIL-101(Cr) that could produce multiple pathways thus complicates the desorption of the test analytes from the sorbent. Contrastingly, MIL-53(Al)-polymer provided weaker Al(III) CUS, and its one-dimensional channel pore structure could provide an unhindered pathway for sulfonamides transfer during elution. After optimizing the IT-SPME condition such as MOF content, pH of sample matrix, column length, extraction flow rate, and elution volume, the calculated extraction recovery of sulfonamides in MIL-53(Al)-polymer as analyzed by microemulsion electrokinetic chromatography (MEEKC) were in the range of 40%-90% with relative standard deviations (RSDs) below 5% and a reusability of at least 30 times.
Moorthy, Narasimha Jarugu; Chandrasekhar, Pujari; Savitha, Govardhan
2017-04-03
The self-assembly of a rigid and trigonal prismatic triptycene-hexaacid H6THA with Co(NO3)2 and Mn(NO3)2 leads to isostructural MOFs that are sustained by 6-c metal cluster [M3(μ3-O)(COO)6] SBUs. The Co- and Mn-MOFs, constructed from organic and metal-cluster building blocks that are both trigonal prismatic, correspond to the heretofore unknown 'tsg' topology. Due to the rigidity and concave attributes of H6THA, the networks in Co- and Mn-MOFs are highly porous and undergo 3-fold interpenetration. The interpenetration imparts permanent microporosity and high thermal stability to the MOFs to permit postsynthetic metal exchange (PSME) and gas sorption. The PSME occurs in a SC-SC fashion when the crystals of Co- and Mn-MOFs are immersed in a solution of Cu(NO3)2 in MeOH/H2O. Further, the isostructural robust MOFs exhibit significant gas sorption and remarkable selectivity for CO2 over N2 (ca. 100 fold) at ambient conditions. In fact, the postsynthetically-engineered Cu-THA exhibits better CO2 sorption than Co-THA and Mn-THA. A composite of effects that include pore dimensions (ca. 0.7 nm), unsaturated metal centers and basic environments conferred by the quinoxaline nitrogen atoms appears to be responsible for the observed high CO2 capture and selectivity. The high-symmetry and structural attributes of the organic linker seemingly dictate adoption of the trigonal-prismatic metal cluster SBU by the metal ions in the MOFs.
Ethiraj, Jayashree; Albanese, Elisa; Civalleri, Bartolomeo; Vitillo, Jenny G; Bonino, Francesca; Chavan, Sachin; Shearer, Greig C; Lillerud, Karl Petter; Bordiga, Silvia
2014-12-01
A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations.
Mahata, Partha; Raghunathan, Rajamani; Banerjee, Debamalya; Sen, Diptiman; Ramasesha, S; Bhat, S V; Natarajan, S
2009-06-02
Two new three-dimensional metal-organic frameworks (MOFs) [Mn(2)(mu(3)-OH)(H(2)O)(2)(BTC)] x 2 H(2)O, I, and [NaMn(BTC)], II (BTC = 1,2,4-benzenetricarboxylate = trimellitate) were synthesized and their structures determined by single-crystal X-ray diffraction (XRD). In I, the Mn(4) cluster, [Mn(4)(mu(3)-OH)(2)(H(2)O)(4)O(12)], is connected with eight trimellitate anions and each trimellitate anion connects to four different Mn(4) clusters, resulting in a fluorite-like structure. In II, the Mn(2)O(8) dimer is connected with two Na(+) ions through carboxylate oxygen to form mixed-metal distorted Kagome-related two-dimensional -M-O-M- layers, which are pillared by the trimellitate anions forming the three-dimensional structure. The extra-framework water molecules in I are reversibly adsorbed and are also corroborated by powder XRD studies. The formation of octameric water clusters involving free and coordinated water molecules appears to be new. Interesting magnetic behavior has been observed for both compounds. Electron spin resonance (ESR) studies indicate a broadening of the signal below the ordering temperature and appear to support the findings of the magnetic studies.
Induced topological pressure for topological dynamical systems
Xing, Zhitao; Chen, Ercai
2015-02-15
In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure.
Ren, Biye
2003-01-01
Structure-boiling point relationships are studied for a series of oxo organic compounds by means of multiple linear regression (MLR) analysis. Excellent MLR models based on the recently introduced Xu index and the atom-type-based AI indices are obtained for the two subsets containing respectively 77 ethers and 107 carbonyl compounds and a combined set of 184 oxo compounds. The best models are tested using the leave-one-out cross-validation and an external test set, respectively. The MLR model produces a correlation coefficient of r = 0.9977 and a standard error of s = 3.99 degrees C for the training set of 184 compounds, and r(cv) = 0.9974 and s(cv) = 4.16 degrees C for the cross-validation set, and r(pred) = 0.9949 and s(pred) = 4.38 degrees C for the prediction set of 21 compounds. For the two subsets containing respectively 77 ethers and 107 carbonyl compounds, the quality of the models is further improved. The standard errors are reduced to 3.30 and 3.02 degrees C, respectively. Furthermore, the results obtained from this study indicate that the boiling points of the studied oxo compound dominantly depend on molecular size and also depend on individual atom types, especially oxygen heteroatoms in molecules due to strong polar interactions between molecules. These excellent structure-boiling point models not only provide profound insights into the role of structural features in a molecule but also illustrate the usefulness of these indices in QSPR/QSAR modeling of complex compounds.
Aberrant Topological Patterns of Structural Cortical Networks in Psychogenic Erectile Dysfunction
Zhao, Lu; Guan, Min; Zhu, Xiaobo; Karama, Sherif; Khundrakpam, Budhachandra; Wang, Meiyun; Dong, Minghao; Qin, Wei; Tian, Jie; Evans, Alan C.; Shi, Dapeng
2015-01-01
Male sexual arousal (SA) has been known as a multidimensional experience involving closely interrelated and coordinated neurobehavioral components that rely on widespread brain regions. Recent functional neuroimaging studies have shown relation between abnormal/altered dynamics in these circuits and male sexual dysfunction. However, alterations in the topological1 organization of structural brain networks in male sexual dysfunction are still unclear. Here, we used graph theory2 to investigate the topological properties of large-scale structural brain networks, which were constructed using inter-regional correlations of cortical thickness between 78 cortical regions in 40 patients with psychogenic erectile dysfunction (pED) and 39 normal controls. Compared with normal controls, pED patients exhibited a less optimal global topological organization with reduced global and increased local efficiencies. Our results suggest disrupted neural integration among distant brain regions in pED patients, consistent with previous reports of impaired white matter structure and abnormal functional integrity in pED. Additionally, disrupted global network topology in pED was observed to be primarily relevant to altered subnetwork and nodal properties within the networks mediating the cognitive, motivational and inhibitory processes of male SA, possibly indicating disrupted integration of these networks in the whole brain networks and might account for pED patients' abnormal cognitive, motivational and inhibitory processes for male SA. In total, our findings provide evidence for disrupted integrity in large-scale brain networks underlying the neurobehavioral processes of male SA in pED and provide new insights into the understanding of the pathophysiological mechanisms of pED. PMID:26733849
The topology of geology 1: Topological analysis
NASA Astrophysics Data System (ADS)
Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Ogarko, Vitaliy; Wellmann, J. Florian; Pakyuz-Charrier, Evren
2016-10-01
Topology has been used to characterise and quantify the properties of complex systems in a diverse range of scientific domains. This study explores the concept and applications of topological analysis in geology. We have developed an automatic system for extracting first order 2D topological information from geological maps, and 3D topological information from models built with the Noddy kinematic modelling system, and equivalent analyses should be possible for other implicit modelling systems. A method is presented for describing the spatial and temporal topology of geological models using a set of adjacency relationships that can be expressed as a topology network, thematic adjacency matrix or hive diagram. We define three types of spatial topology (cellular, structural and lithological) that allow us to analyse different aspects of the geology, and then apply them to investigate the geology of the Hamersley Basin, Western Australia.
Burnworth, B; Popp, S; Stark, H-J; Steinkraus, V; Bröcker, E B; Hartschuh, W; Birek, C; Boukamp, P
2006-07-27
Non-melanoma skin cancers, in particular keratoacanthomas (KAs) and squamous cell carcinomas (SCCs), have become highly frequent tumor types especially in immune-suppressed transplant patients. Nevertheless, little is known about essential genetic changes. As a paradigm of 'early' changes, that is, changes still compatible with tumor regression, we studied KAs by comparative genomic hybridization and show that gain of chromosome 11q is not only one of the most frequent aberration (8/18), but in four tumors also the only aberration. Furthermore, 11q gain correlated with amplification of the cyclin D1 locus (10/14), as determined by fluorescence in situ hybridization, and overexpression of cyclin D1 protein (25/31), as detected by immunohistochemistry. For unraveling the functional consequence, we overexpressed cyclin D1 in HaCaT skin keratinocytes. These cells only gained little growth advantage in conventional and in organotypic co-cultures. However, although the control vector-transfected cells formed a well-stratified and orderly differentiated epidermis-like epithelium, they showed deregulation of tissue architecture with an altered localization of proliferation and impaired differentiation. The most severe phenotype was seen in a clone that additionally upregulated cdk4 and p21. These cells lacked terminal differentiation, exhibited a more autonomous growth in vitro and in vivo and even formed tumors in two injection sites with a growth pattern resembling that of human KAs. Thus, our results identify 11q13 gain/cyclin D1 overexpression as an important step in KA formation and point to a function that exceeds its known role in proliferation by disrupting tissue organization and thereby allowing abnormal growth.
Topological superconductors: a review.
Sato, Masatoshi; Ando, Yoichi
2017-04-03
This review elaborates pedagogically on the fundamental concept, basic theory, expected properties, and materials realizations of topological superconductors. The relation between topological superconductivity and Majorana fermions are explained, and the difference between dispersive Majorana fermions and a localized Majorana zero mode is emphasized. A variety of routes to topological superconductivity are explained with an emphasis on the roles of spin-orbit coupling. Present experimental situations and possible signatures of topological superconductivity are summarized with an emphasis on intrinsic topological superconductors.
Spectrum-Based and Collaborative Network Topology Analysis and Visualization
ERIC Educational Resources Information Center
Hu, Xianlin
2013-01-01
Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…
NASA Astrophysics Data System (ADS)
Meerman, E. R. W.; Spruyt, H. J. N.
1989-08-01
Dc to dc converters using an electrical switch to control power flow between a dc source and a dc load are discussed. Only Pulse Width Modulation (PWM) type converter topologies are considered. A basic three element, three terminal converter topology is defined followed by two universal rules allowing for derivation of a wide variety of different topologies. A summary of different topology types is provided with steady state and small signal relations given for each. The survey shows 46 converter topologies of which 18 are known and 28 are new (under, patent application). The number of topologies could be increased to 68 if negative input voltages are considered.
Chan, Joseph Minhow; Carlsson, Gunnar; Rabadan, Raul
2013-11-12
The tree structure is currently the accepted paradigm to represent evolutionary relationships between organisms, species or other taxa. However, horizontal, or reticulate, genomic exchanges are pervasive in nature and confound characterization of phylogenetic trees. Drawing from algebraic topology, we present a unique evolutionary framework that comprehensively captures both clonal and reticulate evolution. We show that whereas clonal evolution can be summarized as a tree, reticulate evolution exhibits nontrivial topology of dimension greater than zero. Our method effectively characterizes clonal evolution, reassortment, and recombination in RNA viruses. Beyond detecting reticulate evolution, we succinctly recapitulate the history of complex genetic exchanges involving more than two parental strains, such as the triple reassortment of H7N9 avian influenza and the formation of circulating HIV-1 recombinants. In addition, we identify recurrent, large-scale patterns of reticulate evolution, including frequent PB2-PB1-PA-NP cosegregation during avian influenza reassortment. Finally, we bound the rate of reticulate events (i.e., 20 reassortments per year in avian influenza). Our method provides an evolutionary perspective that not only captures reticulate events precluding phylogeny, but also indicates the evolutionary scales where phylogenetic inference could be accurate.
Topological insulators: Engineered heterostructures
NASA Astrophysics Data System (ADS)
Hesjedal, Thorsten; Chen, Yulin
2017-01-01
The combination of topological properties and magnetic order can lead to new quantum states and exotic physical phenomena. In particular, the coupling between topological insulators and antiferromagnets enables magnetic and electronic structural engineering.
NASA Astrophysics Data System (ADS)
Yang, Ling; Li, Yu; You, Ao; Jiang, Juan; Zou, Xun-Zhong; Chen, Jin-Wei; Gu, Jin-Zhong; Kirillov, Alexander M.
2016-09-01
4-(5-Carboxypyridin-2-yl)isophthalic acid (H3L) was applied as a flexible, multifunctional N,O-building block for the hydrothermal self-assembly synthesis of two novel coordination compounds, namely 2D [Zn(μ3-HL)(H2O)]n·nH2O (1) and 3D [Pb2(μ5-HL)(μ6-HL)]n (2) coordination polymers (CPs). These compounds were obtained in aqueous medium from a mixture containing zinc(II) or lead(II) nitrate, H3L, and sodium hydroxide. The products were isolated as stable crystalline solids and were characterized by IR spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a 2D metal-organic layer with the fes topology, which is further extended into a 3D supramolecular framework via hydrogen bonds. In contrast, compound 2 features a very complex network structure, which was topologically classified as a binodal 5,6-connected net with the unique topology defined by the point symbol of (47.63)(49.66). Compounds 1 and 2 disclose an intense blue or green luminescent emission at room temperature.
NASA Technical Reports Server (NTRS)
Lieberman, R. N.
1972-01-01
Given a directed graph, a natural topology is defined and relationships between standard topological properties and graph theoretical concepts are studied. In particular, the properties of connectivity and separatedness are investigated. A metric is introduced which is shown to be related to separatedness. The topological notions of continuity and homeomorphism. A class of maps is studied which preserve both graph and topological properties. Applications involving strong maps and contractions are also presented.
EDITORIAL: Topological data analysis Topological data analysis
NASA Astrophysics Data System (ADS)
Epstein, Charles; Carlsson, Gunnar; Edelsbrunner, Herbert
2011-12-01
methods for discretizing and compressing the information present in a geometric object so as to provide a useful, small representation of the object. The articles in this special issue are concerned with the applications of topology to the analysis of data sets. The adaptation of topological techniques from pure mathematics to the study of data from real systems is a project which has been undertaken during the past two decades, and the present volume contains various contributions to that project. At the current state of development, homology and persistence are two of the most popular topological techniques used in this context. Homology goes back to the beginnings of topology in Poincaré's influential papers. It is the idea that the connectivity of a space is determined by its cycles of different dimensions, and that these cycles organize themselves into abelian groups, called homology groups. Better known than these groups are their ranks, the Betti numbers of the space, which are non-negative integers that count the number of independent cycles in each dimension. To give an example, the zeroth Betti number counts the components, and the first counts the loops. A crucial feature of homology groups is that, given a reasonably explicit description of a space, their computation is an exercise in linear algebra. Even better known than the Betti numbers is the Euler characteristic, which we know from Poincaré's work, is equal to the alternating sum of the Betti numbers, which can be computed without computing the homology groups themselves. To give evidence that these numbers have relevant practical applications, we mention that integrating the Euler characteristic over a domain with sensor information can be used to count objects in the domain. This alone would not explain the popularity of homology groups, which we see rooted in the fact that they hit a sweet-spot that offers relatively strong discriminative power, and a clear intuitive meaning, all at a surprisingly
EDITORIAL: Topological data analysis Topological data analysis
NASA Astrophysics Data System (ADS)
2011-12-01
methods for discretizing and compressing the information present in a geometric object so as to provide a useful, small representation of the object. The articles in this special issue are concerned with the applications of topology to the analysis of data sets. The adaptation of topological techniques from pure mathematics to the study of data from real systems is a project which has been undertaken during the past two decades, and the present volume contains various contributions to that project. At the current state of development, homology and persistence are two of the most popular topological techniques used in this context. Homology goes back to the beginnings of topology in Poincaré's influential papers. It is the idea that the connectivity of a space is determined by its cycles of different dimensions, and that these cycles organize themselves into abelian groups, called homology groups. Better known than these groups are their ranks, the Betti numbers of the space, which are non-negative integers that count the number of independent cycles in each dimension. To give an example, the zeroth Betti number counts the components, and the first counts the loops. A crucial feature of homology groups is that, given a reasonably explicit description of a space, their computation is an exercise in linear algebra. Even better known than the Betti numbers is the Euler characteristic, which we know from Poincaré's work, is equal to the alternating sum of the Betti numbers, which can be computed without computing the homology groups themselves. To give evidence that these numbers have relevant practical applications, we mention that integrating the Euler characteristic over a domain with sensor information can be used to count objects in the domain. This alone would not explain the popularity of homology groups, which we see rooted in the fact that they hit a sweet-spot that offers relatively strong discriminative power, and a clear intuitive meaning, all at a surprisingly
Kalb, Jeffrey L.; Lee, David S.
2008-01-01
Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.
... medlineplus.gov/ency/article/003139.htm Urine - abnormal color To use the sharing features on this page, please enable JavaScript. The usual color of urine is straw-yellow. Abnormally colored urine ...
... medlineplus.gov/ency/article/003065.htm Tooth - abnormal colors To use the sharing features on this page, please enable JavaScript. Abnormal tooth color is any color other than white to yellowish- ...
... cause. Can a longstanding head turn lead to any permanent problems? Yes, a significant abnormal head posture could cause permanent ... occipitocervical synostosis and unilateral hearing loss. Are there any ... postures? Yes. Abnormal head postures can usually be improved depending ...
... medlineplus.gov/ency/article/003170.htm Skeletal limb abnormalities To use the sharing features on this page, please enable JavaScript. Skeletal limb abnormalities refers to a variety of bone structure problems ...
... PROBLEMS Abnormal Uterine Bleeding • What is a normal menstrual cycle? • When is bleeding abnormal? • At what ages is ... treat abnormal bleeding? •Glossary What is a normal menstrual cycle? The normal length of the menstrual cycle is ...
Latent and Abnormal Functional Connectivity Circuits in Autism Spectrum Disorder
Chen, Shuo; Xing, Yishi; Kang, Jian
2017-01-01
Autism spectrum disorder (ASD) is associated with disrupted brain networks. Neuroimaging techniques provide noninvasive methods of investigating abnormal connectivity patterns in ASD. In the present study, we compare functional connectivity networks in people with ASD with those in typical controls, using neuroimaging data from the Autism Brain Imaging Data Exchange (ABIDE) project. Specifically, we focus on the characteristics of intrinsic functional connectivity based on data collected by resting-state functional magnetic resonance imaging (rs-fMRI). Our aim was to identify disrupted brain connectivity patterns across all networks, instead of in individual edges, by using advanced statistical methods. Unlike many brain connectome studies, in which networks are prespecified before the edge connectivity in each network is compared between clinical groups, we detected the latent differentially expressed networks automatically. Our network-level analysis identified abnormal connectome networks that (i) included a high proportion of edges that were differentially expressed between people with ASD and typical controls; and (ii) showed highly-organized graph topology. These findings provide new insight into the study of the underlying neuropsychiatric mechanism of ASD. PMID:28377688
NASA Astrophysics Data System (ADS)
Tanda, Satoshi; Matsuyama, Toyoki; Oda, Migaku; Asano, Yasuhiro; Yakubo, Kousuke
2006-08-01
I. Topology as universal concept. Optical vorticulture / M. V. Berry. On universality of mathematical structure in nature: topology / T. Matsuyama. Topology in physics / R. Jackiw. Isoholonomic problem and holonomic quantum computation / S. Tanimura -- II. Topological crystals. Topological crystals of NbSe[symbol] / S. Tanda ... [et al.]. Superconducting states on a Möbius strip / M. Hayashi ... [et al.]. Structure analyses of topological crystals using synchrotron radiation / Y. Nogami ... [et al.]. Transport measurement for topological charge density waves / T. Matsuura ... [et al.]. Theoretical study on Little-Parks oscillation in nanoscale superconducting ring / T. Suzuki, M. Hayashi and H. Ebisawa. Frustrated CDW states in topological crystals / K. Kuboki ... [et al.]. Law of growth in topological crystal / M. Tsubota ... [et al.]. Synthesis and electric properties of NbS[symbol]: possibility of room temperature charge density wave devices / H. Nobukane ... [et al.]. How does a single crystal become a Möbius strip? / T. Matsuura ... [et al.]. Development of X-ray analysis method for topological crystals / K. Yamamoto ... [et al.] -- III. Topological materials. Femtosecond-timescale structure dynamics in complex materials: the case of (NbSe[symbol])[symbol]I / D. Dvorsek and D. Mihailovic. Ultrafast dynamics of charge-density-wave in topological crystals / K. Shimatake ... [et al.]. Topology in morphologies of a folded single-chain polymer / Y. Takenaka, D. Baigl and K. Yoshikawa. One to two-dimensional conversion in topological crystals / T. Toshima, K. Inagaki and S. Tanda. Topological change of Fermi surface in Bismuth under high pressure / M. Kasami ... [et al.]. Topological change of 4, 4'-bis[9-dicarbazolyl]-2, 2'-biphenyl (CBP) by international rearrangement / K. S. Son ... [et al.]. Spin dynamics in Heisenberg triangular system VI5 cluster studied by [symbol]H-NMR / Y. Furukawa ... [et al.]. STM/STS on NbSe[symbol] nanotubes / K. Ichimura ...[et al
Observation of unconventional quantum spin textures in topological insulators.
Hsieh, D; Xia, Y; Wray, L; Qian, D; Pal, A; Dil, J H; Osterwalder, J; Meier, F; Bihlmayer, G; Kane, C L; Hor, Y S; Cava, R J; Hasan, M Z
2009-02-13
A topologically ordered material is characterized by a rare quantum organization of electrons that evades the conventional spontaneously broken symmetry-based classification of condensed matter. Exotic spin-transport phenomena, such as the dissipationless quantum spin Hall effect, have been speculated to originate from a topological order whose identification requires a spin-sensitive measurement, which does not exist to this date in any system. Using Mott polarimetry, we probed the spin degrees of freedom and demonstrated that topological quantum numbers are completely determined from spin texture-imaging measurements. Applying this method to Sb and Bi(1-x)Sb(x), we identified the origin of its topological order and unusual chiral properties. These results taken together constitute the first observation of surface electrons collectively carrying a topological quantum Berry's phase and definite spin chirality, which are the key electronic properties component for realizing topological quantum computing bits with intrinsic spin Hall-like topological phenomena.
Topological Phenotypes in Complex Leaf Venation Networks
NASA Astrophysics Data System (ADS)
Ronellenfitsch, Henrik; Lasser, Jana; Daly, Douglas; Katifori, Eleni
2015-03-01
The leaves of vascular plants contain highly complex venation networks consisting of recursively nested, hierarchically organized loops. We analyze the topology of the venation of leaves from ca. 200 species belonging to ca. 10 families, defining topological metrics that quantify the hierarchical nestedness of the network cycles. We find that most of the venation variability can be described by a two dimensional phenotypic space, where one dimension consists of a linear combination of geometrical metrics and the other dimension of topological, previously uncharacterized metrics. We show how this new topological dimension in the phenotypic space significantly improves identification of leaves from fragments, by calculating a ``leaf fingerprint'' from the topology and geometry of the higher order veins. Further, we present a simple model suggesting that the topological phenotypic traits can be explained by noise effects and variations in the timing of higher order vein developmental events. This work opens the path to (a) new quantitative identification techniques for leaves which go beyond simple geometric traits such as vein density and (b) topological quantification of other planar or almost planar networks such as arterial vaculature in the neocortex and lung tissue.
EPITAXIAL GROWTH, * REACTION KINETICS, *SOLVATION, *STYRENES, *SUBSTITUTION REACTIONS , ALCOHOLS , ALKYL RADICALS, AMIDES, BUTANOLS, CHEMICAL REACTIONS ...CHLORIDES, ETHANOLS, FLUORIDES, CARBINOLS, METHYL RADICALS, MOLECULAR STRUCTURE, NUCLEAR ISOMERS, ORGANIC SOLVENTS, OXIDES, PENTANOLS, SYNTHESIS.
Expediting topology data gathering for the TOPDB database.
Dobson, László; Langó, Tamás; Reményi, István; Tusnády, Gábor E
2015-01-01
The Topology Data Bank of Transmembrane Proteins (TOPDB, http://topdb.enzim.ttk.mta.hu) contains experimentally determined topology data of transmembrane proteins. Recently, we have updated TOPDB from several sources and utilized a newly developed topology prediction algorithm to determine the most reliable topology using the results of experiments as constraints. In addition to collecting the experimentally determined topology data published in the last couple of years, we gathered topographies defined by the TMDET algorithm using 3D structures from the PDBTM. Results of global topology analysis of various organisms as well as topology data generated by high throughput techniques, like the sequential positions of N- or O-glycosylations were incorporated into the TOPDB database. Moreover, a new algorithm was developed to integrate scattered topology data from various publicly available databases and a new method was introduced to measure the reliability of predicted topologies. We show that reliability values highly correlate with the per protein topology accuracy of the utilized prediction method. Altogether, more than 52,000 new topology data and more than 2600 new transmembrane proteins have been collected since the last public release of the TOPDB database.
NASA Astrophysics Data System (ADS)
Bietenholz, W.; Gerber, U.; Pepe, M.; Wiese, U.-J.
2010-12-01
We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge Q. Irrespective of this, in the 2-d O(3) model the topological susceptibility {χ_t} = {{{left< {{Q^2}} rightrangle }} left/ {V} right.} is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some classically important features of an action are irrelevant for reaching the correct quantum continuum limit.
A global topology map of the Saccharomyces cerevisiae membrane proteome
NASA Astrophysics Data System (ADS)
Kim, Hyun; Melén, Karin; Österberg, Marie; von Heijne, Gunnar
2006-07-01
The yeast Saccharomyces cerevisiae is, arguably, the best understood eukaryotic model organism, yet comparatively little is known about its membrane proteome. Here, we report the cloning and expression of 617 S. cerevisiae membrane proteins as fusions to a C-terminal topology reporter and present experimentally constrained topology models for 546 proteins. By homology, the experimental topology information can be extended to 15,000 membrane proteins from 38 fully sequenced eukaryotic genomes. membrane proteins | membrane proteomics | yeast
Charged topological entanglement entropy
NASA Astrophysics Data System (ADS)
Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei
2016-05-01
A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.
Topological nonsymmorphic crystalline superconductors
NASA Astrophysics Data System (ADS)
Wang, Qing-Ze; Liu, Chao-Xing
2016-01-01
Topological superconductors possess a nodeless superconducting gap in the bulk and gapless zero energy modes, known as "Majorana zero modes," at the boundary of a finite system. In this work, we introduce a new class of topological superconductors, which are protected by nonsymmorphic crystalline symmetry and thus dubbed "topological nonsymmorphic crystalline superconductors." We construct an explicit Bogoliubov-de Gennes type of model for this superconducting phase in the D class and show how Majorana zero modes in this model are protected by glide plane symmetry. Furthermore, we generalize the classification of topological nonsymmorphic crystalline superconductors to the classes with time reversal symmetry, including the DIII and BDI classes, in two dimensions. Our theory provides guidance to search for new topological superconducting materials with nonsymmorphic crystal structures.
Topological Nonsymmorphic Crystalline Superconductors
NASA Astrophysics Data System (ADS)
Wang, Qing-Ze; Liu, Chao-Xing
Topological superconductors possess a nodeless superconducting gap in the bulk and gapless zero energy modes, known as ``Majorana zero modes'', at the boundary of a finite system. In this work, we introduce a new class of topological superconductors, which are protected by nonsymmorphic crystalline symmetry and thus dubbed ``topological nonsymmorphic crystalline superconductors''. We construct an explicit Bogoliubov-de Gennes type of model for this superconducting phase in the D class and show how Majorana zero modes in this model are protected by glide symmetry. Furthermore, we generalize the classification of topological nonsymmorphic crystalline superconductors to the classes with time reversal symmetry, including the DIII and BDI classes, in two dimensions. Our theory provides a guidance to search for new topological superconducting materials with nonsymmorphic crystal structures.
Yuan, Shuai; Liu, Mei-Jiao; Xie, Han-Yi; Xu, Meng-Zhen; Sun, Di
2012-03-01
A novel Cd(II) metal-organic framework, [Cd(C(3)H(2)O(4))(NH(3))](n), was synthesized by liquid diffusion conducted in the presence of ammonia. The Cd(II) atom has seven-coordinate O(6)N pentagonal-bipyramidal geometry. Six Cd(II) centers are joined by six malonate ligands to form an S(6)-symmetric [Cd(6)(malonate)(6)] metallomacrocycle, which is further extended through a side-on chelating malonate ligand to form a three-dimensional network. Topologically, each Cd(II) center is connected to four others to yield an infinite three-periodic four-coordinated SOD (sodalite) network with point symbol {4(2)·6(4)}. The overall network structure in the crystal is maintained and stabilized by the presence of N-H...O hydrogen bonds.
Weng, Danfeng; Zheng, Xiangjun; Li, Licun; Yang, Wenwen; Jin, Linpei
2007-11-14
Two novel lanthanide-organic frameworks (LnOFs) with (4(10),6(5))(4(9),6(6)) topology, [Ln(Hbptc)(H(2)O)](n) (Ln = Eu(1), Gd(2); H(4)bptc = 3,3',4,4'-biphenyltetracarboxylic acid) were synthesized via the hydrothermal in situ reaction between lanthanide salts and 3,3',4,4'-biphenyltetracarboxylic dianhydride (bpta) under low pH conditions. In complexes 1 and 2, homohelix bundles with opposite chirality are assembled alternately and result in pillar-like 3D extended networks incorporated with coordinated water molecules, which show high thermal stability. The luminescence properties are illustrated by the Eu(III) complex (1) and its Gd-doped compound, which are intensive red emitters. The magnetic properties of complexes 1 and 2 are also investigated.
Structurally abnormal human autosomes
1993-12-31
Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.
Morphological abnormalities among lampreys
Manion, Patrick J.
1967-01-01
The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.
Linked topological colloids in a nematic host.
Martinez, Angel; Hermosillo, Leonardo; Tasinkevych, Mykola; Smalyukh, Ivan I
2015-04-14
Geometric shape and topology of constituent particles can alter many colloidal properties such as Brownian motion, self-assembly, and phase behavior. Thus far, only single-component building blocks of colloids with connected surfaces have been studied, although topological colloids, with constituent particles shaped as freestanding knots and handlebodies of different genus, have been recently introduced. Here we develop a topological class of colloids shaped as multicomponent links. Using two-photon photopolymerization, we fabricate colloidal microparticle analogs of the classic examples of links studied in the field of topology, the Hopf and Solomon links, which we disperse in nematic fluids that possess orientational ordering of anisotropic rod-like molecules. The surfaces of these particles are treated to impose tangential or perpendicular boundary conditions for the alignment of liquid crystal molecules, so that they generate a host of topologically nontrivial field and defect structures in the dispersing nematic medium, resulting in an elastic coupling between the linked constituents. The interplay between the topologies of surfaces of linked colloids and the molecular alignment field of the nematic host reveals that linking of particle rings with perpendicular boundary conditions is commonly accompanied by linking of closed singular defect loops, laying the foundations for fabricating complex composite materials with interlinking-based structural organization.
NASA Astrophysics Data System (ADS)
Knitter, Sebastian; Fatt Liew, Seng; Xiong, Wen; Guy, Mikhael I.; Solomon, Glenn S.; Cao, Hui
2016-01-01
We introduce a topological defect to a regular photonic crystal defect cavity with anisotropic unit cell. Spatially localized resonances are formed and have high quality factor. Unlike the regular photonic crystal defect states, the localized resonances in the topological defect structures support powerflow vortices. Experimentally we realize lasing in the topological defect cavities with optical pumping. This work shows that the spatially inhomogeneous variation of the unit cell orientation adds another degree of freedom to the control of lasing modes, enabling the manipulation of the field pattern and energy flow landscape.
Notes on topological insulators
NASA Astrophysics Data System (ADS)
Kaufmann, Ralph M.; Li, Dan; Wehefritz-Kaufmann, Birgit
2016-11-01
This paper is a survey of the ℤ2-valued invariant of topological insulators used in condensed matter physics. The ℤ-valued topological invariant, which was originally called the TKNN invariant in physics, has now been fully understood as the first Chern number. The ℤ2 invariant is more mysterious; we will explain its equivalent descriptions from different points of view and provide the relations between them. These invariants provide the classification of topological insulators with different symmetries in which K-theory plays an important role. Moreover, we establish that both invariants are realizations of index theorems which can also be understood in terms of condensed matter physics.
Switchable topological phonon channels
NASA Astrophysics Data System (ADS)
Süsstrunk, Roman; Zimmermann, Philipp; Huber, Sebastian D.
2017-01-01
Guiding energy deliberately is one of the central elements in engineering and information processing. It is often achieved by designing specific transport channels in a suitable material. Topological metamaterials offer a way to construct stable and efficient channels of unprecedented versatility. However, due to their stability it can be tricky to terminate them or to temporarily shut them off without changing the material properties massively. While a lot of effort was put into realizing mechanical topological metamaterials, almost no works deal with manipulating their edge channels in sight of applications. Here, we take a step in this direction, by taking advantage of local symmetry breaking potentials to build a switchable topological phonon channel.
Topology-driven magnetic quantum phase transition in topological insulators.
Zhang, Jinsong; Chang, Cui-Zu; Tang, Peizhe; Zhang, Zuocheng; Feng, Xiao; Li, Kang; Wang, Li-Li; Chen, Xi; Liu, Chaoxing; Duan, Wenhui; He, Ke; Xue, Qi-Kun; Ma, Xucun; Wang, Yayu
2013-03-29
The breaking of time reversal symmetry in topological insulators may create previously unknown quantum effects. We observed a magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 topological insulator films grown by means of molecular beam epitaxy. Across the critical point, a topological quantum phase transition is revealed through both angle-resolved photoemission measurements and density functional theory calculations. We present strong evidence that the bulk band topology is the fundamental driving force for the magnetic quantum phase transition. The tunable topological and magnetic properties in this system are well suited for realizing the exotic topological quantum phenomena in magnetic topological insulators.
Hao, F.; Li, S.; Dong, W.; Hu, Z.; Huang, B.
1998-01-01
Three superimposed pressure systems are present in the Yinggehai Basin, South China Sea. A number of commercial, thermogenic gas accumulations have been found in an area in which shale diapirs occur. Because the reservoir intervals are shallow and very young, they must have filled with gas rapidly. The thick (up to 17 km) Tertiary and Quaternary sedimentary succession is dominated by shales, and is not disrupted by major faulting in the study area, a factor which seems to have had an important effect on both hydrocarbon generation and fluid migration. Organic-matter maturation in the deepest, most overpressured compartment has been significantly retarded as a result of the combined effects of excess pressure, the presence of large volumes of water, and the retention of generated hydrocarbons. This retardation is indicated by both kerogen-related parameters (vitrinite reflectance and Rock-Eval T(max)); and also by parameters based on the analysis of soluble organic matter (such as the C15+ hydrocarbon content, and the concentration of isoprenoid hydrocarbons relative to adjacent normal alkanes). In contrast to this, organic-matter maturation in shallow, normally-pressured strata in the diapiric area has been enhanced by hydrothermal fluid flow, which is clearly not topography-driven in origin. As a result, the hydrocarbon generation 'window' in the basin is considerably wider than could be expected from traditional geochemical modelling. These two unusual and contrasting anomalies in organic-matter maturation, together with other lines of evidence, suggest that there was a closed fluid system in the overpressured compartment until shale diapirs developed. The diapirs developed as a result of the intense overpressuring, and their growth was triggered by regional extensional stresses. They served as conduits through which fluids (both water and hydrocarbons) retained in the closed system could rapidly migrate. Fluid migration led to the modification of the thermal
Topological susceptibility from slabs
NASA Astrophysics Data System (ADS)
Bietenholz, Wolfgang; de Forcrand, Philippe; Gerber, Urs
2015-12-01
In quantum field theories with topological sectors, a non-perturbative quantity of interest is the topological susceptibility χ t. In principle it seems straightforward to measure χ t by means of Monte Carlo simulations. However, for local update algorithms and fine lattice spacings, this tends to be difficult, since the Monte Carlo history rarely changes the topological sector. Here we test a method to measure χ t even if data from only one sector are available. It is based on the topological charges in sub-volumes, which we denote as slabs. Assuming a Gaussian distribution of these charges, this method enables the evaluation of χ t, as we demonstrate with numerical results for non-linear σ-models.
