Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang
2016-01-01
Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259
Qiu, Xiangzhe; Zhang, Yanjun; Feng, Hongbo; Jiang, Donglang
2016-01-01
Recent studies have demonstrated alterations in the topological organization of structural brain networks in diabetes mellitus (DM). However, the DM-related changes in the topological properties in functional brain networks are unexplored so far. We therefore used fluoro-D-glucose positron emission tomography (FDG-PET) data to construct functional brain networks of 73 DM patients and 91 sex- and age-matched normal controls (NCs), followed by a graph theoretical analysis. We found that both DM patients and NCs had a small-world topology in functional brain network. In comparison to the NC group, the DM group was found to have significantly lower small-world index, lower normalized clustering coefficients and higher normalized characteristic path length. Moreover, for diabetic patients, the nodal centrality was significantly reduced in the right rectus, the right cuneus, the left middle occipital gyrus, and the left postcentral gyrus, and it was significantly increased in the orbitofrontal region of the left middle frontal gyrus, the left olfactory region, and the right paracentral lobule. Our results demonstrated that the diabetic brain was associated with disrupted topological organization in the functional PET network, thus providing functional evidence for the abnormalities of brain networks in DM. PMID:27303259
Zhao, Yanxin; Chen, Xizhuo; Zhong, Suyu; Cui, Zaixu; Gong, Gaolang; Dong, Qi; Nan, Yun
2016-01-01
Congenital amusia is a neurogenetic disorder that mainly affects the processing of musical pitch. Brain imaging evidence indicates that it is associated with abnormal structural and functional connections in the fronto-temporal region. However, a holistic understanding of the anatomical topology underlying amusia is still lacking. Here, we used probabilistic diffusion tensor imaging tractography and graph theory to examine whole brain white matter structural connectivity in 31 Mandarin-speaking amusics and 24 age- and IQ-matched controls. Amusics showed significantly reduced global connectivity, as indicated by the abnormally decreased clustering coefficient (Cp) and increased normalized shortest path length (λ) compared to the controls. Moreover, amusics exhibited enhanced nodal strength in the right inferior parietal lobule relative to controls. The co-existence of the lexical tone deficits was associated with even more deteriorated global network efficiency in amusics, as suggested by the significant correlation between the increments in normalized shortest path length (λ) and the insensitivity in lexical tone perception. Our study is the first to reveal reduced global connectivity efficiency in amusics as well as an increase in the global connectivity cost due to the co-existed lexical tone deficits. Taken together these results provide a holistic perspective on the anatomical substrates underlying congenital amusia. PMID:27211239
Zhao, Yanxin; Chen, Xizhuo; Zhong, Suyu; Cui, Zaixu; Gong, Gaolang; Dong, Qi; Nan, Yun
2016-01-01
Congenital amusia is a neurogenetic disorder that mainly affects the processing of musical pitch. Brain imaging evidence indicates that it is associated with abnormal structural and functional connections in the fronto-temporal region. However, a holistic understanding of the anatomical topology underlying amusia is still lacking. Here, we used probabilistic diffusion tensor imaging tractography and graph theory to examine whole brain white matter structural connectivity in 31 Mandarin-speaking amusics and 24 age- and IQ-matched controls. Amusics showed significantly reduced global connectivity, as indicated by the abnormally decreased clustering coefficient (Cp) and increased normalized shortest path length (λ) compared to the controls. Moreover, amusics exhibited enhanced nodal strength in the right inferior parietal lobule relative to controls. The co-existence of the lexical tone deficits was associated with even more deteriorated global network efficiency in amusics, as suggested by the significant correlation between the increments in normalized shortest path length (λ) and the insensitivity in lexical tone perception. Our study is the first to reveal reduced global connectivity efficiency in amusics as well as an increase in the global connectivity cost due to the co-existed lexical tone deficits. Taken together these results provide a holistic perspective on the anatomical substrates underlying congenital amusia. PMID:27211239
Influence of network topology on the abnormal phase order
NASA Astrophysics Data System (ADS)
Zhou, Yinzuo; Zhou, Jie; Liu, Zonghua
2008-12-01
The abnormal phase order of coupled logistic maps, i.e., the ratio of two sequential "up phases" in the total iterations, can be characterized by the direction phase (Phys. Rev. Lett., 84 (2000) 2610). We here consider the case of coupled logistic maps on complex networks and study how the network topology influences the abnormal phase order. Our numerical simulations reveal that the critical point for the appearance of abnormal phase order increases with the coupling strength but decreases with the degree of heterogeneity of complex networks. Moreover, we find that unlike in the case of normal phase order, it is possible for the system to show a periodic window in the case of abnormal phase order, but only within an appropriate range of coupling strengths, and finally, that the heterogeneity can reduce the maximum number of the phase clusters in a given periodic window.
Organic topological insulators in organometallic lattices.
Wang, Z F; Liu, Zheng; Liu, Feng
2013-01-01
Topological insulators are a recently discovered class of materials having insulating bulk electronic states but conducting boundary states distinguished by nontrivial topology. So far, several generations of topological insulators have been theoretically predicted and experimentally confirmed, all based on inorganic materials. Here, based on first-principles calculations, we predict a family of two-dimensional organic topological insulators made of organometallic lattices. Designed by assembling molecular building blocks of triphenyl-metal compounds with strong spin-orbit coupling into a hexagonal lattice, this new classes of organic topological insulators are shown to exhibit nontrivial topological edge states that are robust against significant lattice strain. We envision that organic topological insulators will greatly broaden the scientific and technological impact of topological insulators.
Chaos, Topology, and Social Organization.
ERIC Educational Resources Information Center
Marion, Russ
1992-01-01
Applies chaos theory to complex social organization, beginning with a mathematical definition of chaos. Shows how a nonlinear equation might be used to describe organization. The conclusion section identifies three approaches to analyzing chaos in social organization: metaphorical analysis, mathematical modeling, and data collection. (36…
Dynamical networks with topological self-organization
NASA Technical Reports Server (NTRS)
Zak, M.
2001-01-01
Coupled evolution of state and topology of dynamical networks is introduced. Due to the well organized tensor structure, the governing equations are presented in a canonical form, and required attractors as well as their basins can be easily implanted and controlled.
Abnormal Brain Network Organization in Body Dysmorphic Disorder
Arienzo, Donatello; Leow, Alex; Brown, Jesse A; Zhan, Liang; GadElkarim, Johnson; Hovav, Sarit; Feusner, Jamie D
2013-01-01
Body dysmorphic disorder (BDD) is characterized by preoccupation with misperceived defects of appearance, causing significant distress and disability. Previous studies suggest abnormalities in information processing characterized by greater local relative to global processing. The purpose of this study was to probe whole-brain and regional white matter network organization in BDD, and to relate this to specific metrics of symptomatology. We acquired diffusion-weighted 34-direction MR images from 14 unmedicated participants with DSM-IV BDD and 16 healthy controls, from which we conducted whole-brain deterministic diffusion tensor imaging tractography. We then constructed white matter structural connectivity matrices to derive whole-brain and regional graph theory metrics, which we compared between groups. Within the BDD group, we additionally correlated these metrics with scores on psychometric measures of BDD symptom severity as well as poor insight/delusionality. The BDD group showed higher whole-brain mean clustering coefficient than controls. Global efficiency negatively correlated with BDD symptom severity. The BDD group demonstrated greater edge betweenness centrality for connections between the anterior temporal lobe and the occipital cortex, and between bilateral occipital poles. This represents the first brain network analysis in BDD. Results suggest disturbances in whole brain structural topological organization in BDD, in addition to correlations between clinical symptoms and network organization. There is also evidence of abnormal connectivity between regions involved in lower-order visual processing and higher-order visual and emotional processing, as well as interhemispheric visual information transfer. These findings may relate to disturbances in information processing found in previous studies. PMID:23322186
Self-Organized Topological State with Majorana Fermions
NASA Astrophysics Data System (ADS)
Vazifeh, M. M.; Franz, M.
2013-11-01
Most physical systems known to date tend to resist entering the topological phase and must be fine-tuned to reach that phase. Here, we introduce a system in which a key dynamical parameter adjusts itself in response to the changing external conditions so that the ground state naturally favors the topological phase. The system consists of a quantum wire formed of individual magnetic atoms placed on the surface of an ordinary s-wave superconductor. It realizes the Kitaev paradigm of topological superconductivity when the wave vector characterizing the emergent spin helix dynamically self-tunes to support the topological phase. We call this phenomenon a self-organized topological state.
Topological phase transition in quasi-one dimensional organic conductors.
Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing
2015-01-01
We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane's model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices. PMID:26612317
Topological phase transition in quasi-one dimensional organic conductors
NASA Astrophysics Data System (ADS)
Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing
2015-11-01
We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane’s model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices.
Topological phase transition in quasi-one dimensional organic conductors
Ye, Xiao-Shan; Liu, Yong-Jun; Zeng, Xiang-Hua; Wu, Guoqing
2015-01-01
We explore topological phase transition, which involves the energy spectra of field-induced spin-density-wave (FISDW) states in quasi-one dimensional (Q1D) organic conductors, using an extended Su-Schrieffer-Heeger (SSH) model. We show that, in presence of half magnetic-flux FISDW state, the system exhibits topologically nontrivial phases, which can be characterized by a nonzero Chern number. The nontrivial evolution of the bulk bands with chemical potential in a topological phase transition is discussed. We show that the system can have a similar phase diagram which is discussed in the Haldane’s model. We suggest that the topological feature should be tested experimentally in this organic system. These studies enrich the theoretical research on topologically nontrivial phases in the Q1D lattice system as compared to the Haldane topological phase appearing in the two-dimensional lattices. PMID:26612317
Topological Defects at the Graphene/h-BN interface Abnormally Enhance Its Thermal Conductance.
Liu, Xiangjun; Zhang, Gang; Zhang, Yong-Wei
2016-08-10
Low thermal conductance across interface is often the limiting factor in managing heat in many advanced device applications. The most commonly used approach to enhance the thermal conductance is to reduce/eliminate the interfacial structural defects. Using a graphene/h-BN (Gr/h-BN) interface, we show surprisingly that topological defects are able to enhance the thermal conductance across the interface. It is found that the phonon transmission across the Gr/h-BN interface with 5|7 defects is higher than that of the pristine interface, which is in strong contrast to the common notion that interface defects promote phonon scattering. By analyzing the strain distribution and phonon vibrational spectra, we find that this abnormal enhancement in interfacial thermal conductance originates from the localization of the stress fields arising from misfit dislocations and their out-of-plane deformations at the interface. In the presence of the defects, the overall mismatch strain is reduced. In addition, the out-of-plane deformations screen the long-ranged dislocation strain fields, resulting in the stress fields to be localized only at the cores of the defects. This abnormal mechanism provides a new dimension to enhance the interfacial thermal conductance in two-dimensional heterostructures.
Topological Defects at the Graphene/h-BN interface Abnormally Enhance Its Thermal Conductance.
Liu, Xiangjun; Zhang, Gang; Zhang, Yong-Wei
2016-08-10
Low thermal conductance across interface is often the limiting factor in managing heat in many advanced device applications. The most commonly used approach to enhance the thermal conductance is to reduce/eliminate the interfacial structural defects. Using a graphene/h-BN (Gr/h-BN) interface, we show surprisingly that topological defects are able to enhance the thermal conductance across the interface. It is found that the phonon transmission across the Gr/h-BN interface with 5|7 defects is higher than that of the pristine interface, which is in strong contrast to the common notion that interface defects promote phonon scattering. By analyzing the strain distribution and phonon vibrational spectra, we find that this abnormal enhancement in interfacial thermal conductance originates from the localization of the stress fields arising from misfit dislocations and their out-of-plane deformations at the interface. In the presence of the defects, the overall mismatch strain is reduced. In addition, the out-of-plane deformations screen the long-ranged dislocation strain fields, resulting in the stress fields to be localized only at the cores of the defects. This abnormal mechanism provides a new dimension to enhance the interfacial thermal conductance in two-dimensional heterostructures. PMID:27387848
Organic Monolayer Protected Topological Surface State.
Yang, Hung-Hsiang; Chu, Yu-Hsun; Lu, Chun-I; Butler, Christopher John; Sankar, Raman; Chou, Fang-Cheng; Lin, Minn-Tsong
2015-10-14
Perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA)/Bi2Se3 and Fe/PTCDA/Bi2Se3 heterointerfaces are investigated using scanning tunneling microscopy and spectroscopy. The close-packed self-assembled PTCDA monolayer possesses big molecular band gap and weak molecule-substrate interactions, which leaves the Bi2Se3 topological surface state intact under PTCDA. Formation of Fe-PTCDA hybrids removes interactions between the Fe dopant and the Bi2Se3 surface, such as doping effects and Coulomb scattering. Our findings reveal the functionality of PTCDA to prevent dopant disturbances in the TSS and provide an effective alternative for interface designs of realistic TI devices.
Sethi, Moksh; Pedersen, Mangor; Jackson, Graeme D
2016-03-01
Polymicrogyria is a significant malformation of cortical development with a high incidence of epilepsy and cognitive deficits. Graph theoretic analysis is a useful approach to studying network organization in brain disorders. In this study, we used task-free functional magnetic resonance imaging (fMRI) data from four patients with polymicrogyria and refractory epilepsy. Gray matter masks from structural MRI data were parcellated into 1,024 network nodes. Functional "connectomes" were obtained based on fMRI time series between the parcellated network nodes; network analysis was conducted using clustering coefficient, path length, node degree, and participation coefficient. These graph metrics were compared between nodes within polymicrogyric cortex and normal brain tissue in contralateral homologous cortical regions. Polymicrogyric nodes showed significantly increased clustering coefficient and characteristic path length. This is the first study using functional connectivity analysis in polymicrogyria--our results indicate a shift toward a regular network topology in polymicrogyric nodes. Regularized network topology has been demonstrated previously in patients with focal epilepsy and during focal seizures. Thus, we postulate that these network alterations predispose to seizures and may be relevant to cognitive deficits in patients with polymicrogyria.
Sethi, Moksh; Pedersen, Mangor; Jackson, Graeme D
2016-03-01
Polymicrogyria is a significant malformation of cortical development with a high incidence of epilepsy and cognitive deficits. Graph theoretic analysis is a useful approach to studying network organization in brain disorders. In this study, we used task-free functional magnetic resonance imaging (fMRI) data from four patients with polymicrogyria and refractory epilepsy. Gray matter masks from structural MRI data were parcellated into 1,024 network nodes. Functional "connectomes" were obtained based on fMRI time series between the parcellated network nodes; network analysis was conducted using clustering coefficient, path length, node degree, and participation coefficient. These graph metrics were compared between nodes within polymicrogyric cortex and normal brain tissue in contralateral homologous cortical regions. Polymicrogyric nodes showed significantly increased clustering coefficient and characteristic path length. This is the first study using functional connectivity analysis in polymicrogyria--our results indicate a shift toward a regular network topology in polymicrogyric nodes. Regularized network topology has been demonstrated previously in patients with focal epilepsy and during focal seizures. Thus, we postulate that these network alterations predispose to seizures and may be relevant to cognitive deficits in patients with polymicrogyria. PMID:26763051
Chen, Jian-Huai; Yao, Zhi-Jian; Qin, Jiao-Long; Yan, Rui; Hua, Ling-Ling; Lu, Qing
2016-01-01
Background: Most previous neuroimaging studies have focused on the structural and functional abnormalities of local brain regions in major depressive disorder (MDD). Moreover, the exactly topological organization of networks underlying MDD remains unclear. This study examined the aberrant global and regional topological patterns of the brain white matter networks in MDD patients. Methods: The diffusion tensor imaging data were obtained from 27 patients with MDD and 40 healthy controls. The brain fractional anisotropy-weighted structural networks were constructed, and the global network and regional nodal metrics of the networks were explored by the complex network theory. Results: Compared with the healthy controls, the brain structural network of MDD patients showed an intact small-world topology, but significantly abnormal global network topological organization and regional nodal characteristic of the network in MDD were found. Our findings also indicated that the brain structural networks in MDD patients become a less strongly integrated network with a reduced central role of some key brain regions. Conclusions: All these resulted in a less optimal topological organization of networks underlying MDD patients, including an impaired capability of local information processing, reduced centrality of some brain regions and limited capacity to integrate information across different regions. Thus, these global network and regional node-level aberrations might contribute to understanding the pathogenesis of MDD from the view of the brain network. PMID:26960371
Absence of cytoglobin promotes multiple organ abnormalities in aged mice
Thuy, Le Thi Thanh; Van Thuy, Tuong Thi; Matsumoto, Yoshinari; Hai, Hoang; Ikura, Yoshihiro; Yoshizato, Katsutoshi; Kawada, Norifumi
2016-01-01
Cytoglobin (Cygb) was identified in hepatic stellate cells (HSCs) and pericytes of all organs; however, the effects of Cygb on cellular functions remain unclear. Here, we report spontaneous and age-dependent malformations in multiple organs of Cygb−/− mice. Twenty-six percent of young Cygb−/− mice (<1 year old) showed heart hypertrophy, cystic disease in the kidney or ovary, loss of balance, liver fibrosis and lymphoma. Furthermore, 71.3% (82/115) of aged Cygb−/− mice (1–2 years old) exhibited abnormalities, such as heart hypertrophy and cancer development in multiple organs; by contrast, 5.8% (4/68) of aged wild-type (WT) mice had abnormalities (p < 0.0001). Interestingly, serum and urine analysis demonstrated that the concentration of nitric oxide metabolites increased significantly in Cygb−/− mice, resulting in an imbalance in the oxidative stress and antioxidant defence system that was reversed by NG-monomethyl-L-arginine treatment. A senescent phenotype and evidence of DNA damage were found in primary HSCs and the liver of aged Cygb−/− mice. Moreover, compared with HSC+/+, HSC−/− showed high expression of Il-6 and chemokine mRNA when cocultured with mouse Hepa 1–6 cells. Thus, the absence of Cygb in pericytes provokes organ abnormalities, possibly via derangement of the nitric oxide and antioxidant defence system and through accelerated cellular senescence. PMID:27146058
Self-organized pseudo-graphene on grain boundaries in topological band insulators
NASA Astrophysics Data System (ADS)
Slager, Robert-Jan; Juričić, Vladimir; Lahtinen, Ville; Zaanen, Jan
2016-06-01
Semimetals are characterized by nodal band structures that give rise to exotic electronic properties. The stability of Dirac semimetals, such as graphene in two spatial dimensions, requires the presence of lattice symmetries, while akin to the surface states of topological band insulators, Weyl semimetals in three spatial dimensions are protected by band topology. Here we show that in the bulk of topological band insulators, self-organized topologically protected semimetals can emerge along a grain boundary, a ubiquitous extended lattice defect in any crystalline material. In addition to experimentally accessible electronic transport measurements, these states exhibit a valley anomaly in two dimensions influencing edge spin transport, whereas in three dimensions they appear as graphenelike states that may exhibit an odd-integer quantum Hall effect. The general mechanism underlying these semimetals—the hybridization of spinon modes bound to the grain boundary—suggests that topological semimetals can emerge in any topological material where lattice dislocations bind localized topological modes.
Topology Organization in Peer-to-Peer Platform for Genetic Algorithm Environment
NASA Astrophysics Data System (ADS)
Yao, Hong; Yu, Linchen
Genetic algorithms (GAs) have the inherent nature of parallel search. With the advantage of the computing power of PCs, GA computing environment can be shifted from a single machine to Internet. Topology, the organization of the peers, as well as their dynamic change and maintaining mechanisms, is important to organize an efficient and stable topological structure. A new topology is proposed in this paper to create a hybrid structure for large scale of peers. The whole structure is divided into two layers. The upper part is composed by super nodes, while the lower part is composed by the ordinary nodes. Testing shows that it is good for maintaining the platform stable and scalable.
NASA Astrophysics Data System (ADS)
Otrokov, M. M.; Chulkov, E. V.; Arnau, A.
2015-10-01
We propose a way to break the time-reversal symmetry at the surface of a three-dimensional topological insulator that combines features of both surface magnetic doping and magnetic proximity effect. Based on the possibility of organizing an ordered array of local magnetic moments by inserting them into a two-dimensional matrix of organic ligands, we study the magnetic coupling and electronic structure of such metal-organic coordination networks on a topological insulator surface from first principles. In this way, we find that both Co and Cr centers, linked by the tetracyanoethylenelike organic ligand, are coupled ferromagnetically and, depending on the distance to the topological insulator substrate, can yield a magnetic proximity effect. This latter leads to the Dirac point gap opening indicative of the time-reversal symmetry breaking.
Topological insulators based on 2D shape-persistent organic ligand complexes.
Zhou, Qionghua; Wang, Jinlan; Chwee, Tsz Sian; Wu, Gang; Wang, Xiaobai; Ye, Qun; Xu, Jianwei; Yang, Shuo-Wang
2015-01-14
Topological insulators (TIs) represent an exciting new class of materials with potential applications in spintronics and quantum computing. In this work, we present a theoretical study on a new family of two dimensional (2D) nanomaterials based on the coordination of shape persistent organic ligands (SPOLs) to heavy transition metal ions such as Pd(2+) and Pt(2+). These 2D structures may be readily fabricated and are expected to be stable under normal atmospheric conditions. From first principles calculations and tight-binding model simulations carried out to characterize the bulk band structures, edge states, spin Chern numbers, and the Z2 topological invariants, we were able to identify candidates with non-trivial topological properties that may serve as topological insulators in real world applications.
Defining the Proton Topology of the Zr6-Based Metal-Organic Framework NU-1000.
Planas, Nora; Mondloch, Joseph E; Tussupbayev, Samat; Borycz, Joshua; Gagliardi, Laura; Hupp, Joseph T; Farha, Omar K; Cramer, Christopher J
2014-11-01
Metal-organic frameworks (MOFs) constructed from Zr6-based nodes have recently received considerable attention given their exceptional thermal, chemical, and mechanical stability. Because of this, the structural diversity of Zr6-based MOFs has expanded considerably and in turn given rise to difficulty in their precise characterization. In particular it has been difficult to assign where protons (needed for charge balance) reside on some Zr6-based nodes. Elucidating the precise proton topologies in Zr6-based MOFs will have wide ranging implications in defining their chemical reactivity, acid/base characteristics, conductivity, and chemical catalysis. Here we have used a combined quantum mechanical and experimental approach to elucidate the precise proton topology of the Zr6-based framework NU-1000. Our data indicate that a mixed node topology, [Zr6(μ3-O)4(μ3-OH)4(OH)4 (OH2)4](8+), is preferred and simultaneously rule out five alternative node topologies. PMID:26278741
Defining the Proton Topology of the Zr6-Based Metal-Organic Framework NU-1000.
Planas, Nora; Mondloch, Joseph E; Tussupbayev, Samat; Borycz, Joshua; Gagliardi, Laura; Hupp, Joseph T; Farha, Omar K; Cramer, Christopher J
2014-11-01
Metal-organic frameworks (MOFs) constructed from Zr6-based nodes have recently received considerable attention given their exceptional thermal, chemical, and mechanical stability. Because of this, the structural diversity of Zr6-based MOFs has expanded considerably and in turn given rise to difficulty in their precise characterization. In particular it has been difficult to assign where protons (needed for charge balance) reside on some Zr6-based nodes. Elucidating the precise proton topologies in Zr6-based MOFs will have wide ranging implications in defining their chemical reactivity, acid/base characteristics, conductivity, and chemical catalysis. Here we have used a combined quantum mechanical and experimental approach to elucidate the precise proton topology of the Zr6-based framework NU-1000. Our data indicate that a mixed node topology, [Zr6(μ3-O)4(μ3-OH)4(OH)4 (OH2)4](8+), is preferred and simultaneously rule out five alternative node topologies.
A highly porous flexible Metal-Organic Framework with corundum topology.
Grünker, Ronny; Senkovska, Irena; Biedermann, Ralf; Klein, Nicole; Lohe, Martin R; Müller, Philipp; Kaskel, Stefan
2011-01-01
A flexible Metal-Organic Framework Zn(4)O(BenzTB)(3/2) (DUT-13) was obtained by combination of a tetratopic linker and Zn(4)O(6+) as connector. The material has a corundum topology and shows the highest pore volume among flexible MOFs.
Self-organized charge puddles in a three-dimensional topological material
NASA Astrophysics Data System (ADS)
Borgwardt, N.; Lux, J.; Vergara, I.; Wang, Zhiwei; Taskin, A. A.; Segawa, Kouji; van Loosdrecht, P. H. M.; Ando, Yoichi; Rosch, A.; Grüninger, M.
2016-06-01
In three-dimensional (3D) topological materials, tuning of the bulk chemical potential is of crucial importance for observing their topological properties; for example, Weyl semimetals require chemical-potential tuning to the bulk Weyl nodes, while 3D topological insulators require tuning into the bulk band gap. Such tuning is often realized by compensation, i.e., by balancing the density of acceptors and donors. Here we show that in such a compensated 3D topological material, the possibility of local chemical-potential tuning is limited by the formation of self-organized charge puddles. The puddles arise from large fluctuations of the Coulomb potential of donors and acceptors. Their emergence is akin to the case of graphene, where charge puddles are already established as a key paradigm. However, there is an important difference: Puddles in graphene are simply dictated by the static distribution of defects in the substrate, whereas we find that puddles in 3D systems self-organize in a nontrivial way and show a strong temperature dependence. Such a self-organization is revealed by measurements of the optical conductivity of the bulk-insulating 3D topological insulator BiSbTeSe2, which pinpoints the presence of puddles at low temperatures as well as their surprising "evaporation" on a temperature scale of 30-40 K. The experimental observation is described semiquantitatively by Monte Carlo simulations. These show that the temperature scale is set by the Coulomb interaction between neighboring dopants and that puddles are destroyed by thermally activated carriers in a highly nonlinear screening process. This result indicates that understanding charge puddles is crucial for the control of the chemical potential in compensated 3D topological materials.
Emergent self-organized complex network topology out of stability constraints.
Perotti, Juan I; Billoni, Orlando V; Tamarit, Francisco A; Chialvo, Dante R; Cannas, Sergio A
2009-09-01
Although most networks in nature exhibit complex topologies, the origins of such complexity remain unclear. We propose a general evolutionary mechanism based on global stability. This mechanism is incorporated into a model of a growing network of interacting agents in which each new agent's membership in the network is determined by the agent's effect on the network's global stability. It is shown that out of this stability constraint complex topological properties emerge in a self-organized manner, offering an explanation for their observed ubiquity in biological networks. PMID:19792348
Kadiri, Hind; Kostcheev, Serguei; Turover, Daniel; Salas-Montiel, Rafael; Nomenyo, Komla; Gokarna, Anisha; Lerondel, Gilles
2014-01-01
Our aim was to elaborate a novel method for fully controllable large-scale nanopatterning. We investigated the influence of the surface topology, i.e., a pre-pattern of hydrogen silsesquioxane (HSQ) posts, on the self-organization of polystyrene beads (PS) dispersed over a large surface. Depending on the post size and spacing, long-range ordering of self-organized polystyrene beads is observed wherein guide posts were used leading to single crystal structure. Topology assisted self-organization has proved to be one of the solutions to obtain large-scale ordering. Besides post size and spacing, the colloidal concentration and the nature of solvent were found to have a significant effect on the self-organization of the PS beads. Scanning electron microscope and associated Fourier transform analysis were used to characterize the morphology of the ordered surfaces. Finally, the production of silicon molds is demonstrated by using the beads as a template for dry etching.
Number theoretic example of scale-free topology inducing self-organized criticality.
Luque, Bartolo; Miramontes, Octavio; Lacasa, Lucas
2008-10-10
In this Letter we present a general mechanism by which simple dynamics running on networks become self-organized critical for scale-free topologies. We illustrate this mechanism with a simple arithmetic model of division between integers, the division model. This is the simplest self-organized critical model advanced so far, and in this sense it may help to elucidate the mechanism of self-organization to criticality. Its simplicity allows analytical tractability, characterizing several scaling relations. Furthermore, its mathematical nature brings about interesting connections between statistical physics and number theoretical concepts. We show how this model can be understood as a self-organized stochastic process embedded on a network, where the onset of criticality is induced by the topology.
Number theoretic example of scale-free topology inducing self-organized criticality.
Luque, Bartolo; Miramontes, Octavio; Lacasa, Lucas
2008-10-10
In this Letter we present a general mechanism by which simple dynamics running on networks become self-organized critical for scale-free topologies. We illustrate this mechanism with a simple arithmetic model of division between integers, the division model. This is the simplest self-organized critical model advanced so far, and in this sense it may help to elucidate the mechanism of self-organization to criticality. Its simplicity allows analytical tractability, characterizing several scaling relations. Furthermore, its mathematical nature brings about interesting connections between statistical physics and number theoretical concepts. We show how this model can be understood as a self-organized stochastic process embedded on a network, where the onset of criticality is induced by the topology. PMID:18999649
Chromatin topology is coupled to Polycomb group protein subnuclear organization
Wani, Ajazul H.; Boettiger, Alistair N.; Schorderet, Patrick; Ergun, Ayla; Münger, Christine; Sadreyev, Ruslan I.; Zhuang, Xiaowei; Kingston, Robert E.; Francis, Nicole J.
2016-01-01
The genomes of metazoa are organized at multiple scales. Many proteins that regulate genome architecture, including Polycomb group (PcG) proteins, form subnuclear structures. Deciphering mechanistic links between protein organization and chromatin architecture requires precise description and mechanistic perturbations of both. Using super-resolution microscopy, here we show that PcG proteins are organized into hundreds of nanoscale protein clusters. We manipulated PcG clusters by disrupting the polymerization activity of the sterile alpha motif (SAM) of the PcG protein Polyhomeotic (Ph) or by increasing Ph levels. Ph with mutant SAM disrupts clustering of endogenous PcG complexes and chromatin interactions while elevating Ph level increases cluster number and chromatin interactions. These effects can be captured by molecular simulations based on a previously described chromatin polymer model. Both perturbations also alter gene expression. Organization of PcG proteins into small, abundant clusters on chromatin through Ph SAM polymerization activity may shape genome architecture through chromatin interactions. PMID:26759081
NASA Astrophysics Data System (ADS)
Dalapati, Sasanka; Addicoat, Matthew; Jin, Shangbin; Sakurai, Tsuneaki; Gao, Jia; Xu, Hong; Irle, Stephan; Seki, Shu; Jiang, Donglin
2015-07-01
Covalent organic frameworks (COFs) are an emerging class of highly ordered porous polymers with many potential applications. They are currently designed and synthesized through hexagonal and tetragonal topologies, limiting the access to and exploration of new structures and properties. Here, we report that a triangular topology can be developed for the rational design and synthesis of a new class of COFs. The triangular topology features small pore sizes down to 12 Å, which is among the smallest pores for COFs reported to date, and high π-column densities of up to 0.25 nm-2, which exceeds those of supramolecular columnar π-arrays and other COF materials. These crystalline COFs facilitate π-cloud delocalization and are highly conductive, with a hole mobility that is among the highest reported for COFs and polygraphitic ensembles.
Molecular promoting of aluminium metal-organic framework topology MIL-101 by N,N - dimethylformamide
Goesten, Maarten G.; Magusin, Pieter C.M.M; Pidko, Evgeny A.; Mezari, Brahim; Hensen, Emiel J.M.; Kapteijn, Freek; Gascon, Jorge
2014-01-01
In-situ NMR and DFT modelling demonstrate that N,N-dimethylformamide (DMF) promotes the formation of metal-organic framework NH2-MIL-101(Al). In-situ NMR studies show that upon dissociation of an aluminium-coordinated aqua ligand in NH2-MOF-235(Al), DMF forms an HCl-DMF complex during synthesis. This reaction induces a transformation from the MOF-235 topology into the MIL-101 topology. Electronic Structure Density Functional Theory (DFT) calculations show that the use of DMF instead of water as synthesis solvent decreases the energy gap between the kinetically favored MIL-101 and the thermodynamically favored MIL-53 products. DMF therefore promotes the MIL-101 topology both kinetically and thermodynamically. PMID:24405155
Dalapati, Sasanka; Addicoat, Matthew; Jin, Shangbin; Sakurai, Tsuneaki; Gao, Jia; Xu, Hong; Irle, Stephan; Seki, Shu; Jiang, Donglin
2015-01-01
Covalent organic frameworks (COFs) are an emerging class of highly ordered porous polymers with many potential applications. They are currently designed and synthesized through hexagonal and tetragonal topologies, limiting the access to and exploration of new structures and properties. Here, we report that a triangular topology can be developed for the rational design and synthesis of a new class of COFs. The triangular topology features small pore sizes down to 12 Å, which is among the smallest pores for COFs reported to date, and high π-column densities of up to 0.25 nm−2, which exceeds those of supramolecular columnar π-arrays and other COF materials. These crystalline COFs facilitate π-cloud delocalization and are highly conductive, with a hole mobility that is among the highest reported for COFs and polygraphitic ensembles. PMID:26178865
Time to follow up after an abnormal finding in organized gastric cancer screening in Korea
2012-01-01
Background The prognosis for an abnormal medical finding is affected by both early detection and adherence to the presecribed schedule for follow-up examinations. In this study, we examined the time to follow up after an abnormal finding and determined the risk factors related to delays in follow up in a population-based screening program. Methods The study population consisted of patients who were newly diagnosed with gastric cancer through a gastric cancer screening program sponsored by the National Cancer Screening Program (NCSP) in 2005. Due to the skewed nature of the distribution of time to follow up, medians and interquartile ranges (IQR) are presented, and we analyzed the number of days preceding the follow-up time as a binary variable (≤90 days or >90 days). We used logistic regression analyses to evaluate the risk factors for a long delay. Results The median number of days to follow-up initiation after an abnormal finding was 11 (IQR 7–27); 13.9% of the patients with gastric cancer obtained their follow-up evaluation more than 90 days. Age, type of health insurance, screening method, and screening results were risk factors for delays in follow up. Conclusions This study examined delays from the time of the discovery of an abnormal finding to time of the follow-up evaluation. Because inadequate follow up of abnormal exam results undermines the potential benefits of cancer screening, it is important to organize services that minimize delays between cancer screening and treatment. PMID:22963347
Metallacarborane-Based Metal-Organic Framework with a Complex Topology
Kennedy, RD; Clingerman, DJ; Morris, W; Wilmer, CE; Sarjeant, AA; Stern, CL; O'Keeffe, M; Snurr, RQ; Hupp, JT; Farha, OK; Mirkin, CA
2014-03-01
The long, linear cobalt(III) bis(dicarbollide)-based bis(isophthalic acid) anion was synthesized as a tetraphenylphosphonium salt in five steps from 8-iodo-closo-1,2-C2B10H11. The solvothermal reaction between the anionic bis(isophthalic acid) linker and copper(II) nitrate in acidified DMF yielded single crystals. Despite the tendency for copper(II) and analogous linear tetraacids to form members of an isoreticular family of metal-organic frameworks (MOFs) with the fof topology, single-crystal X-ray diffraction analysis revealed the growth of three different frameworks. These MOFs, NU-150, NU-151, and NU-152, have three distinct topologies: fof, sty, and hbk, respectively. NU-152 has a novel quadrinodal topology in which cuboctahedral coordination polyhedra are each connected to 10 neighboring polyhedra via the cobalt bis(dicarbollide) portions of the linkers. The formation of these frameworks illustrates the limitations of structure prediction in MOP chemistry and the possibility of using flexible linkers to generate unexpected topologies. Furthermore, this work represents the first example of the incorporation of an anionic bis(dicarbollide) unit into a MOF.
Vértes, Petra E; Bullmore, Edward T
2015-01-01
Background We first give a brief introduction to graph theoretical analysis and its application to the study of brain network topology or connectomics. Within this framework, we review the existing empirical data on developmental changes in brain network organization across a range of experimental modalities (including structural and functional MRI, diffusion tensor imaging, magnetoencephalography and electroencephalography in humans). Synthesis We discuss preliminary evidence and current hypotheses for how the emergence of network properties correlates with concomitant cognitive and behavioural changes associated with development. We highlight some of the technical and conceptual challenges to be addressed by future developments in this rapidly moving field. Given the parallels previously discovered between neural systems across species and over a range of spatial scales, we also review some recent advances in developmental network studies at the cellular scale. We highlight the opportunities presented by such studies and how they may complement neuroimaging in advancing our understanding of brain development. Finally, we note that many brain and mind disorders are thought to be neurodevelopmental in origin and that charting the trajectory of brain network changes associated with healthy development also sets the stage for understanding abnormal network development. Conclusions We therefore briefly review the clinical relevance of network metrics as potential diagnostic markers and some recent efforts in computational modelling of brain networks which might contribute to a more mechanistic understanding of neurodevelopmental disorders in future. PMID:25441756
Controlling the Spin Texture of Topological Insulators by Rational Design of Organic Molecules.
Jakobs, Sebastian; Narayan, Awadhesh; Stadtmüller, Benjamin; Droghetti, Andrea; Rungger, Ivan; Hor, Yew S; Klyatskaya, Svetlana; Jungkenn, Dominik; Stöckl, Johannes; Laux, Martin; Monti, Oliver L A; Aeschlimann, Martin; Cava, Robert J; Ruben, Mario; Mathias, Stefan; Sanvito, Stefano; Cinchetti, Mirko
2015-09-01
We present a rational design approach to customize the spin texture of surface states of a topological insulator. This approach relies on the extreme multifunctionality of organic molecules that are used to functionalize the surface of the prototypical topological insulator (TI) Bi2Se3. For the rational design we use theoretical calculations to guide the choice and chemical synthesis of appropriate molecules that customize the spin texture of Bi2Se3. The theoretical predictions are then verified in angular-resolved photoemission experiments. We show that, by tuning the strength of molecule-TI interaction, the surface of the TI can be passivated, the Dirac point can energetically be shifted at will, and Rashba-split quantum-well interface states can be created. These tailored interface properties-passivation, spin-texture tuning, and creation of hybrid interface states-lay a solid foundation for interface-assisted molecular spintronics in spin-textured materials.
Self-organizing Ising model of artificial financial markets with small-world network topology
NASA Astrophysics Data System (ADS)
Zhao, Haijie; Zhou, Jie; Zhang, Anghui; Su, Guifeng; Zhang, Yi
2013-01-01
We study a self-organizing Ising-like model of artificial financial markets with underlying small-world (SW) network topology. The asset price dynamics results from the collective decisions of interacting agents which are located on a small-world complex network (the nodes symbolize the agents of a financial market). The model incorporates the effects of imitation, the impact of external news and private information. We also investigate the influence of different network topologies, from regular lattice to random graph, on the asset price dynamics by adjusting the probability of the rewiring procedure. We find that a specific combination of model parameters reproduce main stylized facts of real-world financial markets.
Self-organization processes and topological defects in nanolayers in a nematic liquid crystal
Chuvyrov, A. N.; Girfanova, F. M. Mal'tsev, I. S.
2008-05-15
Atomic force microscopy is used to study the self-organization processes that occur during the formation of topological defects in nanomolecular layers in a nematic liquid crystal with the homeotropic orientation of its molecules with respect to the substrate. In this case, a smectic monolayer with a thickness of one molecule length (about 2.2 nm) forms on the substrate, and a nanomolecular layer of a nematic liquid crystal forms above this monolayer. In such virtually two-dimensional layers, numerous different nanoclusters, namely, hut structures, pyramids, raft structures with symmetry C{sub nm} (where n = 2, 4, 5, 6, 7, ?, {infinity}), cones, and nanopools, form [1]. They have a regular shape close to the geometry of solid crystals. Modulated linear structures and topological point defects appear spontaneously in the nanopools and raft structures.
Intrinsic Two-Dimensional Organic Topological Insulators in Metal-Dicyanoanthracene Lattices.
Zhang, L Z; Wang, Z F; Huang, B; Cui, B; Wang, Zhiming; Du, S X; Gao, H-J; Liu, Feng
2016-03-01
We predict theoretical existence of intrinsic two-dimensional organic topological insulator (OTI) states in Cu-dicyanoanthracene (DCA) lattice, a system that has also been grown experimentally on Cu substrate, based on first-principle density functional theory calculations. The pz-orbital Kagome bands having a Dirac point lying exactly at the Fermi level are found in the freestanding Cu-DCA lattice. The tight-binding model analysis, the calculated Chern numbers, and the semi-infinite Dirac edge states within the spin-orbit coupling gaps all confirm its intrinsic topological properties. The intrinsic TI states are found to originate from a proper number of electrons filling of the hybridized bands from Cu atomic and DCA molecular orbitals based on which similar lattices containing noble metal atoms (Au and Cu) and those molecules with two CN groups (DCA and cyanogens) are all predicted to be intrinsic OTIs. PMID:26866565
Kostcheev, Serguei; Turover, Daniel; Salas-Montiel, Rafael; Nomenyo, Komla; Gokarna, Anisha; Lerondel, Gilles
2014-01-01
Summary Our aim was to elaborate a novel method for fully controllable large-scale nanopatterning. We investigated the influence of the surface topology, i.e., a pre-pattern of hydrogen silsesquioxane (HSQ) posts, on the self-organization of polystyrene beads (PS) dispersed over a large surface. Depending on the post size and spacing, long-range ordering of self-organized polystyrene beads is observed wherein guide posts were used leading to single crystal structure. Topology assisted self-organization has proved to be one of the solutions to obtain large-scale ordering. Besides post size and spacing, the colloidal concentration and the nature of solvent were found to have a significant effect on the self-organization of the PS beads. Scanning electron microscope and associated Fourier transform analysis were used to characterize the morphology of the ordered surfaces. Finally, the production of silicon molds is demonstrated by using the beads as a template for dry etching. PMID:25161854
Topological insulator Bi2Te3 films synthesized by metal organic chemical vapor deposition
NASA Astrophysics Data System (ADS)
Cao, Helin; Venkatasubramanian, Rama; Liu, Chang; Pierce, Jonathan; Yang, Haoran; Zahid Hasan, M.; Wu, Yue; Chen, Yong P.
2012-10-01
Topological insulator (TI) materials such as Bi2Te3 and Bi2Se3 have attracted strong recent interests. Large scale, high quality TI thin films are important for developing TI-based device applications. In this work, structural and electronic properties of Bi2Te3 thin films deposited by metal organic chemical vapor deposition (MOCVD) on GaAs (001) substrates were characterized via x-ray diffraction (XRD), Raman spectroscopy, angle-resolved photoemission spectroscopy (ARPES), and electronic transport measurements. The characteristic topological surface states with a single Dirac cone have been clearly revealed in the electronic band structure measured by ARPES, confirming the TI nature of the MOCVD Bi2Te3 films. Resistivity and Hall effect measurements have demonstrated relatively high bulk carrier mobility of ˜350 cm2/Vs at 300 K and ˜7400 cm2/Vs at 15 K. We have also measured the Seebeck coefficient of the films. Our demonstration of high quality topological insulator films grown by a simple and scalable method is of interests for both fundamental research and practical applications of thermoelectric and TI materials.
Mahjoubi, Frouzandeh; Soleimani, Saeideh; Mantegy, Sanaz
2010-01-01
Introduction The prevalence of somatic chromosomal abnormalities in infertile male individuals has been reported to vary in different literatures. The aim of this study was to investigate the frequency of chromosomal aberrations among infertile men referred to the Cytogenetic Laboratory of Iran Blood Transfusion Organization Research Centre (IBTO). Materials and Methods Chromosomal analysis was performed on phytohemag-glutinin (PHA)-stimulated peripheral lymphocyte cultures of 1052 infertile men using standard cytogenetic methods. The study took place during 1997 to 2007. Results Total chromosome alterations were revealed in 161 (15.30%) infertile men. The most prevalent chromosomal abnormality in the infertile men was 47, XXY, that was seen in 94 (58.38%) men while one of them had a mosaic karyotype: mos 47, XX[54]/47,XXY[18]/46,XY[9]. In 37 (22.98%) cases, structural aberrations were detected. There were 30 (18.63%) cases of sex reversal. Conclusion Cytogenetic studies of these patients showed increased chromosomal abnormalities in infertile men in comparison with that of the normal population, justifying the need for cytogenetic analysis of men with idiopathic infertility. PMID:23926486
Sohn, Yunkyu; Choi, Myung-Kyu; Ahn, Yong-Yeol; Lee, Junho; Jeong, Jaeseung
2011-05-01
The modular organization of networks of individual neurons interwoven through synapses has not been fully explored due to the incredible complexity of the connectivity architecture. Here we use the modularity-based community detection method for directed, weighted networks to examine hierarchically organized modules in the complete wiring diagram (connectome) of Caenorhabditis elegans (C. elegans) and to investigate their topological properties. Incorporating bilateral symmetry of the network as an important cue for proper cluster assignment, we identified anatomical clusters in the C. elegans connectome, including a body-spanning cluster, which correspond to experimentally identified functional circuits. Moreover, the hierarchical organization of the five clusters explains the systemic cooperation (e.g., mechanosensation, chemosensation, and navigation) that occurs among the structurally segregated biological circuits to produce higher-order complex behaviors. PMID:21625578
Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization
Ea, Vuthy; Baudement, Marie-Odile; Lesne, Annick; Forné, Thierry
2015-01-01
Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains’ organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation. TAD borders directly impact on chromatin dynamics by restricting contacts within specific genomic portions thus confining chromatin loop formation within TADs. We discuss how sub-TAD chromatin dynamics, constrained into a recently described statistical helix conformation, can produce functional interactions by contact stabilization. PMID:26226004
Contribution of Topological Domains and Loop Formation to 3D Chromatin Organization.
Ea, Vuthy; Baudement, Marie-Odile; Lesne, Annick; Forné, Thierry
2015-01-01
Recent investigations on 3D chromatin folding revealed that the eukaryote genomes are both highly compartmentalized and extremely dynamic. This review presents the most recent advances in topological domains' organization of the eukaryote genomes and discusses the relationship to chromatin loop formation. CTCF protein appears as a central factor of these two organization levels having either a strong insulating role at TAD borders, or a weaker architectural role in chromatin loop formation. TAD borders directly impact on chromatin dynamics by restricting contacts within specific genomic portions thus confining chromatin loop formation within TADs. We discuss how sub-TAD chromatin dynamics, constrained into a recently described statistical helix conformation, can produce functional interactions by contact stabilization. PMID:26226004
Congenital Hydrocephalus and Abnormal Subcommissural Organ Development in Sox3 Transgenic Mice
Lee, Kristie; Tan, Jacqueline; Morris, Michael B.; Rizzoti, Karine; Hughes, James; Cheah, Pike See; Felquer, Fernando; Liu, Xuan; Piltz, Sandra; Lovell-Badge, Robin; Thomas, Paul Q.
2012-01-01
Congenital hydrocephalus (CH) is a life-threatening medical condition in which excessive accumulation of CSF leads to ventricular expansion and increased intracranial pressure. Stenosis (blockage) of the Sylvian aqueduct (Aq; the narrow passageway that connects the third and fourth ventricles) is a common form of CH in humans, although the genetic basis of this condition is unknown. Mouse models of CH indicate that Aq stenosis is associated with abnormal development of the subcommmissural organ (SCO) a small secretory organ located at the dorsal midline of the caudal diencephalon. Glycoproteins secreted by the SCO generate Reissner's fibre (RF), a thread-like structure that descends into the Aq and is thought to maintain its patency. However, despite the importance of SCO function in CSF homeostasis, the genetic program that controls SCO development is poorly understood. Here, we show that the X-linked transcription factor SOX3 is expressed in the murine SCO throughout its development and in the mature organ. Importantly, overexpression of Sox3 in the dorsal diencephalic midline of transgenic mice induces CH via a dose-dependent mechanism. Histological, gene expression and cellular proliferation studies indicate that Sox3 overexpression disrupts the development of the SCO primordium through inhibition of diencephalic roof plate identity without inducing programmed cell death. This study provides further evidence that SCO function is essential for the prevention of hydrocephalus and indicates that overexpression of Sox3 in the dorsal midline alters progenitor cell differentiation in a dose-dependent manner. PMID:22291885
Tuning the Topology and Functionality of Metal–Organic Frameworks by Ligand Design
Zhao, Dan; Timmons, Daren J; Yuan, Daqiang; Zhou, Hong-Cai
2011-02-15
Metal–organic frameworks (MOFs)—highly crystalline hybrid materials that combine metal ions with rigid organic ligands—have emerged as an important class of porous materials. The organic ligands add flexibility and diversity to the chemical structures and functions of these materials. In this Account, we summarize our laboratory’s experience in tuning the topology and functionality of MOFs by ligand design. These investigations have led to new materials with interesting properties. By using a ligand that can adopt different symmetry conformations through free internal bond rotation, we have obtained two MOFs that are supramolecular stereoisomers of each other at different reaction temperatures. In another case, where the dimerized ligands function as a D₃-Piedfort unit spacer, we achieve chiral (10,3)-a networks. In the design of MOF-based materials for hydrogen and methane storage, we focused on increasing the gas affinity of frameworks by using ligands with different geometries to control the pore size and effectively introduce unsaturated metal centers (UMCs) into the framework. Framework interpenetration in PCN-6 (PCN stands for porous coordination network) can lead to higher hydrogen uptake. Because of the proper alignment of the UMCs, PCN-12 holds the record for uptake of hydrogen at 77 K/760 Torr. In the case of methane storage, PCN-14 with anthracene-derived ligand achieves breakthrough storage capacity, at a level 28% higher than the U.S. Department of Energy target. Selective gas adsorption requires a pore size comparable to that of the target gas molecules; therefore, we use bulky ligands and network interpenetration to reduce the pore size. In addition, with the help of an amphiphilic ligand, we were able to use temperature to continuously change pore size in a 2D layer MOF. Adding charge to an organic ligand can also stabilize frameworks. By ionizing the amine group within mesoMOF-1, the resulting electronic repulsion keeps the network from
NASA Astrophysics Data System (ADS)
Wu, Liang; Ireland, R. M.; Salehi, M.; Cheng, B.; Koirala, N.; Oh, S.; Katz, H. E.; Armitage, N. P.
2016-05-01
In this work, we use charge extraction via organic overlayer deposition to lower the chemical potential of topological insulator (TI) Bi2Se3 thin films into the intrinsic (bulk-insulating) regime. We demonstrate the tuning and stabilization of intrinsic topological insulators at high mobility with low-cost organic films. With the protection of the organic charge extraction layers tetrafluorotetracyanoquinodimethane or tris(acetylacetonato)cobalt(III) (Co(acac)3), the sample is stable in the atmosphere with chemical potential ˜135 meV above the Dirac point (85 meV below the conduction band minimum, well within the topological insulator regime) after four months, which is an extraordinary level of environmental stability. The Co complex demonstrates the use of an organometallic for modulating TI charge density. The mobility of surface state electrons is enhanced as high as ˜2000 cm2/V s. Even at room temperature, a true topologically insulating state is realized and stabilized for months' exposure to the atmosphere.
Katsenis, Athanassios D; Puškarić, Andreas; Štrukil, Vjekoslav; Mottillo, Cristina; Julien, Patrick A; Užarević, Krunoslav; Pham, Minh-Hao; Do, Trong-On; Kimber, Simon A J; Lazić, Predrag; Magdysyuk, Oxana; Dinnebier, Robert E; Halasz, Ivan; Friščić, Tomislav
2015-03-23
Chemical and physical transformations by milling are attracting enormous interest for their ability to access new materials and clean reactivity, and are central to a number of core industries, from mineral processing to pharmaceutical manufacturing. While continuous mechanical stress during milling is thought to create an environment supporting nonconventional reactivity and exotic intermediates, such speculations have remained without proof. Here we use in situ, real-time powder X-ray diffraction monitoring to discover and capture a metastable, novel-topology intermediate of a mechanochemical transformation. Monitoring the mechanochemical synthesis of an archetypal metal-organic framework ZIF-8 by in situ powder X-ray diffraction reveals unexpected amorphization, and on further milling recrystallization into a non-porous material via a metastable intermediate based on a previously unreported topology, herein named katsenite (kat). The discovery of this phase and topology provides direct evidence that milling transformations can involve short-lived, structurally unusual phases not yet accessed by conventional chemistry.
NASA Astrophysics Data System (ADS)
Katsenis, Athanassios D.; Puškarić, Andreas; Štrukil, Vjekoslav; Mottillo, Cristina; Julien, Patrick A.; Užarević, Krunoslav; Pham, Minh-Hao; Do, Trong-On; Kimber, Simon A. J.; Lazić, Predrag; Magdysyuk, Oxana; Dinnebier, Robert E.; Halasz, Ivan; Friščić, Tomislav
2015-03-01
Chemical and physical transformations by milling are attracting enormous interest for their ability to access new materials and clean reactivity, and are central to a number of core industries, from mineral processing to pharmaceutical manufacturing. While continuous mechanical stress during milling is thought to create an environment supporting nonconventional reactivity and exotic intermediates, such speculations have remained without proof. Here we use in situ, real-time powder X-ray diffraction monitoring to discover and capture a metastable, novel-topology intermediate of a mechanochemical transformation. Monitoring the mechanochemical synthesis of an archetypal metal-organic framework ZIF-8 by in situ powder X-ray diffraction reveals unexpected amorphization, and on further milling recrystallization into a non-porous material via a metastable intermediate based on a previously unreported topology, herein named katsenite (kat). The discovery of this phase and topology provides direct evidence that milling transformations can involve short-lived, structurally unusual phases not yet accessed by conventional chemistry.
BYY harmony learning, structural RPCL, and topological self-organizing on mixture models.
Xu, Lei
2002-01-01
The Bayesian Ying-Yang (BYY) harmony learning acts as a general statistical learning framework, featured by not only new regularization techniques for parameter learning but also a new mechanism that implements model selection either automatically during parameter learning or via a new class of model selection criteria used after parameter learning. In this paper, further advances on BYY harmony learning by considering modular inner representations are presented in three parts. One consists of results on unsupervisedmixture models, ranging from Gaussian mixture based Mean Square Error (MSE) clustering, elliptic clustering, subspace clustering to NonGaussian mixture based clustering not only with each cluster represented via either Bernoulli-Gaussian mixtures or independent real factor models, but also with independent component analysis implicitly made on each cluster. The second consists of results on supervised mixture-of-experts (ME) models, including Gaussian ME, Radial Basis Function nets, and Kernel regressions. The third consists of two strategies for extending the above structural mixtures into self-organized topological maps. All these advances are introduced with details on three issues, namely, (a) adaptive learning algorithms, especially elliptic, subspace, and structural rival penalized competitive learning algorithms, with model selection made automatically during learning; (b) model selection criteria for being used after parameter learning, and (c) how these learning algorithms and criteria are obtained from typical special cases of BYY harmony learning.
The retinotopic organization of striate cortex is well predicted by surface topology
Benson, Noah C.; Butt, Omar H.; Datta, Ritobrato; Radoeva, Petya D.; Brainard, David H.; Aguirre, Geoffrey Karl
2012-01-01
Summary In 1918, Gordon Holmes combined observations of visual field scotomas across brain lesioned soldiers to produce a schematic map of the projection of the visual field upon the striate cortex [1]. One limit to the precision of his result, and the mapping of anatomy to retinotopy generally, is the substantial individual variation in the size [2,3], volumetric position [4], and cortical magnification [5] of area V1. When viewed within the context of the curvature of the cortical surface, however, the boundaries of striate cortex fall at a consistent location across individuals [6]. We asked if the surface topology of the human brain can be used to accurately predict the internal, retinotopic function of striate cortex as well. We used fMRI to measure polar angle and eccentricity in 25 participants and combined their maps within a left-right, transform-symmetric representation of the cortical surface [7]. These data were then fit using a deterministic, algebraic model of visual field representation [8]. We found that an anatomical image alone can be used to predict the retinotopic organization of striate cortex for an individual as accurately as 10–25 minutes of functional mapping. This indicates tight developmental linkage of structure and function within a primary, sensory cortical area. PMID:23041195
Modulation polarimetry of the topological effect in gold-organic nanocomposite films
NASA Astrophysics Data System (ADS)
Grynko, D. A.; Barabash, Yu. M.; Maksimenko, L. S.; Matyash, I. E.; Mishchuk, O. N.; Rudenko, S. P.; Serdega, B. K.