Real topological string amplitudes
NASA Astrophysics Data System (ADS)
Narain, K. S.; Piazzalunga, N.; Tanzini, A.
2017-03-01
We discuss the physical superstring correlation functions in type I theory (or equivalently type II with orientifold) that compute real topological string amplitudes. We consider the correlator corresponding to holomorphic derivative of the real topological amplitude G_{χ } , at fixed worldsheet Euler characteristic χ. This corresponds in the low-energy effective action to N=2 Weyl multiplet, appropriately reduced to the orientifold invariant part, and raised to the power g' = -χ + 1. We show that the physical string correlator gives precisely the holomorphic derivative of topological amplitude. Finally, we apply this method to the standard closed oriented case as well, and prove a similar statement for the topological amplitude F_g.
Topological Solitons in Physics.
ERIC Educational Resources Information Center
Parsa, Zohreh
1979-01-01
A broad definition of solitons and a discussion of their role in physics is given. Vortices and magnetic monopoles which are examples of topological solitons in two and three spatial dimensions are described in some detail. (BB)
Topological nodal line semimetals
NASA Astrophysics Data System (ADS)
Fang, Chen; Weng, Hongming; Dai, Xi; Fang, Zhong
2016-11-01
We review the recent, mainly theoretical, progress in the study of topological nodal line semimetals in three dimensions. In these semimetals, the conduction and the valence bands cross each other along a one-dimensional curve in the three-dimensional Brillouin zone, and any perturbation that preserves a certain symmetry group (generated by either spatial symmetries or time-reversal symmetry) cannot remove this crossing line and open a full direct gap between the two bands. The nodal line(s) is hence topologically protected by the symmetry group, and can be associated with a topological invariant. In this review, (i) we enumerate the symmetry groups that may protect a topological nodal line; (ii) we write down the explicit form of the topological invariant for each of these symmetry groups in terms of the wave functions on the Fermi surface, establishing a topological classification; (iii) for certain classes, we review the proposals for the realization of these semimetals in real materials; (iv) we discuss different scenarios that when the protecting symmetry is broken, how a topological nodal line semimetal becomes Weyl semimetals, Dirac semimetals, and other topological phases; and (v) we discuss the possible physical effects accessible to experimental probes in these materials. Project partially supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0302400 and 2016YFA0300604), partially by the National Natural Science Foundation of China (Grant Nos. 11274359 and 11422428), the National Basic Research Program of China (Grant No. 2013CB921700), and the “Strategic Priority Research Program (B)” of the Chinese Academy of Sciences (Grant No. XDB07020100).
"Jeopardy" in Abnormal Psychology.
ERIC Educational Resources Information Center
Keutzer, Carolin S.
1993-01-01
Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)
NASA Astrophysics Data System (ADS)
Zelenyuk, E. G.; Protasov, I. V.
1991-04-01
A filter phi on an abelian group G is called a T-filter if there exists a Hausdorff group topology under which phi converges to zero. G{phi} will denote the group G with the largest topology among those making phi converge to zero. This method of defining a group topology is completely equivalent to the definition of an abstract group by defining relations. We shall obtain characterizations of T-filters and of T-sequences; among these, we shall pay particular attention to T-sequences on the integers. The method of T-sequences will be used to construct a series of counterexamples for several open problems in topological algebra. For instance there exists, on every infinite abelian group, a topology distinguishing between sequentiality and the Fréchet-Urysohn property (this solves a problem posed by V.I. Malykhin) we also find a topology on the group of integers admitting no nontrivial continuous character, thus solving a problem of Nienhuys. We show also that on every infinite abelian group there exists a free ultrafilter which is not a T-ultrafilter.
NASA Astrophysics Data System (ADS)
He, Cheng; Lin, Liang; Sun, Xiao-Chen; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng
2014-01-01
As exotic phenomena in optics, topological states in photonic crystals have drawn much attention due to their fundamental significance and great potential applications. Because of the broken time-reversal symmetry under the influence of an external magnetic field, the photonic crystals composed of magneto-optical materials will lead to the degeneracy lifting and show particular topological characters of energy bands. The upper and lower bulk bands have nonzero integer topological numbers. The gapless edge states can be realized to connect two bulk states. This topological photonic states originated from the topological property can be analogous to the integer quantum Hall effect in an electronic system. The gapless edge state only possesses a single sign of gradient in the whole Brillouin zone, and thus the group velocity is only in one direction leading to the one-way energy flow, which is robust to disorder and impurity due to the nontrivial topological nature of the corresponding electromagnetic states. Furthermore, this one-way edge state would cross the Brillouin center with nonzero group velocity, where the negative-zero-positive phase velocity can be used to realize some interesting phenomena such as tunneling and backward phase propagation. On the other hand, under the protection of time-reversal symmetry, a pair of gapless edge states can also be constructed by using magnetic-electric coupling meta-materials, exhibiting Fermion-like spin helix topological edge states, which can be regarded as an optical counterpart of topological insulator originating from the spin-orbit coupling. The aim of this article is to have a comprehensive review of recent research literatures published in this emerging field of photonic topological phenomena. Photonic topological states and their related phenomena are presented and analyzed, including the chiral edge states, polarization dependent transportation, unidirectional waveguide and nonreciprocal optical transmission, all
PhyBin: binning trees by topology.
Newton, Ryan R; Newton, Irene L G
2013-01-01
A major goal of many evolutionary analyses is to determine the true evolutionary history of an organism. Molecular methods that rely on the phylogenetic signal generated by a few to a handful of loci can be used to approximate the evolution of the entire organism but fall short of providing a global, genome-wide, perspective on evolutionary processes. Indeed, individual genes in a genome may have different evolutionary histories. Therefore, it is informative to analyze the number and kind of phylogenetic topologies found within an orthologous set of genes across a genome. Here we present PhyBin: a flexible program for clustering gene trees based on topological structure. PhyBin can generate bins of topologies corresponding to exactly identical trees or can utilize Robinson-Fould's distance matrices to generate clusters of similar trees, using a user-defined threshold. Additionally, PhyBin allows the user to adjust for potential noise in the dataset (as may be produced when comparing very closely related organisms) by pre-processing trees to collapse very short branches or those nodes not meeting a defined bootstrap threshold. As a test case, we generated individual trees based on an orthologous gene set from 10 Wolbachia species across four different supergroups (A-D) and utilized PhyBin to categorize the complete set of topologies produced from this dataset. Using this approach, we were able to show that although a single topology generally dominated the analysis, confirming the separation of the supergroups, many genes supported alternative evolutionary histories. Because PhyBin's output provides the user with lists of gene trees in each topological cluster, it can be used to explore potential reasons for discrepancies between phylogenies including homoplasies, long-branch attraction, or horizontal gene transfer events.
LHCb Topological Trigger Reoptimization
NASA Astrophysics Data System (ADS)
Likhomanenko, Tatiana; Ilten, Philip; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Williams, Michael
2015-12-01
The main b-physics trigger algorithm used by the LHCb experiment is the so- called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all ’interesting” decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays.
Topologically universal spectral hierarchies of quasiperiodic systems
NASA Astrophysics Data System (ADS)
Dana, Itzhack
2014-05-01
Topological properties of energy spectra of general one-dimensional quasiperiodic systems, describing also Bloch electrons in magnetic fields, are studied for an infinity of irrational modulation frequencies corresponding to irrational numbers of flux quanta per unit cell. These frequencies include well-known ones considered in works on Fibonacci quasicrystals. It is shown that the spectrum for any such frequency exhibits a self-similar hierarchy of clusters characterized by universal (system-independent) values of Chern topological integers which are exactly determined. The cluster hierarchy provides a simple and systematic organization of all the spectral gaps, labeled by universal topological numbers which are exactly determinable, thus avoiding their numerical evaluation using rational approximants of the irrational frequency. These numbers give both the quantum Hall conductance of the system and the winding number of the edge-state energy traversing a gap as a Bloch quasimomentum is varied.
Topology theory on rough sets.
Wu, QingE; Wang, Tuo; Huang, YongXuan; Li, JiSheng
2008-02-01
For further studying the theories and applications of rough sets (RS), this paper proposes a new theory on RS, which mainly includes topological space, topological properties, homeomorphism, and its properties on RS by some new definitions and theorems given. The relationship between partition and countable open covering is discussed, and some applications based on the topological rough space and its topological properties are introduced. Moreover, some perspectives for future research are given. Throughout this paper, the advancements of the new theory on RS and topological algebra not only represent an important theoretical value but also exhibit significant applications of RS and topology.
Topological hierarchy matters — topological matters with superlattices of defects
NASA Astrophysics Data System (ADS)
He, Jing; Kou, Su-Peng
2016-11-01
Topological insulators/superconductors are new states of quantum matter with metallic edge/surface states. In this paper, we review the defects effect in these topological states and study new types of topological matters — topological hierarchy matters. We find that both topological defects (quantized vortices) and non topological defects (vacancies) can induce topological mid-gap states in the topological hierarchy matters after considering the superlattice of defects. These topological mid-gap states have nontrivial topological properties, including the nonzero Chern number and the gapless edge states. Effective tight-binding models are obtained to describe the topological mid-gap states in the topological hierarchy matters. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921803 and 2012CB921704), the National Natural Science Foundation of China (Grant Nos. 11174035, 11474025, 11404090, and 11674026), the Natural Science Foundation of Hebei Province, China (Grant No. A2015205189), the Hebei Education Department Natural Science Foundation, China (Grant No. QN2014022), and the Specialized Research Fund for the Doctoral Program of Higher Education, China.
[The relativity of abnormity].
Nilson, Annika
2006-01-01
In the late 19th century and in the beginning of the 20th century, mental diseases and abnormal behavior was considered to be a great danger to culture and society. "Degeneration" was the buzzword of the time, used and misused by artists and scientists alike. At the same time, some scientists saw abnormity as the key to unlock the mysteries of the ordinary mind. Naturalistic curiosity left Pandoras box open when religion declined in Darwins wake. Two swedish scientists, the physician Bror Gadelius (1862-1938) and his friend the philosopher Axel Herrlin (1870-1937), inspired by the French psychologist Theodule Ribots (1839-1916) "psychology without a soul", denied all fixed demarcation lines between abnormity and normality. All humans are natures creatures ruled by physiological laws, not ruled by God or convention. Even ordinary morality was considered to be an utterly backward explanation and guideline for complex human behavior. Different forms of therapy, not various kinds of penalties for wicked and disturbing behavior, are the now the solution for lots of people, "normal" as well as "abnormal". Psychiatry is expanding.
Abnormalities of gonadal differentiation.
Berkovitz, G D; Seeherunvong, T
1998-04-01
Gonadal differentiation involves a complex interplay of developmental pathways. The sex determining region Y (SRY) gene plays a key role in testis determination, but its interaction with other genes is less well understood. Abnormalities of gonadal differentiation result in a range of clinical problems. 46,XY complete gonadal dysgenesis is defined by an absence of testis determination. Subjects have female external genitalia and come to clinical attention because of delayed puberty. Individuals with 46,XY partial gonadal dysgenesis usually present in the newborn period for the valuation of ambiguous genitalia. Gonadal histology always shows an abnormality of seminiferous tubule formation. A diagnosis of 46,XY true hermaphroditism is made if the gonads contain well-formed testicular and ovarian elements. Despite the pivotal role of the SRY gene in testis development, mutations of SRY are unusual in subjects with a 46,XY karyotype and abnormal gonadal development. 46,XX maleness is defined by testis determination in an individual with a 46,XX karyotype. Most affected individuals have a phenotype similar to that of Klinefelter syndrome. In contrast, subjects with 46,XX true hermaphroditism usually present with ambiguous genitalia. The majority of subjects with 46,XX maleness have Y sequences including SRY in genomic DNA. However, only rare subjects with 46,XX true hermaphroditism have translocated sequences encoding SRY. Mosaicism and chimaerism involving the Y chromosome can also be associated with abnormal gonadal development. However, the vast majority of subjects with 45,X/46,XY mosaicism have normal testes and normal male external genitalia.
Rendering the Topological Spines
Nieves-Rivera, D.
2015-05-05
Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.
NASA Astrophysics Data System (ADS)
Garity, Dennis J.; Repovš, Dušan
2008-11-01
We discuss some basic topological techniques used in the study of chaotic dynamical systems. This paper is partially motivated by a talk given by the second author at the 7th international summer school and conference Chaos 2008: Let's Face Chaos Through Nonlinear Dynamics (CAMTP, University of Maribor, Slovenia, 29 June-13 July 2008).
Synthesising topological links
Baas, Nils A.; Seeman, Nadrian C.; Stacey, Andrew
2014-10-14
In this paper, we discuss the chemical synthesis of topological links, in particular higher order links which have the Brunnian property (namely that removal of any one component unlinks the entire system). Finally, we suggest how to obtain both two dimensional and three dimensional objects (surfaces and solids, respectively) which also have this Brunnian property.
Order, topology and preference
NASA Technical Reports Server (NTRS)
Sertel, M. R.
1971-01-01
Some standard order-related and topological notions, facts, and methods are brought to bear on central topics in the theory of preference and the theory of optimization. Consequences of connectivity are considered, especially from the viewpoint of normally preordered spaces. Examples are given showing how the theory of preference, or utility theory, can be applied to social analysis.
Spontaneous origin of topological complexity in the cerebral cortex
Chapline, G.
1995-04-07
Attention is drawn to the possibility of regarding the cerebral cortex as a physical system whose only excitations are topological. An attractive feature of such a hypothesis is that it is possible to understand how local dynamics could spontaneously give rise to a large scale organization of neurons and synapses that one might associate with sophisticated cognitive capabilities. It is suggested that the spontaneous appearance of topological disorder in the topological phases of 2-D and 4-D quantum gravity illustrates how the topological complexity of the human brain can develop. In particular the cooperative behavior of different neural circuits in the cerebral cortex may be closely related to the topology of certain 4-manifolds.
A role for chromatin topology in imprinted domain regulation.
MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W
2016-02-01
Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.
Noncommuting Momenta of Topological Solitons
NASA Astrophysics Data System (ADS)
Watanabe, Haruki; Murayama, Hitoshi
2014-05-01
We show that momentum operators of a topological soliton may not commute among themselves when the soliton is associated with the second cohomology H2 of the target space. The commutation relation is proportional to the winding number, taking a constant value within each topological sector. The noncommutativity makes it impossible to specify the momentum of a topological soliton, and induces a Magnus force.
Heritable bovine fetal abnormalities.
Whitlock, B K; Kaiser, L; Maxwell, H S
2008-08-01
The etiologies for congenital bovine fetal anomalies can be divided into heritable, toxic, nutritional, and infectious categories. Although uncommon in most herds, inherited congenital anomalies are probably present in all breeds of cattle and propagated as a result of specific trait selection that inadvertently results in propagation of the defect. In some herds, the occurrence of inherited anomalies has become frequent, and economically important. Anomalous traits can affect animals in a range of ways, some being lethal or requiring euthanasia on humane grounds, others altering structure, function, or performance of affected animals. Veterinary practitioners should be aware of the potential for inherited defects, and be prepared to investigate and report animals exhibiting abnormal characteristics. This review will discuss the morphologic characteristics, mode of inheritance, breeding lines affected, and the availability of genetic testing for selected heritable bovine fetal abnormalities.
Liver abnormalities in pregnancy.
Than, Nwe Ni; Neuberger, James
2013-08-01
Abnormalities of liver function (notably rise in alkaline phosphatase and fall in serum albumin) are common in normal pregnancy, whereas rise in serum bilirubin and aminotransferase suggest either exacerbation of underlying pre-existing liver disease, liver disease related to pregnancy or liver disease unrelated to pregnancy. Pregnant women appear to have a worse outcome when infected with Hepatitis E virus. Liver diseases associated with pregnancy include abnormalities associated hyperemesis gravidarum, acute fatty liver disease, pre-eclampsia, cholestasis of pregnancy and HELLP syndrome. Prompt investigation and diagnosis is important in ensuring a successful maternal and foetal outcome. In general, prompt delivery is the treatment of choice for acute fatty liver, pre-eclampsia and HELLP syndrome and ursodeoxycholic acid is used for cholestasis of pregnancy although it is not licenced for this indication.
Morphological abnormalities in elasmobranchs.
Moore, A B M
2015-08-01
A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.
Anatomical Abnormalities in Autism?
Haar, Shlomi; Berman, Sigal; Behrmann, Marlene; Dinstein, Ilan
2016-04-01
Substantial controversy exists regarding the presence and significance of anatomical abnormalities in autism spectrum disorders (ASD). The release of the Autism Brain Imaging Data Exchange (∼1000 participants, age 6-65 years) offers an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across groups and to resolve many of the outstanding questions. Comprehensive univariate analyses using volumetric, thickness, and surface area measures of over 180 anatomically defined brain areas, revealed significantly larger ventricular volumes, smaller corpus callosum volume (central segment only), and several cortical areas with increased thickness in the ASD group. Previously reported anatomical abnormalities in ASD including larger intracranial volumes, smaller cerebellar volumes, and larger amygdala volumes were not substantiated by the current study. In addition, multivariate classification analyses yielded modest decoding accuracies of individuals' group identity (<60%), suggesting that the examined anatomical measures are of limited diagnostic utility for ASD. While anatomical abnormalities may be present in distinct subgroups of ASD individuals, the current findings show that many previously reported anatomical measures are likely to be of low clinical and scientific significance for understanding ASD neuropathology as a whole in individuals 6-35 years old.
Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia
Bassett, Danielle S.; Bullmore, Edward; Verchinski, Beth A.; Mattay, Venkata S.; Weinberger, Daniel R.; Meyer-Lindenberg, Andreas
2009-01-01
The complex organization of connectivity in the human brain is incompletely understood. Recently, topological measures based on graph theory have provided a new approach to quantify large-scale cortical networks. These methods have been applied to anatomical connectivity data on non-human species and cortical networks have been shown to have small-world topology, associated with high local and global efficiency of information transfer. Anatomical networks derived from cortical thickness measurements have shown the same organizational properties of the healthy human brain, consistent with similar results reported in functional networks derived from resting state functional MRI and MEG data. Here we show, using anatomical networks derived from analysis of inter-regional covariation of gray matter volume in magnetic resonance imaging (MRI) data on 259 healthy volunteers, that classical divisions of cortex (multimodal, unimodal and transmodal) have some distinct topological attributes. While all cortical divisions shared non-random properties of small-worldness and efficient wiring (short mean Euclidean distance between connected regions), the multimodal network had a hierarchical organization, dominated by frontal hubs with low clustering, whereas the transmodal network was assortative. Moreover, in a sample of 203 people with schizophrenia, multimodal network organization was abnormal, as indicated by reduced hierarchy, the loss of frontal and the emergence of non-frontal hubs, and increased connection distance. We propose that the topological differences between divisions of normal cortex may represent the outcome of different growth processes for multimodal and transmodal networks; and that neurodevelopmental abnormalities in schizophrenia specifically impact multimodal cortical organization. PMID:18784304
Abnormal pressures as hydrodynamic phenomena
Neuzil, C.E.
1995-01-01
So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author
Floquet topological insulators for sound
Fleury, Romain; Khanikaev, Alexander B; Alù, Andrea
2016-01-01
The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters. PMID:27312175
Floquet topological insulators for sound
NASA Astrophysics Data System (ADS)
Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea
2016-06-01
The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.
[Molecular abnormalities in lymphomas].
Delsol, G
2010-11-01
Numerous molecular abnormalities have been described in lymphomas. They are of diagnostic and prognostic value and are taken into account for the WHO classification of these tumors. They also shed some light on the underlying molecular mechanisms involved in lymphomas. Overall, four types of molecular abnormalities are involved: mutations, translocations, amplifications and deletions of tumor suppressor genes. Several techniques are available to detect these molecular anomalies: conventional cytogenetic analysis, multicolor FISH, CGH array or gene expression profiling using DNA microarrays. In some lymphomas, genetic abnormalities are responsible for the expression of an abnormal protein (e.g. tyrosine-kinase, transcription factor) detectable by immunohistochemistry. In the present review, molecular abnormalities observed in the most frequent B, T or NK cell lymphomas are discussed. In the broad spectrum of diffuse large B-cell lymphomas microarray analysis shows mostly two subgroups of tumors, one with gene expression signature corresponding to germinal center B-cell-like (GCB: CD10+, BCL6 [B-Cell Lymphoma 6]+, centerine+, MUM1-) and a subgroup expressing an activated B-cell-like signature (ABC: CD10-, BCL6-, centerine-, MUM1+). Among other B-cell lymphomas with well characterized molecular abnormalies are follicular lymphoma (BCL2 deregulation), MALT lymphoma (Mucosa Associated Lymphoid Tissue) [API2-MALT1 (mucosa-associated-lymphoid-tissue-lymphoma-translocation-gene1) fusion protein or deregulation BCL10, MALT1, FOXP1. MALT1 transcription factors], mantle cell lymphoma (cycline D1 [CCND1] overexpression) and Burkitt lymphoma (c-Myc expression). Except for ALK (anaplastic lymphoma kinase)-positive anaplastic large cell lymphoma, well characterized molecular anomalies are rare in lymphomas developed from T or NK cells. Peripheral T cell lymphomas not otherwise specified are a heterogeneous group of tumors with frequent but not recurrent molecular abnormalities
Quist, Daniel A.; Gavrilov, Eugene M.; Fisk, Michael E.
2008-01-15
A method enables the topology of an acyclic fully propagated network to be discovered. A list of switches that comprise the network is formed and the MAC address cache for each one of the switches is determined. For each pair of switches, from the MAC address caches the remaining switches that see the pair of switches are located. For each pair of switches the remaining switches are determined that see one of the pair of switches on a first port and the second one of the pair of switches on a second port. A list of insiders is formed for every pair of switches. It is determined whether the insider for each pair of switches is a graph edge and adjacent ones of the graph edges are determined. A symmetric adjacency matrix is formed from the graph edges to represent the topology of the data link network.
Topological States of Heterostructures
NASA Astrophysics Data System (ADS)
Usanmaz, Demet; Nath, Pinku; Plata, Jose J.; Buongiorno Nardelli, Marco; Fornari, Marco; Curtarolo, Stefano
Topological insulators (TIs) have exotic properties, such as having insulating behavior in the bulk and metallic states at the surface [1]. Observations of metallic states rely on the spin-orbit induced band inversion in bulk materials and are protected by time-reversal symmetry or crystal symmetry [ 2 ]. These remarkable characteristics of TIs give rise to various applications from spintronics to quantum computers. In order to broaden the range of applications of TIs and make it more effective, an exploration of high quality heterostructures are required. Creating heterostructures of TIs has recently demonstrated to be advantageous for controlling electronic properties [3]. Inspired by these interesting properties, we have investigated the topological interface states of heterostructures.
Hemorheological abnormalities in human arterial hypertension
NASA Astrophysics Data System (ADS)
Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio
2014-05-01
Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.
Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.
ERIC Educational Resources Information Center
Fernald, Charles D.
1980-01-01
Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…
Technologies for converter topologies
Zhou, Yan; Zhang, Haiyu
2017-02-28
In some embodiments of the disclosed inverter topologies, an inverter may include a full bridge LLC resonant converter, a first boost converter, and a second boost converter. In such embodiments, the first and second boost converters operate in an interleaved manner. In other disclosed embodiments, the inverter may include a half-bridge inverter circuit, a resonant circuit, a capacitor divider circuit, and a transformer.
Designing topologicality using oxides
NASA Astrophysics Data System (ADS)
Pardo, Victor
In this talk we will describe a series of ab intio calculations carried out on different oxide-based systems and their nanostructures that show emerging non-trivial topological properties or nodal Fermi surfaces. We will show that various well-known oxide structures with the appropriate filling host Dirac points at the Fermi level that could eventually respond to spin-orbit coupling. In particular, we will focus on the results obtained in rutile multilayers, perovskite bilayers grown along the polar (111) direction and corundum-based multilayers. Topologically non-trivial phases occur in various limits of spin-orbit coupling strength and on-site Coulomb repulsion, using different fillings of the d-shell for various 3d and 5d elements in the active layers. The different systems will be discussed and compared to try to understand the key ingredients that lead to non-trivial topological properties in oxides and how these can be enhanced or tuned. We acknowledge support of the MINECO through the Ramon y Cajal Program and Project No. MAT2013-44673-R and Xunta de Galicia through Project No. EM2013/037.
Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C.; Farsiu, Sina
2015-01-01
Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree—what connects to what—from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph—which edge endpoint is closer to the root of the tree—but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree datasets show that our methodology is both accurate and efficient. PMID:26353004
NASA Astrophysics Data System (ADS)
Oda, Ichiro
We propose a topological model of induced gravity (pregeometry) where both Newton’s coupling constant and the cosmological constant appear as integration constants in solving field equations. The matter sector of a scalar field is also considered, and by solving field equations it is shown that various types of cosmological solutions in the Friedmann-Robertson-Walker (FRW) universe can be obtained. A detailed analysis is given of the meaning of the BRST transformations, which make the induced gravity be a topological field theory, by means of the canonical quantization analysis, and the physical reason why such BRST transformations are needed in the present formalism is clarified. Finally, we propose a dynamical mechanism for fixing the Lagrange multiplier fields by following the Higgs mechanism. The present study clearly indicates that the induced gravity can be constructed at the classical level without recourse to quantum fluctuations of matter and suggests an interesting relationship between the induced gravity and the topological quantum-field theory (TQFT).
Exercises to Improve Gait Abnormalities
... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...
Abnormal human sex chromosome constitutions
1993-12-31
Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.
Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R
2014-10-24
Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients.
Transportation Network Topologies
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Scott, John M.
2004-01-01
A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21PstP thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within
Transportation Network Topologies
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Scott, John
2004-01-01
A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21st thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which
Schizophrenia and abnormal brain network hubs.
Rubinov, Mikail; Bullmore, Ed
2013-09-01
Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia.
Retinal abnormalities in β-thalassemia major
Bhoiwala, Devang L.; Dunaief, Joshua L.
2015-01-01
Patients with beta (β)-thalassemia (β-TM: thalassemia major, β-TI: thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelium degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-TM are transfusion dependent and require iron chelation therapy (ICT) in order to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by ICT. Some who were never treated with ICT exhibited retinopathy, and others receiving ICT had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-TM viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202
Epilepsy and chromosomal abnormalities
2010-01-01
Background Many chromosomal abnormalities are associated with Central Nervous System (CNS) malformations and other neurological alterations, among which seizures and epilepsy. Some of these show a peculiar epileptic and EEG pattern. We describe some epileptic syndromes frequently reported in chromosomal disorders. Methods Detailed clinical assessment, electrophysiological studies, survey of the literature. Results In some of these congenital syndromes the clinical presentation and EEG anomalies seems to be quite typical, in others the manifestations appear aspecific and no strictly linked with the chromosomal imbalance. The onset of seizures is often during the neonatal period of the infancy. Conclusions A better characterization of the electro clinical patterns associated with specific chromosomal aberrations could give us a valuable key in the identification of epilepsy susceptibility of some chromosomal loci, using the new advances in molecular cytogenetics techniques - such as fluorescent in situ hybridization (FISH), subtelomeric analysis and CGH (comparative genomic hybridization) microarray. However further studies are needed to understand the mechanism of epilepsy associated with chromosomal abnormalities. PMID:20438626
Scaling in topological properties of brain networks
Singh, Soibam Shyamchand; Khundrakpam, Budhachandra; Reid, Andrew T.; Lewis, John D.; Evans, Alan C.; Ishrat, Romana; Sharma, B. Indrajit; Singh, R. K. Brojen
2016-01-01
The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature. The parameters which characterize topological properties of brain networks follow one parameter scaling theory in all levels of network structure, which reveals the self-similar rules governing the network structure. Further, the calculated fractal dimensions of brain networks of different species are found to decrease when one goes from lower to higher level species which implicates the more ordered and self-organized topography at higher level species. The sparsely distributed hubs in brain networks may be most influencing nodes but their absence may not cause network breakdown, and centrality parameters characterizing them also follow one parameter scaling law indicating self-similar roles of these hubs at different levels of organization in brain networks. The local-community-paradigm decomposition plot and calculated local-community-paradigm-correlation co-efficient of brain networks also shows the evidence for self-organization in these networks. PMID:27112129
ERIC Educational Resources Information Center
Lynch, Mark
2012-01-01
We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…
OPTIMAL NETWORK TOPOLOGY DESIGN
NASA Technical Reports Server (NTRS)
Yuen, J. H.
1994-01-01
This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.
NASA Astrophysics Data System (ADS)
Dijkgraaf, Robbert; Verlinde, Herman; Verlinde, Erik
1991-03-01
We calculate correlation functions in minimal topological field theories. These twisted versions of N = 2 minimal models have recently been proposed to describe d < 1 matrix models, once coupled to topological gravity. In our calculation we make use of the Landau-Ginzburg formulation of the N = 2 models, and we find a direct relation between the Landau-Ginzburg superpotential and the KdV differential operator. Using this correspondence we show that the minimal topological models are in perfect agreement with the matrix models as solved in terms of the KdV hierarchy. This proves the equivalence at tree-level of topological and ordinary string thoery in d < 1.
Topological forms of information
Baudot, Pierre; Bennequin, Daniel
2015-01-13
We propose that entropy is a universal co-homological class in a theory associated to a family of observable quantities and a family of probability distributions. Three cases are presented: 1) classical probabilities and random variables; 2) quantum probabilities and observable operators; 3) dynamic probabilities and observation trees. This gives rise to a new kind of topology for information processes. We discuss briefly its application to complex data, in particular to the structures of information flows in biological systems. This short note summarizes results obtained during the last years by the authors. The proofs are not included, but the definitions and theorems are stated with precision.
Bombin, H.
2010-03-15
We introduce a family of two-dimensional (2D) topological subsystem quantum error-correcting codes. The gauge group is generated by two-local Pauli operators, so that two-local measurements are enough to recover the error syndrome. We study the computational power of code deformation in these codes and show that boundaries cannot be introduced in the usual way. In addition, we give a general mapping connecting suitable classical statistical mechanical models to optimal error correction in subsystem stabilizer codes that suffer from depolarizing noise.
Skeletal abnormalities in homocystinuria.
Brenton, D. P.
1977-01-01
The skeletal changes of thirty-four patients with the biochemical and clinical features of cystathionine synthase deficiency are described. It is emphasized that there is clinical evidence of excessive bone growth and the formation for bone which is structurally weaker than normal. The similarities and differences between this condition and Marfan's syndrome are stressed and the possible nature of the connective tissue defect leading to the skeletal changes discussed. The most characteristic skeletal changes in homocystinuria are the skeletal disproportion (pubis-heel length greater than crown-pubis length), the abnormal vertebrae, sternal deformities, genu valgum and large metaphyses and epiphyses. Images Fig. 2 Fig. 3 Fig. 4 Fig. 8 Fig. 9 Fig. 10 PMID:917963
Moncayo, Jorge; Bogousslavsky, Julien
2012-01-01
Generation and control of eye movements requires the participation of the cortex, basal ganglia, cerebellum and brainstem. The signals of this complex neural network finally converge on the ocular motoneurons of the brainstem. Infarct or hemorrhage at any level of the oculomotor system (though more frequent in the brain-stem) may give rise to a broad spectrum of eye movement abnormalities (EMAs). Consequently, neurologists and particularly stroke neurologists are routinely confronted with EMAs, some of which may be overlooked in the acute stroke setting and others that, when recognized, may have a high localizing value. The most complex EMAs are due to midbrain stroke. Horizontal gaze disorders, some of them manifesting unusual patterns, may occur in pontine stroke. Distinct varieties of nystagmus occur in cerebellar and medullary stroke. This review summarizes the most representative EMAs from the supratentorial level to the brainstem.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
Topological implications of inhomogeneity
NASA Astrophysics Data System (ADS)
Roukema, Boudewijn F.; Blanlœil, Vincent; Ostrowski, Jan J.
2013-02-01
The approximate homogeneity of spatial sections of the Universe is well supported observationally, but the inhomogeneity of the spatial sections is even better supported. Here, we consider the implications of inhomogeneity in dust models for the connectedness of spatial sections at early times. We consider a nonglobal Lemaître-Tolman-Bondi (LTB) model designed to match observations, a more general, heuristic model motivated by the former, and two specific, global LTB models. We propose that the generic class of solutions of the Einstein equations projected back in time from the spatial section at the present epoch includes subclasses in which the spatial section evolves (with increasing time) smoothly (i) from being disconnected to being connected, or (ii) from being simply connected to being multiply connected, where the coordinate system is comoving and synchronous. We show that (i) and (ii) each contain at least one exact solution. These subclasses exist because the Einstein equations allow nonsimultaneous big bang times. The two types of topology evolution occur over time slices that include significantly postquantum epochs if the bang time varies by much more than a Planck time. In this sense, it is possible for cosmic topology evolution to be “mostly” classical.
NASA Astrophysics Data System (ADS)
Baulieu, L.; Toppan, Francesco
2016-11-01
We extend to a possibly infinite chain the conformally invariant mechanical system that was introduced earlier as a toy model for understanding the topological Yang-Mills theory. It gives a topological quantum model that has interesting and computable zero modes and topological invariants. It confirms the recent conjecture by several authors that supersymmetric quantum mechanics may provide useful tools for understanding robotic mechanical systems (Vitelli et al.) and condensed matter properties (Kane et al.), where trajectories are allowed or not by the conservation of topological indices. The absences of ground state and mass gaps are special features of such systems.
Akasaka, Hironari; So, Shui-Ping; Ruan, Ke-He
2015-06-16
In vascular inflammation, prostaglandin E2 (PGE₂) is largely biosynthesized by microsomal PGE₂ synthase-1 (mPGES-1), competing with other downstream eicosanoid-synthesizing enzymes, such as PGIS, a synthase of a vascular protector prostacyclin (PGI₂), to isomerize the cyclooxygenase (COX)-2-derived prostaglandin H2 (PGH₂). In this study, we found that a majority of the product from the cells co-expressing human COX-2, mPGES-1, and PGIS was PGE₂. We hypothesize that the molecular and cellular mechanisms are related to the post-translational endoplasmic reticulum (ER) arrangement of those enzymes. A set of fusion enzymes, COX-2-linker [10 amino acids (aa)]-PGIS and COX-2-linker (22 amino acids)-PGIS, were created as "The Bioruler", in which the 10 and 22 amino acids are defined linkers with known helical structures and distances (14.4 and 30.8 Å, respectively). Our experiments have shown that the efficiency of PGI₂ biosynthesis was reduced when the separation distance increased from 10 to 22 amino acids. When COX-2-10aa-PGIS (with a 14.4 Å separation) was co-expressed with mPGES-1 on the ER membrane, a major product was PGE₂, but not PGI₂. However, expression of COX-2-10aa-PGIS and mPGES-1 on a separated ER with a distance of ≫30.8 Å reduced the level of PGE₂ production. These data indicated that the mPGES-1 is "complex-likely" colocalized with COX-2 within a distance of 14.4 Å. In addition, the cells co-expressing COX-1-10aa-PGIS and mPGES-1 produced PGI₂ mainly, but not PGE₂. This indicates that mPGES-1 is expressed much farther from COX-1. These findings have led to proposed models showing the different post-translational ER organization between COX-2 and COX-1 with respect to the topological arrangement of the mPGES-1 during vascular inflammation.
The birth of topological insulators.
Moore, Joel E
2010-03-11
Certain insulators have exotic metallic states on their surfaces. These states are formed by topological effects that also render the electrons travelling on such surfaces insensitive to scattering by impurities. Such topological insulators may provide new routes to generating novel phases and particles, possibly finding uses in technological applications in spintronics and quantum computing.
Concept Model on Topological Learning
NASA Astrophysics Data System (ADS)
Ae, Tadashi; Kioi, Kazumasa
2010-11-01
We discuss a new model for concept based on topological learning, where the learning process on the neural network is represented by mathematical topology. The topological learning of neural networks is summarized by a quotient of input space and the hierarchical step induces a tree where each node corresponds to a quotient. In general, the concept acquisition is a difficult problem, but the emotion for a subject is represented by providing the questions to a person. Therefore, a kind of concept is captured by such data and the answer sheet can be mapped into a topology consisting of trees. In this paper, we will discuss a way of mapping the emotional concept to a topological learning model.
Signatures of topological Josephson junctions
NASA Astrophysics Data System (ADS)
Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix
2016-08-01
Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.
Disorder induced Floquet Topological Insulators
NASA Astrophysics Data System (ADS)
Bhattacharjee, Paraj; Lindner, Netanel; Rechtsman, Mikael; Refael, Gil
2014-03-01
We investigate the possibility of realizing a disorder induced topological state in two dimensional periodically driven systems. This phenomenon is akin to the topological Anderson insulator (TAI) in equilibrium systems. We focus on graphene band structures, where in the presence of the driving electromagnetic field, but in the absence of disorder, the system starts off in a trivial state due to the presence of a sublattice potential. We show that by adding on-site disorder a topological state is induced in this system. We numerically compute the average Bott index (the analog of the Chern number for disordered systems) to show that starting from a trivial phase, topological behavior can be observed at finite disorder strength. In the topological phase, we detect chiral edge states by a numerical time evolution of wavepackets at the edge of the system. We propose an experimental set-up in photonic lattices to observe this phenomenon.
ERIC Educational Resources Information Center
Chian, Edward S. K.; DeWalle, Foppe B.
1978-01-01
Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)
ERIC Educational Resources Information Center
Callison, Daniel
2000-01-01
Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a…
Gear tooth topological modification
NASA Technical Reports Server (NTRS)
Kish, Jules G. (Inventor); Isabelle, Charles (Inventor)
1994-01-01
The topology of parallel axis gears, such as spur and helical gears is modified to produce quieter and more smoothly operating gear sets with more uniform load distribution. A finite element analysis of the gear in its operating mode is made to produce a plot of radial and tangential deflections of the pinion and gear tooth surfaces which will occur when the gears are loaded during operation. The resultant plot is then inverted to produce a plot, or set of coordinates, which will define the path of travel of the gear tooth grinding wheel, which path is a mirror image of the plot of the finite element analysis. The resulting gears, when subjected to operating loads, will thus be deflected tangentially and radially to their optimum operating, or theoretical true involute, positions so as to produce quieter, smoother, and more evenly loaded gear trains.
Transformable topological mechanical metamaterials
NASA Astrophysics Data System (ADS)
Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming
2017-01-01
Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here we discuss the classification of and propose a design principle for mechanical metamaterials that can be easily and reversibly transformed between states with dramatically different mechanical and acoustic properties via a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as the edge stiffness and speed of sound can change by orders of magnitude. We show that the existence and form of a soft deformation directly determines floppy edge modes and phonon dispersion. Finally, we generalize the soft strain to generate domain structures that allow further tuning of the material.
Detectability of nontrivial topologies
Kunz, M.; Aghanim, N.; Riazuelo, A.; Forni, O.
2008-01-15
We study how the uncertainty in the cosmological parameters impacts on the detection of topological signals, focussing on three cubic torus universes and using three tests: the information content, the S/N statistic, and the Bayesian evidence. We find, within the concordance cosmological model, that 3D torus universes with a size of {approx}29 Gpc{sup 3} or larger cannot be detected. For the toroidal models that can be detected, the detection significance is primarily influenced by {omega}{sub {lambda}}, which enters both in the noise amplitude due to the Integrated Sachs-Wolfe effect and in the size of the causal horizon which limits the accessible fundamental domain. On large angular scales l<40, only {omega}{sub {lambda}} significantly alters the detection for all three estimators considered here.
Transformable topological mechanical metamaterials
Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming
2017-01-01
Mechanical metamaterials are engineered materials whose structures give them novel mechanical properties, including negative Poisson's ratios, negative compressibilities and phononic bandgaps. Of particular interest are systems near the point of mechanical instability, which recently have been shown to distribute force and motion in robust ways determined by a nontrivial topological state. Here we discuss the classification of and propose a design principle for mechanical metamaterials that can be easily and reversibly transformed between states with dramatically different mechanical and acoustic properties via a soft strain. Remarkably, despite the low energetic cost of this transition, quantities such as the edge stiffness and speed of sound can change by orders of magnitude. We show that the existence and form of a soft deformation directly determines floppy edge modes and phonon dispersion. Finally, we generalize the soft strain to generate domain structures that allow further tuning of the material. PMID:28112155
Transportation Network Topologies
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia (Editor)
2004-01-01
The existing U.S. hub-and-spoke air transportation system is reaching saturation. Major aspects of the current system, such as capacity, safety, mobility, customer satisfaction, security, communications, and ecological effects, require improvements. The changing dynamics - increased presence of general aviation, unmanned autonomous vehicles, military aircraft in civil airspace as part of homeland defense - contributes to growing complexity of airspace. The system has proven remarkably resistant to change. NASA Langley Research Center and the National Institute of Aerospace conducted a workshop on Transportation Network Topologies on 9-10 December 2003 in Williamsburg, Virginia. The workshop aimed to examine the feasibility of traditional methods for complex system analysis and design as well as potential novel alternatives in application to transportation systems, identify state-of-the-art models and methods, conduct gap analysis, and thus to lay a foundation for establishing a focused research program in complex systems applied to air transportation.
Dense topological spaces and dense continuity
NASA Astrophysics Data System (ADS)
Aldwoah, Khaled A.
2013-09-01
There are several attempts to generalize (or "widen") the concept of topological space. This paper uses equivalence relations to generalize the concept of topological space via the concept of equivalence relations. By the generalization, we can introduce from particular topology on a nonempty set X many new topologies, we call anyone of these new topologies a dense topology. In addition, we formulate some simple properties of dense topologies and study suitable generalizations of the concepts of limit points, closeness and continuity, as well as Jackson, Nörlund and Hahn dense topologies.
Biochemical abnormalities in Pearson syndrome.
Crippa, Beatrice Letizia; Leon, Eyby; Calhoun, Amy; Lowichik, Amy; Pasquali, Marzia; Longo, Nicola
2015-03-01
Pearson marrow-pancreas syndrome is a multisystem mitochondrial disorder characterized by bone marrow failure and pancreatic insufficiency. Children who survive the severe bone marrow dysfunction in childhood develop Kearns-Sayre syndrome later in life. Here we report on four new cases with this condition and define their biochemical abnormalities. Three out of four patients presented with failure to thrive, with most of them having normal development and head size. All patients had evidence of bone marrow involvement that spontaneously improved in three out of four patients. Unique findings in our patients were acute pancreatitis (one out of four), renal Fanconi syndrome (present in all patients, but symptomatic only in one), and an unusual organic aciduria with 3-hydroxyisobutyric aciduria in one patient. Biochemical analysis indicated low levels of plasma citrulline and arginine, despite low-normal ammonia levels. Regression analysis indicated a significant correlation between each intermediate of the urea cycle and the next, except between ornithine and citrulline. This suggested that the reaction catalyzed by ornithine transcarbamylase (that converts ornithine to citrulline) might not be very efficient in patients with Pearson syndrome. In view of low-normal ammonia levels, we hypothesize that ammonia and carbamylphosphate could be diverted from the urea cycle to the synthesis of nucleotides in patients with Pearson syndrome and possibly other mitochondrial disorders.
First-Trimester Detection of Surface Abnormalities
Rousian, Melek; Koning, Anton H. J.; Bonsel, Gouke J.; Eggink, Alex J.; Cornette, Jérôme M. J.; Schoonderwaldt, Ernst M.; Husen-Ebbinge, Margreet; Teunissen, Katinka K.; van der Spek, Peter J.; Steegers, Eric A. P.; Exalto, Niek
2014-01-01
The aim was to determine the diagnostic performance of 3-dimensional virtual reality ultrasound (3D_VR_US) and conventional 2- and 3-dimensional ultrasound (2D/3D_US) for first-trimester detection of structural abnormalities. Forty-eight first trimester cases (gold standard available, 22 normal, 26 abnormal) were evaluated offline using both techniques by 5 experienced, blinded sonographers. In each case, we analyzed whether each organ category was correctly indicated as normal or abnormal and whether the specific diagnosis was correctly made. Sensitivity in terms of normal or abnormal was comparable for both techniques (P = .24). The general sensitivity for specific diagnoses was 62.6% using 3D_VR_US and 52.2% using 2D/3D_US (P = .075). The 3D_VR_US more often correctly diagnosed skeleton/limb malformations (36.7% vs 10%; P = .013). Mean evaluation time in 3D_VR_US was 4:24 minutes and in 2D/3D_US 2:53 minutes (P < .001). General diagnostic performance of 3D_VR_US and 2D/3D_US apparently is comparable. Malformations of skeleton and limbs are more often detected using 3D_VR_US. Evaluation time is longer in 3D_VR_US. PMID:24440996
Topological friction strongly affects viral DNA ejection
Marenduzzo, Davide; Micheletti, Cristian; Orlandini, Enzo; Sumners, De Witt
2013-01-01
Bacteriophages initiate infection by releasing their double-stranded DNA into the cytosol of their bacterial host. However, what controls and sets the timescales of DNA ejection? Here we provide evidence from stochastic simulations which shows that the topology and organization of DNA packed inside the capsid plays a key role in determining these properties. Even with similar osmotic pressure pushing out the DNA, we find that spatially ordered DNA spools have a much lower effective friction than disordered entangled states. Such spools are only found when the tendency of nearby DNA strands to align locally is accounted for. This topological or conformational friction also depends on DNA knot type in the packing geometry and slows down or arrests the ejection of twist knots and very complex knots. We also find that the family of (2, 2k+1) torus knots unravel gradually by simplifying their topology in a stepwise fashion. Finally, an analysis of DNA trajectories inside the capsid shows that the knots formed throughout the ejection process mirror those found in gel electrophoresis experiments for viral DNA molecules extracted from the capsids. PMID:24272939
Abnormal pressure in hydrocarbon environments
Law, B.E.; Spencer, C.W.
1998-01-01
Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.
Systemic abnormalities in liver disease
Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro
2009-01-01
Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648
Flat bands in topological media
NASA Astrophysics Data System (ADS)
Heikkilä, T. T.; Kopnin, N. B.; Volovik, G. E.
2011-10-01
Topological media are systems whose properties are protected by topology and thus are robust to deformations of the system. In topological insulators and superconductors the bulk-surface and bulk-vortex correspondence gives rise to the gapless Weyl, Dirac or Majorana fermions on the surface of the system and inside vortex cores. Here we show that in gapless topological media, the bulk-surface and bulk-vortex correspondence is more effective: it produces topologically protected gapless fermions without dispersion—the fiat band. Fermion zero modes forming the flat band are localized on the surface of topological media with protected nodal lines [A. P. Schnyder and S. Ryu, Phys. Rev. B 84, 060504(R) (2011); T. T. Heikkil G. E. Volovik, JETP Lett. 93, 59 (2011)] and in the vortex core in systems with topologically protected Fermi points (Weyl points) [G. E. Volovik, JETP Lett. 93, 66 (2011)]. Flat band has an extremely singular density of states, and we show that this property may give rise in particular to surface superconductivity which could exist even at room temperature.
Synthesizing topological structures containing RNA.
Liu, Di; Shao, Yaming; Chen, Gang; Tse-Dinh, Yuk-Ching; Piccirilli, Joseph A; Weizmann, Yossi
2017-03-31
Though knotting and entanglement have been observed in DNA and proteins, their existence in RNA remains an enigma. Synthetic RNA topological structures are significant for understanding the physical and biological properties pertaining to RNA topology, and these properties in turn could facilitate identifying naturally occurring topologically nontrivial RNA molecules. Here we show that topological structures containing single-stranded RNA (ssRNA) free of strong base pairing interactions can be created either by configuring RNA-DNA hybrid four-way junctions or by template-directed synthesis with a single-stranded DNA (ssDNA) topological structure. By using a constructed ssRNA knot as a highly sensitive topological probe, we find that Escherichia coli DNA topoisomerase I has low RNA topoisomerase activity and that the R173A point mutation abolishes the unknotting activity for ssRNA, but not for ssDNA. Furthermore, we discover the topological inhibition of reverse transcription (RT) and obtain different RT-PCR patterns for an ssRNA knot and circle of the same sequence.
Color Confinement from Fluctuating Topology
NASA Astrophysics Data System (ADS)
Kharzeev, Dmitri E.
QCD possesses a compact gauge group, and this implies a non-trivial topological structure of the vacuum. In this contribution to the Gribov-85 Memorial volume, we first discuss the origin of Gribov copies and their interpretation in terms of fluctuating topology in the QCD vacuum. We then describe the recent work with E. Levin that links the confinement of gluons and color screening to the fluctuating topology, and discuss implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.
Color confinement from fluctuating topology
NASA Astrophysics Data System (ADS)
Kharzeev, Dmitri E.
2016-10-01
QCD possesses a compact gauge group, and this implies a non-trivial topological structure of the vacuum. In this contribution to the Gribov-85 Memorial volume, we first discuss the origin of Gribov copies and their interpretation in terms of fluctuating topology in the QCD vacuum. We then describe the recent work with E. Levin that links the confinement of gluons and color screening to the fluctuating topology, and discuss implications for spin physics, high energy scattering, and the physics of quark-gluon plasma.
Semilinear (topological) spaces and applications
NASA Technical Reports Server (NTRS)
Prakash, P.; Sertel, M. R.
1971-01-01
Semivector spaces are defined and some of their algebraic aspects are developed including some structure theory. These spaces are then topologized to obtain semilinear topological spaces for which a hierarchy of local convexity axioms is identified. A number of fixed point and minmax theorems for spaces with various local convexity properties are established. The spaces of concern arise naturally as various hyperspaces of linear and semilinear (topological) spaces. It is indicated briefly how all this can be applied in socio-economic analysis and optimization.
Topological strength of magnetic skyrmions
NASA Astrophysics Data System (ADS)
Bazeia, D.; Ramos, J. G. G. S.; Rodrigues, E. I. B.
2017-02-01
This work deals with magnetic structures that attain integer and half-integer skyrmion numbers. We model and solve the problem analytically, and show how the solutions appear in materials that engender distinct, very specific physical properties, and use them to describe their topological features. In particular, we found a way to model skyrmion with a large transition region correlated with the presence of a two-peak skyrmion number density. Moreover, we run into the issue concerning the topological strength of a vortex-like structure and suggest an experimental realization, important to decide how to modify and measure the topological strength of the magnetic structure.
Topological Effect to Surface Plasmon Excitation in Topological Insulator Nanowires
NASA Astrophysics Data System (ADS)
Li, Mingda; Cui, Wenping; Li, Ju; Zhu, Yimei; Wu, Lijun; Meng, Qingping; Liu, Weishu; Ren, Zhifeng; Katmis, Ferhat; Wei, Peng; Moodera, Jagadeesh; Zhang, Yong; Li Group, MIT Team; CFN, BNL Collaboration; FBML, MIT Collaboration; CMSE, MIT Collaboration; Ren Group, BC Collaboration
2013-03-01
We present a theoretical investigation of the surface plasmon at the interface between topologically-non-trivial cylindrical core and topological-trivial surrounding material, from the axion electrodynamics and modified constitutive relations. We find that the topological effect lowers the SP energy in any case, while as the diameter of the core becomes smaller, the topological modification to SP energy is reduced. A qualitative picture based on perturbation theory of shifted boundary is given to explain these phenomena, from which we also infer that in order to amplify the topological effect, the difference between the inverse of dielectric constants of two materials must be increased. We also find that when the surrounding material goes magnetic, the magnetism overcomes topological effect, makes the latter seemingly suppressed. What's more, bulk plasmon energy at 17.5 +/- 0.2eV for semiconducting Bi2Se3 nanoparticle is observed from high-resolution Electron Energy Loss Spectrum Image measurements. High-resolution EELS measurement
Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok
2015-01-01
Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with
Neems, Daniel S.; Garza-Gongora, Arturo G.; Smith, Erica D.; Kosak, Steven T.
2016-01-01
The linear distribution of genes across chromosomes and the spatial localization of genes within the nucleus are related to their transcriptional regulation. The mechanistic consequences of linear gene order, and how it may relate to the functional output of genome organization, remain to be fully resolved, however. Here we tested the relationship between linear and 3D organization of gene regulation during myogenesis. Our analysis has identified a subset of topologically associated domains (TADs) that are significantly enriched for muscle-specific genes. These lineage-enriched TADs demonstrate an expression-dependent pattern of nuclear organization that influences the positioning of adjacent nonenriched TADs. Therefore, lineage-enriched TADs inform cell-specific genome organization during myogenesis. The reduction of allelic spatial distance of one of these domains, which contains Myogenin, correlates with reduced transcriptional variability, identifying a potential role for lineage-specific nuclear topology. Using a fusion-based strategy to decouple mitosis and myotube formation, we demonstrate that the cell-specific topology of syncytial nuclei is dependent on cell division. We propose that the effects of linear and spatial organization of gene loci on gene regulation are linked through TAD architecture, and that mitosis is critical for establishing nuclear topologies during cellular differentiation. PMID:26957603
Observation of the topological soliton state in the Su-Schrieffer-Heeger model
NASA Astrophysics Data System (ADS)
Meier, Eric J.; An, Fangzhao Alex; Gadway, Bryce
2016-12-01
The Su-Schrieffer-Heeger (SSH) model, which captures the most striking transport properties of the conductive organic polymer trans-polyacetylene, provides perhaps the most basic model system supporting topological excitations. The alternating bond pattern of polyacetylene chains is captured by the bipartite sublattice structure of the SSH model, emblematic of one-dimensional chiral symmetric topological insulators. This structure supports two distinct nontrivial topological phases, which, when interfaced with one another or with a topologically trivial phase, give rise to topologically protected, dispersionless boundary states. Here, using 87Rb atoms in a momentum-space lattice, we realize fully tunable condensed matter Hamiltonians, allowing us to probe the dynamics and equilibrium properties of the SSH model. We report on the experimental quantum simulation of this model and observation of the localized topological soliton state through quench dynamics, phase-sensitive injection, and adiabatic preparation.
Observation of the topological soliton state in the Su–Schrieffer–Heeger model
Meier, Eric J.; An, Fangzhao Alex; Gadway, Bryce
2016-01-01
The Su–Schrieffer–Heeger (SSH) model, which captures the most striking transport properties of the conductive organic polymer trans-polyacetylene, provides perhaps the most basic model system supporting topological excitations. The alternating bond pattern of polyacetylene chains is captured by the bipartite sublattice structure of the SSH model, emblematic of one-dimensional chiral symmetric topological insulators. This structure supports two distinct nontrivial topological phases, which, when interfaced with one another or with a topologically trivial phase, give rise to topologically protected, dispersionless boundary states. Here, using 87Rb atoms in a momentum-space lattice, we realize fully tunable condensed matter Hamiltonians, allowing us to probe the dynamics and equilibrium properties of the SSH model. We report on the experimental quantum simulation of this model and observation of the localized topological soliton state through quench dynamics, phase-sensitive injection, and adiabatic preparation. PMID:28008924
Chromosomal abnormalities and mental illness.
MacIntyre, D J; Blackwood, D H R; Porteous, D J; Pickard, B S; Muir, W J
2003-03-01
Linkage studies of mental illness have provided suggestive evidence of susceptibility loci over many broad chromosomal regions. Pinpointing causative gene mutations by conventional linkage strategies alone is problematic. The breakpoints of chromosomal abnormalities occurring in patients with mental illness may be more direct pointers to the relevant gene locus. Publications that describe patients where chromosomal abnormalities co-exist with mental illness are reviewed along with supporting evidence that this may amount to an association. Chromosomal abnormalities are considered to be of possible significance if (a) the abnormality is rare and there are independent reports of its coexistence with psychiatric illness, or (b) there is colocalisation of the abnormality with a region of suggestive linkage findings, or (c) there is an apparent cosegregation of the abnormality with psychiatric illness within the individual's family. Breakpoints have been described within many of the loci suggested by linkage studies and these findings support the hypothesis that shared susceptibility factors for schizophrenia and bipolar disorder may exist. If these abnormalities directly disrupt coding regions, then combining molecular genetic breakpoint cloning with bioinformatic sequence analysis may be a method of rapidly identifying candidate genes. Full karyotyping of individuals with psychotic illness especially where this coexists with mild learning disability, dysmorphism or a strong family history of mental disorder is encouraged.
Chromosomal abnormalities in human sperm
Martin, R.H.
1985-01-01
The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.
Topological Analysis of Partially Ordered Data
2010-06-01
natural category of study is the category of topological spaces . Morse theory describes a continuous filtration of a topological space given by a...Morse function. This filtration of the topological space produces an R-persistent object in the category of topological spaces . Definition 4.2. An N
Comprehensible Presentation of Topological Information
Weber, Gunther H.; Beketayev, Kenes; Bremer, Peer-Timo; Hamann, Bernd; Haranczyk, Maciej; Hlawitschka, Mario; Pascucci, Valerio
2012-03-05
Topological information has proven very valuable in the analysis of scientific data. An important challenge that remains is presenting this highly abstract information in a way that it is comprehensible even if one does not have an in-depth background in topology. Furthermore, it is often desirable to combine the structural insight gained by topological analysis with complementary information, such as geometric information. We present an overview over methods that use metaphors to make topological information more accessible to non-expert users, and we demonstrate their applicability to a range of scientific data sets. With the increasingly complex output of exascale simulations, the importance of having effective means of providing a comprehensible, abstract overview over data will grow. The techniques that we present will serve as an important foundation for this purpose.
Topological phases in oxide interface
NASA Astrophysics Data System (ADS)
Wang, Jing; Zhang, Haijun; Dai, Xi; Zhang, Shou-Cheng
2013-03-01
Topological insulators have been recently discovered in spin-orbited two- and three-dimensional systems. To fully explore the fundamental science and application of topological insulators, material realization is indispensable. Here We theoretically predict, based on tight-binding modeling and first-principles calculations, that the quantum well of peroviskite oxides grown along the [001] crystallographic axis are potential candidates for two-dimensional topological insulators. The topological band structure of these materials can be fine-tuned by changing the thickness of quantum well and external gate voltages. The interaction effect is also discussed. This work is supported by the Department of Energy,Office of Basic Energy Sciences,Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515.
Proton spin: A topological invariant
NASA Astrophysics Data System (ADS)
Tiwari, S. C.
2016-11-01
Proton spin problem is given a new perspective with the proposition that spin is a topological invariant represented by a de Rham 3-period. The idea is developed generalizing Finkelstein-Rubinstein theory for Skyrmions/kinks to topological defects, and using non-Abelian de Rham theorems. Two kinds of de Rham theorems are discussed applicable to matrix-valued differential forms, and traces. Physical and mathematical interpretations of de Rham periods are presented. It is suggested that Wilson lines and loop operators probe the local properties of the topology, and spin as a topological invariant in pDIS measurements could appear with any value from 0 to ℏ 2, i.e. proton spin decomposition has no meaning in this approach.
Schwerdtfeger, Peter; Wirz, Lukas N; Avery, James
2015-01-01
Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open. In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems. WIREs Comput Mol Sci 2015, 5:96–145. doi: 10.1002/wcms.1207 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:25678935
NASA Astrophysics Data System (ADS)
Nguyen, Nga T. T.; Joynt, Robert
2017-04-01
Quantum discord is an important measure of quantum correlations that can serve as a resource for certain types of quantum information processing. Like entanglement, discord is subject to destruction by external noise. The routes by which this destruction can take place depends on the shape of the hypersurface of zero discord C in the space of generalized Bloch vectors. For 2 qubits, we show that with a few points subtracted, this hypersurface is a simply-connected 9-dimensional manifold embedded in a 15-dimensional background space. We do this by constructing an explicit homeomorphism from a known manifold to the subtracted version of C . We also construct a coordinate map on C that can be used for integration or other purposes. This topological characterization of C has important implications for the classification of the possible time evolutions of discord in physical models. The classification for discord contrasts sharply with the possible evolutions of entanglement. We classify the possible joint evolutions of entanglement and discord. There are 9 allowed categories: 6 categories for a Markovian process and 3 categories for a non-Markovian process, respectively. We illustrate these conclusions with an anisotropic XY spin model. All 9 categories can be obtained by adjusting parameters in this model.
Haematological abnormalities in mitochondrial disorders
Finsterer, Josef; Frank, Marlies
2015-01-01
INTRODUCTION This study aimed to assess the kind of haematological abnormalities that are present in patients with mitochondrial disorders (MIDs) and the frequency of their occurrence. METHODS The blood cell counts of a cohort of patients with syndromic and non-syndromic MIDs were retrospectively reviewed. MIDs were classified as ‘definite’, ‘probable’ or ‘possible’ according to clinical presentation, instrumental findings, immunohistological findings on muscle biopsy, biochemical abnormalities of the respiratory chain and/or the results of genetic studies. Patients who had medical conditions other than MID that account for the haematological abnormalities were excluded. RESULTS A total of 46 patients (‘definite’ = 5; ‘probable’ = 9; ‘possible’ = 32) had haematological abnormalities attributable to MIDs. The most frequent haematological abnormality in patients with MIDs was anaemia. 27 patients had anaemia as their sole haematological problem. Anaemia was associated with thrombopenia (n = 4), thrombocytosis (n = 2), leucopenia (n = 2), and eosinophilia (n = 1). Anaemia was hypochromic and normocytic in 27 patients, hypochromic and microcytic in six patients, hyperchromic and macrocytic in two patients, and normochromic and microcytic in one patient. Among the 46 patients with a mitochondrial haematological abnormality, 78.3% had anaemia, 13.0% had thrombopenia, 8.7% had leucopenia and 8.7% had eosinophilia, alone or in combination with other haematological abnormalities. CONCLUSION MID should be considered if a patient’s abnormal blood cell counts (particularly those associated with anaemia, thrombopenia, leucopenia or eosinophilia) cannot be explained by established causes. Abnormal blood cell counts may be the sole manifestation of MID or a collateral feature of a multisystem problem. PMID:26243978
Experimental Realizations of Magnetic Topological Insulator and Topological Crystalline Insulator
NASA Astrophysics Data System (ADS)
Xu, Suyang
2013-03-01
Over the past few years the experimental research on three-dimensional topological insulators have emerged as one of the most rapidly developing fields in condensed matter physics. In this talk, we report on two new developments in the field: The first part is on the dynamic interplay between ferromagnetism and the Z2 topological insulator state (leading to a magnetic topological insulator). We present our spin-resolved photoemission and magnetic dichroic experiments on MBE grown films where a hedgehog-like spin texture is revealed on the magnetically ordered surface of Mn-Bi2Se3 revealing a Berry's phase gradient in energy-momentum space of the crystal. A chemically/electrically tunable Berry's phase switch is further demonstrated via the tuning of the spin groundstate in Mn-Bi2Se3 revealed in our data (Nature Physics 8, 616 (2012)). The second part of this talk describes our experimental observation of a new topological phase of matter, namely a topological crystalline insulator where space group symmetries replace the role of time-reversal symmetry in an otherwise Z2 topological insulator predicted in theory. We experimentally investigate the possibility of a mirror symmetry protected topological phase transition in the Pb1-xSnxTe alloy system, which has long been known to contain an even number of band inversions based on band theory. Our experimental results show that at a composition below the theoretically predicted band inversion, the system is fully gapped, whereas in the band-inverted regime, the surface exhibits even number of spin-polarized Dirac cone states revealing mirror-protected topological order (Nature Communications 3, 1192 (2012)) distinct from that observed in Z2 topological insulators. We discuss future experimental possibilities opened up by these new developments in topological insulators research. This work is in collaboration with M. Neupane, C. Liu, N. Alidoust, I. Belopolski, D. Qian, D.M. Zhang, A. Richardella, A. Marcinkova, Q
Topological edge states in pnictides
NASA Astrophysics Data System (ADS)
Youmans, Cody; Ghaemi, Pouyan; Kargarian, Mehdi
In some members of the ferro-pnictides, non-trivial topology in the bulk band-structure is related to potentially observable gapless edge states. We study these states numerically and analytically for a range of parameters, with and without superconductivity and antiferromagnetic SDW ordering, and their relation to the symmetries and topologically non-trivial aspects of our model Hamiltonian. Support was provided by the Doctoral Student Research Grant program at the Graduate Center, CUNY.
Refining the shifted topological vertex
Drissi, L. B.; Jehjouh, H.; Saidi, E. H.
2009-01-15
We study aspects of the refining and shifting properties of the 3d MacMahon function C{sub 3}(q) used in topological string theory and BKP hierarchy. We derive the explicit expressions of the shifted topological vertex S{sub {lambda}}{sub {mu}}{sub {nu}}(q) and its refined version T{sub {lambda}}{sub {mu}}{sub {nu}}(q,t). These vertices complete results in literature.
Quantum gates with topological phases
Ionicioiu, Radu
2003-09-01
We investigate two models for performing topological quantum gates with the Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects. Topological one- and two-qubit Abelian phases can be enacted with the AB effect using charge qubits, whereas the AC effect can be used to perform all single-qubit gates (Abelian and non-Abelian) for spin qubits. Possible experimental setups suitable for a solid-state implementation are briefly discussed.
Topological surface states in nodal superconductors.
Schnyder, Andreas P; Brydon, Philip M R
2015-06-24
Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.
Topological Photonics for Continuous Media
NASA Astrophysics Data System (ADS)
Silveirinha, Mario
Photonic crystals have revolutionized light-based technologies during the last three decades. Notably, it was recently discovered that the light propagation in photonic crystals may depend on some topological characteristics determined by the manner how the light states are mutually entangled. The usual topological classification of photonic crystals explores the fact that these structures are periodic. The periodicity is essential to ensure that the underlying wave vector space is a closed surface with no boundary. In this talk, we prove that it is possible calculate Chern invariants for a wide class of continuous bianisotropic electromagnetic media with no intrinsic periodicity. The nontrivial topology of the relevant continuous materials is linked with the emergence of edge states. Moreover, we will demonstrate that continuous photonic media with the time-reversal symmetry can be topologically characterized by a Z2 integer. This novel classification extends for the first time the theory of electronic topological insulators to a wide range of photonic platforms, and is expected to have an impact in the design of novel photonic systems that enable a topologically protected transport of optical energy. This work is supported in part by Fundacao para a Ciencia e a Tecnologia Grant Number PTDC/EEI-TEL/4543/2014.
Birth and upgrowth of the Hox topological domains during evolution.
Deschamps, Jacqueline
2016-03-01
The recently discovered chromatin compartments called topologically associating domains (TADs) are essential for the three-dimensional organization of regulatory interactions driving gene expression. A new study documents the emergence of a TAD flanking the amphioxus Hox cluster, prefiguring the vertebrate anterior Hox TAD and preceding the appearance of the concurring posterior Hox TAD.
Topological BF field theory description of topological insulators
Cho, Gil Young; Moore, Joel E.
2011-06-15
Research Highlights: > We show that a BF theory is the effective theory of 2D and 3D topological insulators. > The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. > The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. > Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a {pi} flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.
Congenital abnormalities and selective abortion.
Seller, M J
1976-09-01
The technique of amniocentesis, by which an abnormal fetus can be detected in utero, has brought a technological advance in medical science but attendant medical and moral problems. Dr Seller describes those congenital disabilities which can be detected in the fetus before birth, for which the "remedy" is selective abortion. She then discusses the arguments for and against selective abortion, for the issue is not simple, even in the strictly genetic sense of attempting to ensure a population free of congenital abnormality.
Topology optimization under stochastic stiffness
NASA Astrophysics Data System (ADS)
Asadpoure, Alireza
Topology optimization is a systematic computational tool for optimizing the layout of materials within a domain for engineering design problems. It allows variation of structural boundaries and connectivities. This freedom in the design space often enables discovery of new, high performance designs. However, solutions obtained by performing the optimization in a deterministic setting may be impractical or suboptimal when considering real-world engineering conditions with inherent variabilities including (for example) variabilities in fabrication processes and operating conditions. The aim of this work is to provide a computational methodology for topology optimization in the presence of uncertainties associated with structural stiffness, such as uncertain material properties and/or structural geometry. Existing methods for topology optimization under deterministic conditions are first reviewed. Modifications are then proposed to improve the numerical performance of the so-called Heaviside Projection Method (HPM) in continuum domains. Next, two approaches, perturbation and Polynomial Chaos Expansion (PCE), are proposed to account for uncertainties in the optimization procedure. These approaches are intrusive, allowing tight and efficient coupling of the uncertainty quantification with the optimization sensitivity analysis. The work herein develops a robust topology optimization framework aimed at reducing the sensitivity of optimized solutions to uncertainties. The perturbation-based approach combines deterministic topology optimization with a perturbation method for the quantification of uncertainties. The use of perturbation transforms the problem of topology optimization under uncertainty to an augmented deterministic topology optimization problem. The PCE approach combines the spectral stochastic approach for the representation and propagation of uncertainties with an existing deterministic topology optimization technique. The resulting compact representations
Noriega, Gerardo
2008-08-01
Sensory abnormalities and weak central coherence (WCC), a processing bias for features and local information, are important characteristics associated with autism. This paper introduces a self-organizing map (SOM)-based computational model of sensory abnormalities in autism, and of a feedback system to compensate for them. Feedback relies on a measure of balance of coverage over four (sensory) domains. Different methods to compute this measure are discussed, as is the flexibility to configure the system using different control mechanisms. Statistically significant improvements throughout training are demonstrated for compensation of a simple (i.e., monotonically decreasing) hypersensitivity in one of the domains. Fine-tuning control parameters can lead to further gains, but a standard setup results in good performance. Significant improvements are also shown for complex hypersensitivities (i.e., increasing and decreasing through time) in two domains. Although naturally best suited to compensate hypersensitivities--stimuli filtering may mitigate neuron migration to a hypersensitive domain--the system is also shown to perform effectively when compensating hyposensitivities. With poor coverage balance in the model akin to poor global perception, WCC would be consistent with inadequate feedback, resulting in uncontrolled hyper- and/or hyposensitivities characteristic of autism, as seen in the topologies of the resulting SOMs.
Nonlinear optical and optoelectronic studies of topological insulator surfaces
NASA Astrophysics Data System (ADS)
McIver, James W.
Since their experimental discovery in 2008, topological insulators have been catapulted to the forefront of condensed matter physics research owing to their potential to realize both exciting new technologies as well as novel electronic phases that are inaccessible in any other material class. Their exotic properties arise from a rare quantum organization of its electrons called "topological order,'' which evades the conventional broken symmetry based-classification scheme used to categorize nearly every other state of ordered matter. Instead, topologically ordered phases are classified by topological invariants, which characterize the phase of an electron's wavefunction as it moves through momentum space. When a topologically ordered phase is interfaced with an ordinary phase, such as the vacuum, a novel metallic state appears at their shared boundary. In topological insulators, this results in the formation of a two-dimensional metallic state that spans all of its surfaces. The surface state electronic spectrum is characterized by a single linearly dispersing and helically spin-polarized Dirac cone that is robust against disorder. The helical nature of the surface Dirac cone is highly novel because the Dirac electrons carry a net magnetic moment and are capable of transporting 100% spin-polarized electrical currents, which are the long-sought electronic properties needed for many spin-based electronic applications. However, owing to the small bulk band gap and intrinsic electronic doping inherent to these materials, isolating the surface electronic response from the bulk has proven to be a major experimental obstacle. In this thesis, we demonstrate the means by which light can be used to isolate and study the surface electronic response of topological insulators using optoelectronic and nonlinear optical techniques. In chapter 1, we overview the physics of topological order and topological insulators. In chapter 2, we show how polarized light can be used to
Plexciton Dirac points and topological modes
Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; Onbasli, Mehmet C.; Ross, Caroline A.; Bulovic, Vladimir; Baldo, Marc A.
2016-01-01
Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale. PMID:27278258
Plexciton Dirac points and topological modes
Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; ...
2016-06-09
Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface ofmore » this plexcitonic system. Furthermore, our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.« less
Plexciton Dirac points and topological modes
Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; Onbasli, Mehmet C.; Ross, Caroline A.; Bulovic, Vladimir; Baldo, Marc A.
2016-06-09
Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Furthermore, our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.
[Diagnosticum of abnormalities of plant meiotic division].
Shamina, N V
2006-01-01
Abnormalities of plant meiotic division leading to abnormal meiotic products are summarized schematically in the paper. Causes of formation of monads, abnormal diads, triads, pentads, polyads, etc. have been observed in meiosis with both successive and simultaneous cytokinesis.
Polydispersity-driven topological defects as order-restoring excitations.