2012-11-01
The phenomenon of surface plasmon resonance in composite films consisting of gold nanoclusters in matrices of organic molecular materials calix[4]arene and poly(N-vinylcarbazole) has been investigated. The internal reflection coefficients R {/s 2} and R {/p 2} of s- and p-polarized light and their physical difference ρ = R {/s 2} - R {/p 2} have been measured according to the Kretschmann scheme as a function of the angle of light incidence θ at different wavelengths λ in the range 400-1000 nm. The angular characteristics reflect the cluster structure of the films, which is confirmed by electron microscopy. A topological size effect has been revealed. This effect is associated with the dependence of the excitation energy efficiency of surface plasmons on the azimuth of the linearly polarized light, the shape, and the distribution of nanoclusters in the coordinate space. The dependences ρ(λ) demonstrate that the local plasmon resonance is excited by both s- and p-polarized light, whereas the polariton resonance is excited by s-polarized light. The sign of the curvature of the dependence ρ(θ) determines the predominance of the excitation energy efficiency of electromagnetic modes with one of the two states of polarization of the excitation radiation.
Counting the number of excited states in organic semiconductor systems using topology
Catanzaro, Michael J.; Shi, Tian; Tretiak, Sergei; Chernyak, Vladimir Y.
2015-02-28
Exciton scattering theory attributes excited electronic states to standing waves in quasi-one-dimensional molecular materials by assuming a quasi-particle picture of optical excitations. The quasi-particle properties at branching centers are described by the corresponding scattering matrices. Here, we identify the topological invariant of a scattering center, referred to as its winding number, and apply topological intersection theory to count the number of quantum states in a quasi-one-dimensional system.
Counting the number of excited states in organic semiconductor systems using topology.
Catanzaro, Michael J; Shi, Tian; Tretiak, Sergei; Chernyak, Vladimir Y
2015-02-28
Exciton scattering theory attributes excited electronic states to standing waves in quasi-one-dimensional molecular materials by assuming a quasi-particle picture of optical excitations. The quasi-particle properties at branching centers are described by the corresponding scattering matrices. Here, we identify the topological invariant of a scattering center, referred to as its winding number, and apply topological intersection theory to count the number of quantum states in a quasi-one-dimensional system. PMID:25725718
Liu, Tian -Fu; Feng, Dawei; Chen, Ying -Pin; Zou, Lanfang; Bosch, Mathieu; Yuan, Shuai; Wei, Zhangwen; Fordham, Stephen; Wang, Kecheng; Zhou, Hong -Cai
2015-01-14
Through a topology-guided strategy, a series of Zr₆-containing isoreticular porphyrinic metal–organic frameworks (MOFs), PCN-228, PCN-229, and PCN-230, with ftw-a topology were synthesized using the extended porphyrinic linkers. The bulky porphyrin ring ligand effectively prevents the network interpenetration which often appears in MOFs with increased linker length. The pore apertures of the structures range from 2.5 to 3.8 nm, and PCN-229 demonstrates the highest porosity and BET surface area among the previously reported Zr-MOFs. Additionally, by changing the relative direction of the terminal phenyl rings, this series replaces a Zr₈ cluster with a smaller Zr₆ cluster in a topologically identical framework. The high connectivity of the Zr₆ cluster yields frameworks with enhanced stability despite high porosity and ultralarge linker. As a representative example, PCN-230, constructed with the most extended porphyrinic linker, shows excellent stability in aqueous solutions with pH values ranging from 0 to 12 and demonstrates one of the highest pH tolerances among all porphyrinic MOFs. This work not only presents a successful example of rational design of MOFs with desired topology, but also provides a strategy for construction of stable mesoporous MOFs.
Liu, Tian-Fu; Feng, Dawei; Chen, Ying-Pin; Zou, Lanfang; Bosch, Mathieu; Yuan, Shuai; Wei, Zhangwen; Fordham, Stephen; Wang, Kecheng; Zhou, Hong-Cai
2015-01-14
Through a topology-guided strategy, a series of Zr6-containing isoreticular porphyrinic metal-organic frameworks (MOFs), PCN-228, PCN-229, and PCN-230, with ftw-a topology were synthesized using the extended porphyrinic linkers. The bulky porphyrin ring ligand effectively prevents the network interpenetration which often appears in MOFs with increased linker length. The pore apertures of the structures range from 2.5 to 3.8 nm, and PCN-229 demonstrates the highest porosity and BET surface area among the previously reported Zr-MOFs. Additionally, by changing the relative direction of the terminal phenyl rings, this series replaces a Zr8 cluster with a smaller Zr6 cluster in a topologically identical framework. The high connectivity of the Zr6 cluster yields frameworks with enhanced stability despite high porosity and ultralarge linker. As a representative example, PCN-230, constructed with the most extended porphyrinic linker, shows excellent stability in aqueous solutions with pH values ranging from 0 to 12 and demonstrates one of the highest pH tolerances among all porphyrinic MOFs. This work not only presents a successful example of rational design of MOFs with desired topology, but also provides a strategy for construction of stable mesoporous MOFs.
Ultraporous, Water Stable, and Breathing Zirconium-Based Metal-Organic Frameworks with ftw Topology.
Deria, Pravas; Gómez-Gualdrón, Diego A; Bury, Wojciech; Schaef, Herbert T; Wang, Timothy C; Thallapally, Praveen K; Sarjeant, Amy A; Snurr, Randall Q; Hupp, Joseph T; Farha, Omar K
2015-10-14
"Breathing" metal-organic frameworks (MOFs) are an emerging class of soft porous crystals (SPCs) with potential for high working capacity for gas storage applications. However, most breathing MOFs have low stability and/or low surface area. Here we report a water-stable, high surface area, breathing MOF of ftw topology, NU-1105. While Zr6-oxo clusters as nodes introduce water stability in NU-1105, its high surface area and breathing character stem from its pyrene-based tetracarboxylate (Py-FP) linkers, in which the fluorene units (F) in the FP "arms" play a key role in promoting breathing behavior. During gas sorption studies, the "closed pore" (cp) ↔ "open pore" (op) transition of NU-1105 occurs at a propane pressure of ∼3 bar. At 1 bar, NU-1105 is in its cp form and adsorbs less propane than it would in its op form, highlighting improved working capacity. In situ powder X-ray diffraction during propane sorption was used to track the cp ↔ op transition, and molecular modeling was used to elucidate the structure of the op and cp forms of NU-1105. According to TD-DFT calculations, the proposed conformations of the Py-FP linkers in the op and cp forms are consistent with the measured excitation and emission spectra of the op and cp forms of NU-1105. Similar structural transitions are also observed in the porphyrinic MOF NU-1104 depending on the identity of the porphyrin core; we observed breathing behavior if the constituent Por-PTP linker is nonmetalated. PMID:26387968
Kelch, Inken D.; Bogle, Gib; Sands, Gregory B.; Phillips, Anthony R. J.; LeGrice, Ian J.; Rod Dunbar, P.
2015-01-01
Understanding of the microvasculature has previously been limited by the lack of methods capable of capturing and modelling complete vascular networks. We used novel imaging and computational techniques to establish the topology of the entire blood vessel network of a murine lymph node, combining 63706 confocal images at 2 μm pixel resolution to cover a volume of 3.88 mm3. Detailed measurements including the distribution of vessel diameters, branch counts, and identification of voids were subsequently re-visualised in 3D revealing regional specialisation within the network. By focussing on critical immune microenvironments we quantified differences in their vascular topology. We further developed a morphology-based approach to identify High Endothelial Venules, key sites for lymphocyte extravasation. These data represent a comprehensive and continuous blood vessel network of an entire organ and provide benchmark measurements that will inform modelling of blood vessel networks as well as enable comparison of vascular topology in different organs. PMID:26567707
Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V.; Turley, Shannon J.; Ludewig, Burkhard
2016-01-01
Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses. PMID:27415420
Novkovic, Mario; Onder, Lucas; Cupovic, Jovana; Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V; Bocharov, Gennady; Turley, Shannon J; Ludewig, Burkhard
2016-07-01
Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses.
Novkovic, Mario; Onder, Lucas; Cupovic, Jovana; Abe, Jun; Bomze, David; Cremasco, Viviana; Scandella, Elke; Stein, Jens V; Bocharov, Gennady; Turley, Shannon J; Ludewig, Burkhard
2016-07-01
Fibroblastic reticular cells (FRCs) form the cellular scaffold of lymph nodes (LNs) and establish distinct microenvironmental niches to provide key molecules that drive innate and adaptive immune responses and control immune regulatory processes. Here, we have used a graph theory-based systems biology approach to determine topological properties and robustness of the LN FRC network in mice. We found that the FRC network exhibits an imprinted small-world topology that is fully regenerated within 4 wk after complete FRC ablation. Moreover, in silico perturbation analysis and in vivo validation revealed that LNs can tolerate a loss of approximately 50% of their FRCs without substantial impairment of immune cell recruitment, intranodal T cell migration, and dendritic cell-mediated activation of antiviral CD8+ T cells. Overall, our study reveals the high topological robustness of the FRC network and the critical role of the network integrity for the activation of adaptive immune responses. PMID:27415420
Altered Network Topologies and Hub Organization in Adults with Autism: A Resting-State fMRI Study
Itahashi, Takashi; Yamada, Takashi; Watanabe, Hiromi; Nakamura, Motoaki; Jimbo, Daiki; Shioda, Seiji; Toriizuka, Kazuo; Kato, Nobumasa; Hashimoto, Ryuichiro
2014-01-01
Recent functional magnetic resonance imaging (fMRI) studies on autism spectrum condition (ASC) have identified dysfunctions in specific brain networks involved in social and non-social cognition that persist into adulthood. Although increasing numbers of fMRI studies have revealed atypical functional connectivity in the adult ASC brain, such functional alterations at the network level have not yet been fully characterized within the recently developed graph-theoretical framework. Here, we applied a graph-theoretical analysis to resting-state fMRI data acquired from 46 adults with ASC and 46 age- and gender-matched controls, to investigate the topological properties and organization of autistic brain network. Analyses of global metrics revealed that, relative to the controls, participants with ASC exhibited significant decreases in clustering coefficient and characteristic path length, indicating a shift towards randomized organization. Furthermore, analyses of local metrics revealed a significantly altered organization of the hub nodes in ASC, as shown by analyses of hub disruption indices using multiple local metrics and by a loss of “hubness” in several nodes (e.g., the bilateral superior temporal sulcus, right dorsolateral prefrontal cortex, and precuneus) that are critical for social and non-social cognitive functions. In particular, local metrics of the anterior cingulate cortex consistently showed significant negative correlations with the Autism-Spectrum Quotient score. Our results demonstrate altered patterns of global and local topological properties that may underlie impaired social and non-social cognition in ASC. PMID:24714805
Tsujimura, Taro; Klein, Felix A.; Langenfeld, Katja; Glaser, Juliane; Huber, Wolfgang; Spitz, François
2015-01-01
Despite the well-documented role of remote enhancers in controlling developmental gene expression, the mechanisms that allocate enhancers to genes are poorly characterized. Here, we investigate the cis-regulatory organization of the locus containing the Tfap2c and Bmp7 genes in vivo, using a series of engineered chromosomal rearrangements. While these genes lie adjacent to one another, we demonstrate that they are independently regulated by distinct sets of enhancers, which in turn define non-overlapping regulatory domains. Chromosome conformation capture experiments reveal a corresponding partition of the locus in two distinct structural entities, demarcated by a discrete transition zone. The impact of engineered chromosomal rearrangements on the topology of the locus and the resultant gene expression changes indicate that this transition zone functionally organizes the structural partition of the locus, thereby defining enhancer-target gene allocation. This partition is, however, not absolute: we show that it allows competing interactions across it that may be non-productive for the competing gene, but modulate expression of the competed one. Altogether, these data highlight the prime role of the topological organization of the genome in long-distance regulation of gene expression. PMID:25569170
NASA Astrophysics Data System (ADS)
Nenashev, A. V.; Wiemer, M.; Dvurechenskii, A. V.; Gebhard, F.; Koch, M.; Baranovskii, S. D.
2016-07-01
The apparent order δ of non-geminate recombination higher than δ = 2 has been evidenced in numerous experiments on organic bulk heterojunction (BHJ) structures intensively studied for photovoltaic applications. This feature is claimed puzzling, since the rate of the bimolecular recombination in organic BHJ systems is proportional to the product of the concentrations of recombining electrons and holes and therefore the reaction order δ = 2 is expected. In organic BHJ structures, electrons and holes are confined to two different material phases: electrons to the acceptor material (usually a fullerene derivative) while holes to the donor phase (usually a polymer). The non-geminate recombination of charge carriers can therefore happen only at the interfaces between the two phases. Considering a simple geometrical model of the BHJ system, we show that the apparent order of recombination can deviate from δ = 2 due solely to the topological structure of the system.
Rajagopal, Adharsh; Williams, Spencer T; Chueh, Chu-Chen; Jen, Alex K-Y
2016-03-17
In this study, reverse bias (RB)-induced abnormal hysteresis is investigated in perovskite solar cells (PVSCs) with nickel oxide (NiOx)/methylammonium lead iodide (CH3NH3PbI3) interfaces. Through comprehensive current-voltage (I-V) characterization and bias-dependent external quantum efficiency (EQE) measurements, we demonstrate that this phenomenon is caused by the interfacial ion accumulation intrinsic to CH3NH3PbI3. Subsequently, via systematic analysis we discover that the abnormal I-V behavior is remarkably similar to tunnel diode I-V characteristics and is due to the formation of a transient tunnel junction at NiOx/CH3NH3PbI3 interfaces under RB. The detailed analysis navigating the complexities of I-V behavior in CH3NH3PbI3-based solar cells provided here ultimately illuminates possibilities in modulating ion motion and hysteresis via interfacial engineering in PVSCs. Furthermore, this work shows that RB can alter how CH3NH3PbI3 contributes to the functional nature of devices and provides the first steps toward approaching functional perovskite interfaces in new ways for metrology and analysis of complex transient processes. PMID:26927828
Zhao, Tengda; Cao, Miao; Niu, Haijing; Zuo, Xi-Nian; Evans, Alan; He, Yong; Dong, Qi; Shu, Ni
2015-10-01
Lifespan is a dynamic process with remarkable changes in brain structure and function. Previous neuroimaging studies have indicated age-related microstructural changes in specific white matter tracts during development and aging. However, the age-related alterations in the topological architecture of the white matter structural connectome across the human lifespan remain largely unknown. Here, a cohort of 113 healthy individuals (ages 9-85) with both diffusion and structural MRI acquisitions were examined. For each participant, the high-resolution white matter structural networks were constructed by deterministic fiber tractography among 1024 parcellation units and were quantified with graph theoretical analyses. The global network properties, including network strength, cost, topological efficiency, and robustness, followed an inverted U-shaped trajectory with a peak age around the third decade. The brain areas with the most significantly nonlinear changes were located in the prefrontal and temporal cortices. Different brain regions exhibited heterogeneous trajectories: the posterior cingulate and lateral temporal cortices displayed prolonged maturation/degeneration compared with the prefrontal cortices. Rich-club organization was evident across the lifespan, whereas hub integration decreased linearly with age, especially accompanied by the loss of frontal hubs and their connections. Additionally, age-related changes in structural connections were predominantly located within and between the prefrontal and temporal modules. Finally, based on the graph metrics of structural connectome, accurate predictions of individual age were obtained (r = 0.77). Together, the data indicated a dynamic topological organization of the brain structural connectome across human lifespan, which may provide possible structural substrates underlying functional and cognitive changes with age.
Guo, Feng; Wang, Fei; Yang, Hui; Zhang, Xiuling; Zhang, Jian
2012-09-17
Three new cadmium compounds, [Cd(2,4'-bpdc)(bib)(0.5)] (1; 2,4'-bpdc = biphenyl-2,4'-dicarboxylate and bib = 1,4-bis(2-methyl-imidazol-1-yl)butane), {[Cd(2)(3,4'-bpdc)(2)(bib)(1.5)(H(2)O)](n)·H(2)O}(n) (2; 3,4'-bpdc = biphenyl-3,4'-dicarboxylate), and [Cd (4,4'-bpdc)(bib)] (3; 4,4'-bpdc = biphenyl-4,4'-dicarboxylate), have been successfully synthesized by the assembly of Cd(2+) ions, bib ligands, and isomeric bpdc ligands, respectively. This paper presents a comparative study on the tuning of structural topologies using three isomers of biphenyldicarboxylates as bridging ligands. Compound 1 based on 2,4'-bpdc features a three-dimensional (3D) framework with 6-connected mab topology. Compound 2 based on 3,4'-bpdc is another 3D framework, but it possesses a rare 3-fold interpenetrating 4,6-connected fsh net, while compound 3 based on linear 4,4'-bpdc shows unusual 2D → 3D parallel polycatenation of (4,4) layers. Furthermore, the luminescent properties of three compounds are investigated in the solid state.
Topological Structure in Visual Perception.
ERIC Educational Resources Information Center
Chen, L.
1982-01-01
Three experiments on tachistoscopic perception of visual stimuli demonstrate that the visual system is sensitive to global topological properties. The results indicate that extraction of global topological properties is a basic factor in perceptual organization. (Author)
Jung, Wi Hoon; Chang, Ki Jung; Kim, Nam Hee
2016-04-30
Given that partial posttraumatic stress disorder (pPTSD) may be a specific risk factor for the development of posttraumatic stress disorder (PTSD), it is important to understand the neurobiology of pPTSD. However, there are few extant studies in this domain. Using resting-state functional magnetic resonance imaging (rs-fMRI) and a graph theoretical approach, we compared the topological organization of the whole-brain functional network in trauma-exposed firefighters with pPTSD (pPTSD group, n=9) with those without pPTSD (PC group, n=8) and non-traumatized healthy controls (HC group, n=11). We also examined changes in the network topology of five individuals with pPTSD before and after eye movement desensitization and reprocessing (EMDR) therapy. Individuals with pPTSD exhibited altered global properties, including a reduction in values of a normalized clustering coefficient, normalized local efficiency, and small-worldness. We also observed altered local properties, particularly in the association cortex, including the temporal and parietal cortices, across groups. These disruptive global and local network properties presented in pPTSD before treatment were ameliorated after treatment. Our preliminary results suggest that subthreshold manifestation of PTSD may be due to a disruption in the optimal balance in the functional brain networks and that this disruption can be ameliorated by psychotherapy. PMID:27107156
Zhang, Yue-Biao; Furukawa, Hiroyasu; Ko, Nakeun; Nie, Weixuan; Park, Hye Jeong; Okajima, Satoshi; Cordova, Kyle E.; Deng, Hexiang; Kim, Jaheon; Yaghi, Omar M.
2015-02-25
Metal–organic framework-177 (MOF-177) is one of the most porous materials whose structure is composed of octahedral Zn_{4}O(-COO)_{6} and triangular 1,3,5-benzenetribenzoate (BTB) units to make a three-dimensional extended network based on the qom topology. This topology violates a long-standing thesis where highly symmetric building units are expected to yield highly symmetric networks. In the case of octahedron and triangle combinations, MOFs based on pyrite (pyr) and rutile (rtl) nets were expected instead of qom. In this study, we have made 24 MOF-177 structures with different functional groups on the triangular BTB linker, having one or more functionalities. We find that the position of the functional groups on the BTB unit allows the selection for a specific net (qom, pyr, and rtl), and that mixing of functionalities (-H, -NH_{2}, and -C_{4}H_{4}) is an important strategy for the incorporation of a specific functionality (-NO_{2}) into MOF-177 where otherwise incorporation of such functionality would be difficult. Such mixing of functionalities to make multivariate MOF-177 structures leads to enhancement of hydrogen uptake by 25%.
Ovchinnikov, Igor V.
2011-05-15
Here, a scenario is proposed, according to which a generic self-organized critical (SOC) system can be looked upon as a Witten-type topological field theory (W-TFT) with spontaneously broken Becchi-Rouet-Stora-Tyutin (BRST) symmetry. One of the conditions for the SOC is the slow driving noise, which unambiguously suggests Stratonovich interpretation of the corresponding stochastic differential equation (SDE). This, in turn, necessitates the use of Parisi-Sourlas-Wu stochastic quantization procedure, which straightforwardly leads to a model with BRST-exact action, i.e., to a W-TFT. In the parameter space of the SDE, there must exist full-dimensional regions where the BRST symmetry is spontaneously broken by instantons, which in the context of SOC are essentially avalanches. In these regions, the avalanche-type SOC dynamics is liberated from overwise a rightful dynamics-less W-TFT, and a Goldstone mode of Fadeev-Popov ghosts exists. Goldstinos represent moduli of instantons (avalanches) and being gapless are responsible for the critical avalanche distribution in the low-energy, long-wavelength limit. The above arguments are robust against moderate variations of the SDE's parameters and the criticality is 'self-tuned'. The proposition of this paper suggests that the machinery of W-TFTs may find its applications in many different areas of modern science studying various physical realizations of SOC. It also suggests that there may in principle exist a connection between some SOC's and the concept of topological quantum computing.
Cañadillas-Delgado, Laura; Fabelo, Oscar; Pasán, Jorge; Déniz, Mariadel; Martínez-Benito, Carla; Díaz-Gallifa, Pau; Martín, Tomás; Ruiz-Pérez, Catalina
2014-02-01
Three new metal-organic framework structures containing Eu(III) and the little explored methanetriacetate (C7H7O6(3-), mta(3-)) ligand have been synthesized. Gel synthesis yields a two-dimensional framework with the formula [Eu(mta)(H2O)3]n·2nH2O, (I), while two polymorphs of the three-dimensional framework material [Eu(mta)(H2O)]n·nH2O, (II) and (III), are obtained through hydrothermal synthesis at either 423 or 443 K. Compounds (I) and (II) are isomorphous with previously reported Gd(III) compounds, but compound (III) constitutes a new phase. Compound (I) can be described in terms of dinuclear [Eu2(H2O)4](6+) units bonded through mta(3-) ligands to form a two-dimensional framework with topology corresponding to a (6,3)-connected binodal (4(3))(4(6)6(6)8(3))-kgd net, where the dinuclear [Eu2(H2O)4](6+) units are considered as a single node. Compounds (II) and (III) have distinct three-dimensional topologies, namely a (4(12)6(3))(4(9)6(6))-nia net for (II) and a (4(10)6(5))(4(11)6(4))-K2O2; 36641 net for (III). The crystal density of (III) is greater than that of (II), consistent with the increase of temperature, and thereby autogeneous pressure, in the hydrothermal synthesis.
Zhang, Xin; Zhang, Xu; Johnson, Jacob A; Chen, Yu-Sheng; Zhang, Jian
2016-07-13
Two non-interpenetrated zirconium metal-organic frameworks (Zr-MOFs), NPF-200 and NPF-201, were synthesized via the assembly of elongated tetrahedral linkers with Zr6 and Zr8 clusters. They represent the first examples of MOFs to have the β-UH3-like, 4,12,12T1 topology. Upon activation, NPF-200 exhibits the largest BET surface area (5463 m(2) g(-1)) and void volume (81.6%) among all MOFs formed from tetrahedral ligands. Composed of negative-charged boron-centered tetrahedral linkers, NPF-201 is an anionic Zr-MOF which selectively uptakes photoactive [Ru(bpy)3](2+) for heterogeneous photo-oxidation of thioanisole. PMID:27341503
NASA Astrophysics Data System (ADS)
Xiang, Jie; Chen, Yingbing; Yuan, De; Jia, Weiyao; Zhang, Qiaoming; Xiong, Zuhong
2016-09-01
Anomalous temperature dependent magneto-electroluminescence was observed at low and high magnetic field strength from organic planar heterojunction devices incorporated common phosphorescent host materials of N,N'-dicarbazolyl-3,5-benzene (mCP) or 4,4'-N,N'-dicarbazole-biphenyl (CBP) as an emissive layer. We found that intersystem crossing became stronger with decreasing temperature and that triplet-triplet annihilation (TTA) occurred at room temperature but ceased at low temperature. Analyses of the electroluminescence spectra of these devices and their temperature dependences indicated that the population of exciplex states increased at low temperature, which caused the abnormal behavior of intersystem crossing. Additionally, long lifetime of the excitons within mCP or CBP layer may allow TTA to occur at room temperature, while the reduced population of excitons at low temperature may account for the disappearance of TTA even though the excitons had increased lifetime.
Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I; Opal, Puneet; Goldman, Robert D
2016-02-15
Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility. PMID:26700320
Lowery, Jason; Jain, Nikhil; Kuczmarski, Edward R; Mahammad, Saleemulla; Goldman, Anne; Gelfand, Vladimir I; Opal, Puneet; Goldman, Robert D
2016-02-15
Giant axonal neuropathy (GAN) is a rare disease caused by mutations in the GAN gene, which encodes gigaxonin, an E3 ligase adapter that targets intermediate filament (IF) proteins for degradation in numerous cell types, including neurons and fibroblasts. The cellular hallmark of GAN pathology is the formation of large aggregates and bundles of IFs. In this study, we show that both the distribution and motility of mitochondria are altered in GAN fibroblasts and this is attributable to their association with vimentin IF aggregates and bundles. Transient expression of wild-type gigaxonin in GAN fibroblasts reduces the number of IF aggregates and bundles, restoring mitochondrial motility. Conversely, silencing the expression of gigaxonin in control fibroblasts leads to changes in IF organization similar to that of GAN patient fibroblasts and a coincident loss of mitochondrial motility. The inhibition of mitochondrial motility in GAN fibroblasts is not due to a global inhibition of organelle translocation, as lysosome motility is normal. Our findings demonstrate that it is the pathological changes in IF organization that cause the loss of mitochondrial motility.
Shu, Ni; Duan, Yunyun; Xia, Mingrui; Schoonheim, Menno M.; Huang, Jing; Ren, Zhuoqiong; Sun, Zheng; Ye, Jing; Dong, Huiqing; Shi, Fu-Dong; Barkhof, Frederik; Li, Kuncheng; Liu, Yaou
2016-01-01
The brain connectome of multiple sclerosis (MS) has been investigated by several previous studies; however, it is still unknown how the network changes in clinically isolated syndrome (CIS), the earliest stage of MS, and how network alterations on a functional level relate to the structural level in MS disease. Here, we investigated the topological alterations of both the structural and functional connectomes in 41 CIS and 32 MS patients, compared to 35 healthy controls, by combining diffusion tensor imaging and resting-state functional MRI with graph analysis approaches. We found that the structural connectome showed a deviation from the optimal pattern as early as the CIS stage, while the functional connectome only showed local changes in MS patients, not in CIS. When comparing two patient groups, the changes appear more severe in MS. Importantly, the disruptions of structural and functional connectomes in patients occurred in the same direction and locally correlated in sensorimotor component. Finally, the extent of structural network changes was correlated with several clinical variables in MS patients. Together, the results suggested early disruption of the structural brain connectome in CIS patients and provided a new perspective for investigating the relationship of the structural and functional alterations in MS. PMID:27403924
Shu, Ni; Li, Xin; Ma, Chao; Zhang, Junying; Chen, Kewei; Liang, Ying; Chen, Yaojing; Zhang, Zhanjun
2015-12-01
The polymorphism of the Apolipoprotein E (APOE) promoter rs405509 can regulate the transcriptional activity of the APOE gene and is related to Alzheimer's disease (AD). However, its effects on cognitive performance and the underlying brain mechanisms remain unknown. Here, we performed a battery of neuropsychological tests in a large sample (837 subjects) of nondemented elderly Chinese people, and explored the related brain mechanisms via the construction of diffusion MRI-based structural connectome and graph analysis from a subset (84 subjects) of the sample. Cognitively, the rs405509 risk allele (TT) carriers showed decreased attention and execution functions compared with noncarriers (GG/GT). Regarding the topological alterations of the brain connectome, the risk allele group exhibited reduced global and local efficiency of white matter structural networks, mainly in the left anterior and posterior cingulate cortices (PCC). Importantly, the efficiency of the left PCC is correlated with the impaired attention function and mediates the impacts of the rs405509 genotype on attention. These results demonstrated that the rs405509 polymorphism affects attention function in nondemented elderly people, possibly by modulating brain structural connectivity of the PCC. This polymorphism may help us to understand the neural mechanisms of cognitive aging and to serve as a potential marker assessing the risk of AD.
Hoshuyama, T; Takahashi, K; Fujishiro, K; Uchida, K; Okubo, T
2000-05-01
The prevalence of workers with abnormal findings in periodic general health examinations (PGHEx) has been growing recently in Japan and reached 41.2% in 1998. To clarify the indirect factors related to such an increase in workers with abnormal findings in the PGHEx, we carried out a questionnaire survey on the content of the statutory notification form of results of the PGHEx among a representative sample of 136 Occupational Health Organizations (OHOs). Questions on how those workers with abnormal findings were defined and detected and when the definition and the reference intervals for total cholesterol became available were included. Of the 107 OHOs which answered the questionnaire, 85 were included in the analyses because they actually calculated the number of workers with abnormal findings in each company and helped the employer fill out the notification form. The results revealed that there was no standardized definition of workers with abnormal findings in the PGHEx. Both reference intervals of items in the PGHEx and algorithm in detecting workers with abnormal findings in the PGHEx varied among the OHOs. When detecting the workers, 13 OHOs (15.3%) selected them taking into consideration medical background factors such as previous results of the PGHEx and current medical treatment. From the late 1980s to the early 1990s, many OHOs modified the definition of workers with abnormal findings, and have tended to reduce the upper limit of the reference interval for serum cholesterol. This is mainly due to amendment of the Industrial Safety and Health Law and a new recommendation for a reference interval/value proposed by the related scientific society. Although the prevalence of workers with abnormal findings in the PGHEx has continuously increased, it is not valid to compare the prevalence over the years because of modification in the definition of such workers. The prevalence of workers with abnormal findings in the PGHEx, which is one of the most important
Cañadillas-Delgado, Laura; Fabelo, Oscar; Pasán, Jorge; Déniz, Mariadel; Martínez-Benito, Carla; Díaz-Gallifa, Pau; Martín, Tomás; Ruiz-Pérez, Catalina
2014-02-01
Three new metal-organic framework structures containing Eu(III) and the little explored methanetriacetate (C7H7O6(3-), mta(3-)) ligand have been synthesized. Gel synthesis yields a two-dimensional framework with the formula [Eu(mta)(H2O)3]n·2nH2O, (I), while two polymorphs of the three-dimensional framework material [Eu(mta)(H2O)]n·nH2O, (II) and (III), are obtained through hydrothermal synthesis at either 423 or 443 K. Compounds (I) and (II) are isomorphous with previously reported Gd(III) compounds, but compound (III) constitutes a new phase. Compound (I) can be described in terms of dinuclear [Eu2(H2O)4](6+) units bonded through mta(3-) ligands to form a two-dimensional framework with topology corresponding to a (6,3)-connected binodal (4(3))(4(6)6(6)8(3))-kgd net, where the dinuclear [Eu2(H2O)4](6+) units are considered as a single node. Compounds (II) and (III) have distinct three-dimensional topologies, namely a (4(12)6(3))(4(9)6(6))-nia net for (II) and a (4(10)6(5))(4(11)6(4))-K2O2; 36641 net for (III). The crystal density of (III) is greater than that of (II), consistent with the increase of temperature, and thereby autogeneous pressure, in the hydrothermal synthesis. PMID:24441124
Gurzhiy, Vladislav V.
2015-09-15
Single crystals of seven novel uranyl oxysalts of selenium with protonated methylamine molecules, [C{sub 2}H{sub 8}N]{sub 2}[(UO{sub 2})(SeO{sub 4}){sub 2}(H{sub 2}O)] (I), [C{sub 2}H{sub 8}N]{sub 2}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}(H{sub 2}O)] (II), [C{sub 4}H{sub 15}N{sub 3}][H{sub 3}O]{sub 0.5}[(UO{sub 2}){sub 2}(SeO{sub 4}){sub 2.93}(SeO{sub 3}){sub 0.07}(H{sub 2}O)](NO{sub 3}){sub 0.5} (III), [C{sub 2}H{sub 8}N]{sub 3}[H{sub 5}O{sub 2}][(UO{sub 2}){sub 2}(SeO{sub 4}){sub 3}(H{sub 2}O){sub 2}]{sub 2}(H{sub 2}O){sub 5} (IV), [C{sub 2}H{sub 8}N]{sub 2}[H{sub 3}O][(UO{sub 2}){sub 3}(SeO{sub 4}){sub 4}(HSeO{sub 3})(H{sub 2}O)](H{sub 2}SeO{sub 3}){sub 0.2} (V), [C{sub 4}H{sub 12}N]{sub 3}[H{sub 3}O][(UO{sub 2}){sub 3}(SeO{sub 4}){sub 5}(H{sub 2}O)] (VI), and [C{sub 2}H{sub 8}N]{sub 3}(C{sub 2}H{sub 7}N)[(UO{sub 2}){sub 3}(SeO{sub 4}){sub 4}(HSeO{sub 3})(H{sub 2}O)] (VII) have been prepared by isothermal evaporation from aqueous solutions. Their crystal structures have been solved by direct methods and their uranyl selenate and selenite–selenate units investigated using black-and-white graphs from the viewpoints of topology of interpolyhedral linkages and isomeric variations. The crystal structure of IV is based upon complex layers with unique topology, which has not been observed previously in uranyl selenates. Investigations of the statistics and local distribution of the U–O{sub br}–Se bond angles demonstrates that shorter angles associate with undulations, whereas larger angles correspond to planar areas of the uranyl selenite layers. - Graphical abstract: Crystal structures of the seven novel Se-contaning uranyl oxysalts that contain protonated organic molecules as interlayer species have been investigated from the viewpoints of topology of interpolyhedral linkages, isomeric variations and flexibility of structural units. - Highlights: • Single crystals of seven novel uranyl oxysalts were prepared by evaporation method. • The graph theory was used
Miner, Daniel; Triesch, Jochen
2016-01-01
Understanding the structure and dynamics of cortical connectivity is vital to understanding cortical function. Experimental data strongly suggest that local recurrent connectivity in the cortex is significantly non-random, exhibiting, for example, above-chance bidirectionality and an overrepresentation of certain triangular motifs. Additional evidence suggests a significant distance dependency to connectivity over a local scale of a few hundred microns, and particular patterns of synaptic turnover dynamics, including a heavy-tailed distribution of synaptic efficacies, a power law distribution of synaptic lifetimes, and a tendency for stronger synapses to be more stable over time. Understanding how many of these non-random features simultaneously arise would provide valuable insights into the development and function of the cortex. While previous work has modeled some of the individual features of local cortical wiring, there is no model that begins to comprehensively account for all of them. We present a spiking network model of a rodent Layer 5 cortical slice which, via the interactions of a few simple biologically motivated intrinsic, synaptic, and structural plasticity mechanisms, qualitatively reproduces these non-random effects when combined with simple topological constraints. Our model suggests that mechanisms of self-organization arising from a small number of plasticity rules provide a parsimonious explanation for numerous experimentally observed non-random features of recurrent cortical wiring. Interestingly, similar mechanisms have been shown to endow recurrent networks with powerful learning abilities, suggesting that these mechanism are central to understanding both structure and function of cortical synaptic wiring. PMID:26866369
Wilkinson, Charles W.; Pagulayan, Kathleen F.; Petrie, Eric C.; Mayer, Cynthia L.; Colasurdo, Elizabeth A.; Shofer, Jane B.; Hart, Kim L.; Hoff, David; Tarabochia, Matthew A.; Peskind, Elaine R.
2011-01-01
Studies of traumatic brain injury from all causes have found evidence of chronic hypopituitarism, defined by deficient production of one or more pituitary hormones at least 1 year after injury, in 25–50% of cases. Most studies found the occurrence of posttraumatic hypopituitarism (PTHP) to be unrelated to injury severity. Growth hormone deficiency (GHD) and hypogonadism were reported most frequently. Hypopituitarism, and in particular adult GHD, is associated with symptoms that resemble those of PTSD, including fatigue, anxiety, depression, irritability, insomnia, sexual dysfunction, cognitive deficiencies, and decreased quality of life. However, the prevalence of PTHP after blast-related mild TBI (mTBI), an extremely common injury in modern military operations, has not been characterized. We measured concentrations of 12 pituitary and target-organ hormones in two groups of male US Veterans of combat in Iraq or Afghanistan. One group consisted of participants with blast-related mTBI whose last blast exposure was at least 1 year prior to the study. The other consisted of Veterans with similar military deployment histories but without blast exposure. Eleven of 26, or 42% of participants with blast concussions were found to have abnormal hormone levels in one or more pituitary axes, a prevalence similar to that found in other forms of TBI. Five members of the mTBI group were found with markedly low age-adjusted insulin-like growth factor-I (IGF-I) levels indicative of probable GHD, and three had testosterone and gonadotropin concentrations consistent with hypogonadism. If symptoms characteristic of both PTHP and PTSD can be linked to pituitary dysfunction, they may be amenable to treatment with hormone replacement. Routine screening for chronic hypopituitarism after blast concussion shows promise for appropriately directing diagnostic and therapeutic decisions that otherwise may remain unconsidered and for markedly facilitating recovery and rehabilitation. PMID
NASA Astrophysics Data System (ADS)
Schleich, K.; Witt, D. M.
Classically, all topologies are allowed as solutions to the Einstein equations. However, one does not observe any topological structures on medium range distance scales, that is scales that are smaller than the size of the observed universe but larger than the microscopic scales for which quantum gravity becomes important. Recently, Friedman, Schleich and Witt (1993) have proven that there is topological censorship on these medium range distance scales: the Einstein equations, locally positive energy, and local predictability of physics imply that any medium distance scale topological structures cannot be seen. More precisely we show that the topology of physically reasonable isolated systems is shrouded from distant observers, or in other words there is a topological censorship principle.
Chen, Qing; Xue, Wei; Lin, Jian-Bin; Wei, Yong-Sheng; Yin, Zheng; Zeng, Ming-Hua; Kurmoo, Mohamedally; Chen, Xiao-Ming
2016-08-16
A series of highly connected metal-organic frameworks (MOFs), [Co8 (O)(OH)4 (H2 O)4 (ina)8 ](NO3 )2 ⋅2 C2 H5 OH⋅4 H2 O (1), [Co8 (O)(OH)4 (H2 O)4 (pba)8 ](NO3 )2 ⋅8 C2 H5 OH⋅28 H2 O (2), and [Co8 (O)(OH)4 (H2 O)4 (pbba)8 ](NO3 )2 ⋅guest (3), in which ina=isonicotinate, pba=4-pyridylbenzoate, and pbba=4-(pyridine-4-yl)phenylbenzoate, is reported. These MOFs contain a new secondary building unit (SBU), with a square Co4 (μ4 -O) central unit having the rare μ4 -O(2-) motif, which is decorated by the other four peripheral cobalt atoms through μ3 -OH in a windmill-like shape. This SBU holds 16 divergent connecting organic ligands, pyridyl-carboxylates, to form three different frameworks. The high porosity of desolvated 2 is shown by the efficient gas absorption of N2 , CO2 , CH4 , and H2 . In addition, 1 and 2 exhibit unusual canted antiferromagnetic behavior with spin-glass-like relaxation, with blocking temperatures that are fairly high, 20 K (1) and 10 K (2), for cobalt materials. The relationship between the metal clusters and linkers has been studied, in which the size and rotational degrees of freedom of the ligands are found to control the topology, gas sorption, and magnetic properties. PMID:27383009
Chen, Qing; Xue, Wei; Lin, Jian-Bin; Wei, Yong-Sheng; Yin, Zheng; Zeng, Ming-Hua; Kurmoo, Mohamedally; Chen, Xiao-Ming
2016-08-16
A series of highly connected metal-organic frameworks (MOFs), [Co8 (O)(OH)4 (H2 O)4 (ina)8 ](NO3 )2 ⋅2 C2 H5 OH⋅4 H2 O (1), [Co8 (O)(OH)4 (H2 O)4 (pba)8 ](NO3 )2 ⋅8 C2 H5 OH⋅28 H2 O (2), and [Co8 (O)(OH)4 (H2 O)4 (pbba)8 ](NO3 )2 ⋅guest (3), in which ina=isonicotinate, pba=4-pyridylbenzoate, and pbba=4-(pyridine-4-yl)phenylbenzoate, is reported. These MOFs contain a new secondary building unit (SBU), with a square Co4 (μ4 -O) central unit having the rare μ4 -O(2-) motif, which is decorated by the other four peripheral cobalt atoms through μ3 -OH in a windmill-like shape. This SBU holds 16 divergent connecting organic ligands, pyridyl-carboxylates, to form three different frameworks. The high porosity of desolvated 2 is shown by the efficient gas absorption of N2 , CO2 , CH4 , and H2 . In addition, 1 and 2 exhibit unusual canted antiferromagnetic behavior with spin-glass-like relaxation, with blocking temperatures that are fairly high, 20 K (1) and 10 K (2), for cobalt materials. The relationship between the metal clusters and linkers has been studied, in which the size and rotational degrees of freedom of the ligands are found to control the topology, gas sorption, and magnetic properties.
1993-12-31
Chapter 19, describes meiotic abnormalities. These include nondisjunction of autosomes and sex chromosomes, genetic and environmental causes of nondisjunction, misdivision of the centromere, chromosomally abnormal human sperm, male infertility, parental age, and origin of diploid gametes. 57 refs., 2 figs., 1 tab.
Wang, Zhenqiang; Tanabe, Kristine K; Cohen, Seth M
2009-01-01
2-Amino-1,4-benzenedicarboxylic acid (NH(2)-BDC) has been found to be a compatible building block for the construction of two new metal-organic frameworks (MOFs) that have structures isoreticular to reported MOFs that use 1,4-benzenedicarboxylic acid (BDC) as a building block. DMOF-1-NH(2) (DABCO MOF-1-NH(2)) is a derivative of a previously studied MOF that contains two-dimensional square grids based on NH(2)-BDC and zinc(II) paddle-wheel units; the grid layers are connected by DABCO (1,4-diazabicyclo[2.2.2]octane) molecules that coordinate in the axial positions of the paddlewheel secondary-building units (SBUs). UMCM-1-NH(2) is an NH(2)-BDC derivative of UMCM-1 (University of Michigan Crystalline Material-1), a highly porous MOF reported by Matzger et al., and consists of both NH(2)-BDC and BTB (BTB = 4,4',4''-benzene-1,3,5-triyl-tribenzoate) linkers with Zn(4)O SBUs. The structure of UMCM-1-NH(2) was confirmed by single-crystal X-ray diffraction. By using NH(2)-BDC to generate these MOFs, the pendant amino groups can serve as a chemical handle that can be manipulated via postsynthetic modification with alkyl anhydrides. Reactions of each MOF and different anhydrides have been performed to compare the extent of conversion, thermal and structural stability, and Brunauer-Emmett-Teller surface areas afforded by the resulting materials. Under comparable reaction conditions, (1)H NMR of digested samples show that UMCM-1-NH(2) has conversions comparable to that of IRMOF-3, while DMOF-1-NH(2) only shows high conversions with smaller anhydrides. Under specific reaction conditions, higher conversions were obtained with complete retention of crystallinity, as verified by single-crystal X-ray diffraction experiments. The results presented here demonstrate three important findings: (a) NH(2)-BDC can be used as a surrogate for BDC in a number of MOFs thereby providing a handle for postsynthetic modification, (b) postsynthetic modification is a general strategy to
... of the skull and face. Craniofacial abnormalities are birth defects of the face or head. Some, like cleft ... palate, are among the most common of all birth defects. Others are very rare. Most of them affect ...
... decade, newer techniques have been developed that allow scientists and doctors to screen for chromosomal abnormalities without using a microscope. These newer methods compare the patient's DNA to a normal DNA ...
... include: Arthritis of the leg or foot joints Conversion disorder (a psychological disorder) Foot problems (such as a ... injuries. For an abnormal gait that occurs with conversion disorder, counseling and support from family members are strongly ...
Beau's lines; Fingernail abnormalities; Spoon nails; Onycholysis; Leukonychia; Koilonychia; Brittle nails ... Just like the skin, the fingernails tell a lot about your health: ... the fingernail. These lines can occur after illness, injury to ...
NASA Astrophysics Data System (ADS)
Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile
2015-03-01
The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.
Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile
2015-03-20
The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.
Liu, Jixin; Zhao, Ling; Nan, Jiaofen; Li, Guoying; Xiong, Shiwei; von Deneen, Karen M; Gong, Qiyong; Liang, Fanrong; Qin, Wei; Tian, Jie
2013-10-01
The human brain organization of cortical networks has optimized trade-off architecture for the economical minimization of connection distance and maximizing valuable topological properties; however, whether this network configuration is disrupted in chronic migraine remains unknown. Here, employing the diffusion tensor imaging and graph theory approaches to construct white matter networks in 26 patients with migraine (PM) and 26 gender-matched healthy controls (HC), we investigated relationships between structural connectivity, cortical network architecture and anatomical distance in the two groups separately. Compared with the HC group, the patients showed longer global distance connection in PM, with proportionally less short-distance and more medium-distance; correspondingly, the patients showed abnormal global topology in their structural networks, mainly presented as a higher clustering coefficient. Moreover, the abnormal association between these two network features was also found. Intriguingly, the network measure that combined the nodal anatomical distance and network topology could distinguish PM from HC with high accuracy of 90.4%. We also demonstrated a high reproducibility of our findings across different parcellation schemes. Our results demonstrated that long-term migraine may result in a abnormal optimization of a trade-off between wiring cost and network topology in white matter structural networks and highlights the potential for combining spatial and topological aspects as a network marker, which may provide valuable insights into the understanding of brain network reorganization that could be attributed to the underlying pathophysiology resulting from migraine.
NASA Astrophysics Data System (ADS)
Lian, Xiao-Min; Zhao, Wen; Zhao, Xiao-Li
2013-04-01
The combination of divalent zinc ions, 4-(4-carboxybenzamido)benzoic acid and exo-bidendate bipyridine ligands gave rise to a series of new MOFs: [ZnL(bipy)]·DMF·H2O (1), [ZnL(bpe)]·1.5H2O (2), [ZnL(bpa)]·4H2O (3) and [ZnL(bpp)]·1.75H2O (4) (MOF=metal-organic framework, bipy=4,4'-bipyridine, bpe=trans-1,2-bis(4-pyridyl)ethylene, bpa=1,2-bis(4-pyridinyl)ethane, bpp=1,3-bis(4-pyridinyl)propane, H2L=4,4'-(carbonylimino)dibenzoic acid). Fine tune over the topology of the MOFs was achieved via systematically varying the geometric length of the second ligating bipyridine ligands. Single-crystal X-ray analysis reveals that complex 1 has a triply interpenetrated three-dimensional (3D) framework with elongated primitive cubic topology, whereas isostructural complexes 2 and 3 each possesses a 6-fold interpenetrated diamondiod 3D framework. Further expansion of the length of the bipyridine ligand to bpp leads to the formation of 4, which features an interesting entangled architecture of 2D→3D parallel polycatenation. In addition, the thermogravimetric analyses and solid-state photoluminescent properties of the selected complexes are investigated.
Lian, Xiao-Min; Zhao, Wen; Zhao, Xiao-Li
2013-04-15
The combination of divalent zinc ions, 4-(4-carboxybenzamido)benzoic acid and exo-bidendate bipyridine ligands gave rise to a series of new MOFs: [ZnL(bipy)]·DMF·H{sub 2}O (1), [ZnL(bpe)]·1.5H{sub 2}O (2), [ZnL(bpa)]·4H{sub 2}O (3) and [ZnL(bpp)]·1.75H{sub 2}O (4) (MOF=metal-organic framework, bipy=4,4′-bipyridine, bpe=trans-1,2-bis(4-pyridyl)ethylene, bpa=1,2-bis(4-pyridinyl)ethane, bpp=1,3-bis(4-pyridinyl)propane, H{sub 2}L=4,4′-(carbonylimino)dibenzoic acid). Fine tune over the topology of the MOFs was achieved via systematically varying the geometric length of the second ligating bipyridine ligands. Single-crystal X-ray analysis reveals that complex 1 has a triply interpenetrated three-dimensional (3D) framework with elongated primitive cubic topology, whereas isostructural complexes 2 and 3 each possesses a 6-fold interpenetrated diamondiod 3D framework. Further expansion of the length of the bipyridine ligand to bpp leads to the formation of 4, which features an interesting entangled architecture of 2D→3D parallel polycatenation. In addition, the thermogravimetric analyses and solid-state photoluminescent properties of the selected complexes are investigated. - Graphical abstract: The incorporation of exo-bidendate bipyridine spacers into the Zn–H{sub 2}L system has yielded a series of new MOFs exhibiting topological evolution from 3-fold interpenetration to 6-fold interpenetration and 2D→3D parallel polycatenation. Highlights: ► The effect of the pyridyl-based spacers on the formation of MOFs was explored. ► Fine tune over the topology of the MOFs was achieved. ► An interesting structure of 2D→3D parallel polycatenation is reported.
Fowler, K.D.
1993-07-01
This action plan describes the criteria and the organizational responsibilities required for ensuring that waste storage tanks with high organic contents are maintained in a safe condition at the Hanford Site. In addition, response actions are outlined for (1) prevention or mitigation of excessive temperatures; or (2) a material release from any waste tank with high organic content. Other response actions may be defined by Westinghouse Hanford Company Systems Engineering if a waste tank parameter goes out of specification. Trend analysis indicates the waste tank parameters have seasonal variations, but are otherwise stable.
Kim, Seok-Hyung; Scott, Sarah A; Bennett, Michael J; Carson, Robert P; Fessel, Joshua; Brown, H Alex; Ess, Kevin C
2013-06-01
Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxa(vu463) ) that has an inactivating mutation in the etfa gene. dxa(vu463) recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxa(vu463) zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxa(vu463) zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1) with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity.
Kim, Seok-Hyung; Scott, Sarah A.; Bennett, Michael J.; Carson, Robert P.; Fessel, Joshua; Brown, H. Alex; Ess, Kevin C.
2013-01-01
Multiple Acyl-CoA Dehydrogenase Deficiency (MADD) is a severe mitochondrial disorder featuring multi-organ dysfunction. Mutations in either the ETFA, ETFB, and ETFDH genes can cause MADD but very little is known about disease specific mechanisms due to a paucity of animal models. We report a novel zebrafish mutant dark xavier (dxavu463) that has an inactivating mutation in the etfa gene. dxavu463 recapitulates numerous pathological and biochemical features seen in patients with MADD including brain, liver, and kidney disease. Similar to children with MADD, homozygote mutant dxavu463 zebrafish have a spectrum of phenotypes ranging from moderate to severe. Interestingly, excessive maternal feeding significantly exacerbated the phenotype. Homozygous mutant dxavu463 zebrafish have swollen and hyperplastic neural progenitor cells, hepatocytes and kidney tubule cells as well as elevations in triacylglycerol, cerebroside sulfate and cholesterol levels. Their mitochondria were also greatly enlarged, lacked normal cristae, and were dysfunctional. We also found increased signaling of the mechanistic target of rapamycin complex 1 (mTORC1) with enlarged cell size and proliferation. Treatment with rapamycin partially reversed these abnormalities. Our results indicate that etfa gene function is remarkably conserved in zebrafish as compared to humans with highly similar pathological, biochemical abnormalities to those reported in children with MADD. Altered mTORC1 signaling and maternal nutritional status may play critical roles in MADD disease progression and suggest novel treatment approaches that may ameliorate disease severity. PMID:23785301
Jiang Xiujuan; Du Miao; Sun Yan; Guo, Jian-Hua; Li, Jin-Shan
2009-11-15
Reactions of different metal salts with 3-pyridin-4-yl-benzoic acid (3,4-Hpybz) under ambient condition afford a series of 3-D metal-organic frameworks with two new types of (3,6)-connected net topologies. In the isomorphic complexes [M{sub 2}(mu-H{sub 2}O)(3,4-pybz){sub 4}]{sub n} (M{sup II}=Mn{sup II} for 1, Zn{sup II} for 2, or Cd{sup II} for 3), the octahedral metal nodes are extended by the 3-connected pybz tectons to constitute 3-D arrays with the Schlaefli symbol of (3.4.5)(3{sup 2}.4{sup 4}.5{sup 5}.6{sup 2}.7{sup 2}), whereas [Pb(3,4-pybz){sub 2}]{sub n} (4) shows a completely different 3-D (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 9}) framework, which represents a subnet of the (4,8)-connected fluorite lattice. - Graphical abstract: This work presents a series of 3-D metal-organic frameworks with 3-pyridin-4-yl-benzoate, which display new (3,6)-connected net topologies of (3.4.5)(3{sup 2}.4{sup 4}.5{sup 5}.6{sup 2}.7{sup 2}) for Mn{sup II}/Zn{sup II}/Cd{sup II} and (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 9}) for Pb{sup II} species.
Domingo, Luis R; Pérez, Patricia
2014-07-21
ELF topological analysis of the ionic Diels-Alder (I-DA) reaction between the N,N-dimethyliminium cation and cyclopentadiene (Cp) has been performed in order to characterise the C-C single bond formation. The C-C bond formation begins in the short range of 2.00-1.96 Åvia a C-to-C pseudoradical coupling between the most electrophilic center of the iminium cation and one of the two most nucleophilic centers of Cp. The electron density of the pseudoradical center generated at the most electrophilic carbon of the iminium cation comes mainly from the global charge transfer which takes place along the reaction. Analysis of the global reactivity indices indicates that the very high electrophilic character of the iminium cation is responsible for the negative activation energy found in the gas phase. On the other hand, the analysis of the radical P(k)(o) Parr functions of the iminium cation, and the nucleophilic P(k)(-) Parr functions of Cp makes the characterisation of the most favourable two-center interaction along the formation of the C-C single bond possible. PMID:24901220
Domingo, Luis R; Pérez, Patricia
2014-07-21
ELF topological analysis of the ionic Diels-Alder (I-DA) reaction between the N,N-dimethyliminium cation and cyclopentadiene (Cp) has been performed in order to characterise the C-C single bond formation. The C-C bond formation begins in the short range of 2.00-1.96 Åvia a C-to-C pseudoradical coupling between the most electrophilic center of the iminium cation and one of the two most nucleophilic centers of Cp. The electron density of the pseudoradical center generated at the most electrophilic carbon of the iminium cation comes mainly from the global charge transfer which takes place along the reaction. Analysis of the global reactivity indices indicates that the very high electrophilic character of the iminium cation is responsible for the negative activation energy found in the gas phase. On the other hand, the analysis of the radical P(k)(o) Parr functions of the iminium cation, and the nucleophilic P(k)(-) Parr functions of Cp makes the characterisation of the most favourable two-center interaction along the formation of the C-C single bond possible.
Topological order parameters for interacting topological insulators.