Yao, Zhenwei; Olvera de la Cruz, Monica
2014-04-08
The engineering of defects in crystalline matter has been extensively exploited to modify the mechanical and electrical properties of many materials. Recent experiments on manipulating extended defects in graphene, for example, show that defects direct the flow of electric charges. The fascinating possibilities offered by defects in two dimensions, known as topological defects, to control material properties provide great motivation to perform fundamental investigations to uncover their role in various systems. Previous studies mostly focus on topological defects in 2D crystals on curved surfaces. On flat geometries, topological defects can be introduced via density inhomogeneities. We investigate here topological defects due to size polydispersity on flat surfaces. Size polydispersity is usually an inevitable feature of a large variety of systems. In this work, simulations show well-organized induced topological defects around an impurity particle of a wrong size. These patterns are not found in systems of identical particles. Our work demonstrates that in polydispersed systems topological defects play the role of restoring order. The simulations show a perfect hexagonal lattice beyond a small defective region around the impurity particle. Elasticity theory has demonstrated an analogy between the elementary topological defects named disclinations to electric charges by associating a charge to a disclination, whose sign depends on the number of its nearest neighbors. Size polydispersity is shown numerically here to be an essential ingredient to understand short-range attractions between like-charge disclinations. Our study suggests that size polydispersity has a promising potential to engineer defects in various systems including nanoparticles and colloidal crystals.
Numerical Studies of Topological phases
NASA Astrophysics Data System (ADS)
Geraedts, Scott
The topological phases of matter have been a major part of condensed matter physics research since the discovery of the quantum Hall effect in the 1980s. Recently, much of this research has focused on the study of systems of free fermions, such as the integer quantum Hall effect, quantum spin Hall effect, and topological insulator. Though these free fermion systems can play host to a variety of interesting phenomena, the physics of interacting topological phases is even richer. Unfortunately, there is a shortage of theoretical tools that can be used to approach interacting problems. In this thesis I will discuss progress in using two different numerical techniques to study topological phases. Recently much research in topological phases has focused on phases made up of bosons. Unlike fermions, free bosons form a condensate and so interactions are vital if the bosons are to realize a topological phase. Since these phases are difficult to study, much of our understanding comes from exactly solvable models, such as Kitaev's toric code, as well as Levin-Wen and Walker-Wang models. We may want to study systems for which such exactly solvable models are not available. In this thesis I present a series of models which are not solvable exactly, but which can be studied in sign-free Monte Carlo simulations. The models work by binding charges to point topological defects. They can be used to realize bosonic interacting versions of the quantum Hall effect in 2D and topological insulator in 3D. Effective field theories of ''integer'' (non-fractionalized) versions of these phases were available in the literature, but our models also allow for the construction of fractional phases. We can measure a number of properties of the bulk and surface of these phases. Few interacting topological phases have been realized experimentally, but there is one very important exception: the fractional quantum Hall effect (FQHE). Though the fractional quantum Hall effect we discovered over 30
Topological Insulators at Room Temperature
Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-25
Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.
Effective Topological Charge Cancelation Mechanism
Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo
2016-01-01
Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. PMID:27250777
Topology and hemodynamics of the cortical cerebrovascular system
Hirsch, Sven; Reichold, Johannes; Schneider, Matthias; Székely, Gábor; Weber, Bruno
2012-01-01
The cerebrovascular system continuously delivers oxygen and energy substrates to the brain, which is one of the organs with the highest basal energy requirement in mammals. Discontinuities in the delivery lead to fatal consequences for the brain tissue. A detailed understanding of the structure of the cerebrovascular system is important for a multitude of (patho-)physiological cerebral processes and many noninvasive functional imaging methods rely on a signal that originates from the vasculature. Furthermore, neurodegenerative diseases often involve the cerebrovascular system and could contribute to neuronal loss. In this review, we focus on the cortical vascular system. In the first part, we present the current knowledge of the vascular anatomy. This is followed by a theory of topology and its application to vascular biology. We then discuss possible interactions between cerebral blood flow and vascular topology, before summarizing the existing body of the literature on quantitative cerebrovascular topology. PMID:22472613
Topologically dissociable patterns of development of the human cerebral cortex.
Vandekar, Simon N; Shinohara, Russell T; Raznahan, Armin; Roalf, David R; Ross, Michelle; DeLeo, Nicholas; Ruparel, Kosha; Verma, Ragini; Wolf, Daniel H; Gur, Ruben C; Gur, Raquel E; Satterthwaite, Theodore D
2015-01-14
Over 90 years ago, anatomists noted the cortex is thinner in sulci than gyri, suggesting that development may occur on a fine scale driven by local topology. However, studies of brain development in youth have focused on describing how cortical thickness varies over large-scale functional and anatomic regions. How the relationship between thickness and local sulcal topology arises in development is still not well understood. Here, we investigated the spatial relationships between cortical thickness, folding, and underlying white matter organization to elucidate the influence of local topology on human brain development. Our approach included using both T1-weighted imaging and diffusion tensor imaging (DTI) in a cross-sectional sample of 932 youths ages 8-21 studied as part of the Philadelphia Neurodevelopmental Cohort. Principal components analysis revealed separable development-related processes of regionally specific nonlinear cortical thickening (from ages 8-14) and widespread linear cortical thinning that have dissociable relationships with cortical topology. Whereas cortical thinning was most prominent in the depths of the sulci, early cortical thickening was present on the gyri. Furthermore, decline in mean diffusivity calculated from DTI in underlying white matter was correlated with cortical thinning, suggesting that cortical thinning is spatially associated with white matter development. Spatial permutation tests were used to assess the significance of these relationships. Together, these data demonstrate that cortical remodeling during youth occurs on a local topological scale and is associated with changes in white matter beneath the cortical surface.
Topologically Dissociable Patterns of Development of the Human Cerebral Cortex
Vandekar, Simon N.; Shinohara, Russell T.; Raznahan, Armin; Roalf, David R.; Ross, Michelle; DeLeo, Nicholas; Ruparel, Kosha; Verma, Ragini; Wolf, Daniel H.; Gur, Ruben C.; Gur, Raquel E.
2015-01-01
Over 90 years ago, anatomists noted the cortex is thinner in sulci than gyri, suggesting that development may occur on a fine scale driven by local topology. However, studies of brain development in youth have focused on describing how cortical thickness varies over large-scale functional and anatomic regions. How the relationship between thickness and local sulcal topology arises in development is still not well understood. Here, we investigated the spatial relationships between cortical thickness, folding, and underlying white matter organization to elucidate the influence of local topology on human brain development. Our approach included using both T1-weighted imaging and diffusion tensor imaging (DTI) in a cross-sectional sample of 932 youths ages 8–21 studied as part of the Philadelphia Neurodevelopmental Cohort. Principal components analysis revealed separable development-related processes of regionally specific nonlinear cortical thickening (from ages 8–14) and widespread linear cortical thinning that have dissociable relationships with cortical topology. Whereas cortical thinning was most prominent in the depths of the sulci, early cortical thickening was present on the gyri. Furthermore, decline in mean diffusivity calculated from DTI in underlying white matter was correlated with cortical thinning, suggesting that cortical thinning is spatially associated with white matter development. Spatial permutation tests were used to assess the significance of these relationships. Together, these data demonstrate that cortical remodeling during youth occurs on a local topological scale and is associated with changes in white matter beneath the cortical surface. PMID:25589754
Dimensional Hierarchy of Fermionic Interacting Topological Phases
NASA Astrophysics Data System (ADS)
Queiroz, Raquel; Khalaf, Eslam; Stern, Ady
2016-11-01
We present a dimensional reduction argument to derive the classification reduction of fermionic symmetry protected topological phases in the presence of interactions. The dimensional reduction proceeds by relating the topological character of a d -dimensional system to the number of zero-energy bound states localized at zero-dimensional topological defects present at its surface. This correspondence leads to a general condition for symmetry preserving interactions that render the system topologically trivial, and allows us to explicitly write a quartic interaction to this end. Our reduction shows that all phases with topological invariant smaller than n are topologically distinct, thereby reducing the noninteracting Z classification to Zn.
Lipids and topological rules governing membrane protein assembly☆
Bogdanov, Mikhail; Dowhan, William; Vitrac, Heidi
2014-01-01
Membrane protein folding and topogenesis are tuned to a given lipid profile since lipids and proteins have co-evolved to follow a set of interdependent rules governing final protein topological organization. Transmembrane domain (TMD) topology is determined via a dynamic process in which topogenic signals in the nascent protein are recognized and interpreted initially by the translocon followed by a given lipid profile in accordance with the Positive Inside Rule. The net zero charged phospholipid phosphatidylethanolamine and other neutral lipids dampen the translocation potential of negatively charged residues in favor of the cytoplasmic retention potential of positively charged residues (Charge Balance Rule). This explains why positively charged residues are more potent topological signals than negatively charged residues. Dynamic changes in orientation of TMDs during or after membrane insertion are attributed to non-sequential cooperative and collective lipid–protein charge interactions as well as long-term interactions within a protein. The proportion of dual topological conformers of a membrane protein varies in a dose responsive manner with changes in the membrane lipid composition not only in vivo but also in vitro and therefore is determined by the membrane lipid composition. Switching between two opposite TMD topologies can occur in either direction in vivo and also in liposomes (designated as fliposomes) independent of any other cellular factors. Such lipid-dependent post-insertional reversibility of TMD orientation indicates a thermodynamically driven process that can occur at any time and in any cell membrane driven by changes in the lipid composition. This dynamic view of protein topological organization influenced by the lipid environment reveals previously unrecognized possibilities for cellular regulation and understanding of disease states resulting from mis-folded proteins. This article is part of a Special Issue entitled: Protein Trafficking
Topological mixing with ghost rods
NASA Astrophysics Data System (ADS)
Gouillart, Emmanuelle; Thiffeault, Jean-Luc; Finn, Matthew D.
2006-03-01
Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic points that we call “ghost rods”, because they play a similar role to stirring rods. The ghost rods framework provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and mixing. Numerical simulations for Stokes flow support our results.
Topological mixing with ghost rods.
Gouillart, Emmanuelle; Thiffeault, Jean-Luc; Finn, Matthew D
2006-03-01
Topological chaos relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. This motion generates exponential stretching of material lines, and hence efficient mixing. Boyland, Aref, and Stremler [J. Fluid Mech. 403, 277 (2000)] have studied a specific periodic motion of rods that exhibits topological chaos in a viscous fluid. We show that it is possible to extend their work to cases where the motion of the stirring rods is topologically trivial by considering the dynamics of special periodic points that we call "ghost rods", because they play a similar role to stirring rods. The ghost rods framework provides a new technique for quantifying chaos and gives insight into the mechanisms that produce chaos and mixing. Numerical simulations for Stokes flow support our results.
Nearly flatbands with nontrivial topology.
Sun, Kai; Gu, Zhengcheng; Katsura, Hosho; Das Sarma, S
2011-06-10
We report the theoretical discovery of a class of 2D tight-binding models containing nearly flatbands with nonzero Chern numbers. In contrast with previous studies, where nonlocal hoppings are usually required, the Hamiltonians of our models only require short-range hopping and have the potential to be realized in cold atomic gases. Because of the similarity with 2D continuum Landau levels, these topologically nontrivial nearly flatbands may lead to the realization of fractional anomalous quantum Hall states and fractional topological insulators in real materials. Among the models we discover, the most interesting and practical one is a square-lattice three-band model which has only nearest-neighbor hopping. To understand better the physics underlying the topological flatband aspects, we also present the studies of a minimal two-band model on the checkerboard lattice.
Quantum Capacitance in Topological Insulators
Xiu, Faxian; Meyer, Nicholas; Kou, Xufeng; He, Liang; Lang, Murong; Wang, Yong; Yu, Xinxin; Fedorov, Alexei V.; Zou, Jin; Wang, Kang L.
2012-01-01
Topological insulators show unique properties resulting from massless, Dirac-like surface states that are protected by time-reversal symmetry. Theory predicts that the surface states exhibit a quantum spin Hall effect with counter-propagating electrons carrying opposite spins in the absence of an external magnetic field. However, to date, the revelation of these states through conventional transport measurements remains a significant challenge owing to the predominance of bulk carriers. Here, we report on an experimental observation of Shubnikov-de Haas oscillations in quantum capacitance measurements, which originate from topological helical states. Unlike the traditional transport approach, the quantum capacitance measurements are remarkably alleviated from bulk interference at high excitation frequencies, thus enabling a distinction between the surface and bulk. We also demonstrate easy access to the surface states at relatively high temperatures up to 60 K. Our approach may eventually facilitate an exciting exploration of exotic topological properties at room temperature. PMID:22993694
Topological Insulators from Electronic Superstructures
NASA Astrophysics Data System (ADS)
Sugita, Yusuke; Motome, Yukitoshi
2016-07-01
The possibility of realizing topological insulators by the spontaneous formation of electronic superstructures is theoretically investigated in a minimal two-orbital model including both the spin-orbit coupling and electron correlations on a triangular lattice. Using the mean-field approximation, we show that the model exhibits several different types of charge-ordered insulators, where the charge disproportionation forms a honeycomb or kagome superstructure. We find that the charge-ordered insulators in the presence of strong spin-orbit coupling can be topological insulators showing quantized spin Hall conductivity. Their band gap is dependent on electron correlations as well as the spin-orbit coupling, and even vanishes while showing the massless Dirac dispersion at the transition to a trivial charge-ordered insulator. Our results suggest a new route to realize and control topological states of quantum matter by the interplay between the spin-orbit coupling and electron correlations.
Abnormal insulin levels and vertigo.
Proctor, C A
1981-10-01
Fifty patients with unexplained vertigo (36) or lightheadedness (14) are evaluated, all of whom had abnormal ENGs and normal audiograms. Five hour insulin glucose tolerance tests were performance on all patients, with insulin levels being obtained fasting and at one-half, one, two, and three hours. The results of this investigation were remarkable. Borderline or abnormal insulin levels were discovered in 82% of patients; 90% were found to have either an abnormal glucose tolerance test or at least borderline insulin levels. The response to treatment in these dizzy patients was also startling, with appropriate low carbohydrate diets improving the patient's symptoms in 90% of cases. It is, therefore, apparent that the earliest identification of carbohydrate imbalance with an insulin glucose tolerance test is extremely important in the work-up of the dizzy patients.
Complex patterns of abnormal heartbeats
NASA Technical Reports Server (NTRS)
Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon
2002-01-01
Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.
Quantum cosmology with nontrivial topologies
Vargas, T.
2008-10-10
Quantum creation of a universe with a nontrivial spatial topology is considered. Using the Euclidean functional integral prescription, we calculate the wave function of such a universe with cosmological constant and without matter. The minisuperspace path integral is calculated in the semiclassical approximation, and it is shown that in order to include the nontrivial topologies in the path integral approach to quantum cosmology, it is necessary to generalize the sum over compact and smooth 4-manifolds to sum over finite-volume compact 4-orbifolds.
Topological Superconductivity in Dirac Semimetals.
Kobayashi, Shingo; Sato, Masatoshi
2015-10-30
Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd_{3}As_{2}.
Ectodermal dysplasia and abnormal thumbs.
Lucky, A W; Esterly, N B; Tunnessen, W W
1980-05-01
Two unrelated children, a girl and a boy, with alopecia, anomalous cutaneous pigmentation, abnormal thumbs, and endocrine disorders, including short stature and delayed bone age in one patient and juvenile onset diabetes mellitus in the other, are described. In one instance, the mother and the maternal grandmother had similar abnormalities, although of a less severe nature. Both children had normal nails and no unusual susceptibility to infections. We believe these two patients represent a previously undescribed syndrome of ectodermal dysplasia that may be inherited as an autosomal-dominant trait.
Chromosomal abnormalities associated with cyclopia and synophthalmia.
Howard, R O
1977-01-01
At the present time, essentially all known facts concerning cyclopia are consistent with some chromosomal disease, including clinical features of the pregnancy (fetal wastage, prematurity, intrauterine growth retardation, maternal age factor, complications of pregnancy), the generalized developmental abnormalities, specific ocular dysgenesis, by the high incidence of chromosomal abnormality already demonstrated, and the possibility of error in those cases of cyclopia with normal chromosomes. Even if chromosomal aberrations represent only one group of several different etiologic factors leading to cyclopia, at the present time chromosomal errors would seem to be the most common cause of cyclopia now recognized. Further studies will establish or disprove a chromosomal error in those instances which are now considered to be the result of an environmental factor alone or those with apparent familial patterns of inheritance. This apparent diverse origin of cyclopia can be clarified if future cyclopic specimens are carefully investigated. The evaluation should include a careful gross and microscopic examination of all organs, including the eye, and chromosome banding studies of all organs, including the eye, and chromosome banding studies of at least two cyclopic tissues. Then the presence or absence of multiple causative factors can be better evaluated. Images FIGURE 2 A FIGURE 2 B FIGURE 1 A FIGURE 1 B FIGURE 1 C FIGURE 1 D FIGURE 1 E FIGURE 1 F FIGURE 3 A FIGURE 3 B FIGURE 4 A FIGURE 4 B FIGURE 4 C FIGURE 4 D FIGURE 5 FIGURE 6 FIGURE 7 A FIGURE 7 B PMID:418547
Topological entropy of catalytic sets: Hypercycles revisited
NASA Astrophysics Data System (ADS)
Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno
2012-02-01
The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.
Topological field theory of dynamical systems
Ovchinnikov, Igor V.
2012-09-15
Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons disappear and SOC collapses into the 'edge of chaos.' Goldstone theorem stands behind spatio-temporal self-similarity of Q-broken phases known under such names as algebraic statistics of avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken phases is that they can be effectively viewed as quantum dynamics and that they must also have time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations (quenches, Barkhausen effect, etc.) is also briefly discussed.
Topological field theory of dynamical systems.
Ovchinnikov, Igor V
2012-09-01
Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons disappear and SOC collapses into the "edge of chaos." Goldstone theorem stands behind spatio-temporal self-similarity of Q-broken phases known under such names as algebraic statistics of avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken phases is that they can be effectively viewed as quantum dynamics and that they must also have time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations (quenches, Barkhausen effect, etc.) is also briefly discussed.
Topological field theory of dynamical systems
NASA Astrophysics Data System (ADS)
Ovchinnikov, Igor V.
2012-09-01
Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons disappear and SOC collapses into the "edge of chaos." Goldstone theorem stands behind spatio-temporal self-similarity of Q-broken phases known under such names as algebraic statistics of avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken phases is that they can be effectively viewed as quantum dynamics and that they must also have time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations (quenches, Barkhausen effect, etc.) is also briefly discussed.
Vestibular abnormalities in congenital disorders.
Sando, I; Orita, Y; Miura, M; Balaban, C D
2001-10-01
This paper reviews the histopathologic features of vestibular abnormalities in congenital disorders affecting the inner ear, based upon a comprehensive literature survey and a review of cases in our temporal bone collection. The review proceeds in three systematic steps. First, we surveyed associated diseases with the major phenotypic features of congenital abnormalities of the inner ear (including the internal auditory canal and otic capsule). Second, the vestibular anomalies are examined specifically. Finally, the anomalies are discussed from a developmental perspective. Among vestibular anomalies, a hypoplastic endolymphatic duct and sac are observed most frequently. Anomalies of the semicircular canals are also often observed. From embryological and clinical viewpoints, many of these resemble the structural features from fetal stages and appear to be associated with vestibular dysfunction. It is expected that progress in genetic analysis and accumulation of temporal bone specimens with vestibular abnormalities in congenital diseases will provide crucial information not only for pathology of those diseases, but also for genetic factors that are responsible for the specific vestibular abnormalities.
Topological visual mapping in robotics.
Romero, Anna; Cazorla, Miguel
2012-08-01
A key problem in robotics is the construction of a map from its environment. This map could be used in different tasks, like localization, recognition, obstacle avoidance, etc. Besides, the simultaneous location and mapping (SLAM) problem has had a lot of interest in the robotics community. This paper presents a new method for visual mapping, using topological instead of metric information. For that purpose, we propose prior image segmentation into regions in order to group the extracted invariant features in a graph so that each graph defines a single region of the image. Although others methods have been proposed for visual SLAM, our method is complete, in the sense that it makes all the process: it presents a new method for image matching; it defines a way to build the topological map; and it also defines a matching criterion for loop-closing. The matching process will take into account visual features and their structure using the graph transformation matching (GTM) algorithm, which allows us to process the matching and to remove out the outliers. Then, using this image comparison method, we propose an algorithm for constructing topological maps. During the experimentation phase, we will test the robustness of the method and its ability constructing topological maps. We have also introduced new hysteresis behavior in order to solve some problems found building the graph.
Magnetic Field Topology in Jets
NASA Technical Reports Server (NTRS)
Gardiner, T. A.; Frank, A.
2000-01-01
We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.
Crystallographic topology and its applications
Johnson, C.K.; Burnett, M.N.; Dunbar, W.D.
1996-10-01
Geometric topology and structural crystallography concepts are combined to define a new area we call Structural Crystallographic Topology, which may be of interest to both crystallographers and mathematicians. In this paper, we represent crystallographic symmetry groups by orbifolds and crystal structures by Morse - functions. The Morse function uses mildly overlapping Gaussian thermal-motion probability density functions centered on atomic sites to form a critical net with peak, pass, pale, and pit critical points joined into a graph by density gradient-flow separatrices. Critical net crystal structure drawings can be made with the ORTEP-III graphics pro- An orbifold consists of an underlying topological space with an embedded singular set that represents the Wyckoff sites of the crystallographic group. An orbifold for a point group, plane group, or space group is derived by gluing together equivalent edges or faces of a crystallographic asymmetric unit. The critical-net-on-orbifold model incorporates the classical invariant lattice complexes of crystallography and allows concise quotient-space topological illustrations to be drawn without the repetition that is characteristic of normal crystal structure drawings.
Topological Signatures for Population Admixture
Technology Transfer Automated Retrieval System (TEKTRAN)
Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...
Phantom stars and topology change
DeBenedictis, Andrew; Garattini, Remo; Lobo, Francisco S. N.
2008-11-15
In this work, we consider time-dependent dark-energy star models, with an evolving parameter {omega} crossing the phantom divide {omega}=-1. Once in the phantom regime, the null energy condition is violated, which physically implies that the negative radial pressure exceeds the energy density. Therefore, an enormous negative pressure in the center may, in principle, imply a topology change, consequently opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal energy difference calculations that may reflect or measure the occurrence of a topology change. We denote these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an absurdly advanced civilization may manipulate these geometries to induce closed timelike curves, consequently violating causality.
Topological design of torsional metamaterials
NASA Astrophysics Data System (ADS)
Vitelli, Vincenzo; Paulose, Jayson; Meeussen, Anne; Topological Mechanics Lab Team
Frameworks - stiff elements with freely hinged joints - model the mechanics of a wide range of natural and artificial structures, including mechanical metamaterials with auxetic and topological properties. The unusual properties of the structure depend crucially on the balance between degrees of freedom associated with the nodes, and the constraints imposed upon them by the connecting elements. Whereas networks of featureless nodes connected by central-force springs have been well-studied, many real-world systems such as frictional granular packings, gear assemblies, and flexible beam meshes incorporate torsional degrees of freedom on the nodes, coupled together with transverse shear forces exerted by the connecting elements. We study the consequences of such torsional constraints on the mechanics of periodic isostatic networks as a foundation for mechanical metamaterials. We demonstrate the existence of soft modes of topological origin, that are protected against disorder or small perturbations of the structure analogously to their counterparts in electronic topological insulators. We have built a lattice of gears connected by rigid beams that provides a real-world demonstration of a torsional metamaterial with topological edge modes and mechanical Weyl modes.
NASA Astrophysics Data System (ADS)
Khatri, Sunil; Kekre, Pravin A.; Mishra, Ashutosh
2016-10-01
The properties of a molecular system are affected by the topology of molecule. Therefore many studies have been made where the various physic-chemical properties are correlated with the topological indices. These studies have shown a very good correlation demonstrating the utility of the graph theoretical approach. It is, therefore, very natural to expect that the various physical properties obtained by the X-ray absorption spectra may also show correlation with the topological indices. Some complexes were used to establish correlation between topological indices and some X-ray absorption parameters like chemical shift. The chemical shift is on the higher energy side of the metal edge in these complexes. The result obtained in these studies shows that the topological indices of organic molecule acting as a legands can be used for estimating edge shift theoretically.
Continuity and Separation in Symmetric Topologies
ERIC Educational Resources Information Center
Harris, J.; Lynch, M.
2007-01-01
In this note, it is shown that in a symmetric topological space, the pairs of sets separated by the topology determine the topology itself. It is then shown that when the codomain is symmetric, functions which separate only those pairs of sets that are already separated are continuous, generalizing a result found by M. Lynch.
Network topology and functional connectivity disturbances precede the onset of Huntington's disease.
Harrington, Deborah L; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D; Paulsen, Jane S; Rao, Stephen M
2015-08-01
Cognitive, motor and psychiatric changes in prodromal Huntington's disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington's disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington's disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved as disease
Aspects of topological string theory
NASA Astrophysics Data System (ADS)
Cook, Paul L. H.
Two aspects of the topological string and its applications are considered in this thesis. Firstly, non-perturbative contributions to the OSV conjecture relating four-dimensional extremal black holes and the closed topological string partition function are studied. A new technique is formulated for encapsulating these contributions for the case of a Calabi-Yau manifold constructed by fibering two line bundle over a torus, with the unexpected property that the resulting non-perturbative completion of the topological string partition function is such that the black hole partition function is equal to a product of a chiral and an anti-chiral function. This new approach is considered both in the context of the requirement of background independence for the topological string, and for more general Calabi-Yau manifolds. Secondly, this thesis provides a microscopic derivation of the open topological string holomorphic anomaly equations proposed by Walcher in arXiv:0705.4098 under the assumption that open string moduli do not contribute. In doing so, however, new anomalies are found for compact Calabi-Yau manifolds when the disk one-point functions (string to boundary amplitudes) are non-zero. These new anomalies introduce coupling to wrong moduli (complex structure moduli in A-model and Kahler moduli in B-model), and spoil the recursive structure of the holomorphic anomaly equations. For vanishing disk one-point functions, the open string holomorphic anomaly equations can be integrated to solve for amplitudes recursively, using a Feynman diagram approach, for which a proof is presented.
Disrupted Topological Patterns of Large-Scale Network in Conduct Disorder
Jiang, Yali; Liu, Weixiang; Ming, Qingsen; Gao, Yidian; Ma, Ren; Zhang, Xiaocui; Situ, Weijun; Wang, Xiang; Yao, Shuqiao; Huang, Bingsheng
2016-01-01
Regional abnormalities in brain structure and function, as well as disrupted connectivity, have been found repeatedly in adolescents with conduct disorder (CD). Yet, the large-scale brain topology associated with CD is not well characterized, and little is known about the systematic neural mechanisms of CD. We employed graphic theory to investigate systematically the structural connectivity derived from cortical thickness correlation in a group of patients with CD (N = 43) and healthy controls (HCs, N = 73). Nonparametric permutation tests were applied for between-group comparisons of graphical metrics. Compared with HCs, network measures including global/local efficiency and modularity all pointed to hypo-functioning in CD, despite of preserved small-world organization in both groups. The hubs distribution is only partially overlapped with each other. These results indicate that CD is accompanied by both impaired integration and segregation patterns of brain networks, and the distribution of highly connected neural network ‘hubs’ is also distinct between groups. Such misconfiguration extends our understanding regarding how structural neural network disruptions may underlie behavioral disturbances in adolescents with CD, and potentially, implicates an aberrant cytoarchitectonic profiles in the brain of CD patients. PMID:27841320
Liu, Lanfang; Li, Hehui; Zhang, Manli; Wang, Zhengke; Wei, Na; Liu, Li; Meng, Xiangzhi; Ding, Guosheng
2016-07-01
Prior work has extensively studied neural deficits in children with reading impairment (RI) in their native language but has rarely examined those of RI children in their second language (L2). A recent study revealed that the function of the local brain regions was disrupted in children with RI in L2, but it is not clear whether the disruption also occurs at a large-scale brain network level. Using fMRI and graph theoretical analysis, we explored the topology of the whole-brain functional network during a phonological rhyming task and network reconfigurations across task and short resting phases in Chinese children with English reading impairment versus age-matched typically developing (TD) children. We found that, when completing the phonological task, the RI group exhibited higher local network efficiency and network modularity compared with the TD group. When switching between the phonological task and the short resting phase, the RI group showed difficulty with network reconfiguration, as reflected in fewer changes in the local efficiency and modularity properties and less rearrangement of the modular communities. These findings were reproducible after controlling for the effects of in-scanner accuracy, participant gender, and L1 reading performance. The results from the whole-brain network analyses were largely replicated in the task-activated network. These findings provide preliminary evidence supporting that RI in L2 is associated with not only abnormal functional network organization but also poor flexibility of the neural system in responding to changing cognitive demands.
International migration network: Topology and modeling
NASA Astrophysics Data System (ADS)
Fagiolo, Giorgio; Mastrorillo, Marina
2013-07-01
This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.
Systemic risk on different interbank network topologies
NASA Astrophysics Data System (ADS)
Lenzu, Simone; Tedeschi, Gabriele
2012-09-01
In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.
Entropy gives rise to topologically associating domains
Vasquez, Paula A.; Hult, Caitlin; Adalsteinsson, David; Lawrimore, Josh; Forest, Mark G.; Bloom, Kerry
2016-01-01
We investigate chromosome organization within the nucleus using polymer models whose formulation is closely guided by experiments in live yeast cells. We employ bead-spring chromosome models together with loop formation within the chains and the presence of nuclear bodies to quantify the extent to which these mechanisms shape the topological landscape in the interphase nucleus. By investigating the genome as a dynamical system, we show that domains of high chromosomal interactions can arise solely from the polymeric nature of the chromosome arms due to entropic interactions and nuclear confinement. In this view, the role of bio-chemical related processes is to modulate and extend the duration of the interacting domains. PMID:27257057
Constructing a logical, regular axis topology from an irregular topology
Faraj, Daniel A.
2014-07-01
Constructing a logical regular topology from an irregular topology including, for each axial dimension and recursively, for each compute node in a subcommunicator until returning to a first node: adding to a logical line of the axial dimension a neighbor specified in a nearest neighbor list; calling the added compute node; determining, by the called node, whether any neighbor in the node's nearest neighbor list is available to add to the logical line; if a neighbor in the called compute node's nearest neighbor list is available to add to the logical line, adding, by the called compute node to the logical line, any neighbor in the called compute node's nearest neighbor list for the axial dimension not already added to the logical line; and, if no neighbor in the called compute node's nearest neighbor list is available to add to the logical line, returning to the calling compute node.
Constructing a logical, regular axis topology from an irregular topology
Faraj, Daniel A.
2014-07-22
Constructing a logical regular topology from an irregular topology including, for each axial dimension and recursively, for each compute node in a subcommunicator until returning to a first node: adding to a logical line of the axial dimension a neighbor specified in a nearest neighbor list; calling the added compute node; determining, by the called node, whether any neighbor in the node's nearest neighbor list is available to add to the logical line; if a neighbor in the called compute node's nearest neighbor list is available to add to the logical line, adding, by the called compute node to the logical line, any neighbor in the called compute node's nearest neighbor list for the axial dimension not already added to the logical line; and, if no neighbor in the called compute node's nearest neighbor list is available to add to the logical line, returning to the calling compute node.
Transmission in graphene-topological insulator heterostructures
NASA Astrophysics Data System (ADS)
De Beule, C.; Zarenia, M.; Partoens, B.
2017-03-01
We investigate scattering of the topological surface state of a three-dimensional time-reversal invariant topological insulator when graphene is deposited on the topological-insulator surface. Specifically, we consider the (111) surface of a Bi2Se3 -like topological insulator. We present a low-energy model for the graphene-topological insulator heterostructure and we calculate the transmission probability at zigzag and armchair edges of the deposited graphene, and the conductance through graphene nanoribbon barriers, and show that its features can be understood from antiresonances in the transmission probability.
Topological aspects of polarization structured beams
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Viswanathan, Nirmal K.
2014-02-01
Polarization structured optical beams have half-integer topological structures: star, lemon, monstar in π-symmetric polarization ellipse orientation tensor field and integer-index topological structures: saddle, spiral, node in 2π-symmetric Poynting vector field. Topological approach to study the polarization structured optical beams is carried out and presented here in some detail. These polarization structured light beams are demonstrated to be the best platform to explore the topological interdependencies. The dependence of one type of topological structure on the other is used to control the Poynting vector density distribution and locally enhance the angular momentum density as compared to its constituent beam fields.
Topological Quantum Information Processing Mediated Via Hybrid Topological Insulator Structures
2013-11-13
manipulation, entanglement and detection ofMajorana fermions in diamond-topological insulator-superconductor heterojunctions. Furthennore, we propose to...particles which obey non-Abelian statistics. The simplest of these particles, Majorana fermions , are believed to exist as excitations in exotic...materials under extreme conditions. Additionally, Majorana fermions have been proposed to exist in a new class of materials commonly referred to as
Topological effects on the magnetoconductivity in topological insulators
NASA Astrophysics Data System (ADS)
Sacksteder, Vincent E.; Arnardottir, Kristin Bjorg; Kettemann, Stefan; Shelykh, Ivan A.
2014-12-01
Three-dimensional strong topological insulators (TIs) guarantee the existence of a two-dimensional (2-D) conducting surface state which completely covers the surface of the TI. The TI surface state necessarily wraps around the TI's top, bottom, and two sidewalls, and is therefore topologically distinct from ordinary 2-D electron gases (2-DEGs) which are planar. This has several consequences for the magnetoconductivity Δ σ , a frequently studied measure of weak antilocalization which is sensitive to the quantum coherence time τϕ and to temperature. We show that conduction on the TI sidewalls systematically reduces Δ σ , multiplying it by a factor which is always less than one and decreases in thicker samples. In addition, we present both an analytical formula and numerical results for the tilted-field magnetoconductivity which has been measured in several experiments. Lastly, we predict that as the temperature is reduced Δ σ will enter a wrapped regime where it is sensitive to diffusion processes which make one or more circuits around the TI. In this wrapped regime the magnetoconductivity's dependence on temperature, typically 1 /T2 in 2-DEGs, disappears. We present numerical and analytical predictions for the wrapped regime at both small and large field strengths. The wrapped regime and topological signatures discussed here should be visible in the same samples and at the same temperatures where the Altshuler-Aronov-Spivak (AAS) effect has already been observed, when the measurements are repeated with the magnetic field pointed perpendicularly to the TI's top face.
Inversion-symmetric topological insulators
NASA Astrophysics Data System (ADS)
Hughes, Taylor L.; Prodan, Emil; Bernevig, B. Andrei
2011-06-01
We analyze translationally invariant insulators with inversion symmetry that fall outside the current established classification of topological insulators. These insulators exhibit no edge or surface modes in the energy spectrum and hence they are not edge metals when the Fermi level is in the bulk gap. However, they do exhibit protected modes in the entanglement spectrum localized on the cut between two entangled regions. Their entanglement entropy cannot be made to vanish adiabatically, and hence the insulators can be called topological. There is a direct connection between the inversion eigenvalues of the Hamiltonian band structure and the midgap states in the entanglement spectrum. The classification of protected entanglement levels is given by an integer N, which is the difference between the negative inversion eigenvalues at inversion symmetric points in the Brillouin zone, taken in sets of 2. When the Hamiltonian describes a Chern insulator or a nontrivial time-reversal invariant topological insulator, the entirety of the entanglement spectrum exhibits spectral flow. If the Chern number is zero for the former, or time reversal is broken in the latter, the entanglement spectrum does not have spectral flow, but, depending on the inversion eigenvalues, can still exhibit protected midgap bands similar to impurity bands in normal semiconductors. Although spectral flow is broken (implying the absence of real edge or surface modes in the original Hamiltonian), the midgap entanglement bands cannot be adiabatically removed, and the insulator is “topological.” We analyze the linear response of these insulators and provide proofs and examples of when the inversion eigenvalues determine a nontrivial charge polarization, a quantum Hall effect, an anisotropic three-dimensional (3D) quantum Hall effect, or a magnetoelectric polarization. In one dimension, we establish a link between the product of the inversion eigenvalues of all occupied bands at all inversion
Endocrine abnormalities in anorexia nervosa.
Lawson, Elizabeth A; Klibanski, Anne
2008-07-01
Anorexia nervosa (AN) is a psychiatric disease associated with notable medical complications and increased mortality. Endocrine abnormalities, including hypogonadotropic hypogonadism, hypercortisolemia, growth hormone resistance and sick euthyroid syndrome, mediate the clinical manifestations of this disease. Alterations in anorexigenic and orexigenic appetite-regulating pathways have also been described. Decreases in fat mass result in adipokine abnormalities. Although most of the endocrine changes that occur in AN represent physiologic adaptation to starvation, some persist after recovery and might contribute to susceptibility to AN recurrence. In this Review, we summarize key endocrine alterations in AN, with a particular focus on the profound bone loss that can occur in this disease. Although AN is increasingly prevalent among boys and men, the disorder predominantly affects girls and women who are, therefore, the focus of this Review.
Eye abnormalities in Fryns syndrome.
Pierson, Diane M; Taboada, Eugenio; Butler, Merlin G
2004-03-15
Fryns syndrome is a rare, generally lethal, autosomal recessive multiple congenital anomaly (MCA) syndrome first described in 1979. Patients with the syndrome present with the classical findings of cloudy cornea, brain malformations, diaphragmatic defects, and distal limb deformities. Over 70 patients have been reported revealing a wide variety of phenotypic features. Although initially considered a major feature of Fryns syndrome, cloudy cornea has been relegated as a minor diagnostic sign and not commonly reported in patients since the original description. However, eye findings per se are not uncommon. Abnormal eye findings occasionally reported in Fryns syndrome potentially result in amblyopia and blindness, profoundly affecting neurologic outcome of those who survive the neonatal period. We reviewed 77 reported patients with Fryns syndrome and summarized the abnormal eye findings identified in 12 of the reported cases. In addition, we contribute three new patients with Fryns syndrome, one of which demonstrated unilateral microphthalmia and cloudy cornea.
[Chromosome abnormalities in human cancer].
Salamanca-Gómez, F
1995-01-01
Recent investigation on the presence of chromosome abnormalities in neoplasias has allowed outstanding advances in the knowledge of malignant transformation mechanisms and important applications in the clinical diagnosis and prognosis of leukaemias, lymphomas and solid tumors. The purpose of the present paper is to discuss the most relevant cytogenetic aberrations, some of them described at the Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social, and to correlate these abnormalities with recent achievements in the knowledge of oncogenes, suppressor genes or antioncogenes, their chromosome localization, and their mutations in human neoplasia; as well as their perspectives in prevention and treatment of cancer that such findings permit to anticipate.
Neuroendocrine abnormalities in Parkinson's disease.
De Pablo-Fernández, Eduardo; Breen, David P; Bouloux, Pierre M; Barker, Roger A; Foltynie, Thomas; Warner, Thomas T
2017-02-01
Neuroendocrine abnormalities are common in Parkinson's disease (PD) and include disruption of melatonin secretion, disturbances of glucose, insulin resistance and bone metabolism, and body weight changes. They have been associated with multiple non-motor symptoms in PD and have important clinical consequences, including therapeutics. Some of the underlying mechanisms have been implicated in the pathogenesis of PD and represent promising targets for the development of disease biomarkers and neuroprotective therapies. In this systems-based review, we describe clinically relevant neuroendocrine abnormalities in Parkinson's disease to highlight their role in overall phenotype. We discuss pathophysiological mechanisms, clinical implications, and pharmacological and non-pharmacological interventions based on the current evidence. We also review recent advances in the field, focusing on the potential targets for development of neuroprotective drugs in Parkinson's disease and suggest future areas for research.
Majorana Fermions and Topology in Superconductors
NASA Astrophysics Data System (ADS)
Sato, Masatoshi; Fujimoto, Satoshi
2016-07-01
Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana fermions in topological superconductors obey a new type of quantum statistics referred to as non-Abelian statistics, which is distinct from bose and fermi statistics, and can be utilized for application to topological quantum computation. Also, Majorana fermions give rise to various exotic phenomena such as "fractionalization", non-local correlation, and "teleportation". A pedagogical review of these subjects is presented. We also discuss interaction effects on topological classification of superconductors, and the basic properties of Weyl superconductors.
Topological pumping over a photonic Fibonacci quasicrystal
NASA Astrophysics Data System (ADS)
Verbin, Mor; Zilberberg, Oded; Lahini, Yoav; Kraus, Yaacov E.; Silberberg, Yaron
2015-02-01
Quasiperiodic lattices have recently been shown to be a nontrivial topological phase of matter. Charge pumping—one of the hallmarks of topological states of matter—was recently realized for photons in a one-dimensional off-diagonal Harper model implemented in a photonic waveguide array. However, if the relationship between topological pumps and quasiperiodic systems is generic, one might wonder how to observe it in the canonical and most studied quasicrystalline system in one dimension—the Fibonacci chain. This chain is expected to facilitate a similar phenomenon, yet its discrete nature hinders the experimental study of such topological effects. Here, we overcome this obstacle by utilizing the topological equivalence of a family of quasiperiodic models which ranges from the Fibonacci chain to the Harper model. Implemented in photonic waveguide arrays, we observe the topological properties of this family, and perform a topological pumping of photons across a Fibonacci chain.
Congenital abnormalities of the goat.
Basrur, P K
1993-03-01
Congenital abnormalities of genetic and environmental causes constitute a striking proportion of the afflictions seen in goats. These include a variety of malformations and metabolic diseases that could occur in all breeds but tend to exhibit predisposition in some breeds of goats. Genetic abnormalities for which the carrier state is detectable with the aid of enzymes and surface protein markers can be eliminated from goat populations, whereas common polygenic disorders including udder problems in does and gynecomastia in bucks are more difficult to eradicate because the mutant genes responsible for these traits generally do not declare themselves until inbreeding brings together a critical concentration of liability genes to create a crisis. A substantial reduction of common abnormalities in this species, such as intersexuality in dairy breeds, abortion in Angora breed, and arthritis in the Pygmy breed, will require a change in breeders' preference and selection practice. In making these changes, however, the beneficial traits will have to be balanced against the undesirable effects of the selected mutant genes (pleiotropy), which hold the key to success or failure of a breed under domestication.
Meiotic abnormalities in infertile males.
Egozcue, J; Sarrate, Z; Codina-Pascual, M; Egozcue, S; Oliver-Bonet, M; Blanco, J; Navarro, J; Benet, J; Vidal, F
2005-01-01
Meiotic anomalies, as reviewed here, are synaptic chromosome abnormalities, limited to germ cells that cannot be detected through the study of the karyotype. Although the importance of synaptic errors has been underestimated for many years, their presence is related to many cases of human male infertility. Synaptic anomalies can be studied by immunostaining of synaptonemal complexes (SCs), but in this case their frequency is probably underestimated due to the phenomenon of synaptic adjustment. They can also be studied in classic meiotic preparations, which, from a clinical point of view, is still the best approach, especially if multiplex fluorescence in situ hybridization is at hand to solve difficult cases. Sperm chromosome FISH studies also provide indirect evidence of their presence. Synaptic anomalies can affect the rate of recombination of all bivalents, produce achiasmate small univalents, partially achiasmate medium-sized or large bivalents, or affect all bivalents in the cell. The frequency is variable, interindividually and intraindividually. The baseline incidence of synaptic anomalies is 6-8%, which may be increased to 17.6% in males with a severe oligozoospermia, and to 27% in normozoospermic males with one or more previous IVF failures. The clinical consequences are the production of abnormal spermatozoa that will produce a higher number of chromosomally abnormal embryos. The indications for a meiotic study in testicular biopsy are provided.
Topological mechanics of gyroscopic metamaterials.
Nash, Lisa M; Kleckner, Dustin; Read, Alismari; Vitelli, Vincenzo; Turner, Ari M; Irvine, William T M
2015-11-24
Topological mechanical metamaterials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. Here, we present an experimental and theoretical study of an active metamaterial--composed of coupled gyroscopes on a lattice--that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically protected edge modes that propagate in only one direction and are unaffected by disorder. We present a mathematical model that explains how the edge mode chirality can be switched via controlled distortions of the underlying lattice. This effect allows the direction of the edge current to be determined on demand. We demonstrate this functionality in experiment and envision applications of these edge modes to the design of one-way acoustic waveguides.
Constraining topology in harmonic space
Kunz, M.; Aghanim, N.; Forni, O.; Cayon, L.; Riazuelo, A.; Uzan, J. P.
2006-01-15
We consider several ways to test for topology directly in harmonic space by comparing the measured a{sub lm} with the expected correlation matrices. Two tests are of a frequentist nature while we compute the Bayesian evidence as the third test. Using correlation matrices for cubic and slab-space tori, we study how these tests behave as a function of the minimal scale probed and as a function of the size of the Universe. We also apply them to different first-year Wilkinson microwave anisotropy probe CMB maps and confirm that the Universe is compatible with being infinitely big for the cases considered. We argue that there is an information theoretical limit (given by the Kullback-Leibler divergence) on the size of the topologies that can be detected.
Reconfigurable Microwave Photonic Topological Insulator
NASA Astrophysics Data System (ADS)
Goryachev, Maxim; Tobar, Michael E.
2016-12-01
Using full 3D finite-element simulation and underlining Hamiltonian models, we demonstrate reconfigurable photonic analogues of topological insulators on a regular lattice of tunable posts in a reentrant 3D lumped element-type system. The tunability allows a dynamical in situ change of media chirality and other properties via the alteration of the same parameter for all posts, and as a result, great flexibility in the choice of bulk-edge configurations. Additionally, one-way photon transport without an external magnetic field is demonstrated. The ideas are illustrated by using both full finite-element simulation as well as simplified harmonic oscillator models. Dynamical reconfigurability of the proposed systems paves the way to a class of systems that can be employed for random access, topological signal processing, and sensing.
Topological Insulator and Thermoelectric Effects
NASA Astrophysics Data System (ADS)
Xu, Yong
The recent discovery of topological insulator (TI) offers new opportunities for the development of thermoelectricity, because many TIs (like Bi2Te3) are excellent thermoelectric materials. In this talk, I will first introduce our theoretical predictions of anomalous Seebeck effect and strong size effect in TI [PRL 112, 226801 (2014)]. Then I will report our recent proof experiments, which find in TI thin films that (i) the hole-type Seebeck effect and the electron-type Hall effect coexist in the same TI sample for all the measured temperatures (up to 300 K), and (ii) the thermoelectric properties depend sensitively on the film thickness. The unconventional phenomena are revealed to be closely related to the topological nature of the material. These findings may inspire new ideas for designing TI-based high-efficiency thermoelectric devices.
Topological mechanics of gyroscopic metamaterials
Nash, Lisa M.; Kleckner, Dustin; Read, Alismari; Vitelli, Vincenzo; Turner, Ari M.; Irvine, William T. M.
2015-01-01
Topological mechanical metamaterials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. Here, we present an experimental and theoretical study of an active metamaterial—composed of coupled gyroscopes on a lattice—that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically protected edge modes that propagate in only one direction and are unaffected by disorder. We present a mathematical model that explains how the edge mode chirality can be switched via controlled distortions of the underlying lattice. This effect allows the direction of the edge current to be determined on demand. We demonstrate this functionality in experiment and envision applications of these edge modes to the design of one-way acoustic waveguides. PMID:26561580
Noncommutative topological theories of gravity
NASA Astrophysics Data System (ADS)
García-Compeán, H.; Obregón, O.; Ramírez, C.; Sabido, M.
2003-08-01
The possibility of noncommutative topological gravity arising in the same manner as Yang-Mills theory is explored. We use the Seiberg-Witten map to construct such a theory based on a SL(2,C) complex connection, from which the Euler characteristic and the signature invariant are obtained. Finally, we speculate on the description of noncommutative gravitational instantons, as well as noncommutative local gravitational anomalies.
Topological sigma models on supermanifolds
NASA Astrophysics Data System (ADS)
Jia, Bei
2017-02-01
This paper concerns constructing topological sigma models governing maps from semirigid super Riemann surfaces to general target supermanifolds. We define both the A model and B model in this general setup by defining suitable BRST operators and physical observables. Using supersymmetric localization, we express correlation functions in these theories as integrals over suitable supermanifolds. In the case of the A model, we obtain an integral over the supermoduli space of "superinstantons". The language of supergeometry is used extensively throughout this paper.
Topological coordinates for deformed nanotubes
NASA Astrophysics Data System (ADS)
László, István; Rassat, André
2003-10-01
Starting from the topological arrangement of carbon atoms an algorithm is given for the construction of nanotube Cartesian coordinates. The final relaxed structures were obtained by a molecular mechanics calculation where the carbon-carbon interactions were supposed only between neighboring atoms of the initial tiling. In a given tiling we obtained toroidal or helical structures depending on the special position of the super cell parallelogram.
Topological sigma models & dissipative hydrodynamics
NASA Astrophysics Data System (ADS)
Haehl, Felix M.; Loganayagam, R.; Rangamani, Mukund
2016-04-01
We outline a universal Schwinger-Keldysh effective theory which describes macroscopic thermal fluctuations of a relativistic field theory. The basic ingredients of our construction are three: a doubling of degrees of freedom, an emergent abelian symmetry associated with entropy, and a topological (BRST) supersymmetry imposing fluctuationdissipation theorem. We illustrate these ideas for a non-linear viscous fluid, and demonstrate that the resulting effective action obeys a generalized fluctuation-dissipation theorem, which guarantees a local form of the second law.
Topology of modified helical gears
NASA Technical Reports Server (NTRS)
Litvin, F. L.; Zhang, J.; Handschuh, R. F.; Coy, J. J.
1989-01-01
The topology of several types of modified surfaces of helical gears is proposed. The modified surfaces allow absorption of a linear or almost linear function of transmission errors. These errors are caused by gear misalignment and an improvement of the contact of gear tooth surfaces. Principles and corresponding programs for computer aided simulation of meshing and contact of gears have been developed. The results of this investigation are illustrated with numerical examples.
Topological Methods for Data Fusion
2014-05-01
study of fragile - X (an autism related syndrome ), and in poli- tics and sports [12], [14], [11]. In the case of breast cancer, it permitted the...Carlsson, Gunnar, Reiss, Allan L.,Topological methods reveal high and low functioning neuro-phenotypes within fragile X syndrome , Human Brain Mapping, May...case of fragile - X , the finding was a decomposi- tion of all the patients into two distinct groups, with distinct behaviors. The methodology makes it
Topological defects in extended inflation
NASA Technical Reports Server (NTRS)
Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.
1990-01-01
The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.
Inconsistency of topologically massive hypergravity
NASA Technical Reports Server (NTRS)
Aragone, C.; Deser, S.
1985-01-01
The coupled topologically massive spin-5/2 gravity system in D = 3 dimensions whose kinematics represents dynamical propagating gauge invariant massive spin-5/2 and spin-2 excitations, is shown to be inconsistent, or equivalently, not locally hypersymmetric. In contrast to D = 4, the local constraints on the system arising from failure of the fermionic Bianchi identities do not involve the 'highest spin' components of the field, but rather the auxiliary spinor required to construct a consistent massive model.
Dynamics, Spectral Geometry and Topology
Burghelea, Dan
2011-02-10
The paper is an informal report on joint work with Stefan Haller on Dynamics in relation with Topology and Spectral Geometry. By dynamics one means a smooth vector field on a closed smooth manifold; the elements of dynamics of concern are the rest points, instantons and closed trajectories. One discusses their counting in the case of a generic vector field which has some additional properties satisfied by a still very large class of vector fields.
Topological Insulator Nanowires and Nanoribbons
Kong, D.S.
2010-06-02
Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.
Topological effects in quantum mechanics
Peshkin, M.; Lipkin, H.J. |
1995-08-01
We completed our analysis of experiments, some completed, some planned, and some only conceptual at present, that purport to demonstrate new kinds of non-local and topological effects in the interaction of a neutron with an external electromagnetic field. In the Aharonov-Casher effect (AC), the neutron interacts with an electric field and in the Scalar Aharonov-Bohm effect (SAB) the neutron interacts with a magnetic field. In both cases, the geometry can be arranged so that there is no force on the neutron but an interference experiment nevertheless finds a phase shift proportional to the applied field and to the neutron`s magnetic moment. Previously, we showed that the accepted interpretation of these phenomena as topological effects due to a non-local interaction between the neutron and the electromagnetic field is incorrect. Both AC and SAB follow from local torques on the neutron whose expectation values vanish at every instant but which have non-vanishing effect on the measurable spin-correlation variables S(t) = (1/2) [{sigma}{sub x}{sigma}{sub x}(t) + {sigma}{sub y}(0){sigma}{sub y}(t) + h.c.] and V(t) = [{sigma}{sub x}(0){sigma}{sub y}(t) - {sigma}{sub y}(0){sigma}{sub x}(t) + h.c.]. We have now completed this work by observing that a criterion often used for identifying a topological effect, energy independence of the phase shift between two arms of an interferometer, is only a necessary condition, and by describing a phase shifter which obeys the energy-independence condition but whose interaction with the neutron is neither topological nor even non-local.
Hopf algebras and topological recursion
NASA Astrophysics Data System (ADS)
Esteves, João N.
2015-11-01
We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).
Visual pathway abnormalities in tuberculous meningitis.
Maurya, Pradeep Kumar; Singh, Ajai Kumar; Sharma, Lalit; Kulshreshtha, Dinkar; Thacker, Anup Kumar
2016-11-01
Ophthalmological complications are common and disabling in patients with tuberculous meningitis. We aimed to study the visual pathway abnormalities in patients with tuberculous meningitis. Forty-three patients with tuberculous meningitis were subjected to visual evoked responses (VER) and neuroophthalmologic assessment. Neuroophthalmologic assessment revealed abnormalities in 22 (51.3%) patients. VER were found to be abnormal in 27 (62.8%) patients. The VER abnormalities included prolonged P100 latencies with relatively normal amplitude and significant interocular latency differences. Visual pathways abnormalities are common in patients with tuberculous meningitis and are often subclinical. Pathophysiologic explanations for electrophysiological abnormalities on VER in these patients are incompletely understood and needs further exploration.
What, if anything, are topological maps for?
Wilson, Stuart P; Bednar, James A
2015-06-01
What, if anything, is the functional significance of spatial patterning in cortical feature maps? We ask this question of four major theories of cortical map formation: self-organizing maps, wiring optimization, place coding, and reaction-diffusion. We argue that (i) self-organizing maps yield spatial patterning only as a by-product of efficient mechanisms for developing environmentally appropriate distributions of feature preferences, (ii) wiring optimization assumes rather than explains a map-like organization, (iii) place-coding mechanisms can at best explain only a subset of maps in functional terms, and (iv) reaction-diffusion models suggest two factors in the evolution of maps, the first based on efficient development of feature distributions, and the second based on generating feature-specific long-range recurrent cortical circuitry. None of these explanations for the existence of topological maps requires spatial patterning in maps to be useful. Thus despite these useful frameworks for understanding how maps form and how they are wired, the possibility that patterns are merely epiphenomena in the evolution of mammalian neocortex cannot be rejected. The article is intended as a nontechnical introduction to the assumptions and predictions of these four important classes of models, along with other possible functional explanations for maps.
Interfacing Topological Insulators with Ferromagnetism
NASA Astrophysics Data System (ADS)
Richardella, Anthony
In topological insulators, the surface states arise from strong spin-orbit coupling while the degeneracy of the Dirac point is protected by time reversal symmetry. Introducing magnetism in proximity to the surface states breaks this symmetry, destroying the non-trivial Berry phase at the Dirac point and leads to a hedgehog spin texture near the newly opened magnetic gap. This symmetry broken phase leads to a host of unusual physics, such as the quantum anomalous Hall (QAH) effect. In this talk, we discuss the growth by molecular beam epitaxy and characterization of such magnetically interfaced and magnetically doped topological insulators. Such materials often suffer from structural defects and interfacial layers, as well as from degradation during device fabrication. In particular, it is shown that Cr doped (Bi1-x,Sbx)2Te3 can exhibit perfect Hall quantization at low temperatures despite these defects. However, the magnetic ordering of this material was found to be quite unusual, displaying a super-paramagnetic like character, perhaps reflecting this disorder. Such observations highlight the surprising behavior of such broken symmetry phases in topological materials. This work was performed in collaboration with A. Kandala, M. Liu, W. Wang, N.P. Ong, C.-X. Liu, and N. Samarth, in addition to the authors of the references cited. This work was supported by funding from ARO/MURI, DARPA and ONR.
Buckling in a topological metamaterial
NASA Astrophysics Data System (ADS)
Meeussen, Anne; Paulose, Jayson; Vitelli, Vincenzo
2015-03-01
Controlling the nonlinear response of mechanical metamaterials paves the way toward designing materials with adaptive and tunable mechanical properties. Buckling, a change in load-bearing state from axial compression to off-axis deformation, is a ubiquitous nonlinear instability that is often exploited to change the local or global mechanical response in metamaterials composed of slender elements. We create localized buckling regions in cellular metamaterials by engineering states of self-stress, regions where the response is dominated by stretching or compression of the constituent beams rather than bending at the stiff hinges connecting them. Unique to our approach is the use of topological states of self-stress, which originate in a topological invariant that characterizes the vibrational spectrum of the repeating unit cell. Unlike typical states of self-stress which result from additional geometric constraints induced by excess beams in a region, these topological states do not change the number of beams at each hinge. We demonstrate the phenomenon through numerical calculations of the linear response of the proposed metamaterial, and through experiments probing the nonlinear regime including localized buckling at specific regions.
Spintronics Based on Topological Insulators
NASA Astrophysics Data System (ADS)
Fan, Yabin; Wang, Kang L.
2016-10-01
Spintronics using topological insulators (TIs) as strong spin-orbit coupling (SOC) materials have emerged and shown rapid progress in the past few years. Different from traditional heavy metals, TIs exhibit very strong SOC and nontrivial topological surface states that originate in the bulk band topology order, which can provide very efficient means to manipulate adjacent magnetic materials when passing a charge current through them. In this paper, we review the recent progress in the TI-based magnetic spintronics research field. In particular, we focus on the spin-orbit torque (SOT)-induced magnetization switching in the magnetic TI structures, spin-torque ferromagnetic resonance (ST-FMR) measurements in the TI/ferromagnet structures, spin pumping and spin injection effects in the TI/magnet structures, as well as the electrical detection of the surface spin-polarized current in TIs. Finally, we discuss the challenges and opportunities in the TI-based spintronics field and its potential applications in ultralow power dissipation spintronic memory and logic devices.
Thermoelectric effects and topological insulators
NASA Astrophysics Data System (ADS)
Xu, Yong
2016-11-01
The recent discovery of topological insulators (TIs) offers new opportunities for the development of thermoelectrics, because many TIs (like Bi2Te3) are excellent thermoelectric (TE) materials. In this review, we will first describe the general TE properties of TIs and show that the coexistence of the bulk and boundary states in TIs introduces unusual TE properties, including strong size effects and an anomalous Seebeck effect. Importantly, the TE figure of merit zT of TIs is no longer an intrinsic property, but depends strongly on the geometric size. The geometric parameters of two-dimensional TIs can be tuned to enhance zT to be significantly greater than 1. Then a few proof-of-principle experiments on three-dimensional TIs will be discussed, which observed unconventional TE phenomena that are closely related to the topological nature of the materials. However, current experiments indicate that the metallic surface states, if their advantage of high mobility is not fully utilized, would be detrimental to TE performance. Finally, we provide an outlook for future work on topological materials, which offers great possibilities to discover exotic TE effects and may lead to significant breakthroughs in improving zT. Project supported by the National Thousand-Young-Talents Program, China and Tsinghua University Initiative Scientific Research Program, China.
Topology, structures, and energy landscapes of human chromosomes
Zhang, Bin; Wolynes, Peter G.
2015-01-01
Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward “ideal” chromosome structures that represent hierarchical fibrils of fibrils. PMID:25918364
Topology, structures, and energy landscapes of human chromosomes.
Zhang, Bin; Wolynes, Peter G
2015-05-12
Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward "ideal" chromosome structures that represent hierarchical fibrils of fibrils.
Abnormalities of T cell signaling in systemic lupus erythematosus
2011-01-01
Systemic lupus erythematosus (SLE) is an autoimmune disease resulting from a loss of tolerance to multiple self antigens, and characterized by autoantibody production and inflammatory cell infiltration in target organs, such as the kidneys and brain. T cells are critical players in SLE pathophysiology as they regulate B cell responses and also infiltrate target tissues, leading to tissue damage. Abnormal signaling events link to defective gene transcription and altered cytokine production, contributing to the aberrant phenotype of T cells in SLE. Study of signaling and gene transcription abnormalities in SLE T cells has led to the identification of novel targets for therapy. PMID:21457530
Low-set ears and pinna abnormalities
Low-set ears; Microtia; "Lop" ear; Pinna abnormalities; Genetic defect-pinna; Congenital defect-pinna ... most cases, a health care provider finds pinna abnormalities during the first well-baby exam. This exam ...
Abnormalities of the erythrocyte membrane.
Gallagher, Patrick G
2013-12-01
Primary abnormalities of the erythrocyte membrane are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Growing recognition of the long-term risks of splenectomy has led to re-evaluation of the role of splenectomy. Management guidelines acknowledge these considerations and recommend discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy.
Foot abnormalities of wild birds
Herman, C.M.; Locke, L.N.; Clark, G.M.
1962-01-01
The various foot abnormalities that occur in birds, including pox, scaly-leg, bumble-foot, ergotism and freezing are reviewed. In addition, our findings at the Patuxent Wildlife Research Center include pox from dove, mockingbird, cowbird, grackle and several species of sparrows. Scaly-leg has been particularly prevalent on icterids. Bumble foot has been observed in a whistling swan and in a group of captive woodcock. Ergotism is reported from a series of captive Canada geese from North Dakota. Several drug treatments recommended by others are presented.
The Pea Seedling as a Model of Normal and Abnormal Morphogenesis
ERIC Educational Resources Information Center
Kurkdjian, Armen; And Others
1974-01-01
Describes several simple and inexpensive experiments designed to facilitate the study of normal and abnormal morphogenesis in the biology laboratory. Seedlings of the common garden pea are used in the experiments, and abnormal morphogenesis (tumors) are induced by a virulent strain of the crown-gall organism, Agrobacterium tumefaciens. (JR)
Myocardial perfusion abnormalities in asymptomatic patients with systemic lupus erythematosus
Hosenpud, J.D.; Montanaro, A.; Hart, M.V.; Haines, J.E.; Specht, H.D.; Bennett, R.M.; Kloster, F.E.
1984-08-01
Accelerated coronary artery disease and myocardial infarction in young patients with systemic lupus erythematosus is well documented; however, the prevalence of coronary involvement is unknown. Accordingly, 26 patients with systemic lupus were selected irrespective of previous cardiac history to undergo exercise thallium-201 cardiac scintigraphy. Segmental perfusion abnormalities were present in 10 of the 26 studies (38.5 percent). Five patients had reversible defects suggesting ischemia, four patients had persistent defects consistent with scar, and one patient had both reversible and persistent defects in two areas. There was no correlation between positive thallium results and duration of disease, amount of corticosteroid treatment, major organ system involvement or age. Only a history of pericarditis appeared to be associated with positive thallium-201 results (p less than 0.05). It is concluded that segmental myocardial perfusion abnormalities are common in patients with systemic lupus erythematosus. Whether this reflects large-vessel coronary disease or small-vessel abnormalities remains to be determined.
Khedkar, Supriya; Seshasayee, Aswin Sai Narain
2016-06-01
Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.
Khedkar, Supriya; Seshasayee, Aswin Sai Narain
2016-01-01
Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences. PMID:27172194
Observation of photonic anomalous Floquet topological insulators
NASA Astrophysics Data System (ADS)
Maczewsky, Lukas J.; Zeuner, Julia M.; Nolte, Stefan; Szameit, Alexander
2017-01-01
Topological insulators are a new class of materials that exhibit robust and scatter-free transport along their edges -- independently of the fine details of the system and of the edge -- due to topological protection. To classify the topological character of two-dimensional systems without additional symmetries, one commonly uses Chern numbers, as their sum computed from all bands below a specific bandgap is equal to the net number of chiral edge modes traversing this gap. However, this is strictly valid only in settings with static Hamiltonians. The Chern numbers do not give a full characterization of the topological properties of periodically driven systems. In our work, we implement a system where chiral edge modes exist although the Chern numbers of all bands are zero. We employ periodically driven photonic waveguide lattices and demonstrate topologically protected scatter-free edge transport in such anomalous Floquet topological insulators.
Observation of photonic anomalous Floquet topological insulators
Maczewsky, Lukas J.; Zeuner, Julia M.; Nolte, Stefan; Szameit, Alexander
2017-01-01
Topological insulators are a new class of materials that exhibit robust and scatter-free transport along their edges — independently of the fine details of the system and of the edge — due to topological protection. To classify the topological character of two-dimensional systems without additional symmetries, one commonly uses Chern numbers, as their sum computed from all bands below a specific bandgap is equal to the net number of chiral edge modes traversing this gap. However, this is strictly valid only in settings with static Hamiltonians. The Chern numbers do not give a full characterization of the topological properties of periodically driven systems. In our work, we implement a system where chiral edge modes exist although the Chern numbers of all bands are zero. We employ periodically driven photonic waveguide lattices and demonstrate topologically protected scatter-free edge transport in such anomalous Floquet topological insulators. PMID:28051080
Photonic simulation of topological excitations in metamaterials
Tan, Wei; Sun, Yong; Chen, Hong; Shen, Shun-Qing
2014-01-01
Condensed matter systems with topological order and metamaterials with left-handed chirality have attracted recently extensive interests in the fields of physics and optics. So far the topological order and chirality of electromagnetic wave are two independent concepts, and there is no work to address their connection. Here we propose to establish the relation between the topological order in condensed matter systems and the chirality in metamaterials, by mapping explicitly Maxwell's equations to the Dirac equation in one dimension. We report an experimental implement of the band inversion in the Dirac equation, which accompanies change of chirality of electromagnetic wave in metamaterials, and the first microwave measurement of topological excitations and topological phases in one dimension. Our finding provides a proof-of-principle example that electromagnetic wave in the metamaterials can be used to simulate the topological order in condensed matter systems and quantum phenomena in relativistic quantum mechanics in a controlled laboratory environment. PMID:24452532
Photonic simulation of topological excitations in metamaterials
NASA Astrophysics Data System (ADS)
Tan, Wei; Sun, Yong; Chen, Hong; Shen, Shun-Qing
2014-01-01
Condensed matter systems with topological order and metamaterials with left-handed chirality have attracted recently extensive interests in the fields of physics and optics. So far the topological order and chirality of electromagnetic wave are two independent concepts, and there is no work to address their connection. Here we propose to establish the relation between the topological order in condensed matter systems and the chirality in metamaterials, by mapping explicitly Maxwell's equations to the Dirac equation in one dimension. We report an experimental implement of the band inversion in the Dirac equation, which accompanies change of chirality of electromagnetic wave in metamaterials, and the first microwave measurement of topological excitations and topological phases in one dimension. Our finding provides a proof-of-principle example that electromagnetic wave in the metamaterials can be used to simulate the topological order in condensed matter systems and quantum phenomena in relativistic quantum mechanics in a controlled laboratory environment.
Topological data analysis of biological aggregation models.
Topaz, Chad M; Ziegelmeier, Lori; Halverson, Tom
2015-01-01
We apply tools from topological data analysis to two mathematical models inspired by biological aggregations such as bird flocks, fish schools, and insect swarms. Our data consists of numerical simulation output from the models of Vicsek and D'Orsogna. These models are dynamical systems describing the movement of agents who interact via alignment, attraction, and/or repulsion. Each simulation time frame is a point cloud in position-velocity space. We analyze the topological structure of these point clouds, interpreting the persistent homology by calculating the first few Betti numbers. These Betti numbers count connected components, topological circles, and trapped volumes present in the data. To interpret our results, we introduce a visualization that displays Betti numbers over simulation time and topological persistence scale. We compare our topological results to order parameters typically used to quantify the global behavior of aggregations, such as polarization and angular momentum. The topological calculations reveal events and structure not captured by the order parameters.
Convergent evidence for abnormal striatal synaptic plasticity in dystonia
Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard
2010-01-01
Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes
Lower extremity abnormalities in children.
Sass, Pamela; Hassan, Ghinwa
2003-08-01
Rotational and angular problems are two types of lower extremity abnormalities common in children. Rotational problems include intoeing and out-toeing. Intoeing is caused by one of three types of deformity: metatarsus adductus, internal tibial torsion, and increased femoral anteversion. Out-toeing is less common than intoeing, and its causes are similar but opposite to those of intoeing. These include femoral retroversion and external tibial torsion. Angular problems include bowlegs and knock-knees. An accurate diagnosis can be made with careful history and physical examination, which includes torsional profile (a four-component composite of measurements of the lower extremities). Charts of normal values and values with two standard deviations for each component of the torsional profile are available. In most cases, the abnormality improves with time. A careful physical examination, explanation of the natural history, and serial measurements are usually reassuring to the parents. Treatment is usually conservative. Special shoes, cast, or braces are rarely beneficial and have no proven efficacy. Surgery is reserved for older children with deformity from three to four standard deviations from the normal.
Normal and abnormal lid function.
Rucker, Janet C
2011-01-01
This chapter on lid function is comprised of two primary sections, the first on normal eyelid anatomy, neurological innervation, and physiology, and the second on abnormal eyelid function in disease states. The eyelids serve several important ocular functions, the primary objectives of which are protection of the anterior globe from injury and maintenance of the ocular tear film. Typical eyelid behaviors to perform these functions include blinking (voluntary, spontaneous, or reflexive), voluntary eye closure (gentle or forced), partial lid lowering during squinting, normal lid retraction during emotional states such as surprise or fear (startle reflex), and coordination of lid movements with vertical eye movements for maximal eye protection. Detailed description of the neurological innervation patterns and neurophysiology of each of these lid behaviors is provided. Abnormal lid function is divided by conditions resulting in excessive lid closure (cerebral ptosis, apraxia of lid opening, blepharospasm, oculomotor palsy, Horner's syndrome, myasthenia gravis, and mechanical) and those resulting in excessive lid opening (midbrain lid retraction, facial nerve palsy, and lid retraction due to orbital disease).
Topological phase transitions in frustrated magnets
NASA Astrophysics Data System (ADS)
Southern, B. W.; Peles, A.
2006-06-01
The role of topological excitations in frustrated Heisenberg antiferromagnets between two and three spatial dimensions is considered. In particular, the antiferromagnetic Heisenberg model on a stacked triangular geometry with a finite number of layers is studied using Monte Carlo methods. A phase transition that is purely topological in nature occurs at a finite temperature for all film thicknesses. The results indicate that topological excitations are important for a complete understanding of the critical properties of the model between two and three dimensions.
Algebra and topology for applications to physics
NASA Technical Reports Server (NTRS)
Rozhkov, S. S.
1987-01-01
The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.
Topological efficiency of C 66 fullerene
NASA Astrophysics Data System (ADS)
Vukicevic, Damir; Cataldo, Franco; Ori, Ottorino; Graovac, Ante
2011-01-01
A novel method for the topological determination of the relative stability of the C66 isomers is proposed in this Letter. Among 4478 distinct isomers of the C66 fullerene, the joint actions of topological compactness (Wiener index) and topological efficiency index correctly sieve the C66-C2v molecule detected in Sc2@C66 endoclusters. This elegant and fast computational method is suggested to be applicable to any Cn fullerene or graphenic lattice.
Park, Byung Cheol; Kim, Tae-Hyeon; Sim, Kyung Ik; Kang, Boyoun; Kim, Jeong Won; Cho, Beongki; Jeong, Kwang-Ho; Cho, Mann-Ho; Kim, Jae Hoon
2015-03-16
Strong spin-orbit interaction and time-reversal symmetry in topological insulators generate novel quantum states called topological surface states. Their study provides unique opportunities to explore exotic phenomena such as spin Hall effects and topological phase transitions, relevant to the development of quantum devices for spintronics and quantum computation. Although ultrahigh-vacuum surface probes can identify individual topological surface states, standard electrical and optical experiments have so far been hampered by the interference of bulk and quantum well states. Here, with terahertz time-domain spectroscopy of ultrathin Bi₂Se₃ films, we give evidence for topological phase transitions, a single conductance quantum per topological surface state, and a quantized terahertz absorbance of 2.9% (four times the fine structure constant). Our experiment demonstrates the feasibility to isolate, detect and manipulate topological surface states in the ambient at room temperature for future fundamental research on the novel physics of topological insulators and their practical applications.