Wang, Zhong; Qi, Xiao-Liang; Zhang, Shou-Cheng
2010-12-17
We propose a topological order parameter for interacting topological insulators, expressed in terms of the full Green's functions of the interacting system. We show that it is exactly quantized for a time-reversal invariant topological insulator, and it can be experimentally measured through the topological magneto-electric effect. This topological order parameter can be applied to both interacting and disordered systems, and used for determining their phase diagrams. PMID:21231609
Li, Yuxiang; Weng, Zhehui; Wang, Yanlong; Chen, Lanhua; Sheng, Daopeng; Diwu, Juan; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao
2016-01-21
Three thorium(iv)-based metal-organic hybrid compounds with 2D layered and 3D framework structures exhibiting graphene-like (6,3) sheet topologies were prepared with linkers with threefold symmetry. These compounds contain rare and relatively anisotropic coordination environments for low-valent actinides that are similar to those often observed for high-valent actinide ions. PMID:26672441
Topological Aspects of Information Retrieval.
ERIC Educational Resources Information Center
Egghe, Leo; Rousseau, Ronald
1998-01-01
Discusses topological aspects of theoretical information retrieval, including retrieval topology; similarity topology; pseudo-metric topology; document spaces as topological spaces; Boolean information retrieval as a subsystem of any topological system; and proofs of theorems. (LRW)
Pereira, Joana B.; Mijalkov, Mite; Kakaei, Ehsan; Mecocci, Patricia; Vellas, Bruno; Tsolaki, Magda; Kłoszewska, Iwona; Soininen, Hilka; Spenger, Christian; Lovestone, Simmon; Simmons, Andrew; Wahlund, Lars-Olof; Volpe, Giovanni; Westman, Eric
2016-01-01
Recent findings suggest that Alzheimer's disease (AD) is a disconnection syndrome characterized by abnormalities in large-scale networks. However, the alterations that occur in network topology during the prodromal stages of AD, particularly in patients with stable mild cognitive impairment (MCI) and those that show a slow or faster progression to dementia, are still poorly understood. In this study, we used graph theory to assess the organization of structural MRI networks in stable MCI (sMCI) subjects, late MCI converters (lMCIc), early MCI converters (eMCIc), and AD patients from 2 large multicenter cohorts: ADNI and AddNeuroMed. Our findings showed an abnormal global network organization in all patient groups, as reflected by an increased path length, reduced transitivity, and increased modularity compared with controls. In addition, lMCIc, eMCIc, and AD patients showed a decreased path length and mean clustering compared with the sMCI group. At the local level, there were nodal clustering decreases mostly in AD patients, while the nodal closeness centrality detected abnormalities across all patient groups, showing overlapping changes in the hippocampi and amygdala and nonoverlapping changes in parietal, entorhinal, and orbitofrontal regions. These findings suggest that the prodromal and clinical stages of AD are associated with an abnormal network topology. PMID:27178195
Sidlauskaite, Justina; Caeyenberghs, Karen; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R
2015-01-01
Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics - small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits. PMID:26640763
Quantification of topological features in cell meshes to explore E-cadherin dysfunction
Mestre, Tânia; Figueiredo, Joana; Ribeiro, Ana Sofia; Paredes, Joana; Seruca, Raquel; Sanches, João Miguel
2016-01-01
In cancer, defective E-cadherin leads to cell detachment, migration and metastization. Further, alterations mediated by E-cadherin dysfunction affect cell topology and tissue organization. Herein, we propose a novel quantitative approach, based on microscopy images, to analyse abnormal cellular distribution patterns. We generated undirected graphs composed by sets of triangles which accurately reproduce cell positioning and structural organization within each image. Network analysis was developed by exploring triangle geometric features, namely area, edges length and formed angles, as well as their variance, when compared with the respective equilateral triangles. We generated synthetic networks, mimicking the diversity of cell-cell interaction patterns, and evaluated the applicability of the selected metrics to study topological features. Cells expressing wild-type E-cadherin and cancer-related mutants were used to validate our strategy. Specifically, A634V, R749W and P799R cancer-causing mutants present more disorganized spatial distribution when compared with wild-type cells. Moreover, P799R exhibited higher length and angle distortions and abnormal cytoskeletal organization, suggesting the formation of very dynamic and plastic cellular interactions. Hence, topological analysis of cell network diagrams is an effective tool to quantify changes in cell-cell interactions and, importantly, it can be applied to a myriad of processes, namely tissue morphogenesis and cancer. PMID:27151223
Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian
2014-03-01
Crystal engineering of the nbo metal-organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu2(Cu-tactmb)(H2O)3(NO3)2]. This MOF demonstrates high catalytic activity for the chemical fixation of CO2 into cyclic carbonates at room temperature under 1 atm pressure.
Gao, Wen-Yang; Chen, Yao; Niu, Youhong; Williams, Kia; Cash, Lindsay; Perez, Pastor J.; Wojtas, Lukasz; Cai, Jianfeng; Chen, Yu-Sheng; Ma, Shengqian
2015-02-20
Crystal engineering of the nbo metal–organic framework (MOF) platform MOF-505 with a custom-designed azamacrocycle ligand (1,4,7,10-tetrazazcyclododecane-N,N',N'',N'''-tetra-p-methylbenzoic acid) leads to a high density of well-oriented Lewis active sites within the cuboctahedral cage in MMCF-2, [Cu₂(Cu-tactmb)(H₂O)₃(NO₃)₂]. This MOF demonstrates high catalytic activity for the chemical fixation of CO₂ into cyclic carbonates at room temperature under 1 atm pressure.
Topological crystalline insulators.
Fu, Liang
2011-03-11
The recent discovery of topological insulators has revived interest in the band topology of insulators. In this Letter, we extend the topological classification of band structures to include certain crystal point group symmetry. We find a class of three-dimensional "topological crystalline insulators" which have metallic surface states with quadratic band degeneracy on high symmetry crystal surfaces. These topological crystalline insulators are the counterpart of topological insulators in materials without spin-orbit coupling. Their band structures are characterized by new topological invariants. We hope this work will enlarge the family of topological phases in band insulators and stimulate the search for them in real materials.
Chavan, Sachin M; Shearer, Greig C; Svelle, Stian; Olsbye, Unni; Bonino, Francesca; Ethiraj, Jayashree; Lillerud, Karl Petter; Bordiga, Silvia
2014-09-15
A series of amine-functionalized mixed-linker metal-organic frameworks (MOFs) of idealized structural formula Zr6O4(OH)4(BDC)(6-6X)(ABDC)6X (where BDC = benzene-1,4-dicarboxylic acid, ABDC = 2-aminobenzene-1,4-dicarboxylic acid) has been prepared by solvothermal synthesis. The materials have been characterized by thermogravimetric analysis (TGA), powder X-ray diffraction (PXRD), and Fourier transform infrared (FTIR) spectroscopy with the aim of elucidating the effect that varying the degrees of amine functionalization has on the stability (thermal and chemical) and porosity of the framework. This work includes the first application of ultraviolet-visible light (UV-vis) spectroscopy in the quantification of ABDC in mixed-linker MOFs.
Induced topological pressure for topological dynamical systems
Xing, Zhitao; Chen, Ercai
2015-02-15
In this paper, inspired by the article [J. Jaerisch et al., Stochastics Dyn. 14, 1350016, pp. 1-30 (2014)], we introduce the induced topological pressure for a topological dynamical system. In particular, we prove a variational principle for the induced topological pressure.
Aberrant Topological Patterns of Structural Cortical Networks in Psychogenic Erectile Dysfunction
Zhao, Lu; Guan, Min; Zhu, Xiaobo; Karama, Sherif; Khundrakpam, Budhachandra; Wang, Meiyun; Dong, Minghao; Qin, Wei; Tian, Jie; Evans, Alan C.; Shi, Dapeng
2015-01-01
Male sexual arousal (SA) has been known as a multidimensional experience involving closely interrelated and coordinated neurobehavioral components that rely on widespread brain regions. Recent functional neuroimaging studies have shown relation between abnormal/altered dynamics in these circuits and male sexual dysfunction. However, alterations in the topological1 organization of structural brain networks in male sexual dysfunction are still unclear. Here, we used graph theory2 to investigate the topological properties of large-scale structural brain networks, which were constructed using inter-regional correlations of cortical thickness between 78 cortical regions in 40 patients with psychogenic erectile dysfunction (pED) and 39 normal controls. Compared with normal controls, pED patients exhibited a less optimal global topological organization with reduced global and increased local efficiencies. Our results suggest disrupted neural integration among distant brain regions in pED patients, consistent with previous reports of impaired white matter structure and abnormal functional integrity in pED. Additionally, disrupted global network topology in pED was observed to be primarily relevant to altered subnetwork and nodal properties within the networks mediating the cognitive, motivational and inhibitory processes of male SA, possibly indicating disrupted integration of these networks in the whole brain networks and might account for pED patients' abnormal cognitive, motivational and inhibitory processes for male SA. In total, our findings provide evidence for disrupted integrity in large-scale brain networks underlying the neurobehavioral processes of male SA in pED and provide new insights into the understanding of the pathophysiological mechanisms of pED. PMID:26733849
Ethiraj, Jayashree; Albanese, Elisa; Civalleri, Bartolomeo; Vitillo, Jenny G; Bonino, Francesca; Chavan, Sachin; Shearer, Greig C; Lillerud, Karl Petter; Bordiga, Silvia
2014-12-01
A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations. PMID:25302675
Mahata, Partha; Raghunathan, Rajamani; Banerjee, Debamalya; Sen, Diptiman; Ramasesha, S; Bhat, S V; Natarajan, S
2009-06-01
Two new three-dimensional metal-organic frameworks (MOFs) [Mn(2)(mu(3)-OH)(H(2)O)(2)(BTC)] x 2 H(2)O, I, and [NaMn(BTC)], II (BTC = 1,2,4-benzenetricarboxylate = trimellitate) were synthesized and their structures determined by single-crystal X-ray diffraction (XRD). In I, the Mn(4) cluster, [Mn(4)(mu(3)-OH)(2)(H(2)O)(4)O(12)], is connected with eight trimellitate anions and each trimellitate anion connects to four different Mn(4) clusters, resulting in a fluorite-like structure. In II, the Mn(2)O(8) dimer is connected with two Na(+) ions through carboxylate oxygen to form mixed-metal distorted Kagome-related two-dimensional -M-O-M- layers, which are pillared by the trimellitate anions forming the three-dimensional structure. The extra-framework water molecules in I are reversibly adsorbed and are also corroborated by powder XRD studies. The formation of octameric water clusters involving free and coordinated water molecules appears to be new. Interesting magnetic behavior has been observed for both compounds. Electron spin resonance (ESR) studies indicate a broadening of the signal below the ordering temperature and appear to support the findings of the magnetic studies.
NASA Astrophysics Data System (ADS)
Sun, Yayong; Zhao, Siwei; Ma, Haoran; Han, Yi; Liu, Kang; Wang, Lei
2016-06-01
Two novel three-dimensional (3D) pillar-layered metal-organic frameworks (MOFs), namely [Zn2(μ2-OH)(boaba)(1,4-bmimb)]n (1) and {[Zn5K2(μ2-H2O)2(boaba)4(1,2-bmimb)2(H2O)2]·H2O}n (2), were prepared by hydrothermal reactions (H3boaba=3,5-bis-oxyacetate-benzoic acid; 1,4-bmimb=1,4-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene; 1,2-bmimb =1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene). Notably, 1 exhibits a (3,5)-connected binodal (63)(69·8)-gra net with binuclear [Zn2(μ2-OH)(COO)]2+ clusters, while 2 shows a novel (4,4,5,9)-connected 4-nodal net constructed from the unique Zn(II)-K(I) heterometal rod-like substructures. The results indicate that the disposition of the 2-methylimidazolyl groups of bis(imidazole) ligands have a significant effect on structural diversity. Moreover, the photoluminescence properties of 1 and 2 have been investigated.
Ethiraj, Jayashree; Albanese, Elisa; Civalleri, Bartolomeo; Vitillo, Jenny G; Bonino, Francesca; Chavan, Sachin; Shearer, Greig C; Lillerud, Karl Petter; Bordiga, Silvia
2014-12-01
A series of mixed-ligand [1,4-benzenedicarboxylic acid (BDC)/2-amino-1,4-benzenedicarboxylic acid (ABDC)] UiO-66 metal-organic frameworks (MOFs) synthesized through two different methods (low (LT) and high temperature (HT)) have been investigated for their carbon dioxide adsorption properties from 0 to 1 bar to clarify the role of amino loading on carbon dioxide uptake. Volumetric CO2 isotherms show that the CO2 capacity (normalized to the Langmuir surface area) increases with a degree of functionalization of about 46%; for similar NH2 contents, the same values are found for both synthetic procedures. Microcalorimetric isotherms reveal that amino-functionalized materials have a larger differential heat of adsorption (q(diff) ) towards CO2 ; reaching 27(25) and 20(22) kJ mol(-1) on HT(LT)-UiO-66-NH2 and UiO-66, respectively, at the lowest equilibrium pressures used in this study. All experimental results are supported by values obtained through quantum mechanical calculations.
Ren, Biye
2003-01-01
Structure-boiling point relationships are studied for a series of oxo organic compounds by means of multiple linear regression (MLR) analysis. Excellent MLR models based on the recently introduced Xu index and the atom-type-based AI indices are obtained for the two subsets containing respectively 77 ethers and 107 carbonyl compounds and a combined set of 184 oxo compounds. The best models are tested using the leave-one-out cross-validation and an external test set, respectively. The MLR model produces a correlation coefficient of r = 0.9977 and a standard error of s = 3.99 degrees C for the training set of 184 compounds, and r(cv) = 0.9974 and s(cv) = 4.16 degrees C for the cross-validation set, and r(pred) = 0.9949 and s(pred) = 4.38 degrees C for the prediction set of 21 compounds. For the two subsets containing respectively 77 ethers and 107 carbonyl compounds, the quality of the models is further improved. The standard errors are reduced to 3.30 and 3.02 degrees C, respectively. Furthermore, the results obtained from this study indicate that the boiling points of the studied oxo compound dominantly depend on molecular size and also depend on individual atom types, especially oxygen heteroatoms in molecules due to strong polar interactions between molecules. These excellent structure-boiling point models not only provide profound insights into the role of structural features in a molecule but also illustrate the usefulness of these indices in QSPR/QSAR modeling of complex compounds.
The topology of geology 2: Topological uncertainty
NASA Astrophysics Data System (ADS)
Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Wellmann, J. Florian; Pakyuz-Charrier, Evren
2016-10-01
Uncertainty is ubiquitous in geology, and efforts to characterise and communicate it are becoming increasingly important. Recent studies have quantified differences between perturbed geological models to gain insight into uncertainty. We build on this approach by quantifying differences in topology, a property that describes geological relationships in a model, introducing the concept of topological uncertainty. Data defining implicit geological models were perturbed to simulate data uncertainties, and the amount of topological variation in the resulting model suite measured to provide probabilistic assessments of specific topological hypotheses, sources of topological uncertainty and the classification of possible model realisations based on their topology. Overall, topology was found to be highly sensitive to small variations in model construction parameters in realistic models, with almost all of the several thousand realisations defining distinct topologies. In particular, uncertainty related to faults and unconformities was found to have profound topological implications. Finally, possible uses of topology as a geodiversity metric and validation filter are discussed, and methods of incorporating topological uncertainty into physical models are suggested.
The topology of geology 1: Topological analysis
NASA Astrophysics Data System (ADS)
Thiele, Samuel T.; Jessell, Mark W.; Lindsay, Mark; Ogarko, Vitaliy; Wellmann, J. Florian; Pakyuz-Charrier, Evren
2016-10-01
Topology has been used to characterise and quantify the properties of complex systems in a diverse range of scientific domains. This study explores the concept and applications of topological analysis in geology. We have developed an automatic system for extracting first order 2D topological information from geological maps, and 3D topological information from models built with the Noddy kinematic modelling system, and equivalent analyses should be possible for other implicit modelling systems. A method is presented for describing the spatial and temporal topology of geological models using a set of adjacency relationships that can be expressed as a topology network, thematic adjacency matrix or hive diagram. We define three types of spatial topology (cellular, structural and lithological) that allow us to analyse different aspects of the geology, and then apply them to investigate the geology of the Hamersley Basin, Western Australia.
Optical image encryption topology.
Yong-Liang, Xiao; Xin, Zhou; Qiong-Hua, Wang; Sheng, Yuan; Yao-Yao, Chen
2009-10-15
Optical image encryption topology is proposed based on the principle of random-phase encoding. Various encryption topological units, involving peer-to-peer, ring, star, and tree topologies, can be realized by an optical 6f system. These topological units can be interconnected to constitute an optical image encryption network. The encryption and decryption can be performed in both digital and optical methods.
Burnworth, B; Popp, S; Stark, H-J; Steinkraus, V; Bröcker, E B; Hartschuh, W; Birek, C; Boukamp, P
2006-07-27
Non-melanoma skin cancers, in particular keratoacanthomas (KAs) and squamous cell carcinomas (SCCs), have become highly frequent tumor types especially in immune-suppressed transplant patients. Nevertheless, little is known about essential genetic changes. As a paradigm of 'early' changes, that is, changes still compatible with tumor regression, we studied KAs by comparative genomic hybridization and show that gain of chromosome 11q is not only one of the most frequent aberration (8/18), but in four tumors also the only aberration. Furthermore, 11q gain correlated with amplification of the cyclin D1 locus (10/14), as determined by fluorescence in situ hybridization, and overexpression of cyclin D1 protein (25/31), as detected by immunohistochemistry. For unraveling the functional consequence, we overexpressed cyclin D1 in HaCaT skin keratinocytes. These cells only gained little growth advantage in conventional and in organotypic co-cultures. However, although the control vector-transfected cells formed a well-stratified and orderly differentiated epidermis-like epithelium, they showed deregulation of tissue architecture with an altered localization of proliferation and impaired differentiation. The most severe phenotype was seen in a clone that additionally upregulated cdk4 and p21. These cells lacked terminal differentiation, exhibited a more autonomous growth in vitro and in vivo and even formed tumors in two injection sites with a growth pattern resembling that of human KAs. Thus, our results identify 11q13 gain/cyclin D1 overexpression as an important step in KA formation and point to a function that exceeds its known role in proliferation by disrupting tissue organization and thereby allowing abnormal growth.
Spectrum-Based and Collaborative Network Topology Analysis and Visualization
ERIC Educational Resources Information Center
Hu, Xianlin
2013-01-01
Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying network topology is very important to network analysis. In this dissertation, we study networks by…
Topological influence and backaction between topological excitations
NASA Astrophysics Data System (ADS)
Kobayashi, Shingo; Tarantino, Nicolas; Ueda, Masahito
2014-03-01
Topological objects can influence each other if the underlying homotopy groups are non-Abelian. Under such circumstances, the topological charge of each individual object is no longer a conserved quantity and can be transformed to each other. Yet we can identify the conservation law by considering the backaction of topological influence. We develop a general theory of topological influence and backaction based on the commutators of the underlying homotopy groups. In the case of the topological influence of a half-quantum vortex on a point defect, we point out that the topological backaction from the point defect is a twisting of the vortex. The total twist of the vortex line compensates for the change in the point-defect charge to conserve the total charge. We use this theory to classify charge transfers in condensed matter systems and show that a non-Abelian charge transfer can be realized in a spin-2 Bose-Einstein condensate.
NASA Technical Reports Server (NTRS)
Lieberman, R. N.
1972-01-01
Given a directed graph, a natural topology is defined and relationships between standard topological properties and graph theoretical concepts are studied. In particular, the properties of connectivity and separatedness are investigated. A metric is introduced which is shown to be related to separatedness. The topological notions of continuity and homeomorphism. A class of maps is studied which preserve both graph and topological properties. Applications involving strong maps and contractions are also presented.
Colloquium: Topological band theory
NASA Astrophysics Data System (ADS)
Bansil, A.; Lin, Hsin; Das, Tanmoy
2016-04-01
The first-principles band theory paradigm has been a key player not only in the process of discovering new classes of topologically interesting materials, but also for identifying salient characteristics of topological states, enabling direct and sharpened confrontation between theory and experiment. This review begins by discussing underpinnings of the topological band theory, which involve a layer of analysis and interpretation for assessing topological properties of band structures beyond the standard band theory construct. Methods for evaluating topological invariants are delineated, including crystals without inversion symmetry and interacting systems. The extent to which theoretically predicted properties and protections of topological states have been verified experimentally is discussed, including work on topological crystalline insulators, disorder and interaction driven topological insulators (TIs), topological superconductors, Weyl semimetal phases, and topological phase transitions. Successful strategies for new materials discovery process are outlined. A comprehensive survey of currently predicted 2D and 3D topological materials is provided. This includes binary, ternary, and quaternary compounds, transition metal and f -electron materials, Weyl and 3D Dirac semimetals, complex oxides, organometallics, skutterudites, and antiperovskites. Also included is the emerging area of 2D atomically thin films beyond graphene of various elements and their alloys, functional thin films, multilayer systems, and ultrathin films of 3D TIs, all of which hold exciting promise of wide-ranging applications. This Colloquium concludes by giving a perspective on research directions where further work will broadly benefit the topological materials field.
NASA Astrophysics Data System (ADS)
Yang, Ling; Li, Yu; You, Ao; Jiang, Juan; Zou, Xun-Zhong; Chen, Jin-Wei; Gu, Jin-Zhong; Kirillov, Alexander M.
2016-09-01
4-(5-Carboxypyridin-2-yl)isophthalic acid (H3L) was applied as a flexible, multifunctional N,O-building block for the hydrothermal self-assembly synthesis of two novel coordination compounds, namely 2D [Zn(μ3-HL)(H2O)]n·nH2O (1) and 3D [Pb2(μ5-HL)(μ6-HL)]n (2) coordination polymers (CPs). These compounds were obtained in aqueous medium from a mixture containing zinc(II) or lead(II) nitrate, H3L, and sodium hydroxide. The products were isolated as stable crystalline solids and were characterized by IR spectroscopy, elemental, thermogravimetric (TGA), powder (PXRD) and single-crystal X-ray diffraction analyses. Compound 1 possesses a 2D metal-organic layer with the fes topology, which is further extended into a 3D supramolecular framework via hydrogen bonds. In contrast, compound 2 features a very complex network structure, which was topologically classified as a binodal 5,6-connected net with the unique topology defined by the point symbol of (47.63)(49.66). Compounds 1 and 2 disclose an intense blue or green luminescent emission at room temperature.
EDITORIAL: Topological data analysis Topological data analysis
NASA Astrophysics Data System (ADS)
2011-12-01
methods for discretizing and compressing the information present in a geometric object so as to provide a useful, small representation of the object. The articles in this special issue are concerned with the applications of topology to the analysis of data sets. The adaptation of topological techniques from pure mathematics to the study of data from real systems is a project which has been undertaken during the past two decades, and the present volume contains various contributions to that project. At the current state of development, homology and persistence are two of the most popular topological techniques used in this context. Homology goes back to the beginnings of topology in Poincaré's influential papers. It is the idea that the connectivity of a space is determined by its cycles of different dimensions, and that these cycles organize themselves into abelian groups, called homology groups. Better known than these groups are their ranks, the Betti numbers of the space, which are non-negative integers that count the number of independent cycles in each dimension. To give an example, the zeroth Betti number counts the components, and the first counts the loops. A crucial feature of homology groups is that, given a reasonably explicit description of a space, their computation is an exercise in linear algebra. Even better known than the Betti numbers is the Euler characteristic, which we know from Poincaré's work, is equal to the alternating sum of the Betti numbers, which can be computed without computing the homology groups themselves. To give evidence that these numbers have relevant practical applications, we mention that integrating the Euler characteristic over a domain with sensor information can be used to count objects in the domain. This alone would not explain the popularity of homology groups, which we see rooted in the fact that they hit a sweet-spot that offers relatively strong discriminative power, and a clear intuitive meaning, all at a surprisingly
EDITORIAL: Topological data analysis Topological data analysis
NASA Astrophysics Data System (ADS)
Epstein, Charles; Carlsson, Gunnar; Edelsbrunner, Herbert
2011-12-01
methods for discretizing and compressing the information present in a geometric object so as to provide a useful, small representation of the object. The articles in this special issue are concerned with the applications of topology to the analysis of data sets. The adaptation of topological techniques from pure mathematics to the study of data from real systems is a project which has been undertaken during the past two decades, and the present volume contains various contributions to that project. At the current state of development, homology and persistence are two of the most popular topological techniques used in this context. Homology goes back to the beginnings of topology in Poincaré's influential papers. It is the idea that the connectivity of a space is determined by its cycles of different dimensions, and that these cycles organize themselves into abelian groups, called homology groups. Better known than these groups are their ranks, the Betti numbers of the space, which are non-negative integers that count the number of independent cycles in each dimension. To give an example, the zeroth Betti number counts the components, and the first counts the loops. A crucial feature of homology groups is that, given a reasonably explicit description of a space, their computation is an exercise in linear algebra. Even better known than the Betti numbers is the Euler characteristic, which we know from Poincaré's work, is equal to the alternating sum of the Betti numbers, which can be computed without computing the homology groups themselves. To give evidence that these numbers have relevant practical applications, we mention that integrating the Euler characteristic over a domain with sensor information can be used to count objects in the domain. This alone would not explain the popularity of homology groups, which we see rooted in the fact that they hit a sweet-spot that offers relatively strong discriminative power, and a clear intuitive meaning, all at a surprisingly
Bulk Topological Proximity Effect.
Hsieh, Timothy H; Ishizuka, Hiroaki; Balents, Leon; Hughes, Taylor L
2016-02-26
Existing proximity effects stem from systems with a local order parameter, such as a local magnetic moment or a local superconducting pairing amplitude. Here, we demonstrate that despite lacking a local order parameter, topological phases also may give rise to a proximity effect of a distinctively inverted nature. We focus on a general construction in which a topological phase is extensively coupled to a second system, and we argue that, in many cases, the inverse topological order will be induced on the second system. To support our arguments, we rigorously establish this "bulk topological proximity effect" for all gapped free-fermion topological phases and representative integrable models of interacting topological phases. We present a terrace construction which illustrates the phenomenological consequences of this proximity effect. Finally, we discuss generalizations beyond our framework, including how intrinsic topological order may also exhibit this effect.
Kalb, Jeffrey L.; Lee, David S.
2008-01-01
Emerging high-bandwidth, low-latency network technology has made network-based architectures both feasible and potentially desirable for use in satellite payload architectures. The selection of network topology is a critical component when developing these multi-node or multi-point architectures. This study examines network topologies and their effect on overall network performance. Numerous topologies were reviewed against a number of performance, reliability, and cost metrics. This document identifies a handful of good network topologies for satellite applications and the metrics used to justify them as such. Since often multiple topologies will meet the requirements of the satellite payload architecture under development, the choice of network topology is not easy, and in the end the choice of topology is influenced by both the design characteristics and requirements of the overall system and the experience of the developer.
Triple Point Topological Metals
NASA Astrophysics Data System (ADS)
Zhu, Ziming; Winkler, Georg W.; Wu, QuanSheng; Li, Ju; Soluyanov, Alexey A.
2016-07-01
Topologically protected fermionic quasiparticles appear in metals, where band degeneracies occur at the Fermi level, dictated by the band structure topology. While in some metals these quasiparticles are direct analogues of elementary fermionic particles of the relativistic quantum field theory, other metals can have symmetries that give rise to quasiparticles, fundamentally different from those known in high-energy physics. Here, we report on a new type of topological quasiparticles—triple point fermions—realized in metals with symmorphic crystal structure, which host crossings of three bands in the vicinity of the Fermi level protected by point group symmetries. We find two topologically different types of triple point fermions, both distinct from any other topological quasiparticles reported to date. We provide examples of existing materials that host triple point fermions of both types and discuss a variety of physical phenomena associated with these quasiparticles, such as the occurrence of topological surface Fermi arcs, transport anomalies, and topological Lifshitz transitions.
Photonic Floquet topological insulators.
Rechtsman, Mikael C; Zeuner, Julia M; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander
2013-04-11
Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on their surfaces. In two dimensions, electrons on the surface of a topological insulator are not scattered despite defects and disorder, providing robustness akin to that of superconductors. Topological insulators are predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Substantial effort has been directed towards realizing topological insulators for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. But because magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatter-free edge states requires a fundamentally different mechanism-one that is free of magnetic fields. A number of proposals for photonic topological transport have been put forward recently. One suggested temporal modulation of a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, in which temporal variations in solid-state systems induce topological edge states. Here we propose and experimentally demonstrate a photonic topological insulator free of external fields and with scatter-free edge transport-a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate (z) acts as 'time'. Thus the helicity of the
Photonic Floquet topological insulators.
Rechtsman, Mikael C; Zeuner, Julia M; Plotnik, Yonatan; Lumer, Yaakov; Podolsky, Daniel; Dreisow, Felix; Nolte, Stefan; Segev, Mordechai; Szameit, Alexander
2013-04-11
Topological insulators are a new phase of matter, with the striking property that conduction of electrons occurs only on their surfaces. In two dimensions, electrons on the surface of a topological insulator are not scattered despite defects and disorder, providing robustness akin to that of superconductors. Topological insulators are predicted to have wide-ranging applications in fault-tolerant quantum computing and spintronics. Substantial effort has been directed towards realizing topological insulators for electromagnetic waves. One-dimensional systems with topological edge states have been demonstrated, but these states are zero-dimensional and therefore exhibit no transport properties. Topological protection of microwaves has been observed using a mechanism similar to the quantum Hall effect, by placing a gyromagnetic photonic crystal in an external magnetic field. But because magnetic effects are very weak at optical frequencies, realizing photonic topological insulators with scatter-free edge states requires a fundamentally different mechanism-one that is free of magnetic fields. A number of proposals for photonic topological transport have been put forward recently. One suggested temporal modulation of a photonic crystal, thus breaking time-reversal symmetry and inducing one-way edge states. This is in the spirit of the proposed Floquet topological insulators, in which temporal variations in solid-state systems induce topological edge states. Here we propose and experimentally demonstrate a photonic topological insulator free of external fields and with scatter-free edge transport-a photonic lattice exhibiting topologically protected transport of visible light on the lattice edges. Our system is composed of an array of evanescently coupled helical waveguides arranged in a graphene-like honeycomb lattice. Paraxial diffraction of light is described by a Schrödinger equation where the propagation coordinate (z) acts as 'time'. Thus the helicity of the
Topological crystalline insulator nanostructures.
Shen, Jie; Cha, Judy J
2014-11-01
Topological crystalline insulators are topological insulators whose surface states are protected by the crystalline symmetry, instead of the time reversal symmetry. Similar to the first generation of three-dimensional topological insulators such as Bi₂Se₃ and Bi₂Te₃, topological crystalline insulators also possess surface states with exotic electronic properties such as spin-momentum locking and Dirac dispersion. Experimentally verified topological crystalline insulators to date are SnTe, Pb₁-xSnxSe, and Pb₁-xSnxTe. Because topological protection comes from the crystal symmetry, magnetic impurities or in-plane magnetic fields are not expected to open a gap in the surface states in topological crystalline insulators. Additionally, because they have a cubic structure instead of a layered structure, branched structures or strong coupling with other materials for large proximity effects are possible, which are difficult with layered Bi₂Se₃ and Bi₂Te₃. Thus, additional fundamental phenomena inaccessible in three-dimensional topological insulators can be pursued. In this review, topological crystalline insulator SnTe nanostructures will be discussed. For comparison, experimental results based on SnTe thin films will be covered. Surface state properties of topological crystalline insulators will be discussed briefly.
Abnormal Uterine Bleeding (Beyond the Basics)
... Approach to abnormal uterine bleeding in nonpregnant reproductive-age women Differential diagnosis of genital tract bleeding in women Postmenopausal uterine bleeding The following organizations also provide reliable health information. ● National Library of Medicine ( www.nlm.nih.gov/ ...
Membrane Topology of Hedgehog Acyltransferase*
Matevossian, Armine; Resh, Marilyn D.
2015-01-01
Hedgehog acyltransferase (Hhat) is a multipass transmembrane enzyme that mediates the covalent attachment of the 16-carbon fatty acid palmitate to the N-terminal cysteine of Sonic Hedgehog (Shh). Palmitoylation of Shh by Hhat is critical for short and long range signaling. Knowledge of the topological organization of Hhat transmembrane helices would enhance our understanding of Hhat-mediated Shh palmitoylation. Bioinformatics analysis of transmembrane domains within human Hhat using 10 different algorithms resulted in highly consistent predictions in the C-terminal, but not in the N-terminal, region of Hhat. To empirically determine the topology of Hhat, we designed and exploited Hhat constructs containing either terminal or 12 different internal epitope tags. We used selective permeabilization coupled with immunofluorescence as well as a protease protection assay to demonstrate that Hhat contains 10 transmembrane domains and 2 re-entrant loops. The invariant His and highly conserved Asp residues within the membrane-bound O-acyltransferase (MBOAT) homology domain are segregated on opposite sides of the endoplasmic reticulum membrane. The localization of His-379 on the lumenal membrane surface is consistent with a role for this invariant residue in catalysis. Analysis of the activity and stability of the Hhat constructs revealed that the C-terminal MBOAT domain is especially sensitive to manipulation. Moreover, there was remarkable similarity in the overall topological organization of Hhat and ghrelin O-acyltransferase, another MBOAT family member. Knowledge of the topological organization of Hhat could serve as an important tool for further design of selective Hhat inhibitors. PMID:25488661
Weng Huasen; Lin Jiandi; Long Xifa; Li Zhihua; Lin Ping; Du Shaowu
2009-06-15
A new tetradentate imidazolate ligand 1,1',1'',1'''-(2,2',4,4',6,6'-hexamethylbiphenyl-3,3',5,5'-tetrayl) tetrakis(methylene)(1H-imidazole) (L) and four Ag(I)/Cu(I) coordination polymers, namely [(MCN){sub 3}L]{sub n} (1: M=Ag; 2: M=Cu), and [(MSCN){sub 2}L]{sub n} (3: M=Ag; 4: M=Cu) are described. All four new coordination polymers were fully characterized by infrared spectroscopy, elemental analysis and single-crystal X-ray diffraction. Compound 1 features a 3D supramolecular framework constructed by 1D chains through inter-chain Ag-N(CN) and inter-layer Ag-N(L) weak interactions with an uninodal 6{sup 6} topology. Complex 2 presents a 3D framework characterized by a tetranodal (3,4)-connected (3.4.5.10{sup 2}.11)(3.4.5.6.7.9)(3.6.7)(6.10{sup 2}) topology. Complexes 3 and 4 are isostructural, and both have a 3D network of trinodal 4-connected (4.8{sup 5}){sub 2}(4{sup 2}.8{sup 2}.10{sup 2})(4{sup 2}.8{sup 4}){sub 2} topology. The luminescent properties for these compounds in the solid state as well as the possible ferroelectric behavior of 1 are discussed. - Graphical abstract: Four coordination polymers built upon Ag(I)/Cu(I) pseudohalides and a imidazolate ligand have been solvothermally synthesized. The luminescent properties for these compounds and the possible ferroelectric behavior of 1 are discussed.
Cubic topological Kondo insulators.
Alexandrov, Victor; Dzero, Maxim; Coleman, Piers
2013-11-27
Current theories of Kondo insulators employ the interaction of conduction electrons with localized Kramers doublets originating from a tetragonal crystalline environment, yet all Kondo insulators are cubic. Here we develop a theory of cubic topological Kondo insulators involving the interaction of Γ(8) spin quartets with a conduction sea. The spin quartets greatly increase the potential for strong topological insulators, entirely eliminating the weak topological phases from the diagram. We show that the relevant topological behavior in cubic Kondo insulators can only reside at the lower symmetry X or M points in the Brillouin zone, leading to three Dirac cones with heavy quasiparticles.
Topological Phenotypes in Complex Leaf Venation Networks
NASA Astrophysics Data System (ADS)
Ronellenfitsch, Henrik; Lasser, Jana; Daly, Douglas; Katifori, Eleni
2015-03-01
The leaves of vascular plants contain highly complex venation networks consisting of recursively nested, hierarchically organized loops. We analyze the topology of the venation of leaves from ca. 200 species belonging to ca. 10 families, defining topological metrics that quantify the hierarchical nestedness of the network cycles. We find that most of the venation variability can be described by a two dimensional phenotypic space, where one dimension consists of a linear combination of geometrical metrics and the other dimension of topological, previously uncharacterized metrics. We show how this new topological dimension in the phenotypic space significantly improves identification of leaves from fragments, by calculating a ``leaf fingerprint'' from the topology and geometry of the higher order veins. Further, we present a simple model suggesting that the topological phenotypic traits can be explained by noise effects and variations in the timing of higher order vein developmental events. This work opens the path to (a) new quantitative identification techniques for leaves which go beyond simple geometric traits such as vein density and (b) topological quantification of other planar or almost planar networks such as arterial vaculature in the neocortex and lung tissue.
Hutchinson incisors; Abnormal tooth shape; Peg teeth; Mulberry teeth; Conical teeth ... The appearance of normal teeth varies, especially the molars. ... conditions. Specific diseases can affect tooth shape, tooth ...
NASA Astrophysics Data System (ADS)
Tanda, Satoshi; Matsuyama, Toyoki; Oda, Migaku; Asano, Yasuhiro; Yakubo, Kousuke
2006-08-01
I. Topology as universal concept. Optical vorticulture / M. V. Berry. On universality of mathematical structure in nature: topology / T. Matsuyama. Topology in physics / R. Jackiw. Isoholonomic problem and holonomic quantum computation / S. Tanimura -- II. Topological crystals. Topological crystals of NbSe[symbol] / S. Tanda ... [et al.]. Superconducting states on a Möbius strip / M. Hayashi ... [et al.]. Structure analyses of topological crystals using synchrotron radiation / Y. Nogami ... [et al.]. Transport measurement for topological charge density waves / T. Matsuura ... [et al.]. Theoretical study on Little-Parks oscillation in nanoscale superconducting ring / T. Suzuki, M. Hayashi and H. Ebisawa. Frustrated CDW states in topological crystals / K. Kuboki ... [et al.]. Law of growth in topological crystal / M. Tsubota ... [et al.]. Synthesis and electric properties of NbS[symbol]: possibility of room temperature charge density wave devices / H. Nobukane ... [et al.]. How does a single crystal become a Möbius strip? / T. Matsuura ... [et al.]. Development of X-ray analysis method for topological crystals / K. Yamamoto ... [et al.] -- III. Topological materials. Femtosecond-timescale structure dynamics in complex materials: the case of (NbSe[symbol])[symbol]I / D. Dvorsek and D. Mihailovic. Ultrafast dynamics of charge-density-wave in topological crystals / K. Shimatake ... [et al.]. Topology in morphologies of a folded single-chain polymer / Y. Takenaka, D. Baigl and K. Yoshikawa. One to two-dimensional conversion in topological crystals / T. Toshima, K. Inagaki and S. Tanda. Topological change of Fermi surface in Bismuth under high pressure / M. Kasami ... [et al.]. Topological change of 4, 4'-bis[9-dicarbazolyl]-2, 2'-biphenyl (CBP) by international rearrangement / K. S. Son ... [et al.]. Spin dynamics in Heisenberg triangular system VI5 cluster studied by [symbol]H-NMR / Y. Furukawa ... [et al.]. STM/STS on NbSe[symbol] nanotubes / K. Ichimura ...[et al
Expediting topology data gathering for the TOPDB database.
Dobson, László; Langó, Tamás; Reményi, István; Tusnády, Gábor E
2015-01-01
The Topology Data Bank of Transmembrane Proteins (TOPDB, http://topdb.enzim.ttk.mta.hu) contains experimentally determined topology data of transmembrane proteins. Recently, we have updated TOPDB from several sources and utilized a newly developed topology prediction algorithm to determine the most reliable topology using the results of experiments as constraints. In addition to collecting the experimentally determined topology data published in the last couple of years, we gathered topographies defined by the TMDET algorithm using 3D structures from the PDBTM. Results of global topology analysis of various organisms as well as topology data generated by high throughput techniques, like the sequential positions of N- or O-glycosylations were incorporated into the TOPDB database. Moreover, a new algorithm was developed to integrate scattered topology data from various publicly available databases and a new method was introduced to measure the reliability of predicted topologies. We show that reliability values highly correlate with the per protein topology accuracy of the utilized prediction method. Altogether, more than 52,000 new topology data and more than 2600 new transmembrane proteins have been collected since the last public release of the TOPDB database.
Expediting topology data gathering for the TOPDB database
Dobson, László; Langó, Tamás; Reményi, István; Tusnády, Gábor E.
2015-01-01
The Topology Data Bank of Transmembrane Proteins (TOPDB, http://topdb.enzim.ttk.mta.hu) contains experimentally determined topology data of transmembrane proteins. Recently, we have updated TOPDB from several sources and utilized a newly developed topology prediction algorithm to determine the most reliable topology using the results of experiments as constraints. In addition to collecting the experimentally determined topology data published in the last couple of years, we gathered topographies defined by the TMDET algorithm using 3D structures from the PDBTM. Results of global topology analysis of various organisms as well as topology data generated by high throughput techniques, like the sequential positions of N- or O-glycosylations were incorporated into the TOPDB database. Moreover, a new algorithm was developed to integrate scattered topology data from various publicly available databases and a new method was introduced to measure the reliability of predicted topologies. We show that reliability values highly correlate with the per protein topology accuracy of the utilized prediction method. Altogether, more than 52 000 new topology data and more than 2600 new transmembrane proteins have been collected since the last public release of the TOPDB database. PMID:25392424
Structurally abnormal human autosomes
1993-12-31
Chapter 25, discusses structurally abnormal human autosomes. This discussion includes: structurally abnormal chromosomes, chromosomal polymorphisms, pericentric inversions, paracentric inversions, deletions or partial monosomies, cri du chat (cat cry) syndrome, ring chromosomes, insertions, duplication or pure partial trisomy and mosaicism. 71 refs., 8 figs.
NASA Astrophysics Data System (ADS)
Dzero, Maxim; Xia, Jing; Galitski, Victor; Coleman, Piers
2016-03-01
This article reviews recent theoretical and experimental work on a new class of topological material -- topological Kondo insulators, which develop through the interplay of strong correlations and spin-orbit interactions. The history of Kondo insulators is reviewed along with the theoretical models used to describe these heavy fermion compounds. The Fu-Kane method of topological classification of insulators is used to show that hybridization between the conduction electrons and localized f electrons in these systems gives rise to interaction-induced topological insulating behavior. Finally, some recent experimental results are discussed, which appear to confirm the theoretical prediction of the topological insulating behavior in samarium hexaboride, where the long-standing puzzle of the residual low-temperature conductivity has been shown to originate from robust surface states.
Charged topological entanglement entropy
NASA Astrophysics Data System (ADS)
Matsuura, Shunji; Wen, Xueda; Hung, Ling-Yan; Ryu, Shinsei
2016-05-01
A charged entanglement entropy is a new measure which probes quantum entanglement between different charge sectors. We study symmetry-protected topological (SPT) phases in (2+1)-dimensional space-time by using this charged entanglement entropy. SPT phases are short-range entangled states without topological order and hence cannot be detected by the topological entanglement entropy. We demonstrate that the universal part of the charged entanglement entropy is nonzero for nontrivial SPT phases and therefore it is a useful measure to detect short-range entangled topological phases. We also discuss that the classification of SPT phases based on the charged topological entanglement entropy is related to that of the braiding statistics of quasiparticles.
Morphological abnormalities among lampreys
Manion, Patrick J.
1967-01-01
The experimental control of the sea lamprey (Petromyzon marinus) in the Great Lakes has required the collection of thousands of lampreys. Representatives of each life stage of the four species of the Lake Superior basin were examined for structural abnormalities. The most common aberration was the presence of additional tails. The accessory tails were always postanal and smaller than the normal tail. The point of origin varied; the extra tails occurred on dorsal, ventral, or lateral surfaces. Some of the extra tails were misshaped and curled, but others were normal in shape and pigment pattern. Other abnormalities in larval sea lampreys were malformed or twisted tails and bodies. The cause of the structural abnormalities is unknown. The presence of extra caudal fins could be genetically controlled, or be due to partial amputation or injury followed by abnormal regeneration. Few if any lampreys with structural abnormalities live to sexual maturity.
A global topology map of the Saccharomyces cerevisiae membrane proteome.
Kim, Hyun; Melén, Karin; Osterberg, Marie; von Heijne, Gunnar
2006-07-25
The yeast Saccharomyces cerevisiae is, arguably, the best understood eukaryotic model organism, yet comparatively little is known about its membrane proteome. Here, we report the cloning and expression of 617 S. cerevisiae membrane proteins as fusions to a C-terminal topology reporter and present experimentally constrained topology models for 546 proteins. By homology, the experimental topology information can be extended to approximately 15,000 membrane proteins from 38 fully sequenced eukaryotic genomes.
Ma, Chien-Hui; Liu, Yen-Ting; Savva, Christos G; Rowley, Paul A; Cannon, Brian; Fan, Hsiu-Fang; Russell, Rick; Holzenburg, Andreas; Jayaram, Makkuni
2014-02-20
Flp site-specific recombination between two target sites (FRTs) harboring non-homology within the strand exchange region does not yield stable recombinant products. In negatively supercoiled plasmids containing head-to-tail sites, the reaction produces a series of knots with odd-numbered crossings. When the sites are in head-to-head orientation, the knot products contain even-numbered crossings. Both types of knots retain parental DNA configuration. By carrying out Flp recombination after first assembling the topologically well defined Tn3 resolvase synapse, it is possible to determine whether these knots arise by a processive or a dissociative mechanism. The nearly exclusive products from head-to-head and head-to-tail oriented "non-homologous" FRT partners are a 4-noded knot and a 5-noded knot, respectively. The corresponding products from a pair of native (homologous) FRT sites are a 3-noded knot and a 4-noded catenane, respectively. These results are consistent with non-homology-induced two rounds of dissociative recombination by Flp, the first to generate reciprocal recombinants containing non-complementary base pairs and the second to produce parental molecules with restored base pairing. Single molecule fluorescence resonance energy transfer (smFRET) analysis of geometrically restricted FRTs, together with single molecule tethered particle motion (smTPM) assays of unconstrained FRTs, suggests that the sites are preferentially synapsed in an anti-parallel fashion. This selectivity in synapse geometry occurs prior to the chemical steps of recombination, signifying early commitment to a productive reaction path. The cumulative topological, smFRET and smTPM results have implications for the relative orientation of DNA partners and the directionality of strand exchange during recombination mediated by tyrosine site-specific recombinases.
Jennings, J C
1995-11-01
Physicians who care for female patients cannot avoid the frequent complaint of abnormal uterine bleeding. Knowledge of the disorders that cause this problem can prevent serious consequences in many patients and improve the quality of life for many others. The availability of noninvasive and minimally invasive diagnostic studies and minimally invasive surgical treatment has revolutionized management of abnormal uterine bleeding. Similar to any other disorder, the extent to which a physician manages abnormal uterine bleeding depends on his or her own level of comfort. When limitations of either diagnostic or therapeutic capability are encountered, consultation and referral should be used to the best interest of patients.
Topological properties of hypercubes
Saad, Y.; Schultz, M.H.
1988-07-01
The n-dimensional hypercube is a highly concurrent loosely coupled multiprocessor based on the binary n-cube topology. Machines based on the hypercube topology have been advocated as ideal parallel architectures for their powerful interconnection features. In this paper, the authors examine the hypercube from the graph theory point of view and consider those features that make its connectivity so appealing. Among other things, they propose a theoretical characterization of the n-cube as a graph and show how to map various other topologies into a hypercube.
Multiresolution Topological Simplification
Xia, Kelin; Zhao, Zhixiong
2015-01-01
Abstract Persistent homology has been advocated as a new strategy for the topological simplification of complex data. However, it is computationally intractable for large data sets. In this work, we introduce multiresolution persistent homology for tackling large datasets. Our basic idea is to match the resolution with the scale of interest so as to create a topological microscopy for the underlying data. We adjust the resolution via a rigidity density-based filtration. The proposed multiresolution topological analysis is validated by the study of a complex RNA molecule. PMID:26222626
Linked topological colloids in a nematic host.
Martinez, Angel; Hermosillo, Leonardo; Tasinkevych, Mykola; Smalyukh, Ivan I
2015-04-14
Geometric shape and topology of constituent particles can alter many colloidal properties such as Brownian motion, self-assembly, and phase behavior. Thus far, only single-component building blocks of colloids with connected surfaces have been studied, although topological colloids, with constituent particles shaped as freestanding knots and handlebodies of different genus, have been recently introduced. Here we develop a topological class of colloids shaped as multicomponent links. Using two-photon photopolymerization, we fabricate colloidal microparticle analogs of the classic examples of links studied in the field of topology, the Hopf and Solomon links, which we disperse in nematic fluids that possess orientational ordering of anisotropic rod-like molecules. The surfaces of these particles are treated to impose tangential or perpendicular boundary conditions for the alignment of liquid crystal molecules, so that they generate a host of topologically nontrivial field and defect structures in the dispersing nematic medium, resulting in an elastic coupling between the linked constituents. The interplay between the topologies of surfaces of linked colloids and the molecular alignment field of the nematic host reveals that linking of particle rings with perpendicular boundary conditions is commonly accompanied by linking of closed singular defect loops, laying the foundations for fabricating complex composite materials with interlinking-based structural organization.
Linked topological colloids in a nematic host
Martinez, Angel; Hermosillo, Leonardo; Tasinkevych, Mykola; Smalyukh, Ivan I.
2015-01-01
Geometric shape and topology of constituent particles can alter many colloidal properties such as Brownian motion, self-assembly, and phase behavior. Thus far, only single-component building blocks of colloids with connected surfaces have been studied, although topological colloids, with constituent particles shaped as freestanding knots and handlebodies of different genus, have been recently introduced. Here we develop a topological class of colloids shaped as multicomponent links. Using two-photon photopolymerization, we fabricate colloidal microparticle analogs of the classic examples of links studied in the field of topology, the Hopf and Solomon links, which we disperse in nematic fluids that possess orientational ordering of anisotropic rod-like molecules. The surfaces of these particles are treated to impose tangential or perpendicular boundary conditions for the alignment of liquid crystal molecules, so that they generate a host of topologically nontrivial field and defect structures in the dispersing nematic medium, resulting in an elastic coupling between the linked constituents. The interplay between the topologies of surfaces of linked colloids and the molecular alignment field of the nematic host reveals that linking of particle rings with perpendicular boundary conditions is commonly accompanied by linking of closed singular defect loops, laying the foundations for fabricating complex composite materials with interlinking-based structural organization. PMID:25825765
Topology-driven magnetic quantum phase transition in topological insulators.
Zhang, Jinsong; Chang, Cui-Zu; Tang, Peizhe; Zhang, Zuocheng; Feng, Xiao; Li, Kang; Wang, Li-Li; Chen, Xi; Liu, Chaoxing; Duan, Wenhui; He, Ke; Xue, Qi-Kun; Ma, Xucun; Wang, Yayu
2013-03-29
The breaking of time reversal symmetry in topological insulators may create previously unknown quantum effects. We observed a magnetic quantum phase transition in Cr-doped Bi2(SexTe1-x)3 topological insulator films grown by means of molecular beam epitaxy. Across the critical point, a topological quantum phase transition is revealed through both angle-resolved photoemission measurements and density functional theory calculations. We present strong evidence that the bulk band topology is the fundamental driving force for the magnetic quantum phase transition. The tunable topological and magnetic properties in this system are well suited for realizing the exotic topological quantum phenomena in magnetic topological insulators.
"Jeopardy" in Abnormal Psychology.
ERIC Educational Resources Information Center
Keutzer, Carolin S.
1993-01-01
Describes the use of the board game, Jeopardy, in a college level abnormal psychology course. Finds increased student interaction and improved application of information. Reports generally favorable student evaluation of the technique. (CFR)
... Abnormal uterine bleeding is any bleeding from the uterus (through your vagina) other than your normal monthly ... or fibroids (small and large growths) in the uterus can also cause bleeding. Rarely, a thyroid problem, ...
... as cancer of the uterus, cervix, or vagina • Polycystic ovary syndrome How is abnormal bleeding diagnosed? Your health care ... before the fetus can survive outside the uterus. Polycystic Ovary Syndrome: A condition characterized by two of the following ...
Hao, F.; Li, S.; Dong, W.; Hu, Z.; Huang, B.
1998-01-01
Three superimposed pressure systems are present in the Yinggehai Basin, South China Sea. A number of commercial, thermogenic gas accumulations have been found in an area in which shale diapirs occur. Because the reservoir intervals are shallow and very young, they must have filled with gas rapidly. The thick (up to 17 km) Tertiary and Quaternary sedimentary succession is dominated by shales, and is not disrupted by major faulting in the study area, a factor which seems to have had an important effect on both hydrocarbon generation and fluid migration. Organic-matter maturation in the deepest, most overpressured compartment has been significantly retarded as a result of the combined effects of excess pressure, the presence of large volumes of water, and the retention of generated hydrocarbons. This retardation is indicated by both kerogen-related parameters (vitrinite reflectance and Rock-Eval T(max)); and also by parameters based on the analysis of soluble organic matter (such as the C15+ hydrocarbon content, and the concentration of isoprenoid hydrocarbons relative to adjacent normal alkanes). In contrast to this, organic-matter maturation in shallow, normally-pressured strata in the diapiric area has been enhanced by hydrothermal fluid flow, which is clearly not topography-driven in origin. As a result, the hydrocarbon generation 'window' in the basin is considerably wider than could be expected from traditional geochemical modelling. These two unusual and contrasting anomalies in organic-matter maturation, together with other lines of evidence, suggest that there was a closed fluid system in the overpressured compartment until shale diapirs developed. The diapirs developed as a result of the intense overpressuring, and their growth was triggered by regional extensional stresses. They served as conduits through which fluids (both water and hydrocarbons) retained in the closed system could rapidly migrate. Fluid migration led to the modification of the thermal
Topological Solitons in Physics.
ERIC Educational Resources Information Center
Parsa, Zohreh
1979-01-01
A broad definition of solitons and a discussion of their role in physics is given. Vortices and magnetic monopoles which are examples of topological solitons in two and three spatial dimensions are described in some detail. (BB)
Aperiodic Weak Topological Superconductors
NASA Astrophysics Data System (ADS)
Fulga, I. C.; Pikulin, D. I.; Loring, T. A.
2016-06-01
Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand.
Aperiodic Weak Topological Superconductors.