Fibrillin abnormalities and prognosis in Marfan syndrome and related disorders
Aoyama, T.; Furthmayr, H.; Francke, U.; Gasner, C.
1995-08-28
Marfan syndrome (MFS), a multisystem autosomal-dominant disorder, is characterized by mutations of the fibrillin-1 (FBN1) gene and by abnormal patterns of synthesis, secretion, and matrix deposition of the fibrillin protein. To determine the sensitivity and specificity of fibrillin protein abnormalities in the diagnosis of MFS, we studied dermal fibroblasts from 57 patients with classical MFS, 15 with equivocal MFS, 8 with single-organ manifestations, and 16 with other connective tissue disorders including homocystinuria and Ehlers-Danlos syndrome. Abnormal fibrillin metabolism was identified in 70 samples that were classified into four different groups based on quantitation of fibrillin synthesis and matrix deposition. Significant correlations were found for phenotypic features including arachnodactyly, striae distensae, cardiovascular manifestations, and fibrillin groups II and IV, which included 70% of the MFS patients. In addition, these two groups were associated with shortened {open_quotes}event-free{close_quotes} survival and more severe cardiovascular complications than groups I and III. The latter included most of the equivocal MFS/single manifestation patients with fibrillin abnormalities. Our results indicate that fibrillin defects at the protein level per se are not specific for MFS, but that the drastically reduced fibrillin deposition, caused by a dominant-negative effect of abnormal fibrillin molecules in individuals defined as groups II and IV, is of prognostic and possibly diagnostic significance. 25 refs., 3 figs., 6 tabs.
Phyllotaxis: a framework for foam topological evolution.
Rivier, Nicolas; Sadoc, Jean-François; Charvolin, Jean
2016-01-01
Phyllotaxis describes the arrangement of florets, scales or leaves in composite flowers or plants (daisy, aster, sunflower, pinecone, pineapple). As a structure, it is a geometrical foam, the most homogeneous and densest covering of a large disk by Voronoi cells (the florets), constructed by a simple algorithm: Points placed regularly on a generative spiral constitute a spiral lattice, and phyllotaxis is the tiling by the Voronoi cells of the spiral lattice. Locally, neighboring cells are organized as three whorls or parastichies, labelled with successive Fibonacci numbers. The structure is encoded as the sequence of the shapes (number of sides) of the successive Voronoi cells on the generative spiral. We show that sequence and organization are independent of the position of the initial point on the generative spiral, that is invariant under disappearance (T2 of the first Voronoi cell or, conversely, under creation of a first cell, that is under growth. This independence shows how a foam is able to respond to a shear stress, notably through grain boundaries that are layers of square cells slightly truncated into heptagons, pentagons and hexagons, meeting at four-corner vertices, critical points of T1 elementary topological transformations.
Topological transport in Dirac electronic systems: A concise review
NASA Astrophysics Data System (ADS)
Song, Hua-Ding; Sheng, Dian; Wang, An-Qi; Li, Jin-Guang; Yu, Da-Peng; Liao, Zhi-Min
2017-03-01
Various novel physical properties have emerged in Dirac electronic systems, especially the topological characters protected by symmetry. Current studies on these systems have been greatly promoted by the intuitive concepts of Berry phase and Berry curvature, which provide precise definitions of the topological orders. In this topical review, transport properties of topological insulator (Bi2Se3), topological Dirac semimetal (Cd3As2) and topological insulator-graphene heterojunction are presented and discussed. Perspectives about transport properties of two-dimensional topological nontrivial systems, including topological edge transport, topological valley transport and topological Weyl semimetals, are provided.
Uranyl peroxide closed clusters containing topological squares
Unruh, Daniel K.; Burtner, Alicia; Pressprich, Laura; Sigmon, Ginger E.; Burns, Peter C
2010-01-01
Four self-assembling clusters of uranyl peroxide polyhedra have been formed in alkaline aqueous solutions and structurally characterized. These clusters consist of 28, 30, 36 and 44 uranyl polyhedra and exhibit complex new topologies. Each has a structure that contains topological squares, pentagons and hexagons. Analysis of possible topologies within boundary constraints indicates a tendency for adoption of higher symmetry topologies in these cases. Small angle X-ray scattering data demonstrated that crystals of one of these clusters can be dissolved in ultrapure water and that the clusters remain intact for at least several days.
Magnetic topology of emerging flux regions
NASA Astrophysics Data System (ADS)
Pariat, Etienne
Coronal magnetic fields structure and governs the dynamics of the solar atmosphere. These magnetic fields are often complex, composed of multiples domains of magnetic-field-lines connectivity. The topology of the magnetic field allows a synthetic description of these complex magnetic field by highlighting the structural elements that are important for the dynamic and the activity of the corona. Topology identifies the key elements where magnetic reconnection will preferentially occurs, and allows to explain and predict the evolution of the coronal plasma. However the topological elements - such as null points, separatrices, separators - do not appear out of thin air. Along with energy, and helicity, the magnetic topology of an active region is build up as the consequence of flux emergence. Some topological elements, such as bald-patches, are even fully part of the mechanism of flux emergence mechanism and drive the evolution and the structuration of the coronal magnetic field as it crosses the lower layer of the solar atmosphere. In the present talk I will therefore review our current understanding of the formation of active region in terms of magnetic topology. I will speak on how the topological structures which are key to solar activity are formed. Meanwhile I'll also discus the topological properties of emerging active region and how topology influences the very process of flux emergence.
Copying and Evolution of Neuronal Topology
Fernando, Chrisantha; Karishma, K. K.; Szathmáry, Eörs
2008-01-01
We propose a mechanism for copying of neuronal networks that is of considerable interest for neuroscience for it suggests a neuronal basis for causal inference, function copying, and natural selection within the human brain. To date, no model of neuronal topology copying exists. We present three increasingly sophisticated mechanisms to demonstrate how topographic map formation coupled with Spike-Time Dependent Plasticity (STDP) can copy neuronal topology motifs. Fidelity is improved by error correction and activity-reverberation limitation. The high-fidelity topology-copying operator is used to evolve neuronal topologies. Possible roles for neuronal natural selection are discussed. PMID:19020662
Topological Spin Glass in Diluted Spin Ice
NASA Astrophysics Data System (ADS)
Sen, Arnab; Moessner, R.
2015-06-01
It is a salient experimental fact that a large fraction of candidate spin liquid materials freeze as the temperature is lowered. The question naturally arises whether such freezing is intrinsic to the spin liquid ("disorder-free glassiness") or extrinsic, in the sense that a topological phase simply coexists with standard freezing of impurities. Here, we demonstrate a surprising third alternative, namely, that freezing and topological liquidity are inseparably linked. The topological phase reacts to the introduction of disorder by generating degrees of freedom of a new type (along with interactions between them), which in turn undergo a freezing transition while the topological phase supporting them remains intact.
Topological Spin Glass in Diluted Spin Ice.
Sen, Arnab; Moessner, R
2015-06-19
It is a salient experimental fact that a large fraction of candidate spin liquid materials freeze as the temperature is lowered. The question naturally arises whether such freezing is intrinsic to the spin liquid ("disorder-free glassiness") or extrinsic, in the sense that a topological phase simply coexists with standard freezing of impurities. Here, we demonstrate a surprising third alternative, namely, that freezing and topological liquidity are inseparably linked. The topological phase reacts to the introduction of disorder by generating degrees of freedom of a new type (along with interactions between them), which in turn undergo a freezing transition while the topological phase supporting them remains intact.
Topology of nonsymmorphic crystalline insulators and superconductors
NASA Astrophysics Data System (ADS)
Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori
2016-05-01
Topological classification in our previous paper [K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014), 10.1103/PhysRevB.90.165114] is extended to nonsymmorphic crystalline insulators and superconductors. Using the twisted equivariant K theory, we complete the classification of topological crystalline insulators and superconductors in the presence of additional order-two nonsymmorphic space-group symmetries. The order-two nonsymmorphic space groups include half-lattice translation with Z2 flip, glide, twofold screw, and their magnetic space groups. We find that the topological periodic table shows modulo-2 periodicity in the number of flipped coordinates under the order-two nonsymmorphic space group. It is pointed out that the nonsymmorphic space groups allow Z2 topological phases even in the absence of time-reversal and/or particle-hole symmetries. Furthermore, the coexistence of the nonsymmorphic space group with time-reversal and/or particle-hole symmetries provides novel Z4 topological phases, which have not been realized in ordinary topological insulators and superconductors. We present model Hamiltonians of these new topological phases and analytic expressions of the Z2 and Z4 topological invariants. The half-lattice translation with Z2 spin flip and glide symmetry are compatible with the existence of boundaries, leading to topological surface gapless modes protected by the order-two nonsymmorphic symmetries. We also discuss unique features of these gapless surface modes.
Classification of topological quantum matter with symmetries
NASA Astrophysics Data System (ADS)
Chiu, Ching-Kai; Teo, Jeffrey C. Y.; Schnyder, Andreas P.; Ryu, Shinsei
2016-07-01
Topological materials have become the focus of intense research in recent years, since they exhibit fundamentally new physical phenomena with potential applications for novel devices and quantum information technology. One of the hallmarks of topological materials is the existence of protected gapless surface states, which arise due to a nontrivial topology of the bulk wave functions. This review provides a pedagogical introduction into the field of topological quantum matter with an emphasis on classification schemes. Both fully gapped and gapless topological materials and their classification in terms of nonspatial symmetries, such as time reversal, as well as spatial symmetries, such as reflection, are considered. Furthermore, the classification of gapless modes localized on topological defects is surveyed. The classification of these systems is discussed by use of homotopy groups, Clifford algebras, K theory, and nonlinear sigma models describing the Anderson (de)localization at the surface or inside a defect of the material. Theoretical model systems and their topological invariants are reviewed together with recent experimental results in order to provide a unified and comprehensive perspective of the field. While the bulk of this article is concerned with the topological properties of noninteracting or mean-field Hamiltonians, a brief overview of recent results and open questions concerning the topological classifications of interacting systems is also provided.
Topological blocking in quantum quench dynamics
NASA Astrophysics Data System (ADS)
Kells, G.; Sen, D.; Slingerland, J. K.; Vishveshwara, S.
2014-06-01
We study the nonequilibrium dynamics of quenching through a quantum critical point in topological systems, focusing on one of their defining features: ground-state degeneracies and associated topological sectors. We present the notion of "topological blocking," experienced by the dynamics due to a mismatch in degeneracies between two phases, and we argue that the dynamic evolution of the quench depends strongly on the topological sector being probed. We demonstrate this interplay between quench and topology in models stemming from two extensively studied systems, the transverse Ising chain and the Kitaev honeycomb model. Through nonlocal maps of each of these systems, we effectively study spinless fermionic p-wave paired topological superconductors. Confining the systems to ring and toroidal geometries, respectively, enables us to cleanly address degeneracies, subtle issues of fermion occupation and parity, and mismatches between topological sectors. We show that various features of the quench, which are related to Kibble-Zurek physics, are sensitive to the topological sector being probed, in particular, the overlap between the time-evolved initial ground state and an appropriate low-energy state of the final Hamiltonian. While most of our study is confined to translationally invariant systems, where momentum is a convenient quantum number, we briefly consider the effect of disorder and illustrate how this can influence the quench in a qualitatively different way depending on the topological sector considered.
Temporal Comparisons of Internet Topology
2014-06-01
ory concepts introduced by Leonhard Euler in 1735. Using these concepts, we study topology by modeling the Internet’s logical connections as a graph, G...generalize to more than two sets. 3.2 Graph Theory One can trace the origins of graph theory to a problem posed by Leonhard Euler in 1735, The Seven... Euler , " Leonhard Euler and the Königsberg bridges," Scientific American, vol. 189, pp. 66–70, July 1953. [17] G. Chartrand and P. Zhang, A First
Geometry, topology, and string theory
Varadarajan, Uday
2003-01-01
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Peptides that influence membrane topology
NASA Astrophysics Data System (ADS)
Wong, Gerard C. L.
2014-03-01
We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)
Emergent Functional Properties of Neuronal Networks with Controlled Topology
Marconi, Emanuele; Nieus, Thierry; Maccione, Alessandro; Valente, Pierluigi; Simi, Alessandro; Messa, Mirko; Dante, Silvia; Baldelli, Pietro; Berdondini, Luca; Benfenati, Fabio
2012-01-01
The interplay between anatomical connectivity and dynamics in neural networks plays a key role in the functional properties of the brain and in the associated connectivity changes induced by neural diseases. However, a detailed experimental investigation of this interplay at both cellular and population scales in the living brain is limited by accessibility. Alternatively, to investigate the basic operational principles with morphological, electrophysiological and computational methods, the activity emerging from large in vitro networks of primary neurons organized with imposed topologies can be studied. Here, we validated the use of a new bio-printing approach, which effectively maintains the topology of hippocampal cultures in vitro and investigated, by patch-clamp and MEA electrophysiology, the emerging functional properties of these grid-confined networks. In spite of differences in the organization of physical connectivity, our bio-patterned grid networks retained the key properties of synaptic transmission, short-term plasticity and overall network activity with respect to random networks. Interestingly, the imposed grid topology resulted in a reinforcement of functional connections along orthogonal directions, shorter connectivity links and a greatly increased spiking probability in response to focal stimulation. These results clearly demonstrate that reliable functional studies can nowadays be performed on large neuronal networks in the presence of sustained changes in the physical network connectivity. PMID:22493706
Abnormal osmotic regulation in trpv4-/- mice
Liedtke, Wolfgang; Friedman, Jeffrey M.
2003-01-01
Osmotic homeostasis is one of the most aggressively defended physiological parameters in vertebrates. However, the molecular mechanisms underlying osmotic regulation are poorly understood. The transient receptor potential channel, vanilloid subfamily (TRPV4), is an osmotically activated ion channel that is expressed in circumventricular organs in the mammalian CNS, which is an important site of osmotic sensing. We have generated trpv4-null mice and observed abnormalities of their osmotic regulation. trpv4-/- mice drank less water and became more hyperosmolar than did wild-type littermates, a finding that was seen with and without administration of hypertonic saline. In addition, plasma levels of antidiuretic hormone were significantly lower in trpv4-/- mice than in wild-type littermates after a hyperosmotic challenge. Continuous s.c. infusion of the antidiuretic hormone analogue, dDAVP, resulted in systemic hypotonicity in trpv4-/- mice, despite the fact that their renal water reabsorption capacity was normal. Thus, the response to both hyper- and hypoosmolar stimuli is impaired in trpv4-/- mice. After a hyperosmolar challenge, there was markedly reduced expression of c-FOS in the circumventricular organ, the organum vasculosum of the lamina terminalis, of trpv4-/- mice compared with wild-type mice. This finding suggests that there is an impairment of osmotic sensing in the CNS of trpv4-/- mice. These data indicate that TRPV4 is necessary for the normal response to changes in osmotic pressure and functions as an osmotic sensor in the CNS. PMID:14581612
Cardiovascular Abnormalities in Sickle Cell Disease
Gladwin, Mark T.; Sachdev, Vandana
2013-01-01
Sickle cell disease is characterized by recurrent episodes of ischemia-reperfusion injury to multiple vital organ systems and a chronic hemolytic anemia, both contributing to progressive organ dysfunction. The introduction of treatments that induce protective fetal hemoglobin and reduce infectious complications has greatly prolonged survival. However, with increased longevity, cardiovascular complications are increasingly evident, with the notable development of a progressive proliferative systemic vasculopathy, pulmonary hypertension (PH) and left ventricular diastolic dysfunction. Pulmonary hypertension is reported in autopsy studies and numerous clinical studies have shown that increased pulmonary pressures are an important risk marker for mortality in these patients. In epidemiological studies, the development of PH is associated with intravascular hemolysis, cutaneous leg ulceration, renal insufficiency, iron overload and liver dysfunction. Chronic anemia in sickle cell disease results in cardiac chamber dilation and a compensatory increase in left ventricular mass. This is often accompanied by left ventricular diastolic dysfunction which has also been a strong independent predictor of mortality patients with sickle cell disease. Both PH and diastolic dysfunction are associated with marked abnormalities in exercise capacity in these patients. Sudden death is an increasingly recognized problem and further cardiac investigations are necessary to recognize and treat high-risk patients. PMID:22440212
Charles Mielke
2009-02-27
Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.
Mars: Noachian hydrology by its statistics and topology
NASA Technical Reports Server (NTRS)
Cabrol, N. A.; Grin, E. A.
1993-01-01
Discrimination between fluvial features generated by surface drainage and subsurface aquifer discharges will provide clues to the understanding of early Mars' climatic history. Our approach is to define the process of formation of the oldest fluvial valleys by statistical and topological analyses. Formation of fluvial valley systems reached its highest statistical concentration during the Noachian Period. Nevertheless, they are a scarce phenomenom in Martian history, localized on the craterized upland, and subject to latitudinal distribution. They occur sparsely on Noachian geological units with a weak distribution density, and appear in reduced isolated surface (around 5 x 10(exp 3)(sq km)), filled by short streams (100-300 km length). Topological analysis of the internal organization of 71 surveyed Noachian fluvial valley networks also provides information on the mechanisms of formation.
Topologically protected modes in non-equilibrium stochastic systems
Murugan, Arvind; Vaikuntanathan, Suriyanarayanan
2017-01-01
Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function. PMID:28071644
Topologically protected modes in non-equilibrium stochastic systems
NASA Astrophysics Data System (ADS)
Murugan, Arvind; Vaikuntanathan, Suriyanarayanan
2017-01-01
Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.
Topologically protected modes in non-equilibrium stochastic systems.
Murugan, Arvind; Vaikuntanathan, Suriyanarayanan
2017-01-10
Non-equilibrium driving of biophysical processes is believed to enable their robust functioning despite the presence of thermal fluctuations and other sources of disorder. Such robust functions include sensory adaptation, enhanced enzymatic specificity and maintenance of coherent oscillations. Elucidating the relation between energy consumption and organization remains an important and open question in non-equilibrium statistical mechanics. Here we report that steady states of systems with non-equilibrium fluxes can support topologically protected boundary modes that resemble similar modes in electronic and mechanical systems. Akin to their electronic and mechanical counterparts, topological-protected boundary steady states in non-equilibrium systems are robust and are largely insensitive to local perturbations. We argue that our work provides a framework for how biophysical systems can use non-equilibrium driving to achieve robust function.
Topological Behavior of Plasmid DNA.
Higgins, N Patrick; Vologodskii, Alexander V
2015-04-01
The discovery of the B-form structure of DNA by Watson and Crick led to an explosion of research on nucleic acids in the fields of biochemistry, biophysics, and genetics. Powerful techniques were developed to reveal a myriad of different structural conformations that change B-DNA as it is transcribed, replicated, and recombined and as sister chromosomes are moved into new daughter cell compartments during cell division. This article links the original discoveries of superhelical structure and molecular topology to non-B form DNA structure and contemporary biochemical and biophysical techniques. The emphasis is on the power of plasmids for studying DNA structure and function. The conditions that trigger the formation of alternative DNA structures such as left-handed Z-DNA, inter- and intra-molecular triplexes, triple-stranded DNA, and linked catenanes and hemicatenanes are explained. The DNA dynamics and topological issues are detailed for stalled replication forks and for torsional and structural changes on DNA in front of and behind a transcription complex and a replisome. The complex and interconnected roles of topoisomerases and abundant small nucleoid association proteins are explained. And methods are described for comparing in vivo and in vitro reactions to probe and understand the temporal pathways of DNA and chromosome chemistry that occur inside living cells.
Topological structure of dictionary graphs
NASA Astrophysics Data System (ADS)
Fukś, Henryk; Krzemiński, Mark
2009-09-01
We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers—that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 103 and 104. A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.
Secondary structure determines protein topology
Fleming, Patrick J.; Gong, Haipeng; Rose, George D.
2006-01-01
Using a test set of 13 small, compact proteins, we demonstrate that a remarkably simple protocol can capture native topology from secondary structure information alone, in the absence of long-range interactions. It has been a long-standing open question whether such information is sufficient to determine a protein's fold. Indeed, even the far simpler problem of reconstructing the three-dimensional structure of a protein from its exact backbone torsion angles has remained a difficult challenge owing to the small, but cumulative, deviations from ideality in backbone planarity, which, if ignored, cause large errors in structure. As a familiar example, a small change in an elbow angle causes a large displacement at the end of your arm; the longer the arm, the larger the displacement. Here, correct secondary structure assignments (α-helix, β-strand, β-turn, polyproline II, coil) were used to constrain polypeptide backbone chains devoid of side chains, and the most stable folded conformations were determined, using Monte Carlo simulation. Just three terms were used to assess stability: molecular compaction, steric exclusion, and hydrogen bonding. For nine of the 13 proteins, this protocol restricts the main chain to a surprisingly small number of energetically favorable topologies, with the native one prominent among them. PMID:16823044
Dislocations and other topological oddities
NASA Astrophysics Data System (ADS)
Pieranski, Pawel
2016-03-01
We will show that the book Dislocations by Jacques Friedel, published half a century ago, can still be recommended, in agreement with the author's intention, as a textbook ;for research students at University and for students at engineering schools as well as for research engineers;. Indeed, today dislocations are known to occur not only in solid crystals but also in many other systems discovered more recently such as colloidal crystals or liquid crystals having periodic structures. Moreover, the concept of dislocations is an excellent starting point for lectures on topological defects occurring in systems equipped with order parameters resulting from broken symmetries: disclinations in nematic or hexatic liquid crystals, dispirations in chiral smectics or disorientations in lyotropic liquid crystals. The discussion of dislocations in Blue Phases will give us an opportunity to call on mind Sir Charles Frank, friend of Jacques Friedel since his Bristol years, who called these ephemeral mesophases ;topological oddities;. Being made of networks of disclinations, Blue Phases are similar to Twist Grain Boundary (TGB) smectic phases, which are made of networks of screw dislocations and whose existence was predicted by de Gennes in 1972 on the basis of the analogy between smectics and superconductors. We will stress that the book by Jacques Friedel contains seeds of this analogy.
Topological inflation with graceful exit
NASA Astrophysics Data System (ADS)
Marunović, Anja; Prokopec, Tomislav
2016-04-01
We investigate a class of models of topological inflation in which a super-Hubble-sized global monopole seeds inflation. These models are attractive since inflation starts from rather generic initial conditions, but their not so attractive feature is that, unless symmetry is again restored, inflation never ends. In this work we show that, in presence of another nonminimally coupled scalar field, that is both quadratically and quartically coupled to the Ricci scalar, inflation naturally ends, representing an elegant solution to the graceful exit problem of topological inflation. While the monopole core grows during inflation, the growth stops after inflation, such that the monopole eventually enters the Hubble radius, and shrinks to its Minkowski space size, rendering it immaterial for the subsequent Universe's dynamics. Furthermore, we find that our model can produce cosmological perturbations that source CMB temperature fluctuations and seed large scale structure statistically consistent (within one standard deviation) with all available data. In particular, for small and (in our convention) negative nonminimal couplings, the scalar spectral index can be as large as ns simeq 0.955, which is about one standard deviation lower than the central value quoted by the most recent Planck Collaboration.
Photonic crystals with topological defects
NASA Astrophysics Data System (ADS)
Liew, Seng Fatt; Knitter, Sebastian; Xiong, Wen; Cao, Hui
2015-02-01
We introduce topological defects to a square lattice of elliptical cylinders. Despite the broken translational symmetry, the long-range positional order of the cylinders leads to a residual photonic band gap in the local density of optical states. However, the band-edge modes are strongly modified by the spatial variation of the ellipse orientation. The Γ -X band-edge mode splits into four regions of high intensity and the output flux becomes asymmetric due to the formation of crystalline domains with different orientation. The Γ -M band-edge mode has the energy flux circulating around the topological defect center, creating an optical vortex. By removing the elliptical cylinders at the center, we create localized defect states, which are dominated by either clockwise or counterclockwise circulating waves. The flow direction can be switched by changing the ellipse orientation. The deterministic aperiodic variation of the unit cell orientation adds another dimension to the control of light in photonic crystals, enabling the creation of a diversified field pattern and energy flow landscape.
Topological defects in liquid crystals as templates for molecular self-assembly
NASA Astrophysics Data System (ADS)
Wang, Xiaoguang; Miller, Daniel S.; Bukusoglu, Emre; de Pablo, Juan J.; Abbott, Nicholas L.
2016-01-01
Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, we observed signatures of molecular self-assembly of amphiphilic molecules in topological defects, including cooperativity, reversibility and controlled growth. We also show that nanoscopic o-rings synthesized from Saturn-ring disclinations and other molecular assemblies templated by defects can be preserved by using photocrosslinkable amphiphiles. Our results reveal that, in analogy to other classes of macromolecular templates such as polymer-surfactant complexes, topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly.
Membranes for topological M-theory
NASA Astrophysics Data System (ADS)
Bao, Ling; Bengtsson, Viktor; Cederwall, Martin; Nilsson, Bengt E. W.
2006-01-01
We formulate a theory of topological membranes on manifolds with G2 holonomy. The BRST charges of the theories are the superspace Killing vectors (the generators of global supersymmetry) on the background with reduced holonomy G2⊂Spin(7). In the absence of spinning formulations of supermembranes, the starting point is an N = 2 target space supersymmetric membrane in seven euclidean dimensions. The reduction of the holonomy group implies a twisting of the rotations in the tangent bundle of the branes with ``R-symmetry'' rotations in the normal bundle, in contrast to the ordinary spinning formulation of topological strings, where twisting is performed with internal U(1) currents of the N = (2,2) superconformal algebra. The double dimensional reduction on a circle of the topological membrane gives the strings of the topological A-model (a by-product of this reduction is a Green-Schwarz formulation of topological strings). We conclude that the action is BRST-exact modulo topological terms and fermionic equations of motion. We discuss the rôle of topological membranes in topological M-theory and the relation of our work to recent work by Hitchin and by Dijkgraaf et al.
Topology dictionary for 3D video understanding.
Tung, Tony; Matsuyama, Takashi
2012-08-01
This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.
TOPOLOGICAL ELECTROMAGNETISM FOR QUARKS AND LEPTONS
Chew, G.F.; Poenaru, V.
1980-04-01
As outgrowth of a topological bootstrap theory of strong interactions and precursor to a corresponding theory of weak interactions, we propose a representation of electromagnetic interactions for "elementary" hadrons and leptons through combinatorial topology. The representation supports the prediction of four lepton doublets.
Search for Majorana fermions in topological superconductors.
Pan, Wei; Shi, Xiaoyan; Hawkins, Samuel D.; Klem, John Frederick
2014-10-01
The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).
Topological insulators: A romance with many dimensions
NASA Astrophysics Data System (ADS)
Manoharan, Hari C.
2010-07-01
Electric charges on the boundaries of certain insulators are programmed by topology to keep moving forward when they encounter an obstacle, rather than scattering backwards and increasing the resistance of the system. This is just one reason why topological insulators are one of the hottest topics in physics right now.
Topological string theory revisited I: The stage
NASA Astrophysics Data System (ADS)
Jia, Bei
2016-08-01
In this paper, we reformulate topological string theory using supermanifolds and supermoduli spaces, following the approach worked out by Witten (Superstring perturbation theory revisited, arXiv:1209.5461). We intend to make the construction geometrical in nature, by using supergeometry techniques extensively. The goal is to establish the foundation of studying topological string amplitudes in terms of integration over appropriate supermoduli spaces.
New supersymmetric localizations from topological gravity
NASA Astrophysics Data System (ADS)
Bae, Jinbeom; Imbimbo, Camillo; Rey, Soo-Jong; Rosa, Dario
2016-03-01
Supersymmetric field theories can be studied exactly on off-shell "localizing" supergravity backgrounds. We show that these supergravity configurations can be identified with BRST invariant configurations of background topological gravity coupled to background topological gauge multiplets. We apply this topological point of view to two-dimensional {N}=left(2,2right) supersymmetric matter theories to obtain, in a simple and straightforward way, a complete classification of localizing supersymmetric backgrounds in two dimensions. We recover all known localizing backgrounds and (infinitely) many more that have not been explored so far. The newly found localizing backgrounds are characterized by quantized fluxes for both graviphotons of the {N}=left(2,2right) supergravity multiplet. The BRST invariant topological backgrounds are parametrized by both Killing vectors and {{S}}^1 -equivariant cohomology of the two-dimensional spacetime. We completely reconstruct the supergravity backgrounds from the topological data: some of the supergravity fields are twisted versions of the topological backgrounds, but others are composite, in that they are nonlinear functionals of topological fields. Moreover, we show that the supersymmetric Ω-deformation is nothing but the background value of the ghost-for-ghost of topological gravity, a result which holds for higher dimensions too.
A Topological Model of Bilingual Intercalation Behavior.
ERIC Educational Resources Information Center
Attinasi, John; And Others
This paper reviews issues and analyses in bilingual switching, or intercalation, and offers a topological model to represent the activity of code switching, sometimes under the same environmental conditions and with the same interlocutors. The topological notion of catastrophe is proposed as a means to model the various factors that influence code…
TOPOLOGICAL THEORY OF HADRONS II: BARYONS
Stapp, Henry P.
1981-10-01
The first paper of this series described a method for incorporating spin into the meson sector of the topological theory of hadrons. This second paper extends the theory to all hadrons. It also incorporates into the covariant S-matrix topological framework the group-theoretic properties of the constituent quark model.
The Teaching of Mathematics: Universal Topological Spaces.
ERIC Educational Resources Information Center
Magill, K. D., Jr.
1988-01-01
The problem of finding all topological spaces is considered. Two characterizations are presented whose proofs involve only elementary notions and techniques. The problem is appropriate for students in a beginning topology course after they have been presented with the Embedding Lemma. (DC)
Finite Topological Spaces as a Pedagogical Tool
ERIC Educational Resources Information Center
Helmstutler, Randall D.; Higginbottom, Ryan S.
2012-01-01
We propose the use of finite topological spaces as examples in a point-set topology class especially suited to help students transition into abstract mathematics. We describe how carefully chosen examples involving finite spaces may be used to reinforce concepts, highlight pathologies, and develop students' non-Euclidean intuition. We end with a…
Topological insulators and superconductors from string theory
Ryu, Shinsei; Takayanagi, Tadashi
2010-10-15
Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the {theta} term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).
Topological Mechanics of Origami and Kirigami.
Chen, Bryan Gin-Ge; Liu, Bin; Evans, Arthur A; Paulose, Jayson; Cohen, Itai; Vitelli, Vincenzo; Santangelo, C D
2016-04-01
Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and program the flexibility of fold patterns. We exploit a recent connection between spring networks and quantum topological states to design origami with localized folding motions at boundaries and study them both experimentally and theoretically. These folding motions exist due to an underlying topological invariant rather than a local imbalance between constraints and degrees of freedom. We give a simple example of a quasi-1D folding pattern that realizes such topological states. We also demonstrate how to generalize these topological design principles to two dimensions. A striking consequence is that a domain wall between two topologically distinct, mechanically rigid structures is deformable even when constraints locally match the degrees of freedom.
Topological Mechanics of Origami and Kirigami
NASA Astrophysics Data System (ADS)
Chen, Bryan Gin-ge; Liu, Bin; Evans, Arthur A.; Paulose, Jayson; Cohen, Itai; Vitelli, Vincenzo; Santangelo, C. D.
2016-04-01
Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and program the flexibility of fold patterns. We exploit a recent connection between spring networks and quantum topological states to design origami with localized folding motions at boundaries and study them both experimentally and theoretically. These folding motions exist due to an underlying topological invariant rather than a local imbalance between constraints and degrees of freedom. We give a simple example of a quasi-1D folding pattern that realizes such topological states. We also demonstrate how to generalize these topological design principles to two dimensions. A striking consequence is that a domain wall between two topologically distinct, mechanically rigid structures is deformable even when constraints locally match the degrees of freedom.
Experimental demonstration of topological error correction.
Yao, Xing-Can; Wang, Tian-Xiong; Chen, Hao-Ze; Gao, Wei-Bo; Fowler, Austin G; Raussendorf, Robert; Chen, Zeng-Bing; Liu, Nai-Le; Lu, Chao-Yang; Deng, You-Jin; Chen, Yu-Ao; Pan, Jian-Wei
2012-02-22
Scalable quantum computing can be achieved only if quantum bits are manipulated in a fault-tolerant fashion. Topological error correction--a method that combines topological quantum computation with quantum error correction--has the highest known tolerable error rate for a local architecture. The technique makes use of cluster states with topological properties and requires only nearest-neighbour interactions. Here we report the experimental demonstration of topological error correction with an eight-photon cluster state. We show that a correlation can be protected against a single error on any quantum bit. Also, when all quantum bits are simultaneously subjected to errors with equal probability, the effective error rate can be significantly reduced. Our work demonstrates the viability of topological error correction for fault-tolerant quantum information processing.
Topological Phases of Sound and Light
NASA Astrophysics Data System (ADS)
Peano, V.; Brendel, C.; Schmidt, M.; Marquardt, F.
2015-07-01
Topological states of matter are particularly robust, since they exploit global features of a material's band structure. Topological states have already been observed for electrons, atoms, and photons. It is an outstanding challenge to create a Chern insulator of sound waves in the solid state. In this work, we propose an implementation based on cavity optomechanics in a photonic crystal. The topological properties of the sound waves can be wholly tuned in situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases and offers an example of a Chern insulator produced from the interaction between two physically distinct particle species, photons and phonons.
DETECTION OF TOPOLOGICAL PATTERNS IN PROTEIN NETWORKS.
MASLOV,S.SNEPPEN,K.
2003-11-17
Complex networks appear in biology on many different levels: (1) All biochemical reactions taking place in a single cell constitute its metabolic network, where nodes are individual metabolites, and edges are metabolic reactions converting them to each other. (2) Virtually every one of these reactions is catalyzed by an enzyme and the specificity of this catalytic function is ensured by the key and lock principle of its physical interaction with the substrate. Often the functional enzyme is formed by several mutually interacting proteins. Thus the structure of the metabolic network is shaped by the network of physical interactions of cell's proteins with their substrates and each other. (3) The abundance and the level of activity of each of the proteins in the physical interaction network in turn is controlled by the regulatory network of the cell. Such regulatory network includes all of the multiple mechanisms in which proteins in the cell control each other including transcriptional and translational regulation, regulation of mRNA editing and its transport out of the nucleus, specific targeting of individual proteins for degradation, modification of their activity e.g. by phosphorylation/dephosphorylation or allosteric regulation, etc. To get some idea about the complexity and interconnectedness of protein-protein regulations in baker's yeast Saccharomyces Cerevisiae in Fig. 1 we show a part of the regulatory network corresponding to positive or negative regulations that regulatory proteins exert on each other. (4) On yet higher level individual cells of a multicellular organism exchange signals with each other. This gives rise to several new networks such as e.g. nervous, hormonal, and immune systems of animals. The intercellular signaling network stages the development of a multicellular organism from the fertilized egg. (5) Finally, on the grandest scale, the interactions between individual species in ecosystems determine their food webs. An interesting
NASA Astrophysics Data System (ADS)
Liu, Jie; Wen, Guilin; Zhi Zuo, Hao; Qing, Qixiang
2016-07-01
The structural configuration obtained by deterministic topology optimization may represent a low reliability level and lead to a high failure rate. Therefore, it is necessary to take reliability into account for topology optimization. By integrating reliability analysis into topology optimization problems, a simple reliability-based topology optimization (RBTO) methodology for continuum structures is investigated in this article. The two-layer nesting involved in RBTO, which is time consuming, is decoupled by the use of a particular optimization procedure. A topology description function approach (TOTDF) and a first order reliability method are employed for topology optimization and reliability calculation, respectively. The problem of the non-smoothness inherent in TOTDF is dealt with using two different smoothed Heaviside functions and the corresponding topologies are compared. Numerical examples demonstrate the validity and efficiency of the proposed improved method. In-depth discussions are also presented on the influence of different structural reliability indices on the final layout.
Measurement of a Topological Edge Invariant in a Microwave Network
NASA Astrophysics Data System (ADS)
Hu, Wenchao; Pillay, Jason C.; Wu, Kan; Pasek, Michael; Shum, Perry Ping; Chong, Y. D.
2015-01-01
We report on the measurement of topological invariants in an electromagnetic topological insulator analog formed by a microwave network, consisting of the winding numbers of scattering matrix eigenvalues. The experiment can be regarded as a variant of a topological pump, with nonzero winding implying the existence of topological edge states. In microwave networks, unlike most other systems exhibiting topological insulator physics, the winding can be directly observed. The effects of loss on the experimental results, and on the topological edge states, are discussed.
Structural and functional diversity of Topologically Associating Domains.
Dekker, Job; Heard, Edith
2015-10-07
Recent studies have shown that chromosomes in a range of organisms are compartmentalized in different types of chromatin domains. In mammals, chromosomes form compartments that are composed of smaller Topologically Associating Domains (TADs). TADs are thought to represent functional domains of gene regulation but much is still unknown about the mechanisms of their formation and how they exert their regulatory effect on embedded genes. Further, similar domains have been detected in other organisms, including flies, worms, fungi and bacteria. Although in all these cases these domains appear similar as detected by 3C-based methods, their biology appears to be quite distinct with differences in the protein complexes involved in their formation and differences in their internal organization. Here we outline our current understanding of such domains in different organisms and their roles in gene regulation.
Cao, Qingjiu; Shu, Ni; An, Li; Wang, Peng; Sun, Li; Xia, Ming-Rui; Wang, Jin-Hui; Gong, Gao-Lang; Zang, Yu-Feng; Wang, Yu-Feng; He, Yong
2013-06-26
Attention-deficit/hyperactivity disorder (ADHD), which is characterized by core symptoms of inattention and hyperactivity/impulsivity, is one of the most common neurodevelopmental disorders of childhood. Neuroimaging studies have suggested that these behavioral disturbances are associated with abnormal functional connectivity among brain regions. However, the alterations in the structural connections that underlie these behavioral and functional deficits remain poorly understood. Here, we used diffusion magnetic resonance imaging and probabilistic tractography method to examine whole-brain white matter (WM) structural connectivity in 30 drug-naive boys with ADHD and 30 healthy controls. The WM networks of the human brain were constructed by estimating inter-regional connectivity probability. The topological properties of the resultant networks (e.g., small-world and network efficiency) were then analyzed using graph theoretical approaches. Nonparametric permutation tests were applied for between-group comparisons of these graphic metrics. We found that both the ADHD and control groups showed an efficient small-world organization in the whole-brain WM networks, suggesting a balance between structurally segregated and integrated connectivity patterns. However, relative to controls, patients with ADHD exhibited decreased global efficiency and increased shortest path length, with the most pronounced efficiency decreases in the left parietal, frontal, and occipital cortices. Intriguingly, the ADHD group showed decreased structural connectivity in the prefrontal-dominant circuitry and increased connectivity in the orbitofrontal-striatal circuitry, and these changes significantly correlated with the inattention and hyperactivity/impulsivity symptoms, respectively. The present study shows disrupted topological organization of large-scale WM networks in ADHD, extending our understanding of how structural disruptions of neuronal circuits underlie behavioral disturbances in
QCD as a topologically ordered system
Zhitnitsky, Ariel R.
2013-09-15
We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1){sub A} problem where the would be η{sup ′} Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1){sub A} problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied.
Homotopy theory in toric topology
NASA Astrophysics Data System (ADS)
Grbić, J.; Theriault, S.
2016-04-01
In toric topology one associates with each simplicial complex K on m vertices two key spaces, the Davis-Januszkiewicz space DJK and the moment-angle complex \\mathscr{Z}K, which are related by a homotopy fibration \\mathscr{Z}K\\xrightarrow{\\tilde{w}}DJ_K\\to \\prodi=1m{C}P∞. A great deal of work has been done to study the properties of DJK and \\mathscr{Z}K, their generalizations to polyhedral products, and applications to algebra, combinatorics, and geometry. Chap. 1 surveys some of the main results in the homotopy theory of these spaces. Chap. 2 breaks new ground by initiating a study of the map \\tilde{w}. It is shown that, for a certain family of simplicial complexes K, the map \\tilde{w} is a sum of higher and iterated Whitehead products. Bibliography: 49 titles.
Topological Optimization of Rod Mixers
NASA Astrophysics Data System (ADS)
Finn, Matthew D.; Thiffeault, Jean-Luc
2006-11-01
Stirring of fluid with moving rods is necessary in many practical applications to achieve homogeneity. These rods are topological obstacles that force stretching of fluid elements. The resulting stretching and folding is commonly observed as filaments and striations, and is a precursor to mixing. In a space-time diagram, the trajectories of the rods form a braid [1], and the properties of this braid impose a minimal complexity in the flow. We discuss how optimal mixing protocols can be obtained by a judicious choice of braid, and how these protocols can be implemented using simple gearing [2].[12pt] [1] P. L. Boyland, H. Aref, and M. A. Stremler, JFM 403, 277 (2000).[8pt] [2] J.-L. Thiffeault and M. D. Finn, http://arxiv.org/nlin/0603003
Babichev, E.
2006-10-15
We consider global topological defects in symmetry-breaking models with a noncanonical kinetic term. Apart from a mass parameter entering the potential, one additional dimensional parameter arises in such models - a kinetic mass. The properties of defects in these models are quite different from standard global domain walls, vortices, and monopoles, if their kinetic mass scale is smaller than their symmetry-breaking scale. In particular, depending on the concrete form of the kinetic term, the typical size of such a defect can be either much larger or much smaller than the size of a standard defect with the same potential term. The characteristic mass of a nonstandard defect, which might have been formed during a phase transition in the early universe, depends on both the temperature of a phase transition and the kinetic mass.
Topological approach of Jungian psychology.
Viret, Jacques
2010-09-01
In this work, we compare two global approaches which are usually considered as completely unconnected one with the other. The former is Thom's topology and the latter is Jung's psychology. More precisely, it seemed to us interesting to adapt some morphologies of Thom's catastrophe theory to some Jung's notions. Thus, we showed that the swallowtail, which is one of these morphologies, was able to describe geometrically the structural organisation of the psyche according to Jung, with its collective unconscious, personal unconscious and conscious. Moreover, we have correlated this morphology with Jung's evolutive processes like individualization and individuation. These comparisons incited us to think that some morphologies of Thom's catastrophe theory are the geometrical dealing of Jung's archetypes.
Wavefunctions for topological quantum registers
Ardonne, E. . E-mail: ardonne@kitp.ucsb.edu; Schoutens, K.
2007-01-15
We present explicit wavefunctions for quasi-hole excitations over a variety of non-abelian quantum Hall states: the Read-Rezayi states with k {>=} 3 clustering properties and a paired spin-singlet quantum Hall state. Quasi-holes over these states constitute a topological quantum register, which can be addressed by braiding quasi-holes. We obtain the braid properties by direct inspection of the quasi-hole wavefunctions. We establish that the braid properties for the paired spin-singlet state are those of 'Fibonacci anyons', and thus suitable for universal quantum computation. Our derivations in this paper rely on explicit computations in the parafermionic conformal field theories that underly these particular quantum Hall states.
Topologically massive higher spin gravity
NASA Astrophysics Data System (ADS)
Bagchi, Arjun; Lal, Shailesh; Saha, Arunabha; Sahoo, Bindusar
2011-10-01
We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the presence of a non-trivial trace and its logarithmic partner at the chiral point. The trace modes carry energy opposite in sign to the traceless modes. The logarithmic partner of the traceless mode carries negative energy indicating an instability at the chiral point. We make several comments on the asymptotic symmetry and its possible deformations at this chiral point and speculate on the higher spin generalisation of LCFT2 dual to the spin-3 massive gravity at the chiral point.
Spin-3 topologically massive gravity
NASA Astrophysics Data System (ADS)
Chen, Bin; Long, Jiang; Wu, Jun-bao
2011-11-01
In this Letter, we study the spin-3 topologically massive gravity (TMG), paying special attention to its properties at the chiral point. We propose an action describing the higher spin fields coupled to TMG. We discuss the traceless spin-3 fluctuations around the AdS3 vacuum and find that there is an extra local massive mode, besides the left-moving and right-moving boundary massless modes. At the chiral point, such extra mode becomes massless and degenerates with the left-moving mode. We show that at the chiral point the only degrees of freedom in the theory are the boundary right-moving graviton and spin-3 field. We conjecture that spin-3 chiral gravity with generalized Brown-Henneaux boundary condition is holographically dual to 2D chiral CFT with classical W3 algebra and central charge cR = 3 l / G.
Electrocardiographic abnormalities in patients with Lassa fever.
Cummins, D; Bennett, D; Fisher-Hoch, S P; Farrar, B; McCormick, J B
1989-10-01
Electrocardiograms from 32 patients with acute Lassa fever were abnormal in over 70% of cases. The changes noted included non-specific ST-segment and T-wave abnormalities, ST-segment elevation, generalized low-voltage complexes, and changes reflecting electrolyte disturbance. None of the abnormalities correlated with clinical severity of infection, serum transaminase levels, or eventual outcome. ECG changes are common in Lassa fever, but usually unassociated with clinical manifestations of myocarditis.
[Renal abnormalities in ankylosing spondylitis].
Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel
2012-07-01
We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease.
Abnormal band of lateral meniscus.
Giordano, Brian; Goldblatt, John
2009-01-01
This article describes a case of an "abnormal band" of the lateral meniscus, extending from the posterior horn of the true lateral meniscus to its antero-mid portion, observed during arthroscopy in a 45-year-old white man of Bosnian descent. The periphery of the aberrant lateral meniscus was freely mobile, and not connected to the underlying true lateral meniscus. Preoperative physical examination findings were consistent with medial-sided meniscal pathology only; however, evidence of an anomalous lateral meniscus was seen with magnetic resonance imaging. This anatomical pattern is rare and has been reported in the literature only once, in a report of 2 Asian patients. This article illustrates an anatomical variant of the lateral meniscus in a non-Asian patient with a clinical presentation that has not been previously described. In addition to the case report, the article presents a comprehensive review of the existing body of literature on anomalous lateral meniscus patterns. We believe that the definitions of the types of aberrant meniscus can be clarified to establish improved accuracy in reporting.
Radiologic atlas of pulmonary abnormalities in children
Singleton, E.B.; Wagner, M.L.; Dutton, R.V.
1988-01-01
This book is an atlas about thoracic abnormalities in infants and children. The authors include computed tomographic, digital subtraction angiographic, ultrasonographic, and a few magnetic resonance (MR) images. They recognize and discuss how changes in the medical treatment of premature infants and the management of infection and pediatric tumors have altered some of the appearances and considerations in these diseases. Oriented toward all aspects of pulmonary abnormalities, the book starts with radiographic techniques and then discusses the normal chest, the newborn, infections, tumors, and pulmonary vascular diseases. There is comprehensive treatment of mediastinal abnormalities and a discussion of airway abnormalities.
Dynamic membrane protein topological switching upon changes in phospholipid environment
Vitrac, Heidi; MacLean, David M.; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William
2015-01-01
A fundamental objective in membrane biology is to understand and predict how a protein sequence folds and orients in a lipid bilayer. Establishing the principles governing membrane protein folding is central to understanding the molecular basis for membrane proteins that display multiple topologies, the intrinsic dynamic organization of membrane proteins, and membrane protein conformational disorders resulting in disease. We previously established that lactose permease of Escherichia coli displays a mixture of topological conformations and undergoes postassembly bidirectional changes in orientation within the lipid bilayer triggered by a change in membrane phosphatidylethanolamine content, both in vivo and in vitro. However, the physiological implications and mechanism of dynamic structural reorganization of membrane proteins due to changes in lipid environment are limited by the lack of approaches addressing the kinetic parameters of transmembrane protein flipping. In this study, real-time fluorescence spectroscopy was used to determine the rates of protein flipping in the lipid bilayer in both directions and transbilayer flipping of lipids triggered by a change in proteoliposome lipid composition. Our results provide, for the first time to our knowledge, a dynamic picture of these events and demonstrate that membrane protein topological rearrangements in response to lipid modulations occur rapidly following a threshold change in proteoliposome lipid composition. Protein flipping was not accompanied by extensive lipid-dependent unfolding of transmembrane domains. Establishment of lipid bilayer asymmetry was not required but may accelerate the rate of protein flipping. Membrane protein flipping was found to accelerate the rate of transbilayer flipping of lipids. PMID:26512118
Thyroid abnormalities after therapeutic external radiation
Hancock, S.L.; McDougall, I.R.; Constine, L.S.
1995-03-30
The thyroid gland is the largest pure endocrine gland in the body and one of the organs most likely to produce clinically significant abnormalities after therapeutic external radiation. Radiation doses to the thyroid that exceed approximately 26 Gy frequently produce hypothyroidism, which may be clinically overt or subclinical, as manifested by increased serum thyrotropin and normal serum-free thyroxine concentrations. Pituitary or hypothalamic hypothyroidism may arise when the pituitary region receives doses exceeding 50 Gy with conventional, 1.8-2 Gy fractionation. Direct irradiation of the thyroid may increase the risk of Graves` disease or euthyroid Graves` ophthalmopathy. Silent thyroiditis, cystic degeneration, benign adenoma, and thyroid cancer have been observed after therapeutically relevant doses of external radiation. Direct or incidental thyroid irradiation increases the risk for well-differentiated, papillary, and follicular thyroid cancer from 15- to 53-fold. Thyroid cancer risk is highest following radiation at a young age, decreases with increasing age at treatment, and increases with follow-up duration. The potentially prolonged latent period between radiation exposure and the development of thyroid dysfunction, thyroid nodularity, and thyroid cancer means that individuals who have received neck or pituitary irradiation require careful, periodic clinical and laboratory evaluation to avoid excess morbidity. 39 refs.
New topological types of Majorana modes at ends of one-dimensional topological superconductors
NASA Astrophysics Data System (ADS)
Zhao, Yuxin; Wang, Zidan
2014-03-01
As being known, topological insulators/superconductors are completely classified into various topological types with respect to their anti-unitary symmetries and dimensions, and for a certian dimension different topological types correspond to different boundary gapless modes, which is quantitatively described as a general index theorem. Based on this and Kitaev's model in class D, we construct models for all the other types of D1 topological superconductors and analyze their topologically protected Majorana zero-modes at ends. We highlight that: 1)The two kinds of Z2 topological numbers imply distinct forms of Majorana zero-modes. 2) The two-fold degenerate ground state of the DIII model with Majorana fermions can be effectively regarded as a spin when the model is coupled to a weak external magnetic field. 3)The BDI model with Z-type unit topological number can be assigned topological charges +/- 1 to its Majorana zero-modes at two ends in agreement with the general index theorem. 4)The CII model with Z-type topological number 2 may be regarded as two copies of the BDI model with certain spin-pairing patterns, and consistently the topological charge of its Majorana zero-modes is defined in the same sense of that of the BDI model.
Topology Zero: Advancing Theory and Experimentation for Power Electronics Education
NASA Astrophysics Data System (ADS)
Luchino, Federico
For decades, power electronics education has been based on the fundamentals of three basic topologies: buck, boost, and buck-boost. This thesis presents the analytical framework for the Topology Zero, a general circuit topology that integrates the basic topologies and provides significant insight into the behaviour of converters. As demonstrated, many topologies are just particular cases of the Topology Zero, an important contribution towards the understanding, integration, and conceptualization of topologies. The investigation includes steady-state, small-signal, and frequency response analysis. The Topology Zero is physically implemented as an educational system. Experimental results are presented to show control applications and power losses analysis using the educational system. The steady-state and dynamic analyses of the Topology Zero provide profuse proof of its suitability as an integrative topology, and of its ability to be indirectly controlled. As well, the implementation of the Topology Zero within an experimentation system is explained and application examples are provided.
Congenital abnormalities of internal organs and body cavities.
Saperstein, G
1993-03-01
Many of these malformations are reported sporadically, but a few are common, and several have important clinical implications. One example is schistosomus reflexus, which is always a challenge for veteran clinicians and often baffling to inexperienced obstetricians. The recent finding that early palpation of the amniotic vesicle can cause intestinal atresia in calves is extremely significant for dairy practitioners. Finally, there is the ethical question in breeding animals--repairing defects that are thought to be genetic, such as atresia ani, scrotal hernia, and umbilical hernia.
On the topological sensitivity of cellular automata
NASA Astrophysics Data System (ADS)
Baetens, Jan M.; De Baets, Bernard
2011-06-01
Ever since the conceptualization of cellular automata (CA), much attention has been paid to the dynamical properties of these discrete dynamical systems, and, more in particular, to their sensitivity to the initial condition from which they are evolved. Yet, the sensitivity of CA to the topology upon which they are based has received only minor attention, such that a clear insight in this dependence is still lacking and, furthermore, a quantification of this so-called topological sensitivity has not yet been proposed. The lack of attention for this issue is rather surprising since CA are spatially explicit, which means that their dynamics is directly affected by their topology. To overcome these shortcomings, we propose topological Lyapunov exponents that measure the divergence of two close trajectories in phase space originating from a topological perturbation, and we relate them to a measure grasping the sensitivity of CA to their topology that relies on the concept of topological derivatives, which is introduced in this paper. The validity of the proposed methodology is illustrated for the 256 elementary CA and for a family of two-state irregular totalistic CA.
Low-Dimensional Topological Crystalline Insulators.
Wang, Qisheng; Wang, Feng; Li, Jie; Wang, Zhenxing; Zhan, Xueying; He, Jun
2015-09-01
Topological crystalline insulators (TCIs) are recently discovered topological phase with robust surface states residing on high-symmetry crystal surfaces. Different from conventional topological insulators (TIs), protection of surface states on TCIs comes from point-group symmetry instead of time-reversal symmetry in TIs. The distinct properties of TCIs make them promising candidates for the use in novel spintronics, low-dissipation quantum computation, tunable pressure sensor, mid-infrared detector, and thermoelectric conversion. However, similar to the situation in TIs, the surface states are always suppressed by bulk carriers, impeding the exploitation of topology-induced quantum phenomenon. One effective way to solve this problem is to grow low-dimensional TCIs which possess large surface-to-volume ratio, and thus profoundly increase the carrier contribution from topological surface states. Indeed, through persistent effort, researchers have obtained unique quantum transport phenomenon, originating from topological surface states, based on controllable growth of low-dimensional TCIs. This article gives a comprehensive review on the recent progress of controllable synthesis and topological surface transport of low-dimensional TCIs. The possible future direction about low-dimensional TCIs is also briefly discussed at the end of this paper.
Topological lasing in resonant photonic structures
NASA Astrophysics Data System (ADS)
Pilozzi, Laura; Conti, Claudio
2016-05-01
We exploit topological edge states in resonant photonic crystals to attain strongly localized resonances and demonstrate lasing in these modes upon optical excitation. The use of virtually lossless topologically isolated edge states may lead to a class of thresholdless lasers operating without inversion. One needs, however, to understand whether topological states may be coupled to external radiation and act as active cavities. We study a two-level topological insulator and show that self-induced transparency pulses can directly excite edge states. We simulate laser emission by a suitably designed topological cavity and show that it can emit tunable radiation. For a configuration of sites following the off-diagonal Aubry-André-Harper model, we solve the Maxwell-Bloch equations in the time domain and provide a first-principles confirmation of topological lasers. Our results open the road to a class of light emitters with topological protection for applications ranging from low-cost energetically effective integrated laser sources, also including silicon photonics, to strong-coupling devices for studying ultrafast quantum processes with engineered vacuum.
Strain-Induced Ferroelectric Topological Insulator.
Liu, Shi; Kim, Youngkuk; Tan, Liang Z; Rappe, Andrew M
2016-03-09
Ferroelectricity and band topology are two extensively studied yet distinct properties of insulators. Nonetheless, their coexistence has never been observed in a single material. Using first-principles calculations, we demonstrate that a noncentrosymmetric perovskite structure of CsPbI3 allows for the simultaneous presence of ferroelectric and topological orders with appropriate strain engineering. Metallic topological surface states create an intrinsic short-circuit condition, helping stabilize bulk polarization. Exploring diverse structural phases of CsPbI3 under pressure, we identify that the key structural feature for achieving a ferroelectric topological insulator is to suppress PbI6 cage rotation in the perovskite structure, which could be obtained via strain engineering. Ferroelectric control over the density of topological surface states provides a new paradigm for device engineering, such as perfect-focusing Veselago lens and spin-selective electron collimator. Our results suggest that CsPbI3 is a simple model system for ferroelectric topological insulators, enabling future studies exploring the interplay between conventional symmetry-breaking and topological orders and their novel applications in electronics and spintronics.
Topological phases: An expedition off lattice
Freedman, Michael H.; Gamper, Lukas; Gils, Charlotte; Isakov, Sergei V.; Trebst, Simon; Troyer, Matthias
2011-08-15
Highlights: > Models of topological phases where the lattice topology is a dynamical variable. > We discuss off-lattice hazards that destroy topological protection. > The Cheeger constant yields upper bound to the energy of excited states. > Baby universes meet condensed matter physics. > We study the graph Laplacian of loop gases and string nets on fluctuating lattices. - Abstract: Motivated by the goal to give the simplest possible microscopic foundation for a broad class of topological phases, we study quantum mechanical lattice models where the topology of the lattice is one of the dynamical variables. However, a fluctuating geometry can remove the separation between the system size and the range of local interactions, which is important for topological protection and ultimately the stability of a topological phase. In particular, it can open the door to a pathology, which has been studied in the context of quantum gravity and goes by the name of 'baby universe', here we discuss three distinct approaches to suppressing these pathological fluctuations. We complement this discussion by applying Cheeger's theory relating the geometry of manifolds to their vibrational modes to study the spectra of Hamiltonians. In particular, we present a detailed study of the statistical properties of loop gas and string net models on fluctuating lattices, both analytically and numerically.
Topological Photonic Phase in Chiral Hyperbolic Metamaterials
NASA Astrophysics Data System (ADS)
Gao, Wenlong; Lawrence, Mark; Yang, Biao; Liu, Fu; Fang, Fengzhou; Béri, Benjamin; Li, Jensen; Zhang, Shuang
2015-01-01
Recently, the possibility of achieving one-way backscatter immune transportation of light by mimicking the topological properties of certain solid state systems, such as topological insulators, has received much attention. Thus far, however, demonstrations of nontrivial topology in photonics have relied on photonic crystals with precisely engineered lattice structures, periodic on the scale of the operational wavelength and composed of finely tuned, complex materials. Here we propose a novel effective medium approach towards achieving topologically protected photonic surface states robust against disorder on all length scales and for a wide range of material parameters. Remarkably, the nontrivial topology of our metamaterial design results from the Berry curvature arising from the transversality of electromagnetic waves in a homogeneous medium. Our investigation therefore acts to bridge the gap between the advancing field of topological band theory and classical optical phenomena such as the spin Hall effect of light. The effective medium route to topological phases will pave the way for highly compact one-way transportation of electromagnetic waves in integrated photonic circuits.
Topological microstructure analysis using persistence landscapes
NASA Astrophysics Data System (ADS)
Dłotko, Paweł; Wanner, Thomas
2016-11-01
Phase separation mechanisms can produce a variety of complicated and intricate microstructures, which often can be difficult to characterize in a quantitative way. In recent years, a number of novel topological metrics for microstructures have been proposed, which measure essential connectivity information and are based on techniques from algebraic topology. Such metrics are inherently computable using computational homology, provided the microstructures are discretized using a thresholding process. However, while in many cases the thresholding is straightforward, noise and measurement errors can lead to misleading metric values. In such situations, persistence landscapes have been proposed as a natural topology metric. Common to all of these approaches is the enormous data reduction, which passes from complicated patterns to discrete information. It is therefore natural to wonder what type of information is actually retained by the topology. In the present paper, we demonstrate that averaged persistence landscapes can be used to recover central system information in the Cahn-Hilliard theory of phase separation. More precisely, we show that topological information of evolving microstructures alone suffices to accurately detect both concentration information and the actual decomposition stage of a data snapshot. Considering that persistent homology only measures discrete connectivity information, regardless of the size of the topological features, these results indicate that the system parameters in a phase separation process affect the topology considerably more than anticipated. We believe that the methods discussed in this paper could provide a valuable tool for relating experimental data to model simulations.
Robust interface between flying and topological qubits
Xue, Zheng-Yuan; Gong, Ming; Liu, Jia; Hu, Yong; Zhu, Shi-Liang; Wang, Z. D.
2015-01-01
Hybrid architectures, consisting of conventional and topological qubits, have recently attracted much attention due to their capability in consolidating robustness of topological qubits and universality of conventional qubits. However, these two kinds of qubits are normally constructed in significantly different energy scales, and thus the energy mismatch is a major obstacle for their coupling, which can support the exchange of quantum information between them. Here we propose a microwave photonic quantum bus for a strong direct coupling between the topological and conventional qubits, where the energy mismatch is compensated by an external driving field. In the framework of tight-binding simulation and perturbation approach, we show that the energy splitting of Majorana fermions in a finite length nanowire, which we use to define topological qubits, is still robust against local perturbations due to the topology of the system. Therefore, the present scheme realizes a rather robust interface between the flying and topological qubits. Finally, we demonstrate that this quantum bus can also be used to generate multipartitie entangled states with the topological qubits. PMID:26216201
On the topological sensitivity of cellular automata.
Baetens, Jan M; De Baets, Bernard
2011-06-01
Ever since the conceptualization of cellular automata (CA), much attention has been paid to the dynamical properties of these discrete dynamical systems, and, more in particular, to their sensitivity to the initial condition from which they are evolved. Yet, the sensitivity of CA to the topology upon which they are based has received only minor attention, such that a clear insight in this dependence is still lacking and, furthermore, a quantification of this so-called topological sensitivity has not yet been proposed. The lack of attention for this issue is rather surprising since CA are spatially explicit, which means that their dynamics is directly affected by their topology. To overcome these shortcomings, we propose topological Lyapunov exponents that measure the divergence of two close trajectories in phase space originating from a topological perturbation, and we relate them to a measure grasping the sensitivity of CA to their topology that relies on the concept of topological derivatives, which is introduced in this paper. The validity of the proposed methodology is illustrated for the 256 elementary CA and for a family of two-state irregular totalistic CA.
Sufficient symmetry conditions for Topological Quantum Order.
Nussinov, Zohar; Ortiz, Gerardo
2009-10-06
We prove sufficient conditions for Topological Quantum Order at zero and finite temperatures. The crux of the proof hinges on the existence of low-dimensional Gauge-Like Symmetries, thus providing a unifying framework based on a symmetry principle. These symmetries may be actual invariances of the system, or may emerge in the low-energy sector. Prominent examples of Topological Quantum Order display Gauge-Like Symmetries. New systems exhibiting such symmetries include Hamiltonians depicting orbital-dependent spin exchange and Jahn-Teller effects in transition metal orbital compounds, short-range frustrated Klein spin models, and p+ip superconducting arrays. We analyze the physical consequences of Gauge-Like Symmetries (including topological terms and charges) and show the insufficiency of the energy spectrum, topological entanglement entropy, maximal string correlators, and fractionalization in establishing Topological Quantum Order. General symmetry considerations illustrate that not withstanding spectral gaps, thermal fluctuations may impose restrictions on suggested quantum computing schemes. Our results allow us to go beyond standard topological field theories and engineer systems with Topological Quantum Order.
Design and Characterization of Topological Small RNAs.
Hassall, Jack; MacDonald, Paul; Cordero, Teresa; Rostain, William; Jaramillo, Alfonso
2015-01-01
RNA can self-assemble into complex structures through base pairing, as well as encode information and bind with proteins to induce enzymatic activity. Furthermore, RNA can possess intrinsic enzymatic-like (ribozymatic) activity, a property that, if necessary, can be activated only upon the binding of a small molecule or another RNA (as is the case in aptazymes). As such, RNA could be of use in nanotechnology as a programmable polymer capable of self-assembling into complex topological structures. In this chapter we describe a method for designing advanced topological structures using self-circulating RNA, exemplified by three tiers of topologically manipulated self-assembling synthetic RNA systems. The first tier of topological manipulation, the RNA knot is a physically locked structure, formed by circularizing one monomer of knotted single-stranded RNA left with loose ends (an "open" knot). The second tier, a two interlocking ring system, is made by interlocking two circular RNA components: a circular RNA target, and an RNA lasso designed to intercalate the target before circularizing. The third tier naturally extends this system into a string of topologically locked circular RNA molecules (an RNA chain). We detail the methodology used for designing such topologically complex RNAs, including computational predictions of secondary structure, and where appropriate, RNA-RNA interactions, illustrated by examples. We then describe the experimental methods used for characterizing such structures, and provide sequences of building blocks that can be used for topological manipulation of RNA.
Quantum information sharing between topologically distinct platforms
NASA Astrophysics Data System (ADS)
Hou, Chang-Yu; Refael, Gil; Shtengel, Kirill
2016-12-01
Can topological quantum entanglement between anyons in one topological medium "stray" into a different, topologically distinct medium? In other words, can quantum information encoded nonlocally in the combined state of non-Abelian anyons be shared between two distinct topological media? For one-dimensional topological superconductors with Majorana bound states at the end of system, the quantum information store in those Majorana bound states can be transfered by directly coupling nearby Majorana bound states. However, coupling of two one-dimensional Majorana states will produce a gap, indicating that distinct topological regions of one-dimensional wires unite into a single topological region through the information transfer process. In this paper, we consider a setup with two two-dimensional p -wave superconductors of opposite chirality adjacent to each other. Even two comoving chiral modes at the domain wall between them cannot be gapped through interactions; we demonstrate that information encoded in the fermionic parity of two Majorana zero modes, originally within the same superconducting domain, can be shared between the domains or moved entirely from one domain to another provided that vortices can tunnel between them in a controlled fashion.
Frequency Dependent Topological Patterns of Resting-State Brain Networks
Qian, Long; Zhang, Yi; Zheng, Li; Shang, Yuqing; Gao, Jia-Hong; Liu, Yijun
2015-01-01
The topological organization underlying brain networks has been extensively investigated using resting-state fMRI, focusing on the low frequency band from 0.01 to 0.1 Hz. However, the frequency specificities regarding the corresponding brain networks remain largely unclear. In the current study, a data-driven method named complementary ensemble empirical mode decomposition (CEEMD) was introduced to separate the time series of each voxel into several intrinsic oscillation rhythms with distinct frequency bands. Our data indicated that the whole brain BOLD signals could be automatically divided into five specific frequency bands. After applying the CEEMD method, the topological patterns of these five temporally correlated networks were analyzed. The results showed that global topological properties, including the network weighted degree, network efficiency, mean characteristic path length and clustering coefficient, were observed to be most prominent in the ultra-low frequency bands from 0 to 0.015 Hz. Moreover, the saliency of small-world architecture demonstrated frequency-density dependency. Compared to the empirical mode decomposition method (EMD), CEEMD could effectively eliminate the mode-mixing effects. Additionally, the robustness of CEEMD was validated by the similar results derived from a split-half analysis and a conventional frequency division method using the rectangular window band-pass filter. Our findings suggest that CEEMD is a more effective method for extracting the intrinsic oscillation rhythms embedded in the BOLD signals than EMD. The application of CEEMD in fMRI data analysis will provide in-depth insight in investigations of frequency specific topological patterns of the dynamic brain networks. PMID:25927525
Topological orders with global gauge anomalies
NASA Astrophysics Data System (ADS)
You, Yi-Zhuang; Xu, Cenke
2015-08-01
By definition, the physics of the d -dimensional (dim) boundary of a (d +1 ) -dim symmetry protected topological (SPT) state cannot be realized as itself on a d -dim lattice. If the symmetry of the system is unitary, then a formal way to determine whether a d -dim theory must be a boundary or not, is to couple this theory to a gauge field (or to "gauge" its symmetry), and check if there is a gauge anomaly. In this paper we discuss the following question: Can the boundary of a SPT state be driven into a fully gapped topological order which preserves all the symmetries? We argue (conjecture) that if the gauge anomaly of the boundary is "perturbative," then the boundary must remain gapless; while if the boundary only has global gauge anomaly but no perturbative anomaly, then it is possible to gap out the boundary by driving it into a topological state, when d ≥2 . We will demonstrate this conjecture with two examples: (1) the 3 d spin-1/2 chiral fermion with the well-known Witten's global anomaly [Phys. Lett. 117, 324 (1982), 10.1016/0370-2693(82)90728-6], which can be realized on the boundary of a 4 d topological superconductor with SU(2) or U (1 ) ⋊Z2 symmetry; and (2) the 4 d boundary of a 5 d topological superconductor with the same symmetry. We show that these boundary systems can be driven into a fully gapped Z2 N topological order with topological degeneracy, but this Z2 N topological order cannot be future driven into a trivial confined phase that preserves all the symmetries due to some special properties of its topological defects. Our study also leads to exotic states of matter in pure 3 d space.
Topological study of the periodic system.
Restrepo, Guillermo; Mesa, Héber; Llanos, Eugenio J; Villaveces, José L
2004-01-01
We carried out a topological study of the Space of Chemical Elements, SCE, based on a clustering analysis of 72 elements, each one defined by a vector of 31 properties. We looked for neighborhoods, boundaries, and other topological properties of the SCE. Among the results one sees the well-known patterns of the Periodic Table and relationships such as the Singularity Principle and the Diagonal Relationship, but there appears also a robustness property of some of the better-known families of elements. Alkaline metals and Noble Gases are sets whose neighborhoods have no other elements besides themselves, whereas the topological boundary of the set of metals is formed by semimetallic elements.
On the topological stability of magnetostatic equilibria
NASA Technical Reports Server (NTRS)
Tsinganos, K. C.; Rosner, R.; Distler, J.
1984-01-01
The topological stability of MHD equilibria is investigated by exploring the formal analogy, in the ideal MHD limit, between the topology of magnetic lines of force in coordinate space and the topology of integral surfaces of one- and two-dimensional Hamiltonian systems in phase space. It is demonstrated that in an astrophysical setting, symmetric magnetostatic equilibria satisfying the ideal MHD equations are exceptional. The principal result of the study is that previous infinitesimal perturbation theory calculations can be generalized to include finite-amplitude and symmetry-breaking effects. The effect of the ergodicity of perturbed symmetric equilibria on heat dispersal in magnetically dominated plasmas is discussed.
Topologically protected localised states in spin chains
Estarellas, Marta P.; D’Amico, Irene; Spiller, Timothy P.
2017-01-01
We consider spin chain families inspired by the Su, Schrieffer and Hegger (SSH) model. We demonstrate explicitly the topologically induced spatial localisation of quantum states in our systems. We present detailed investigations of the effects of random noise, showing that these topologically protected states are very robust against this type of perturbation. Systems with such topological robustness are clearly good candidates for quantum information tasks and we discuss some potential applications. Thus, we present interesting spin chain models which show promising applications for quantum devices. PMID:28225002
The biHermitian topological sigma model
NASA Astrophysics Data System (ADS)
Zucchini, Roberto
2006-12-01
BiHermitian geometry, discovered long ago by Gates, Hull and Rocek, is the most general sigma model target space geometry allowing for (2,2) world sheet supersymmetry. By using the twisting procedure proposed by Kapustin and Li, we work out the type A and B topological sigma models for a general biHermtian target space, we write down the explicit expression of the sigma model's action and BRST transformations and present a computation of the topological gauge fermion and the topological action.
Topologically protected localised states in spin chains
NASA Astrophysics Data System (ADS)
Estarellas, Marta P.; D’Amico, Irene; Spiller, Timothy P.
2017-02-01
We consider spin chain families inspired by the Su, Schrieffer and Hegger (SSH) model. We demonstrate explicitly the topologically induced spatial localisation of quantum states in our systems. We present detailed investigations of the effects of random noise, showing that these topologically protected states are very robust against this type of perturbation. Systems with such topological robustness are clearly good candidates for quantum information tasks and we discuss some potential applications. Thus, we present interesting spin chain models which show promising applications for quantum devices.
Computer-aided design of LSI topology
NASA Astrophysics Data System (ADS)
Seliutin, V. A.
The problems and methods of the computer-aided design of the topology of LSI circuits and computer-aided manufacture of LSI templates are reviewed. Topics discussed include algorithms for the layout of cells and circuit units, algorithms for tracing connections, the design of the topology of matrix LSI, and the topology of functional LSI circuit units based on MIS structures. The discussion also covers the design of the layout of LSI circuits with single-layer commutation, application examples, and the main trends in the computer-aided design of LSI circuits.
Fibonacci topological order from quantum nets.