Fulga, I C; Pikulin, D I; Loring, T A
2016-06-24
Weak topological phases are usually described in terms of protection by the lattice translation symmetry. Their characterization explicitly relies on periodicity since weak invariants are expressed in terms of the momentum-space torus. We prove the compatibility of weak topological superconductors with aperiodic systems, such as quasicrystals. We go beyond usual descriptions of weak topological phases and introduce a novel, real-space formulation of the weak invariant, based on the Clifford pseudospectrum. A nontrivial value of this index implies a nontrivial bulk phase, which is robust against disorder and hosts localized zero-energy modes at the edge. Our recipe for determining the weak invariant is directly applicable to any finite-sized system, including disordered lattice models. This direct method enables a quantitative analysis of the level of disorder the topological protection can withstand. PMID:27391744
Fabry, M E; Costantini, F; Pachnis, A; Suzuka, S M; Bank, N; Aynedjian, H S; Factor, S M; Nagel, R L
1992-01-01
A line of transgenic mice with two cointegrated transgenes, the human beta S- and alpha 2-globin genes, linked to the beta-globin locus control region was produced and bred with mice carrying a deletion of the mouse beta major-globin gene. In transgenic mice homozygous for the beta major deletion (alpha H beta S[beta MDD]; where alpha H is human alpha-globin and MD is mouse deletion), 72.5 +/- 2.4% (mean +/- SD) of the beta-chains are beta S and the ratio of alpha H- to beta S-globin was 0.73. Introduction of a heterozygous mouse alpha-globin deletion into mice homozygous for the beta major deletion (alpha H beta S[alpha MD beta MDD]) resulted in 65.1 +/- 8.5% beta S and a human alpha/beta ratio of 0.89 +/- 0.2. Sickling occurs in 95% of erythrocytes from alpha H beta S[beta MDD] mice after slow deoxygenation. Transmission electron microscopy revealed polymer fiber formation but not fascicles of fiber. Increased organ weight was noted in lung, spleen, and kidney of transgenic mice vs. controls that may be due to hypertrophy or increased blood volume in the lungs and/or increased tissue water content. The hemoglobin content of lung, spleen, and kidney was also elevated in transgenic animals due to trapped hemoglobin and/or increased blood volume. When transgenic and control mice were examined by magnetic resonance imaging at 9.4 tesla, some transgenic animals had enlarged kidneys with prolonged relaxation time, consistent with increased organ weight and water content. The glomerular filtration rate was elevated in transgenic animals, which is characteristic of young sickle cell patients. Furthermore, exposure to hypoxia resulted in significantly decreased hematocrit, increased erythrocyte density, and induced a urine-concentrating defect. We conclude that the transgenic mouse line reported here has chronic organ damage and further hematological and organ dysfunction can be induced by hypoxia. Images PMID:1465455
Photonic topological insulators.
Khanikaev, Alexander B; Mousavi, S Hossein; Tse, Wang-Kong; Kargarian, Mehdi; MacDonald, Allan H; Shvets, Gennady
2013-03-01
Recent progress in understanding the topological properties of condensed matter has led to the discovery of time-reversal-invariant topological insulators. A remarkable and useful property of these materials is that they support unidirectional spin-polarized propagation at their surfaces. Unfortunately topological insulators are rare among solid-state materials. Using suitably designed electromagnetic media (metamaterials) we theoretically demonstrate a photonic analogue of a topological insulator. We show that metacrystals-superlattices of metamaterials with judiciously designed properties-provide a platform for designing topologically non-trivial photonic states, similar to those that have been identified for condensed-matter topological insulators. The interfaces of the metacrystals support helical edge states that exhibit spin-polarized one-way propagation of photons, robust against disorder. Our results demonstrate the possibility of attaining one-way photon transport without application of external magnetic fields or breaking of time-reversal symmetry. Such spin-polarized one-way transport enables exotic spin-cloaked photon sources that do not obscure each other.
Topological insulators and superconductors
NASA Astrophysics Data System (ADS)
Teo, Jeffrey C. Y.
We study theoretical properties of robust low energy electronic excitations associated with topological insulators and superconductors. The bulk materials are described by non-interacting single particle band Hamiltonians with a finite excitation gap. Their topological phases are classifed according to symmetries and dimensions, characterized by discrete bulk invariants, and correspond to topologically protected gapless excitations bounded to boundaries, interfaces or other kinds of defects. In particular, we study the metallic surface states of the three dimensional topological insulator Bi1-- xSbx, critical edge transport behavior of quantum spin Hall insulators (QSHI) using point contact geometry, Majorana bound states in three dimensions and their resemblance to Ising statistics, and various gapless modes accompanying topological defects in insulators and superconductors. We illustrate the topological phase of Bi1-- xSbx by calculating its surface energy spectrum numerically from a previously proposed tight binding model. An odd number of surface Dirac cones occupy the surface Brillouin zone and exhibit the strong topological nature of the material. We investigate the critical conductance behavior of a point contact in QSHI using a spinful Luttinger liquid description along the edges. For weak interactions, a novel intermediate fixed point controls the pinch-off transition, and the universal crossover scaling function of conductance is extracted from the solvable limits for the Luttinger parameter g = 1 -- epsilon, g = 1/2 + epsilon, and g = 1/ 3 . Majorana fermions are studied as zero energy quasiparticle excitations associated with pointlike topological defects in 3D superconductors. The low energy modes are described phenomenologically in a Dirac-type Bogoliubov de Gennes (BdG) framework, and the Majorana bound states are shown to exhibit Ising non-Abelian statistics despite living in (3 + 1) dimensions. In particular, novel braidless operations are shown to
NASA Astrophysics Data System (ADS)
He, Cheng; Lin, Liang; Sun, Xiao-Chen; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng
2014-01-01
As exotic phenomena in optics, topological states in photonic crystals have drawn much attention due to their fundamental significance and great potential applications. Because of the broken time-reversal symmetry under the influence of an external magnetic field, the photonic crystals composed of magneto-optical materials will lead to the degeneracy lifting and show particular topological characters of energy bands. The upper and lower bulk bands have nonzero integer topological numbers. The gapless edge states can be realized to connect two bulk states. This topological photonic states originated from the topological property can be analogous to the integer quantum Hall effect in an electronic system. The gapless edge state only possesses a single sign of gradient in the whole Brillouin zone, and thus the group velocity is only in one direction leading to the one-way energy flow, which is robust to disorder and impurity due to the nontrivial topological nature of the corresponding electromagnetic states. Furthermore, this one-way edge state would cross the Brillouin center with nonzero group velocity, where the negative-zero-positive phase velocity can be used to realize some interesting phenomena such as tunneling and backward phase propagation. On the other hand, under the protection of time-reversal symmetry, a pair of gapless edge states can also be constructed by using magnetic-electric coupling meta-materials, exhibiting Fermion-like spin helix topological edge states, which can be regarded as an optical counterpart of topological insulator originating from the spin-orbit coupling. The aim of this article is to have a comprehensive review of recent research literatures published in this emerging field of photonic topological phenomena. Photonic topological states and their related phenomena are presented and analyzed, including the chiral edge states, polarization dependent transportation, unidirectional waveguide and nonreciprocal optical transmission, all
PhyBin: binning trees by topology.
Newton, Ryan R; Newton, Irene L G
2013-01-01
A major goal of many evolutionary analyses is to determine the true evolutionary history of an organism. Molecular methods that rely on the phylogenetic signal generated by a few to a handful of loci can be used to approximate the evolution of the entire organism but fall short of providing a global, genome-wide, perspective on evolutionary processes. Indeed, individual genes in a genome may have different evolutionary histories. Therefore, it is informative to analyze the number and kind of phylogenetic topologies found within an orthologous set of genes across a genome. Here we present PhyBin: a flexible program for clustering gene trees based on topological structure. PhyBin can generate bins of topologies corresponding to exactly identical trees or can utilize Robinson-Fould's distance matrices to generate clusters of similar trees, using a user-defined threshold. Additionally, PhyBin allows the user to adjust for potential noise in the dataset (as may be produced when comparing very closely related organisms) by pre-processing trees to collapse very short branches or those nodes not meeting a defined bootstrap threshold. As a test case, we generated individual trees based on an orthologous gene set from 10 Wolbachia species across four different supergroups (A-D) and utilized PhyBin to categorize the complete set of topologies produced from this dataset. Using this approach, we were able to show that although a single topology generally dominated the analysis, confirming the separation of the supergroups, many genes supported alternative evolutionary histories. Because PhyBin's output provides the user with lists of gene trees in each topological cluster, it can be used to explore potential reasons for discrepancies between phylogenies including homoplasies, long-branch attraction, or horizontal gene transfer events.
Shaheen, Ranad; Faqeih, Eissa; Sunker, Asma; Morsy, Heba; Al-Sheddi, Tarfa; Shamseldin, Hanan E; Adly, Nouran; Hashem, Mais; Alkuraya, Fowzan S
2011-08-12
Adams-Oliver syndrome (AOS) is defined by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It is usually inherited as an autosomal-dominant trait, but autosomal-recessive inheritance has also been documented. In an individual with autosomal-recessive AOS, we combined autozygome analysis with exome sequencing to identify a homozygous truncating mutation in dedicator of cytokinesis 6 gene (DOCK6) which encodes an atypical guanidine exchange factor (GEF) known to activate two members of the Rho GTPase family: Cdc42 and Rac1. Another homozygous truncating mutation was identified upon targeted sequencing of DOCK6 in an unrelated individual with AOS. Consistent with the established role of Cdc42 and Rac1 in the organization of the actin cytoskeleton, we demonstrate a cellular phenotype typical of a defective actin cytoskeleton in patient cells. These findings, combined with a Dock6 expression profile that is consistent with an AOS phenotype as well as the very recent demonstration of dominant mutations of ARHGAP31 in AOS, establish Cdc42 and Rac1 as key molecules in the pathogenesis of AOS and suggest that other regulators of these Rho GTPase proteins might be good candidates in the quest to define the genetic spectrum of this genetically heterogeneous condition.
Shaheen, Ranad; Faqeih, Eissa; Sunker, Asma; Morsy, Heba; Al-Sheddi, Tarfa; Shamseldin, Hanan E.; Adly, Nouran; Hashem, Mais; Alkuraya., Fowzan S.
2011-01-01
Adams-Oliver syndrome (AOS) is defined by the combination of aplasia cutis congenita (ACC) and terminal transverse limb defects (TTLD). It is usually inherited as an autosomal-dominant trait, but autosomal-recessive inheritance has also been documented. In an individual with autosomal-recessive AOS, we combined autozygome analysis with exome sequencing to identify a homozygous truncating mutation in dedicator of cytokinesis 6 gene (DOCK6) which encodes an atypical guanidine exchange factor (GEF) known to activate two members of the Rho GTPase family: Cdc42 and Rac1. Another homozygous truncating mutation was identified upon targeted sequencing of DOCK6 in an unrelated individual with AOS. Consistent with the established role of Cdc42 and Rac1 in the organization of the actin cytoskeleton, we demonstrate a cellular phenotype typical of a defective actin cytoskeleton in patient cells. These findings, combined with a Dock6 expression profile that is consistent with an AOS phenotype as well as the very recent demonstration of dominant mutations of ARHGAP31 in AOS, establish Cdc42 and Rac1 as key molecules in the pathogenesis of AOS and suggest that other regulators of these Rho GTPase proteins might be good candidates in the quest to define the genetic spectrum of this genetically heterogeneous condition. PMID:21820096
Itin, P H; Düggelin, M
2002-05-01
Hair shaft disorders may lead to brittleness and uncombable hair. In general the hair feels dry and lusterless. Hair shaft abnormalities may occur as localized or generalized disorders. Genetic predisposition or exogenous factors are able to produce and maintain hair shaft abnormalities. In addition to an extensive history and physical examination the most important diagnostic examination to analyze a hair shaft problem is light microscopy. Therapy of hair shaft disorders should focus to the cause. In addition, minimizing traumatic influences to hair shafts, such as dry hair with an electric dryer, permanent waves and dyes is important. A short hair style is more suitable for such patients with hair shaft disorders.
LHCb Topological Trigger Reoptimization
NASA Astrophysics Data System (ADS)
Likhomanenko, Tatiana; Ilten, Philip; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Williams, Michael
2015-12-01
The main b-physics trigger algorithm used by the LHCb experiment is the so- called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all ’interesting” decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays.
Adiabatic topological quantum computing
NASA Astrophysics Data System (ADS)
Cesare, Chris; Landahl, Andrew J.; Bacon, Dave; Flammia, Steven T.; Neels, Alice
2015-07-01
Topological quantum computing promises error-resistant quantum computation without active error correction. However, there is a worry that during the process of executing quantum gates by braiding anyons around each other, extra anyonic excitations will be created that will disorder the encoded quantum information. Here, we explore this question in detail by studying adiabatic code deformations on Hamiltonians based on topological codes, notably Kitaev's surface codes and the more recently discovered color codes. We develop protocols that enable universal quantum computing by adiabatic evolution in a way that keeps the energy gap of the system constant with respect to the computation size and introduces only simple local Hamiltonian interactions. This allows one to perform holonomic quantum computing with these topological quantum computing systems. The tools we develop allow one to go beyond numerical simulations and understand these processes analytically.
NASA Astrophysics Data System (ADS)
Aganagic, Mina; Klemm, Albrecht; Mariño, Marcos; Vafa, Cumrun
2005-03-01
We construct a cubic field theory which provides all genus amplitudes of the topological A-model for all non-compact toric Calabi-Yau threefolds. The topology of a given Feynman diagram encodes the topology of a fixed Calabi-Yau, with Schwinger parameters playing the role of Kähler classes of the threefold. We interpret this result as an operatorial computation of the amplitudes in the B-model mirror which is the quantum Kodaira-Spencer theory. The only degree of freedom of this theory is an unconventional chiral scalar on a Riemann surface. In this setup we identify the B-branes on the mirror Riemann surface as fermions related to the chiral boson by bosonization.
Topology optimized microbioreactors.
Schäpper, Daniel; Lencastre Fernandes, Rita; Lantz, Anna Eliasson; Okkels, Fridolin; Bruus, Henrik; Gernaey, Krist V
2011-04-01
This article presents the fusion of two hitherto unrelated fields--microbioreactors and topology optimization. The basis for this study is a rectangular microbioreactor with homogeneously distributed immobilized brewers yeast cells (Saccharomyces cerevisiae) that produce a recombinant protein. Topology optimization is then used to change the spatial distribution of cells in the reactor in order to optimize for maximal product flow out of the reactor. This distribution accounts for potentially negative effects of, for example, by-product inhibition. We show that the theoretical improvement in productivity is at least fivefold compared with the homogeneous reactor. The improvements obtained by applying topology optimization are largest where either nutrition is scarce or inhibition effects are pronounced.
Platform for engineering topological superconductors: Superlattices on Rashba superconductors
NASA Astrophysics Data System (ADS)
Lu, Yao; He, Wen-Yu; Xu, Dong-Hui; Lin, Nian; Law, K. T.
2016-07-01
The search for topological superconductors which support Majorana fermion excitations has been an important topic in condensed matter physics. In this work, we propose an experimental scheme for engineering topological superconductors. In this scheme, by manipulating the superlattice structure of organic molecules placed on top of a superconductor with Rashba spin-orbit coupling, topological superconducting phases can be achieved without or with little fine tuning of the chemical potential. Moreover, superconductors with different Chern numbers can be obtained by changing the superlattice structure of the organic molecules.
Topological superconductivity, topological confinement, and the vortex quantum Hall effect
Diamantini, M. Cristina; Trugenberger, Carlo A.
2011-09-01
Topological matter is characterized by the presence of a topological BF term in its long-distance effective action. Topological defects due to the compactness of the U(1) gauge fields induce quantum phase transitions between topological insulators, topological superconductors, and topological confinement. In conventional superconductivity, because of spontaneous symmetry breaking, the photon acquires a mass due to the Anderson-Higgs mechanism. In this paper we derive the corresponding effective actions for the electromagnetic field in topological superconductors and topological confinement phases. In topological superconductors magnetic flux is confined and the photon acquires a topological mass through the BF mechanism: no symmetry breaking is involved, the ground state has topological order, and the transition is induced by quantum fluctuations. In topological confinement, instead, electric charge is linearly confined and the photon becomes a massive antisymmetric tensor via the Stueckelberg mechanism. Oblique confinement phases arise when the string condensate carries both magnetic and electric flux (dyonic strings). Such phases are characterized by a vortex quantum Hall effect potentially relevant for the dissipationless transport of information stored on vortices.
Synthesising Topological Links
Baas, Nils A.; Seeman, Nadrian C.; Stacey, Andrew
2014-01-01
We discuss the chemical synthesis of topological links, in particular higher order links which have the Brunnian property (namely that removal of any one component unlinks the entire system). Furthermore, we suggest how to obtain both two dimensional and three dimensional objects (surfaces and solids, respectively) which also have this Brunnian property. PMID:25678732
Order, topology and preference
NASA Technical Reports Server (NTRS)
Sertel, M. R.
1971-01-01
Some standard order-related and topological notions, facts, and methods are brought to bear on central topics in the theory of preference and the theory of optimization. Consequences of connectivity are considered, especially from the viewpoint of normally preordered spaces. Examples are given showing how the theory of preference, or utility theory, can be applied to social analysis.
Rendering the Topological Spines
Nieves-Rivera, D.
2015-05-05
Many tools to analyze and represent high dimensional data already exits yet most of them are not flexible, informative and intuitive enough to help the scientists make the corresponding analysis and predictions, understand the structure and complexity of scientific data, get a complete picture of it and explore a greater number of hypotheses. With this in mind, N-Dimensional Data Analysis and Visualization (ND²AV) is being developed to serve as an interactive visual analysis platform with the purpose of coupling together a number of these existing tools that range from statistics, machine learning, and data mining, with new techniques, in particular with new visualization approaches. My task is to create the rendering and implementation of a new concept called topological spines in order to extend ND²AV's scope. Other existing visualization tools create a representation preserving either the topological properties or the structural (geometric) ones because it is challenging to preserve them both simultaneously. Overcoming such challenge by creating a balance in between them, the topological spines are introduced as a new approach that aims to preserve them both. Its render using OpenGL and C++ and is currently being tested to further on be implemented on ND²AV. In this paper I will present what are the Topological Spines and how they are rendered.
ERIC Educational Resources Information Center
Poggi, Jeanlee M.
1985-01-01
Describes two sets of activities designed to stimulate thinking skills and to bring some topological aspects into the mathematics curriculum. One set explores Mobius strips; the other set deals with tori. The activities are suitable for students in fourth through eighth grades. (JN)
Topological structure dynamics revealing collective evolution in active nematics
Shi, Xia-qing; Ma, Yu-qiang
2013-01-01
Topological defects frequently emerge in active matter like bacterial colonies, cytoskeleton extracts on substrates, self-propelled granular or colloidal layers and so on, but their dynamical properties and the relations to large-scale organization and fluctuations in these active systems are seldom touched. Here we reveal, through a simple model for active nematics using self-driven hard elliptic rods, that the excitation, annihilation and transportation of topological defects differ markedly from those in non-active media. These dynamical processes exhibit strong irreversibility in active nematics in the absence of detailed balance. Moreover, topological defects are the key factors in organizing large-scale dynamic structures and collective flows, resulting in multi-spatial temporal effects. These findings allow us to control the self-organization of active matter through topological structures. PMID:24346733
Topology of Document Retrieval Systems.
ERIC Educational Resources Information Center
Everett, Daniel M.; Cater, Steven C.
1992-01-01
Explains the use of a topological structure to examine the closeness between documents in retrieval systems and analyzes the topological structure of a vector-space model, a fuzzy-set model, an extended Boolean model, a probabilistic model, and a TIRS (Topological Information Retrieval System) model. Proofs for the results are appended. (17…
Noncommuting Momenta of Topological Solitons
NASA Astrophysics Data System (ADS)
Watanabe, Haruki; Murayama, Hitoshi
2014-05-01
We show that momentum operators of a topological soliton may not commute among themselves when the soliton is associated with the second cohomology H2 of the target space. The commutation relation is proportional to the winding number, taking a constant value within each topological sector. The noncommutativity makes it impossible to specify the momentum of a topological soliton, and induces a Magnus force.
Morphological abnormalities in elasmobranchs.
Moore, A B M
2015-08-01
A total of 10 abnormal free-swimming (i.e., post-birth) elasmobranchs are reported from The (Persian-Arabian) Gulf, encompassing five species and including deformed heads, snouts, caudal fins and claspers. The complete absence of pelvic fins in a milk shark Rhizoprionodon acutus may be the first record in any elasmobranch. Possible causes, including the extreme environmental conditions and the high level of anthropogenic pollution particular to The Gulf, are briefly discussed.
Spontaneous origin of topological complexity in the cerebral cortex
Chapline, G.
1995-04-07
Attention is drawn to the possibility of regarding the cerebral cortex as a physical system whose only excitations are topological. An attractive feature of such a hypothesis is that it is possible to understand how local dynamics could spontaneously give rise to a large scale organization of neurons and synapses that one might associate with sophisticated cognitive capabilities. It is suggested that the spontaneous appearance of topological disorder in the topological phases of 2-D and 4-D quantum gravity illustrates how the topological complexity of the human brain can develop. In particular the cooperative behavior of different neural circuits in the cerebral cortex may be closely related to the topology of certain 4-manifolds.
A role for chromatin topology in imprinted domain regulation.
MacDonald, William A; Sachani, Saqib S; White, Carlee R; Mann, Mellissa R W
2016-02-01
Recently, many advancements in genome-wide chromatin topology and nuclear architecture have unveiled the complex and hidden world of the nucleus, where chromatin is organized into discrete neighbourhoods with coordinated gene expression. This includes the active and inactive X chromosomes. Using X chromosome inactivation as a working model, we utilized publicly available datasets together with a literature review to gain insight into topologically associated domains, lamin-associated domains, nucleolar-associating domains, scaffold/matrix attachment regions, and nucleoporin-associated chromatin and their role in regulating monoallelic expression. Furthermore, we comprehensively review for the first time the role of chromatin topology and nuclear architecture in the regulation of genomic imprinting. We propose that chromatin topology and nuclear architecture are important regulatory mechanisms for directing gene expression within imprinted domains. Furthermore, we predict that dynamic changes in chromatin topology and nuclear architecture play roles in tissue-specific imprint domain regulation during early development and differentiation.
Chromosome abnormalities in glioma
Li, Y.S.; Ramsay, D.A.; Fan, Y.S.
1994-09-01
Cytogenetic studies were performed in 25 patients with gliomas. An interesting finding was a seemingly identical abnormality, an extra band on the tip of the short arm of chromosome 1, add(1)(p36), in two cases. The abnormality was present in all cells from a patient with a glioblastoma and in 27% of the tumor cells from a patient with a recurrent irradiated anaplastic astrocytoma; in the latter case, 7 unrelated abnormal clones were identified except 4 of those clones shared a common change, -Y. Three similar cases have been described previously. In a patient with pleomorphic astrocytoma, the band 1q42 in both homologues of chromosome 1 was involved in two different rearrangements. A review of the literature revealed that deletion of the long arm of chromosome 1 including 1q42 often occurs in glioma. This may indicate a possible tumor suppressor gene in this region. Cytogenetic follow-up studies were carried out in two patients and emergence of unrelated clones were noted in both. A total of 124 clonal breakpoints were identified in the 25 patients. The breakpoints which occurred three times or more were: 1p36, 1p22, 1q21, 1q25, 3q21, 7q32, 8q22, 9q22, 16q22, and 22q13.
[Congenital foot abnormalities].
Delpont, M; Lafosse, T; Bachy, M; Mary, P; Alves, A; Vialle, R
2015-03-01
The foot may be the site of birth defects. These abnormalities are sometimes suspected prenatally. Final diagnosis depends on clinical examination at birth. These deformations can be simple malpositions: metatarsus adductus, talipes calcaneovalgus and pes supinatus. The prognosis is excellent spontaneously or with a simple orthopedic treatment. Surgery remains outstanding. The use of a pediatric orthopedist will be considered if malposition does not relax after several weeks. Malformations (clubfoot, vertical talus and skew foot) require specialized care early. Clubfoot is characterized by an equine and varus hindfoot, an adducted and supine forefoot, not reducible. Vertical talus combines equine hindfoot and dorsiflexion of the forefoot, which is performed in the midfoot instead of the ankle. Skew foot is suspected when a metatarsus adductus is resistant to conservative treatment. Early treatment is primarily orthopedic at birth. Surgical treatment begins to be considered after walking age. Keep in mind that an abnormality of the foot may be associated with other conditions: malposition with congenital hip, malformations with syndromes, neurological and genetic abnormalities. PMID:25524290
Thermodynamic and topological phase diagrams of correlated topological insulators
NASA Astrophysics Data System (ADS)
Zdulski, Damian; Byczuk, Krzysztof
2015-09-01
A definition of topological phases of density matrices is presented. The topological invariants in case of both noninteracting and interacting systems are extended to nonzero temperatures. The influence of electron interactions on topological insulators at finite temperatures is investigated. A correlated topological insulator is described by the Kane-Mele model, which is extended by the interaction term of the Falicov-Kimball type. Within the Hartree-Fock and the Hubbard I approximations, thermodynamic and topological phase diagrams are determined where the long-range order is included. The results show that correlation effects lead to a strong suppression of the existence of the nontrivial topological phase. In the homogeneous phase, we find a purely correlation driven phase transition into the topologically trivial Mott insulator.
Abnormal pressures as hydrodynamic phenomena
Neuzil, C.E.
1995-01-01
So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author
Topological properties of hierarchical networks
NASA Astrophysics Data System (ADS)
Agliari, Elena; Barra, Adriano; Galluzzi, Andrea; Guerra, Francesco; Tantari, Daniele; Tavani, Flavia
2015-06-01
Hierarchical networks are attracting a renewal interest for modeling the organization of a number of biological systems and for tackling the complexity of statistical mechanical models beyond mean-field limitations. Here we consider the Dyson hierarchical construction for ferromagnets, neural networks, and spin glasses, recently analyzed from a statistical-mechanics perspective, and we focus on the topological properties of the underlying structures. In particular, we find that such structures are weighted graphs that exhibit a high degree of clustering and of modularity, with a small spectral gap; the robustness of such features with respect to the presence of thermal noise is also studied. These outcomes are then discussed and related to the statistical-mechanics scenario in full consistency. Last, we look at these weighted graphs as Markov chains and we show that in the limit of infinite size, the emergence of ergodicity breakdown for the stochastic process mirrors the emergence of metastabilities in the corresponding statistical mechanical analysis.
Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.
ERIC Educational Resources Information Center
Fernald, Charles D.
1980-01-01
Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…
The space group classification of topological band insulators
NASA Astrophysics Data System (ADS)
Juricic, Vladimir; Slager, Robert-Jan; Mesaros, Andrej; Zaanen, Jan
2013-03-01
The existing classification of topological band insulators(TBIs) departs from time-reversal symmetry, but the role of the crystal symmetries in the physics of these topological states remained elusive. I will discuss the classification of TBIs protected not only by time-reversal, but also by space group symmetries. I find three broad classes of topological states: (a) Γ-states robust against general time-reversal invariant perturbations; (b) Translationally-active states protected from elastic scattering, but susceptible to topological crystalline disorder; (c) Valley topological insulators sensitive to the effects of non-topological and crystalline disorder. These three classes give rise to 18 different two-dimensional, and, at least 70 three-dimensional TBIs. I will show how some of these topological states can be realized in two dimensions when tight-binding M-B model, originally introduced for HgTe quantum wells, is generalized to include longer-range hoppings. Finally, experimental implications of our classification scheme with an emphasis on topological states in Sn-based materials will be discussed. V. J. acknowledges the support of the Netherlands Organization for Scientific Research (NWO).
Hemorheological abnormalities in human arterial hypertension
NASA Astrophysics Data System (ADS)
Lo Presti, Rosalia; Hopps, Eugenia; Caimi, Gregorio
2014-05-01
Blood rheology is impaired in hypertensive patients. The alteration involves blood and plasma viscosity, and the erythrocyte behaviour is often abnormal. The hemorheological pattern appears to be related to some pathophysiological mechanisms of hypertension and to organ damage, in particular left ventricular hypertrophy and myocardial ischemia. Abnormalities have been observed in erythrocyte membrane fluidity, explored by fluorescence spectroscopy and electron spin resonance. This may be relevant for red cell flow in microvessels and oxygen delivery to tissues. Although blood viscosity is not a direct target of antihypertensive therapy, the rheological properties of blood play a role in the pathophysiology of arterial hypertension and its vascular complications.
Floquet topological insulators for sound.
Fleury, Romain; Khanikaev, Alexander B; Alù, Andrea
2016-06-17
The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.
Floquet topological insulators for sound
Fleury, Romain; Khanikaev, Alexander B; Alù, Andrea
2016-01-01
The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters. PMID:27312175
Floquet topological insulators for sound.
Fleury, Romain; Khanikaev, Alexander B; Alù, Andrea
2016-01-01
The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters. PMID:27312175
Floquet topological insulators for sound
NASA Astrophysics Data System (ADS)
Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea
2016-06-01
The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.
Yin, Yingying; Wang, Zan; Zhang, Zhijun; Yuan, Yonggui
2016-08-26
To investigate the alteration of resting-state functional connectivity (FC) and topological organization of the default mode network (DMN), and their contribution to the cognitive impairment in remitted late-onset depression (rLOD) patients. Thirty-three rLOD patients and thirty-one healthy controls underwent clinical and cognitive evaluations as well as resting-state functional magnetic resonance imaging (R-fMRI) scans. The FC networks were constructed by thresholding Pearson correlation metrics of the DMN regions, and their topological properties were analyzed using graph theory-based approaches. Nonparametric permutation tests were further used for group comparisons of topological metrics. Finally, multiple linear regression analyses were performed to examine the relationships between the network measures and cognitive performances. Patients displayed universally decreased FC of DMN and abnormal global topology of the DMN (i.e., increased characteristic path length Lp and reduced global efficiency Eglob) compared with healthy controls. According to the distance-dependent FC results, the long-distance connections were mainly involved in the connectivity between anterior and posterior hubs, and the short-distance connections were primarily located in the frontal lobe. There were significant correlations between the global topology and the episodic memory performance in rLOD patients. In conclusion, the present study indicated that the disrupted topological organization of the DMN might be considered as a potential biomarker of the episodic memory deficits in rLOD patients. PMID:27365133
Abnormal human sex chromosome constitutions
1993-12-31
Chapter 22, discusses abnormal human sex chromosome constitution. Aneuploidy of X chromosomes with a female phenotype, sex chromosome aneuploidy with a male phenotype, and various abnormalities in X chromosome behavior are described. 31 refs., 2 figs.
Exercises to Improve Gait Abnormalities
... Home About iChip Articles Directories Videos Resources Contact Exercises to Improve Gait Abnormalities Home » Article Categories » Exercise and Fitness Font Size: A A A A Exercises to Improve Gait Abnormalities Next Page The manner ...
Study of the Topological-insulator-based Topological Superconductors
NASA Astrophysics Data System (ADS)
Qian, Dong
Three-dimensional topological insulators possess nontrivial spin-momentum locked surface states under the protection of time-reversal symmetry. The interplay between topological order and superconductivity can lead to topological superconducting state. In this talk, I will discuss our recent progress in topological-insulator-based topological superconductors. Using molecular beam epitaxy (MBE) method, we succeeded in fabricating very high quality TI/s-wave superconductor heterostructure by growing topological insulator thin films on the conventional superconductor niobium diselenide (NbSe2) substrate. Using low temperature scanning tunneling microscopy/spectroscopy (STM/STS) and angle-resolved photoemission spectroscopy (ARPES), we systematically studied its electronic structure and superconducting behavior. Through superconducting proximity effect, coexistence of Cooper pairs and topological surface states on the surface of topological insulator film was realized. By exploring the superconducting vortex core state as the function of film thickness, existing of nontrivial superconducting state on the TI's surface was proposed. Our topological insulator/superconductor heterostructure may host single zero-energy Majorana mode in the vortex core. In addition, I will also discuss STM and ARPES studies on the recently discovered superconducting Sr-doped Bi2Se3 bulk crystals. Our results suggest that Sr-doped Bi2Se3 could be an excellent candidate for exploring topological superconducting states. Supported by the Ministry of Science and Technology of China and NSFC.
Quist, Daniel A.; Gavrilov, Eugene M.; Fisk, Michael E.
2008-01-15
A method enables the topology of an acyclic fully propagated network to be discovered. A list of switches that comprise the network is formed and the MAC address cache for each one of the switches is determined. For each pair of switches, from the MAC address caches the remaining switches that see the pair of switches are located. For each pair of switches the remaining switches are determined that see one of the pair of switches on a first port and the second one of the pair of switches on a second port. A list of insiders is formed for every pair of switches. It is determined whether the insider for each pair of switches is a graph edge and adjacent ones of the graph edges are determined. A symmetric adjacency matrix is formed from the graph edges to represent the topology of the data link network.
Topological States of Heterostructures
NASA Astrophysics Data System (ADS)
Usanmaz, Demet; Nath, Pinku; Plata, Jose J.; Buongiorno Nardelli, Marco; Fornari, Marco; Curtarolo, Stefano
Topological insulators (TIs) have exotic properties, such as having insulating behavior in the bulk and metallic states at the surface [1]. Observations of metallic states rely on the spin-orbit induced band inversion in bulk materials and are protected by time-reversal symmetry or crystal symmetry [ 2 ]. These remarkable characteristics of TIs give rise to various applications from spintronics to quantum computers. In order to broaden the range of applications of TIs and make it more effective, an exploration of high quality heterostructures are required. Creating heterostructures of TIs has recently demonstrated to be advantageous for controlling electronic properties [3]. Inspired by these interesting properties, we have investigated the topological interface states of heterostructures.
Abnormal ionization in sonoluminescence
NASA Astrophysics Data System (ADS)
Zhang, Wen-Juan; An, Yu
2015-04-01
Sonoluminescence is a complex phenomenon, the mechanism of which remains unclear. The present study reveals that an abnormal ionization process is likely to be present in the sonoluminescing bubble. To fit the experimental data of previous studies, we assume that the ionization energies of the molecules and atoms in the bubble decrease as the gas density increases and that the decrease of the ionization energy reaches about 60%-70% as the bubble flashes, which is difficult to explain by using previous models. Project supported by the Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20120002110031) and the National Natural Science Foundation of China (Grant No. 11334005).
Topological confinement and superconductivity
Al-hassanieh, Dhaled A; Batista, Cristian D
2008-01-01
We derive a Kondo Lattice model with a correlated conduction band from a two-band Hubbard Hamiltonian. This mapping allows us to describe the emergence of a robust pairing mechanism in a model that only contains repulsive interactions. The mechanism is due to topological confinement and results from the interplay between antiferromagnetism and delocalization. By using Density-Matrix-Renormalization-Group (DMRG) we demonstrate that this mechanism leads to dominant superconducting correlations in aID-system.
Hierarchical Organization of Human Cortical Networks in Health and Schizophrenia
Bassett, Danielle S.; Bullmore, Edward; Verchinski, Beth A.; Mattay, Venkata S.; Weinberger, Daniel R.; Meyer-Lindenberg, Andreas
2009-01-01
The complex organization of connectivity in the human brain is incompletely understood. Recently, topological measures based on graph theory have provided a new approach to quantify large-scale cortical networks. These methods have been applied to anatomical connectivity data on non-human species and cortical networks have been shown to have small-world topology, associated with high local and global efficiency of information transfer. Anatomical networks derived from cortical thickness measurements have shown the same organizational properties of the healthy human brain, consistent with similar results reported in functional networks derived from resting state functional MRI and MEG data. Here we show, using anatomical networks derived from analysis of inter-regional covariation of gray matter volume in magnetic resonance imaging (MRI) data on 259 healthy volunteers, that classical divisions of cortex (multimodal, unimodal and transmodal) have some distinct topological attributes. While all cortical divisions shared non-random properties of small-worldness and efficient wiring (short mean Euclidean distance between connected regions), the multimodal network had a hierarchical organization, dominated by frontal hubs with low clustering, whereas the transmodal network was assortative. Moreover, in a sample of 203 people with schizophrenia, multimodal network organization was abnormal, as indicated by reduced hierarchy, the loss of frontal and the emergence of non-frontal hubs, and increased connection distance. We propose that the topological differences between divisions of normal cortex may represent the outcome of different growth processes for multimodal and transmodal networks; and that neurodevelopmental abnormalities in schizophrenia specifically impact multimodal cortical organization. PMID:18784304
Abnormal hematological indices in cirrhosis
Qamar, Amir A; Grace, Norman D
2009-01-01
Abnormalities in hematological indices are frequently encountered in cirrhosis. Multiple causes contribute to the occurrence of hematological abnormalities. Recent studies suggest that the presence of hematological cytopenias is associated with a poor prognosis in cirrhosis. The present article reviews the pathogenesis, incidence, prevalence, clinical significance and treatment of abnormal hematological indices in cirrhosis. PMID:19543577
Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C.; Farsiu, Sina
2015-01-01
Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree—what connects to what—from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph—which edge endpoint is closer to the root of the tree—but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree datasets show that our methodology is both accurate and efficient. PMID:26353004
Estrada, Rolando; Tomasi, Carlo; Schmidler, Scott C; Farsiu, Sina
2015-08-01
Tree-like structures are fundamental in nature, and it is often useful to reconstruct the topology of a tree - what connects to what - from a two-dimensional image of it. However, the projected branches often cross in the image: the tree projects to a planar graph, and the inverse problem of reconstructing the topology of the tree from that of the graph is ill-posed. We regularize this problem with a generative, parametric tree-growth model. Under this model, reconstruction is possible in linear time if one knows the direction of each edge in the graph - which edge endpoint is closer to the root of the tree - but becomes NP-hard if the directions are not known. For the latter case, we present a heuristic search algorithm to estimate the most likely topology of a rooted, three-dimensional tree from a single two-dimensional image. Experimental results on retinal vessel, plant root, and synthetic tree data sets show that our methodology is both accurate and efficient. PMID:26353004
Transformable topological mechanical metamaterials
NASA Astrophysics Data System (ADS)
Rocklin, D. Zeb; Zhou, Shangnan; Sun, Kai; Mao, Xiaoming
We present a class of mechanical metamaterials characterized by a uniform soft deformation--a large, zero-energy homogeneous elastic deformation mode of the structure--that may be used to induce topological transitions and dramatically change mechanical and acoustic properties of the structure. We show that the existence of such a mode determines certain exotic mechanical and acoustic properties of the structure and its activation can reversibly alter and tune these properties. This serves as the basis for a design principle for mechanical metamaterials with tunable properties. When the structure's uniform mode is primarily dilational (shearing) its surface (bulk) possesses phonon modes with vanishing speed of sound. Maxwell lattices comprise a subclass of such material which, owing to their critical coordination number (four, in 2D), necessarily possess such a uniform zero mode, often termed a Guest mode, and which may be topologically polarized, such that zero modes are moved from one edge to another. We show that activating the deformation can alter the shear/dilational character of the mode and topologically polarize the structure, thereby altering the bulk and surface properties at no significant energy cost. arXiv:1510.06389 [cond-mat.soft] NWO, Delta Institute of Physics, ICAM fellowship (DZR) and NSF Grant PHY-1402971 at University of Michigan (KS).
Schizophrenia and abnormal brain network hubs
Rubinov, Mikail; Bullmore, Ed.
2013-01-01
Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia. PMID:24174905
Retinal abnormalities in β-thalassemia major.
Bhoiwala, Devang L; Dunaief, Joshua L
2016-01-01
Patients with beta (β)-thalassemia (β-TM: β-thalassemia major, β-TI: β-thalassemia intermedia) have a variety of complications that may affect all organs, including the eye. Ocular abnormalities include retinal pigment epithelial degeneration, angioid streaks, venous tortuosity, night blindness, visual field defects, decreased visual acuity, color vision abnormalities, and acute visual loss. Patients with β-thalassemia major are transfusion dependent and require iron chelation therapy to survive. Retinal degeneration may result from either retinal iron accumulation from transfusion-induced iron overload or retinal toxicity induced by iron chelation therapy. Some who were never treated with iron chelation therapy exhibited retinopathy, and others receiving iron chelation therapy had chelator-induced retinopathy. We will focus on retinal abnormalities present in individuals with β-thalassemia major viewed in light of new findings on the mechanisms and manifestations of retinal iron toxicity. PMID:26325202
Schizophrenia and abnormal brain network hubs.
Rubinov, Mikail; Bullmore, Ed
2013-09-01
Schizophrenia is a heterogeneous psychiatric disorder of unknown cause or characteristic pathology. Clinical neuroscientists increasingly postulate that schizophrenia is a disorder of brain network organization. In this article we discuss the conceptual framework of this dysconnection hypothesis, describe the predominant methodological paradigm for testing this hypothesis, and review recent evidence for disruption of central/hub brain regions, as a promising example of this hypothesis. We summarize studies of brain hubs in large-scale structural and functional brain networks and find strong evidence for network abnormalities of prefrontal hubs, and moderate evidence for network abnormalities of limbic, temporal, and parietal hubs. Future studies are needed to differentiate network dysfunction from previously observed gray- and white-matter abnormalities of these hubs, and to link endogenous network dysfunction phenotypes with perceptual, behavioral, and cognitive clinical phenotypes of schizophrenia.
The management of abnormal haemostasis in the ICU.
Retter, A; Barrett, N A
2015-01-01
The aetiology and management of haemostatic abnormalities in critical care patients are considered in this narrative review. The mechanisms of normal haemostasis and derangements that occur as a result of sepsis and organ dysfunction are discussed. Finally, the management of haemostatic abnormalities as they relate to critical care practice are considered, including the management of heparin-induced thrombocytopenia.
Spirometric abnormalities among welders
Rastogi, S.K.; Gupta, B.N.; Husain, T.; Mathur, N.; Srivastava, S. )
1991-10-01
A group of manual welders age group 13-60 years having a mean exposure period of 12.4 {plus minus} 1.12 years were subjected to spirometry to evaluate the prevalence of spirometric abnormalities. The welders showed a significantly higher prevalence of respiratory impairment than that observed among the unexposed controls as a result of exposure to welding gases which comprised fine particles of lead, zinc, chromium, and manganese. This occurred despite the lower concentration of the pollutants at the work place. In the expose group, the smoking welders showed a prevalence of respiratory impairment significantly higher than that observed in the nonsmoking welders. The results of the pulmonary function tests showed a predominantly restrictive type of pulmonary impairment followed by a mixed ventilatory defect among the welders. The effect of age on pulmonary impairment was not discernible. Welders exposed for over 10 years showed a prevalence of respiratory abnormalities significantly higher than those exposed for less than 10 years. Smoking also had a contributory role.
Topology based methods for vector field comparisons
NASA Astrophysics Data System (ADS)
Batra, Rajesh Kumar
Vector fields are commonly found in almost all branches of the physical sciences. Aerodynamics, dynamical systems, electromagnetism, and global climate modeling are a few examples. These multivariate data fields are often large, and no general, automated method exists for comparing these fields. Existing methods require either subjective visual judgments, or data interface compatibility, or domain specific knowledge. A topology based method intrinsically eliminates all of the above limitations and has the additional advantage of significantly compressing the vector field by representing only key features of the flow. Therefore, large databases are compactly represented and quickly searched. Topology is a natural framework for the study of many vector fields. It provides rules of an organizing principle, a flow grammar, that can describe and connect together the properties common to flows. Helman and Hesselink first introduced automated methods to extract and visualize this grammar. This work extends their method by introducing automated methods for vector topology comparison. Basic two-dimensional flows are first compared. The theory is extended to compare three-dimensional flow fields and the topology on no-slip surfaces. Concepts from graph theory and linear programming are utilized to solve these problems. Finally, the first automated method for higher order singularity comparisons is introduced using mathematical theories from geometric (Clifford) algebra.
Transportation Network Topologies
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Scott, John M.
2004-01-01
A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21PstP thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within
Transportation Network Topologies
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.; Scott, John
2004-01-01
A discomforting reality has materialized on the transportation scene: our existing air and ground infrastructures will not scale to meet our nation's 21st century demands and expectations for mobility, commerce, safety, and security. The consequence of inaction is diminished quality of life and economic opportunity in the 21st century. Clearly, new thinking is required for transportation that can scale to meet to the realities of a networked, knowledge-based economy in which the value of time is a new coin of the realm. This paper proposes a framework, or topology, for thinking about the problem of scalability of the system of networks that comprise the aviation system. This framework highlights the role of integrated communication-navigation-surveillance systems in enabling scalability of future air transportation networks. Scalability, in this vein, is a goal of the recently formed Joint Planning and Development Office for the Next Generation Air Transportation System. New foundations for 21st thinking about air transportation are underpinned by several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems. Complexity science and modern network theory give rise to one of the technological developments of importance. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of scalability, efficiency, robustness, resilience, and other metrics. The paper offers an air transportation system topology as framework for transportation system innovation. Successful outcomes of innovation in air transportation could lay the foundations for new paradigms for aircraft and their operating capabilities, air transportation system architectures, and airspace architectures and procedural concepts. The topology proposed considers air transportation as a system of networks, within which
A non-topological mechanism for negative linear compressibility.
Binns, Jack; Kamenev, Konstantin V; Marriott, Katie E R; McIntyre, Garry J; Moggach, Stephen A; Murrie, Mark; Parsons, Simon
2016-06-14
Negative linear compressibility (NLC), the increase in a unit cell length with pressure, is a rare phenomenon in which hydrostatic compression of a structure promotes expansion along one dimension. It is usually a consequence of crystal structure topology. We show that the source of NLC in the Co(ii) citrate metal-organic framework UTSA-16 lies not in framework topology, but in the relative torsional flexibility of Co(ii)-centred tetrahedra compared to more rigid octahedra. PMID:27203683
A non-topological mechanism for negative linear compressibility.
Binns, Jack; Kamenev, Konstantin V; Marriott, Katie E R; McIntyre, Garry J; Moggach, Stephen A; Murrie, Mark; Parsons, Simon
2016-06-14
Negative linear compressibility (NLC), the increase in a unit cell length with pressure, is a rare phenomenon in which hydrostatic compression of a structure promotes expansion along one dimension. It is usually a consequence of crystal structure topology. We show that the source of NLC in the Co(ii) citrate metal-organic framework UTSA-16 lies not in framework topology, but in the relative torsional flexibility of Co(ii)-centred tetrahedra compared to more rigid octahedra.
Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R
2014-10-24
Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients.
Topological proximity effect in a topological insulator hybrid.
Shoman, T; Takayama, A; Sato, T; Souma, S; Takahashi, T; Oguchi, T; Segawa, Kouji; Ando, Yoichi
2015-03-12
It is well known that a topologically protected gapless state appears at an interface between a topological insulator and an ordinary insulator; however, the physics of the interface between a topological insulator and a metal has largely been left unexplored. Here we report a novel phenomenon termed topological proximity effect, which occurs between a metallic ultrathin film and a three-dimensional topological insulator. We study one bilayer of bismuth metal grown on the three-dimensional topological insulator material TlBiSe2, and by using spin- and angle-resolved photoemission spectroscopy, we found evidence that the topological Dirac-cone state migrates from the surface of TlBiSe2 to the attached one-bilayer Bi. We show that such a migration of the topological state occurs as a result of strong spin-dependent hybridization of the wave functions at the interface, which is also supported by our first-principles calculations. This discovery points to a new route to manipulating the topological properties of materials.
Kanona, Hala; Virk, Jagdeep Singh; Kumar, Gaurav; Chawda, Sanjiv; Khalil, Sherif
2015-01-01
The aim of this study is to increase awareness of rare presentations, diagnostic difficulties alongside management of conductive hearing loss and ossicular abnormalities. We report the case of a 13-year-old female reporting progressive left-sided hearing loss and high resolution computed tomography was initially reported as normal. Exploratory tympanotomy revealed an absent stapedius tendon and lack of connection between the stapes superstructure and footplate. The footplate was fixed. Stapedotomy and stapes prosthesis insertion resulted in closure of the air-bone gap by 50 dB. A review of world literature was performed using MedLine. Middle ear ossicular discontinuity can result in significant conductive hearing loss. This can be managed effectively with surgery to help restore hearing. However, some patients may not be suitable or decline surgical intervention and can be managed safely conservatively. PMID:25628909
Clinical correlates of MRI white matter abnormalities in schizophrenia.
Hoptman, J Matthew
2010-01-01
Schizophrenia is a severe psychiatric illness that can be accompanied by positive symptoms, negative symptoms, and cognitive dysfunctions in most cognitive domains. Neuroimaging studies have focused on understanding the relationship between schizophrenia and brain abnormalities. Most of these have focused on the well-documented gray matter abnormalities. However, emphasis has recently been placed on white matter abnormalities associated with the disorder. A number of studies have found reduced white matter volumes in schizophrenia and abnormalities in genes associated with white matter. The clinical significance of these abnormalities is just beginning to be understood. The advent of diffusion tensor imaging (DTI) has been particularly important in this regard, as it allows us to draw inferences regarding the organization of white matter in the brain. In this article, I will review recent work showing clinical correlates of neuroimaging-based white matter abnormalities in schizophrenia.
ERIC Educational Resources Information Center
Lynch, Mark
2012-01-01
We continue our study of topological X-rays begun in Lynch ["Topological X-rays and MRI's," iJMEST 33(3) (2002), pp. 389-392]. We modify our definition of a topological magnetic resonance imaging and give an affirmative answer to the question posed there: Can we identify a closed set in a box by defining X-rays to probe the interior and without…
The topology of gyroscopic metamaterials
NASA Astrophysics Data System (ADS)
Nash, Lisa M.; Kleckner, Dustin; Read, Alismari; Vitelli, Vincenzo; Turner, Ari M.; Irvine, William T. M.
Mechanical metamaterials can have topologically protected states, much like their electronic and optical counterparts. We recently demonstrated this in experiment by building a meta-material composed of coupled gyroscopes on a honeycomb lattice. This system breaks time-reversal symmetry and exhibits topologically protected one-way edge modes. In this talk we will explore the relationship between the topology of the band structure and the geometry of the lattice.
Scaling in topological properties of brain networks
Singh, Soibam Shyamchand; Khundrakpam, Budhachandra; Reid, Andrew T.; Lewis, John D.; Evans, Alan C.; Ishrat, Romana; Sharma, B. Indrajit; Singh, R. K. Brojen
2016-01-01
The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature. The parameters which characterize topological properties of brain networks follow one parameter scaling theory in all levels of network structure, which reveals the self-similar rules governing the network structure. Further, the calculated fractal dimensions of brain networks of different species are found to decrease when one goes from lower to higher level species which implicates the more ordered and self-organized topography at higher level species. The sparsely distributed hubs in brain networks may be most influencing nodes but their absence may not cause network breakdown, and centrality parameters characterizing them also follow one parameter scaling law indicating self-similar roles of these hubs at different levels of organization in brain networks. The local-community-paradigm decomposition plot and calculated local-community-paradigm-correlation co-efficient of brain networks also shows the evidence for self-organization in these networks. PMID:27112129
Scaling in topological properties of brain networks.
Singh, Soibam Shyamchand; Khundrakpam, Budhachandra; Reid, Andrew T; Lewis, John D; Evans, Alan C; Ishrat, Romana; Sharma, B Indrajit; Singh, R K Brojen
2016-01-01
The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature. The parameters which characterize topological properties of brain networks follow one parameter scaling theory in all levels of network structure, which reveals the self-similar rules governing the network structure. Further, the calculated fractal dimensions of brain networks of different species are found to decrease when one goes from lower to higher level species which implicates the more ordered and self-organized topography at higher level species. The sparsely distributed hubs in brain networks may be most influencing nodes but their absence may not cause network breakdown, and centrality parameters characterizing them also follow one parameter scaling law indicating self-similar roles of these hubs at different levels of organization in brain networks. The local-community-paradigm decomposition plot and calculated local-community-paradigm-correlation co-efficient of brain networks also shows the evidence for self-organization in these networks. PMID:27112129
Scaling in topological properties of brain networks.
Singh, Soibam Shyamchand; Khundrakpam, Budhachandra; Reid, Andrew T; Lewis, John D; Evans, Alan C; Ishrat, Romana; Sharma, B Indrajit; Singh, R K Brojen
2016-04-26
The organization in brain networks shows highly modular features with weak inter-modular interaction. The topology of the networks involves emergence of modules and sub-modules at different levels of constitution governed by fractal laws that are signatures of self-organization in complex networks. The modular organization, in terms of modular mass, inter-modular, and intra-modular interaction, also obeys fractal nature. The parameters which characterize topological properties of brain networks follow one parameter scaling theory in all levels of network structure, which reveals the self-similar rules governing the network structure. Further, the calculated fractal dimensions of brain networks of different species are found to decrease when one goes from lower to higher level species which implicates the more ordered and self-organized topography at higher level species. The sparsely distributed hubs in brain networks may be most influencing nodes but their absence may not cause network breakdown, and centrality parameters characterizing them also follow one parameter scaling law indicating self-similar roles of these hubs at different levels of organization in brain networks. The local-community-paradigm decomposition plot and calculated local-community-paradigm-correlation co-efficient of brain networks also shows the evidence for self-organization in these networks.
OPTIMAL NETWORK TOPOLOGY DESIGN
NASA Technical Reports Server (NTRS)
Yuen, J. H.
1994-01-01
This program was developed as part of a research study on the topology design and performance analysis for the Space Station Information System (SSIS) network. It uses an efficient algorithm to generate candidate network designs (consisting of subsets of the set of all network components) in increasing order of their total costs, and checks each design to see if it forms an acceptable network. This technique gives the true cost-optimal network, and is particularly useful when the network has many constraints and not too many components. It is intended that this new design technique consider all important performance measures explicitly and take into account the constraints due to various technical feasibilities. In the current program, technical constraints are taken care of by the user properly forming the starting set of candidate components (e.g. nonfeasible links are not included). As subsets are generated, they are tested to see if they form an acceptable network by checking that all requirements are satisfied. Thus the first acceptable subset encountered gives the cost-optimal topology satisfying all given constraints. The user must sort the set of "feasible" link elements in increasing order of their costs. The program prompts the user for the following information for each link: 1) cost, 2) connectivity (number of stations connected by the link), and 3) the stations connected by that link. Unless instructed to stop, the program generates all possible acceptable networks in increasing order of their total costs. The program is written only to generate topologies that are simply connected. Tests on reliability, delay, and other performance measures are discussed in the documentation, but have not been incorporated into the program. This program is written in PASCAL for interactive execution and has been implemented on an IBM PC series computer operating under PC DOS. The disk contains source code only. This program was developed in 1985.
Holey topological thermoelectrics
NASA Astrophysics Data System (ADS)
Tretiakov, O. A.; Abanov, Ar.; Sinova, Jairo
2011-09-01
We study the thermoelectric properties of three-dimensional topological insulators with many holes (or pores) in the bulk. We show that at high density of these holes, the thermoelectric figure of merit, ZT, can be large due to the contribution of the conducting surfaces and the suppressed phonon thermal conductivity. The maximum efficiency can be tuned by an induced gap in the surface states dispersion through tunneling or external magnetic fields. The large values of ZT, much higher than unity for reasonable parameters, make this system a strong candidate for applications in heat management of nanodevices, especially at low temperatures.
Topological forms of information
Baudot, Pierre; Bennequin, Daniel
2015-01-13
We propose that entropy is a universal co-homological class in a theory associated to a family of observable quantities and a family of probability distributions. Three cases are presented: 1) classical probabilities and random variables; 2) quantum probabilities and observable operators; 3) dynamic probabilities and observation trees. This gives rise to a new kind of topology for information processes. We discuss briefly its application to complex data, in particular to the structures of information flows in biological systems. This short note summarizes results obtained during the last years by the authors. The proofs are not included, but the definitions and theorems are stated with precision.
Topological spectrum of classical configurations
Nettel, Francisco; Quevedo, Hernando
2007-11-14
For any classical field configuration or mechanical system with a finite number of degrees of freedom we introduce the concept of topological spectrum. It is based upon the assumption that for any classical configuration there exists a principle fiber bundle that contains all the physical and geometric information of the configuration. The topological spectrum follows from the investigation of the corresponding topological invariants. Examples are given which illustrate the procedure and the significance of the topological spectrum as a discretization relationship among the parameters that determine the physical meaning of classical configurations.
Monolayer Topological Insulators: Silicene, Germanene, and Stanene
NASA Astrophysics Data System (ADS)
Ezawa, Motohiko
2015-12-01
We report the recent progress on the theoretical aspects of monolayer topological insulators including silicene, germanene and stanene, which are monolayer honeycomb structures of silicon, germanium and tin, respectively. They show quantum spin Hall effects in nature due to the spin-orbit interaction. The band gap can be tuned by applying perpendicular electric field, which induces a topological phase transition. We also analyze the topological properties of generic honeycomb systems together with the classification of topological insulators. Phase diagrams of topological insulators and superconductors in honeycomb systems are explicitly determined. We also investigate topological electronics including a topological field-effect transistor, the topological Kirchhoff's law and the topological spin-valleytronics.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Topology and Dynamics of Active Nematic Vesicles
Keber, Felix C.; Loiseau, Etienne; Sanchez, Tim; DeCamp, Stephen J.; Giomi, Luca; Bowick, Mark J.; Marchetti, M. Cristina; Dogic, Zvonimir; Bausch, Andreas R.
2015-01-01
Engineering synthetic materials that mimic the remarkable complexity of living organisms is a fundamental challenge in science and technology. We study the spatiotemporal patterns that emerge when an active nematic film of microtubules and molecular motors is encapsulated within a shape-changing lipid vesicle. Unlike in equilibrium systems, where defects are largely static structures, in active nematics defects move spontaneously and can be described as self-propelled particles. The combination of activity, topological constraints and vesicle deformability produces a myriad of dynamical states. We highlight two dynamical modes: a tunable periodic state that oscillates between two defect configurations, and shape-changing vesicles with streaming filopodia-like protrusions. These results demonstrate how biomimetic materials can be obtained when topological constraints are used to control the non-equilibrium dynamics of active matter. PMID:25190790
Topology of three-dimensional separated flows
NASA Technical Reports Server (NTRS)
Tobak, M.; Peake, D. J.
1981-01-01
Based on the hypothesis that patterns of skin-friction lines and external streamlines reflect the properties of continuous vector fields, topology rules define a small number of singular points (nodes, saddle points, and foci) that characterize the patterns on the surface and on particular projections of the flow (e.g., the crossflow plane). The restricted number of singular points and the rules that they obey are considered as an organizing principle whose finite number of elements can be combined in various ways to connect together the properties common to all steady three dimensional viscous flows. Introduction of a distinction between local and global properties of the flow resolves an ambiguity in the proper definition of a three dimensional separated flow. Adoption of the notions of topological structure, structural stability, and bifurcation provides a framework to describe how three dimensional separated flows originate and succeed each other as the relevant parameters of the problem are varied.
Ictal Cardiac Ryhthym Abnormalities
Ali, Rushna
2016-01-01
Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic–clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227
Ictal Cardiac Ryhthym Abnormalities.
Ali, Rushna
2016-01-01
Cardiac rhythm abnormalities in the context of epilepsy are a well-known phenomenon. However, they are under-recognized and often missed. The pathophysiology of these events is unclear. Bradycardia and asystole are preceded by seizure onset suggesting ictal propagation into the cortex impacting cardiac autonomic function, and the insula and amygdala being possible culprits. Sudden unexpected death in epilepsy (SUDEP) refers to the unanticipated death of a patient with epilepsy not related to status epilepticus, trauma, drowning, or suicide. Frequent refractory generalized tonic-clonic seizures, anti-epileptic polytherapy, and prolonged duration of epilepsy are some of the commonly identified risk factors for SUDEP. However, the most consistent risk factor out of these is an increased frequency of generalized tonic-clonic seizures (GTC). Prevention of SUDEP is extremely important in patients with chronic, generalized epilepsy. Since increased frequency of GTCS is the most consistently reported risk factor for SUDEP, effective seizure control is the most important preventive strategy. PMID:27347227
Communication and abnormal behaviour.
Crown, S
1979-01-01
In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential).
Communication and abnormal behaviour.
Crown, S
1979-01-01
In this paper the similarities between normal and abnormal behaviour are emphasized and selected aspects of communication, normal and aberrant, between persons are explored. Communication in a social system may be verbal or non-verbal: one person's actions cause a response in another person. This response may be cognitive, behavioural or physiological. Communication may be approached through the individual, the social situation or social interaction. Psychoanalysis approaches the individual in terms of the coded communications of psychoneurotic symptoms or psychotic behaviour; the humanist-existential approach is concerned more with emotional expression. Both approaches emphasize the development of individual identity. The interaction between persons and their social background is stressed. Relevant are sociological concepts such as illness behaviour, stigma, labelling, institutionalization and compliance. Two approaches to social interactions are considered: the gamesplaying metaphor, e.g. back pain as a psychosocial manipulation--the 'pain game'; and the 'spiral of reciprocal perspectives' which emphasizes the interactional complexities of social perceptions. Communicatory aspects of psychological treatments are noted: learning a particular metaphor such as 'resolution' of the problem (psychotherapy), learning more 'rewarding' behaviour (learning theory) or learning authenticity or self-actualization (humanist-existential). PMID:261653
Whitaker, Lucy; Critchley, Hilary O D
2016-07-01
Abnormal uterine bleeding (AUB) is a common and debilitating condition with high direct and indirect costs. AUB frequently co-exists with fibroids, but the relationship between the two remains incompletely understood and in many women the identification of fibroids may be incidental to a menstrual bleeding complaint. A structured approach for establishing the cause using the Fédération International de Gynécologie et d'Obstétrique (FIGO) PALM-COEIN (Polyp, Adenomyosis, Leiomyoma, Malignancy (and hyperplasia), Coagulopathy, Ovulatory disorders, Endometrial, Iatrogenic and Not otherwise classified) classification system will facilitate accurate diagnosis and inform treatment options. Office hysteroscopy and increasing sophisticated imaging will assist provision of robust evidence for the underlying cause. Increased availability of medical options has expanded the choice for women and many will no longer need to recourse to potentially complicated surgery. Treatment must remain individualised and encompass the impact of pressure symptoms, desire for retention of fertility and contraceptive needs, as well as address the management of AUB in order to achieve improved quality of life. PMID:26803558
Abortion for fetal abnormality.
Maclean, N E
1979-07-25
I wish to thank Dr. Pauline Bennett for her reply (NZ Med J, 13 June). She has demonstrated well that in dealing with sensitive difficult issues such as abortion for fetal abnormality, the one thing the doctor is not recommended to do is to speak the truth] I am prompted to write this letter for 2 reasons. Firstly, the excellent letter written by Dr. A. M. Rutherford (NZ Med J, 13 June) on the subject of abortion stated, "The most disturbing feature about the whole controversy is the 'blunting of our conscience'." When the doctors are not encouraged to be honest with patients then indeed our conscience has been blunted. Secondly, I watched Holocaust last night, and cannot refrain from stating that I see frightening parallels between our liberal abortion policy and the activities of the Nazis. As I watched the "mental patients" being herded into the shed for gassing by the polite, tidy, white coated medical staff, and then heard the compassionate, sensitive, letter of the hospital authorities to the relatives of the deceased, the parallel became obvious. The mental patients were weak, defenseless, burdensome, and uneconomic; the unborn are weak, defenseless, burdensome, and uneconomic. The hospital authority's letter was acceptable in many ways, acceptable except that its words bore no relation to the truth. It is said that the "first casualty of war is the truth". Whether that war involves the Jews, or the insane, or the unborn, the statement would seem correct.
On Topological Properties of Functions.
ERIC Educational Resources Information Center
Hazzan, Orit
1996-01-01
Focuses on the understanding of the concept of function and presents discussions of the topological properties of functions and of students' mathematical thinking when they are asked to determine whether a property of a function is a topological property or not. Contains 15 references. (DDR)
Topology in physics - a perspective
Balachandran, A.P. )
1994-04-01
This article, written in honor of Fritz Rohrlich, briefly surveys the role of topology in physics. The essay is a partly historical and occasionally technical essay on topology in particle physics (soliton and monopole physics) and quantum physics. 11 refs., 2 figs.
Concept Model on Topological Learning
NASA Astrophysics Data System (ADS)
Ae, Tadashi; Kioi, Kazumasa
2010-11-01
We discuss a new model for concept based on topological learning, where the learning process on the neural network is represented by mathematical topology. The topological learning of neural networks is summarized by a quotient of input space and the hierarchical step induces a tree where each node corresponds to a quotient. In general, the concept acquisition is a difficult problem, but the emotion for a subject is represented by providing the questions to a person. Therefore, a kind of concept is captured by such data and the answer sheet can be mapped into a topology consisting of trees. In this paper, we will discuss a way of mapping the emotional concept to a topological learning model.
Signatures of topological Josephson junctions
NASA Astrophysics Data System (ADS)
Peng, Yang; Pientka, Falko; Berg, Erez; Oreg, Yuval; von Oppen, Felix
2016-08-01
Quasiparticle poisoning and diabatic transitions may significantly narrow the window for the experimental observation of the 4 π -periodic dc Josephson effect predicted for topological Josephson junctions. Here, we show that switching-current measurements provide accessible and robust signatures for topological superconductivity which persist in the presence of quasiparticle poisoning processes. Such measurements provide access to the phase-dependent subgap spectrum and Josephson currents of the topological junction when incorporating it into an asymmetric SQUID together with a conventional Josephson junction with large critical current. We also argue that pump-probe experiments with multiple current pulses can be used to measure the quasiparticle poisoning rates of the topological junction. The proposed signatures are particularly robust, even in the presence of Zeeman fields and spin-orbit coupling, when focusing on short Josephson junctions. Finally, we also consider microwave excitations of short topological Josephson junctions which may complement switching-current measurements.
Holographic correspondence in topological superconductors
NASA Astrophysics Data System (ADS)
Palumbo, Giandomenico; Pachos, Jiannis K.
2016-09-01
We analytically derive a compatible family of effective field theories that uniquely describe topological superconductors in 3D, their 2D boundary and their 1D defect lines. We start by deriving the topological field theory of a 3D topological superconductor in class DIII, which is consistent with its symmetries. Then we identify the effective theory of a 2D topological superconductor in class D living on the gapped boundary of the 3D system. By employing the holographic correspondence we derive the effective chiral conformal field theory that describes the gapless modes living on the defect lines or effective boundary of the class D topological superconductor. We demonstrate that the chiral central charge is given in terms of the 3D winding number of the bulk which by its turn is equal to the Chern number of its gapped boundary.
Akasaka, Hironari; So, Shui-Ping; Ruan, Ke-He
2015-06-16
In vascular inflammation, prostaglandin E2 (PGE₂) is largely biosynthesized by microsomal PGE₂ synthase-1 (mPGES-1), competing with other downstream eicosanoid-synthesizing enzymes, such as PGIS, a synthase of a vascular protector prostacyclin (PGI₂), to isomerize the cyclooxygenase (COX)-2-derived prostaglandin H2 (PGH₂). In this study, we found that a majority of the product from the cells co-expressing human COX-2, mPGES-1, and PGIS was PGE₂. We hypothesize that the molecular and cellular mechanisms are related to the post-translational endoplasmic reticulum (ER) arrangement of those enzymes. A set of fusion enzymes, COX-2-linker [10 amino acids (aa)]-PGIS and COX-2-linker (22 amino acids)-PGIS, were created as "The Bioruler", in which the 10 and 22 amino acids are defined linkers with known helical structures and distances (14.4 and 30.8 Å, respectively). Our experiments have shown that the efficiency of PGI₂ biosynthesis was reduced when the separation distance increased from 10 to 22 amino acids. When COX-2-10aa-PGIS (with a 14.4 Å separation) was co-expressed with mPGES-1 on the ER membrane, a major product was PGE₂, but not PGI₂. However, expression of COX-2-10aa-PGIS and mPGES-1 on a separated ER with a distance of ≫30.8 Å reduced the level of PGE₂ production. These data indicated that the mPGES-1 is "complex-likely" colocalized with COX-2 within a distance of 14.4 Å. In addition, the cells co-expressing COX-1-10aa-PGIS and mPGES-1 produced PGI₂ mainly, but not PGE₂. This indicates that mPGES-1 is expressed much farther from COX-1. These findings have led to proposed models showing the different post-translational ER organization between COX-2 and COX-1 with respect to the topological arrangement of the mPGES-1 during vascular inflammation.
Detectability of nontrivial topologies
Kunz, M.; Aghanim, N.; Riazuelo, A.; Forni, O.
2008-01-15
We study how the uncertainty in the cosmological parameters impacts on the detection of topological signals, focussing on three cubic torus universes and using three tests: the information content, the S/N statistic, and the Bayesian evidence. We find, within the concordance cosmological model, that 3D torus universes with a size of {approx}29 Gpc{sup 3} or larger cannot be detected. For the toroidal models that can be detected, the detection significance is primarily influenced by {omega}{sub {lambda}}, which enters both in the noise amplitude due to the Integrated Sachs-Wolfe effect and in the size of the causal horizon which limits the accessible fundamental domain. On large angular scales l<40, only {omega}{sub {lambda}} significantly alters the detection for all three estimators considered here.
Probing Topological Superconductors
NASA Astrophysics Data System (ADS)
Schmeltzer, David
2015-03-01
The presence of attractive interaction on the surface of a 3D topological insulator which is characterized by spinors carrying a Berry phase of π gives rise to superconductivity that support space time half vortices (Majorana zero modes). We construct the effective dual action for the superconductor with the vortices, and show that the 2 n Majorana fermions are localized and can be replaced with n spinless fermions. The effect of the Majorana zero modes can be observed trough the the Andreev cross reflection when metallic leads are attached to the superconductor. The presence of the Majorana fermions can be detected with transverse sound waves. We have computed the effect of elastic strain fields and obtain an anomalous response indicating the presence of the Majorana fermions.
Transportation Network Topologies
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia (Editor)
2004-01-01
The existing U.S. hub-and-spoke air transportation system is reaching saturation. Major aspects of the current system, such as capacity, safety, mobility, customer satisfaction, security, communications, and ecological effects, require improvements. The changing dynamics - increased presence of general aviation, unmanned autonomous vehicles, military aircraft in civil airspace as part of homeland defense - contributes to growing complexity of airspace. The system has proven remarkably resistant to change. NASA Langley Research Center and the National Institute of Aerospace conducted a workshop on Transportation Network Topologies on 9-10 December 2003 in Williamsburg, Virginia. The workshop aimed to examine the feasibility of traditional methods for complex system analysis and design as well as potential novel alternatives in application to transportation systems, identify state-of-the-art models and methods, conduct gap analysis, and thus to lay a foundation for establishing a focused research program in complex systems applied to air transportation.
Gear tooth topological modification
NASA Technical Reports Server (NTRS)
Kish, Jules G. (Inventor); Isabelle, Charles (Inventor)
1994-01-01
The topology of parallel axis gears, such as spur and helical gears is modified to produce quieter and more smoothly operating gear sets with more uniform load distribution. A finite element analysis of the gear in its operating mode is made to produce a plot of radial and tangential deflections of the pinion and gear tooth surfaces which will occur when the gears are loaded during operation. The resultant plot is then inverted to produce a plot, or set of coordinates, which will define the path of travel of the gear tooth grinding wheel, which path is a mirror image of the plot of the finite element analysis. The resulting gears, when subjected to operating loads, will thus be deflected tangentially and radially to their optimum operating, or theoretical true involute, positions so as to produce quieter, smoother, and more evenly loaded gear trains.
ERIC Educational Resources Information Center
Aviation/Space, 1980
1980-01-01
This is a list of aerospace organizations and other groups that provides educators with assistance and information in specific areas. Both government and nongovernment organizations are included. (Author/SA)
Haem degradation in abnormal haemoglobins.
Brown, S B; Docherty, J C
1978-01-01
The coupled oxidation of certain abnormal haemoglobins leads to different bile-pigment isomer distributions from that of normal haemoglobin. The isomer pattern may be correlated with the structure of the abnormal haemoglobin in the neighbourhood of the haem pocket. This is support for haem degradation by an intramolecular reaction. PMID:708385
Systemic abnormalities in liver disease
Minemura, Masami; Tajiri, Kazuto; Shimizu, Yukihiro
2009-01-01
Systemic abnormalities often occur in patients with liver disease. In particular, cardiopulmonary or renal diseases accompanied by advanced liver disease can be serious and may determine the quality of life and prognosis of patients. Therefore, both hepatologists and non-hepatologists should pay attention to such abnormalities in the management of patients with liver diseases. PMID:19554648
Abnormal pressure in hydrocarbon environments
Law, B.E.; Spencer, C.W.
1998-01-01
Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.
Electrocardiograph abnormalities revealed during laparoscopy.
Nijjer, Sukhjinder; Dubrey, Simon William
2010-01-01
This brief case presents a well patient in whom an electrocardiograph abnormality consistent with an accessory pathway was found during a routine procedure. We present the electrocardiographs, explain the underlying condition, and consider why the abnormality was revealed in this manner.
Chromosomal abnormalities in human sperm
Martin, R.H.
1985-01-01
The ability to analyze human sperm chromosome complements after penetration of zona pellucida-free hamster eggs provides the first opportunity to study the frequency and type of chromosomal abnormalities in human gametes. Two large-scale studies have provided information on normal men. We have studied 1,426 sperm complements from 45 normal men and found an abnormality rate of 8.9%. Brandriff et al. (5) found 8.1% abnormal complements in 909 sperm from 4 men. The distribution of numerical and structural abnormalities was markedly dissimilar in the 2 studies. The frequency of aneuploidy was 5% in our sample and only 1.6% in Brandriff's, perhaps reflecting individual variability among donors. The frequency of 24,YY sperm was low: 0/1,426 and 1/909. This suggests that the estimates of nondisjunction based on fluorescent Y body data (1% to 5%) are not accurate. We have also studied men at increased risk of sperm chromosomal abnormalities. The frequency of chromosomally unbalanced sperm in 6 men heterozygous for structural abnormalities varied dramatically: 77% for t11;22, 32% for t6;14, 19% for t5;18, 13% for t14;21, and 0% for inv 3 and 7. We have also studied 13 cancer patients before and after radiotherapy and demonstrated a significant dose-dependent increase of sperm chromosome abnormalities (numerical and structural) 36 months after radiation treatment.
Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok
2015-01-01
Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with
Ceschin, Rafael; Lee, Vince K; Schmithorst, Vince; Panigrahy, Ashok
2015-01-01
Preterm born children with spastic diplegia type of cerebral palsy and white matter injury or periventricular leukomalacia (PVL), are known to have motor, visual and cognitive impairments. Most diffusion tensor imaging (DTI) studies performed in this group have demonstrated widespread abnormalities using averaged deterministic tractography and voxel-based DTI measurements. Little is known about structural network correlates of white matter topography and reorganization in preterm cerebral palsy, despite the availability of new therapies and the need for brain imaging biomarkers. Here, we combined novel post-processing methodology of probabilistic tractography data in this preterm cohort to improve spatial and regional delineation of longitudinal cortical association tract abnormalities using an along-tract approach, and compared these data to structural DTI cortical network topology analysis. DTI images were acquired on 16 preterm children with cerebral palsy (mean age 5.6 ± 4) and 75 healthy controls (mean age 5.7 ± 3.4). Despite mean tract analysis, Tract-Based Spatial Statistics (TBSS) and voxel-based morphometry (VBM) demonstrating diffusely reduced fractional anisotropy (FA) reduction in all white matter tracts, the along-tract analysis improved the detection of regional tract vulnerability. The along-tract map-structural network topology correlates revealed two associations: (1) reduced regional posterior-anterior gradient in FA of the longitudinal visual cortical association tracts (inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, optic radiation, posterior thalamic radiation) correlated with reduced posterior-anterior gradient of intra-regional (nodal efficiency) metrics with relative sparing of frontal and temporal regions; and (2) reduced regional FA within frontal-thalamic-striatal white matter pathways (anterior limb/anterior thalamic radiation, superior longitudinal fasciculus and cortical spinal tract) correlated with
ERIC Educational Resources Information Center
Chian, Edward S. K.; DeWalle, Foppe B.
1978-01-01
Presents water analysis literature for 1978. This review is concerned with organics, and it covers: (1) detergents and surfactants; (2) aliphatic and aromatic hydrocarbons; (3) pesticides and chlorinated hydrocarbons; and (4) naturally occurring organics. A list of 208 references is also presented. (HM)
ERIC Educational Resources Information Center
Callison, Daniel
2000-01-01
Focuses on "organizers," tools or techniques that provide identification and classification along with possible relationships or connections among ideas, concepts, and issues. Discusses David Ausubel's research and ideas concerning advance organizers; the implications of Ausubel's theory to curriculum and teaching; "webbing," a specific…
Schwerdtfeger, Peter; Wirz, Lukas N; Avery, James
2015-01-01
Fullerenes are carbon molecules that form polyhedral cages. Their bond structures are exactly the planar cubic graphs that have only pentagon and hexagon faces. Strikingly, a number of chemical properties of a fullerene can be derived from its graph structure. A rich mathematics of cubic planar graphs and fullerene graphs has grown since they were studied by Goldberg, Coxeter, and others in the early 20th century, and many mathematical properties of fullerenes have found simple and beautiful solutions. Yet many interesting chemical and mathematical problems in the field remain open. In this paper, we present a general overview of recent topological and graph theoretical developments in fullerene research over the past two decades, describing both solved and open problems. WIREs Comput Mol Sci 2015, 5:96–145. doi: 10.1002/wcms.1207 Conflict of interest: The authors have declared no conflicts of interest for this article. For further resources related to this article, please visit the WIREs website. PMID:25678935
Comprehensible Presentation of Topological Information
Weber, Gunther H.; Beketayev, Kenes; Bremer, Peer-Timo; Hamann, Bernd; Haranczyk, Maciej; Hlawitschka, Mario; Pascucci, Valerio
2012-03-05
Topological information has proven very valuable in the analysis of scientific data. An important challenge that remains is presenting this highly abstract information in a way that it is comprehensible even if one does not have an in-depth background in topology. Furthermore, it is often desirable to combine the structural insight gained by topological analysis with complementary information, such as geometric information. We present an overview over methods that use metaphors to make topological information more accessible to non-expert users, and we demonstrate their applicability to a range of scientific data sets. With the increasingly complex output of exascale simulations, the importance of having effective means of providing a comprehensible, abstract overview over data will grow. The techniques that we present will serve as an important foundation for this purpose.
Neuroimaging of schizophrenia: structural abnormalities and pathophysiological implications
Buckley, Peter F
2005-01-01
Schizophrenia, once considered a psychological malady devoid of any organic brain substrate, has been the focus of intense neuroimaging research. Findings reveal mild but generalized tissue loss as well as more selective focal loss. It is unclear whether these abnormalities reflect neurodevelopmental or neurodegenerative processes, or some combination of each; current evidence favors a preponderance of neurodevelopmental abnormalities. The pattern of brain abnormalities is also influenced by environmental and genetic risk factors, as well as by the course (and possibly even treatment) of this illness. These findings are described in this article. PMID:18568069
Experimental Realizations of Magnetic Topological Insulator and Topological Crystalline Insulator
NASA Astrophysics Data System (ADS)
Xu, Suyang
2013-03-01
Over the past few years the experimental research on three-dimensional topological insulators have emerged as one of the most rapidly developing fields in condensed matter physics. In this talk, we report on two new developments in the field: The first part is on the dynamic interplay between ferromagnetism and the Z2 topological insulator state (leading to a magnetic topological insulator). We present our spin-resolved photoemission and magnetic dichroic experiments on MBE grown films where a hedgehog-like spin texture is revealed on the magnetically ordered surface of Mn-Bi2Se3 revealing a Berry's phase gradient in energy-momentum space of the crystal. A chemically/electrically tunable Berry's phase switch is further demonstrated via the tuning of the spin groundstate in Mn-Bi2Se3 revealed in our data (Nature Physics 8, 616 (2012)). The second part of this talk describes our experimental observation of a new topological phase of matter, namely a topological crystalline insulator where space group symmetries replace the role of time-reversal symmetry in an otherwise Z2 topological insulator predicted in theory. We experimentally investigate the possibility of a mirror symmetry protected topological phase transition in the Pb1-xSnxTe alloy system, which has long been known to contain an even number of band inversions based on band theory. Our experimental results show that at a composition below the theoretically predicted band inversion, the system is fully gapped, whereas in the band-inverted regime, the surface exhibits even number of spin-polarized Dirac cone states revealing mirror-protected topological order (Nature Communications 3, 1192 (2012)) distinct from that observed in Z2 topological insulators. We discuss future experimental possibilities opened up by these new developments in topological insulators research. This work is in collaboration with M. Neupane, C. Liu, N. Alidoust, I. Belopolski, D. Qian, D.M. Zhang, A. Richardella, A. Marcinkova, Q
Refining the shifted topological vertex
Drissi, L. B.; Jehjouh, H.; Saidi, E. H.
2009-01-15
We study aspects of the refining and shifting properties of the 3d MacMahon function C{sub 3}(q) used in topological string theory and BKP hierarchy. We derive the explicit expressions of the shifted topological vertex S{sub {lambda}}{sub {mu}}{sub {nu}}(q) and its refined version T{sub {lambda}}{sub {mu}}{sub {nu}}(q,t). These vertices complete results in literature.
Topological excitations in semiconductor heterostructures
Koushik, R.; Mukerjee, Subroto; Ghosh, Arindam; Baenninger, Matthias; Narayan, Vijay; Pepper, Michael; Farrer, Ian; Ritchie, David A.
2013-12-04
Topological defects play an important role in the melting phenomena in two-dimensions. In this work, we report experimental observation of topological defect induced melting in two-dimensional electron systems (2DES) in the presence of strong Coulomb interaction and disorder. The phenomenon is characterised by measurement of conductivity which goes to zero in a Berezinskii-Kosterlitz-Thouless like transition. Further evidence is provided via low-frequency conductivity noise measurements.
Topics in topological band systems
NASA Astrophysics Data System (ADS)
Huang, Zhoushen
The discovery of integer quantum Hall effect and its subsequent theoretical formulation heralded a new paradigm of thinking in condensed matter physics, which has by now blossomed into the rapidly growing field of topological phases. In this work we investigate several mutually related topics in the framework of topological band theory. In Chapter 2, we study solutions to boundary states on a lattice and see how they are related to the bulk topology. To elicit a real space manifestation of the non-trivial topology, the presence of a physical edge is not strictly necessary. We study two other possibilities, namely the entanglement spectrum associated with an imaginary spatial boundary, and the localization centers of Wannier functions, in Chapters 3,4, and 5. Topological classification through discrete indices is so far possible only for systems described by pure quantum states---in the existing scheme, quantization is lost for systems in mixed states. In Chapter 6, we present a program through which discrete topological indices can be defined for topological band systems at finite temperature, based on Uhlmann's parallel transport of density matrices. The potential of topologocal insulators in realistic applications lies in the existence of Dirac nodes on its surface spectrum. Dirac physics, however, is not exclusive to TI surfaces. In a recently discovered class of materials known as Weyl semimetals, energy nodes which emit linear dispersions also occur in the bulk material. In Chapter 7, we study the possibility of resonance states induced by localized impurities near the nodal energy in Weyl semimetals, which will help us in understanding the stability of density-of-state suppression at the energy nodes. Finally, in Chapter 8, we apply the topological characterization developed for noninteracting particles to a class of interacting spin models in 3D, which are generalizations of Kitaev's honeycomb model, and identify several exotic quantum phases such as spin
Quantum gates with topological phases
Ionicioiu, Radu
2003-09-01
We investigate two models for performing topological quantum gates with the Aharonov-Bohm (AB) and Aharonov-Casher (AC) effects. Topological one- and two-qubit Abelian phases can be enacted with the AB effect using charge qubits, whereas the AC effect can be used to perform all single-qubit gates (Abelian and non-Abelian) for spin qubits. Possible experimental setups suitable for a solid-state implementation are briefly discussed.
Neems, Daniel S.; Garza-Gongora, Arturo G.; Smith, Erica D.; Kosak, Steven T.
2016-01-01
The linear distribution of genes across chromosomes and the spatial localization of genes within the nucleus are related to their transcriptional regulation. The mechanistic consequences of linear gene order, and how it may relate to the functional output of genome organization, remain to be fully resolved, however. Here we tested the relationship between linear and 3D organization of gene regulation during myogenesis. Our analysis has identified a subset of topologically associated domains (TADs) that are significantly enriched for muscle-specific genes. These lineage-enriched TADs demonstrate an expression-dependent pattern of nuclear organization that influences the positioning of adjacent nonenriched TADs. Therefore, lineage-enriched TADs inform cell-specific genome organization during myogenesis. The reduction of allelic spatial distance of one of these domains, which contains Myogenin, correlates with reduced transcriptional variability, identifying a potential role for lineage-specific nuclear topology. Using a fusion-based strategy to decouple mitosis and myotube formation, we demonstrate that the cell-specific topology of syncytial nuclei is dependent on cell division. We propose that the effects of linear and spatial organization of gene loci on gene regulation are linked through TAD architecture, and that mitosis is critical for establishing nuclear topologies during cellular differentiation. PMID:26957603
Neems, Daniel S; Garza-Gongora, Arturo G; Smith, Erica D; Kosak, Steven T
2016-03-22
The linear distribution of genes across chromosomes and the spatial localization of genes within the nucleus are related to their transcriptional regulation. The mechanistic consequences of linear gene order, and how it may relate to the functional output of genome organization, remain to be fully resolved, however. Here we tested the relationship between linear and 3D organization of gene regulation during myogenesis. Our analysis has identified a subset of topologically associated domains (TADs) that are significantly enriched for muscle-specific genes. These lineage-enriched TADs demonstrate an expression-dependent pattern of nuclear organization that influences the positioning of adjacent nonenriched TADs. Therefore, lineage-enriched TADs inform cell-specific genome organization during myogenesis. The reduction of allelic spatial distance of one of these domains, which contains Myogenin, correlates with reduced transcriptional variability, identifying a potential role for lineage-specific nuclear topology. Using a fusion-based strategy to decouple mitosis and myotube formation, we demonstrate that the cell-specific topology of syncytial nuclei is dependent on cell division. We propose that the effects of linear and spatial organization of gene loci on gene regulation are linked through TAD architecture, and that mitosis is critical for establishing nuclear topologies during cellular differentiation. PMID:26957603
Topological surface states in nodal superconductors.
Schnyder, Andreas P; Brydon, Philip M R
2015-06-24
Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states.
Topological Insulators from Group Cohomology
NASA Astrophysics Data System (ADS)
Alexandradinata, A.; Wang, Zhijun; Bernevig, B. Andrei
2016-04-01
We classify insulators by generalized symmetries that combine space-time transformations with quasimomentum translations. Our group-cohomological classification generalizes the nonsymmorphic space groups, which extend point groups by real-space translations; i.e., nonsymmorphic symmetries unavoidably translate the spatial origin by a fraction of the lattice period. Here, we further extend nonsymmorphic groups by reciprocal translations, thus placing real and quasimomentum space on equal footing. We propose that group cohomology provides a symmetry-based classification of quasimomentum manifolds, which in turn determines the band topology. In this sense, cohomology underlies band topology. Our claim is exemplified by the first theory of time-reversal-invariant insulators with nonsymmorphic spatial symmetries. These insulators may be described as "piecewise topological," in the sense that subtopologies describe the different high-symmetry submanifolds of the Brillouin zone, and the various subtopologies must be pieced together to form a globally consistent topology. The subtopologies that we discover include a glide-symmetric analog of the quantum spin Hall effect, an hourglass-flow topology (exemplified by our recently proposed KHgSb material class), and quantized non-Abelian polarizations. Our cohomological classification results in an atypical bulk-boundary correspondence for our topological insulators.
Kinks in topological soft matter
NASA Astrophysics Data System (ADS)
Chen, Bryan; Upadhyaya, Nitin; Vitelli, Vincenzo
2014-03-01
Weakly connected mechanical systems near the isostatic threshold are fragile in the sense that they exhibit large deformations in response to tiny perturbations. Kane and Lubensky have recently defined a new topological invariant of isostatic mechanical lattices which leads within linear elasticity to zero energy modes at the boundary akin to the edge modes studied in topological quantum matter. What happens when such prototype topological soft materials are subject to an external mechanical perturbation? In our work, we demonstrate that the linear soft modes can often integrate to non-linear deformations described by topological solitons. These solitons that are moving kinks between distinct topological phases are the basic excitations of fragile mechanical systems. We illustrate the general soliton construction in the context of a 1D chain of rotors connected by springs that can be considered the archetype of a topological mechanical structure. In the continuum limit, this chain is described by a Lorentz invariant ϕ4 theory and the corresponding solitons exhibit a Lorentz contraction of the width, as their speed is raised.
Topological Photonics for Continuous Media
NASA Astrophysics Data System (ADS)
Silveirinha, Mario
Photonic crystals have revolutionized light-based technologies during the last three decades. Notably, it was recently discovered that the light propagation in photonic crystals may depend on some topological characteristics determined by the manner how the light states are mutually entangled. The usual topological classification of photonic crystals explores the fact that these structures are periodic. The periodicity is essential to ensure that the underlying wave vector space is a closed surface with no boundary. In this talk, we prove that it is possible calculate Chern invariants for a wide class of continuous bianisotropic electromagnetic media with no intrinsic periodicity. The nontrivial topology of the relevant continuous materials is linked with the emergence of edge states. Moreover, we will demonstrate that continuous photonic media with the time-reversal symmetry can be topologically characterized by a Z2 integer. This novel classification extends for the first time the theory of electronic topological insulators to a wide range of photonic platforms, and is expected to have an impact in the design of novel photonic systems that enable a topologically protected transport of optical energy. This work is supported in part by Fundacao para a Ciencia e a Tecnologia Grant Number PTDC/EEI-TEL/4543/2014.
Topological BF field theory description of topological insulators
Cho, Gil Young; Moore, Joel E.
2011-06-15
Research Highlights: > We show that a BF theory is the effective theory of 2D and 3D topological insulators. > The non-gauge-invariance of the bulk theory yields surface terms for a bosonized Dirac fermion. > The 'axion' term in electromagnetism is correctly obtained from gapped surfaces. > Generalizations to possible fractional phases are discussed in closing. - Abstract: Topological phases of matter are described universally by topological field theories in the same way that symmetry-breaking phases of matter are described by Landau-Ginzburg field theories. We propose that topological insulators in two and three dimensions are described by a version of abelian BF theory. For the two-dimensional topological insulator or quantum spin Hall state, this description is essentially equivalent to a pair of Chern-Simons theories, consistent with the realization of this phase as paired integer quantum Hall effect states. The BF description can be motivated from the local excitations produced when a {pi} flux is threaded through this state. For the three-dimensional topological insulator, the BF description is less obvious but quite versatile: it contains a gapless surface Dirac fermion when time-reversal-symmetry is preserved and yields 'axion electrodynamics', i.e., an electromagnetic E . B term, when time-reversal symmetry is broken and the surfaces are gapped. Just as changing the coefficients and charges of 2D Chern-Simons theory allows one to obtain fractional quantum Hall states starting from integer states, BF theory could also describe (at a macroscopic level) fractional 3D topological insulators with fractional statistics of point-like and line-like objects.
Birth and upgrowth of the Hox topological domains during evolution.
Deschamps, Jacqueline
2016-03-01
The recently discovered chromatin compartments called topologically associating domains (TADs) are essential for the three-dimensional organization of regulatory interactions driving gene expression. A new study documents the emergence of a TAD flanking the amphioxus Hox cluster, prefiguring the vertebrate anterior Hox TAD and preceding the appearance of the concurring posterior Hox TAD.
Birth and upgrowth of the Hox topological domains during evolution.
Deschamps, Jacqueline
2016-03-01
The recently discovered chromatin compartments called topologically associating domains (TADs) are essential for the three-dimensional organization of regulatory interactions driving gene expression. A new study documents the emergence of a TAD flanking the amphioxus Hox cluster, prefiguring the vertebrate anterior Hox TAD and preceding the appearance of the concurring posterior Hox TAD. PMID:26906681
Kidney transplantation in abnormal bladder
Mishra, Shashi K.; Muthu, V.; Rajapurkar, Mohan M.; Desai, Mahesh R.
2007-01-01
Structural urologic abnormalities resulting in dysfunctional lower urinary tract leading to end stage renal disease may constitute 15% patients in the adult population and up to 20-30% in the pediatric population. A patient with an abnormal bladder, who is approaching end stage renal disease, needs careful evaluation of the lower urinary tract to plan the most satisfactory technical approach to the transplant procedure. Past experience of different authors can give an insight into the management and outcome of these patients. This review revisits the current literature available on transplantation in abnormal bladder and summarizes the clinical approach towards handling this group of difficult transplant patients. We add on our experience as we discuss the various issues. The outcome of renal transplant in abnormal bladder is not adversely affected when done in a reconstructed bladder. Correct preoperative evaluation, certain technical modification during transplant and postoperative care is mandatory to avoid complications. Knowledge of the abnormal bladder should allow successful transplantation with good outcome. PMID:19718334
Nonlinear optical and optoelectronic studies of topological insulator surfaces
NASA Astrophysics Data System (ADS)
McIver, James W.
Since their experimental discovery in 2008, topological insulators have been catapulted to the forefront of condensed matter physics research owing to their potential to realize both exciting new technologies as well as novel electronic phases that are inaccessible in any other material class. Their exotic properties arise from a rare quantum organization of its electrons called "topological order,'' which evades the conventional broken symmetry based-classification scheme used to categorize nearly every other state of ordered matter. Instead, topologically ordered phases are classified by topological invariants, which characterize the phase of an electron's wavefunction as it moves through momentum space. When a topologically ordered phase is interfaced with an ordinary phase, such as the vacuum, a novel metallic state appears at their shared boundary. In topological insulators, this results in the formation of a two-dimensional metallic state that spans all of its surfaces. The surface state electronic spectrum is characterized by a single linearly dispersing and helically spin-polarized Dirac cone that is robust against disorder. The helical nature of the surface Dirac cone is highly novel because the Dirac electrons carry a net magnetic moment and are capable of transporting 100% spin-polarized electrical currents, which are the long-sought electronic properties needed for many spin-based electronic applications. However, owing to the small bulk band gap and intrinsic electronic doping inherent to these materials, isolating the surface electronic response from the bulk has proven to be a major experimental obstacle. In this thesis, we demonstrate the means by which light can be used to isolate and study the surface electronic response of topological insulators using optoelectronic and nonlinear optical techniques. In chapter 1, we overview the physics of topological order and topological insulators. In chapter 2, we show how polarized light can be used to
NASA Astrophysics Data System (ADS)
Ilyushin, G. D.; Pisarevskii, Yu. V.
2015-11-01
The supramolecular chemistry of vanadyl sulfates, consisting of polyhedral clusters V(O, OH, H2O)6 with octahedral O coordination (M polyhedra) and SO4 tetrahedra (T polyhedra) and forming molecular (island) and framework 3D MT structures, is considered. Algorithms of combinatorial and topological analysis are developed that make it possible to reconstruct (based on known structural data) the symmetry and topological code of the matrix convergent self-assembly of crystal structure. Cluster modeling of the selfassembly of molecular (island) MT structures of the V2O2(H2O)6(SO4)2 · 4H2O (anorthominasragrite (ANM)) and V2O2(H2O)6(SO4)2 (bobjonesite (BBN)) compositions and topologically different framework 3D MT structures with covalent bonds, V2O2(SO4)2 (pauflerite (PAF) and synthetic phase (SYN)), is performed. A 3D reconstruction of the self-assembly mechanism in the form nanocluster precursor S 0 3 → primary chain → S 1 3 microlayer S 2 3 → microframework S 3 3 has revealed an invariant type of cyclic cluster precursor M2T2 (with a symmetry g = overline 1 ) for all compounds; differences in the self-assembly mechanisms are found for ANM and BBN in the stage of formation of primary chain S 1 3 and for PAF and SYN in the stage of formation of microlayer S 2 3. Basic 2D and 3D nets are presented in the form of graphs, the sites of which correspond to the positions of centroids of cluster precursors M2T2. The same topological type of basic 2D nets (4.4.4.4) is ascertained for all compounds. A basic 3D net corresponding to a simple cubic structure of Po (coordination number (CN) = 6) is established for ANM, SYN, and PAF; the basic 3D net for BBN corresponds to the cubic F structure of Cu (CN = 12).
Effective Topological Charge Cancelation Mechanism
Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo
2016-01-01
Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. PMID:27250777
Topological Insulators at Room Temperature
Zhang, Haijun; Liu, Chao-Xing; Qi, Xiao-Liang; Dai, Xi; Fang, Zhong; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.
2010-03-25
Topological insulators are new states of quantum matter with surface states protected by the time-reversal symmetry. In this work, we perform first-principle electronic structure calculations for Sb{sub 2}Te{sub 3}, Sb{sub 2}Se{sub 3}, Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} crystals. Our calculations predict that Sb{sub 2}Te{sub 3}, Bi{sub 2}T e{sub 3} and Bi{sub 2}Se{sub 3} are topological insulators, while Sb{sub 2}Se{sub 3} is not. In particular, Bi{sub 2}Se{sub 3} has a topologically non-trivial energy gap of 0.3eV , suitable for room temperature applications. We present a simple and unified continuum model which captures the salient topological features of this class of materials. These topological insulators have robust surface states consisting of a single Dirac cone at the {Lambda} point.
Effective Topological Charge Cancelation Mechanism
NASA Astrophysics Data System (ADS)
Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo
2016-06-01
Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy.
Charge and spin topological insulators
Kopaev, Yu. V. Gorbatsevich, A. A.; Belyavskii, V. I.
2011-09-15
The topologically nontrivial states of matter-charge and spin topological insulators, which exhibit, respectively, properties of the integer quantum Hall effect and the quantum spin Hall effect-are discussed. The topological characteristics (invariant with respect to weak adiabatic changes in the Hamiltonian parameters) which lead to such states are considered. The model of a 2D hexagonal lattice having symmetries broken with respect to time reversal and spatial inversion which was proposed by Haldane and marked the beginning of unprecedented activity in the study of topologically nontrivial states is discussed. This model relates the microscopic nature of the symmetry breaking with respect to the time reversal to the occurrence of spontaneous orbital currents which circulate within a unit cell. Such currents become zero upon summation over the unit cell, but they may form spreading current states at the surface which are similar to the edge current states under the quantum Hall effect. The first model of spontaneous currents (exciton insulator model) is considered, and the possibility of implementing new topologically nontrivial states in this model is discussed.
Polydispersity-driven topological defects as order-restoring excitations.
Yao, Zhenwei; Olvera de la Cruz, Monica
2014-04-01
The engineering of defects in crystalline matter has been extensively exploited to modify the mechanical and electrical properties of many materials. Recent experiments on manipulating extended defects in graphene, for example, show that defects direct the flow of electric charges. The fascinating possibilities offered by defects in two dimensions, known as topological defects, to control material properties provide great motivation to perform fundamental investigations to uncover their role in various systems. Previous studies mostly focus on topological defects in 2D crystals on curved surfaces. On flat geometries, topological defects can be introduced via density inhomogeneities. We investigate here topological defects due to size polydispersity on flat surfaces. Size polydispersity is usually an inevitable feature of a large variety of systems. In this work, simulations show well-organized induced topological defects around an impurity particle of a wrong size. These patterns are not found in systems of identical particles. Our work demonstrates that in polydispersed systems topological defects play the role of restoring order. The simulations show a perfect hexagonal lattice beyond a small defective region around the impurity particle. Elasticity theory has demonstrated an analogy between the elementary topological defects named disclinations to electric charges by associating a charge to a disclination, whose sign depends on the number of its nearest neighbors. Size polydispersity is shown numerically here to be an essential ingredient to understand short-range attractions between like-charge disclinations. Our study suggests that size polydispersity has a promising potential to engineer defects in various systems including nanoparticles and colloidal crystals.
Plexciton Dirac points and topological modes
NASA Astrophysics Data System (ADS)
Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; Onbasli, Mehmet C.; Ross, Caroline A.; Bulovic, Vladimir; Baldo, Marc A.
2016-06-01
Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.
Plexciton Dirac points and topological modes
Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; Onbasli, Mehmet C.; Ross, Caroline A.; Bulovic, Vladimir; Baldo, Marc A.
2016-01-01
Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale. PMID:27278258
Plexciton Dirac points and topological modes.
Yuen-Zhou, Joel; Saikin, Semion K; Zhu, Tony; Onbasli, Mehmet C; Ross, Caroline A; Bulovic, Vladimir; Baldo, Marc A
2016-01-01
Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface of this plexcitonic system. Our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale. PMID:27278258
Plexciton Dirac points and topological modes
Yuen-Zhou, Joel; Saikin, Semion K.; Zhu, Tony; Onbasli, Mehmet C.; Ross, Caroline A.; Bulovic, Vladimir; Baldo, Marc A.
2016-06-09
Plexcitons are polaritonic modes that result from the strong coupling between excitons and plasmons. Here, we consider plexcitons emerging from the interaction of excitons in an organic molecular layer with surface plasmons in a metallic film. We predict the emergence of Dirac cones in the two-dimensional band-structure of plexcitons due to the inherent alignment of the excitonic transitions in the organic layer. An external magnetic field opens a gap between the Dirac cones if the plexciton system is interfaced with a magneto-optical layer. The resulting energy gap becomes populated with topologically protected one-way modes, which travel at the interface ofmore » this plexcitonic system. Furthermore, our theoretical proposal suggests that plexcitons are a convenient and simple platform for the exploration of exotic phases of matter and for the control of energy flow at the nanoscale.« less
Complex patterns of abnormal heartbeats
NASA Technical Reports Server (NTRS)
Schulte-Frohlinde, Verena; Ashkenazy, Yosef; Goldberger, Ary L.; Ivanov, Plamen Ch; Costa, Madalena; Morley-Davies, Adrian; Stanley, H. Eugene; Glass, Leon
2002-01-01
Individuals having frequent abnormal heartbeats interspersed with normal heartbeats may be at an increased risk of sudden cardiac death. However, mechanistic understanding of such cardiac arrhythmias is limited. We present a visual and qualitative method to display statistical properties of abnormal heartbeats. We introduce dynamical "heartprints" which reveal characteristic patterns in long clinical records encompassing approximately 10(5) heartbeats and may provide information about underlying mechanisms. We test if these dynamics can be reproduced by model simulations in which abnormal heartbeats are generated (i) randomly, (ii) at a fixed time interval following a preceding normal heartbeat, or (iii) by an independent oscillator that may or may not interact with the normal heartbeat. We compare the results of these three models and test their limitations to comprehensively simulate the statistical features of selected clinical records. This work introduces methods that can be used to test mathematical models of arrhythmogenesis and to develop a new understanding of underlying electrophysiologic mechanisms of cardiac arrhythmia.
Topology and hemodynamics of the cortical cerebrovascular system
Hirsch, Sven; Reichold, Johannes; Schneider, Matthias; Székely, Gábor; Weber, Bruno
2012-01-01
The cerebrovascular system continuously delivers oxygen and energy substrates to the brain, which is one of the organs with the highest basal energy requirement in mammals. Discontinuities in the delivery lead to fatal consequences for the brain tissue. A detailed understanding of the structure of the cerebrovascular system is important for a multitude of (patho-)physiological cerebral processes and many noninvasive functional imaging methods rely on a signal that originates from the vasculature. Furthermore, neurodegenerative diseases often involve the cerebrovascular system and could contribute to neuronal loss. In this review, we focus on the cortical vascular system. In the first part, we present the current knowledge of the vascular anatomy. This is followed by a theory of topology and its application to vascular biology. We then discuss possible interactions between cerebral blood flow and vascular topology, before summarizing the existing body of the literature on quantitative cerebrovascular topology. PMID:22472613
[Emotion Disorders and Abnormal Perspiration].
Umeda, Satoshi
2016-08-01
This article reviewed the relationship between emotional disorders and abnormal perspiration. First, I focused on local brain areas related to emotional processing, and summarized the functions of the emotional network involving those local areas. Functional disorders followed by the damage in the amygdala, orbitofrontal cortex, and insular cortex were reviewed, including related abnormal perspiration. I then addressed the mechanisms of how autonomic disorders influence emotional processing. Finally, possible future directions for integrated understanding of the connection between neural activities and bodily reactions were discussed. PMID:27503817
[Emotion Disorders and Abnormal Perspiration].
Umeda, Satoshi
2016-08-01
This article reviewed the relationship between emotional disorders and abnormal perspiration. First, I focused on local brain areas related to emotional processing, and summarized the functions of the emotional network involving those local areas. Functional disorders followed by the damage in the amygdala, orbitofrontal cortex, and insular cortex were reviewed, including related abnormal perspiration. I then addressed the mechanisms of how autonomic disorders influence emotional processing. Finally, possible future directions for integrated understanding of the connection between neural activities and bodily reactions were discussed.
Fractionalized topological defects in optical lattices
NASA Astrophysics Data System (ADS)
Zhang, Xing-Hai; Fan, Wen-Jun; Shi, Jin-Wei; Kou, Su-Peng
2015-10-01
Topological objects are interesting topics in various fields of physics ranging from condensed matter physics to the grand unified and superstring theories. Among those, ultracold atoms provide a playground to study the complex topological objects. In this paper we present a proposal to realize an optical lattice with stable fractionalized topological objects. In particular, we generate the fractionalized topological fluxes and fractionalized skyrmions on two-dimensional optical lattices and fractionalized monopoles on three-dimensional optical lattices. These results offer a new approach to study the quantum many-body systems on optical lattices of ultracold quantum gases with controllable topological defects, including dislocations, topological fluxes and monopoles.
Finite volume QCD at fixed topological charge
Aoki, Sinya; Fukaya, Hidenori; Hashimoto, Shoji; Onogi, Tetsuya
2007-09-01
In finite volume the partition function of QCD with a given {theta} is a sum of different topological sectors with a weight primarily determined by the topological susceptibility. If a physical observable is evaluated only in a fixed topological sector, the result deviates from the true expectation value by an amount proportional to the inverse space-time volume 1/V. Using the saddle point expansion, we derive formulas to express the correction due to the fixed topological charge in terms of a 1/V expansion. Applying this formula, we propose a class of methods to determine the topological susceptibility in QCD from various correlation functions calculated in a fixed topological sector.
Dyons in topological field theories
NASA Astrophysics Data System (ADS)
Temple-Raston, M.
1991-10-01
We examine a class of topological field theories defined by Lagrangians that under certain conditions can be written as the sum of two characteristic numbers or winding numbers. Therefore, the action or the energy is a topological invariant and stable under perturbations. The sufficient conditions required for stability take the form of first-order field equations, analogous to the self-duality and Bogomol'nyi equations in Yang-Mills(-Higgs) theory. Solutions to the first-order equations automatically satisfy the full field equations. We show the existence of nontrivial, nonsingular, minimum energy spherically symmetric dyon solutions and that they are stable. We also discuss evidence for a dual field theory to Yang-Mills-Higgs in topological field theory. The existence of dual field theories and electric monopoles is predicted by Montonen and Olive.
Topological exploration of subterranean environments
Silver, D.; Ferguson, D.; Morris, A.; Thayer, S.
2006-06-15
The need for reliable maps of subterranean spaces too hazardous for humans to occupy has motivated the development of robotic mapping tools suited to these domains. As such, this work describes a system developed for autonomous topological exploration of mine environments to facilitate the process of mapping. The exploration framework is based upon the interaction of three main components: Node detection, node matching, and edge exploration. Node detection robustly identifies mine corridor intersections from sensor data and uses these features as the building blocks of a topological map. Node matching compares newly observed intersections to those stored in the map, providing global localization during exploration. Edge exploration translates topological exploration objectives into locomotion along mine corridors. This article describes both the robotic platform and the algorithms developed for exploration, and presents results from experiments conducted at a research coal mine near Pittsburgh, PA.
Topological Insulators from Electronic Superstructures
NASA Astrophysics Data System (ADS)
Sugita, Yusuke; Motome, Yukitoshi
2016-07-01
The possibility of realizing topological insulators by the spontaneous formation of electronic superstructures is theoretically investigated in a minimal two-orbital model including both the spin-orbit coupling and electron correlations on a triangular lattice. Using the mean-field approximation, we show that the model exhibits several different types of charge-ordered insulators, where the charge disproportionation forms a honeycomb or kagome superstructure. We find that the charge-ordered insulators in the presence of strong spin-orbit coupling can be topological insulators showing quantized spin Hall conductivity. Their band gap is dependent on electron correlations as well as the spin-orbit coupling, and even vanishes while showing the massless Dirac dispersion at the transition to a trivial charge-ordered insulator. Our results suggest a new route to realize and control topological states of quantum matter by the interplay between the spin-orbit coupling and electron correlations.
Quantum capacitance in topological insulators.
Xiu, Faxian; Meyer, Nicholas; Kou, Xufeng; He, Liang; Lang, Murong; Wang, Yong; Yu, Xinxin; Fedorov, Alexei V; Zou, Jin; Wang, Kang L
2012-01-01
Topological insulators show unique properties resulting from massless, Dirac-like surface states that are protected by time-reversal symmetry. Theory predicts that the surface states exhibit a quantum spin Hall effect with counter-propagating electrons carrying opposite spins in the absence of an external magnetic field. However, to date, the revelation of these states through conventional transport measurements remains a significant challenge owing to the predominance of bulk carriers. Here, we report on an experimental observation of Shubnikov-de Haas oscillations in quantum capacitance measurements, which originate from topological helical states. Unlike the traditional transport approach, the quantum capacitance measurements are remarkably alleviated from bulk interference at high excitation frequencies, thus enabling a distinction between the surface and bulk. We also demonstrate easy access to the surface states at relatively high temperatures up to 60 K. Our approach may eventually facilitate an exciting exploration of exotic topological properties at room temperature.
Topologically Dissociable Patterns of Development of the Human Cerebral Cortex
Vandekar, Simon N.; Shinohara, Russell T.; Raznahan, Armin; Roalf, David R.; Ross, Michelle; DeLeo, Nicholas; Ruparel, Kosha; Verma, Ragini; Wolf, Daniel H.; Gur, Ruben C.; Gur, Raquel E.
2015-01-01
Over 90 years ago, anatomists noted the cortex is thinner in sulci than gyri, suggesting that development may occur on a fine scale driven by local topology. However, studies of brain development in youth have focused on describing how cortical thickness varies over large-scale functional and anatomic regions. How the relationship between thickness and local sulcal topology arises in development is still not well understood. Here, we investigated the spatial relationships between cortical thickness, folding, and underlying white matter organization to elucidate the influence of local topology on human brain development. Our approach included using both T1-weighted imaging and diffusion tensor imaging (DTI) in a cross-sectional sample of 932 youths ages 8–21 studied as part of the Philadelphia Neurodevelopmental Cohort. Principal components analysis revealed separable development-related processes of regionally specific nonlinear cortical thickening (from ages 8–14) and widespread linear cortical thinning that have dissociable relationships with cortical topology. Whereas cortical thinning was most prominent in the depths of the sulci, early cortical thickening was present on the gyri. Furthermore, decline in mean diffusivity calculated from DTI in underlying white matter was correlated with cortical thinning, suggesting that cortical thinning is spatially associated with white matter development. Spatial permutation tests were used to assess the significance of these relationships. Together, these data demonstrate that cortical remodeling during youth occurs on a local topological scale and is associated with changes in white matter beneath the cortical surface. PMID:25589754
Chromosomal abnormalities associated with cyclopia and synophthalmia.