Fendley, Paul; Isakov, Sergei V; Troyer, Matthias
2013-06-28
We analyze a model of quantum nets and show it has a non-Abelian topological order of doubled-Fibonacci type. The ground state has the same topological behavior as that of the corresponding string-net model, but our Hamiltonian can be defined on any lattice, has less complicated interactions, and its excitations are dynamical, not fixed. This Hamiltonian includes terms acting on the spins around a face, around a vertex, and special "Jones-Wenzl" terms that serve to couple long loops together. We provide strong evidence for a gap by exact diagonalization, completing the list of ingredients necessary for topological order.
Topological structures in the Husimi flow
NASA Astrophysics Data System (ADS)
Veronez, M.; de Aguiar, M. A. M.
2016-02-01
We study the topological properties of the quantum phase space current in the Husimi representation, focusing on the dynamical differences, induced by these properties, between the quantum and the classical flows. We show that the zeros of the Husimi function are stagnation points of the current and have a nonzero topological charge. Due to overall charge conservation, new stagnation points with opposite charge appear in pairs in the Husimi current and they have important roles in dynamical processes. As an example we show the topological effect of the zeros in the transmission rate of a particle through a potential barrier.
Learning topological maps: An alternative approach
Buecken, A.; Thrun, S.
1996-12-31
Our goal is autonomous real-time control of a mobile robot. In this paper we want to show a possibility to learn topological maps of a large-scale indoor environment autonomously. In the literature there are two paradigms how to store information on the environment of a robot: as a grid-based (geometric) or as a topological map. While grid-based maps are considerably easy to learn and maintain, topological maps are quite compact and facilitate fast motion-planning.
Complexity and dynamics of topological and community structure in complex networks
NASA Astrophysics Data System (ADS)
Berec, Vesna
2017-01-01
Complexity is highly susceptible to variations in the network dynamics, reflected on its underlying architecture where topological organization of cohesive subsets into clusters, system's modular structure and resulting hierarchical patterns, are cross-linked with functional dynamics of the system. Here we study connection between hierarchical topological scales of the simplicial complexes and the organization of functional clusters - communities in complex networks. The analysis reveals the full dynamics of different combinatorial structures of q-th-dimensional simplicial complexes and their Laplacian spectra, presenting spectral properties of resulting symmetric and positive semidefinite matrices. The emergence of system's collective behavior from inhomogeneous statistical distribution is induced by hierarchically ordered topological structure, which is mapped to simplicial complex where local interactions between the nodes clustered into subcomplexes generate flow of information that characterizes complexity and dynamics of the full system.
An Abnormal Psychology Community Based Interview Assignment
ERIC Educational Resources Information Center
White, Geoffry D.
1977-01-01
A course option in abnormal psychology involves students in interviewing and observing the activities of individuals in the off-campus community who are concerned with some aspect of abnormal psychology. The technique generates student interest in the field when they interview people about topics such as drug abuse, transsexualism, and abuse of…
Immune Abnormalities in Patients with Autism.
ERIC Educational Resources Information Center
Warren, Reed P.; And Others
1986-01-01
A study of 31 autistic patients (3-28 years old) has revealed several immune-system abnormalities, including decreased numbers of T lymphocytes and an altered ratio of helper-to-suppressor T cells. Immune-system abnormalities may be directly related to underlying biologic processes of autism or an indirect reflection of the actual pathologic…
Nail abnormalities in patients with vitiligo*
Topal, Ilteris Oguz; Gungor, Sule; Kocaturk, Ozgur Emek; Duman, Hatice; Durmuscan, Mustafa
2016-01-01
Background Vitiligo is an acquired pigmentary skin disorder affecting 0.1-4% of the general population. The nails may be affected in patients with an autoimmune disease such as psoriasis, and in those with alopecia areata. It has been suggested that nail abnormalities should be apparent in vitiligo patients. Objective We sought to document the frequency and clinical presentation of nail abnormalities in vitiligo patients compared to healthy volunteers. We also examined the correlations between nail abnormalities and various clinical parameters. Methods This study included 100 vitiligo patients and 100 healthy subjects. Full medical histories were collected from the subjects, who underwent thorough general and nail examinations. All nail changes were noted. In the event of clinical suspicion of a fungal infection, additional mycological investigations were performed. Results Nail abnormalities were more prevalent in the patients (78%) than in the controls (55%) (p=0.001). Longitudinal ridging was the most common finding (42%), followed by (in descending order): leukonychia, an absent lunula, onycholysis, nail bed pallor, onychomycosis, splinter hemorrhage and nail plate thinning. The frequency of longitudinal ridging was significantly higher in patients than in controls (p<0.001). Conclusions Nail abnormalities were more prevalent in vitiligo patients than in controls. Systematic examination of the nails in such patients is useful because nail abnormalities are frequent. However, the causes of such abnormalities require further study. Longitudinal ridging and leukonychia were the most common abnormalities observed in this study. PMID:27579738
Topological Modeling of Metamict Zircon
NASA Astrophysics Data System (ADS)
Hobbs, L. W.; Zhang, Y.; Yuan, X.
2006-05-01
Zircon (ZrSiO4) is the most studied metamict mineral and a leading model for candidate ceramic hosts designed to encapsulate highly radioactive nuclear waste and excess plutonium. It is also emblematic of compound oxide ceramics with a potential to phase separate in the amorphized state. Several groups have carried out ab initio or molecular dynamics (MD) simulations of melt-quenched or radiation-disordered zircon. A tendency for silica tetrahedra to polymerize, implying incipient phase separation, has been noted, but adequate descriptors of the amorphous state capable of distinguishing between different disordered arrangements have not been available. This contribution details critical modifications made to empirical potentials used in MD simulations and useful improvements in modeling efficiency that have facilitated constant pressure simulations of quenched and displacement cascade-amorphized zircon. The simulated end- states have been subjected to topological assessment algorithms for enumerating coordinations, bond lengths and bond angles; counting primitive rings and identifying structure-defining local primitive-ring clusters; and assessing degree of coordination-unit polymerization. The topologies of simulated melt, melt-quenched and cascade-amorphized disordered arrangements have been found to be different and distinguishable. A two-body Born-Mayer empirical potential with ZBL short-range repulsive term was fit to major structural, elastic, thermal and dielectric properties of crystalline zircon, but it was noted that the best crystalline fit, with non-stoichiometric partial ion charges, led to unrealistic coordinations in amorphized arrangements and uncontrolled expansions in constant pressure simulations because of silica polymerization. Therefore, stoichiometrically charge-balanced partial charges were instead chosen and optimized; the optimal choice of O-1.2, Si+2.4, Zr+2.4 led to realistic coordinations (Zr 7, Si 4) and well-behaved constant
A method for interactive specification of multiple-block topologies
NASA Technical Reports Server (NTRS)
Sorenson, Reese L.; Mccann, Karen M.
1991-01-01
A method is presented for dealing with the vast amount of topological and other data which must be specified to generate a multiple-block computational grid. Specific uses of the graphical capabilities of a powerful scientific workstation are described which reduce the burden on the user of collecting and formatting such large amounts of data. A program to implement this method, 3DPREP, is described. A plotting transformation algorithm, some useful software tools, notes on programming, and a database organization are also presented. Example grids developed using the method are shown.
Can transcutaneous recordings detect gastric electrical abnormalities?
Familoni, B O; Bowes, K L; Kingma, Y J; Cote, K R
1991-01-01
The ability of transcutaneous recordings of gastric electrical activity to detect gastric electrical abnormalities was determined by simultaneous measurements of gastric electrical activity with surgically implanted serosal electrodes and cutaneous electrodes in six patients undergoing abdominal operations. Transient abnormalities in gastric electrical activity were seen in five of the six patients during the postoperative period. Recognition of normal gastric electrical activity by visual analysis was possible 67% of the time and with computer analysis 95% of the time. Ninety four per cent of abnormalities in frequency were detected by visual analysis and 93.7% by computer analysis. Abnormalities involving a loss of coupling, however, were not recognised by transcutaneous recordings. Transcutaneous recordings of gastric electrical activity assessed by computer analysis can usually recognise normal gastric electrical activity and tachygastria. Current techniques, however, are unable to detect abnormalities in electrical coupling. PMID:1864531
Persistent coherence and spin polarization of topological surface states on topological insulators
NASA Astrophysics Data System (ADS)
Pan, Z.-H.; Vescovo, E.; Fedorov, A. V.; Gu, G. D.; Valla, T.
2013-07-01
Gapless surface states on topological insulators are protected from elastic scattering on nonmagnetic impurities, which makes them promising candidates for low-power electronic applications. However, for widespread applications, these states should remain coherent and significantly spin polarized at ambient temperatures. Here, we studied the coherence and spin structure of the topological states on the surface of a model topological insulator, Bi2Se3, at elevated temperatures in spin- and angle-resolved photoemission spectroscopy. We found an extremely weak broadening and essentially no decay of spin polarization of the topological surface state up to room temperature. Our results demonstrate that the topological states on surfaces of topological insulators could serve as a basis for room-temperature electronic devices.
Topologies on quantum topoi induced by quantization
Nakayama, Kunji
2013-07-15
In the present paper, we consider effects of quantization in a topos approach of quantum theory. A quantum system is assumed to be coded in a quantum topos, by which we mean the topos of presheaves on the context category of commutative subalgebras of a von Neumann algebra of bounded operators on a Hilbert space. A classical system is modeled by a Lie algebra of classical observables. It is shown that a quantization map from the classical observables to self-adjoint operators on the Hilbert space naturally induces geometric morphisms from presheaf topoi related to the classical system to the quantum topos. By means of the geometric morphisms, we give Lawvere-Tierney topologies on the quantum topos (and their equivalent Grothendieck topologies on the context category). We show that, among them, there exists a canonical one which we call a quantization topology. We furthermore give an explicit expression of a sheafification functor associated with the quantization topology.
Topology Explains Why Automobile Sunshades Fold Oddly
ERIC Educational Resources Information Center
Feist, Curtis; Naimi, Ramin
2009-01-01
Automobile sunshades always fold into an "odd" number of loops. The explanation why involves elementary topology (braid theory and linking number, both explained in detail here with definitions and examples), and an elementary fact from algebra about symmetric group.
Space-time topology and quantum gravity.
NASA Astrophysics Data System (ADS)
Friedman, J. L.
Characteristic features are discussed of a theory of quantum gravity that allows space-time with a non-Euclidean topology. The review begins with a summary of the manifolds that can occur as classical vacuum space-times and as space-times with positive energy. Local structures with non-Euclidean topology - topological geons - collapse, and one may conjecture that in asymptotically flat space-times non-Euclidean topology is hiden from view. In the quantum theory, large diffeos can act nontrivially on the space of states, leading to state vectors that transform as representations of the corresponding symmetry group π0(Diff). In particular, in a quantum theory that, at energies E < EPlanck, is a theory of the metric alone, there appear to be ground states with half-integral spin, and in higher-dimensional gravity, with the kinematical quantum numbers of fundamental fermions.
Spintronics device made of topological materials
NASA Astrophysics Data System (ADS)
Wu, Jiansheng; Shi, Zhangsheng; Wang, Maoji
Topological Materials is a new state of matter of which the bulk states are gapped insulator or superconductor while the surface states are gapless metallic states. Such surface states are robust against local disorder and impurities due to its nontrivial topology. It induces unusual transport properties and shows nontrivial topological spin texture in real space. We have made use of these two exotic properties to make application in spintronics. For example, we propose to make spin-filter transistor using of 1D or 2D quantum anomalous Hall insulator or 2D topological Weyl semimetal, we also propose a device to measure the spin-polarization of current, a device to generate entangled entangled electron pairs. Startup funds of SUSTC, Shenzhen Peacock Plan, Shenzhen Free Exploration Plan with Grant Number JCYJ20150630145302225.
Topological protection of multiparticle dissipative transport
NASA Astrophysics Data System (ADS)
Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de Las Heras, Daniel; Fischer, Thomas M.
2016-06-01
Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry.
Topological frustration of artificial spin ice
Drisko, Jasper; Marsh, Thomas; Cumings, John
2017-01-01
Frustrated systems, typically characterized by competing interactions that cannot all be simultaneously satisfied, display rich behaviours not found elsewhere in nature. Artificial spin ice takes a materials-by-design approach to studying frustration, where lithographically patterned bar magnets mimic the frustrated interactions in real materials but are also amenable to direct characterization. Here, we introduce controlled topological defects into square artificial spin ice lattices in the form of lattice edge dislocations and directly observe the resulting spin configurations. We find the presence of a topological defect produces extended frustration within the system caused by a domain wall with indeterminate configuration. Away from the dislocation, the magnets are locally unfrustrated, but frustration of the lattice persists due to its topology. Our results demonstrate the non-trivial nature of topological defects in a new context, with implications for many real systems in which a typical density of dislocations could fully frustrate a canonically unfrustrated system. PMID:28084314
Geared Topological Metamaterials with Tunable Mechanical Stability
NASA Astrophysics Data System (ADS)
Meeussen, Anne S.; Paulose, Jayson; Vitelli, Vincenzo
2016-10-01
The classification of materials into insulators and conductors has been shaken up by the discovery of topological insulators that conduct robustly at the edge but not in the bulk. In mechanics, designating a material as insulating or conducting amounts to asking if it is rigid or floppy. Although mechanical structures that display topological floppy modes have been proposed, they are all vulnerable to global collapse. Here, we design and build mechanical metamaterials that are stable and yet capable of harboring protected edge and bulk modes, analogous to those in electronic topological insulators and Weyl semimetals. To do so, we exploit gear assemblies that, unlike point masses connected by springs, incorporate both translational and rotational degrees of freedom. Global structural stability is achieved by eliminating geometrical frustration of collective gear rotations extending through the assembly. The topological robustness of the mechanical modes makes them appealing across scales from engineered macrostructures to networks of toothed microrotors of potential use in micromachines.
Topological mirror insulators in one dimension
NASA Astrophysics Data System (ADS)
Lau, Alexander; van den Brink, Jeroen; Ortix, Carmine
2016-10-01
We demonstrate the existence of topological insulators in one dimension (1D) protected by mirror and time-reversal symmetries. They are characterized by a nontrivial Z2 topological invariant defined in terms of the "partial" polarizations, which we show to be quantized in the presence of a 1D mirror point. The topological invariant determines the generic presence or absence of integer boundary charges at the mirror-symmetric boundaries of the system. We check our findings against spin-orbit coupled Aubry-André-Harper models that can be realized, e.g., in cold-atomic Fermi gases loaded in one-dimensional optical lattices or in density- and Rashba spin-orbit-modulated semiconductor nanowires. In this setup, in-gap end-mode Kramers doublets appearing in the topologically nontrivial state effectively constitute a double-quantum dot with spin-orbit coupling.
Classification of topological phases with reflection symmetry
NASA Astrophysics Data System (ADS)
Yoshida, Tsuneya; Morimoto, Takahiro; Furusaki, Akira
2015-03-01
In Z2 topological band insulators, the time-reversal symmetry protects their topological structure. In these years such a notion is extended to correlated systems including bosonic systems, and these nontrivial phases are referred to as symmetry protected topological (SPT) phases. Parallel to this progress, a topological crystalline insulator, protected by spatial symmetry, is found for SnTe. Thus, SPT phases protected by this type of symmetry are naturally expected, and classifications of such phases are desired. In this article, we address this issue by focusing on a reflection symmetry. Our analysis based on the Chern-Simons approach proposes periodic tables for bosonic and fermionic SPT phases in two dimensions. Besides that, we show an SPT phase with the reflection symmetry is stabilized in a spin model of honeycomb lattice.
Topological protection of multiparticle dissipative transport
Loehr, Johannes; Loenne, Michael; Ernst, Adrian; de las Heras, Daniel; Fischer, Thomas M.
2016-01-01
Topological protection allows robust transport of localized phenomena such as quantum information, solitons and dislocations. The transport can be either dissipative or non-dissipative. Here, we experimentally demonstrate and theoretically explain the topologically protected dissipative motion of colloidal particles above a periodic hexagonal magnetic pattern. By driving the system with periodic modulation loops of an external and spatially homogeneous magnetic field, we achieve total control over the motion of diamagnetic and paramagnetic colloids. We can transport simultaneously and independently each type of colloid along any of the six crystallographic directions of the pattern via adiabatic or deterministic ratchet motion. Both types of motion are topologically protected. As an application, we implement an automatic topologically protected quality control of a chemical reaction between functionalized colloids. Our results are relevant to other systems with the same symmetry. PMID:27249049
Scaling theory of topological phase transitions
NASA Astrophysics Data System (ADS)
Chen, Wei
2016-02-01
Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.
Anomalies, gauge field topology, and the lattice
Creutz, Michael
2011-04-15
Motivated by the connection between gauge field topology and the axial anomaly in fermion currents, I suggest that the fourth power of the naive Dirac operator can provide a natural method to define a local lattice measure of topological charge. For smooth gauge fields this reduces to the usual topological density. For typical gauge field configurations in a numerical simulation, however, quantum fluctuations dominate, and the sum of this density over the system does not generally give an integer winding. On cooling with respect to the Wilson gauge action, instanton like structures do emerge. As cooling proceeds, these objects tend shrink and finally 'fall through the lattice.' Modifying the action can block the shrinking at the expense of a loss of reflection positivity. The cooling procedure is highly sensitive to the details of the initial steps, suggesting that quantum fluctuations induce a small but fundamental ambiguity in the definition of topological susceptibility.
Diagnosing Topological Edge States via Entanglement Monogamy
NASA Astrophysics Data System (ADS)
Meichanetzidis, K.; Eisert, J.; Cirio, M.; Lahtinen, V.; Pachos, J. K.
2016-04-01
Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.
Maxwell Duality, Lorentz Invariance, and Topological Phase
NASA Technical Reports Server (NTRS)
Dowling, J.; Williams, C.; Franson, J.
1999-01-01
We discuss the Maxwell electromagnetic duality relations between the Aharonov-Bohm, Aharonov-Casher, and He-McKellar-Wilkens topological phases, which allows a unified description of all three phenomena.
Electrically Tunable Magnetism in Magnetic Topological Insulators
NASA Astrophysics Data System (ADS)
Zhang, Shou-Cheng; Wang, Jing; Lian, Biao
2015-03-01
The external controllability of the magnetic properties in topological insulators would be important both for fundamental and practical interests. Here we predict the electric-field control of ferromagnetism in a thin film of insulating magnetic topological insulators. The decrease of band inversion by the application of electric fields results in a reduction of magnetic susceptibility, and hence in the modication of magnetism. Remarkably, the electric field could even induce the magnetic quantum phase transition from ferromagnetism to paramagnetism. We further propose a topological transistor device in which the dissipationless charge transport of chiral edge states is controlled by an electric field. The simultaneous electrical control of magnetic order and chiral edge transport in such a device may lead to electronic and spintronic applications for topological insulators. This work is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, under Contract No. DE-AC02-76SF00515.
Topologies for perfect adaptation in gene transcription
NASA Astrophysics Data System (ADS)
Shi, Wenjia; Tang, Chao
2014-03-01
Adaptation is commonly used in sensory systems and signaling networks to allow the detection of further stimuli. Despite enzymatic network topologies for adaptation have been investigated systematically, the topology of transcriptional network that could perform adaptation still remains unclear, due to the complexity of transcriptional regulation. Here, we systematically investigated all three-node transcriptional networks, and found the topologies of transcriptional networks for adaptation are different from that of enzymatic ones. While both negative feedback loop (NFBL) and incoherent feed forward loop (IFFL) are capable of performing adaptation analytically, a positive self-regulation on buffer node is necessary for NFBL topology and more flexible structures emerge for IFFL than that of enzymatic networks. Most of the simulation results agree with analytical predictions. This study may explain the mechanism of adapted gene regulation behavior and supply a design table for gene regulatory adaptation.
Topological frustration of artificial spin ice
NASA Astrophysics Data System (ADS)
Drisko, Jasper; Marsh, Thomas; Cumings, John
2017-01-01
Frustrated systems, typically characterized by competing interactions that cannot all be simultaneously satisfied, display rich behaviours not found elsewhere in nature. Artificial spin ice takes a materials-by-design approach to studying frustration, where lithographically patterned bar magnets mimic the frustrated interactions in real materials but are also amenable to direct characterization. Here, we introduce controlled topological defects into square artificial spin ice lattices in the form of lattice edge dislocations and directly observe the resulting spin configurations. We find the presence of a topological defect produces extended frustration within the system caused by a domain wall with indeterminate configuration. Away from the dislocation, the magnets are locally unfrustrated, but frustration of the lattice persists due to its topology. Our results demonstrate the non-trivial nature of topological defects in a new context, with implications for many real systems in which a typical density of dislocations could fully frustrate a canonically unfrustrated system.
Modeling the Internet's large-scale topology
Yook, Soon-Hyung; Jeong, Hawoong; Barabási, Albert-László
2002-01-01
Network generators that capture the Internet's large-scale topology are crucial for the development of efficient routing protocols and modeling Internet traffic. Our ability to design realistic generators is limited by the incomplete understanding of the fundamental driving forces that affect the Internet's evolution. By combining several independent databases capturing the time evolution, topology, and physical layout of the Internet, we identify the universal mechanisms that shape the Internet's router and autonomous system level topology. We find that the physical layout of nodes form a fractal set, determined by population density patterns around the globe. The placement of links is driven by competition between preferential attachment and linear distance dependence, a marked departure from the currently used exponential laws. The universal parameters that we extract significantly restrict the class of potentially correct Internet models and indicate that the networks created by all available topology generators are fundamentally different from the current Internet. PMID:12368484
Symmetry-protected topological entanglement
NASA Astrophysics Data System (ADS)
Marvian, Iman
2017-01-01
We propose an order parameter for the symmetry-protected topological (SPT) phases which are protected by Abelian on-site symmetries. This order parameter, called the SPT entanglement, is defined as the entanglement between A and B , two distant regions of the system, given that the total charge (associated with the symmetry) in a third region C is measured and known, where C is a connected region surrounded by A , B , and the boundaries of the system. In the case of one-dimensional systems we prove that in the limit where A and B are large and far from each other compared to the correlation length, the SPT entanglement remains constant throughout a SPT phase, and furthermore, it is zero for the trivial phase while it is nonzero for all the nontrivial phases. Moreover, we show that the SPT entanglement is invariant under the low-depth quantum circuits which respect the symmetry, and hence it remains constant throughout a SPT phase in the higher dimensions as well. Also, we show that there is an intriguing connection between SPT entanglement and the Fourier transform of the string order parameters, which are the traditional tool for detecting SPT phases. This leads to an algorithm for extracting the relevant information about the SPT phase of the system from the string order parameters. Finally, we discuss implications of our results in the context of measurement-based quantum computation.
Cosmic Acceleration from Topological Considerations
NASA Astrophysics Data System (ADS)
García-Aspeitia, Miguel ángel; Chassin, Tonatiuh Matos; Rodriguez Montoya, Ivan
In this work we explore the possibility that the dynamics of the universe can be reproduced choosing appropriately the global topology of the cosmos. We explore two concentric three-dimensional spherical branes immersed in a five-dimensional space-time. Before to the collision, in the interior sphere there exist only a spin-zero fundamental field (scalar field), in the exterior one there exist only fundamental spin-one interactions and spin-two interactions in the bulk. In this model, like in the Epkyrotic, the Big Bang is caused for the collision of the branes and generate all the fields predicted by the standard model in the exterior brane (our universe). In the interior brane the scalar field behaves like scalar field dark matter. Finally we show the perturbations in the modifield Einstein equations of the scalar field dark matter in the inner brane and the consequence in the high energy universe dynamics and the corrections in the standard general relativity.
Cosmic Acceleration from Topological Considerations
NASA Astrophysics Data System (ADS)
García-Aspeitia, Miguel Ángel; Matos, Tonatiuh
2010-06-01
In this work we explore the possibility that the dynamics of the universe can be reproduced choosing appropriately the global topology of the cosmos. We explore two concentric three-dimensional spherical branes immersed in a five-dimensional space-time. Before to the collision, in the interior sphere there exist only a spin-zero fundamental field (scalar field), in the exterior one there exist only fundamental spin-one interactions and spin-two interactions in the bulk. In this model, like in the Epkyrotic, the Big Bang is caused for the collision of the branes and generate all the fields predicted by the standard model in the exterior brane (our universe). In the interior brane the scalar field behaves like scalar field dark matter. We discuss two different regimens where the energy density and the brane tension are compared, with the aim to obtain the dynamics of the universe after and before the collision. Finally we discuse the perturbations in the modified Einstein equations of the scalar field dark matter in the inner brane and the consequence in the high energy universe dynamics and the corrections in the standard general relativity.
Topological phases of eternal inflation
Sekino, Yasuhiro; Shenker, Stephen; Susskind, Leonard
2010-06-15
''Eternal inflation'' is a term that describes a number of different phenomena that have been classified by Winitzki. According to Winitzki's classification, these phases can be characterized by the topology of the percolating structures in the inflating, 'white', region. In this paper we discuss these phases, the transitions between them, and the way they are seen by a 'Census Taker', a hypothetical observer inside the noninflating, 'black', region. We discuss three phases that we call 'black island', 'tubular', and 'white island'. The black island phase is familiar, composed of rare Coleman De Luccia bubble nucleation events. The Census Taker sees an essentially spherical boundary, described by the conformal field theory of the Friedmann-Robertson-Walker/conformal field theory (FRW/CFT) correspondence. In the tubular phase the Census Taker sees a complicated infinite genus structure composed of arbitrarily long tubes. The white island phase is even more mysterious from the black side. Surprisingly, when viewed from the noninflating region this phase resembles a closed, positively curved universe that eventually collapses to a singularity. Nevertheless, pockets of eternal inflation continue forever. In addition, there is an 'aborted' phase in which no eternal inflation takes place. Rigorous results of Chayes, Chayes, Grannan, and Swindle establish the existence of all of these phases, separated by first order transitions, in Mandelbrot percolation, a simple model of eternal inflation.
Topological defects from the multiverse
Zhang, Jun; Blanco-Pillado, Jose J.; Garriga, Jaume; Vilenkin, Alexander
2015-05-28
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.
Thermoelectric transport in topological insulators
NASA Astrophysics Data System (ADS)
Takahashi, Ryuji; Murakami, Shuichi
2012-12-01
Thermoelectric transport in topological insulators (TIs) is theoretically studied. TIs have gapless edge states in two dimensions, and do surface states in three dimensions. Both of the states have backscattering-free nature, and they remain gapless in the presence of nonmagnetic impurities. In particular, the edge states in two-dimensional TIs form perfect conducting channels. In this study, we calculate system-size dependence of thermoelectric properties in two-dimensional TIs, and evaluate the inelastic scattering length of the edge states by phonons, which affects the thermoelectric properties sensitively. We also study thermoelectric transport in three-dimensional (3D) TIs and compare with two dimensions. In both two- and three-dimensional TIs, there is a competition between the surface/edge and bulk transports in the thermoelectric phenomena. The surface transport in 3D TIs is relatively weak compared with the bulk transport due to impurities. Furthermore, we also study gapped 3D TIs in thin slab geometry and show large values of the figure of merit in the gapped system. This result is consistent with the previous work.
Topological phases of eternal inflation
NASA Astrophysics Data System (ADS)
Sekino, Yasuhiro; Shenker, Stephen; Susskind, Leonard
2010-06-01
“Eternal inflation” is a term that describes a number of different phenomena that have been classified by Winitzki. According to Winitzki’s classification, these phases can be characterized by the topology of the percolating structures in the inflating, “white,” region. In this paper we discuss these phases, the transitions between them, and the way they are seen by a “Census Taker,” a hypothetical observer inside the noninflating, “black,” region. We discuss three phases that we call “black island,” “tubular,” and “white island.” The black island phase is familiar, composed of rare Coleman De Luccia bubble nucleation events. The Census Taker sees an essentially spherical boundary, described by the conformal field theory of the Friedmann-Robertson-Walker/conformal field theory (FRW/CFT) correspondence. In the tubular phase the Census Taker sees a complicated infinite genus structure composed of arbitrarily long tubes. The white island phase is even more mysterious from the black side. Surprisingly, when viewed from the noninflating region this phase resembles a closed, positively curved universe that eventually collapses to a singularity. Nevertheless, pockets of eternal inflation continue forever. In addition, there is an “aborted” phase in which no eternal inflation takes place. Rigorous results of Chayes, Chayes, Grannan, and Swindle establish the existence of all of these phases, separated by first order transitions, in Mandelbrot percolation, a simple model of eternal inflation.
A general topology, Godunov method
Addessio, F.; Cline, M.; Dukowicz, J.
1987-01-01
A numerical technique that utilizes a general topology mesh is described. The method employs the arbitrary Lagrangian-Eulerian procedure and explicit, finite-volume, Godunov numerics. Material interfaces are resolved to eliminate fictitious mixing and nonphysical shear impedance. Cell-centered variables, including velocity, are used to provide consistent control volumes for the advection of mass, momentum, and energy, and to allow arbitrary slip between material regions. The computational mesh is composed of arbitrary polygonal cells. The constraint of a fixed logical connectivity for the mesh is removed. Consequently, geometrical mesh limitations, which are responsible for inaccuracies and code failure during the evolution of region boundaries, are absent. Arbitrary boundaries can be resolved, and the mesh is capable of changing smoothly and rapidly from regions of high to low resolution. Lack of a coherent mesh orientation minimizes numerical anisotropy. A mesh rezoning approach, based on a dual triangulation and coupled with a global remapping algorithm, allows the mesh to evolve dynamically. 9 refs., 6 figs.
Topological defects from the multiverse
Zhang, Jun; Vilenkin, Alexander; Blanco-Pillado, Jose J.
2015-05-01
Many theories of the early universe predict the existence of a multiverse where bubbles continuously nucleate giving rise to observers in their interior. In this paper, we point out that topological defects of several dimensionalities will also be produced in de Sitter like regions of the multiverse. In particular, defects could be spontaneously nucleated in our parent vacuum. We study the evolution of these defects as they collide with and propagate inside of our bubble. We estimate the present distribution of defects in the observable part of the universe. The expected number of such nearby defects turns out to be quite small, even for the highest nucleation rate. We also study collisions of strings and domain walls with our bubble in our past light cone. We obtain simulated full-sky maps of the loci of such collisions, and find their angular size distribution. Similarly to what happens in the case of bubble collisions, the prospect of detecting any collisions of our bubble with ambient defects is greatly enhanced in the case where the cosmological constant of our parent vacuum is much higher than the vacuum energy density during inflation in our bubble.
Edge instabilities of topological superconductors
NASA Astrophysics Data System (ADS)
Hofmann, Johannes S.; Assaad, Fakher F.; Schnyder, Andreas P.
2016-05-01
Nodal topological superconductors display zero-energy Majorana flat bands at generic edges. The flatness of these edge bands, which is protected by time-reversal and translation symmetry, gives rise to an extensive ground-state degeneracy. Therefore, even arbitrarily weak interactions lead to an instability of the flat-band edge states towards time-reversal and translation-symmetry-broken phases, which lift the ground-state degeneracy. We examine the instabilities of the flat-band edge states of dx y-wave superconductors by performing a mean-field analysis in the Majorana basis of the edge states. The leading instabilities are Majorana mass terms, which correspond to coherent superpositions of particle-particle and particle-hole channels in the fermionic language. We find that attractive interactions induce three different mass terms. One is a coherent superposition of imaginary s -wave pairing and current order, and another combines a charge-density-wave and finite-momentum singlet pairing. Repulsive interactions, on the other hand, lead to ferromagnetism together with spin-triplet pairing at the edge. Our quantum Monte Carlo simulations confirm these findings and demonstrate that these instabilities occur even in the presence of strong quantum fluctuations. We discuss the implications of our results for experiments on cuprate high-temperature superconductors.
Baruselli, Pier Paolo; Vojta, Matthias
2015-10-09
SmB_{6} was recently proposed to be both a strong topological insulator and a topological crystalline insulator. For this and related cubic topological Kondo insulators, we prove the existence of four different topological phases, distinguished by the sign of mirror Chern numbers. We characterize these phases in terms of simple observables, and we provide concrete tight-binding models for each phase. Based on theoretical and experimental results for SmB_{6} we conclude that it realizes the phase with C_{k_{z}=0}^{+}=+2, C_{k_{z}=π}^{+}=+1, C_{k_{x}=k_{y}}^{+}=-1, and we propose a corresponding minimal model.
Characterization of emergent synaptic topologies in noisy neural networks
NASA Astrophysics Data System (ADS)
Miller, Aaron James
Learned behaviors are one of the key contributors to an animal's ultimate survival. It is widely believed that the brain's microcircuitry undergoes structural changes when a new behavior is learned. In particular, motor learning, during which an animal learns a sequence of muscular movements, often requires precisely-timed coordination between muscles and becomes very natural once ingrained. Experiments show that neurons in the motor cortex exhibit precisely-timed spike activity when performing a learned motor behavior, and constituent stereotypical elements of the behavior can last several hundred milliseconds. The subject of this manuscript concerns how organized synaptic structures that produce stereotypical spike sequences emerge from random, dynamical networks. After a brief introduction in Chapter 1, we begin Chapter 2 by introducing a spike-timing-dependent plasticity (STDP) rule that defines how the activity of the network drives changes in network topology. The rule is then applied to idealized networks of leaky integrate-and-fire neurons (LIF). These neurons are not subjected to the variability that typically characterize neurons in vivo. In noiseless networks, synapses develop closed loops of strong connectivity that reproduce stereotypical, precisely-timed spike patterns from an initially random network. We demonstrate the characteristics of the asymptotic synaptic configuration are dependent on the statistics of the initial random network. The spike timings of the neurons simulated in Chapter 2 are generated exactly by a computationally economical, nonlinear mapping which is extended to LIF neurons injected with fluctuating current in Chapter 3. Development of an economical mapping that incorporates noise provides a practical solution to the long simulation times required to produce asymptotic synaptic topologies in networks with STDP in the presence of realistic neuronal variability. The mapping relies on generating numerical solutions to the dynamics
Nonequilibrium Floquet States in Topological Kondo Insulators
2016-02-04
proposed state: the non-equilibrium Floquet topological metal. The main idea relies on the knowledge that the low - temperature insulating state of SmB6...is readily transformed to a metallic state by application of external pressure [Cooley 1995]. With low - temperature topological conduction occurring...reflecting on years of experience in performing low - temperature ultrasound measurements on single-crystal samples, both the Sapporo and UMD groups agree
ERIC Educational Resources Information Center
Lynch, Mark
2002-01-01
Let K be a compact subset of the interior of the unit disk D in the plane and suppose one can't see through the boundary of D and identify K. However, assume that one can take "topological X-rays" of D which measure the "density" of K along the lines of the X-rays. By taking these X-rays from all directions, a "topological MRI" is generated for…
Materials and Theory of Topological Insulators
2012-10-30
NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER W911NF-09-1-0508 611102 Form Approved OMB NO. 0704-0188...2013 5.00 X. Zhang, H. Zhang, J. Wang, C. Felser, S.-C. Zhang. Actinide Topological Insulator Materials with Strong Interaction, Science, (03 2012...new classes of materials, including the Heusler alloys, the ternary compounds with honeycomb lattice structures and actinide topological insulators
Synchronization reveals topological scales in complex networks.
Arenas, Alex; Díaz-Guilera, Albert; Pérez-Vicente, Conrad J
2006-03-24
We study the relationship between topological scales and dynamic time scales in complex networks. The analysis is based on the full dynamics towards synchronization of a system of coupled oscillators. In the synchronization process, modular structures corresponding to well-defined communities of nodes emerge in different time scales, ordered in a hierarchical way. The analysis also provides a useful connection between synchronization dynamics, complex networks topology, and spectral graph analysis.
Topological susceptibility with the improved Asqtad action
C. Bernard et al.
2004-01-06
As a test of the chiral properties of the improved Asqtad (staggered fermion) action, we have been measuring the topological susceptibility as a function of quark masses for 2 + 1 dynamical flavors. We report preliminary results, which show reasonable agreement with leading order chiral perturbation theory for lattice spacing less than 0.1 fm. The total topological charge, however, shows strong persistence over Monte Carlo time.
Decomposition theorem in ideal topological spaces
NASA Astrophysics Data System (ADS)
AL-omeri, W.; Noorani, Mohd. Salmi; AL-Omari, A.
2014-06-01
We introduce new classes of sets called a* -I -open,A-β-I-open sets, A-pre* -I-open sets, strongly T-I -sets, A-β-T-I-sets, strongly BA -I -sets, BA -I -sets, and δβA -I -open sets in ideal topological spaces. Using these sets, to obtain decompositions of continuity in an ideal topological space.