Howard, R O
1977-01-01
At the present time, essentially all known facts concerning cyclopia are consistent with some chromosomal disease, including clinical features of the pregnancy (fetal wastage, prematurity, intrauterine growth retardation, maternal age factor, complications of pregnancy), the generalized developmental abnormalities, specific ocular dysgenesis, by the high incidence of chromosomal abnormality already demonstrated, and the possibility of error in those cases of cyclopia with normal chromosomes. Even if chromosomal aberrations represent only one group of several different etiologic factors leading to cyclopia, at the present time chromosomal errors would seem to be the most common cause of cyclopia now recognized. Further studies will establish or disprove a chromosomal error in those instances which are now considered to be the result of an environmental factor alone or those with apparent familial patterns of inheritance. This apparent diverse origin of cyclopia can be clarified if future cyclopic specimens are carefully investigated. The evaluation should include a careful gross and microscopic examination of all organs, including the eye, and chromosome banding studies of all organs, including the eye, and chromosome banding studies of at least two cyclopic tissues. Then the presence or absence of multiple causative factors can be better evaluated. Images FIGURE 2 A FIGURE 2 B FIGURE 1 A FIGURE 1 B FIGURE 1 C FIGURE 1 D FIGURE 1 E FIGURE 1 F FIGURE 3 A FIGURE 3 B FIGURE 4 A FIGURE 4 B FIGURE 4 C FIGURE 4 D FIGURE 5 FIGURE 6 FIGURE 7 A FIGURE 7 B PMID:418547
Topological crystallography of gas hydrates.
Gudkovskikh, Sergey V; Kirov, Mikhail V
2015-07-01
A new approach to the investigation of the proton-disordered structure of clathrate hydrates is presented. This approach is based on topological crystallography. The quotient graphs were built for the unit cells of the cubic structure I and the hexagonal structure H. This is a very convenient way to represent the topology of a hydrogen-bonding network under periodic boundary conditions. The exact proton configuration statistics for the unit cells of structure I and structure H were obtained using the quotient graphs. In addition, the statistical analysis of the proton transfer along hydrogen-bonded chains was carried out. PMID:26131899
Topological Superconductivity in Dirac Semimetals
NASA Astrophysics Data System (ADS)
Sato, Masatoshi; Kobayashi, Shingo
Dirac semimetals host bulk band-touching Dirac points and a surface Fermi loop. We develop a theory of superconducting Dirac semimetals. Establishing a relation between the Dirac points and the surface Fermi loop, we clarify how the nontrivial topology of Dirac semimetals affects their superconducting state. We note that the unique orbital texture of Dirac points and a structural phase transition of the crystal favor symmetry-protected topological superconductivity with a quartet of surface Majorana fermions. We suggest the possible application of our theory to recently discovered superconducting states in Cd3As2.
Topological constraints on magnetic relaxation.
Yeates, A R; Hornig, G; Wilmot-Smith, A L
2010-08-20
The final state of turbulent magnetic relaxation in a reversed field pinch is well explained by Taylor's hypothesis. However, recent resistive-magnetohydrodynamic simulations of the relaxation of braided solar coronal loops have led to relaxed fields far from the Taylor state, despite the conservation of helicity. We point out the existence of an additional topological invariant in any flux tube with a nonzero field: the topological degree of the field line mapping. We conjecture that this constrains the relaxation, explaining why only one of three example simulations reaches the Taylor state. PMID:20868104
Electrocardiograph abnormalities in intracerebral hemorrhage.
Takeuchi, Satoru; Nagatani, Kimihiro; Otani, Naoki; Wada, Kojiro; Mori, Kentaro
2015-12-01
This study investigated the prevalence and type of electrocardiography (ECG) abnormalities, and their possible association with the clinical/radiological findings in 118 consecutive patients with non-traumatic, non-neoplastic intracerebral hemorrhage (ICH). ECG frequently demonstrates abnormalities in patients with ischemic stroke and subarachnoid hemorrhage, but little is known of ECG changes in ICH patients. Clinical and radiological information was retrospectively reviewed. ECG recordings that were obtained within 24 hours of the initial hemorrhage were analyzed. Sixty-six patients (56%) had one or more ECG abnormalities. The most frequent was ST depression (24%), followed by left ventricular hypertrophy (20%), corrected QT interval (QTc) prolongation (19%), and T wave inversion (19%). The logistic regression analysis demonstrated the following: insular involvement was an independent predictive factor of ST depression (p<0.001; odds ratio OR 10.18; 95% confidence interval [CI] 2.84-36.57); insular involvement (p<0.001; OR 23.98; 95% CI 4.91-117.11) and presence of intraventricular hemorrhage (p<0.001; OR 8.72; 95% CI 2.69-28.29) were independent predictive factors of QTc prolongation; deep hematoma location (p<0.001; OR 19.12; 95% CI 3.82-95.81) and hematoma volume >30 ml (p=0.001; OR 6.58; 95% CI 2.11-20.46) were independent predictive factors of T wave inversion. We demonstrate associations between ECG abnormalities and detailed characteristics of ICH.
EDITORIAL: Progress in topological insulators Progress in topological insulators
NASA Astrophysics Data System (ADS)
Morpurgo, Alberto; Trauzettel, Björn
2012-12-01
One of the most remarkable discoveries of the last few years in condensed matter physics is that the established distinction of crystalline solids in metals and insulators—which relies on the material band-structure—is incomplete. During the last several decades, the band structure of an uncountable variety of compounds of increasing complexity have been computed, and yet it has been overlooked that in the presence of sufficiently strong spin-orbit interaction, a new class of materials can be realized, that intrinsically behaves as insulators in their bulk and as metals at their surface. The discovery of this new class of materials was made only recently by Kane and Mele, during their theoretical studies of graphene in the presence of a sufficiently strong intrinsic spin-orbit interaction. Although the strength of the spin-orbit interaction in graphene is not sufficient to make the topological insulating state visible experimentally under currently reachable conditions, the validity and the originality of the concept were fully appreciated. Predictions for the occurrence of a two-dimensional topological insulating state in HgTe/CdTe heterostructures were made by Bernevig, Hughes and Zhang, and were followed by the experimental verification at Würzburg, in the Molenkamp group. Within a couple of years, this work brought the concept of topological insulator from an abstract theoretical discovery to an experimental reality, which stimulated further work. The concept of topological insulators was extended to the case of three-dimensional systems, for which an ideal experimental probe is angle-resolved photo-emission spectroscopy. Using this technique, specific theoretical predictions that had been made regarding the topological insulating character of different materials (e.g., for Bi-based compounds such as BiSb, Bi2Se3 or Bi2Te3), were verified experimentally through the direct observation of the Dirac surface fermions. This research was sufficient to put on
Topological crystalline metal in orthorhombic perovskite iridates.
Chen, Yige; Lu, Yuan-Ming; Kee, Hae-Young
2015-03-16
Since topological insulators were theoretically predicted and experimentally observed in semiconductors with strong spin-orbit coupling, increasing attention has been drawn to topological materials that host exotic surface states. These surface excitations are stable against perturbations since they are protected by global or spatial/lattice symmetries. Following the success in achieving various topological insulators, a tempting challenge now is to search for metallic materials with novel topological properties. Here we predict that orthorhombic perovskite iridates realize a new class of metals dubbed topological crystalline metals, which support zero-energy surface states protected by certain lattice symmetry. These surface states can be probed by photoemission and tunnelling experiments. Furthermore, we show that by applying magnetic fields, the topological crystalline metal can be driven into other topological metallic phases, with different topological properties and surface states.
A road to reality with topological superconductors
NASA Astrophysics Data System (ADS)
Beenakker, Carlo; Kouwenhoven, Leo
2016-07-01
Topological matter can host low-energy quasiparticles, which, in a superconductor, are Majorana fermions described by a real wavefunction. The absence of complex phases provides protection for quantum computations based on topological superconductivity.
Topological entropy of catalytic sets: Hypercycles revisited
NASA Astrophysics Data System (ADS)
Sardanyés, Josep; Duarte, Jorge; Januário, Cristina; Martins, Nuno
2012-02-01
The dynamics of catalytic networks have been widely studied over the last decades because of their implications in several fields like prebiotic evolution, virology, neural networks, immunology or ecology. One of the most studied mathematical bodies for catalytic networks was initially formulated in the context of prebiotic evolution, by means of the hypercycle theory. The hypercycle is a set of self-replicating species able to catalyze other replicator species within a cyclic architecture. Hypercyclic organization might arise from a quasispecies as a way to increase the informational containt surpassing the so-called error threshold. The catalytic coupling between replicators makes all the species to behave like a single and coherent evolutionary multimolecular unit. The inherent nonlinearities of catalytic interactions are responsible for the emergence of several types of dynamics, among them, chaos. In this article we begin with a brief review of the hypercycle theory focusing on its evolutionary implications as well as on different dynamics associated to different types of small catalytic networks. Then we study the properties of chaotic hypercycles with error-prone replication with symbolic dynamics theory, characterizing, by means of the theory of topological Markov chains, the topological entropy and the periods of the orbits of unimodal-like iterated maps obtained from the strange attractor. We will focus our study on some key parameters responsible for the structure of the catalytic network: mutation rates, autocatalytic and cross-catalytic interactions.
Topological field theory of dynamical systems
Ovchinnikov, Igor V.
2012-09-15
Here, it is shown that the path-integral representation of any stochastic or deterministic continuous-time dynamical model is a cohomological or Witten-type topological field theory, i.e., a model with global topological supersymmetry (Q-symmetry). As many other supersymmetries, Q-symmetry must be perturbatively stable due to what is generically known as non-renormalization theorems. As a result, all (equilibrium) dynamical models are divided into three major categories: Markovian models with unbroken Q-symmetry, chaotic models with Q-symmetry spontaneously broken on the mean-field level by, e.g., fractal invariant sets (e.g., strange attractors), and intermittent or self-organized critical (SOC) models with Q-symmetry dynamically broken by the condensation of instanton-antiinstanton configurations (earthquakes, avalanches, etc.) SOC is a full-dimensional phase separating chaos and Markovian dynamics. In the deterministic limit, however, antiinstantons disappear and SOC collapses into the 'edge of chaos.' Goldstone theorem stands behind spatio-temporal self-similarity of Q-broken phases known under such names as algebraic statistics of avalanches, 1/f noise, sensitivity to initial conditions, etc. Other fundamental differences of Q-broken phases is that they can be effectively viewed as quantum dynamics and that they must also have time-reversal symmetry spontaneously broken. Q-symmetry breaking in non-equilibrium situations (quenches, Barkhausen effect, etc.) is also briefly discussed.
Effects of topology on network evolution
NASA Astrophysics Data System (ADS)
Oikonomou, Panos; Cluzel, Philippe
2006-08-01
The ubiquity of scale-free topology in nature raises the question of whether this particular network design confers an evolutionary advantage. A series of studies has identified key principles controlling the growth and the dynamics of scale-free networks. Here, we use neuron-based networks of boolean components as a framework for modelling a large class of dynamical behaviours in both natural and artificial systems. Applying a training algorithm, we characterize how networks with distinct topologies evolve towards a pre-established target function through a process of random mutations and selection. We find that homogeneous random networks and scale-free networks exhibit drastically different evolutionary paths. Whereas homogeneous random networks accumulate neutral mutations and evolve by sparse punctuated steps, scale-free networks evolve rapidly and continuously. Remarkably, this latter property is robust to variations of the degree exponent. In contrast, homogeneous random networks require a specific tuning of their connectivity to optimize their ability to evolve. These results highlight an organizing principle that governs the evolution of complex networks and that can improve the design of engineered systems.
Topological Signatures for Population Admixture
Technology Transfer Automated Retrieval System (TEKTRAN)
Topological Signatures for Population AdmixtureDeniz Yorukoglu1, Filippo Utro1, David Kuhn2, Saugata Basu3 and Laxmi Parida1* Abstract Background: As populations with multi-linear transmission (i.e., mixing of genetic material from two parents, say) evolve over generations, the genetic transmission...
Phantom stars and topology change
DeBenedictis, Andrew; Garattini, Remo; Lobo, Francisco S. N.
2008-11-15
In this work, we consider time-dependent dark-energy star models, with an evolving parameter {omega} crossing the phantom divide {omega}=-1. Once in the phantom regime, the null energy condition is violated, which physically implies that the negative radial pressure exceeds the energy density. Therefore, an enormous negative pressure in the center may, in principle, imply a topology change, consequently opening up a tunnel and converting the dark-energy star into a wormhole. The criteria for this topology change are discussed and, in particular, we consider a Casimir energy approach involving quasilocal energy difference calculations that may reflect or measure the occurrence of a topology change. We denote these exotic geometries consisting of dark-energy stars (in the phantom regime) and phantom wormholes as phantom stars. The final product of this topological change, namely, phantom wormholes, have far-reaching physical and cosmological implications, as in addition to being used for interstellar shortcuts, an absurdly advanced civilization may manipulate these geometries to induce closed timelike curves, consequently violating causality.
Nuclear Pasta: Topology and Defects
NASA Astrophysics Data System (ADS)
da Silva Schneider, Andre; Horowitz, Charles; Berry, Don; Caplan, Matt; Briggs, Christian
2015-04-01
A layer of complex non-uniform phases of matter known as nuclear pasta is expected to exist at the base of the crust of neutron stars. Using large scale molecular dynamics we study the topology of some pasta shapes, the formation of defects and how these may affect properties of neutron star crusts.
Independent Study Project, Topic: Topology.
ERIC Educational Resources Information Center
Notre Dame High School, Easton, PA.
Using this guide and the four popular books noted in it, a student, working independently, will learn about some of the classical ideas and problems of topology: the Meobius strip and Klein bottle, the four color problem, genus of a surface, networks, Euler's formula, and the Jordan Curve Theorem. The unit culminates in a project of the students'…
Magnetic Field Topology in Jets
NASA Technical Reports Server (NTRS)
Gardiner, T. A.; Frank, A.
2000-01-01
We present results on the magnetic field topology in a pulsed radiative. jet. For initially helical magnetic fields and periodic velocity variations, we find that the magnetic field alternates along the, length of the jet from toroidally dominated in the knots to possibly poloidally dominated in the intervening regions.
Topological visual mapping in robotics.
Romero, Anna; Cazorla, Miguel
2012-08-01
A key problem in robotics is the construction of a map from its environment. This map could be used in different tasks, like localization, recognition, obstacle avoidance, etc. Besides, the simultaneous location and mapping (SLAM) problem has had a lot of interest in the robotics community. This paper presents a new method for visual mapping, using topological instead of metric information. For that purpose, we propose prior image segmentation into regions in order to group the extracted invariant features in a graph so that each graph defines a single region of the image. Although others methods have been proposed for visual SLAM, our method is complete, in the sense that it makes all the process: it presents a new method for image matching; it defines a way to build the topological map; and it also defines a matching criterion for loop-closing. The matching process will take into account visual features and their structure using the graph transformation matching (GTM) algorithm, which allows us to process the matching and to remove out the outliers. Then, using this image comparison method, we propose an algorithm for constructing topological maps. During the experimentation phase, we will test the robustness of the method and its ability constructing topological maps. We have also introduced new hysteresis behavior in order to solve some problems found building the graph.
Crystallographic topology and its applications
Johnson, C.K.; Burnett, M.N.; Dunbar, W.D.
1996-10-01
Geometric topology and structural crystallography concepts are combined to define a new area we call Structural Crystallographic Topology, which may be of interest to both crystallographers and mathematicians. In this paper, we represent crystallographic symmetry groups by orbifolds and crystal structures by Morse - functions. The Morse function uses mildly overlapping Gaussian thermal-motion probability density functions centered on atomic sites to form a critical net with peak, pass, pale, and pit critical points joined into a graph by density gradient-flow separatrices. Critical net crystal structure drawings can be made with the ORTEP-III graphics pro- An orbifold consists of an underlying topological space with an embedded singular set that represents the Wyckoff sites of the crystallographic group. An orbifold for a point group, plane group, or space group is derived by gluing together equivalent edges or faces of a crystallographic asymmetric unit. The critical-net-on-orbifold model incorporates the classical invariant lattice complexes of crystallography and allows concise quotient-space topological illustrations to be drawn without the repetition that is characteristic of normal crystal structure drawings.
Spaces of paths and the path topology
NASA Astrophysics Data System (ADS)
Low, Robert J.
2016-09-01
The natural topology on the space of causal paths of a space-time depends on the topology chosen on the space-time itself. Here we consider the effect of using the path topology on space-time instead of the manifold topology, and its consequences for how properties of space-time are reflected in the structure of the space of causal paths.
Continuity and Separation in Symmetric Topologies
ERIC Educational Resources Information Center
Harris, J.; Lynch, M.
2007-01-01
In this note, it is shown that in a symmetric topological space, the pairs of sets separated by the topology determine the topology itself. It is then shown that when the codomain is symmetric, functions which separate only those pairs of sets that are already separated are continuous, generalizing a result found by M. Lynch.
Dual-topology insertion of a dual-topology membrane protein.
Woodall, Nicholas B; Yin, Ying; Bowie, James U
2015-01-01
Some membrane transporters are dual-topology dimers in which the subunits have inverted transmembrane topology. How a cell manages to generate equal populations of two opposite topologies from the same polypeptide chain remains unclear. For the dual-topology transporter EmrE, the evidence to date remains consistent with two extreme models. A post-translational model posits that topology remains malleable after synthesis and becomes fixed once the dimer forms. A second, co-translational model, posits that the protein inserts in both topologies in equal proportions. Here we show that while there is at least some limited topological malleability, the co-translational model likely dominates under normal circumstances.
Network topology and functional connectivity disturbances precede the onset of Huntington's disease.
Harrington, Deborah L; Rubinov, Mikail; Durgerian, Sally; Mourany, Lyla; Reece, Christine; Koenig, Katherine; Bullmore, Ed; Long, Jeffrey D; Paulsen, Jane S; Rao, Stephen M
2015-08-01
Cognitive, motor and psychiatric changes in prodromal Huntington's disease have nurtured the emergent need for early interventions. Preventive clinical trials for Huntington's disease, however, are limited by a shortage of suitable measures that could serve as surrogate outcomes. Measures of intrinsic functional connectivity from resting-state functional magnetic resonance imaging are of keen interest. Yet recent studies suggest circumscribed abnormalities in resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease, despite the spectrum of behavioural changes preceding a manifest diagnosis. The present study used two complementary analytical approaches to examine whole-brain resting-state functional magnetic resonance imaging connectivity in prodromal Huntington's disease. Network topology was studied using graph theory and simple functional connectivity amongst brain regions was explored using the network-based statistic. Participants consisted of gene-negative controls (n = 16) and prodromal Huntington's disease individuals (n = 48) with various stages of disease progression to examine the influence of disease burden on intrinsic connectivity. Graph theory analyses showed that global network interconnectivity approximated a random network topology as proximity to diagnosis neared and this was associated with decreased connectivity amongst highly-connected rich-club network hubs, which integrate processing from diverse brain regions. However, functional segregation within the global network (average clustering) was preserved. Functional segregation was also largely maintained at the local level, except for the notable decrease in the diversity of anterior insula intermodular-interconnections (participation coefficient), irrespective of disease burden. In contrast, network-based statistic analyses revealed patterns of weakened frontostriatal connections and strengthened frontal-posterior connections that evolved as disease
Abnormal Bleeding During Menopause Hormone Therapy: Insights for Clinical Management
de Medeiros, Sebastião Freitas; Yamamoto, Márcia Marly Winck; Barbosa, Jacklyne Silva
2013-01-01
Objective Our objective was to review the involved mechanisms and propose actions for controlling/treating abnormal uterine bleeding during climacteric hormone therapy. Methods A systemic search of the databases SciELO, MEDLINE, and Pubmed was performed for identifying relevant publications on normal endometrial bleeding, abnormal uterine bleeding, and hormone therapy bleeding. Results Before starting hormone therapy, it is essential to exclude any abnormal organic condition, identify women at higher risk for bleeding, and adapt the regimen to suit eachwoman’s characteristics. Abnormal bleeding with progesterone/progestogen only, combined sequential, or combined continuous regimens may be corrected by changing the progestogen, adjusting the progestogen or estrogen/progestogen doses, or even switching the initial regimen to other formulation. Conclusion To diminish the occurrence of abnormal bleeding during hormone therapy (HT), it is important to tailor the regimen to the needs of individual women and identify those with higher risk of bleeding. The use of new agents as adjuvant therapies for decreasing abnormal bleeding in women on HT awaits future studies. PMID:24665210
Godballe, C; Hoeck, H C; Sørensen, J A
1990-01-01
We present a case of transient abnormal Q-waves (TAQ) and a review of the literature. TAQ are defined as abnormal Q-waves, which disappear within ten days. They are most often seen in patients with ischemic heart disease (IHD) but are also seen in other conditions. Brief episodes of myocardial ischemia giving rise to reversible biochemical and ultrastructural myocardial changes, resulting in transient ECG changes, provide an accepted theory for the pathogenesis of TAO. Investigations have shown that the occurrence of exercise-induced TAQ may be a symptom of IHD. It is impossible to distinguish TAQ from Q-waves induced by myocardial infarction. Appearance of TAQ during exercise-testing frequently indicates IHD. PMID:2301045
[Chromosome abnormalities in human cancer].
Salamanca-Gómez, F
1995-01-01
Recent investigation on the presence of chromosome abnormalities in neoplasias has allowed outstanding advances in the knowledge of malignant transformation mechanisms and important applications in the clinical diagnosis and prognosis of leukaemias, lymphomas and solid tumors. The purpose of the present paper is to discuss the most relevant cytogenetic aberrations, some of them described at the Unidad de Investigación Médica en Genética Humana, Instituto Mexicano del Seguro Social, and to correlate these abnormalities with recent achievements in the knowledge of oncogenes, suppressor genes or antioncogenes, their chromosome localization, and their mutations in human neoplasia; as well as their perspectives in prevention and treatment of cancer that such findings permit to anticipate.
Liu, Lanfang; Li, Hehui; Zhang, Manli; Wang, Zhengke; Wei, Na; Liu, Li; Meng, Xiangzhi; Ding, Guosheng
2016-07-01
Prior work has extensively studied neural deficits in children with reading impairment (RI) in their native language but has rarely examined those of RI children in their second language (L2). A recent study revealed that the function of the local brain regions was disrupted in children with RI in L2, but it is not clear whether the disruption also occurs at a large-scale brain network level. Using fMRI and graph theoretical analysis, we explored the topology of the whole-brain functional network during a phonological rhyming task and network reconfigurations across task and short resting phases in Chinese children with English reading impairment versus age-matched typically developing (TD) children. We found that, when completing the phonological task, the RI group exhibited higher local network efficiency and network modularity compared with the TD group. When switching between the phonological task and the short resting phase, the RI group showed difficulty with network reconfiguration, as reflected in fewer changes in the local efficiency and modularity properties and less rearrangement of the modular communities. These findings were reproducible after controlling for the effects of in-scanner accuracy, participant gender, and L1 reading performance. The results from the whole-brain network analyses were largely replicated in the task-activated network. These findings provide preliminary evidence supporting that RI in L2 is associated with not only abnormal functional network organization but also poor flexibility of the neural system in responding to changing cognitive demands. PMID:27321248
Ultrasound screening for fetal abnormalities.
Chitty, L S
1995-12-01
Ultrasound screening for fetal abnormalities is increasingly becoming part of routine antenatal care in Europe and the UK. However, there has been very little formal evaluation of this practice. In this article reports of routine ultrasound screening are reviewed and the advantages and disadvantages discussed. The majority of routine anomaly scanning is done in the second trimester but there may be a case for screening at other times in pregnancy and alternative anomaly screening policies are discussed. PMID:8710765
Constructing a logical, regular axis topology from an irregular topology
Faraj, Daniel A.
2014-07-01
Constructing a logical regular topology from an irregular topology including, for each axial dimension and recursively, for each compute node in a subcommunicator until returning to a first node: adding to a logical line of the axial dimension a neighbor specified in a nearest neighbor list; calling the added compute node; determining, by the called node, whether any neighbor in the node's nearest neighbor list is available to add to the logical line; if a neighbor in the called compute node's nearest neighbor list is available to add to the logical line, adding, by the called compute node to the logical line, any neighbor in the called compute node's nearest neighbor list for the axial dimension not already added to the logical line; and, if no neighbor in the called compute node's nearest neighbor list is available to add to the logical line, returning to the calling compute node.
Constructing a logical, regular axis topology from an irregular topology
Faraj, Daniel A.
2014-07-22
Constructing a logical regular topology from an irregular topology including, for each axial dimension and recursively, for each compute node in a subcommunicator until returning to a first node: adding to a logical line of the axial dimension a neighbor specified in a nearest neighbor list; calling the added compute node; determining, by the called node, whether any neighbor in the node's nearest neighbor list is available to add to the logical line; if a neighbor in the called compute node's nearest neighbor list is available to add to the logical line, adding, by the called compute node to the logical line, any neighbor in the called compute node's nearest neighbor list for the axial dimension not already added to the logical line; and, if no neighbor in the called compute node's nearest neighbor list is available to add to the logical line, returning to the calling compute node.
[Endocrine abnormalities in HIV infections].
Verges, B; Chavanet, P; Desgres, J; Kisterman, J P; Waldner, A; Vaillant, G; Portier, H; Brun, J M; Putelat, R
The finding of endocrine gland lesions at pathological examination in AIDS and reports of several cases of endocrine disease in patients with this syndrome have prompted us to study endocrine functions in 63 patients (51 men, 12 women) with HIV-1 infection. According to the Center for Disease Control (CDC) classification system, 13 of these patients were stage CDC II, 27 stage CDC III and 23 stage CDC IV. We explored the adrenocortical function (ACTH, immediate tetracosactrin test) and the thyroid function (free T3 and T4 levels, TRH on TSH test) in all 63 patients. The hypothalamic-pituitary-gonadal axis (testosterone levels, LHRH test) and prolactin secretion (THR test) were explored in the 51 men. The results obtained showed early peripheral testicular insufficiency at stage CDC II and early pituitary gland abnormalities with hypersecretion of ACTH and prolactin also at stage CDC II. On the other hand, adrenocortical and pituitary abnormalities were not frequently found. The physiopathology of the endocrine abnormalities observed in HIV-1-infected patients remains unclear, but one may suspect that it involves interleukin-1 since this protein factor has recently been shown to stimulate the corticotropin-releasing hormone secretion and to act directly on the glycoprotein capsule of the virus (gp 120) whose structure is similar to that of some neurohormones.
International migration network: Topology and modeling
NASA Astrophysics Data System (ADS)
Fagiolo, Giorgio; Mastrorillo, Marina
2013-07-01
This paper studies international migration from a complex-network perspective. We define the international migration network (IMN) as the weighted-directed graph where nodes are world countries and links account for the stock of migrants originated in a given country and living in another country at a given point in time. We characterize the binary and weighted architecture of the network and its evolution over time in the period 1960-2000. We find that the IMN is organized around a modular structure with a small-world binary pattern displaying disassortativity and high clustering, with power-law distributed weighted-network statistics. We also show that a parsimonious gravity model of migration can account for most of observed IMN topological structure. Overall, our results suggest that socioeconomic, geographical, and political factors are more important than local-network properties in shaping the structure of the IMN.
Entropy gives rise to topologically associating domains
Vasquez, Paula A.; Hult, Caitlin; Adalsteinsson, David; Lawrimore, Josh; Forest, Mark G.; Bloom, Kerry
2016-01-01
We investigate chromosome organization within the nucleus using polymer models whose formulation is closely guided by experiments in live yeast cells. We employ bead-spring chromosome models together with loop formation within the chains and the presence of nuclear bodies to quantify the extent to which these mechanisms shape the topological landscape in the interphase nucleus. By investigating the genome as a dynamical system, we show that domains of high chromosomal interactions can arise solely from the polymeric nature of the chromosome arms due to entropic interactions and nuclear confinement. In this view, the role of bio-chemical related processes is to modulate and extend the duration of the interacting domains. PMID:27257057
Systemic risk on different interbank network topologies
NASA Astrophysics Data System (ADS)
Lenzu, Simone; Tedeschi, Gabriele
2012-09-01
In this paper we develop an interbank market with heterogeneous financial institutions that enter into lending agreements on different network structures. Credit relationships (links) evolve endogenously via a fitness mechanism based on agents' performance. By changing the agent's trust on its neighbor's performance, interbank linkages self-organize themselves into very different network architectures, ranging from random to scale-free topologies. We study which network architecture can make the financial system more resilient to random attacks and how systemic risk spreads over the network. To perturb the system, we generate a random attack via a liquidity shock. The hit bank is not automatically eliminated, but its failure is endogenously driven by its incapacity to raise liquidity in the interbank network. Our analysis shows that a random financial network can be more resilient than a scale free one in case of agents' heterogeneity.
Entropy gives rise to topologically associating domains.
Vasquez, Paula A; Hult, Caitlin; Adalsteinsson, David; Lawrimore, Josh; Forest, Mark G; Bloom, Kerry
2016-07-01
We investigate chromosome organization within the nucleus using polymer models whose formulation is closely guided by experiments in live yeast cells. We employ bead-spring chromosome models together with loop formation within the chains and the presence of nuclear bodies to quantify the extent to which these mechanisms shape the topological landscape in the interphase nucleus. By investigating the genome as a dynamical system, we show that domains of high chromosomal interactions can arise solely from the polymeric nature of the chromosome arms due to entropic interactions and nuclear confinement. In this view, the role of bio-chemical related processes is to modulate and extend the duration of the interacting domains. PMID:27257057
Fertilization potential of spermatozoa with abnormal morphology.
Nikolettos, N; Küpker, W; Demirel, C; Schöpper, B; Blasig, C; Sturm, R; Felberbaum, R; Bauer, O; Diedrich, K; Al-Hasani, S
1999-09-01
One of the best discriminators for the fertilization potential of human spermatozoa is sperm morphology. The problem in the assessment of the sperm morphological characteristics is their pleiomorphism. Examination of spermatozoa with the light microscope can provide only limited information on their internal structure. More detailed examination of sperm structure using electron microscopy can reveal major, often unsuspected ultrastructural abnormalities. Results and cut-off values for sperm analysis depend on the criteria for normal morphology. World Health Organization recommendations provide a classification suitable for clinical practice. Clinically reliable cut-off limits for normal sperm morphology according to strict Tygerberg criteria were suggested to be 4% in in-vitro fertilization procedures. Patients with severe sperm head abnormalities have a lower chance of establishing successful pregnancies, even though fertilization may be achieved. The outcome of intracytoplasmic sperm injection is not related to any of the standard semen parameters or to sperm morphology. Sperm decondensation defects and DNA anomalies may be underlying factors for the unrecognized derangements of the fertilizing capacity of spermatozoa, regardless of sperm morphology. Centrosome dysfunction may also represent a class of sperm defects that cannot be overcome simply by the insertion of a spermatozoon into the ooplasm. In this article an overview on the composition and ultrastructure of spermatozoa is presented, while emphasizing sperm ultrastructural and sperm DNA anomalies and their effects on fertilization.
Topological aspects of polarization structured beams
NASA Astrophysics Data System (ADS)
Kumar, Vijay; Viswanathan, Nirmal K.
2014-02-01
Polarization structured optical beams have half-integer topological structures: star, lemon, monstar in π-symmetric polarization ellipse orientation tensor field and integer-index topological structures: saddle, spiral, node in 2π-symmetric Poynting vector field. Topological approach to study the polarization structured optical beams is carried out and presented here in some detail. These polarization structured light beams are demonstrated to be the best platform to explore the topological interdependencies. The dependence of one type of topological structure on the other is used to control the Poynting vector density distribution and locally enhance the angular momentum density as compared to its constituent beam fields.
Classification of Topological Insulators and Superconductors
NASA Astrophysics Data System (ADS)
Schnyder, Andreas P.; Ryu, Shinsei; Furusaki, Akira; Ludwig, Andreas W. W.
2009-05-01
An exhaustive classification scheme of topological insulators and superconductors is presented. The key property of topological insulators (superconductors) is the appearance of gapless degrees of freedom at the interface/boundary between a topologically trivial and a topologically non-trivial state. Our approach consists in reducing the problem of classifying topological insulators (superconductors) in d spatial dimensions to the problem of Anderson localization at a (d-1) dimensional boundary of the system. We find that in each spatial dimension there are precisely five distinct classes of topological insulators (superconductors). The different topological sectors within a given topological insulator (superconductor) can be labeled by an integer winding number or a Z2 quantity. One of the five topological insulators is the "quantum spin Hall" (or: Z2 topological) insulator in d = 2, and its generalization in d = 3 dimensions. For each dimension d, the five topological insulators correspond to a certain subset of five of the ten generic symmetry classes of Hamiltonians introduced more than a decade ago by Altland and Zirnbauer in the context of disordered systems (which generalizes the three well known "Wigner and Dyson" symmetry classes).
Topological surface states in nodal superconductors.
Schnyder, Andreas P; Brydon, Philip M R
2015-06-24
Topological superconductors have become a subject of intense research due to their potential use for technical applications in device fabrication and quantum information. Besides fully gapped superconductors, unconventional superconductors with point or line nodes in their order parameter can also exhibit nontrivial topological characteristics. This article reviews recent progress in the theoretical understanding of nodal topological superconductors, with a focus on Weyl and noncentrosymmetric superconductors and their protected surface states. Using selected examples, we review the bulk topological properties of these systems, study different types of topological surface states, and examine their unusual properties. Furthermore, we survey some candidate materials for topological superconductivity and discuss different experimental signatures of topological surface states. PMID:26000466
Topological pumping over a photonic Fibonacci quasicrystal
NASA Astrophysics Data System (ADS)
Verbin, Mor; Zilberberg, Oded; Lahini, Yoav; Kraus, Yaacov E.; Silberberg, Yaron
2015-02-01
Quasiperiodic lattices have recently been shown to be a nontrivial topological phase of matter. Charge pumping—one of the hallmarks of topological states of matter—was recently realized for photons in a one-dimensional off-diagonal Harper model implemented in a photonic waveguide array. However, if the relationship between topological pumps and quasiperiodic systems is generic, one might wonder how to observe it in the canonical and most studied quasicrystalline system in one dimension—the Fibonacci chain. This chain is expected to facilitate a similar phenomenon, yet its discrete nature hinders the experimental study of such topological effects. Here, we overcome this obstacle by utilizing the topological equivalence of a family of quasiperiodic models which ranges from the Fibonacci chain to the Harper model. Implemented in photonic waveguide arrays, we observe the topological properties of this family, and perform a topological pumping of photons across a Fibonacci chain.
Universal Cyclic Topology in Polymer Networks
NASA Astrophysics Data System (ADS)
Wang, Rui; Alexander-Katz, Alfredo; Johnson, Jeremiah A.; Olsen, Bradley D.
2016-05-01
Polymer networks invariably possess topological defects: loops of different orders which have profound effects on network properties. Here, we demonstrate that all cyclic topologies are a universal function of a single dimensionless parameter characterizing the conditions for network formation. The theory is in excellent agreement with both experimental measurements of hydrogel loop fractions and Monte Carlo simulations without any fitting parameters. We demonstrate the superposition of the dilution effect and chain-length effect on loop formation. The one-to-one correspondence between the network topology and primary loop fraction demonstrates that the entire network topology is characterized by measurement of just primary loops, a single chain topological feature. Different cyclic defects cannot vary independently, in contrast to the intuition that the densities of all topological species are freely adjustable. Quantifying these defects facilitates studying the correlations between the topology and properties of polymer networks, providing a key step in overcoming an outstanding challenge in polymer physics.
Universal Cyclic Topology in Polymer Networks.
Wang, Rui; Alexander-Katz, Alfredo; Johnson, Jeremiah A; Olsen, Bradley D
2016-05-01
Polymer networks invariably possess topological defects: loops of different orders which have profound effects on network properties. Here, we demonstrate that all cyclic topologies are a universal function of a single dimensionless parameter characterizing the conditions for network formation. The theory is in excellent agreement with both experimental measurements of hydrogel loop fractions and Monte Carlo simulations without any fitting parameters. We demonstrate the superposition of the dilution effect and chain-length effect on loop formation. The one-to-one correspondence between the network topology and primary loop fraction demonstrates that the entire network topology is characterized by measurement of just primary loops, a single chain topological feature. Different cyclic defects cannot vary independently, in contrast to the intuition that the densities of all topological species are freely adjustable. Quantifying these defects facilitates studying the correlations between the topology and properties of polymer networks, providing a key step in overcoming an outstanding challenge in polymer physics.
Majorana Fermions and Topology in Superconductors
NASA Astrophysics Data System (ADS)
Sato, Masatoshi; Fujimoto, Satoshi
2016-07-01
Topological superconductors are novel classes of quantum condensed phases, characterized by topologically nontrivial structures of Cooper pairing states. On the surfaces of samples and in vortex cores of topological superconductors, Majorana fermions, which are particles identified with their own anti-particles, appear as Bogoliubov quasiparticles. The existence and stability of Majorana fermions are ensured by bulk topological invariants constrained by the symmetries of the systems. Majorana fermions in topological superconductors obey a new type of quantum statistics referred to as non-Abelian statistics, which is distinct from bose and fermi statistics, and can be utilized for application to topological quantum computation. Also, Majorana fermions give rise to various exotic phenomena such as "fractionalization", non-local correlation, and "teleportation". A pedagogical review of these subjects is presented. We also discuss interaction effects on topological classification of superconductors, and the basic properties of Weyl superconductors.
Topology optimization of piezoelectric nanostructures
NASA Astrophysics Data System (ADS)
Nanthakumar, S. S.; Lahmer, Tom; Zhuang, Xiaoying; Park, Harold S.; Rabczuk, Timon
2016-09-01
We present an extended finite element formulation for piezoelectric nanobeams and nanoplates that is coupled with topology optimization to study the energy harvesting potential of piezoelectric nanostructures. The finite element model for the nanoplates is based on the Kirchoff plate model, with a linear through the thickness distribution of electric potential. Based on the topology optimization, the largest enhancements in energy harvesting are found for closed circuit boundary conditions, though significant gains are also found for open circuit boundary conditions. Most interestingly, our results demonstrate the competition between surface elasticity, which reduces the energy conversion efficiency, and surface piezoelectricity, which enhances the energy conversion efficiency, in governing the energy harvesting potential of piezoelectric nanostructures.
Topological mechanics of gyroscopic metamaterials
Nash, Lisa M.; Kleckner, Dustin; Read, Alismari; Vitelli, Vincenzo; Turner, Ari M.; Irvine, William T. M.
2015-01-01
Topological mechanical metamaterials are artificial structures whose unusual properties are protected very much like their electronic and optical counterparts. Here, we present an experimental and theoretical study of an active metamaterial—composed of coupled gyroscopes on a lattice—that breaks time-reversal symmetry. The vibrational spectrum displays a sonic gap populated by topologically protected edge modes that propagate in only one direction and are unaffected by disorder. We present a mathematical model that explains how the edge mode chirality can be switched via controlled distortions of the underlying lattice. This effect allows the direction of the edge current to be determined on demand. We demonstrate this functionality in experiment and envision applications of these edge modes to the design of one-way acoustic waveguides. PMID:26561580
Probing Topological Matter with Sound
NASA Astrophysics Data System (ADS)
Schmeltzer, David
We introduce a microscopic formulation to identify the stress in a quantum fluid to compute the stress viscosity with sound waves. The viscosity stress tensor is used to determine, e.g. the ultrasound attenuation in superconductors. When an Abrikosov lattice is formed on the surface of a Topological Insulator in a external magnetic field, Majorana modes form dispersive bands. We show that the ultrasound attenuation is modified by the Majorana modes offering a novel method to identify Topological Superconductors. Moreover we compute the stress tunneling which uses Majorana modes and represent the sound analogue of the Andreev crossed reflection. We check the violation of the sound momentum conservation of systems which only exists on the boundary of a higher dimensional system,e.g. a 1 D chiral fermion which can exist at the boundary of a 2 D Quantum Hall system. Doe-Los Alamos National Laboratory.
Topological Insulator and Thermoelectric Effects
NASA Astrophysics Data System (ADS)
Xu, Yong
The recent discovery of topological insulator (TI) offers new opportunities for the development of thermoelectricity, because many TIs (like Bi2Te3) are excellent thermoelectric materials. In this talk, I will first introduce our theoretical predictions of anomalous Seebeck effect and strong size effect in TI [PRL 112, 226801 (2014)]. Then I will report our recent proof experiments, which find in TI thin films that (i) the hole-type Seebeck effect and the electron-type Hall effect coexist in the same TI sample for all the measured temperatures (up to 300 K), and (ii) the thermoelectric properties depend sensitively on the film thickness. The unconventional phenomena are revealed to be closely related to the topological nature of the material. These findings may inspire new ideas for designing TI-based high-efficiency thermoelectric devices.
A free topology safeguards network
Kadner, S.P.; Resnik, W.M.; Schurig, A.
1995-12-31
Free Topology Network technology provides cost reduction benefits as well as flexibility in safeguards applications. Power line communications technologies have proven viability for transmission and reception of safeguards data, including surveillance photographs, the source of the largest data files. In the future, enhancements will be made to the technology that should boost both performance and flexibility. Work is already underway to achieve higher data rates over power line communications eventually, it should be possible to reach data rates of one million bits per second or higher. Also, the use of technologies such as Novell Embedded Systems Technology (NEST) and Echelon LON technology will allow a greater number of safeguards technologies to become resident on the Free Topology Safeguards Network.
Inconsistency of topologically massive hypergravity
NASA Technical Reports Server (NTRS)
Aragone, C.; Deser, S.
1985-01-01
The coupled topologically massive spin-5/2 gravity system in D = 3 dimensions whose kinematics represents dynamical propagating gauge invariant massive spin-5/2 and spin-2 excitations, is shown to be inconsistent, or equivalently, not locally hypersymmetric. In contrast to D = 4, the local constraints on the system arising from failure of the fermionic Bianchi identities do not involve the 'highest spin' components of the field, but rather the auxiliary spinor required to construct a consistent massive model.
Topological defects in extended inflation
NASA Technical Reports Server (NTRS)
Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.
1990-01-01
The production of topological defects, especially cosmic strings, in extended inflation models was considered. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large scale structure via cosmic strings.
Hopf algebras and topological recursion
NASA Astrophysics Data System (ADS)
Esteves, João N.
2015-11-01
We consider a model for topological recursion based on the Hopf algebra of planar binary trees defined by Loday and Ronco (1998 Adv. Math. 139 293-309 We show that extending this Hopf algebra by identifying pairs of nearest neighbor leaves, and thus producing graphs with loops, we obtain the full recursion formula discovered by Eynard and Orantin (2007 Commun. Number Theory Phys. 1 347-452).
Topological effects in quantum mechanics
Peshkin, M.; Lipkin, H.J. |
1995-08-01
We completed our analysis of experiments, some completed, some planned, and some only conceptual at present, that purport to demonstrate new kinds of non-local and topological effects in the interaction of a neutron with an external electromagnetic field. In the Aharonov-Casher effect (AC), the neutron interacts with an electric field and in the Scalar Aharonov-Bohm effect (SAB) the neutron interacts with a magnetic field. In both cases, the geometry can be arranged so that there is no force on the neutron but an interference experiment nevertheless finds a phase shift proportional to the applied field and to the neutron`s magnetic moment. Previously, we showed that the accepted interpretation of these phenomena as topological effects due to a non-local interaction between the neutron and the electromagnetic field is incorrect. Both AC and SAB follow from local torques on the neutron whose expectation values vanish at every instant but which have non-vanishing effect on the measurable spin-correlation variables S(t) = (1/2) [{sigma}{sub x}{sigma}{sub x}(t) + {sigma}{sub y}(0){sigma}{sub y}(t) + h.c.] and V(t) = [{sigma}{sub x}(0){sigma}{sub y}(t) - {sigma}{sub y}(0){sigma}{sub x}(t) + h.c.]. We have now completed this work by observing that a criterion often used for identifying a topological effect, energy independence of the phase shift between two arms of an interferometer, is only a necessary condition, and by describing a phase shifter which obeys the energy-independence condition but whose interaction with the neutron is neither topological nor even non-local.
Topological Insulator Nanowires and Nanoribbons
Kong, D.S.
2010-06-02
Recent theoretical calculations and photoemission spectroscopy measurements on the bulk Bi{sub 2}Se{sub 3} material show that it is a three-dimensional topological insulator possessing conductive surface states with nondegenerate spins, attractive for dissipationless electronics and spintronics applications. Nanoscale topological insulator materials have a large surface-to-volume ratio that can manifest the conductive surface states and are promising candidates for devices. Here we report the synthesis and characterization of high quality single crystalline Bi{sub 2}Se{sub 3} nanomaterials with a variety of morphologies. The synthesis of Bi{sub 2}Se{sub 3} nanowires and nanoribbons employs Au-catalyzed vapor-liquid-solid (VLS) mechanism. Nanowires, which exhibit rough surfaces, are formed by stacking nanoplatelets along the axial direction of the wires. Nanoribbons are grown along [11-20] direction with a rectangular crosssection and have diverse morphologies, including quasi-one-dimensional, sheetlike, zigzag and sawtooth shapes. Scanning tunneling microscopy (STM) studies on nanoribbons show atomically smooth surfaces with {approx}1 nm step edges, indicating single Se-Bi-Se-Bi-Se quintuple layers. STM measurements reveal a honeycomb atomic lattice, suggesting that the STM tip couples not only to the top Se atomic layer, but also to the Bi atomic layer underneath, which opens up the possibility to investigate the contribution of different atomic orbitals to the topological surface states. Transport measurements of a single nanoribbon device (four terminal resistance and Hall resistance) show great promise for nanoribbons as candidates to study topological surface states.
Interfacing Topological Insulators with Ferromagnetism
NASA Astrophysics Data System (ADS)
Richardella, Anthony
In topological insulators, the surface states arise from strong spin-orbit coupling while the degeneracy of the Dirac point is protected by time reversal symmetry. Introducing magnetism in proximity to the surface states breaks this symmetry, destroying the non-trivial Berry phase at the Dirac point and leads to a hedgehog spin texture near the newly opened magnetic gap. This symmetry broken phase leads to a host of unusual physics, such as the quantum anomalous Hall (QAH) effect. In this talk, we discuss the growth by molecular beam epitaxy and characterization of such magnetically interfaced and magnetically doped topological insulators. Such materials often suffer from structural defects and interfacial layers, as well as from degradation during device fabrication. In particular, it is shown that Cr doped (Bi1-x,Sbx)2Te3 can exhibit perfect Hall quantization at low temperatures despite these defects. However, the magnetic ordering of this material was found to be quite unusual, displaying a super-paramagnetic like character, perhaps reflecting this disorder. Such observations highlight the surprising behavior of such broken symmetry phases in topological materials. This work was performed in collaboration with A. Kandala, M. Liu, W. Wang, N.P. Ong, C.-X. Liu, and N. Samarth, in addition to the authors of the references cited. This work was supported by funding from ARO/MURI, DARPA and ONR.
Two-dimensional hexagonal smectic structure formed by topological defects.
Dolganov, P V; Shuravin, N S; Fukuda, Atsuo
2016-03-01
A two-dimensional hexagonal smectic structure formed by point topological defects and intersecting defect walls was discovered. This unique structure was predicted theoretically about 30 years ago but not observed. For a long time the hexagonal structure was a challenge for experimentalists. A different type of self-organization in smectic films was found and used to form the hexagonal structure. Methods applied for building the hexagonal phase can be used for the formation of complicated liquid-crystal structures.
Topology, structures, and energy landscapes of human chromosomes
Zhang, Bin; Wolynes, Peter G.
2015-01-01
Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward “ideal” chromosome structures that represent hierarchical fibrils of fibrils. PMID:25918364
Topology, structures, and energy landscapes of human chromosomes.
Zhang, Bin; Wolynes, Peter G
2015-05-12
Chromosome conformation capture experiments provide a rich set of data concerning the spatial organization of the genome. We use these data along with a maximum entropy approach to derive a least-biased effective energy landscape for the chromosome. Simulations of the ensemble of chromosome conformations based on the resulting information theoretic landscape not only accurately reproduce experimental contact probabilities, but also provide a picture of chromosome dynamics and topology. The topology of the simulated chromosomes is probed by computing the distribution of their knot invariants. The simulated chromosome structures are largely free of knots. Topologically associating domains are shown to be crucial for establishing these knotless structures. The simulated chromosome conformations exhibit a tendency to form fibril-like structures like those observed via light microscopy. The topologically associating domains of the interphase chromosome exhibit multistability with varying liquid crystalline ordering that may allow discrete unfolding events and the landscape is locally funneled toward "ideal" chromosome structures that represent hierarchical fibrils of fibrils.
Making chromosome abnormalities treatable conditions.
Cody, Jannine DeMars; Hale, Daniel Esten
2015-09-01
Individuals affected by the classic chromosome deletion syndromes which were first identified at the beginning of the genetic age, are now positioned to benefit from genomic advances. This issue highlights five of these conditions (4p-, 5p-, 11q-, 18p-, and 18q-). It focuses on the increased in understanding of the molecular underpinnings and envisions how these can be transformed into effective treatments. While it is scientifically exciting to see the phenotypic manifestations of hemizygosity being increasingly understood at the molecular and cellular level, it is even more amazing to consider that we are now on the road to making chromosome abnormalities treatable conditions.
[Erythrocyte membrane abnormalities - hereditary elliptocytosis].
Kvezereli-Kopadze, M; Kvezereli-Kopadze, A; Mtvarelidze, Z; Bubuteishvili, A
2015-04-01
This study was designed to investigate the 4 year old boy with Hereditary Elliptocitosis (HE). The diagnosis of this rare hemolytic anemia was based on detailed family history (positive in the 4-th generation), physical examination and Para-clinical data analyses. The vast majority of patients with HE are asymptomatic, severe forms are rare. The most important is examination of blood films, which is helpful to detect the morphology abnormalities of red cells. In case of HE a different approach is required. Positive family history and series of investigations should be conducted to determine the HE.
Abnormalities of the erythrocyte membrane.
Gallagher, Patrick G
2013-12-01
Primary abnormalities of the erythrocyte membrane are characterized by clinical, laboratory, and genetic heterogeneity. Among this group, hereditary spherocytosis patients are more likely to experience symptomatic anemia. Treatment of hereditary spherocytosis with splenectomy is curative in most patients. Growing recognition of the long-term risks of splenectomy has led to re-evaluation of the role of splenectomy. Management guidelines acknowledge these considerations and recommend discussion between health care providers, patient, and family. The hereditary elliptocytosis syndromes are the most common primary disorders of erythrocyte membrane proteins. However, most elliptocytosis patients are asymptomatic and do not require therapy.
Foot abnormalities of wild birds
Herman, C.M.; Locke, L.N.; Clark, G.M.
1962-01-01
The various foot abnormalities that occur in birds, including pox, scaly-leg, bumble-foot, ergotism and freezing are reviewed. In addition, our findings at the Patuxent Wildlife Research Center include pox from dove, mockingbird, cowbird, grackle and several species of sparrows. Scaly-leg has been particularly prevalent on icterids. Bumble foot has been observed in a whistling swan and in a group of captive woodcock. Ergotism is reported from a series of captive Canada geese from North Dakota. Several drug treatments recommended by others are presented.
Theory of defects in Abelian topological states
NASA Astrophysics Data System (ADS)
Barkeshli, Maissam; Jian, Chao-Ming; Qi, Xiao-Liang
2013-12-01
The structure of extrinsic defects in topologically ordered states of matter is host to a rich set of universal physics. Extrinsic defects in 2+1-dimensional topological states include linelike defects, such as boundaries between topologically distinct states, and pointlike defects, such as junctions between different line defects. Gapped boundaries in particular can themselves be topologically distinct, and the junctions between them can localize topologically protected zero modes, giving rise to topological ground-state degeneracies and projective non-Abelian statistics. In this paper, we develop a general theory of point defects and gapped line defects in 2+1-dimensional Abelian topological states. We derive a classification of topologically distinct gapped boundaries in terms of certain maximal subgroups of quasiparticles with mutually bosonic statistics, called Lagrangian subgroups. The junctions between different gapped boundaries provide a general classification of point defects in topological states, including as a special case the twist defects considered in previous works. We derive a general formula for the quantum dimension of these point defects and a general understanding of their localized “parafermion” zero modes and we define a notion of projective non-Abelian statistics for them. The critical phenomena between topologically distinct gapped boundaries can be understood in terms of a general class of quantum spin chains or, equivalently, “generalized parafermion” chains. This provides a way of realizing exotic 1+1D generalized parafermion conformal field theories in condensed-matter systems.
Myocardial perfusion abnormalities in asymptomatic patients with systemic lupus erythematosus
Hosenpud, J.D.; Montanaro, A.; Hart, M.V.; Haines, J.E.; Specht, H.D.; Bennett, R.M.; Kloster, F.E.
1984-08-01
Accelerated coronary artery disease and myocardial infarction in young patients with systemic lupus erythematosus is well documented; however, the prevalence of coronary involvement is unknown. Accordingly, 26 patients with systemic lupus were selected irrespective of previous cardiac history to undergo exercise thallium-201 cardiac scintigraphy. Segmental perfusion abnormalities were present in 10 of the 26 studies (38.5 percent). Five patients had reversible defects suggesting ischemia, four patients had persistent defects consistent with scar, and one patient had both reversible and persistent defects in two areas. There was no correlation between positive thallium results and duration of disease, amount of corticosteroid treatment, major organ system involvement or age. Only a history of pericarditis appeared to be associated with positive thallium-201 results (p less than 0.05). It is concluded that segmental myocardial perfusion abnormalities are common in patients with systemic lupus erythematosus. Whether this reflects large-vessel coronary disease or small-vessel abnormalities remains to be determined.
The Pea Seedling as a Model of Normal and Abnormal Morphogenesis
ERIC Educational Resources Information Center
Kurkdjian, Armen; And Others
1974-01-01
Describes several simple and inexpensive experiments designed to facilitate the study of normal and abnormal morphogenesis in the biology laboratory. Seedlings of the common garden pea are used in the experiments, and abnormal morphogenesis (tumors) are induced by a virulent strain of the crown-gall organism, Agrobacterium tumefaciens. (JR)
Medical management of abnormal pregnancy.
Ratnam, S S; Prasad, R N
1990-06-01
Medical termination of abnormal pregnancy requires specific techniques since some conditions make therapy more effective, e.g., missed abortion intrauterine death and molar pregnancy, and others less so, e.g. anencephalic pregnancy. In all cases it is best to terminate the pregnancy as soon as possible to reduce anguish and risks of complications such as consumptive coagulopathy. Oxytocin is not consistently effective, but intraamniotic rivanol has oxytocic properties, and prostaglandins (PGs) are effective by several routes. Surgical methods are more popular in Japan and the US. A diagnostic flow chart is included and described. For missed abortion and fetal death vacuum aspiration or dilatation and evacuation are appropriate for early pregnancy, or PGs are used for later pregnancy, unless there are medical contraindications. Anencephalic pregnancy, usually diagnoses in 2nd or 3rd trimester, is resistant to medical therapy and must often be terminated by cesarean section. Molar pregnancy can be managed with vacuum aspiration at any length of gestation, but must be completed by curettage. Intraamniotic PGs are not advised for mole or fetal death. PG analogs can be administered intramuscularly, or vaginally in gel form. Other types of abnormal pregnancy that can be managed with PGs are spina bifida, hydrocephalus, hydrops fetalis, Dandy-Walker syndrome and Down's syndrome. Tubal pregnancy can be evacuated with intratubally administered PGs under laparoscopic control, thereby preserving tubal integrity. PMID:2225605
Convergent evidence for abnormal striatal synaptic plasticity in dystonia
Peterson, David A.; Sejnowski, Terrence J.; Poizner, Howard
2010-01-01
Dystonia is a functionally disabling movement disorder characterized by abnormal movements and postures. Although substantial recent progress has been made in identifying genetic factors, the pathophysiology of the disease remains a mystery. A provocative suggestion gaining broader acceptance is that some aspect of neural plasticity may be abnormal. There is also evidence that, at least in some forms of dystonia, sensorimotor “use” may be a contributing factor. Most empirical evidence of abnormal plasticity in dystonia comes from measures of sensorimotor cortical organization and physiology. However, the basal ganglia also play a critical role in sensorimotor function. Furthermore, the basal ganglia are prominently implicated in traditional models of dystonia, are the primary targets of stereotactic neurosurgical interventions, and provide a neural substrate for sensorimotor learning influenced by neuromodulators. Our working hypothesis is that abnormal plasticity in the basal ganglia is a critical link between the etiology and pathophysiology of dystonia. In this review we set up the background for this hypothesis by integrating a large body of disparate indirect evidence that dystonia may involve abnormalities in synaptic plasticity in the striatum. After reviewing evidence implicating the striatum in dystonia, we focus on the influence of two neuromodulatory systems: dopamine and acetylcholine. For both of these neuromodulators, we first describe the evidence for abnormalities in dystonia and then the means by which it may influence striatal synaptic plasticity. Collectively, the evidence suggests that many different forms of dystonia may involve abnormal plasticity in the striatum. An improved understanding of these altered plastic processes would help inform our understanding of the pathophysiology of dystonia, and, given the role of the striatum in sensorimotor learning, provide a principled basis for designing therapies aimed at the dynamic processes
Topological approximation of the nonlinear Anderson model.
Milovanov, Alexander V; Iomin, Alexander
2014-06-01
We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t→+∞. The second moment of the associated probability distribution grows with time as a power law ∝ t^{α}, with the exponent α=1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the
Topological approximation of the nonlinear Anderson model
NASA Astrophysics Data System (ADS)
Milovanov, Alexander V.; Iomin, Alexander
2014-06-01
We study the phenomena of Anderson localization in the presence of nonlinear interaction on a lattice. A class of nonlinear Schrödinger models with arbitrary power nonlinearity is analyzed. We conceive the various regimes of behavior, depending on the topology of resonance overlap in phase space, ranging from a fully developed chaos involving Lévy flights to pseudochaotic dynamics at the onset of delocalization. It is demonstrated that the quadratic nonlinearity plays a dynamically very distinguished role in that it is the only type of power nonlinearity permitting an abrupt localization-delocalization transition with unlimited spreading already at the delocalization border. We describe this localization-delocalization transition as a percolation transition on the infinite Cayley tree (Bethe lattice). It is found in the vicinity of the criticality that the spreading of the wave field is subdiffusive in the limit t →+∞. The second moment of the associated probability distribution grows with time as a power law ∝ tα, with the exponent α =1/3 exactly. Also we find for superquadratic nonlinearity that the analog pseudochaotic regime at the edge of chaos is self-controlling in that it has feedback on the topology of the structure on which the transport processes concentrate. Then the system automatically (without tuning of parameters) develops its percolation point. We classify this type of behavior in terms of self-organized criticality dynamics in Hilbert space. For subquadratic nonlinearities, the behavior is shown to be sensitive to the details of definition of the nonlinear term. A transport model is proposed based on modified nonlinearity, using the idea of "stripes" propagating the wave process to large distances. Theoretical investigations, presented here, are the basis for consistency analysis of the different localization-delocalization patterns in systems with many coupled degrees of freedom in association with the asymptotic properties of the
Abnormal EEG and calcification of the pineal gland in schizophrenia.
Sandyk, R; Kay, S R
1992-01-01
Computed tomographic (CT) studies of the brain in schizophrenic patients have demonstrated a variety of structural abnormalities. We reported recently an association between pineal calcification (PC) and cortical and prefrontal cortical atrophy, and third ventricular size on CT scan in chronic schizophrenic patients. These findings indicate that in schizophrenia PC is associated with the morphological brain abnormalities associated with the disease. If PC is, indeed, related to organic cerebral pathology, then one would expect a higher prevalence of pineal gland pathology among patients with electroencephalographic (EEG) abnormalities by comparison to those with a normal EEG. To investigate this hypothesis, we studied the prevalence of PC on CT scan in a sample of 52 neuroleptic-treated schizophrenic patients (29 men, 23 women, mean age: 51.3 years SD = 9.1), of whom 10 (19.2%) had an abnormal EEG. The prevalence of PC in patients with EEG abnormalities was significantly greater by comparison to those with a normal EEG (90.0% vs. 54.8%, X2 = 4.24, p < .05). Since both groups did not differ on any of the historical and demographic data, and since PC was unrelated to neuroleptic exposure, these findings suggest that in schizophrenia PC may be related to the disease process and that it may be a marker of subcortical pathology. PMID:1342008
Fibrillin abnormalities and prognosis in Marfan syndrome and related disorders
Aoyama, T.; Furthmayr, H.; Francke, U.; Gasner, C.
1995-08-28
Marfan syndrome (MFS), a multisystem autosomal-dominant disorder, is characterized by mutations of the fibrillin-1 (FBN1) gene and by abnormal patterns of synthesis, secretion, and matrix deposition of the fibrillin protein. To determine the sensitivity and specificity of fibrillin protein abnormalities in the diagnosis of MFS, we studied dermal fibroblasts from 57 patients with classical MFS, 15 with equivocal MFS, 8 with single-organ manifestations, and 16 with other connective tissue disorders including homocystinuria and Ehlers-Danlos syndrome. Abnormal fibrillin metabolism was identified in 70 samples that were classified into four different groups based on quantitation of fibrillin synthesis and matrix deposition. Significant correlations were found for phenotypic features including arachnodactyly, striae distensae, cardiovascular manifestations, and fibrillin groups II and IV, which included 70% of the MFS patients. In addition, these two groups were associated with shortened {open_quotes}event-free{close_quotes} survival and more severe cardiovascular complications than groups I and III. The latter included most of the equivocal MFS/single manifestation patients with fibrillin abnormalities. Our results indicate that fibrillin defects at the protein level per se are not specific for MFS, but that the drastically reduced fibrillin deposition, caused by a dominant-negative effect of abnormal fibrillin molecules in individuals defined as groups II and IV, is of prognostic and possibly diagnostic significance. 25 refs., 3 figs., 6 tabs.
Scanning tunneling microscopy studies of topological insulators.
Zhao, Kun; Lv, Yan-Feng; Ji, Shuai-Hua; Ma, Xucun; Chen, Xi; Xue, Qi-Kun
2014-10-01
Scanning tunneling microscopy (STM), with surface sensitivity, is an ideal tool to probe the intriguing properties of the surface state of topological insulators (TIs) and topological crystalline insulators (TCIs). We summarize the recent progress on those topological phases revealed by STM studies. STM observations have directly confirmed the existence of the topological surface states and clearly revealed their novel properties. We also discuss STM work on magnetic doped TIs, topological superconductors and crystalline symmetry-protected surface states in TCIs. The studies have greatly promoted our understanding of the exotic properties of the new topological phases, as well as put forward new challenges. STM will continue to play an important role in this rapidly growing field from the point view of both fundamental physics and applications.
Disordered Weyl Semimetals and Their Topological Family.
Zhao, Y X; Wang, Z D
2015-05-22
We develop a topological theory for disordered Weyl semimetals in the framework of the gauge invariance of the replica formalism and boundary-bulk correspondence of Chern insulators. An anisotropic topological θ term is analytically derived for the effective nonlinear σ model. It is this nontrivial topological term that ensures that the bulk transverse transport of Weyl semimetals is robust against disorders. Moreover, we establish a general diagram that reveals the intrinsic relations among topological terms in the nonlinear σ models and gauge response theories, respectively, for (2n+2)-dimensional topological insulators, (2n+1)-dimensional chiral fermions, (2n+1)-dimensional chiral semimetals, and (2n)-dimensional topological insulators with n being a positive integer.
Photonic simulation of topological excitations in metamaterials.
Tan, Wei; Sun, Yong; Chen, Hong; Shen, Shun-Qing
2014-01-23
Condensed matter systems with topological order and metamaterials with left-handed chirality have attracted recently extensive interests in the fields of physics and optics. So far the topological order and chirality of electromagnetic wave are two independent concepts, and there is no work to address their connection. Here we propose to establish the relation between the topological order in condensed matter systems and the chirality in metamaterials, by mapping explicitly Maxwell's equations to the Dirac equation in one dimension. We report an experimental implement of the band inversion in the Dirac equation, which accompanies change of chirality of electromagnetic wave in metamaterials, and the first microwave measurement of topological excitations and topological phases in one dimension. Our finding provides a proof-of-principle example that electromagnetic wave in the metamaterials can be used to simulate the topological order in condensed matter systems and quantum phenomena in relativistic quantum mechanics in a controlled laboratory environment.
Photonic simulation of topological excitations in metamaterials
Tan, Wei; Sun, Yong; Chen, Hong; Shen, Shun-Qing
2014-01-01
Condensed matter systems with topological order and metamaterials with left-handed chirality have attracted recently extensive interests in the fields of physics and optics. So far the topological order and chirality of electromagnetic wave are two independent concepts, and there is no work to address their connection. Here we propose to establish the relation between the topological order in condensed matter systems and the chirality in metamaterials, by mapping explicitly Maxwell's equations to the Dirac equation in one dimension. We report an experimental implement of the band inversion in the Dirac equation, which accompanies change of chirality of electromagnetic wave in metamaterials, and the first microwave measurement of topological excitations and topological phases in one dimension. Our finding provides a proof-of-principle example that electromagnetic wave in the metamaterials can be used to simulate the topological order in condensed matter systems and quantum phenomena in relativistic quantum mechanics in a controlled laboratory environment. PMID:24452532
Iron-Based Superconductors as topological matter
NASA Astrophysics Data System (ADS)
Hu, Jiangping
We show the existence of non-trivial topological properties in Iron-based superconductors. Several examples are provided, including (1) the single layer FeSe grown on SrTiO3 substrate, in which an topological insulator phase exists due to the band inversion at M point; (2) CaFeAs2, a staggered intercalation compound that integrates both quantum spin hall and superconductivity in which the nontrivial topology stems from the chain-like As layers away from FeAs layers; (3) the Fe(Te,Se) thin films in which the nontrivial Z2 topological invariance originates from the parity exchange at Γ point that is controlled by the Te(Se) height; (4 nontrivial topology that is driven by the nematic order in FeSe. These results lay ground for integrating high Tc superconductivity with topological properties to realize new emergent phenomena, such as majorana particles, in iron-based high temperature superconductors
Topological Thouless pumping of ultracold fermions
NASA Astrophysics Data System (ADS)
Nakajima, Shuta; Tomita, Takafumi; Taie, Shintaro; Ichinose, Tomohiro; Ozawa, Hideki; Wang, Lei; Troyer, Matthias; Takahashi, Yoshiro
2016-04-01
An electron gas in a one-dimensional periodic potential can be transported even in the absence of a voltage bias if the potential is slowly and periodically modulated in time. Remarkably, the transferred charge per cycle is sensitive only to the topology of the path in parameter space. Although this so-called Thouless charge pump was first proposed more than thirty years ago, it has not yet been realized. Here we report the demonstration of topological Thouless pumping using ultracold fermionic atoms in a dynamically controlled optical superlattice. We observe a shift of the atomic cloud as a result of pumping, and extract the topological invariance of the pumping process from this shift. We demonstrate the topological nature of the Thouless pump by varying the topology of the pumping path and verify that the topological pump indeed works in the quantum regime by varying the speed and temperature.
Topological data analysis of biological aggregation models.
Topaz, Chad M; Ziegelmeier, Lori; Halverson, Tom
2015-01-01
We apply tools from topological data analysis to two mathematical models inspired by biological aggregations such as bird flocks, fish schools, and insect swarms. Our data consists of numerical simulation output from the models of Vicsek and D'Orsogna. These models are dynamical systems describing the movement of agents who interact via alignment, attraction, and/or repulsion. Each simulation time frame is a point cloud in position-velocity space. We analyze the topological structure of these point clouds, interpreting the persistent homology by calculating the first few Betti numbers. These Betti numbers count connected components, topological circles, and trapped volumes present in the data. To interpret our results, we introduce a visualization that displays Betti numbers over simulation time and topological persistence scale. We compare our topological results to order parameters typically used to quantify the global behavior of aggregations, such as polarization and angular momentum. The topological calculations reveal events and structure not captured by the order parameters.
Topological order from quantum loops and nets
Fendley, Paul
2008-12-15
I define models of quantum loops and nets that have ground states with topological order. These make possible excited states comprised of deconfined anyons with non-abelian braiding. With the appropriate inner product, these quantum loop models are equivalent to net models whose topological weight involves the chromatic polynomial. A simple Hamiltonian preserving the topological order is found by exploiting quantum self-duality. For the square lattice, this Hamiltonian has only four-spin interactions.
Coverings of topological semi-abelian algebras
NASA Astrophysics Data System (ADS)
Mucuk, Osman; Demir, Serap
2016-08-01
In this work, we study on a category of topological semi-abelian algebras which are topological models of given an algebraic theory T whose category of models is semi-abelian; and investigate some results on the coverings of topological models of such theories yielding semi-abelian categories. We also consider the internal groupoid structure in the semi-abelian category of T-algebras, and give a criteria for the lifting of internal groupoid structure to the covering groupoids.
Topological phase transitions in frustrated magnets
NASA Astrophysics Data System (ADS)
Southern, B. W.; Peles, A.
2006-06-01
The role of topological excitations in frustrated Heisenberg antiferromagnets between two and three spatial dimensions is considered. In particular, the antiferromagnetic Heisenberg model on a stacked triangular geometry with a finite number of layers is studied using Monte Carlo methods. A phase transition that is purely topological in nature occurs at a finite temperature for all film thicknesses. The results indicate that topological excitations are important for a complete understanding of the critical properties of the model between two and three dimensions.
Algebra and topology for applications to physics
NASA Technical Reports Server (NTRS)
Rozhkov, S. S.
1987-01-01
The principal concepts of algebra and topology are examined with emphasis on applications to physics. In particular, attention is given to sets and mapping; topological spaces and continuous mapping; manifolds; and topological groups and Lie groups. The discussion also covers the tangential spaces of the differential manifolds, including Lie algebras, vector fields, and differential forms, properties of differential forms, mapping of tangential spaces, and integration of differential forms.
Topological color code and symmetry-protected topological phases
NASA Astrophysics Data System (ADS)
Yoshida, Beni
2015-06-01
We study (d -1 ) -dimensional excitations in the d -dimensional color code that are created by transversal application of the Rd phase operators on connected subregions of qubits. We find that such excitations are the superpositions of electric charges and can be characterized by the fixed-point wave functions of (d -1 ) -dimensional bosonic symmetry-protected topological (SPT) phases with (Z2) ⊗d symmetry. While these SPT excitations are localized on (d -1 ) -dimensional boundaries, their creation requires operations acting on all qubits inside the boundaries, reflecting the nontriviality of emerging SPT wave functions. Moreover, these SPT excitations can be physically realized as transparent gapped domain walls which exchange excitations in the color code. Namely, in the three-dimensional color code, the domain wall, associated with the transversal R3 operator, exchanges a magnetic flux and a composite of a magnetic flux and the looplike SPT excitation, revealing rich possibilities of boundaries in higher-dimensional TQFTs. We also find that magnetic fluxes and the looplike SPT excitations exhibit nontrivial three-loop braiding statistics in three dimensions as a result of the fact that the R3 phase operator belongs to the third level of the Clifford hierarchy. We believe that the connection between SPT excitations, fault-tolerant logical gates and gapped domain walls, established in this paper, can be generalized to a large class of topological quantum codes and TQFTs.
Blanco-Redondo, Andrea; Andonegui, Imanol; Collins, Matthew J; Harari, Gal; Lumer, Yaakov; Rechtsman, Mikael C; Eggleton, Benjamin J; Segev, Mordechai
2016-04-22
One-dimensional models with topological band structures represent a simple and versatile platform to demonstrate novel topological concepts. Here we experimentally study topologically protected states in silicon at the interface between two dimer chains with different Zak phases. Furthermore, we propose and demonstrate that, in a system where topological and trivial defect modes coexist, we can probe them independently. Tuning the configuration of the interface, we observe the transition between a single topological defect and a compound trivial defect state. These results provide a new paradigm for topologically protected waveguiding in a complementary metal-oxide-semiconductor compatible platform and highlight the novel concept of isolating topological and trivial defect modes in the same system that can have important implications in topological physics.
Park, Byung Cheol; Kim, Tae-Hyeon; Sim, Kyung Ik; Kang, Boyoun; Kim, Jeong Won; Cho, Beongki; Jeong, Kwang-Ho; Cho, Mann-Ho; Kim, Jae Hoon
2015-03-16
Strong spin-orbit interaction and time-reversal symmetry in topological insulators generate novel quantum states called topological surface states. Their study provides unique opportunities to explore exotic phenomena such as spin Hall effects and topological phase transitions, relevant to the development of quantum devices for spintronics and quantum computation. Although ultrahigh-vacuum surface probes can identify individual topological surface states, standard electrical and optical experiments have so far been hampered by the interference of bulk and quantum well states. Here, with terahertz time-domain spectroscopy of ultrathin Bi₂Se₃ films, we give evidence for topological phase transitions, a single conductance quantum per topological surface state, and a quantized terahertz absorbance of 2.9% (four times the fine structure constant). Our experiment demonstrates the feasibility to isolate, detect and manipulate topological surface states in the ambient at room temperature for future fundamental research on the novel physics of topological insulators and their practical applications.
Emergence of magnetic topological states in topological insulators doped with magnetic impurities
NASA Astrophysics Data System (ADS)
Tran, Minh-Tien; Nguyen, Hong-Son; Le, Duc-Anh
2016-04-01
Emergence of the topological invariant and the magnetic moment in topological insulators doped with magnetic impurities is studied based on a mutual cooperation between the spin-orbit coupling of electrons and the spin exchange of these electrons with magnetic impurity moments. The mutual cooperation is realized based on the Kane-Mele model in the presence of magnetic impurities. The topological invariants and the spontaneous magnetization are self-consistently determined within the dynamical mean-field theory. We find different magnetic topological phase transitions, depending on the electron filling. At half filling an antiferromagnetic topological insulator, which exhibits the quantum spin Hall effect, exists in the phase region between the paramagnetic topological insulator and the trivially topological antiferromagnetic insulator. At quarter and three-quarter fillings, a ferromagnetic topological insulator, which exhibits the quantum anomalous Hall effect, occurs in the strong spin-exchange regime.
Khedkar, Supriya; Seshasayee, Aswin Sai Narain
2016-01-01
Genomes evolve not only in base sequence but also in terms of their architecture, defined by gene organization and chromosome topology. Whereas genome sequence data inform us about the changes in base sequences for a large variety of organisms, the study of chromosome topology is restricted to a few model organisms studied using microscopy and chromosome conformation capture techniques. Here, we exploit whole genome sequence data to study the link between gene organization and chromosome topology in bacteria. Using comparative genomics across ∼250 pairs of closely related bacteria we show that: (a) many organisms show a high degree of interreplichore translocations throughout the chromosome and not limited to the inversion-prone terminus (ter) or the origin of replication (oriC); (b) translocation maps may reflect chromosome topologies; and (c) symmetric interreplichore translocations do not disrupt the distance of a gene from oriC or affect gene expression states or strand biases in gene densities. In summary, we suggest that translocation maps might be a first line in defining a gross chromosome topology given a pair of closely related genome sequences.
Topological deformation of isolated horizons
Liko, Tomas
2008-03-15
We show that the Gauss-Bonnet term can have physical effects in four dimensions. Specifically, the entropy of a black hole acquires a correction term that is proportional to the Euler characteristic of the cross sections of the horizon. While this term is constant for a single black hole, it will be a nontrivial function for a system with dynamical topologies such as black-hole mergers: it is shown that for certain values of the Gauss-Bonnet parameter, the second law of black-hole mechanics can be violated.
Peptides that influence membrane topology
NASA Astrophysics Data System (ADS)
Wong, Gerard C. L.
2014-03-01
We examine the mechanism of a range of polypeptides that influence membrane topology, including antimicrobial peptides, cell penetrating peptides, viral fusion peptides, and apoptosis proteins, and show how a combination of geometry, coordination chemistry, and soft matter physics can be used to approach a unified understanding. We will also show how such peptides can impact biomedical problems such as auto-immune diseases (psoriasis, lupus), infectious diseases (viral and bacterial infections), and mitochondrial pathologies (under-regulated apoptosis leads to neurodegenerative diseases whereas over-regulated apoptosis leads to cancer.)
Geometry, topology, and string theory
Varadarajan, Uday
2003-07-10
A variety of scenarios are considered which shed light upon the uses and limitations of classical geometric and topological notions in string theory. The primary focus is on situations in which D-brane or string probes of a given classical space-time see the geometry quite differently than one might naively expect. In particular, situations in which extra dimensions, non-commutative geometries as well as other non-local structures emerge are explored in detail. Further, a preliminary exploration of such issues in Lorentzian space-times with non-trivial causal structures within string theory is initiated.
Topological spin and valley pumping in silicene
NASA Astrophysics Data System (ADS)
Luo, Wei; Sheng, L.; Wang, B. G.; Xing, D. Y.
2016-08-01
We propose to realize adiabatic topological spin and valley pumping by using silicene, subject to the modulation of an in-plane ac electric field with amplitude Ey and a vertical electric field consisting of an electrostatic component and an ac component with amplitudes and . By tuning and , topological valley pumping or spin-valley pumping can be achieved. The low-noise valley and spin currents generated can be useful in valleytronic and spintronic applications. Our work also demonstrates that bulk topological spin or valley pumping is a general characteristic effect of two-dimensional topological insulators, irrelevant to the edge state physics.
Superlattice valley engineering for designer topological insulators.
Li, Xiao; Zhang, Fan; Niu, Qian; Feng, Ji
2014-09-30
A topological insulator is a novel state of quantum matter, characterized by symmetry-protected Dirac interfacial states within its bulk gap. Tremendous effort has been invested into the search for topological insulators. To date, the discovery of topological insulators has been largely limited to natural crystalline solids. Therefore, it is highly desirable to tailor-make various topological states of matter by design, starting with but a few accessible materials or elements. Here, we establish that valley-dependent dimerization of Dirac surface states can be exploited to induce topological quantum phase transitions, in a binary superlattice bearing symmetry-unrelated interfacial Dirac states. This mechanism leads to a rich phase diagram and allows for rational design of strong topological insulators, weak topological insulators, and topological crystalline insulators. Our ab initio simulations further demonstrate this mechanism in [111] and [110] superlattices of calcium and tin tellurides. While our results reveal a remarkable phase diagram for the binary superlattice, the mechanism is a general route to design various topological states.
Topology of nonsymmorphic crystalline insulators and superconductors
NASA Astrophysics Data System (ADS)
Shiozaki, Ken; Sato, Masatoshi; Gomi, Kiyonori
2016-05-01
Topological classification in our previous paper [K. Shiozaki and M. Sato, Phys. Rev. B 90, 165114 (2014), 10.1103/PhysRevB.90.165114] is extended to nonsymmorphic crystalline insulators and superconductors. Using the twisted equivariant K theory, we complete the classification of topological crystalline insulators and superconductors in the presence of additional order-two nonsymmorphic space-group symmetries. The order-two nonsymmorphic space groups include half-lattice translation with Z2 flip, glide, twofold screw, and their magnetic space groups. We find that the topological periodic table shows modulo-2 periodicity in the number of flipped coordinates under the order-two nonsymmorphic space group. It is pointed out that the nonsymmorphic space groups allow Z2 topological phases even in the absence of time-reversal and/or particle-hole symmetries. Furthermore, the coexistence of the nonsymmorphic space group with time-reversal and/or particle-hole symmetries provides novel Z4 topological phases, which have not been realized in ordinary topological insulators and superconductors. We present model Hamiltonians of these new topological phases and analytic expressions of the Z2 and Z4 topological invariants. The half-lattice translation with Z2 spin flip and glide symmetry are compatible with the existence of boundaries, leading to topological surface gapless modes protected by the order-two nonsymmorphic symmetries. We also discuss unique features of these gapless surface modes.
The classification of topological insulators and superconductors
NASA Astrophysics Data System (ADS)
Chiu, Ching-Kai; Stone, Michael; Hughes, Taylor
2011-03-01
We use the process of band crossings during quantum phase transitions to explain the periodic table of topological insulators and superconductors. This is achieved by showing how irreducible representations of the real and complex Clifford algebras are related to the 10 Altland-Zirnbauer symmetry classes of Hamiltonian matrices which are associated with time reversal, particle-hole, and chiral symmetries. The representation theory not only reveals why a unique topological invariant (0 ,Z2 , Z) exists for each specific symmetry class and dimension, but also shows the interplay between quantum phase transitions, topologically protected boundary modes, and topological invariants.
Magnetic topology of emerging flux regions
NASA Astrophysics Data System (ADS)
Pariat, Etienne
Coronal magnetic fields structure and governs the dynamics of the solar atmosphere. These magnetic fields are often complex, composed of multiples domains of magnetic-field-lines connectivity. The topology of the magnetic field allows a synthetic description of these complex magnetic field by highlighting the structural elements that are important for the dynamic and the activity of the corona. Topology identifies the key elements where magnetic reconnection will preferentially occurs, and allows to explain and predict the evolution of the coronal plasma. However the topological elements - such as null points, separatrices, separators - do not appear out of thin air. Along with energy, and helicity, the magnetic topology of an active region is build up as the consequence of flux emergence. Some topological elements, such as bald-patches, are even fully part of the mechanism of flux emergence mechanism and drive the evolution and the structuration of the coronal magnetic field as it crosses the lower layer of the solar atmosphere. In the present talk I will therefore review our current understanding of the formation of active region in terms of magnetic topology. I will speak on how the topological structures which are key to solar activity are formed. Meanwhile I'll also discus the topological properties of emerging active region and how topology influences the very process of flux emergence.
On the topology of flux transfer events
NASA Technical Reports Server (NTRS)
Hesse, Michael; Birn, Joachim; Schindler, Karl
1990-01-01
A topological analysis is made of a simple model magnetic field of a perturbation at the magnetopause that shares magnetic properties with flux transfer events. The aim is to clarify a number of topological aspects that arise in the case of fully three-dimensional magnetic fields. It is shown that a localized perturbation at the magnetopause can in principle open a closed magnetosphere by establishing magnetic connections across the magnetopause by the formation of a ropelike magnetic field structure. For this purpose a global topological model of a closed magnetosphere is considered as the unperturbed state. The topological substructure of the model flux rope is discussed in detail.
Topological spin and valley pumping in silicene
Luo, Wei; Sheng, L.; Wang, B. G.; Xing, D. Y.
2016-01-01
We propose to realize adiabatic topological spin and valley pumping by using silicene, subject to the modulation of an in-plane ac electric field with amplitude Ey and a vertical electric field consisting of an electrostatic component and an ac component with amplitudes and . By tuning and , topological valley pumping or spin-valley pumping can be achieved. The low-noise valley and spin currents generated can be useful in valleytronic and spintronic applications. Our work also demonstrates that bulk topological spin or valley pumping is a general characteristic effect of two-dimensional topological insulators, irrelevant to the edge state physics. PMID:27507592
Copying and Evolution of Neuronal Topology
Fernando, Chrisantha; Karishma, K. K.; Szathmáry, Eörs
2008-01-01
We propose a mechanism for copying of neuronal networks that is of considerable interest for neuroscience for it suggests a neuronal basis for causal inference, function copying, and natural selection within the human brain. To date, no model of neuronal topology copying exists. We present three increasingly sophisticated mechanisms to demonstrate how topographic map formation coupled with Spike-Time Dependent Plasticity (STDP) can copy neuronal topology motifs. Fidelity is improved by error correction and activity-reverberation limitation. The high-fidelity topology-copying operator is used to evolve neuronal topologies. Possible roles for neuronal natural selection are discussed. PMID:19020662
Uranyl peroxide closed clusters containing topological squares
Unruh, Daniel K.; Burtner, Alicia; Pressprich, Laura; Sigmon, Ginger E.; Burns, Peter C
2010-01-01
Four self-assembling clusters of uranyl peroxide polyhedra have been formed in alkaline aqueous solutions and structurally characterized. These clusters consist of 28, 30, 36 and 44 uranyl polyhedra and exhibit complex new topologies. Each has a structure that contains topological squares, pentagons and hexagons. Analysis of possible topologies within boundary constraints indicates a tendency for adoption of higher symmetry topologies in these cases. Small angle X-ray scattering data demonstrated that crystals of one of these clusters can be dissolved in ultrapure water and that the clusters remain intact for at least several days.
Classification of topological quantum matter with symmetries
NASA Astrophysics Data System (ADS)
Chiu, Ching-Kai; Teo, Jeffrey C. Y.; Schnyder, Andreas P.; Ryu, Shinsei
2016-07-01
Topological materials have become the focus of intense research in recent years, since they exhibit fundamentally new physical phenomena with potential applications for novel devices and quantum information technology. One of the hallmarks of topological materials is the existence of protected gapless surface states, which arise due to a nontrivial topology of the bulk wave functions. This review provides a pedagogical introduction into the field of topological quantum matter with an emphasis on classification schemes. Both fully gapped and gapless topological materials and their classification in terms of nonspatial symmetries, such as time reversal, as well as spatial symmetries, such as reflection, are considered. Furthermore, the classification of gapless modes localized on topological defects is surveyed. The classification of these systems is discussed by use of homotopy groups, Clifford algebras, K theory, and nonlinear sigma models describing the Anderson (de)localization at the surface or inside a defect of the material. Theoretical model systems and their topological invariants are reviewed together with recent experimental results in order to provide a unified and comprehensive perspective of the field. While the bulk of this article is concerned with the topological properties of noninteracting or mean-field Hamiltonians, a brief overview of recent results and open questions concerning the topological classifications of interacting systems is also provided.
Adults with Chromosome 18 Abnormalities.
Soileau, Bridgette; Hasi, Minire; Sebold, Courtney; Hill, Annice; O'Donnell, Louise; Hale, Daniel E; Cody, Jannine D
2015-08-01
The identification of an underlying chromosome abnormality frequently marks the endpoint of a diagnostic odyssey. However, families are frequently left with more questions than answers as they consider their child's future. In the case of rare chromosome conditions, a lack of longitudinal data often makes it difficult to provide anticipatory guidance to these families. The objective of this study is to describe the lifespan, educational attainment, living situation, and behavioral phenotype of adults with chromosome 18 abnormalities. The Chromosome 18 Clinical Research Center has enrolled 483 individuals with one of the following conditions: 18q-, 18p-, Tetrasomy 18p, and Ring 18. As a part of the ongoing longitudinal study, we collect data on living arrangements, educational level attained, and employment status as well as data on executive functioning and behavioral skills on an annual basis. Within our cohort, 28 of the 483 participants have died, the majority of whom have deletions encompassing the TCF4 gene or who have unbalanced rearrangement involving other chromosomes. Data regarding the cause of and age at death are presented. We also report on the living situation, educational attainment, and behavioral phenotype of the 151 participants over the age of 18. In general, educational level is higher for people with all these conditions than implied by the early literature, including some that received post-high school education. In addition, some individuals are able to live independently, though at this point they represent a minority of patients. Data on executive function and behavioral phenotype are also presented. Taken together, these data provide insight into the long-term outcome for individuals with a chromosome 18 condition. This information is critical in counseling families on the range of potential outcomes for their child.
Simulating Topological Defects in Twisted Fiber Bundles
NASA Astrophysics Data System (ADS)
Bruss, Isaac R.; Grason, Gregory M.
2012-02-01
Twisted bundles are a common motif found in naturally occurring structures of self-assembled fibers, such as collagen and fibrin. By understanding the general principles governing such organizations, new synthetic materials--from the nano to the macroscale--may also be realized. Recently, continuum elasticity theory has been applied to describe generic twisted fiber bundles. This has revealed a relation between a bundle's twist and the presence of topological defects in the cross-sectional packing of the fibers. Here we employ numerical simulations to examine this interdependence. We model a bundle's cross-section as beads confined to a plane. The interactions between beads is governed by a modified Lennard-Jones potential that accounts for the effects of twist. We observe configurations that range from perfect hexagonal packing for cases of no twist, to defect populated structures above a critical amount of twist. For small bundles of less than ˜100 beads, there exists a discrete spectrum of energy ground states corresponding to integer numbers of five-fold disclinations. For larger bundles, we hope to uncover what types of defect arrangements effectively screen the stresses caused by twist, and compare these to current predictions of the internal organization of collagen fibrils.
Phyllotaxis: a framework for foam topological evolution.
Rivier, Nicolas; Sadoc, Jean-François; Charvolin, Jean
2016-01-01
Phyllotaxis describes the arrangement of florets, scales or leaves in composite flowers or plants (daisy, aster, sunflower, pinecone, pineapple). As a structure, it is a geometrical foam, the most homogeneous and densest covering of a large disk by Voronoi cells (the florets), constructed by a simple algorithm: Points placed regularly on a generative spiral constitute a spiral lattice, and phyllotaxis is the tiling by the Voronoi cells of the spiral lattice. Locally, neighboring cells are organized as three whorls or parastichies, labelled with successive Fibonacci numbers. The structure is encoded as the sequence of the shapes (number of sides) of the successive Voronoi cells on the generative spiral. We show that sequence and organization are independent of the position of the initial point on the generative spiral, that is invariant under disappearance (T2 of the first Voronoi cell or, conversely, under creation of a first cell, that is under growth. This independence shows how a foam is able to respond to a shear stress, notably through grain boundaries that are layers of square cells slightly truncated into heptagons, pentagons and hexagons, meeting at four-corner vertices, critical points of T1 elementary topological transformations. PMID:26810397
Topological structure of dictionary graphs
NASA Astrophysics Data System (ADS)
Fukś, Henryk; Krzemiński, Mark
2009-09-01
We investigate the topological structure of the subgraphs of dictionary graphs constructed from WordNet and Moby thesaurus data. In the process of learning a foreign language, the learner knows only a subset of all words of the language, corresponding to a subgraph of a dictionary graph. When this subgraph grows with time, its topological properties change. We introduce the notion of the pseudocore and argue that the growth of the vocabulary roughly follows decreasing pseudocore numbers—that is, one first learns words with a high pseudocore number followed by smaller pseudocores. We also propose an alternative strategy for vocabulary growth, involving decreasing core numbers as opposed to pseudocore numbers. We find that as the core or pseudocore grows in size, the clustering coefficient first decreases, then reaches a minimum and starts increasing again. The minimum occurs when the vocabulary reaches a size between 103 and 104. A simple model exhibiting similar behavior is proposed. The model is based on a generalized geometric random graph. Possible implications for language learning are discussed.
Acoustic design by topology optimization
NASA Astrophysics Data System (ADS)
Dühring, Maria B.; Jensen, Jakob S.; Sigmund, Ole
2008-11-01
To bring down noise levels in human surroundings is an important issue and a method to reduce noise by means of topology optimization is presented here. The acoustic field is modeled by Helmholtz equation and the topology optimization method is based on continuous material interpolation functions in the density and bulk modulus. The objective function is the squared sound pressure amplitude. First, room acoustic problems are considered and it is shown that the sound level can be reduced in a certain part of the room by an optimized distribution of reflecting material in a design domain along the ceiling or by distribution of absorbing and reflecting material along the walls. We obtain well defined optimized designs for a single frequency or a frequency interval for both 2D and 3D problems when considering low frequencies. Second, it is shown that the method can be applied to design outdoor sound barriers in order to reduce the sound level in the shadow zone behind the barrier. A reduction of up to 10 dB for a single barrier and almost 30 dB when using two barriers are achieved compared to utilizing conventional sound barriers.
Dislocations and other topological oddities
NASA Astrophysics Data System (ADS)
Pieranski, Pawel
2016-03-01
We will show that the book Dislocations by Jacques Friedel, published half a century ago, can still be recommended, in agreement with the author's intention, as a textbook "for research students at University and for students at engineering schools as well as for research engineers". Indeed, today dislocations are known to occur not only in solid crystals but also in many other systems discovered more recently such as colloidal crystals or liquid crystals having periodic structures. Moreover, the concept of dislocations is an excellent starting point for lectures on topological defects occurring in systems equipped with order parameters resulting from broken symmetries: disclinations in nematic or hexatic liquid crystals, dispirations in chiral smectics or disorientations in lyotropic liquid crystals. The discussion of dislocations in Blue Phases will give us an opportunity to call on mind Sir Charles Frank, friend of Jacques Friedel since his Bristol years, who called these ephemeral mesophases "topological oddities". Being made of networks of disclinations, Blue Phases are similar to Twist Grain Boundary (TGB) smectic phases, which are made of networks of screw dislocations and whose existence was predicted by de Gennes in 1972 on the basis of the analogy between smectics and superconductors. We will stress that the book by Jacques Friedel contains seeds of this analogy.
Topological inflation with graceful exit
NASA Astrophysics Data System (ADS)
Marunović, Anja; Prokopec, Tomislav
2016-04-01
We investigate a class of models of topological inflation in which a super-Hubble-sized global monopole seeds inflation. These models are attractive since inflation starts from rather generic initial conditions, but their not so attractive feature is that, unless symmetry is again restored, inflation never ends. In this work we show that, in presence of another nonminimally coupled scalar field, that is both quadratically and quartically coupled to the Ricci scalar, inflation naturally ends, representing an elegant solution to the graceful exit problem of topological inflation. While the monopole core grows during inflation, the growth stops after inflation, such that the monopole eventually enters the Hubble radius, and shrinks to its Minkowski space size, rendering it immaterial for the subsequent Universe's dynamics. Furthermore, we find that our model can produce cosmological perturbations that source CMB temperature fluctuations and seed large scale structure statistically consistent (within one standard deviation) with all available data. In particular, for small and (in our convention) negative nonminimal couplings, the scalar spectral index can be as large as ns simeq 0.955, which is about one standard deviation lower than the central value quoted by the most recent Planck Collaboration.
Mars: Noachian hydrology by its statistics and topology
NASA Technical Reports Server (NTRS)
Cabrol, N. A.; Grin, E. A.
1993-01-01
Discrimination between fluvial features generated by surface drainage and subsurface aquifer discharges will provide clues to the understanding of early Mars' climatic history. Our approach is to define the process of formation of the oldest fluvial valleys by statistical and topological analyses. Formation of fluvial valley systems reached its highest statistical concentration during the Noachian Period. Nevertheless, they are a scarce phenomenom in Martian history, localized on the craterized upland, and subject to latitudinal distribution. They occur sparsely on Noachian geological units with a weak distribution density, and appear in reduced isolated surface (around 5 x 10(exp 3)(sq km)), filled by short streams (100-300 km length). Topological analysis of the internal organization of 71 surveyed Noachian fluvial valley networks also provides information on the mechanisms of formation.
A model for the topology of active ribosomal RNA genes.
Denissov, Serguei; Lessard, Frédéric; Mayer, Christine; Stefanovsky, Victor; van Driel, Marc; Grummt, Ingrid; Moss, Tom; Stunnenberg, Hendrik G
2011-03-01
The Christmas tree view of active ribosomal RNA (rRNA) genes suggests a gene topology in which a large number of nascent rRNA transcripts are prevented from intertwining. The way in which this is achieved has remained unclear. By using a combination of chromatin immunoprecipitation and chromosome conformation capture techniques, we show that the promoter, upstream region and terminator R3 of active rRNA genes are held together spatially throughout the cell cycle, forming a stable core around which the transcribed region is organized. We suggest a new core-helix model for the topology of rRNA genes, that provides a structural basis for the productive synthesis or rRNA.
NASA Astrophysics Data System (ADS)
He, Yuan-Yao; Wu, Han-Qing; Meng, Zi Yang; Lu, Zhong-Yi
2016-05-01
Topological phase transitions in free fermion systems can be characterized by the closing of single-particle gap and the change in topological invariants. However, in the presence of electronic interactions, topological phase transitions can be more complicated. In paper I of this series [Phys. Rev. B 93, 195163 (2016), 10.1103/PhysRevB.93.195163], we have proposed an efficient scheme to evaluate the topological invariants based on the single-particle Green's function formalism. Here, in paper II, we demonstrate several interaction-driven topological phase transitions (TPTs) in two-dimensional (2D) interacting topological insulators (TIs) via large-scale quantum Monte Carlo (QMC) simulations, based on the scheme of evaluating topological invariants presented in paper I. Across these transitions, the defining symmetries of the TIs have been neither explicitly nor spontaneously broken. In the first two models, the topological invariants calculated from the Green's function formalism succeed in characterizing the topologically distinct phases and identifying interaction-driven TPTs. However, in the other two models, we find that the single-particle gap does not close and the topological invariants constructed from the single-particle Green's function acquire no change across the TPTs. Unexpected breakdown of the Green's function formalism in constructing the topological invariants is thus discovered. We thence classify the topological phase transitions in interacting TIs into two categories in practical computation: Those that have noninteracting correspondence can be characterized successfully by the topological invariants constructed from the Green's functions, while for the others that do not have noninteracting correspondence, the Green's function formalism experiences a breakdown, but more interesting and exciting phenomena, such as emergent collective critical modes at the transition, arise. Discussion on the success and breakdown of topological invariants
[Endocrine abnormalities in patients with chronic renal failure - part II].
Krysiak, Robert; Kędzia, Agnieszka; Krupej-Kędzierska, Joanna; Kowalska, Beata; Okopień, Bogusław
2015-05-01
The kidneys play a crucial role in maintaining homeostasis of fluids and electrolytes, acid-base balance, and volume regulation. In subjects with chronic renal failure, particularly at its later stages, these adaptive responses are impaired and some of these alterations are of clinical relevance. The ways in which chronic renal failure affects function of endocrine organs include impaired secretion of kidney-derived hormones, altered peripheral hormone metabolism, disturbed binding to carrier proteins, accumulation of hormone inhibitors, as well as abnormal target organ responsiveness. Apart from secondary hyperparathyroidism, thyroid dysfunction and impaired growth, reviewed in our previous study, endocrine disturbances that most frequently affect this group of patients include: abnormal functioning of the hypothalamic-pituitary-adrenal and hypothalamicpituitary- gonadal axes, bone loss and gynecomastia. The clinical picture and laboratory findings of these endocrine disturbances depend on the treatment strategy.
Topological defects in liquid crystals as templates for molecular self-assembly
NASA Astrophysics Data System (ADS)
Wang, Xiaoguang; Miller, Daniel S.; Bukusoglu, Emre; de Pablo, Juan J.; Abbott, Nicholas L.
2016-01-01
Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, we observed signatures of molecular self-assembly of amphiphilic molecules in topological defects, including cooperativity, reversibility and controlled growth. We also show that nanoscopic o-rings synthesized from Saturn-ring disclinations and other molecular assemblies templated by defects can be preserved by using photocrosslinkable amphiphiles. Our results reveal that, in analogy to other classes of macromolecular templates such as polymer-surfactant complexes, topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly.
Topological defects in liquid crystals as templates for molecular self-assembly.
Wang, Xiaoguang; Miller, Daniel S; Bukusoglu, Emre; de Pablo, Juan J; Abbott, Nicholas L
2016-01-01
Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, we observed signatures of molecular self-assembly of amphiphilic molecules in topological defects, including cooperativity, reversibility and controlled growth. We also show that nanoscopic o-rings synthesized from Saturn-ring disclinations and other molecular assemblies templated by defects can be preserved by using photocrosslinkable amphiphiles. Our results reveal that, in analogy to other classes of macromolecular templates such as polymer-surfactant complexes, topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly.
Wang, Erjing; He, Zikai; Zhao, Engui; Meng, Luming; Schütt, Christian; Lam, Jacky W Y; Sung, Herman H Y; Williams, Ian D; Huang, Xuhui; Herges, Rainer; Tang, Ben Zhong
2015-08-10
Molecules with Möbius topology have drawn increasing attention from scientists in a variety of fields, such as organic chemistry, inorganic chemistry, and material science. However, synthetic difficulties and the lack of functionality impede their fundamental understanding and practical applications. Here, we report the facile synthesis of an aggregation-induced-emission (AIE)-active macrocycle (TPE-ET) and investigate its analogous triply and singly twisted Möbius topologies. Because of the twisted and flexible nature of the tetraphenylethene units, the macrocycle adjusts its conformations so as to accommodate different guest molecules in its crystals. Moreover, theoretical studies including topological and electronic calculations reveal the energetically favorable interconversion process between triply and singly twisted topologies. PMID:26177730
Phenotypic abnormalities: terminology and classification.
Merks, Johannes H M; van Karnebeek, Clara D M; Caron, Hubert N; Hennekam, Raoul C M
2003-12-15
Clinical morphology has proved essential for the successful delineation of hundreds of syndromes and as a powerful instrument for detecting (candidate) genes (Gorlin et al. [2001]; Syndromes of the Head and Neck; Oxford: Oxford University Press. 1 p]. The major approach to reach this has been careful clinical evaluations of patients, focused on congenital anomalies. A similar careful physical examination performed in patients, who have been treated for childhood cancer, may allow detection of concurrent patterns of anomalies and provide clues for causative genes. In the past, several studies were performed describing the prevalence of anomalies in patients with cancer. However, in most studies, it was not possible to indicate the biologic relevance of the recorded anomalies, or to judge their relative importance. Are the detected anomalies common variants, and should they thus be regarded as normal, or are they minor anomalies or true abnormalities, indicating a possible developmental cause? Classification of items in the categories of common variants (disturbances of phenogenesis with a prevalence >4%), minor anomalies (disturbances of phenogenesis with a prevalence abnormal physical findings by a nomenclature for errors of morphogenesis detectable on surface examination, and secondly a uniform classification system. This should allow investigators to evaluate systematically the presence of patterns in phenotypic anomalies, in the general population, and in patients with various disorders, suspected to be a developmental anomaly. Also
Topological insulators and superconductors from string theory
Ryu, Shinsei; Takayanagi, Tadashi
2010-10-15
Topological insulators and superconductors in different spatial dimensions and with different discrete symmetries have been fully classified recently, revealing a periodic structure for the pattern of possible types of topological insulators and superconductors, both in terms of spatial dimensions and in terms of symmetry classes. It was proposed that K theory is behind the periodicity. On the other hand, D-branes, a solitonic object in string theory, are also known to be classified by K theory. In this paper, by inspecting low-energy effective field theories realized by two parallel D-branes, we establish a one-to-one correspondence between the K-theory classification of topological insulators/superconductors and D-brane charges. In addition, the string theory realization of topological insulators and superconductors comes naturally with gauge interactions, and the Wess-Zumino term of the D-branes gives rise to a gauge field theory of topological nature, such as ones with the Chern-Simons term or the {theta} term in various dimensions. This sheds light on topological insulators and superconductors beyond noninteracting systems, and the underlying topological field theory description thereof. In particular, our string theory realization includes the honeycomb lattice Kitaev model in two spatial dimensions, and its higher-dimensional extensions. Increasing the number of D-branes naturally leads to a realization of topological insulators and superconductors in terms of holography (AdS/CFT).
Topological string theory revisited I: The stage
NASA Astrophysics Data System (ADS)
Jia, Bei
2016-08-01
In this paper, we reformulate topological string theory using supermanifolds and supermoduli spaces, following the approach worked out by Witten (Superstring perturbation theory revisited, arXiv:1209.5461). We intend to make the construction geometrical in nature, by using supergeometry techniques extensively. The goal is to establish the foundation of studying topological string amplitudes in terms of integration over appropriate supermoduli spaces.
The Teaching of Mathematics: Universal Topological Spaces.
ERIC Educational Resources Information Center
Magill, K. D., Jr.
1988-01-01
The problem of finding all topological spaces is considered. Two characterizations are presented whose proofs involve only elementary notions and techniques. The problem is appropriate for students in a beginning topology course after they have been presented with the Embedding Lemma. (DC)
Topological Indices of Textual Identity Networks.
ERIC Educational Resources Information Center
Leazer, Gregory H.; Furner, Jonathan
1999-01-01
Reports on a continuing investigation of intertextual networks. Describes how intertextual networks can be modeled as directed graphs and extends this to matrix representations. Discusses topological index values of these networks and speculates how topological index values might be used in the estimation of retrieval values in information…
Topological insulators: A romance with many dimensions
NASA Astrophysics Data System (ADS)
Manoharan, Hari C.
2010-07-01
Electric charges on the boundaries of certain insulators are programmed by topology to keep moving forward when they encounter an obstacle, rather than scattering backwards and increasing the resistance of the system. This is just one reason why topological insulators are one of the hottest topics in physics right now.
Topology in Dynamics, Differential Equations, and Data
NASA Astrophysics Data System (ADS)
Day, Sarah; Vandervorst, Robertus C. A. M.; Wanner, Thomas
2016-11-01
This special issue is devoted to showcasing recent uses of topological methods in the study of dynamical behavior and the analysis of both numerical and experimental data. The twelve original research papers span a wide spectrum of results from abstract index theories, over homology- and persistence-based data analysis techniques, to computer-assisted proof techniques based on topological fixed point arguments.
Finite Topological Spaces as a Pedagogical Tool
ERIC Educational Resources Information Center
Helmstutler, Randall D.; Higginbottom, Ryan S.
2012-01-01
We propose the use of finite topological spaces as examples in a point-set topology class especially suited to help students transition into abstract mathematics. We describe how carefully chosen examples involving finite spaces may be used to reinforce concepts, highlight pathologies, and develop students' non-Euclidean intuition. We end with a…
Topologies for neutral functional differential equations.
NASA Technical Reports Server (NTRS)
Melvin, W. R.
1973-01-01
Bounded topologies are considered for functional differential equations of the neutral type in which present dynamics of the system are influenced by its past behavior. A special bounded topology is generated on a collection of absolutely continuous functions with essentially bounded derivatives, and an application to a class of nonlinear neutral functional differential equations due to Driver (1965) is presented.
Topological SLAM Using Fast Vision Techniques
NASA Astrophysics Data System (ADS)
Werner, Felix; Maire, Frederic; Sitte, Joaquin
In this paper we propose a method for vision only topological simultaneous localisation and mapping (SLAM). Our approach does not use motion or odometric information but a sequence of noisy visual measurements observed by traversing an environment. In particular, we address the perceptual aliasing problem which occurs using external observations only in topological navigation.
Membranes for topological M-theory
NASA Astrophysics Data System (ADS)
Bao, Ling; Bengtsson, Viktor; Cederwall, Martin; Nilsson, Bengt E. W.
2006-01-01
We formulate a theory of topological membranes on manifolds with G2 holonomy. The BRST charges of the theories are the superspace Killing vectors (the generators of global supersymmetry) on the background with reduced holonomy G2⊂Spin(7). In the absence of spinning formulations of supermembranes, the starting point is an N = 2 target space supersymmetric membrane in seven euclidean dimensions. The reduction of the holonomy group implies a twisting of the rotations in the tangent bundle of the branes with ``R-symmetry'' rotations in the normal bundle, in contrast to the ordinary spinning formulation of topological strings, where twisting is performed with internal U(1) currents of the N = (2,2) superconformal algebra. The double dimensional reduction on a circle of the topological membrane gives the strings of the topological A-model (a by-product of this reduction is a Green-Schwarz formulation of topological strings). We conclude that the action is BRST-exact modulo topological terms and fermionic equations of motion. We discuss the rôle of topological membranes in topological M-theory and the relation of our work to recent work by Hitchin and by Dijkgraaf et al.
Search for Majorana fermions in topological superconductors.
Pan, Wei; Shi, Xiaoyan; Hawkins, Samuel D.; Klem, John Frederick
2014-10-01
The goal of this project is to search for Majorana fermions (a new quantum particle) in a topological superconductor (a new quantum matter achieved in a topological insulator proximitized by an s-wave superconductor). Majorana fermions (MFs) are electron-like particles that are their own anti-particles. MFs are shown to obey non-Abelian statistics and, thus, can be harnessed to make a fault-resistant topological quantum computer. With the arrival of topological insulators, novel schemes to create MFs have been proposed in hybrid systems by combining a topological insulator with a conventional superconductor. In this LDRD project, we will follow the theoretical proposals to search for MFs in one-dimensional (1D) topological superconductors. 1D topological superconductor will be created inside of a quantum point contact (with the metal pinch-off gates made of conventional s-wave superconductors such as niobium) in a two-dimensional topological insulator (such as inverted type-II InAs/GaSb heterostructure).
Time Reversal Invariant Topologically Insulating Circuit
NASA Astrophysics Data System (ADS)
Jia, Ningyuan; Sommer, Ariel; Schuster, David; Simon, Jonathan
2014-03-01
With the discovery of the quantum hall effect and topological insulators, there has been an outpouring of ideas to harness topologically knotted band-structures in the design of state-of-the art, disorder-insensitive materials. From studies of exotic quantum many- body phenomena to applications in spintronics and quantum information processing, topological materials are poised to revolutionize the condensed matter frontier. Here we demonstrate, for the first time, a circuit that behaves as a time-reversal invariant topological insulator for RF photons. In this meta-material, composed of capacitively coupled high-Q inductors, we observe a gapped density of states consistent with a modified Hofstadter spectrum at a flux per plaquette of phi=pi/2. In-situ probes further reveal time-resolved, spin-dependent edge-transport. We leverage the unique flexibility of our materials to investigate, for the first time, features of topological insulators on manifolds such as the Mobius strip. This new approach elucidates the fundamental ingredients essential to topologically active materials, whilst providing a powerful laboratory to study topological physics and a promising route to topological quantum science.
The topological description of coronal magnetic fields
NASA Technical Reports Server (NTRS)
Berger, Mitchell A.
1986-01-01
Determining the structure and behavior of solar coronal magnetic fields is a central problem in solar physics. At the photosphere, the field is believed to be strongly localized into discrete flux tubes. After providing a rigorous definition of field topology, how the topology of a finite collection of flux tubes may be classified is discussed.
Radiologic atlas of pulmonary abnormalities in children
Singleton, E.B.; Wagner, M.L.; Dutton, R.V.
1988-01-01
This book is an atlas about thoracic abnormalities in infants and children. The authors include computed tomographic, digital subtraction angiographic, ultrasonographic, and a few magnetic resonance (MR) images. They recognize and discuss how changes in the medical treatment of premature infants and the management of infection and pediatric tumors have altered some of the appearances and considerations in these diseases. Oriented toward all aspects of pulmonary abnormalities, the book starts with radiographic techniques and then discusses the normal chest, the newborn, infections, tumors, and pulmonary vascular diseases. There is comprehensive treatment of mediastinal abnormalities and a discussion of airway abnormalities.
[Renal abnormalities in ankylosing spondylitis].
Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel
2012-07-01
We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease. PMID:22520483
[Renal abnormalities in ankylosing spondylitis].
Samia, Barbouch; Hazgui, Faiçal; Abdelghani, Khaoula Ben; Hamida, Fethi Ben; Goucha, Rym; Hedri, Hafedh; Taarit, Chokri Ben; Maiz, Hedi Ben; Kheder, Adel
2012-07-01
We will study the epidemiologic, clinical, biological, therapeutic, prognostic characteristics and predictive factors of development of nephropathy in ankylosing spondylitis patients. We retrospectively reviewed the medical record of 32 cases with renal involvement among 212 cases of ankylosing spondylitis followed in our service during the period spread out between 1978 and 2006. The renal involvement occurred in all patients a mean of 12 years after the clinical onset of the rheumatic disease. Thirty-two patients presented one or more signs of renal involvement: microscopic hematuria in 22 patients, proteinuria in 23 patients, nephrotic syndrome in 11 patients and decreased renal function in 24 patients (75%). Secondary renal amyloidosis (13 patients), which corresponds to a prevalence of 6,1% and tubulointerstitial nephropathy (7 patients) were the most common cause of renal involvement in ankylosing spondylitis followed by IgA nephropathy (4 patients). Seventeen patients evolved to the end stage renal disease after an average time of 29.8 ± 46 months. The average follow-up of the patients was 4,4 years. By comparing the 32 patients presenting a SPA and renal disease to 88 with SPA and without nephropathy, we detected the predictive factors of occurred of nephropathy: tobacco, intense inflammatory syndrome, sacroileite stage 3 or 4 and presence of column bamboo. The finding of 75% of the patients presented a renal failure at the time of the diagnosis of renal involvement suggests that evidence of renal abnormality involvement should be actively sought in this disease.
The XXXXY Sex Chromosome Abnormality
Barr, M. L.; Carr, D. H.; Pozsonyi, J.; Wilson, R. A.; Dunn, H. G.; Jacobson, T. S.; Miller, J. R.; Chown, B.
1962-01-01
The most common sex chromosome complex in sex chromatin-positive males with Klinefelter's syndrome is XXY. When the complex is XXYY or XXXY, the clinical findings do not seem to differ materially from those seen in XXY subjects, although more patients with these intersexual chromosome complements need to be studied to establish possible phenotypical expressions of the chromosomal variants. Two male children with an XXXXY sex chromosome abnormality are described. The data obtained from the study of these cases and five others described in the literature suggest that the XXXXY patient is likely to have congenital defects not usually seen in the common form of the Klinefelter syndrome. These include a triad of (1) skeletal anomalies (including radioulnar synostosis), (2) hypogenitalism (hypoplasia of penis and scrotum, incomplete descent of testes and defective prepubertal development of seminiferous tubules), and (3) greater risk of severe mental deficiency. That the conclusions are based on data from a small number of patients is emphasized, together with the need for a cytogenetic survey of a large control or unselected population. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10 PMID:13969480
Constraints on topological order in mott insulators.
Zaletel, Michael P; Vishwanath, Ashvin
2015-02-20
We point out certain symmetry induced constraints on topological order in Mott insulators (quantum magnets with an odd number of spin 1/2 moments per unit cell). We show, for example, that the double-semion topological order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully symmetric gapped Mott insulator must be topologically ordered, but is silent about which topological order is permitted. Our result applies to the kagome lattice quantum antiferromagnet, where recent numerical calculations of the entanglement entropy indicate a ground state compatible with either toric code or double-semion topological order. Our result rules out the latter possibility.
Topological Mechanics of Origami and Kirigami.
Chen, Bryan Gin-Ge; Liu, Bin; Evans, Arthur A; Paulose, Jayson; Cohen, Itai; Vitelli, Vincenzo; Santangelo, C D
2016-04-01
Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and program the flexibility of fold patterns. We exploit a recent connection between spring networks and quantum topological states to design origami with localized folding motions at boundaries and study them both experimentally and theoretically. These folding motions exist due to an underlying topological invariant rather than a local imbalance between constraints and degrees of freedom. We give a simple example of a quasi-1D folding pattern that realizes such topological states. We also demonstrate how to generalize these topological design principles to two dimensions. A striking consequence is that a domain wall between two topologically distinct, mechanically rigid structures is deformable even when constraints locally match the degrees of freedom.
Topological properties in Iron-Based Superconductors
NASA Astrophysics Data System (ADS)
Hu, Jiangping; Hao, Ningning; Wu, X. X.
2015-03-01
We show the existence of non-trivial topological properties in Iron-based superconductors. Several examples are provided, including (1) the single layer FeSe grown on SrTiO3 substrate, in which an topological insulator phase exists due to the band inversion at M point; (2) CaFeAs2, a staggered intercalation compound that integrates both quantum spin hall and superconductivity in which the nontrivial topology stems from the chain-like As layers away from FeAs layers; (3) the Fe(Te,Se) thin films in which the nontrivial Z2 topological invariance originates from the parity exchange at ? point that is controlled by the Te(Se) height. These results lay ground for integrating high Tc superconductivity with topological properties to realize new emergent phenomena, such as majorana particles, in iron-based high temperature superconductors. The work is supported by NSFC and the Ministry of Science and Technology of China.
Topological Phases of Sound and Light
NASA Astrophysics Data System (ADS)
Peano, V.; Brendel, C.; Schmidt, M.; Marquardt, F.
2015-07-01
Topological states of matter are particularly robust, since they exploit global features of a material's band structure. Topological states have already been observed for electrons, atoms, and photons. It is an outstanding challenge to create a Chern insulator of sound waves in the solid state. In this work, we propose an implementation based on cavity optomechanics in a photonic crystal. The topological properties of the sound waves can be wholly tuned in situ by adjusting the amplitude and frequency of a driving laser that controls the optomechanical interaction between light and sound. The resulting chiral, topologically protected phonon transport can be probed completely optically. Moreover, we identify a regime of strong mixing between photon and phonon excitations, which gives rise to a large set of different topological phases and offers an example of a Chern insulator produced from the interaction between two physically distinct particle species, photons and phonons.
Constraints on topological order in mott insulators.
Zaletel, Michael P; Vishwanath, Ashvin
2015-02-20
We point out certain symmetry induced constraints on topological order in Mott insulators (quantum magnets with an odd number of spin 1/2 moments per unit cell). We show, for example, that the double-semion topological order is incompatible with time reversal and translation symmetry in Mott insulators. This sharpens the Hastings-Oshikawa-Lieb-Schultz-Mattis theorem for 2D quantum magnets, which guarantees that a fully symmetric gapped Mott insulator must be topologically ordered, but is silent about which topological order is permitted. Our result applies to the kagome lattice quantum antiferromagnet, where recent numerical calculations of the entanglement entropy indicate a ground state compatible with either toric code or double-semion topological order. Our result rules out the latter possibility. PMID:25763971
Topological Mechanics of Origami and Kirigami
NASA Astrophysics Data System (ADS)
Chen, Bryan Gin-ge; Liu, Bin; Evans, Arthur A.; Paulose, Jayson; Cohen, Itai; Vitelli, Vincenzo; Santangelo, C. D.
2016-04-01
Origami and kirigami have emerged as potential tools for the design of mechanical metamaterials whose properties such as curvature, Poisson ratio, and existence of metastable states can be tuned using purely geometric criteria. A major obstacle to exploiting this property is the scarcity of tools to identify and program the flexibility of fold patterns. We exploit a recent connection between spring networks and quantum topological states to design origami with localized folding motions at boundaries and study them both experimentally and theoretically. These folding motions exist due to an underlying topological invariant rather than a local imbalance between constraints and degrees of freedom. We give a simple example of a quasi-1D folding pattern that realizes such topological states. We also demonstrate how to generalize these topological design principles to two dimensions. A striking consequence is that a domain wall between two topologically distinct, mechanically rigid structures is deformable even when constraints locally match the degrees of freedom.
Scattering matrix invariants of Floquet topological insulators
NASA Astrophysics Data System (ADS)
Fulga, I. C.; Maksymenko, M.
2016-02-01
Similar to static systems, periodically driven systems can host a variety of topologically nontrivial phases. Unlike the case of static Hamiltonians, the topological indices of bulk Floquet bands may fail to describe the presence and robustness of edge states, prompting the search for new invariants. We develop a unified description of topological phases and their invariants in driven systems by using scattering theory. We show that scattering matrix invariants correctly describe the topological phase, even when all bulk Floquet bands are trivial. Additionally, we use scattering theory to introduce and analyze new periodically driven phases, such as weak topological Floquet insulators, for which invariants were previously unknown. We highlight some of their similarities with static systems, including robustness to disorder, as well as some of the features unique to driven systems, showing that the weak phase may be destroyed by breaking translational symmetry not in space, but in time.
Dual-topology insertion of a dual-topology membrane protein
Woodall, Nicholas B.; Yin, Ying; Bowie, James U.
2015-01-01
Some membrane transporters are dual-topology dimers in which the subunits have inverted transmembrane topology. How a cell manages to generate equal populations of two opposite topologies from the same polypeptide chain remains unclear. For the dual-topology transporter EmrE, the evidence to date remains consistent with two extreme models. A post-translational model posits that topology remains malleable after synthesis and becomes fixed once the dimer forms. A second, co-translational model, posits that the protein inserts in both topologies in equal proportions. Here we show that while there is at least some limited topological malleability, the co-translational model likely dominates under normal circumstances. PMID:26306475
Two-dimensional density-matrix topological fermionic phases: topological Uhlmann numbers.
Viyuela, O; Rivas, A; Martin-Delgado, M A
2014-08-15
We construct a topological invariant that classifies density matrices of symmetry-protected topological orders in two-dimensional fermionic systems. As it is constructed out of the previously introduced Uhlmann phase, we refer to it as the topological Uhlmann number n_{U}. With it, we study thermal topological phases in several two-dimensional models of topological insulators and superconductors, computing phase diagrams where the temperature T is on an equal footing with the coupling constants in the Hamiltonian. Moreover, we find novel thermal-topological transitions between two nontrivial phases in a model with high Chern numbers. At small temperatures we recover the standard topological phases as the Uhlmann number approaches to the Chern number.
NASA Astrophysics Data System (ADS)
Liu, Jie; Wen, Guilin; Zhi Zuo, Hao; Qing, Qixiang
2016-07-01
The structural configuration obtained by deterministic topology optimization may represent a low reliability level and lead to a high failure rate. Therefore, it is necessary to take reliability into account for topology optimization. By integrating reliability analysis into topology optimization problems, a simple reliability-based topology optimization (RBTO) methodology for continuum structures is investigated in this article. The two-layer nesting involved in RBTO, which is time consuming, is decoupled by the use of a particular optimization procedure. A topology description function approach (TOTDF) and a first order reliability method are employed for topology optimization and reliability calculation, respectively. The problem of the non-smoothness inherent in TOTDF is dealt with using two different smoothed Heaviside functions and the corresponding topologies are compared. Numerical examples demonstrate the validity and efficiency of the proposed improved method. In-depth discussions are also presented on the influence of different structural reliability indices on the final layout.
DETECTION OF TOPOLOGICAL PATTERNS IN PROTEIN NETWORKS.
MASLOV,S.SNEPPEN,K.
2003-11-17
Complex networks appear in biology on many different levels: (1) All biochemical reactions taking place in a single cell constitute its metabolic network, where nodes are individual metabolites, and edges are metabolic reactions converting them to each other. (2) Virtually every one of these reactions is catalyzed by an enzyme and the specificity of this catalytic function is ensured by the key and lock principle of its physical interaction with the substrate. Often the functional enzyme is formed by several mutually interacting proteins. Thus the structure of the metabolic network is shaped by the network of physical interactions of cell's proteins with their substrates and each other. (3) The abundance and the level of activity of each of the proteins in the physical interaction network in turn is controlled by the regulatory network of the cell. Such regulatory network includes all of the multiple mechanisms in which proteins in the cell control each other including transcriptional and translational regulation, regulation of mRNA editing and its transport out of the nucleus, specific targeting of individual proteins for degradation, modification of their activity e.g. by phosphorylation/dephosphorylation or allosteric regulation, etc. To get some idea about the complexity and interconnectedness of protein-protein regulations in baker's yeast Saccharomyces Cerevisiae in Fig. 1 we show a part of the regulatory network corresponding to positive or negative regulations that regulatory proteins exert on each other. (4) On yet higher level individual cells of a multicellular organism exchange signals with each other. This gives rise to several new networks such as e.g. nervous, hormonal, and immune systems of animals. The intercellular signaling network stages the development of a multicellular organism from the fertilized egg. (5) Finally, on the grandest scale, the interactions between individual species in ecosystems determine their food webs. An interesting
QCD as a topologically ordered system
Zhitnitsky, Ariel R.
2013-09-15
We argue that QCD belongs to a topologically ordered phase similar to many well-known condensed matter systems with a gap such as topological insulators or superconductors. Our arguments are based on an analysis of the so-called “deformed QCD” which is a weakly coupled gauge theory, but nevertheless preserves all the crucial elements of strongly interacting QCD, including confinement, nontrivial θ dependence, degeneracy of the topological sectors, etc. Specifically, we construct the so-called topological “BF” action which reproduces the well known infrared features of the theory such as non-dispersive contribution to the topological susceptibility which cannot be associated with any propagating degrees of freedom. Furthermore, we interpret the well known resolution of the celebrated U(1){sub A} problem where the would be η{sup ′} Goldstone boson generates its mass as a result of mixing of the Goldstone field with a topological auxiliary field characterizing the system. We then identify the non-propagating auxiliary topological field of the BF formulation in deformed QCD with the Veneziano ghost (which plays the crucial role in resolution of the U(1){sub A} problem). Finally, we elaborate on relation between “string-net” condensation in topologically ordered condensed matter systems and long range coherent configurations, the “skeletons”, studied in QCD lattice simulations. -- Highlights: •QCD may belong to a topologically ordered phase similar to condensed matter (CM) systems. •We identify the non-propagating topological field in deformed QCD with the Veneziano ghost. •Relation between “string-net” condensates in CM systems and the “skeletons” in QCD lattice simulations is studied.
Linear structures, causal sets and topology
NASA Astrophysics Data System (ADS)
Hudetz, Laurenz
2015-11-01
Causal set theory and the theory of linear structures (which has recently been developed by Tim Maudlin as an alternative to standard topology) share some of their main motivations. In view of that, I raise and answer the question how these two theories are related to each other and to standard topology. I show that causal set theory can be embedded into Maudlin's more general framework and I characterise what Maudlin's topological concepts boil down to when applied to discrete linear structures that correspond to causal sets. Moreover, I show that all topological aspects of causal sets that can be described in Maudlin's theory can also be described in the framework of standard topology. Finally, I discuss why these results are relevant for evaluating Maudlin's theory. The value of this theory depends crucially on whether it is true that (a) its conceptual framework is as expressive as that of standard topology when it comes to describing well-known continuous as well as discrete models of spacetime and (b) it is even more expressive or fruitful when it comes to analysing topological aspects of discrete structures that are intended as models of spacetime. On one hand, my theorems support (a). The theory is rich enough to incorporate causal set theory and its definitions of topological notions yield a plausible outcome in the case of causal sets. On the other hand, the results undermine (b). Standard topology, too, has the conceptual resources to capture those topological aspects of causal sets that are analysable within Maudlin's framework. This fact poses a challenge for the proponents of Maudlin's theory to prove it fruitful.
Topological classification of Brownian orbits.
Tanaka, Fumihiko
2012-09-14
This paper presents the exact formula for the bivariate probability distribution function of a Brownian particle as a function of its position and velocity, whose orbit makes a specified number of turns around an infinite straight line. In the limit of large friction constant, the solution reduces to the well-known results for random Wiener paths. Topological entanglements of stiff polymers are discussed on the basis of this solution. The method to find the solution is applied to the velocity space of a Brownian motion, and the probability to find a closed path with a specified winding number is obtained. Hence, closed two-dimensional Brownian orbits are classified into regular homotopy classes, whose statistical weight is derived as a function of the total length and the friction constant.
Paramagnetically induced gapful topological superconductors
NASA Astrophysics Data System (ADS)
Daido, Akito; Yanase, Youichi
2016-08-01
We propose a generic scenario for realizing gapful topological superconductors (TSCs) from gapless spin-singlet superconductors (SCs). Noncentrosymmetric nodal SCs in two dimensions are shown to be gapful under a Zeeman field, as a result of the cooperation of inversion-symmetry breaking and time-reversal-symmetry breaking. In particular, non-s -wave SCs acquire a large excitation gap. Such paramagnetically induced gapful SCs may be classified into TSCs in the symmetry class D specified by the Chern number. We show nontrivial Chern numbers over a wide parameter range for spin-singlet SCs. A variety of the paramagnetically induced gapful TSCs are demonstrated, including D +p -wave TSC, extended S +p -wave TSC, p +D +f -wave TSC, and s +P -wave TSC. Natural extension toward three-dimensional Weyl SCs is also discussed.
Cycloid crystals by topology change
NASA Astrophysics Data System (ADS)
Matsuura, T.; Matsuyama, T.; Tanda, S.
2013-05-01
A cycloid, formerly known as a roulette, is a curve arising from a point on a circumference that rolls on its plane over a fixed straight line, and the cycloid shape is observed in many natural objects formed under a constraint. Here we report the discovery of cycloid-shaped crystals of TaSe3 obtained via the "topology-change surgery" of thin ring-shaped crystals. We cut the ring-shaped crystals with a focused ion beam. After being cut, they formed a cycloidal shape similar to Cyclotron trajectories of electrons under magnetic and electric fields. We conclude that the inhomogeneous curvature distribution minimizes the bending energy and shear modulation, which corresponds to our shear-less model.
Homotopy theory in toric topology
NASA Astrophysics Data System (ADS)
Grbić, J.; Theriault, S.
2016-04-01
In toric topology one associates with each simplicial complex K on m vertices two key spaces, the Davis-Januszkiewicz space DJK and the moment-angle complex \\mathscr{Z}K, which are related by a homotopy fibration \\mathscr{Z}K\\xrightarrow{\\tilde{w}}DJ_K\\to \\prodi=1m{C}P∞. A great deal of work has been done to study the properties of DJK and \\mathscr{Z}K, their generalizations to polyhedral products, and applications to algebra, combinatorics, and geometry. Chap. 1 surveys some of the main results in the homotopy theory of these spaces. Chap. 2 breaks new ground by initiating a study of the map \\tilde{w}. It is shown that, for a certain family of simplicial complexes K, the map \\tilde{w} is a sum of higher and iterated Whitehead products. Bibliography: 49 titles.
Topological approach of Jungian psychology.
Viret, Jacques
2010-09-01
In this work, we compare two global approaches which are usually considered as completely unconnected one with the other. The former is Thom's topology and the latter is Jung's psychology. More precisely, it seemed to us interesting to adapt some morphologies of Thom's catastrophe theory to some Jung's notions. Thus, we showed that the swallowtail, which is one of these morphologies, was able to describe geometrically the structural organisation of the psyche according to Jung, with its collective unconscious, personal unconscious and conscious. Moreover, we have correlated this morphology with Jung's evolutive processes like individualization and individuation. These comparisons incited us to think that some morphologies of Thom's catastrophe theory are the geometrical dealing of Jung's archetypes.
Babichev, E.
2006-10-15
We consider global topological defects in symmetry-breaking models with a noncanonical kinetic term. Apart from a mass parameter entering the potential, one additional dimensional parameter arises in such models - a kinetic mass. The properties of defects in these models are quite different from standard global domain walls, vortices, and monopoles, if their kinetic mass scale is smaller than their symmetry-breaking scale. In particular, depending on the concrete form of the kinetic term, the typical size of such a defect can be either much larger or much smaller than the size of a standard defect with the same potential term. The characteristic mass of a nonstandard defect, which might have been formed during a phase transition in the early universe, depends on both the temperature of a phase transition and the kinetic mass.
Some Properties of Topological Geons
NASA Astrophysics Data System (ADS)
Bugajska, Krystyna
1987-07-01
We investigate the Finkelstein-Misner geons for a non-simply-connected space-time manifold ( M, g 0). We use relations between different Lorentzian structures unequivalent to g 0 and topological properties of M given by the Morse theory. It implies that to some pieces of geons we have to associate Wheeler's “worm-holes.” Geons that correspond to time-orientable Lorentz structures are related to g 0 by Morse functions that describe the attaching of a handle of index one. In the case of geons associated to time-nonorientable Lorentzian structures, appropriate handles are related to loops along which the notion of time reverses. If we assume electromagnetic properties of geons, then only four species, “ v”, “ e”, “ p”, “ m”, of different geons can exist and geon “ m” has to decay according to “ m”→“ v”+“ p”+“ e”.
Topological approach of Jungian psychology.
Viret, Jacques
2010-09-01
In this work, we compare two global approaches which are usually considered as completely unconnected one with the other. The former is Thom's topology and the latter is Jung's psychology. More precisely, it seemed to us interesting to adapt some morphologies of Thom's catastrophe theory to some Jung's notions. Thus, we showed that the swallowtail, which is one of these morphologies, was able to describe geometrically the structural organisation of the psyche according to Jung, with its collective unconscious, personal unconscious and conscious. Moreover, we have correlated this morphology with Jung's evolutive processes like individualization and individuation. These comparisons incited us to think that some morphologies of Thom's catastrophe theory are the geometrical dealing of Jung's archetypes. PMID:20658172
Charles Mielke
2009-02-27
Intense magnetic fields are an essential tool for understanding layered superconductors. Fundamental electronic properties of organic superconductors are revealed in intense (60 tesla) magnetic fields. Properties such as the topology of the Fermi surface and the nature of the superconducting order parameter are revealed. With modest maximum critical temperatures~13K the charge transfer salt organic superconductors prove to be incredibly valuable materials as their electronically clean nature and layered (highly anisotropic) structures yield insights to the high temperature superconductors. Observation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillatory phenomena, magnetic field induced superconductivity and re-entrant superconductivity are some of the physical phenomena observed in the charge transfer organic superconductors. In this talk, I will discuss the nature of organic superconductors and give an overview of the generation of intense magnetic fields; from the 60 tesla millisecond duration to the extreme 1000 tesla microsecond pulsed magnetic fields.
Structural and functional diversity of Topologically Associating Domains.
Dekker, Job; Heard, Edith
2015-10-01
Recent studies have shown that chromosomes in a range of organisms are compartmentalized in different types of chromatin domains. In mammals, chromosomes form compartments that are composed of smaller Topologically Associating Domains (TADs). TADs are thought to represent functional domains of gene regulation but much is still unknown about the mechanisms of their formation and how they exert their regulatory effect on embedded genes. Further, similar domains have been detected in other organisms, including flies, worms, fungi and bacteria. Although in all these cases these domains appear similar as detected by 3C-based methods, their biology appears to be quite distinct with differences in the protein complexes involved in their formation and differences in their internal organization. Here we outline our current understanding of such domains in different organisms and their roles in gene regulation. PMID:26348399
Liver abnormalities in connective tissue diseases.
De Santis, Maria; Crotti, Chiara; Selmi, Carlo
2013-08-01
The liver is a lymphoid organ involved in the immune response and in the maintenance of tolerance to self molecules, but it is also a target of autoimmune reactions, as observed in primary liver autoimmune diseases (AILD) such as autoimmune hepatitis, primary biliary cirrhosis, and primary sclerosing cholangitis. Further, the liver is frequently involved in connective tissue diseases (CTD), most commonly in the form of liver function test biochemical changes with predominant cholestatic or hepatocellular patterns. CTD commonly affecting the liver include systemic lupus erythematosus, antiphospholypid syndrome, primary Sjögren's syndrome, systemic sclerosis, dermatomyositis, polimyositis, and anti-synthetase syndrome, while overlap syndromes between AILD and CTD may also be diagnosed. Although liver cirrhosis and failure are extremely rare in patients with CTD, unusual liver conditions such as nodular regenerative hyperplasia or Budd-Chiari syndrome have been reported with increasing frequency in patients with CTD. Acute or progressing liver involvement is generally related to viral hepatitis reactivation or to a concomitant AILD, so it appears to be fundamental to screen patients for HBV and HCV infection, in order to provide the ideal therapeutic regimen and avoid life-threatening reactivations. Finally, it is important to remember that the main cause of biochemical liver abnormalities in patients with CTD is a drug-induced alteration or coexisting viral hepatitis. The present article will provide a general overview of the liver involvement in CTD to allow rheumatologists to discriminate the most common clinical scenarios.
Imaging findings in fetal diaphragmatic abnormalities.
Alamo, Leonor; Gudinchet, François; Meuli, Reto
2015-12-01
Imaging plays a key role in the detection of a diaphragmatic pathology in utero. US is the screening method, but MRI is increasingly performed. Congenital diaphragmatic hernia is by far the most often diagnosed diaphragmatic pathology, but unilateral or bilateral eventration or paralysis can also be identified. Extralobar pulmonary sequestration can be located in the diaphragm and, exceptionally, diaphragmatic tumors or secondary infiltration of the diaphragm from tumors originating from an adjacent organ have been observed in utero. Congenital abnormalities of the diaphragm impair normal lung development. Prenatal imaging provides a detailed anatomical evaluation of the fetus and allows volumetric lung measurements. The comparison of these data with those from normal fetuses at the same gestational age provides information about the severity of pulmonary hypoplasia and improves predictions about the fetus's outcome. This information can help doctors and families to make decisions about management during pregnancy and after birth. We describe a wide spectrum of congenital pathologies of the diaphragm and analyze their embryological basis. Moreover, we describe their prenatal imaging findings with emphasis on MR studies, discuss their differential diagnosis and evaluate the limits of imaging methods in predicting postnatal outcome. PMID:26255159
Thyroid abnormalities after therapeutic external radiation
Hancock, S.L.; McDougall, I.R.; Constine, L.S.
1995-03-30
The thyroid gland is the largest pure endocrine gland in the body and one of the organs most likely to produce clinically significant abnormalities after therapeutic external radiation. Radiation doses to the thyroid that exceed approximately 26 Gy frequently produce hypothyroidism, which may be clinically overt or subclinical, as manifested by increased serum thyrotropin and normal serum-free thyroxine concentrations. Pituitary or hypothalamic hypothyroidism may arise when the pituitary region receives doses exceeding 50 Gy with conventional, 1.8-2 Gy fractionation. Direct irradiation of the thyroid may increase the risk of Graves` disease or euthyroid Graves` ophthalmopathy. Silent thyroiditis, cystic degeneration, benign adenoma, and thyroid cancer have been observed after therapeutically relevant doses of external radiation. Direct or incidental thyroid irradiation increases the risk for well-differentiated, papillary, and follicular thyroid cancer from 15- to 53-fold. Thyroid cancer risk is highest following radiation at a young age, decreases with increasing age at treatment, and increases with follow-up duration. The potentially prolonged latent period between radiation exposure and the development of thyroid dysfunction, thyroid nodularity, and thyroid cancer means that individuals who have received neck or pituitary irradiation require careful, periodic clinical and laboratory evaluation to avoid excess morbidity. 39 refs.
Abnormalities of vascular structure and function in pediatric hypertension.
Urbina, Elaine M
2016-07-01
Hypertension is associated with adverse cardiovascular (CV) events in adults. Measures of vascular structure and function, including increased carotid intima-media thickness (cIMT) and elevated arterial stiffness predict hard CV events in adulthood. Newer data suggest that abnormalities in target organ damage are occurring in adolescents and young adults with high blood pressure. In this review, we discuss the techniques for measuring vascular dysfunction in young people and the evidence linking blood pressure levels to this type of target organ damage.
Immune Abnormalities in Patients with Autism.
ERIC Educational Resources Information Center
Warren, Reed P.; And Others
1986-01-01
A study of 31 autistic patients (3-28 years old) has revealed several immune-system abnormalities, including decreased numbers of T lymphocytes and an altered ratio of helper-to-suppressor T cells. Immune-system abnormalities may be directly related to underlying biologic processes of autism or an indirect reflection of the actual pathologic…
An Abnormal Psychology Community Based Interview Assignment
ERIC Educational Resources Information Center
White, Geoffry D.
1977-01-01
A course option in abnormal psychology involves students in interviewing and observing the activities of individuals in the off-campus community who are concerned with some aspect of abnormal psychology. The technique generates student interest in the field when they interview people about topics such as drug abuse, transsexualism, and abuse of…
Detection of Structural Abnormalities Using Neural Nets
NASA Technical Reports Server (NTRS)
Zak, M.; Maccalla, A.; Daggumati, V.; Gulati, S.; Toomarian, N.
1996-01-01
This paper describes a feed-forward neural net approach for detection of abnormal system behavior based upon sensor data analyses. A new dynamical invariant representing structural parameters of the system is introduced in such a way that any structural abnormalities in the system behavior are detected from the corresponding changes to the invariant.
Nail abnormalities in patients with vitiligo*
Topal, Ilteris Oguz; Gungor, Sule; Kocaturk, Ozgur Emek; Duman, Hatice; Durmuscan, Mustafa
2016-01-01
Background Vitiligo is an acquired pigmentary skin disorder affecting 0.1-4% of the general population. The nails may be affected in patients with an autoimmune disease such as psoriasis, and in those with alopecia areata. It has been suggested that nail abnormalities should be apparent in vitiligo patients. Objective We sought to document the frequency and clinical presentation of nail abnormalities in vitiligo patients compared to healthy volunteers. We also examined the correlations between nail abnormalities and various clinical parameters. Methods This study included 100 vitiligo patients and 100 healthy subjects. Full medical histories were collected from the subjects, who underwent thorough general and nail examinations. All nail changes were noted. In the event of clinical suspicion of a fungal infection, additional mycological investigations were performed. Results Nail abnormalities were more prevalent in the patients (78%) than in the controls (55%) (p=0.001). Longitudinal ridging was the most common finding (42%), followed by (in descending order): leukonychia, an absent lunula, onycholysis, nail bed pallor, onychomycosis, splinter hemorrhage and nail plate thinning. The frequency of longitudinal ridging was significantly higher in patients than in controls (p<0.001). Conclusions Nail abnormalities were more prevalent in vitiligo patients than in controls. Systematic examination of the nails in such patients is useful because nail abnormalities are frequent. However, the causes of such abnormalities require further study. Longitudinal ridging and leukonychia were the most common abnormalities observed in this study. PMID:27579738
Dynamic membrane protein topological switching upon changes in phospholipid environment
Vitrac, Heidi; MacLean, David M.; Jayaraman, Vasanthi; Bogdanov, Mikhail; Dowhan, William
2015-01-01
A fundamental objective in membrane biology is to understand and predict how a protein sequence folds and orients in a lipid bilayer. Establishing the principles governing membrane protein folding is central to understanding the molecular basis for membrane proteins that display multiple topologies, the intrinsic dynamic organization of membrane proteins, and membrane protein conformational disorders resulting in disease. We previously established that lactose permease of Escherichia coli displays a mixture of topological conformations and undergoes postassembly bidirectional changes in orientation within the lipid bilayer triggered by a change in membrane phosphatidylethanolamine content, both in vivo and in vitro. However, the physiological implications and mechanism of dynamic structural reorganization of membrane proteins due to changes in lipid environment are limited by the lack of approaches addressing the kinetic parameters of transmembrane protein flipping. In this study, real-time fluorescence spectroscopy was used to determine the rates of protein flipping in the lipid bilayer in both directions and transbilayer flipping of lipids triggered by a change in proteoliposome lipid composition. Our results provide, for the first time to our knowledge, a dynamic picture of these events and demonstrate that membrane protein topological rearrangements in response to lipid modulations occur rapidly following a threshold change in proteoliposome lipid composition. Protein flipping was not accompanied by extensive lipid-dependent unfolding of transmembrane domains. Establishment of lipid bilayer asymmetry was not required but may accelerate the rate of protein flipping. Membrane protein flipping was found to accelerate the rate of transbilayer flipping of lipids. PMID:26512118
Topological States and Adiabatic Pumping in Quasicrystals
NASA Astrophysics Data System (ADS)
Kraus, Yaakov; Lahini, Yoav; Ringel, Zohar; Verbin, Mor; Zilberberg, Oded
2012-02-01
We find a connection between quasicrystals and topological matter, namely that quasicrystals exhibit non-trivial topological phases attributed to dimensions higher than their own [1]. Quasicrystals are materials which are neither ordered nor disordered, i.e. they exhibit only long-range order [2]. This long-range order is usually expressed as a projection from a higher dimensional ordered system. Recently, the unrelated discovery of Topological Insulators [3] defined a new type of materials classified by their topology. We show theoretically and experimentally using photonic lattices, that one-dimensional quasicrystals exhibit topologically-protected boundary states equivalent to the edge states of the two-dimensional Integer Quantum Hall Effect. We harness this property to adiabatically pump light across the quasicrystal, and generalize our results to higher dimensional systems. Hence, quasicrystals offer a new platform for the study of topological phases while their topology may better explain their surface properties.[4pt] [1] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, arXiv:1109.5983 (2011).[0pt] [2] C. Janot, Quasicrystals (Clarendon, Oxford, 1994), 2nd ed.[0pt] [3] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
Strain-Induced Ferroelectric Topological Insulator.
Liu, Shi; Kim, Youngkuk; Tan, Liang Z; Rappe, Andrew M
2016-03-01
Ferroelectricity and band topology are two extensively studied yet distinct properties of insulators. Nonetheless, their coexistence has never been observed in a single material. Using first-principles calculations, we demonstrate that a noncentrosymmetric perovskite structure of CsPbI3 allows for the simultaneous presence of ferroelectric and topological orders with appropriate strain engineering. Metallic topological surface states create an intrinsic short-circuit condition, helping stabilize bulk polarization. Exploring diverse structural phases of CsPbI3 under pressure, we identify that the key structural feature for achieving a ferroelectric topological insulator is to suppress PbI6 cage rotation in the perovskite structure, which could be obtained via strain engineering. Ferroelectric control over the density of topological surface states provides a new paradigm for device engineering, such as perfect-focusing Veselago lens and spin-selective electron collimator. Our results suggest that CsPbI3 is a simple model system for ferroelectric topological insulators, enabling future studies exploring the interplay between conventional symmetry-breaking and topological orders and their novel applications in electronics and spintronics.
Low-Dimensional Topological Crystalline Insulators.
Wang, Qisheng; Wang, Feng; Li, Jie; Wang, Zhenxing; Zhan, Xueying; He, Jun
2015-09-01
Topological crystalline insulators (TCIs) are recently discovered topological phase with robust surface states residing on high-symmetry crystal surfaces. Different from conventional topological insulators (TIs), protection of surface states on TCIs comes from point-group symmetry instead of time-reversal symmetry in TIs. The distinct properties of TCIs make them promising candidates for the use in novel spintronics, low-dissipation quantum computation, tunable pressure sensor, mid-infrared detector, and thermoelectric conversion. However, similar to the situation in TIs, the surface states are always suppressed by bulk carriers, impeding the exploitation of topology-induced quantum phenomenon. One effective way to solve this problem is to grow low-dimensional TCIs which possess large surface-to-volume ratio, and thus profoundly increase the carrier contribution from topological surface states. Indeed, through persistent effort, researchers have obtained unique quantum transport phenomenon, originating from topological surface states, based on controllable growth of low-dimensional TCIs. This article gives a comprehensive review on the recent progress of controllable synthesis and topological surface transport of low-dimensional TCIs. The possible future direction about low-dimensional TCIs is also briefly discussed at the end of this paper.
Robust interface between flying and topological qubits.
Xue, Zheng-Yuan; Gong, Ming; Liu, Jia; Hu, Yong; Zhu, Shi-Liang; Wang, Z D
2015-07-28
Hybrid architectures, consisting of conventional and topological qubits, have recently attracted much attention due to their capability in consolidating robustness of topological qubits and universality of conventional qubits. However, these two kinds of qubits are normally constructed in significantly different energy scales, and thus the energy mismatch is a major obstacle for their coupling, which can support the exchange of quantum information between them. Here we propose a microwave photonic quantum bus for a strong direct coupling between the topological and conventional qubits, where the energy mismatch is compensated by an external driving field. In the framework of tight-binding simulation and perturbation approach, we show that the energy splitting of Majorana fermions in a finite length nanowire, which we use to define topological qubits, is still robust against local perturbations due to the topology of the system. Therefore, the present scheme realizes a rather robust interface between the flying and topological qubits. Finally, we demonstrate that this quantum bus can also be used to generate multipartitie entangled states with the topological qubits.
Persistent topological features of dynamical systems.
Maletić, Slobodan; Zhao, Yi; Rajković, Milan
2016-05-01
Inspired by an early work of Muldoon et al., Physica D 65, 1-16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.
Topological lasing in resonant photonic structures
NASA Astrophysics Data System (ADS)
Pilozzi, Laura; Conti, Claudio
2016-05-01
We exploit topological edge states in resonant photonic crystals to attain strongly localized resonances and demonstrate lasing in these modes upon optical excitation. The use of virtually lossless topologically isolated edge states may lead to a class of thresholdless lasers operating without inversion. One needs, however, to understand whether topological states may be coupled to external radiation and act as active cavities. We study a two-level topological insulator and show that self-induced transparency pulses can directly excite edge states. We simulate laser emission by a suitably designed topological cavity and show that it can emit tunable radiation. For a configuration of sites following the off-diagonal Aubry-André-Harper model, we solve the Maxwell-Bloch equations in the time domain and provide a first-principles confirmation of topological lasers. Our results open the road to a class of light emitters with topological protection for applications ranging from low-cost energetically effective integrated laser sources, also including silicon photonics, to strong-coupling devices for studying ultrafast quantum processes with engineered vacuum.
Holographic entanglement renormalization of topological insulators
NASA Astrophysics Data System (ADS)
Wen, Xueda; Cho, Gil Young; Lopes, Pedro L. S.; Gu, Yingfei; Qi, Xiao-Liang; Ryu, Shinsei
2016-08-01
We study the real-space entanglement renormalization group flows of topological band insulators in (2+1) dimensions by using the continuum multiscale entanglement renormalization ansatz (cMERA). Given the ground state of a Chern insulator, we construct and study its cMERA by paying attention, in particular, to how the bulk holographic geometry and the Berry curvature depend on the topological properties of the ground state. It is found that each state defined at different energy scale of cMERA carries a nonzero Berry flux, which is emanated from the UV layer of cMERA, and flows towards the IR. Hence, a topologically nontrivial UV state flows under the renormalization group to an IR state, which is also topologically nontrivial. On the other hand, we found that there is an obstruction to construct the exact ground state of a topological insulator with a topologically trivial IR state. That is, if we try to construct a cMERA for the ground state of a Chern insulator by taking a topologically trivial IR state, the resulting cMERA does not faithfully reproduce the exact ground state at all length scales.
How to model wireless mesh networks topology
NASA Astrophysics Data System (ADS)
Sanni, M. L.; Hashim, A. A.; Anwar, F.; Ahmed, G. S. M.; Ali, S.
2013-12-01
The specification of network connectivity model or topology is the beginning of design and analysis in Computer Network researches. Wireless Mesh Networks is an autonomic network that is dynamically self-organised, self-configured while the mesh nodes establish automatic connectivity with the adjacent nodes in the relay network of wireless backbone routers. Researches in Wireless Mesh Networks range from node deployment to internetworking issues with sensor, Internet and cellular networks. These researches require modelling of relationships and interactions among nodes including technical characteristics of the links while satisfying the architectural requirements of the physical network. However, the existing topology generators model geographic topologies which constitute different architectures, thus may not be suitable in Wireless Mesh Networks scenarios. The existing methods of topology generation are explored, analysed and parameters for their characterisation are identified. Furthermore, an algorithm for the design of Wireless Mesh Networks topology based on square grid model is proposed in this paper. The performance of the topology generated is also evaluated. This research is particularly important in the generation of a close-to-real topology for ensuring relevance of design to the intended network and validity of results obtained in Wireless Mesh Networks researches.
Topological Z2 Gapless Photonic Crystals
NASA Astrophysics Data System (ADS)
Xie, Biye; Wang, Zidan
Topological properties of electronic materials with gapless band structure such as Topological Semimetals(TSMs) and Topological Metals(TMs) have drew lots of attention to both theoretical and experimental physicists recently. Although theoretical prediction of TSMs and TMs have been done well, experimental study of them is quite difficult to perform due to the fact that it is very difficult to control and design certain electronic materials. However, since the topological properties stem from the geometric feature, we can study them in Photonic Crystals(PhCs) which are much easy to be controlled and designed. Here we study 2-dimension PhCs consisting of gyrotropic materials with hexagonal structure. In the Brillouin corner, the dispersion relation has gapless points which are similar to Dirac Cones in electronic materials. We firstly derive the effective Hamiltonian of this system and show that if certain perturbation is added to this effective Hamiltonian, this system belongs to AII class according to Altland and Zirbauer topological classification and is described by a Z2 topological charge. Finally we also propose a way to detect this Z2 topological charge using momentum space Aharonov-Bohm interferometer which is firstly proposed by L.Duca and T.Li,etc.
Topological phases: An expedition off lattice
Freedman, Michael H.; Gamper, Lukas; Gils, Charlotte; Isakov, Sergei V.; Trebst, Simon; Troyer, Matthias
2011-08-15
Highlights: > Models of topological phases where the lattice topology is a dynamical variable. > We discuss off-lattice hazards that destroy topological protection. > The Cheeger constant yields upper bound to the energy of excited states. > Baby universes meet condensed matter physics. > We study the graph Laplacian of loop gases and string nets on fluctuating lattices. - Abstract: Motivated by the goal to give the simplest possible microscopic foundation for a broad class of topological phases, we study quantum mechanical lattice models where the topology of the lattice is one of the dynamical variables. However, a fluctuating geometry can remove the separation between the system size and the range of local interactions, which is important for topological protection and ultimately the stability of a topological phase. In particular, it can open the door to a pathology, which has been studied in the context of quantum gravity and goes by the name of 'baby universe', here we discuss three distinct approaches to suppressing these pathological fluctuations. We complement this discussion by applying Cheeger's theory relating the geometry of manifolds to their vibrational modes to study the spectra of Hamiltonians. In particular, we present a detailed study of the statistical properties of loop gas and string net models on fluctuating lattices, both analytically and numerically.
Topological photonic phase in chiral hyperbolic metamaterials.
Gao, Wenlong; Lawrence, Mark; Yang, Biao; Liu, Fu; Fang, Fengzhou; Béri, Benjamin; Li, Jensen; Zhang, Shuang
2015-01-23
Recently, the possibility of achieving one-way backscatter immune transportation of light by mimicking the topological properties of certain solid state systems, such as topological insulators, has received much attention. Thus far, however, demonstrations of nontrivial topology in photonics have relied on photonic crystals with precisely engineered lattice structures, periodic on the scale of the operational wavelength and composed of finely tuned, complex materials. Here we propose a novel effective medium approach towards achieving topologically protected photonic surface states robust against disorder on all length scales and for a wide range of material parameters. Remarkably, the nontrivial topology of our metamaterial design results from the Berry curvature arising from the transversality of electromagnetic waves in a homogeneous medium. Our investigation therefore acts to bridge the gap between the advancing field of topological band theory and classical optical phenomena such as the spin Hall effect of light. The effective medium route to topological phases will pave the way for highly compact one-way transportation of electromagnetic waves in integrated photonic circuits.
Topological microstructure analysis using persistence landscapes
NASA Astrophysics Data System (ADS)
Dłotko, Paweł; Wanner, Thomas
2016-11-01
Phase separation mechanisms can produce a variety of complicated and intricate microstructures, which often can be difficult to characterize in a quantitative way. In recent years, a number of novel topological metrics for microstructures have been proposed, which measure essential connectivity information and are based on techniques from algebraic topology. Such metrics are inherently computable using computational homology, provided the microstructures are discretized using a thresholding process. However, while in many cases the thresholding is straightforward, noise and measurement errors can lead to misleading metric values. In such situations, persistence landscapes have been proposed as a natural topology metric. Common to all of these approaches is the enormous data reduction, which passes from complicated patterns to discrete information. It is therefore natural to wonder what type of information is actually retained by the topology. In the present paper, we demonstrate that averaged persistence landscapes can be used to recover central system information in the Cahn-Hilliard theory of phase separation. More precisely, we show that topological information of evolving microstructures alone suffices to accurately detect both concentration information and the actual decomposition stage of a data snapshot. Considering that persistent homology only measures discrete connectivity information, regardless of the size of the topological features, these results indicate that the system parameters in a phase separation process affect the topology considerably more than anticipated. We believe that the methods discussed in this paper could provide a valuable tool for relating experimental data to model simulations.
Persistent topological features of dynamical systems
NASA Astrophysics Data System (ADS)
Maletić, Slobodan; Zhao, Yi; Rajković, Milan
2016-05-01
Inspired by an early work of Muldoon et al., Physica D 65, 1-16 (1993), we present a general method for constructing simplicial complex from observed time series of dynamical systems based on the delay coordinate reconstruction procedure. The obtained simplicial complex preserves all pertinent topological features of the reconstructed phase space, and it may be analyzed from topological, combinatorial, and algebraic aspects. In focus of this study is the computation of homology of the invariant set of some well known dynamical systems that display chaotic behavior. Persistent homology of simplicial complex and its relationship with the embedding dimensions are examined by studying the lifetime of topological features and topological noise. The consistency of topological properties for different dynamic regimes and embedding dimensions is examined. The obtained results shed new light on the topological properties of the reconstructed phase space and open up new possibilities for application of advanced topological methods. The method presented here may be used as a generic method for constructing simplicial complex from a scalar time series that has a number of advantages compared to the mapping of the same time series to a complex network.
Strain-Induced Ferroelectric Topological Insulator.
Liu, Shi; Kim, Youngkuk; Tan, Liang Z; Rappe, Andrew M
2016-03-01
Ferroelectricity and band topology are two extensively studied yet distinct properties of insulators. Nonetheless, their coexistence has never been observed in a single material. Using first-principles calculations, we demonstrate that a noncentrosymmetric perovskite structure of CsPbI3 allows for the simultaneous presence of ferroelectric and topological orders with appropriate strain engineering. Metallic topological surface states create an intrinsic short-circuit condition, helping stabilize bulk polarization. Exploring diverse structural phases of CsPbI3 under pressure, we identify that the key structural feature for achieving a ferroelectric topological insulator is to suppress PbI6 cage rotation in the perovskite structure, which could be obtained via strain engineering. Ferroelectric control over the density of topological surface states provides a new paradigm for device engineering, such as perfect-focusing Veselago lens and spin-selective electron collimator. Our results suggest that CsPbI3 is a simple model system for ferroelectric topological insulators, enabling future studies exploring the interplay between conventional symmetry-breaking and topological orders and their novel applications in electronics and spintronics. PMID:26814668
Robust interface between flying and topological qubits
Xue, Zheng-Yuan; Gong, Ming; Liu, Jia; Hu, Yong; Zhu, Shi-Liang; Wang, Z. D.
2015-01-01
Hybrid architectures, consisting of conventional and topological qubits, have recently attracted much attention due to their capability in consolidating robustness of topological qubits and universality of conventional qubits. However, these two kinds of qubits are normally constructed in significantly different energy scales, and thus the energy mismatch is a major obstacle for their coupling, which can support the exchange of quantum information between them. Here we propose a microwave photonic quantum bus for a strong direct coupling between the topological and conventional qubits, where the energy mismatch is compensated by an external driving field. In the framework of tight-binding simulation and perturbation approach, we show that the energy splitting of Majorana fermions in a finite length nanowire, which we use to define topological qubits, is still robust against local perturbations due to the topology of the system. Therefore, the present scheme realizes a rather robust interface between the flying and topological qubits. Finally, we demonstrate that this quantum bus can also be used to generate multipartitie entangled states with the topological qubits. PMID:26216201
On the topological sensitivity of cellular automata
NASA Astrophysics Data System (ADS)
Baetens, Jan M.; De Baets, Bernard
2011-06-01
Ever since the conceptualization of cellular automata (CA), much attention has been paid to the dynamical properties of these discrete dynamical systems, and, more in particular, to their sensitivity to the initial condition from which they are evolved. Yet, the sensitivity of CA to the topology upon which they are based has received only minor attention, such that a clear insight in this dependence is still lacking and, furthermore, a quantification of this so-called topological sensitivity has not yet been proposed. The lack of attention for this issue is rather surprising since CA are spatially explicit, which means that their dynamics is directly affected by their topology. To overcome these shortcomings, we propose topological Lyapunov exponents that measure the divergence of two close trajectories in phase space originating from a topological perturbation, and we relate them to a measure grasping the sensitivity of CA to their topology that relies on the concept of topological derivatives, which is introduced in this paper. The validity of the proposed methodology is illustrated for the 256 elementary CA and for a family of two-state irregular totalistic CA.
Skeletal Muscle Abnormalities in Heart Failure.
Kinugawa, Shintaro; Takada, Shingo; Matsushima, Shouji; Okita, Koichi; Tsutsui, Hiroyuki
2015-01-01
Exercise capacity is lowered in patients with heart failure, which limits their daily activities and also reduces their quality of life. Furthermore, lowered exercise capacity has been well demonstrated to be closely related to the severity and prognosis of heart failure. Skeletal muscle abnormalities including abnormal energy metabolism, transition of myofibers from type I to type II, mitochondrial dysfunction, reduction in muscular strength, and muscle atrophy have been shown to play a central role in lowered exercise capacity. The skeletal muscle abnormalities can be classified into the following main types: 1) low endurance due to mitochondrial dysfunction; and 2) low muscle mass and muscle strength due to imbalance of protein synthesis and degradation. The molecular mechanisms of these skeletal muscle abnormalities have been studied mainly using animal models. The current review including our recent study will focus upon the skeletal muscle abnormalities in heart failure. PMID:26346520
Frequency Dependent Topological Patterns of Resting-State Brain Networks
Qian, Long; Zhang, Yi; Zheng, Li; Shang, Yuqing; Gao, Jia-Hong; Liu, Yijun
2015-01-01
The topological organization underlying brain networks has been extensively investigated using resting-state fMRI, focusing on the low frequency band from 0.01 to 0.1 Hz. However, the frequency specificities regarding the corresponding brain networks remain largely unclear. In the current study, a data-driven method named complementary ensemble empirical mode decomposition (CEEMD) was introduced to separate the time series of each voxel into several intrinsic oscillation rhythms with distinct frequency bands. Our data indicated that the whole brain BOLD signals could be automatically divided into five specific frequency bands. After applying the CEEMD method, the topological patterns of these five temporally correlated networks were analyzed. The results showed that global topological properties, including the network weighted degree, network efficiency, mean characteristic path length and clustering coefficient, were observed to be most prominent in the ultra-low frequency bands from 0 to 0.015 Hz. Moreover, the saliency of small-world architecture demonstrated frequency-density dependency. Compared to the empirical mode decomposition method (EMD), CEEMD could effectively eliminate the mode-mixing effects. Additionally, the robustness of CEEMD was validated by the similar results derived from a split-half analysis and a conventional frequency division method using the rectangular window band-pass filter. Our findings suggest that CEEMD is a more effective method for extracting the intrinsic oscillation rhythms embedded in the BOLD signals than EMD. The application of CEEMD in fMRI data analysis will provide in-depth insight in investigations of frequency specific topological patterns of the dynamic brain networks. PMID:25927525
Topology and bistability in liquid crystal devices
Majumdar, A.; Newton, C. J. P.; Robbins, J. M.; Zyskin, M.
2007-05-15
We study nematic liquid crystal configurations in a prototype bistable device--the post aligned bistable nematic (PABN) cell. Working within the Oseen-Frank continuum model, we describe the liquid crystal configuration by a unit-vector field n, in a model version of the PABN cell. First, we identify four distinct topologies in this geometry. We explicitly construct trial configurations with these topologies which are used as initial conditions for a numerical solver, based on the finite-element method. The morphologies and energetics of the corresponding numerical solutions qualitatively agree with experimental observations and suggest a topological mechanism for bistability in the PABN cell geometry.
Experimental Studies of Ferromagnetism in Topological Insulators
NASA Astrophysics Data System (ADS)
Checkelsky, Joseph
2014-03-01
Breaking of time reversal symmetry has proven to be an incisive method for experimentally drawing out the exotic nature of topological insulators. In particular, the introduction of magnetic dopants in to three dimensional topological insulators has led to the realization of theoretically predicted novel types of ferromagnetic order and a quantized version of the anomalous Hall effect. Here, I will present recent work on the synthesis and measurement of bulk and thin film topological insulators doped with 3 d transition metals. I will discuss the ferromagnetic order that arises in various systems and the associated electrical transport response of the surface modes.
Topological study of the periodic system.
Restrepo, Guillermo; Mesa, Héber; Llanos, Eugenio J; Villaveces, José L
2004-01-01
We carried out a topological study of the Space of Chemical Elements, SCE, based on a clustering analysis of 72 elements, each one defined by a vector of 31 properties. We looked for neighborhoods, boundaries, and other topological properties of the SCE. Among the results one sees the well-known patterns of the Periodic Table and relationships such as the Singularity Principle and the Diagonal Relationship, but there appears also a robustness property of some of the better-known families of elements. Alkaline metals and Noble Gases are sets whose neighborhoods have no other elements besides themselves, whereas the topological boundary of the set of metals is formed by semimetallic elements.
Scaling theory of {{{Z}}_{2}} topological invariants
NASA Astrophysics Data System (ADS)
Chen, Wei; Sigrist, Manfred; Schnyder, Andreas P.
2016-09-01
For inversion-symmetric topological insulators and superconductors characterized by {{{Z}}2} topological invariants, two scaling schemes are proposed to judge topological phase transitions driven by an energy parameter. The scaling schemes renormalize either the phase gradient or the second derivative of the Pfaffian of the time-reversal operator, through which the renormalization group flow of the driving energy parameter can be obtained. The Pfaffian near the time-reversal invariant momentum is revealed to display a universal critical behavior for a great variety of models examined.
Global monopoles can change Universe's topology
NASA Astrophysics Data System (ADS)
Marunović, Anja; Prokopec, Tomislav
2016-05-01
If the Universe undergoes a phase transition, at which global monopoles are created or destroyed, topology of its spatial sections can change. More specifically, by making use of Myers' theorem, we show that, after a transition in which global monopoles form, spatial sections of a spatially flat, infinite Universe becomes finite and closed. This implies that global monopoles can change the topology of Universe's spatial sections (from infinite and open to finite and closed). Global monopoles cannot alter the topology of the space-time manifold.
Learning topological maps: An alternative approach
Buecken, A.; Thrun, S.
1996-12-31
Our goal is autonomous real-time control of a mobile robot. In this paper we want to show a possibility to learn topological maps of a large-scale indoor environment autonomously. In the literature there are two paradigms how to store information on the environment of a robot: as a grid-based (geometric) or as a topological map. While grid-based maps are considerably easy to learn and maintain, topological maps are quite compact and facilitate fast motion-planning.
On the topological stability of magnetostatic equilibria
NASA Technical Reports Server (NTRS)
Tsinganos, K. C.; Rosner, R.; Distler, J.
1984-01-01
The topological stability of MHD equilibria is investigated by exploring the formal analogy, in the ideal MHD limit, between the topology of magnetic lines of force in coordinate space and the topology of integral surfaces of one- and two-dimensional Hamiltonian systems in phase space. It is demonstrated that in an astrophysical setting, symmetric magnetostatic equilibria satisfying the ideal MHD equations are exceptional. The principal result of the study is that previous infinitesimal perturbation theory calculations can be generalized to include finite-amplitude and symmetry-breaking effects. The effect of the ergodicity of perturbed symmetric equilibria on heat dispersal in magnetically dominated plasmas is discussed.
Fibonacci topological order from quantum nets.
Fendley, Paul; Isakov, Sergei V; Troyer, Matthias
2013-06-28
We analyze a model of quantum nets and show it has a non-Abelian topological order of doubled-Fibonacci type. The ground state has the same topological behavior as that of the corresponding string-net model, but our Hamiltonian can be defined on any lattice, has less complicated interactions, and its excitations are dynamical, not fixed. This Hamiltonian includes terms acting on the spins around a face, around a vertex, and special "Jones-Wenzl" terms that serve to couple long loops together. We provide strong evidence for a gap by exact diagonalization, completing the list of ingredients necessary for topological order. PMID:23848854